WorldWideScience

Sample records for polypropylene composite reinforced

  1. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  2. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief; Lubineau, Gilles; Wafai, Husam; Mulle, Matthieu; Pulungan, Ditho Ardiansyah; Yaldiz, R.; Verghese, N.

    2016-01-01

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact

  3. Coir dust reinforced recycled polypropylene composites

    International Nuclear Information System (INIS)

    Santos, Bianca B. dos; Costa, Marysilvia F. da; Thire, Rossana M. da S.M.

    2015-01-01

    The environmental impacts caused by disposed plastics encourage the search for new alternatives. Recycling polymers leads to the degradation of their mechanical properties, which can be modified by the addition of fillers. In this paper, recycled polypropylene from plastic cups with 2%, 5% and 10% of coir dust were produced with and without the addition of additives. These composites were characterized by tensile tests, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy on the fracture surface. It was verified the effectiveness of the addition of coir dust in improving the elasticity modulus of recycled polypropylene besides the effectiveness of additives used in promoting the adhesion of the powder to the matrix. However, higher levels of coir dust caused the appearance of air bubbles inside the material, which contributed to its embrittlement. The addition of coir dust promoted a decrease in the degree of polypropylene crystallinity. (author)

  4. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  5. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    International Nuclear Information System (INIS)

    Arib, R.M.N.; Sapuan, S.M.; Ahmad, M.M.H.M.; Paridah, M.T.; Zaman, H.M.D. Khairul

    2006-01-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage

  6. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Arib, R.M.N. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Ahmad, M.M.H.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Paridah, M.T. [Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zaman, H.M.D. Khairul [Radiation Processing Technology Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi 43000 Kajang, Selangor (Malaysia)

    2006-07-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage.

  7. Acoustic properties of polypropylene composites reinforced with stone groundwood

    Directory of Open Access Journals (Sweden)

    Joan Pere López

    2012-11-01

    Full Text Available Currently, acoustic isolation is one of the problems raised with building construction in Spain. The publication of the Basic Document for the protection against noise of the Technical Building Code has increased the demand of comfort for citizens. This has created the need to seek new composite materials that meet the new required acoustical building codes. In this paper we report the results of the newly developed composites that are able to improve the acoustic isolation of airborne noise. These composites were prepared from polypropylene (PP reinforced with mechanical pulp fibers from softwood (Pinus radiata. Mechanical and acoustical properties of the composites from mechanical pulp (MP and polypropylene (PP have been investigated and compared to fiberglass (FG composites. MP composites had lower tensile properties compared with FG composites, although these properties can be improved by incorporation of a coupling agent. The results of acoustical properties of MP composites were reported and compared with the conventional composites based on fiberglass and gypsum plasterboards. Finally, we suggest the application of MP composites as a light-weight building material to reduce acoustic transmitions.

  8. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    NARCIS (Netherlands)

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  9. Tensile strength characteristics of polypropylene composites reinforced with stone groundwood fibers from softwood

    OpenAIRE

    López, Joan Pere; Méndez González, José Alberto; Espinach Orús, Xavier; Julián Pérez, Fernando; Mutjé Pujol, Pere; Vilaseca Morera, Fabiola

    2012-01-01

    The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composit...

  10. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    Science.gov (United States)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  11. Evaluation of the thermal properties of polypropylene reinforced with palm fibers composites

    International Nuclear Information System (INIS)

    Capri, M.R.; Santana, L.C.; Mulinari, D.R.

    2016-01-01

    The aim of this study was to characterize polypropylene reinforced with palm composites. Of this form, it was studied physical and chemical modifications of the in nature fibers, washed with hot water and mercerized. The composites of polypropylene reinforced with 5%, 10% and 20% (wt /wt) in nature fibers and mercerized were evaluated thermally. The fibers were characterized by SEM XRD and TGA / DSC techniques. Results revealed that the mercerized fibers presented higher crystallinity when compared to others, as well as increased roughness, facilitating interlacing with the reinforcement matrix. Thermal studies of the fibers showed that the mercerization caused displacement curves paragraph higher temperatures. The composites reinforced with treated fibers presented largest temperatures and enthalpies of degradation. The content of fiber influenced in enthalpy degradation and reduction in fusion temperature. (author)

  12. Switchgrass (Panicum virgatum L.) as a reinforcing fibre in polypropylene composites

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Elbersen, H.W.; Keijsers, E.R.P.; Gosselink, R.J.A.; Klerk-Engels, de B.

    2003-01-01

    In this study the switchgrass (Panicum virgatum L.), a biomass crop being developed in North America and Europe, was tested as a stiffening and reinforcing agent in polypropylene (PP) composites with and without maleic anhydride grafted PP (MAPP) as a compatibiliser and to evaluate the effect of

  13. Kenaf Fibre Reinforced Polypropylene Composites: Effect of Cyclic Immersion on Tensile Properties

    Directory of Open Access Journals (Sweden)

    W. H. Haniffah

    2015-01-01

    Full Text Available This research studied the degradation of tensile properties of kenaf fibre reinforced polypropylene composites due to cyclic immersion into two different solutions, as well as comparison of the developed composites’ tensile properties under continuous and cyclic immersion. Composites with 40% and 60% fibre loadings were immersed in tap water and bleach for 4 cycles. Each cycle consisted of 3 days of immersion and 4 days of conditioning in room temperature (28°C and 55% humidity. The tensile strength and modulus of composites were affected by fibre composition, type of liquid of immersion, and number of cycles. The number of immersion cycles and conditioning caused degradation to tensile strength and modulus of kenaf fibre reinforced polypropylene composites. Continuous and cyclic immersion in bleach caused tensile strength of the composites to differ significantly whereas, for tensile modulus, the difference was insignificant in any immersion and fibre loadings. However, continuous immersion in the bleach reduced the tensile strength of composites more compared to cyclic immersion. These preliminary results suggest further evaluation of the suitability of kenaf fibre reinforced polypropylene composites for potential bathroom application where the composites will be exposed to water/liquid in cyclic manner due to discontinuous usage of bathroom.

  14. Recycling of asbestos tailings used as reinforcing fillers in polypropylene based composites.

    Science.gov (United States)

    Zhai, Wensi; Wang, Yao; Deng, Yuan; Gao, Hongli; Lin, Zhen; Li, Mao

    2014-04-15

    In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites. Mechanical properties of these composites have been investigated by dynamic mechanical analysis, tensile test and notched impact test. Results showed that hybridization of asbestos tailings in the composites enhanced the mechanical properties of neat PP evidently, and treated asbestos tailings/PP composites yielded even better mechanical properties compared with those of raw asbestos tailings/PP composites. This recycling method of asbestos tailings not only reduces disposal costs and avoids secondary pollution but also produces a new PP-based composite material with enhanced mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  16. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  17. Woodflour as Reinforcement of Polypropylene

    Directory of Open Access Journals (Sweden)

    José Cláudio Caraschi

    2002-10-01

    Full Text Available The effect of the filler content and size, as well as accelerated aging on the mechanical properties of polypropylene composites reinforced with woodflour (WF/PP were evaluated. The composites were prepared by the extrusion of polypropylene with woodflour (Pinus elliotti based on following ratios: 15, 25 and 40 wt% with two different granulometries. The specimens were injection molded according to ASTM standards. The composite properties did not show significant differences as a function of the filler granulometry. We also observed that by increasing the filler content, both the mechanical properties and the melt flow index (MFI decreased, and the elasticity modulus, hardness and density increased. Concerning the accelerated aging, the composite presented a reduction in tensile properties. The results showed that the composite properties are extremely favorable when compared to other commercial systems reinforced by inorganic fillers.

  18. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Okikiola Ganiu AGBABIAKA

    2014-11-01

    Full Text Available Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment on the mechanical and water absorption properties of selected natural fibers (coconut and sponge fibers reinforced polypropylene composites. In this study, coconut and sponge fiber were extracted from its husk by soaking them in water and was dried before it was cut into 10mm length. Those fibers were chemically treated with sodium hydroxide (NaOH in a shaking water bath before it was used as reinforcement in polypropylene composite. The reinforced polypropylene composite was produced by dispersing the coconut fibers randomly in the polypropylene before it was fabricated in a compression molding machine where the composite was produced. The fiber content used were; 2%wt, 4%wt, 6%wt, 8%wt and 10%wt. Tensile and flexural properties was observed from universal testing machine while water absorption test was carried out on the samples for seven (7 days. It was observed that the influence of NaOH treatment highly enhanced the Flexural and water absorption properties of sponge fiber reinforced polypropylene composites than coconut fiber reinforced composite samples.

  19. Development of hemp fibre reinforced polypropylene composite - Journal Article

    CSIR Research Space (South Africa)

    Hargitai, H

    2005-06-01

    Full Text Available strong decrease in three point bending properties was noticed after immersing the composite samples in the distilled water for 19 days, while the impact strength increased. Double carding of raw materials resulted into decreased anisotropy in composite...

  20. Conifer fibers as reinforcing materials for polypropylene-based composites

    DEFF Research Database (Denmark)

    Plackett, David; Chengzhi, Chuai; Almdal, Kristoffer

    2001-01-01

    in improved processing, as well as improvements in the thermal and mechanical properties of the resultant composites compared with the composites filled with untreated conifer fibers. Moreover, MAPP grafting and MAPP treating displayed more obvious benefits than EPDM treating in terms of thermal properties...

  1. Stone-ground wood pulp-reinforced polypropylene composites: Water uptake and thermal properties

    Directory of Open Access Journals (Sweden)

    Joan Pere López

    2012-11-01

    Full Text Available Two of the drawbacks of using natural-based composites in industrial applications are thermal instability and water uptake capacity. In this work, mechanical wood pulp was used to reinforce polypropylene at a level of 20 to 50 wt. %. Composites were mixed by means of a Brabender internal mixer for both non-coupled and coupled formulations. Differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were used to determine the thermal properties of the composites. The water uptake behavior was evaluated by immersion of the composites in water until an equilibrium state was reached. Results of water absorption tests revealed that the amount of water absorption was clearly dependent upon the fiber content. The coupled composites showed lower water absorption compared to the uncoupled composites. The incorporation of mechanical wood pulp into the polypropylene matrix produced a clear nucleating effect by increasing the crystallinity degree of the polymer and also increasing the temperature of polymer degradation. The maximum degradation temperature for stone ground wood pulp–reinforced composites was in the range of 330 to 345 ºC.

  2. Effect of gamma radiation on the performance of jute fabrics-reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Haydaruzzaman [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Khan, Ruhul A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh); Khan, Mubarak A. [Radiation and Polymer Chemistry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, G. P.O. Box 3787, Dhaka 1000 (Bangladesh)], E-mail: makhan.inst@gmail.com; Khan, A.H.; Hossain, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2009-11-15

    Jute fabrics-reinforced polypropylene (PP) composites (50% fiber) were prepared by compression molding. Composites were fabricated with non-irradiated jute fabrics/non-irradiated PP (C-0), non-irradiated jute fabrics/irradiated PP (C-1), irradiated jute fabrics/non-irradiated PP (C-2) and irradiated jute fabrics/irradiated PP (C-3). It was found that C-3 composite performed the best mechanical properties over other composites. Total radiation dose varied from 250-1000 krad and composites made of using 500 krad showed the best results. The optimized values (C-3 composites) for tensile strength (TS), bending strength (BS) and impact strength (IS) were found to be 63 MPa, 73 MPa and 2.93 kJ/m{sup 2}, respectively.

  3. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants

    Directory of Open Access Journals (Sweden)

    Sk. Sharfuddin Chestee

    2017-01-01

    Full Text Available Short jute fiber reinforced polypropylene (PP composites were prepared using a single screw extrusion moulding. Jute fiber content in the composites is optimized with the extent of mechanical properties, and composites with 20% jute show higher mechanical properties. Dissimilar concentrations of several fire retardants (FRs, such as magnesium oxide (MO, aluminum oxide (AO, and phosphoric acid (PA, were used in the composites. The addition of MO, AO, and PA improved the fire retardancy properties (ignition time, flame height, and total firing time of the composites. Ignition time for 30% MO, flame height for 30% PA, and total firing time for 20% MO content composites showed good results which were 8 sec, 1 inch, and 268 sec, respectively. Mechanical properties (tensile strength, tensile modulus, bending strength, bending modulus, and elongation at break, degradation properties (soil test, weathering test, and percentage of weight loss, and water uptake were studied.

  4. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  5. Effect of ionizing radiation on polypropylene composites reinforced with coconut fibers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Leila F.; Pereira, Nilson C.; Faldini, Sonia B.; Masson, Terezinha J.; Silveira, Luiz H., E-mail: lfmiranda@sti.com.b [Universidade Presbiteriana Mackenzie, Sao Paulo, SP (Brazil). Escola de Engenharia. Curso de Engenharia de Materiais; Silva, Leonardo G. de Andrade e, E-mail: lgasilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The use of the polymeric composite materials has been increasing but these materials have environmental problems related to the discard. To reduce the discard deleterious effect, coconuts, sisal, as well as sugar cane pulp natural based fiber have been studied to replace the synthetic ones. These fibers embedded in a polymeric matrix plays a similar role as the synthetic ones, in terms of mechanical and thermal properties. The natural fibers are environmentally friendly, easy to recycle and biodegradable. The aim of this work is the study of ionizing radiation effects on the properties of recycled polypropylene composites, reinforced with 10%, 15% and 20% of the coconut fibers, using as coupling agent a substance based on maleic anhydride (MAPP) graphitized polypropylene. The samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (hardness, impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated composites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. Regarding the thermal and mechanical properties of non-irradiated samples, the incorporation of coconut fibers to polypropylene resulted in a decrease of impact strength, tensile strength and Vicat softening temperature as well as in an increase in hardness and HDT. This result indicates that the coconut fibers do not act like a reinforcement agent but as biodegradable filler. In the irradiated samples, it was observed a decrease in the impact strength, tensile strength, HDT, and thermal distortion temperature and an increase in the hardness and tensile strength. The Vicat softening temperature shows no change. (author)

  6. Effect of ionizing radiation on polypropylene composites reinforced with coconut fibers

    International Nuclear Information System (INIS)

    Miranda, Leila F.; Pereira, Nilson C.; Faldini, Sonia B.; Masson, Terezinha J.; Silveira, Luiz H.

    2009-01-01

    The use of the polymeric composite materials has been increasing but these materials have environmental problems related to the discard. To reduce the discard deleterious effect, coconuts, sisal, as well as sugar cane pulp natural based fiber have been studied to replace the synthetic ones. These fibers embedded in a polymeric matrix plays a similar role as the synthetic ones, in terms of mechanical and thermal properties. The natural fibers are environmentally friendly, easy to recycle and biodegradable. The aim of this work is the study of ionizing radiation effects on the properties of recycled polypropylene composites, reinforced with 10%, 15% and 20% of the coconut fibers, using as coupling agent a substance based on maleic anhydride (MAPP) graphitized polypropylene. The samples were molded by injection, irradiated and submitted to thermal and mechanical tests. The mechanical properties (hardness, impact strength and tensile strength), temperature of thermal distortion (HDT) and Vicat softening temperature of the non irradiated and irradiated composites were determined. The irradiation doses were of 30, 50 and 100kGy in a gamma cell. Regarding the thermal and mechanical properties of non-irradiated samples, the incorporation of coconut fibers to polypropylene resulted in a decrease of impact strength, tensile strength and Vicat softening temperature as well as in an increase in hardness and HDT. This result indicates that the coconut fibers do not act like a reinforcement agent but as biodegradable filler. In the irradiated samples, it was observed a decrease in the impact strength, tensile strength, HDT, and thermal distortion temperature and an increase in the hardness and tensile strength. The Vicat softening temperature shows no change. (author)

  7. Flexure and impact properties of glass fiber reinforced nylon 6-polypropylene composites

    Science.gov (United States)

    Kusaseh, N. M.; Nuruzzaman, D. M.; Ismail, N. M.; Hamedon, Z.; Azhari, A.; Iqbal, A. K. M. A.

    2018-03-01

    In recent years, polymer composites are rapidly developing and replacing the metals or alloys in numerous engineering applications. These polymer composites are the topic of interests in industrial applications such as automotive and aerospace industries. In the present research study, glass fiber (GF) reinforced nylon 6 (PA6)-polypropylene (PP) composite specimens were prepared successfully using injection molding process. Test specimens of five different compositions such as, 70%PA6+30%PP, 65%PA6+30%PP+5%GF, 60%PA6+30%PP+10%GF, 55%PA6+30%PP+15%GF and 50%PA6+30%PP+20%GF were prepared. In the experiments, flexure and impact tests were carried out. The obtained results revealed that flexure and impact properties of the polymer composites were significantly influenced by the glass fiber content. Results showed that flexural strength is low for pure polymer blend and flexural strength of GF reinforced composite increases gradually with the increase in glass fiber content. Test results also revealed that the impact strength of 70%PA6+30%PP is the highest and 55%PA6+30%PP+15%GF composite shows moderate impact strength. On the other hand, 50%PA6+30%PP+20%GF composite shows low toughness or reduced impact strength.

  8. Smart Natural Fiber Reinforced Plastic (NFRP) Composites Based On Recycled Polypropylene in The Presence Kaolin

    Science.gov (United States)

    Suharty, N. S.; Ismail, H.; Diharjo, K.; Handayani, D. S.; Lestari, W. A.

    2017-07-01

    Composites contain double filler material which act as reinforcement and flame retardants of recycled polypropylene (rPP)/kaolin(Kao)/palm oil empty bunch fiber (PEBF) have been succesfully prepared. The composites were synthesized through reactively solution method, using coupling agent PP-g-AA and compatibilizer DVB. The effect of double filler [Kao/PEBF] were investigated flexural strength (FS), inflammability, and morphology. Mechanical testing result in accordance to ASTM D790, the FS of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was 48% higher than that of rPP matrix. Moreover, flexural modulus (FM) was significantly improved by 56% as compared to that of rPP matrix. The scanning electron images (SEM) shown good dispersion of [Ka/PEBF] and good filler-matrix interaction. The inflammability testing result which is tested using ASTM D635, showed that the flame resistance of rPP/DVB/PP-g-AA/Kao+ZB/PEBF composite was improve by increasing of time to ignition (TTI) about 857% and burning rate (BR) decreasing to 66% compared to the raw material rPP matrix. In the same time, the addition of 20% (w/w) PEBF as a second filler to form rPP/DVB/PP-g-AA/Kao+ZB/PEBF composites (F5) is able to increase: the FS by 17.5%, the FM by 19%, the TTI by 7.6% and the BR by 3.7% compared to the composite without PEBF (F2).

  9. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  10. Impact of chemical treatments on the mechanical and water absorption properties of coconut fibre (Cocos nucifera reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    Isiaka O. OLADELE

    2016-07-01

    Full Text Available In this work, chemically treated coconut fibres were used to reinforce Homopolymer Polypropylene in order to ascertain the effect of the treatments on the mechanical and water absorption properties of the composites produced. Coconut fibre was first extracted from its husk by soaking it in water and was dried before it was cut into 10 mm lengths. It was then chemically treated in alkali solution of sodium hydroxide (NaOH and potassium hydroxide (KOH in a shaker water bath. The treated coconut fibres were used as reinforcements in polypropylene matrix to produce composites of varied fibre weight contents; 2, 4, 6, 8 and 10 wt.%. Tensile and flexural properties were investigated using universal testing machine while water absorption test was carried out on the samples for 7 days. It was observed from the results that, NaOH treated samples gave the best tensile properties while KOH treated samples gave the best flexural and water repellent properties.

  11. Tribological performance of paddy straw reinforced polypropylene (PSRP and unidirectional glass-pultruded-kenaf (UGPK composites

    Directory of Open Access Journals (Sweden)

    R.M. Nasir

    2014-06-01

    Full Text Available In standard preparation and fabrication of natural-fibre embedded composites, 5 wt. % of natural fibre is enough to strengthen and homogenized in parental matrix as the mechanical strength was observed to increase by more than 25% of pure matrix. Hence, paddy straw and kenaf has been a potential candidate in northern region of Malaysia due to its abundance and easily replenished. A unidirectional glass-pultruded-kenaf (UGPK and paddy straws reinforced polypropylene (PSRP was studied focusing on its tribological performance. Meanwhile, friction and wear properties were examined using pin-on-disc machine under ambient temperature with dry contact condition. The tests were conducted at various sliding velocities (1.178-2.749m/s and applied normal loads (9.82-19.64N. The results showed that specific wear rate and friction coefficient decreased with increasing applied normal load and sliding velocity, but the applied normal load was more influential. The coefficient of friction ranges from 0.5 to 4 and wear rate varies from 0.5 to 4 x 10-5 mm3/Nm for PSRP. The friction coefficient of UGPK is within a range of 2.76 to 4.54 at the given test parameters while its wear rate ranging from 0.8 to 1.79 x 10-5mm3/Nm. The failure mode observed during the test was micro-buckling and followed by splitting while fiber-matrix interfacial failure occurred.

  12. Coir dust reinforced recycled polypropylene composites; Compositos de polipropileno reciclado e po de coco

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Bianca B. dos; Costa, Marysilvia F. da; Thire, Rossana M. da S.M., E-mail: bianca@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The environmental impacts caused by disposed plastics encourage the search for new alternatives. Recycling polymers leads to the degradation of their mechanical properties, which can be modified by the addition of fillers. In this paper, recycled polypropylene from plastic cups with 2%, 5% and 10% of coir dust were produced with and without the addition of additives. These composites were characterized by tensile tests, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy on the fracture surface. It was verified the effectiveness of the addition of coir dust in improving the elasticity modulus of recycled polypropylene besides the effectiveness of additives used in promoting the adhesion of the powder to the matrix. However, higher levels of coir dust caused the appearance of air bubbles inside the material, which contributed to its embrittlement. The addition of coir dust promoted a decrease in the degree of polypropylene crystallinity. (author)

  13. Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites

    Directory of Open Access Journals (Sweden)

    2007-05-01

    Full Text Available A new treating method using sodium hydroxide (NaOH and Maleic anhydride-grafted polypropylene (MPP emulsion was introduced to treat jute fiber mat in order to enhance the performance of jute/polypropylene (PP composite prepared by film stacking method. The surface modifications of jute fiber mat have been found to be very effective in improving the fiber-matrix adhesion. It was shown that treatments changed not only the surface topography but also the distribution of diameter and strength for the jute fibers, which was analyzed by using a two-parameter Weibull distribution model. Consequently, the interfacial shear strength, flexural and tensile strength of the composites all increased, but the impact strength decreased slightly. These results have demonstrated a new approach to use natural materials to enhance the mechanical performances of composites.

  14. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose)

    Science.gov (United States)

    Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.

    2017-12-01

    Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.

  15. Studies on improvement of mechanical properties of Kenaf-reinforced polypropylene composites

    International Nuclear Information System (INIS)

    Sarifah Hanisah Syed Abd Aziz; Khairul Zaman Mohd Dahlan

    2006-01-01

    At present, research in composite materials is being directed at using natural fibres instead of synthetic fibres. Kenaf which is extensively grown in the Far East including Malaysia, has been identified as a bast (stem) fibre with significant market potential. In this work, long and random kenaf fibres were used in the as-received condition and alkalized with a 0.06 M NaOH solution. They were combined with polypropylene thin sheets, sandwiched between layers of kenaf fibres and hot-pressed to form natural fibre composites. The mechanical properties of the composites were investigated to observe the effect of fibre alignment, fibre treatment, the addition of coupling agent and pre-irradiation method used. A general trend was observed whereby alkalized and long fibre composites gave higher flexural modulus and flexural strength compared with random mat and untreated fibres. The long fibre composites also gave a higher work of fracture. However, the correlation between fibre surface treatment and the work of fracture was less clear. The addition of coupling agent at 1% showed a slight improvement on the mechanical performance of the composites whereas pre-irradiation on the polypropylene pellets and fibres before the composite is manufactured showed significant improvement on the mechanical properties. However, the method of moulding used need to be improved to optimize the performance of the composites. (Author)

  16. Conductive polypropylene composites

    International Nuclear Information System (INIS)

    Koszkul, J.

    1997-01-01

    The results of studies on polypropylene composites with three sorts of Polish-made carbon blacks were presented. It was found that composite of 20% black content had properties of an electrically conducting material

  17. Impact of Surface Modification and Nanoparticle on Sisal Fiber Reinforced Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Ibrahim, I. D.; Jamiru, T.; Sadiku, E. R.; Agwuncha, S. Ch.; Kupolati, W. K.

    2016-01-01

    The use of plant fibers, polymer, and nanoparticles for composite has gained global attention, especially in the packaging, automobile, aviation, building, and construction industries. Nano composites materials are currently in use as a replacement for traditional materials due to their superior properties, such as high strength-to-weight ratio, cost effectiveness, and environmental friendliness. Sisal fiber (SF) was treated with 5% NaOH for 2 hours at 70"°C. A mixed blend of sisal fiber and recycled polypropylene (rPP) was produced at four different fiber loadings: 10, 20, 30, and 40 wt.%, while nano clay was added at 1, 3, and 5 wt.%. Maleic anhydride grafted polypropylene (MAPP) was used as the compatibilizer for all composites prepared except the untreated sisal fibers. The characterization results showed that the fiber treatment, addition of MAPP, and nano clay improved the mechanical properties and thermal stability and reduced water absorption of the SF/rPP nano composites. The tensile strength, tensile modulus, and impact strength increased by 32.80, 37.62, and 5.48%, respectively, when compared to the untreated SF/rPP composites. Water absorption was reduced due to the treatment of fiber and the incorporation of MAPP and nano clay.

  18. Characterization of Polypropylene Green Composites Reinforced by Cellulose Fibers Extracted from Rice Straw

    Directory of Open Access Journals (Sweden)

    Ngo Dinh Vu

    2018-01-01

    Full Text Available Polypropylene (PP based green composites containing 10, 20, 30, 40 and 50 wt% of cellulose fibers (CFs which were extracted from rice straw were successfully prepared by melt blend method. The CFs washed with H2O2 after alkaline extraction showed lower water absorption than that not washed with H2O2. The thermal, mechanical, and biodegradation properties of composites were also investigated. The 10% weight loss temperature of the composites was decreased with the increasing CFs content, but all the composites showed over 300°C. Young’s modulus and flexural properties of PP were improved by blending PP with CFs. The pure PP showed no degradability, but the PP/CFs composites degraded from about 3 to 23 wt%, depending on CFs content after being buried in soil for 50 days. These PP/CFs composites with high thermal, mechanical properties and biodegradability may be useful as green composite materials for various environmental fields.

  19. Environmental Particle Emissions due to Automated Drilling of Polypropylene Composites and Nanocomposites Reinforced with Talc, Montmorillonite and Wollastonite

    Science.gov (United States)

    Starost, K.; Frijns, E.; Laer, J. V.; Faisal, N.; Egizabal, A.; Elizextea, C.; Nelissen, I.; Blazquez, M.; Njuguna, J.

    2017-05-01

    In this study, the effect on nanoparticle emissions due to drilling on Polypropylene (PP) reinforced with 20% talc, 5% montmorillonite (MMT) and 5% Wollastonite (WO) is investigated. The study is the first to explore the nanoparticle release from WO and talc reinforced composites and compares the results to previously researched MMT. With 5% WO, equivalent tensile properties with a 10 % weight reduction were obtained relative to the reference 20% talc sample. The materials were fabricated through injection moulding. The nanorelease studies were undertaken using the controlled drilling methodology for nanoparticle exposure assessment developed within the European Commission funded SIRENA Life 11 ENV/ES/506 project. Measurements were taken using CPC and DMS50 equipment for real-time characterization and measurements. The particle number concentration (of particles <1000nm) and particle size distribution (4.87nm - 562.34nm) of the particles emitted during drilling were evaluated to investigate the effect of the silicate fillers on the particles released. The nano-filled samples exhibited a 33% decrease (MMT sample) or a 30% increase (WO sample) on the average particle number concentration released in comparison to the neat polypropylene sample. The size distribution data displayed a substantial percentage of the particles released from the PP, PP/WO and PP/MMT samples to be between 5-20nm, whereas the PP/talc sample emitted larger particle diameters.

  20. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles

    International Nuclear Information System (INIS)

    Essabir, H.; Hilali, E.; Elgharad, A.; El Minor, H.; Imad, A.; Elamraoui, A.; Al Gaoudi, O.

    2013-01-01

    Highlights: ► Nuts-shells of Argan particles are used as reinforcement in thermoplastic matrix. ► Particles are homogeneously dispersed and distributed within PP matrix. ► Mechanical and thermal characterization of the composite are applied. ► Particles–matrix adhesion was assured by the use of a SBS compatibilizer. - Abstract: This study treats the combined effects of both particle sizes and particle loading on the mechanical and thermal properties of polypropylene (PP) composites reinforced with Nut-shells of Argan (NA) particles. Three range sizes of particles were used in the presence of a polypropylene matrix grafted with 8 wt.% of a linear block copolymer based on styrene and butadiene coupling agent, to improve adhesion between the particles and the matrix. The composites were prepared through melt-blending using an internal mixer and the tensile specimens were prepared using a hot press molding machine. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo Gravimetric Analysis (TGA), Differential Thermal Analysis (DTA) and tensile tests were employed to characterize the composites at 10, 15, 20 and 25 wt.% particle contents. Results show a clear improvement in Young’s modulus from the use of particles when compared to the neat PP, a gain of 42.65%, 26.7% and 2.9% at 20 wt.% particle loading, for particle range 1, 2 and 3, respectively. In addition a notable increase in the Young’s modulus was observed when decrease the particle size. The thermal stability of composites exhibits a slight decrease (256–230 °C) with particles loading from 10 to 25 wt.%, against neat PP (258 °C)

  1. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  2. A study on the trans-crystallisation behaviour of flax fibre reinforced polypropylene composites and effect on mechanical properties

    NARCIS (Netherlands)

    George, J.; Garkhail, S.K.; Wieland, B.; Peijs, A.A.J.M.; Mattoso, L.H.C.

    2000-01-01

    The effect of flax fiber reinforcement on crystn. behavior of polypropylene (PP) was investigated using a hot-stage optical microscope. To follow the crystn. kinetics, cooling rate and crystn. temps. were varied. Flax fibers with different processing history e.g. green flax, Duralin flax, alkali and

  3. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  4. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available with the polymer matrix. Therefore, the constituents need to be chemically modified to enhancing adhesion between fibre and polymer matrix. The aim of this work is to improve the interfacial adhesion between the polypropylene matrix and the natural fibre...

  5. Mechanical and thermal properties of water glass coated sisal fibre-reinforced polypropylene composite

    CSIR Research Space (South Africa)

    Phiri, G

    2012-10-01

    Full Text Available ?C). Figure 1 shows the processing steps followed to produce composite samples. Up to 15% fibre loading could be achieved and the sisal fibres were coated with water glass to improve fire resistance. In order to improve the adhesion between sisal... preparation process: (A) WG coated fibre, (B) High speed granulator, (C) Composite granules, (D) Single screw extruder, (E) Injection moulder and (F) Composite samples (dumbbells) Mechanical and thermal properties of water glass coated sisal fi bre...

  6. Improvement of Thermo-Mechanical Properties of Short Natural Fiber Reinforced Recycled Polypropylene Composites through Double Step Grafting Process

    Science.gov (United States)

    Saputra, O. A.; Rini, K. S.; Susanti, T. D.; Mustofa, R. E.; Prameswari, M. D.; Pramono, E.

    2017-07-01

    This study focused on the effect of a compatibilizer addition, maleic anhydrides (MAH) on mechanical, thermal and water absorption properties of oil palm empty fruit bunches (EFB) fiber reinforced recycled polypropylene (rPP) biocomposites. The double steps grafting process were conducted by incorporated MAH on both rPP and EFB to improve the surface adhesion between these materials, to result in a good mechanical properties as well as biocompatibility to nature. The chemical test was carried out using FTIR (Fourier Transform Infra-Red) spectroscopy technique to evaluated grafting process. The mechanical test was investigated and found that the addition of 10 phr MAH to both rPP and EFB improved mechanical strength of the biocomposites higher than another formulas. In this study, thermal properties of biocomposites also characterized. Water absorption (WA) analysis showed the presence of EFB fiber increased the water uptake of the material.

  7. Comparative studies of Titanium Dioxide and Zinc Oxide as a potential filler in Polypropylene reinforced rice husk composite

    Science.gov (United States)

    Awang, M.; Mohd, W. R. Wan

    2018-04-01

    Arising global environmental issues have triggered the search of new products and processes that are compatible with the environment while maintaining novel properties of materials. In this work, green composites containing rice husk (RH), polypropylene (PP), and incorporated with two different fillers namely titanium dioxide (TiO2) and zinc oxide (ZnO) were prepared using an internal mixer and were injected into desired specimen by using an injection molding method. Mechanical properties of the composite were studied using Instron universal testing machine with load cell of 30kN capacity. Morphological of tensile fractured surface of composites was observed using scanning electron microscopy (SEM). The results show that the composites with the addition of TiO2 gave an excellent mechanical properties than the composites filled with ZnO. Furthermore, morphological image of PP/RH/TiO2 also shows a good interaction occurred between polymer matrix and RH particles as compared to that of PP/RH/ZnO.

  8. Effect of Multiwalled Carbon Nanotubes on the Mechanical Properties of Carbon Fiber-Reinforced Polyamide-6/Polypropylene Composites for Lightweight Automotive Parts

    Directory of Open Access Journals (Sweden)

    Huu-Duc Nguyen-Tran

    2018-03-01

    Full Text Available The development of lightweight automotive parts is an important issue for improving the efficiency of vehicles. Polymer composites have been widely applied to reduce weight and improve mechanical properties by mixing polymers with carbon fibers, glass fibers, and carbon nanotubes. Polypropylene (PP has been added to carbon fiber-reinforced nylon-6 (CF/PA6 composite to achieve further weight reduction and water resistance. However, the mechanical properties were reduced by the addition of PP. In this research, multiwalled carbon nanotubes (CNTs were added to compensate for the reduced mechanical properties experienced when adding PP. Tensile testing and bending tests were carried out to evaluate the mechanical properties. A small amount of CNTs improved the mechanical properties of carbon fiber-reinforced PA6/PP composites. For example, the density of CF/PA6 was reduced from 1.214 to 1.131 g/cm3 (6.8% by adding 30 wt % PP, and the tensile strength of 30 wt % PP composite was improved from 168 to 173 MPa (3.0% by adding 0.5 wt % CNTs with small increase of density (1.135 g/cm3. The developed composite will be widely used for lightweight automotive parts with improved mechanical properties.

  9. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  10. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  11. Jute fiber reinforced polypropylene produced by continuous extrusion compounding. Part 1. Processing and ageing properties

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Snijder, M.H.B.

    2008-01-01

    This article addresses the processing and ageing properties of jute fiber reinforced polypropylene (PP) composites. The composite has been manufactured by a continuous extrusion process and results in free flowing composite granules, comprising up to 50 weight percent (wt %) jute fiber in PP. These

  12. Surface treated polypropylene (PP) fibres for reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  13. Investigating the influence of alkalization on the mechanical and water absorption properties of coconut and sponge fibers reinforced polypropylene composites

    OpenAIRE

    Okikiola Ganiu AGBABIAKA; Isiaka Oluwole OLADELE; Paul Toluwalagbara OLORUNLEYE

    2014-01-01

    Natural fibers are products made from renewable agricultural and forestry feedstock, which can include wood, grasses, and crops, as well as wastes and residues. There are two primary ways these fibers are used: to create polymers or as reinforcement and filler. Thermoplastic polymer may be reinforced or filled using natural fibers such as coir, sponge, hemp, flax, or sisal. This paper focused on the influence of alkalization (NaOH treatment) on the mechanical and water absorption properties o...

  14. Melt rheological properties of natural fiber-reinforced polypropylene

    Science.gov (United States)

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  15. Polypropylene reinforced with organophilic clay and brazilian nut fibers

    International Nuclear Information System (INIS)

    Rocha-Gomes, L.V.; Mondelo-Garcia, F.J.; Vaccioli, K.; Valera, S.T.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.

    2014-01-01

    Polymer nanocomposites have been shown to possess better properties when compared with traditional composites. This study aims to investigate the effects of the addition of organophilic clay and Brazilian nut fiber on the polypropylene (PP). First, 5%, 10% and 20% PP/compatibilizer maleic anhydride (PP-g-MA) by weight was added to Pure PP, respectively. From the results, 5% PP-g-MA was defined for preparing the nanocomposites. Samples were prepared containing 5% PP / PP-g-MA reinforced with 5% organophilic Brazilian smectite clay and 5%, 10% and 15% Brazilian nut fiber. Specimens were tested for tensile strength and impact. The materials were characterized by laser diffraction particle size and X-ray diffraction, and the nanocomposites, by mechanical strength and impact. The best result was obtained by inserting 15% fiber. (author)

  16. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT ...

    African Journals Online (AJOL)

    Meziane O, Bensedira A, Guessoum M and Haddaoui N

    2016-05-01

    May 1, 2016 ... prepared by the melt intercalation method. ... several beneficial variations on stiffness, hardness, toughness and heat ..... Polypropylene/ untreated and treated kaolinite composites have been prepared via direct melt.

  17. Mechanical properties of thermoplastic composites reinforced with Entada Mannii fibre

    Directory of Open Access Journals (Sweden)

    Oluwayomi BALOGUN

    2017-06-01

    Full Text Available The mechanical properties and fracture mechanisms of thermoplastic composites reinforced with Entada mannii fibres was investigated. Polypropylene reinforced with 1, 3, 5, and 7 wt% KOH treated and untreated Entada mannii fibres were processed using a compression moulding machine. The tensile properties, impact strength, and flexural properties of the composites were evaluated while the tensile fracture surface morphology was examined using scanning electron microscopy. The results show that reinforcing polypropylene with Entada mannii fibres resulted in improvement of the tensile strength and elastic modulus. This improvement is remarkable for 5 wt% KOH treated Entada mannii fibre reinforced composites by 28 % increase as compared with the unreinforced polypropylene. The composites reinforced with Entada mannii fibres also had impact strength values of 70 % higher than the unreinforced polypropylene. However, the polypropylene reinforced with 5 and 7wt% KOH treated fibres exhibited significantly higher flexural strength and Young’s modulus by 53% and 52% increase as compared with the unreinforced polypropylene. The fracture surface of the polypropylene composites reinforced with untreated Entada mannii fibres were characterized by fibre debonding, fibre pull-out and matrix yielding while less voids and fibre pull-outs are observed in the composites reinforced with KOH treated Entada mannii fibres. v

  18. Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites for Extrusion-Based Additive Manufacturing: Nonisothermal Crystallization Kinetics and Thermal Expansion

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-02-01

    Full Text Available Isotactic polypropylene (iPP is a versatile polymer. It accounts for the second-largest polymer consumption worldwide. However, iPP is difficult to 3D print via extrusion-based processing. This is attributable to its rapid crystallization rate. In this study, spray-dried cellulose nanofibrils (SDCNF and maleic anhydride polypropylene (MAPP were investigated to reveal their effects on the nonisothermal crystallization kinetics and thermal expansion of iPP. SDCNF at 3 wt % and 30 wt % accelerated the crystallization rate of iPP, while SDCNF at 10 wt % retarded the crystallization rate by restricting crystal growth and moderately increasing the nucleation density of iPP. Additionally, adding MAPP into iPP/SDCNF composites accelerated the crystallization rate of iPP. The effective activation energy of iPP increased when more than 10 wt % SDCNF was added. Scanning electron microscopy and polarized light microscopy results indicated that high SDCNF content led to a reduced gap size among SDCNF, which hindered the iPP crystal growth. The coefficient of thermal expansion of iPP/SDCNF10% was 11.7% lower than the neat iPP. In summary, SDCNF, at 10 wt %, can be used to reduce the warping of iPP during extrusion-based additive manufacturing.

  19. REINFORCED COMPOSITE PANEL

    DEFF Research Database (Denmark)

    2003-01-01

    A composite panel having front and back faces, the panel comprising facing reinforcement, backing reinforcement and matrix material binding to the facing and backing reinforcements, the facing and backing reinforcements each independently comprising one or more reinforcing sheets, the facing rein...... by matrix material, the facing and backing reinforcements being interconnected to resist out-of-plane relative movement. The reinforced composite panel is useful as a barrier element for shielding structures, equipment and personnel from blast and/or ballistic impact damage....

  20. Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites

    International Nuclear Information System (INIS)

    Hadal, R.; Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2004-01-01

    The paper describes the effect of wollastonite and talc on the scratch deformation behavior of low and high crystallinity polypropylenes under identical test conditions. The vertical resolution of atomic force microscopy and lateral resolution of scanning electron microscopy is utilized to examine the characteristics of scratch damage. Contrary to the expectations that high crystallinity and stiffness of polypropylene composites should increase resistance to scratch deformation, the susceptibility to mechanical deformation depends on bonding of mineral particles to the polymer matrix. Scratch deformed regions in neat polypropylenes were free of voids and grooves, while reinforced-polypropylenes exhibited voids and debonding/detachment of filler particles. The severity of plastic deformation in reinforced polypropylenes is a function of debonding/detachment of mineral particles, which is comparatively more for talc-reinforced polypropylenes than wollastonite-reinforced polypropylenes because of the layered structure of talc that encourages delamination. Usage of coating and coupling agents improved the resistance to scratch deformation by promoting adhesion and bonding between the reinforcement and matrix

  1. Agave nonwovens in polypropylene composites: mechanical and thermal studies

    CSIR Research Space (South Africa)

    John, MJ

    2015-03-01

    Full Text Available Blends of agave fibres with wool waste, pineapple leaf fibres and polypropylene fibres were manufactured by needle-punching technique. Composites were prepared with polypropylene matrix by the process of compression moulding. The effects of blend...

  2. The mechanisms of reinforcement of polypropylene by graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Siti Rohana; Xue, Chengzhe; Young, Robert J., E-mail: robert.young@manchester.ac.uk

    2017-02-15

    Highlights: • The thermal stability of the polypropylene is improved significantly with the GNPs. • The melting temperature and degree of crystallinity of the PP are both increased. • The effective Young’s modulus of the GNP reinforcement is 100 GPa. • The same effective Young’s modulus is found from Raman band shifts. - Abstract: A detailed analysis has been undertaken of the mechanisms of reinforcement of polypropylene (PP) by the addition of graphene nanoplatelets (GNP). The PP/GNP nanocomposites were processed by melt mixing followed by injection moulding and microstructure was fully characterized. It was found that the GNPs increased the thermal stability of the PP and aided crystal nucleation. The mechanical properties of the nanocomposites were evaluated using both tensile testing and dynamic mechanical thermal analysis. The addition of GNPs led to a significant increase in the Young’s modulus of the PP, coupled with a decrease in the yield stress and a reduction in the elongation to failure. Stress transfer from the PP matrix to the GNP reinforcement was followed from stress-induced shifts of the 2D Raman band and the effective Young’s modulus of the GNPs in the nanocomposites was found to be about 100 GPa, shown to be consistent with the expected value.

  3. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  4. Development and characterisation of injection moulded, all-polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Kmetty

    2013-02-01

    Full Text Available In this work, all-polypropylene composites (all-PP composites were manufactured by injection moulding. Prior to injection moulding, pre-impregnated pellets were prepared by a three-step process (filament winding, compression moulding and pelletizing. A highly oriented polypropylene multifilament was used as the reinforcement material, and a random polypropylene copolymer (with ethylene was used as the matrix material. Plaque specimens were injection moulded from the pellets with either a film gate or a fan gate. The compression moulded sheets and injection moulding plaques were characterised by shrinkage tests, static tensile tests, dynamic mechanical analysis and falling weight impact tests; the fibre distribution and fibre/matrix adhesion were analysed with light microscopy and scanning electron microscopy. The results showed that with increasing fibre content, both the yield stress and the perforation energy significantly increased. Of the two types of gates used, the fan gate caused the mechanical properties of the plaque specimens to become more homogeneous (i.e., the differences in behaviour parallel and perpendicular to the flow direction became negligible.

  5. Morphology and properties of recycled polypropylene/bamboo fibers composites

    International Nuclear Information System (INIS)

    Phuong, Nguyen Tri; Guinault, Alain; Sollogoub, Cyrille; Chuong, Bui

    2011-01-01

    Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

  6. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  7. Effect of combined extrusion parameters on mechanical properties of basalt fiber-reinforced plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.; Boot, Yu. A.

    1997-11-01

    Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.

  8. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu; Wafai, Husam; Yudhanto, Arief; Lubineau, Gilles; Yaldiz, R.; Schijve, W.; Verghese, N.

    2015-01-01

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved

  9. Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado Virgin and recycled polypropylene composites reinforced with sisal by-product

    Directory of Open Access Journals (Sweden)

    Francisco Rosário

    2011-01-01

    Full Text Available Foram estudadas as propriedades térmicas e mecânicas de compósitos de polipropileno, virgem e reciclado, reforçados com 30% em massa de fibras residuais de sisal, assim como o perfil de processamento e a morfologia da matriz polimérica. Para tanto, foram determinadas a resistência à tração, o módulo de Young, alongamento na ruptura, e energia de impacto. As amostras também foram caracterizadas por MEV, DMTA e TG. Para ambos os compósitos de polipropileno, virgem e reciclado, com a adição das fibras, o alongamento na ruptura mostrou uma queda significativa, enquanto que a resistência à tração não sofreu grandes variações. Houve um aumento significativo nos valores de tração na ruptura e de energia de impacto com a adição das fibras de sisal na matriz de polipropileno. As análises térmicas mostraram ligações secundárias, como as ligações polares, entre as fibras e a matriz, concordando com o comportamento mecânico dos compósitos. Constatou-se que a temperatura de transição vítrea não variou após a adição da fibra.The mechanical and thermal properties of virgin and recycled polypropylene composites reinforced with 30% by mass of residual sisal fibers were studied, in addition to an analysis of the extrusion process and morphology of the polymeric matrix. Tensile strength, Young's modulus, elongation at break, and impact energy were determined. The samples were also characterized by SEM, DMTA and TG analyses. Elongation at break of the composites presented a significant decrease, while the tensile strength was not affected significantly by addition of sisal fibers. A significant increase was observed in the tension of rupture and in the impact energy of the composite reinforced with sisal fiber. The thermal analyses indicated secondary interactions, such as polar interactions, between the fibers and the matrix, consistent with the mechanical behavior of the composites. The glass transition temperature has not

  10. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    International Nuclear Information System (INIS)

    Goswami, K; Mazurek, P; Daugaard, A E; Skov, A L; Galantini, F; Gallone, G

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 10 3 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss. (paper)

  11. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer

    DEFF Research Database (Denmark)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash

    2016-01-01

    and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response...... of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer......As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short...

  12. Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Galantini, F.; Mazurek, Piotr Stanislaw

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of ,!-diallyl PPO with a tetra-functional thiol. The elastomer...... was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability...... of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910...

  13. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Cheng Zhu; Li, Kai [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Wong, Hoi Man; Tong, Wing Yin; Yeung, Kelvin Wai Kwok [Department of Orthopedics and Traumatology, The University of Hong Kong (Hong Kong); Tjong, Sie Chin, E-mail: aptjong@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2013-04-01

    Multi-walled carbon nanotubes (MWNTs) of 0.1 and 0.3 wt.% and hydoxyapatite nanorods (nHAs) of 8–20 wt.% were incorporated into polypropylene (PP) to form biocomposites using melt-compounding and injection molding techniques. The structural, mechanical, thermal and in vitro cell responses of the PP/MWNT–nHA hybrids were investigated. Tensile and impact tests demonstrated that the MWNT additions are beneficial in enhancing the stiffness, tensile strength and impact toughness of the PP/nHA nanocomposites. According to thermal analysis, the nHA and MWNT fillers were found to be very effective to improve dimensional and thermal stability of PP. The results of osteoblast cell cultivation and dimethyl thiazolyl diphenyl tetrazolium (MTT) tests showed that the PP/MWNT–nHA nanocomposites are biocompatible. Such novel PP/MWNT–nHA hybrids are considered to be potential biomaterials for making orthopedic bone implants. - Highlights: ► Multiwalled carbon nanotubes (MWNTs) and hydroxyapatite nanorods (nHA) are used as hybrid fillers to reinforce polypropylene. ► MWNT additions are beneficial in enhancing tensile strength and stiffness of PP/nHA composites. ► Hybridizing MWNT with nHA fillers enhance thermal and dimensional stability of PP significantly. ► Hybridizing MWNT with nHA greatly enhance osteoblast adhesion and proliferation. ► PP/MWNT–nHA composites show attractive applications as load-bearing materials in orthopedics.

  14. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-04-15

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications.

  15. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    Highlights: • Biochar made from waste wood was added with wood polypropylene composites. • 24% biochar gave the best mechanical properties. • 6% biochar had no effect on physico-mechanical properties of composites. • Coupling agent remained unreacted in composites having higher amount of biochar. - Abstract: In an attempt to concurrently address the issues related to landfill gas emission and utilization of organic wastes, a relatively novel idea is introduced to develop biocomposites where biochar made from pyrolysis of waste wood (Pinus radiata) is added with the same wood, plastic/polymer (polypropylene) and maleated anhydride polypropylene (MAPP). Experiments were conducted by manufacturing wood and polypropylene composites (WPCs) mixed with 6 wt%, 12 wt%, 18 wt%, 24 wt%, and 30 wt% biochar. Though 6 wt% addition had similar properties to that of the control (composite without biochar), increasing biochar content to 24 wt% improved the composite’s tensile/flexural strengths and moduli. The biochar, having high surface area due to fine particles and being highly carbonised, acted as reinforcing filler in the biocomposite. Composites having 12 wt% and 18 wt% of biochar were found to be the most ductile and thermally stable, respectively. This study demonstrates that, WPCs added with biochar has good potential to mitigate wastes while simultaneously producing biocomposites having properties that might be suited for various end applications

  16. Analysis and optimization of machining parameters of laser cutting for polypropylene composite

    Science.gov (United States)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    Present works explains about machining of self-reinforced Polypropylene composite fabricated using hot compaction method. The objective of the experiment is to find optimum machining parameters for Polypropylene (PP). Laser power and Machining speed were the parameters considered in response to tensile test and Flexure test. Taguchi method is used for experimentation. Grey Relational Analysis (GRA) is used for multiple process parameter optimization. ANOVA (Analysis of Variance) is used to find impact for process parameter. Polypropylene has got the great application in various fields like, it is used in the form of foam in model aircraft and other radio-controlled vehicles, thin sheets (∼2-20μm) used as a dielectric, PP is also used in piping system, it is also been used in hernia and pelvic organ repair or protect new herrnis in the same location.

  17. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    International Nuclear Information System (INIS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-01-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  18. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Science.gov (United States)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  19. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Energy Technology Data Exchange (ETDEWEB)

    Sosiati, H., E-mail: hsosiati@gmail.com [Nanomaterials Research Group, LPPT Universitas Gadjah Mada (Indonesia); Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com; Wijayanti, D. A., E-mail: wijayantidwiastuti@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id [Nanomaterials Research Group, LPPT Universitas Gadjah Mada (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University (Indonesia)

    2016-04-19

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  20. Effect of the interfacial adhesion on the tensile and impact properties of carbon fiber reinforced polypropylene matrices

    Directory of Open Access Journals (Sweden)

    Clara Leal Nogueira

    2005-03-01

    Full Text Available Thermoplastic composites have been applied in a wide variety of industrial products, showing recently a great potential to be used in aeronautical field. The objectives of this work were to evaluate the fiber/matrix interface of carbon fiber reinforced polypropylene-based matrices after tensile and impact tests and also to compare the mechanical test results of the manufactured laminates. The laminates were prepared by stacking carbon fiber fabric style Plain Weave (CF and films of four different polypropylene matrices, described as (a polypropylene-PP, (b polypropylene-polyethylene copolymer-PP-PE, (c PP-PE with an interfacial compatibilizer-AM1 and (d PP-PE containing an elastomeric modifier-AM2. The composites were processed using hot compression molding. The mechanical testing results showed that the CF-AM1 laminate family presented the lowest impact strength and the highest tensile strength values when compared to the other laminates. SEM analysis observations of both tensile and impact fractured specimens of the CF-PP/PE-AM1 specimens revealed a stronger fiber/matrix interface. The CF-PP/PE-AM2 laminate showed a lower tensile strength and higher impact strength values when compared to the CF-PP/PE-AM1 one. PP-PE and PP laminates presented the lowest impact strength values.

  1. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene

    International Nuclear Information System (INIS)

    Arrakhiz, F.Z.; El Achaby, M.; Benmoussa, K.; Bouhfid, R.; Essassi, E.M.; Qaiss, A.

    2012-01-01

    Highlights: ► Pine cone fibers are used as reinforcement in thermoplastic matrix. ► Pine cone fiber was alkali treated to remove waxes and non cellulosic component. ► Fiber–matrix adhesion was assured by the use of a SEBS-g-MA as a compatibilizer. -- Abstract: Pine cone fibers are a cellulosic material readily available and can be used as reinforcement in a thermoplastic-based composite. A solid knowledge of their fibrillar morphology and structure is required to evaluate their usefulness as a substitute to other abundant natural fibers. Pine cone fibers were alkali treated prior usage to remove waxes and non cellulosic surface component. Fiber–matrix adhesion was assured by both a styrene–(ethylene–butene)–styrene triblock copolymer grafted with maleic anhydride (SEBS-g-MA) and a linear block copolymer based on styrene and butadiene compatibilizer. Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Thermogravimetric analysis (TGA), tensile and torsional tests were employed for Pine cone polypropylene composite and compatibilized composite at different fiber content. Results show a clear improvement in mechanical properties from the use of both alkali treated Pine cone and Pine cone compatibilized with maleic anhydride, a gain of 43% and 49% respectively in the Young’s modulus, as a results of improved adhesion between fibers and matrix at the interface.

  2. Cyclic viscoelastoplasticity of polypropylene/nanoclay composites

    DEFF Research Database (Denmark)

    Drozdov, A.; Christiansen, Jesper de Claville

    2012-01-01

    Observations are reported on isotactic polypropylene/organically modified nanoclay hybrids with concentrations of filler ranging from 0 to 5 wt.% in cyclic tensile tests with a stress–controlled program (oscillations between various maximum stresses and the zero minimum stress). A pronounced effe...

  3. The mechanical properties of unidirectional all-polypropylene composites

    NARCIS (Netherlands)

    Alcock, B.; Cabrera, N.O.; Barkoula, N.M.; Loos, J.; Peijs, A.A.J.M.

    2006-01-01

    The creation of highly oriented, co-extruded polypropylene (PP) tapes allows the production of recyclable ‘all-polypropylene’ composites, with a large temperature processing window (>30 °C) and a high volume fraction of highly oriented PP (>90%). These composites show little deviation of mechanical

  4. Studies on Poly(propylene fumarate-co-caprolactone diol Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices

    Directory of Open Access Journals (Sweden)

    M. Jayabalan

    2009-01-01

    Full Text Available The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  5. Studies on Poly(propylene fumarate-co-caprolactone diol) Thermoset Composites towards the Development of Biodegradable Bone Fixation Devices.

    Science.gov (United States)

    Jayabalan, M

    2009-01-01

    The effect of reinforcement in the cross-linked poly(propylene fumarate-co-caprolactone diol) thermoset composites based on Kevlar fibres and hydroxyapatite was studied. Cross-linked poly(propylene fumarate-co-caprolactone diol) was also studied without any reinforcement for comparison. The reinforcing fibre acts as a barrier for the curing reaction leading to longer setting time and lesser cross-link density. The fibre and HA reinforced composites have almost the same compressive strength. Nonreinforced material undergoes greater degree of swelling. Among the reinforced materials, the hydroxyapatite reinforced composite has a much higher swelling percentage than the fibre reinforced one. The studies on in vitro degradation of the cured materials reveal hydrolytic degradation in Ringer's solution and PBS medium during aging. All the three materials are found to swell initially in Ringer's solution and PBS medium during aging and then undergo gradual degradation. Compression properties of these cross-linked composites increase with aging; HA reinforced composite has the highest compressive strength and compressive modulus, whereas the aged fibre-reinforced composite has the least compressive strength and modulus.

  6. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  7. Mechanical and thermal properties of polypropylene composites with curaua fibre irradiated with gamma radiation

    International Nuclear Information System (INIS)

    Egute, Nayara S.; Forster, Pedro L.; Parra, Duclerc F.; Fermino, Danilo M.; Santana, Sebastiao; Lugao, Ademar B.

    2009-01-01

    Thermal and mechanical behavior of polypropylene with curaua fibre composites were investigated. The treatment of the curaua fibres was processed in alkaline solution (10% wt NaOH). A coupling agent was used (maleic anhydride) to increase the adhesion of the fibre/matrix interface. This composite was irradiated with gamma source in the doses of 5, 15 and 30 kGy and the adhesion between the fibres and the polymeric matrix was monitored to observe probable changes. The thermal behavior was evaluated using differential scanning calorimetry (DSC) and Thermogravimetry (TGA). The mechanical behavior was evaluated using tensile strength in comparison with non-reinforced polypropylene resin. The morphology of the composite fracture surface was observed using scanning electron microscopy (SEM). There were no significant changes in the thermal properties neither in the adhesion of irradiated fibres at doses of 5, 15 and 30 kGy of gamma radiation. (author)

  8. Mechanical and dielectric characterization of hemp fibre reinforced polypropylene (HFRPP by dry impregnation process

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Natural fibres such as jute, coir, sisal, bamboo and pineapple are known to have high specific strength and can be effectively used in composites in various applications. The use of hemp fibres to reinforce the polymer aroused great interest and expectations amongst scientists and materials engineers. In this paper, composites with isotactic polypropylene (iPP matrix and hemp fibres were studied. These materials were manufactured via the patented FIBROLINE process based on the principle of the dry impregnation of a fibre assembly with a thermoplastic powder (iPP, using an alternating electric field. The aim of this paper is to show the influence of fibre/matrix interfaces on dielectric properties coupled with mechanical behaviours. Fibres or more probably the fibre/matrix interfaces allow the diffusion of electric charges and delocalise the polarisation energy. In this way, damages are limited during mechanical loading and the mechanical properties of the composites increase. The structure of composite samples was investigated by X-ray and FTIR analysis. The mechanical properties were analysed by quasistatic and dynamic tests. The dielectric investigations were carried out using the SEMME (Scanning Electron Microscope Mirror Effect method coupled with the measurement of the induced current (ICM.

  9. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer.

    Directory of Open Access Journals (Sweden)

    Navid Ranjbar

    Full Text Available As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM and atomic force microscopy (AFM. The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.

  10. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  11. Nanostructured composite reinforced material

    Science.gov (United States)

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Directory of Open Access Journals (Sweden)

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  13. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  14. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  15. Research on mechanical properties of carbon fiber /polyamide reinforced PP composites

    Science.gov (United States)

    Chen, Xinghui; Yu, Qiang; Liu, Lixia; Ji, Wenhua; Yang, Li; Fan, Dongli

    2017-10-01

    The polyamide composites reinforced by carbon fiber/polypropylene are produced by injection molding processing. The flow abilities and mechanical properties of the CF/PA/PP composite materials are studied by the fusion index instrument and the universal testing machine. The results show that with the content of carbon fiber/polyamide increase, the impact breaking strength and the tensile property of the composite materials increase, which is instructive to the actual injection production of polypropylene products.

  16. Some Exploitation Properties of Wood Plastic Hybrid Composites Based on Polypropylene and Plywood Production Waste

    Science.gov (United States)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2015-12-01

    During the last 20-30 years many researchers have paid attention to the studies of properties of thewood polymer composites (WPC). A lot of works are closely related to investigations of exploitation properties of wood fibres or wood flour containing polyolefine composites [1, 2]. The most useful from wide selection of polyolefines are polypropylenes, but timber industry waste materials comprising lignocellulose fibres are often used as reinforcement of WPC [3-12]. Plywood industry is not an exception - part of waste materials (by-products) are used for heat energy, i.e. burned. In this work we have approbated reinforcing of polypropylene (PP) with one of the plywood industry by-products, such as birch plywood sawdust (PSWD),which containswood fibre fractions with different length [13]. The main fraction (50%) includes fibres with length l = 0.5 - 1 mm. Our previous study [13] has confirmed that PSWD is a promising filler for PP reinforcing. Addition of PSWD up to 40-50 wt.% has increased WPC tensile and flexural modulus, but decreased deformation ability of PP matrix, impact strength, water resistance and fluidity of composite melts. It was shown [13] that modification of the composites with interfacial modifier - coupling agent maleated polypropylene (MAPP content up to 5-7 wt.%) considerably improved all the abovementioned properties. SEM investigations also confirmed positive action of coupling agent on strengthening of adhesion interaction between components wood and PP matrix. Another way how to make better properties of the WPC is to form hybridcomposites [1, 14-24]. Very popular WPC modifiers are nanoparticle additions like organonanoclays, which increase WPC physical-mechanical properties - microhardness, water resistance and diminish barrier properties and combustibility [1, 2, 14-17, 19, 20]. The goal of this study was to investigate organonanoclays influence on plywood production industry by-product birch plywood sawdust (PSWD) containing

  17. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  18. Rheological and Thermal Behavior of Polypropylene-Kaolin Composites

    International Nuclear Information System (INIS)

    Teng, S.T.; Nor Azura Abdul Rahim; Lan, D.N.U

    2014-01-01

    Kaolins effect on rheological behaviour of polypropylene-kaolin composites was investigated. The research found that not only the kaolin content influence the rheological behaviour but also the compounding using internal mixer and twin screw extruder. In details, viscosity and shear stress increased with addition of kaolin content. These characteristics also exhibited higher in polypropylene-kaolin composite suspensions compounded using twin screw extruder than using internal mixer. Chain scission was assumed to occur and affect the melt properties. Further justification characterized by Differential Scanning Calorimeter (DSC) showed that the effect of kaolin and loading content were more evident on the onset melting temperature and crystallinity. Besides, due to the different cooling operation in both processes, the effect of compounding on melting characteristic was conspicuous. (author)

  19. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Alejandra J. Monsiváis-Barrón

    2014-10-01

    Full Text Available Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  20. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    Science.gov (United States)

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  1. Toughness increase of self compacting concrete reinforced with polypropylene short fibers

    Directory of Open Access Journals (Sweden)

    Melián, G.

    2010-12-01

    Full Text Available Increases in bending tests by the addition of low volume fractions of Polypropylene (PP Short Fibers PP. These toughness increases are similar to those attained by Fiber Reinforced Concrete (FRC referred elsewhere as Engineered Cementitious Composites (ECC, having some ductility and strain hardening in direct tensile and flexural tests. Concretes mixtures were manufactured using natural pozzolanic blended Portland cement, volcanic crushed coarse aggregates and fine sand from Sahara desert dunes (0-1 mm from Canary Islands quarries and sand reservoirs, respectively, besides ordinary siliceous sand (0-4 mm and fly ash from an anthracite-coal heat generator.

    Se presentan en este artículo hormigones autocompactables que, mediante la adición de pequeñas fracciones volumétricas de fibras cortas de polipropileno, consiguen incrementos importantes de tenacidad en su comportamiento mecánico a flexión. Estos aumentos de tenacidad son semejantes a los que presentan un grupo de hormigones reforzados con fibras, denominados ECC (Engineered Cementitious Composites, que muestran también alguna ductilidad y endurecimiento por deformación en ensayos de tracción directa y flexión. Los hormigones se dosificaron empleando cemento Pórtland con Puzolana natural, áridos volcánicos de machaqueo y arena fina procedente de dunas del desierto del Sáhara (0-1 mm, de canteras y depósitos de Las Palmas de Gran Canaria (Islas Canarias, respectivamente, además de arena silícea ordinaria (0-4 mm y cenizas volantes de una central térmica de combustible antracita.

  2. Evaluation of the environmental aging and mechanical properties of the polypropylene/sugarcane bagasse composites

    International Nuclear Information System (INIS)

    Paiva, Rayane Lima de Moura; Mulinari, Daniella Regina

    2013-01-01

    Polypropylene (PP) reinforced with fibers from sugarcane bagasse composites in different proportions were prepared. Also environmental aging was conducted for the composites and their mechanical properties determined. The results showed that chemical treatment caused changes in color and chemical composition of the fibers, removing impurities and amorphous constituents such as lignin and hemicellulose, techniques of FTIR, X-ray diffraction and scanning electron microscopy confirmed these data. Also, it was observed that addition of natural fiber in PP matrix provided an improvement in the mechanical properties materials. The weathering test revealed a slight mass gain after 75 days, but it was clear that the inclusion of fibers has a higher mass gain compared to pure PP. (author)

  3. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    Science.gov (United States)

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  4. The influence of multiscale fillers reinforcement into impact resistance and energy absorption properties of polyamide 6 and polypropylene nanocomposite structures

    International Nuclear Information System (INIS)

    Silva, Francesco; Njuguna, James; Sachse, Sophia; Pielichowski, Krzysztof; Leszczynska, Agnieszka; Giacomelli, Marco

    2013-01-01

    Highlights: ► Significant improvement in PA composites impact resistance performance. ► Decrease in energy absorption capabilities of PP, this phenomenon is explained. ► Positive effects on mechanical and interphase properties of the matrix material. ► Transition from brittle to ductile fracture mode established. ► Two different toughening mechanisms were observed and explained. - Abstract: Three-phase composites (thermoplastic polymer, glass-fibres and nano-particles) were investigated as an alternative to two-phase (polymer and glass-fibres) composites. The effect of matrix and reinforcement material on the energy absorption capabilities of composite structures was studied in details in this paper. Dynamic and quasi-static axial collapse of conical structures was conducted using a high energy drop tower, as well as Instron universal testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated with scanning electron microscopy (SEM). Attention was directed towards the relation between micro and macro fracture process with crack propagation mechanism and energy absorbed by the structure. The obtained results indicated an important influence of filler and matrix material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) was observed in polyamide 6 (PA6) reinforced with nano-silica particles and glass-spheres, whereas addition of montmorillonite (MMT) caused a decrease in that property. On the other hand, very little influence of the secondary reinforcement on the energy absorption capabilities of polypropylene (PP) composites was found

  5. Continuous carbon nanotube reinforced composites.

    Science.gov (United States)

    Ci, L; Suhr, J; Pushparaj, V; Zhang, X; Ajayan, P M

    2008-09-01

    Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.

  6. Nanocellulose reinforcement of Transparent Composites

    Science.gov (United States)

    Joshua Steele; Hong Dong; James F. Snyder; Josh A. Orlicki; Richard S. Reiner; Alan W. Rudie

    2012-01-01

    In this work, we evaluate the impact of nanocellulose reinforcement on transparent composite properties. Due to the small diameter, high modulus, and high strength of cellulose nanocrystals, transparent composites that utilize these materials should show improvement in bulk mechanical performances without a corresponding reduction in optical properties. In this study...

  7. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    International Nuclear Information System (INIS)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun; Khairul Zaman

    2000-01-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  8. Electron beam processing of rubber wood fibers - polypropylene composites. Effects of reactive additives on the physical and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nor Yuziah Mohd Yunus; Jalaluddin Harun [Universiti Putra Malaysia, Selangor Darul Ehsan (Malaysia); Khairul Zaman [Malaysian Institute for Nuclear Technology Research (MINT), Selangor Darul Ehsan (Malaysia)

    2000-07-01

    The purpose of this study is to determine the suitability of producing agro-fiber reinforced plastic composite (agro-FRPC) from rubber wood fiber blended in polypropylene matrix. The effects of varying fiber dimension and fiber content on the physical and mechanical properties of the composite were evaluated to provide an insight into the fiber matrix adhesion. The effects of reactive additives on the physical and mechanical properties of the composite were evaluated which provides the insight on the reinforcement of the composite. Rubber wood fiber used in this study is currently being used in the manufacturing of medium density fiber (MDF) board. Two sizes of rubber wood fiber were used i.e. 0.5-1.0 mm and 1.0-2.0 mm. Homopolymer polypropylene of MFI 14.0 was used as a matrix. The irradiation work was carried out using electron beam accelerator, 3.0 MeV, 3.0 mA. Various types of reactive additives (RA) with mono-functional, di-functional, tri-functional and oligomer were applied in the blend. For comparison, a conventional chemical cross-linking using two types of maleated polypropylene, MPA (Mw=9,000) and PMAP (Mw=220,000) were also performed. (author)

  9. Bio composites from polypropylene/ clay/eva polymers and kenaf natural fiber

    International Nuclear Information System (INIS)

    Siti Hasnah Kamarudin; Khalina Abdan; Bernard Maringgal; Wan Mohd Zin Wan Yunus

    2009-01-01

    Full text: There is an increasing need to investigate more environmental friendly, sustainable materials to replace existing materials as industry attempts to lessen dependence on petroleum based fuels and products. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. In this experiment, mixing process of polymer/nano clay composites from polypropylene, organo clay and ethylene vinyl acetate were prepared using a Brabender twin screw compounder. The composites sheets were then laminated with kenaf fibers and subjected to hot and cold press machine to form a bio composite. The mechanical properties such as flexural and impact strength are compare favourably between polymers reinforced kenaf fiber and polymers without kenaf fiber. In addition, various analysis techniques were used to characterize the dispersion and the properties of nano composites, using scanning electron micrograph (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). These results suggest that kenaf fibers are a viable alternative to inorganic mineral-based reinforcing fibers as long as the right processing conditions are used and they are used in applications where the higher water absorption is not critical. (author)

  10. Synthesis and characterization of polypropylene/jigsaw wood ash composite

    International Nuclear Information System (INIS)

    Sudirman; Karo Karo, Aloma; Gunawan, Indra; Handayani, Ari; Hertinvyana, Evi

    2002-01-01

    The composite of polypropylene (PP) polymer with jigsaw wood ash as filler is the alternative composite material. The dispersion of the filler in the composite is random with the jigsaw wood ash composition of 10,30, and 50% by volume. The characterization of composite are done to measure its mechanical properties, physical properties and microstructure by using XRD and SEM. From this research, it is concluded that increasing filler content of the composite will decrease its mechanical and physical properties. The comparation of different composites are found that tensile strength of PP MF 10 is higher 4.24% compared with PP MF 2 as a matrix. It is also found that melting temperature of PP MF 10 is higher 4.09% compared with PP MF 2 as a matrices and the decomposition temperature different is 0.17%. The degree of crystallinity of composite with PP MF 10 as a matrices is 2.55% higher compared with PP MF 2. The higher degree of crystallinity is increasing the tensile strength

  11. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene

    International Nuclear Information System (INIS)

    Elkhaoulani, A.; Arrakhiz, F.Z.; Benmoussa, K.; Bouhfid, R.; Qaiss, A.

    2013-01-01

    Highlights: ► Moroccan hemp fibers are used as reinforcement in thermoplastic matrix. ► Moroccan hemp fiber was alkali treated to remove waxes and noncellulosic component. ► Fiber–matrix adhesion was assured by the use of a SEBS-g-MA as a compatibilizer. - Abstract: Moroccan hemp is a cellulosic fiber obtained from the north of Morocco. Their use as reinforcement in thermoplastic matrix composite requires a knowledge of their morphology and structure. In this paper the Moroccan hemp fiber was alkali treated to remove waxes and noncellulosic surface components. Fiber/matrix adhesion was assured by the use of a styrene-(ethylene-butene)-styrene three-block copolymer grafted with maleic anhydride (SEBS-g-MA) as a compatibilizer. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), tensile and torsional tests were carried out for hemp fibers polypropylene composite and the compatibilized composite at different fiber content. Thus, the binary composite PP/hemp fibers (Alk) and ternary system with maleic anhydride indicate clearly an improved adhesion of the fiber to the matrix as results of the good interaction at the interface. A gain of 50% on the Young’s modulus of PP/hemp 25 wt.% without coupling agent and 74% on the PP/hemp 20 wt.% composite with the coupling agent were found. Tensile strength curve shows a remarkable stabilization when the coupling agent was used

  12. Effect of Reinforcement of Hydrophobic Grade Banana (Musa ornata Bark Fiber on the Physicomechanical Properties of Isotactic Polypropylene

    Directory of Open Access Journals (Sweden)

    Md. Mamunur Rashid

    2016-01-01

    Full Text Available This research studied the physicomechanical as well as morphological properties of alkali treated (NaOH and KMnO4 and untreated banana bark fiber (BBF reinforced polypropylene composites. A detailed structural and morphological characterization was performed using Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and mechanical properties testing (tensile strength, flexural strength, and microhardness. Chemical treatments improved the hydrophobic property of the fiber and it is found to be better for KMnO4 treatment. Composites with 0, 5, 10, and 15 wt.% loadings were then compared for water uptake studies and revealed that KMnO4 treated fiber composites absorb less water compared to others. KMnO4 treatment with 15% fiber loading improved the tensile strength, flexural strength, and microhardness of the composites compared to raw and NaOH treated fiber loadings. TGA analysis also shows onset temperature at 400~500°C that is associated with the decomposition of the banana fibers constituents including lignin, cellulose, and hemicelluloses which suggests better thermomechanical stability. All of the values suggest that 15% KMnO4 treated banana bark fiber (BBF/PP composites were found to be better than those of the raw and NaOH treated ones.

  13. The Usage Of Nutshell In The Production of Polypropylene Based on Polymer Composite Panels

    Directory of Open Access Journals (Sweden)

    Selçuk Akbaş

    2013-04-01

    Full Text Available Natural fibers have been commonly utilized to reinforced materials for many years. Recently due to advantages of natural fibers such as low cost, high physical and mechanical resistance are produced plastic-composite materials by mixing various proportions. In addition, plastic composites are used natural fibers include agricultural wastes (wheat straw, rice straw, hemp fiber, shells of various dry fruits, etc.. In this study, polymer composites were manufactured using waste nutshell flour as filler and polypropylene (PP as polymer matrix. The nutshell-PP composites were manufactured via extrusion and compression methods. The final product tested to determine their tensile, flexural, impact strength properties as well as some physical features such as thickness swelling and water absorptions. The best results were obtained composites containing 30% nutshell flour. In addition, composites which were produced nutshell provided the values of ASTM D6662 standard. The data collected in our country which waste a large portion of nutshell allows for the evaluation of the production polymer composites. The incorporation of nutshell flour feasible to produce plastic composites when appropriate formulations were used. As a result hazelnut shell which was considered agricultural waste can be utilized in polymer composite production.

  14. Braided reinforced composite rods for the internal reinforcement of concrete

    Science.gov (United States)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  15. Kevlar reinforced neoprene composites

    Science.gov (United States)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  16. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  17. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z.T., E-mail: sxyzt@126.com [College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, T. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Li, H.Y. [Zhoushan Ocean Research Institute, Zhejiang University, Zhoushan 316021 (China); Xia, M.S., E-mail: msxia@zju.edu.cn [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Ye, Y.; Zheng, H. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China)

    2013-11-15

    Highlights: • Adding modified shell powder could significantly increase the properties of PP. • The modified shell powder could act as a nucleating agent in PP matrix. • The modified shell powder has a potential to be used as a bio-filler. -- Abstract: Shell waste, with its high content of calcium carbonate (CaCO{sub 3}) plus organic matrix, has a potential to be used as a bio-filler. In this work, shell waste was modified by furfural and then incorporated to reinforce polypropylene (PP). The shell waste and modified powder were characterized by means of X-ray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), X-ray photoelectronic spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR). The mechanical and thermal properties of neat PP and PP composites were investigated as well. Thermal gravimetric (TG) analyses confirmed the reinforcing role of modified powder in PP composites. The mechanical properties studied showed that adding modified powder could significantly increase the impact strength, elongation at break point and flexural modulus of composites. The maximum incorporation content could reach 15 wt.% with a good balance between toughness and stiffness of PP composites. Differential scanning calorimetry (DSC) results showed that the modified powder could act as a nucleating agent and thus increase the crystallization temperature of PP. Polarized optical microscopy (POM) observation also indicated that the introduction of modified powder could promote the heterogeneous nucleation of PP matrix.

  18. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  19. Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingxian [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Guo Baochun, E-mail: psbcguo@scut.edu.cn [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China); Lei Yanda; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2009-02-15

    Clay-philic benzothiazole sulfide, capable of donating electrons, is grafted onto polypropylene (PP) backbones when N-cyclohexyl-2-benzothiazole sulfonamide (CBS), a commonly used accelerator in the tire industry, is included in the processing of PP/halloysite nanotubes (HNTs) composites. CBS decomposes at elevated temperature and yields benzothiazole sulfide radicals, which react with the PP polymeric free radicals generated during the processing of the composites. On the other hand, the benzothiazole group of CBS is reactive to HNTs via electron transferring. The compatibilization between HNTs and PP is thus realized via interfacial grafting and electron transferring mechanism. The interfacial interactions in the compatibilized systems were fully characterized. Compared with the control sample, the dispersion of HNTs and the interfacial bonding are enhanced substantially in the compatibilized composites. The significantly improved mechanical properties and thermal properties of benzothiazole sulfide compatibilized PP/HNTs composites are correlated to the enhanced interfacial property. The present work demonstrates a novel interfacial design via interfacial grafting/electron transferring for the compatibilization of PP/clay composites.

  20. Kevlar reinforced neoprene composites

    International Nuclear Information System (INIS)

    Penn, B.G.; Daniels, J.G.; White, W.T.; Thompson, L.M.; Clemons, L.M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi). 1 reference, 2 tables

  1. Influence of nonmetals recycled from waste printed circuit boards on flexural properties and fracture behavior of polypropylene composites

    International Nuclear Information System (INIS)

    Zheng Yanhong; Shen Zhigang; Cai Chujiang; Ma Shulin; Xing Yushan

    2009-01-01

    Flexural strength and flexural modulus of the composites can be successfully improved by filling nonmetals recycled from waste printed circuit boards (PCBs) into polypropylene (PP). By using scanning electron microscopy (SEM), the influence of nonmetals on fracture behavior of PP composites is investigated by in situ flexural test. Observation results show that the particles can effectively lead to mass micro cracks instead of the breaking crack. The process of the crack initiation, propagation and fiber breakage dissipate a great amount of energy. As a result, the flexural properties of the composites can be reinforced significantly. Results of the in situ SEM observation and analysis to the dynamic flexural process supply effective test evidence for the reinforcing mechanism of the nonmetals/PP composites on the basis of the energy dissipation theory

  2. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    International Nuclear Information System (INIS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-01-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  3. Wear resistance of polypropylene-SiC composite

    Science.gov (United States)

    Abenojar, J.; Enciso, B.; Martínez, MA; Velasco, F.

    2017-05-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope.

  4. Wear resistance of polypropylene-SiC composite

    International Nuclear Information System (INIS)

    Abenojar, J; Enciso, B; Martínez, MA; Velasco, F

    2017-01-01

    In this work, the wear resistance of thermoplastic composites with a high amount of ceramic is evaluated. Composites made of polypropylene (PP) and silicon carbide (SiC) powder at 50 wt% were used with the final objective of manufacturing ablative materials. This is the first part of a project studying the wear resistance and the mechanical properties of those composites, to be used in applications like habitat industry. In theory, the exposure to high temperature of ablative materials involves the elimination of thermal energy by the sacrifice of surface polymer. In our case, PP will act as a heat sink, up to the reaction temperature (melting or sublimation), where endothermic chemical decomposition into charred material and gaseous products occurs. As the surface is eroded, it is formed a SiC like-foam with improved insulation performance. Composites were produced by extrusion and hot compression. The wear characterization was performed by pin-on-disk test. Wear test was carried out under standard ASTM G99. The parameters were 120 rpm speed, 15 N load, a alumina ball with 6 mm as pin and 1000 m sliding distance. The tracks were also observed by opto-digital microscope. (paper)

  5. The effect of temperature and strain rate on the mechanical properties of highly oriented polypropylene tapes and all-polypropylene composites

    NARCIS (Netherlands)

    Alcock, B.; Cabrera, N.O.; Barkoula, N.M.; Reynolds, C.T.; Govaert, L.E.; Peijs, A.A.J.M.

    2007-01-01

    The creation of highly oriented, co-extruded polypropylene (PP) tapes allows the production of recyclable "all-polypropylene" (all-PP) composites, with a large temperature processing window and a high volume fraction of highly oriented PP (>90%). The wholly thermoplastic nature of these

  6. [Quantification of Wood Flour and Polypropylene in Chinese Fir/Polypropylene Composites by FTIR].

    Science.gov (United States)

    Lao, Wan-li; Li, Gai-yun; Zhou, Qun; Qin, Te-fu

    2015-06-01

    The ratio of wood and plastic in Wood Plastic Composites (WPCss) influences quality and price, but traditional thermochemical methods cannot rapidly and accurately quantify the ratio of wood/PP in WPCss. This paper was addressed to investigate the feasibility of quantifying the wood flour content and plastic content in WPCss by Fourier Transform Infrared (FTIR) spectroscopy. With Chinese fir, polypropylene (PP) and other additives as raw materials, 13 WPCs samples with different wood flour contents, ranging from 9.8% to 61.5%, were prepared by modifying wood flour, mixing materials and extrusion pelletizing. The samples were analyzed by FTIR with the KBr pellets technique. The absorption peaks of WPCss at 1059, 1 033 and 1 740 cm(-1) are considered as characteristic of Chinese fir, and the absorption peaks at 1 377, 2 839 and 841 cm(-1) are typical of PP by comparing the spectra of WPCss with that of Chinese fir, PP and other additives. The relationship between the wood flour content, PP content in WPCss and their characteristic IR peaks height ratio was established. The results show that there is a strong linear correlation between the wood flour content in WPCss and I1 059/l 1 377/I1 033, /I1377, R2 are 0.992 and 0.993 respectively; there is a high linear correlation between the PP content in WPCss and I1 377/I1 740, I2 839 /I1 740 R2 are 0.985 and 0.981, respectively. Quantitative methods of the wood flour content and PP content in WPCss by FTIR were developed, the predictive equations of the wood flour content in WPCss are y = 53.297x-9. 107 and y = 55.922x-10.238, the predictive equations of the PP content in WPCss are y = 6.828 5x+5.403 6 and y = 8.719 7x+3.295 8. The results of the accuracy test and precision test show that the method has strong repeatability and high accuracy. The average prediction relative deviations of the wood flour content and PP content in WPCss are about 5%. The prediction accuracy has been improved remarkably, compared to

  7. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  8. Effect of Nanosilica Filled Polyurethane Composite Coating on Polypropylene Substrate

    Directory of Open Access Journals (Sweden)

    Yern Chee Ching

    2013-01-01

    Full Text Available Acrylic based polyurethane (PU coatings with various amounts of nanosilica contents were prepared using solution casting method. The nanosilica (SiO2 particles used are around 16 nm in diameter. The friction and wear test was conducted using the reciprocating wear testing machine. The tests were performed at rotary speed of 100 rpm and 200 rpm with load of 0.1 kg to 0.4 kg under 1 N interval. The effect of the PU/nano-SiO2 composite coating on friction and wear behavior of polypropylene substrate was investigated and compared. The worn surface of coating film layer after testing was investigated by using an optical microscope. The introduction of PU/nanosilica composite coating containing 3 wt% of nano-SiO2 content gives the lowest friction coefficient and wear rate to PP substrate. Both the friction and wear rate of PP substrate coated with >3 wt% of nano-SiO2 filled PU coating would increase with the increasing of applied load and sliding time.

  9. Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites

    Directory of Open Access Journals (Sweden)

    2007-11-01

    Full Text Available Abaca fibre reinforced PP composites were fabricated with different fibre loadings (20, 30, 40, 50wt% and in some cases 35 and 45 wt%. Flax and jute fibre reinforced PP composites were also fabricated with 30 wt% fibre loading. The mechanical properties, odour emission and structure properties were investigated for those composites. Tensile, flexural and Charpy impact strengths were found to increase for fibre loadings up to 40 wt% and then decreased. Falling weight impact tests were also carried out and the same tendency was observed. Owing to the addition of coupling agent (maleated polypropylene -MAH-PP, the tensile, flexural and falling weight impact properties were found to increase in between 30 to 80% for different fibre loadings. When comparing jute and flax fibre composites with abaca fibre composites, jute fibre composites provided best tensile properties but abaca fibre polypropylene composites were shown to provide best notch Charpy and falling weight impact properties. Odours released by flax fibre composites were smaller than jute and abaca fibre composites.

  10. Effect of fibre treatment using fluorosilane on Sansevieria Trifasciata/Polypropylene composite

    Science.gov (United States)

    Aref, Yanzur Mohd; Baharum, Azizah

    2018-04-01

    Recently, there is an increasing interest in the development of wood-plastic composites (WPC) due to their advantages such as wide availability, low cost, environment friendliness and sustainability. However, some major factors limiting the large scales production of WPC including the tendency of natural fibres to absorb water and the poor compatibility between fibre and matrix. In this study, we investigated the effectiveness of natural fibre treatment using fluorosilane in imparting hydrophobicity to the polypropylene (PP) matrix composite reinforced with Sansevieria Trifasciata (ST) fibres. ST fibres are subjected to silane treatment with 1H,1H,2H,2H-perfluorooctyltriethoxsysilane (POTS) at 1, 3 and 5% for a period of 2 hours. Influence of POTS treatment on the physical and mechanical properties of composites was studied to determine the optimum condition of silane treatment. The water contact angle (WCA) of WPC increased after POTS treatment where the highest value of 115° was shown by 3% POTS treated ST/PP composite. Based on mechanical properties results, incorporation of POTS treated ST fibre improves the mechanical properties with the enhancement of flexural and impact strength. The treatment with 3% POTS revealed statistically higher flexural strength and modulus compared to 1 and 5%. The water absorption test of ST/PP composites also gives the best result for 3% POTS treatment with 20.90% water uptake.

  11. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    Science.gov (United States)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  12. Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites

    Directory of Open Access Journals (Sweden)

    Arieny Rodrigues

    2013-01-01

    Full Text Available Numerous studies have focused on polymer mixtures aimed at the potential applications of these materials. This work analyzed the effect of polymer reprocessing and the type and concentration of compatibilizer on the isothermal crystallization kinetics of polypropylene/wood flour composites. The composites, which were polypropylene grafted with acrylic acid (PP-g-AA and maleic anhydride (PP-g-MA, were processed in a twin screw extruder with and without compatibilizer. Reprocessed polypropylene reached complete crystallization in less time than the composites with virgin polypropylene. The addition of wood flour to the composites did not change the kinetics significantly compared to that of the pure polymers, but the compatibilizers did, particularly PP-g-AA. The nucleation exponent (n and crystallization rate (K were calculated from Avrami plots. The values of n ranged from 2 to 3, indicating instantaneous to sporadic nucleation. The crystallization half-time of reprocessed polypropylene was shorter than that of virgin polypropylene and of the compositions containing PP-g-AA compatibilizer. The activation energy of crystallization and the equilibrium melting temperature were calculated, respectively, from Arrhenius and Hoffman-Weeks plots. Both of these parameters showed lower values in the composites, particularly in the ones containing compatibilizers.

  13. Effect of coupling agent on durian skin fibre nanocomposite reinforced polypropylene

    Science.gov (United States)

    Siti Nur E'zzati, M. A.; Anuar, H.; Siti Munirah Salimah, A. R.

    2018-01-01

    This paper reports on the development of a composite-based natural fiber to reduce the reliance on petroleum-based product in order to amplify environmental awareness. The production of Durian Skin Nanofiber (DSNF) was conducted using biological fermentation method via rhizopus oryzae in order to obtain the nano dimension of the particle size. Polypropylene (PP) and DSNF were produced using Haake internal mixer via melt blending technique. The significant effect of maleic anhydride grafted polypropylene (MAPP) on the properties of PP/DSNF nanocomposite was investigated to study its mechanical properties which are tensile strength and thermal stability using thermogravimetric (TGA) and differential scanning analysis (DSC). The tensile property of PP nanocomposites increased from 33 MPa to 38 MPa with the presence of MAPP. The addition of MAPP also increased the thermal stability of PP/DSNF nanocomposite where the char residue increased by 52%. Besides that, the thermal degradation of PP/DSNF and PP/DSNF-MAPP were higher than PP where they exerted higher amount of weight loss at an elevated temperature. The percentage of crystallinity, %Xc, of PP nanocomposites improved with the addition of MAPP by 35% based on the differential scanning calorimetry (DSC) result. The SEM analysis showed that the PP/DSNF-MAPP exerts ductile fracture while PP/DSNF exerts brittle fracture.

  14. Effect of Polypropylene Fibers on Self-Healing and Dynamic Modulus of Elasticity Recovery of Fiber Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Adham El-Newihy

    2018-02-01

    Full Text Available This study aims to evaluate self-healing properties and recovered dynamic moduli of engineered polypropylene fiber reinforced concrete using non-destructive resonant frequency testing. Two types of polypropylene fibers (0.3% micro and 0.6% macro and two curing conditions have been investigated: Water curing (at ~25 Celsius and air curing. The Impact Resonance Method (IRM has been conducted in both transverse and longitudinal modes on concrete cylinders prior/post crack induction and post healing of cracks. Specimens were pre-cracked at 14 days, obtaining values of crack width in the range of 0.10–0.50 mm. Addition of polypropylene fibers improved the dynamic response of concrete post-cracking by maintaining a fraction of the original resonant frequency and elastic properties. Macro fibers showed better improvement in crack bridging while micro fiber showed a significant recovery of the elastic properties. The results also indicated that air-cured Polypropylene Fiber Reinforced Concrete (PFRC cylinders produced ~300 Hz lower resonant frequencies when compared to water-cured cylinders. The analyses showed that those specimens with micro fibers exhibited a higher recovery of dynamic elastic moduli.

  15. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  16. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  17. PA6 and Kevlar fiber reinforced isotactic polypropylene: Structure, mechanical properties and crystallization and melting behavior

    International Nuclear Information System (INIS)

    Zhao, Songfang; Cheng, Lei; Guo, Yong; Zheng, Yuying; Li, Baoming

    2012-01-01

    Highlights: ► KF was modified with caprolactam using toluenediisocyanate (TDI) as bridge. ► Modified KF improves interfacial interaction of iPP/KF/PA6 composites. ► Fiber and nylon 6 inhibited the crystallization of PP continuous phase. -- Abstract: To improve the thermal and mechanical properties of isotactic polypropylene (iPP), iPP/Kevlar fiber (KF)/polyamide 6 (PA6) composites were prepared via the melt-extrusion method on twin-screw extruder. Kevlar fiber was modified with caprolactam using toluenediisocyanate (TDI) as bridge. The microstructure of modified KF was successfully characterized by Fourier transform infrared (FT-IR), X-ray photoelectron spectrometer (XPS) and scanning electron microscopy (SEM), the results showed that KF was bonded with caprolactam and became coarser. Then the modified KF was introduced into iPP, the composites have better mechanical and thermal properties, implying that modification of KF was helpful to improve the interfacial interaction of iPP/KF/PA6 composites. Besides, the crystallization curves indicated that crystallization behavior of PA6 in the composites was homogeneous and fractional. Furthermore, compatibilizer content played an important role in the mechanical and thermal properties of composites.

  18. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  19. Antimicrobial Carvacrol-Containing Polypropylene Films: Composition, Structure and Function

    Directory of Open Access Journals (Sweden)

    Max Krepker

    2018-01-01

    Full Text Available Significant research has been directed toward the incorporation of bioactive plant extracts or essential oils (EOs into polymers to endow the latter with antimicrobial functionality. EOs offer a unique combination of having broad antimicrobial activity from a natural source, generally recognized as safe (GRAS recognition in the US, and a volatile nature. However, their volatility also presents a major challenge in their incorporation into polymers by conventional high-temperature-processing techniques. Herein, antimicrobial polypropylene (PP cast films were produced by incorporating carvacrol (a model EO or carvacrol, loaded into halloysite nanotubes (HNTs, via melt compounding. We studied the composition-structure-property relationships in these systems, focusing on the effect of carvacrol on the composition of the films, the PP crystalline phase and its morphology and the films’ mechanical and antimicrobial properties. For the first time, molecular dynamics simulations were applied to reveal the complex interactions between the components of these carvacrol-containing systems. We show that strong molecular interactions between PP and carvacrol minimize the loss of this highly-volatile EO during high-temperature polymer processing, enabling semi-industrial scale production. The resulting films exhibit outstanding antimicrobial properties against model microorganisms (Escherichia coli and Alternaria alternata. The PP/(HNTs-carvacrol nanocomposite films, containing the carvacrol-loaded HNTs, display a higher level of crystalline order, superior mechanical properties and prolonged release of carvacrol, in comparison to PP/carvacrol blends. These properties are ascribed to the role of HNTs in these nanocomposites and their effect on the PP matrix and retained carvacrol content.

  20. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings

    KAUST Repository

    Mulle, Matthieu

    2015-12-29

    Hot-press molding of glass-fiber-reinforced polypropylene (GFPP) laminates was monitored using longitudinally and transversely embedded fiber Bragg gratings (FBGs) at different locations in unidirectional laminates. The optical sensors proved to efficiently characterize some material properties; for example, strain variations could be related physical change of the laminate, revealing key transition points such as the onset of melt or solidification. These results were confirmed through some comparison with traditional techniques such as differential scanning calorimetry. After the GFPP plate was released from the mold, residual strains were estimated. Because cooling rate is an important process parameter in thermoplastics, affecting crystallinity and ultimately residual strain, two different conditions (22 and 3 °C/min) were investigated. In the longitudinal direction, results were nearly identical while in the transverse direction results showed a 20% discrepancy. Coefficients of thermal expansion (CTE) were also identified during a post-process heating procedure using the embedded FBGs and compared to the results of a thermo-mechanical analysis. Again, dissimilarities were observed for the transverse direction. With regards to through the thickness properties, no differences were observed for residual strains or for CTEs.

  1. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  2. Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites.

    Science.gov (United States)

    Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna

    2016-05-01

    The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.

  3. Effect of particles size on mechanical properties of polypropylene particulate composites

    Czech Academy of Sciences Publication Activity Database

    Nezbedová, E.; Krčma, F.; Majer, Z.; Hutař, Pavel

    2016-01-01

    Roč. 7, č. 5 (2016), s. 690-699 ISSN 1757-9864 Institutional support: RVO:68081723 Keywords : Morphology * Mechanical properties * Numerical simulation * Polypropylene particulate composite s * Plasma surface treatment Subject RIV: JI - Composite Material s www.emeraldinsight.com/1757-9864.htm

  4. Continuous jute fibre reinforced laminated paper composite

    Indian Academy of Sciences (India)

    Jute fibre; laminated paper composite; plastic bag pollution. Abstract. Plastic bags create a serious environmental problem. The proposed jute fibre reinforced laminated paper composite and reinforcement-fibre free paper laminate may help to combat the war against this pollutant to certain extent. The paper laminate ...

  5. Essential work of fracture analysis for starch filled poly(propylene carbonate) composites

    International Nuclear Information System (INIS)

    Wang, X.L.; Li, R.K.Y.; Cao, Y.X.; Meng, Y.Z.

    2007-01-01

    Starch filled poly(propylene carbonate) composites are environmental friendly materials. In this study, the fracture toughness of composites under mode I loading was determined by the essential work of fracture concept. The specific essential fracture work of the poly(propylene carbonate)/starch composites decreases with increasing the starch content, while the non-essential work term, βw p increases with increasing the starch content. In addition, the morphologies, thermal properties, thermo-mechanical properties were studied by scanning electron microscope, thermogravimetric analysis, dynamic mechanical analysis, and differential scanning calorimetry, respectively. The thermal and thermo-mechanical measurements revealed that increasing starch content led to an increase in glass transition temperature and thermal stability. Morphology observation indicates that poly(propylene carbonate) and starch have weak interfacial adhesion

  6. Thermoforming of glass fibre reinforced polypropylene: A study on the influence of different process parameters

    Science.gov (United States)

    Schug, Alexander; Winkelbauer, Jonas; Hinterhölzl, Roland; Drechsler, Klaus

    2017-10-01

    The aim of this study was to analyse the forming behaviour of glass fibre reinforced polypropylene and to identify the influence of several process parameters on the resulting part quality. For this purpose, a complex forming tool was designed, consisting of several areas with single and double curvature. The specimens were produced from unidirectional (UD) tape using the Fiberforge RELAY2000® automated tape laying machine and a subsequent consolidation step. They were then fixed in a support frame, pre-heated in an infrared oven, and formed in the forming tool, which was mounted into a hydraulic heating press. The investigated process parameters were the number and force of the springs in the support frame, the tool temperature and the forming pressure and speed. The layups of the specimens were [0/90/0/90/0¯]s and [0/45/90/-45/0¯]s. After the forming process, the parts were analysed in terms of their quality, with a special focus on wrinkles, undulations, gaps and surface roughness. In addition to optical analysis with a statistical evaluation of the results, 3D scans of the specimens at different steps of the forming process were made to gain an impression of the forming mechanisms and the development of failures. The ATOS system of GOM was used for these 3D scans. The results show that the undulations were influenced by the tool temperature and the spring force. By contrast, the surface quality was most strongly dependent on the forming pressure, which also influenced the size and the number of gaps. The forming speed affected the gaps as well. The tool temperature had the largest influence on the development of wrinkles. As expected, the quasi-isotropic layup showed distinctly more wrinkles and undulations, but it also presented a better surface quality than the orthotropic layup.

  7. Evaluation of Properties of Unidirectional Hemp/Polypropylene Composites: Influence of Fiber Content and Fiber/Matrix Interface Variables

    DEFF Research Database (Denmark)

    Plackett, David; Løgstrup Andersen, Tom; Lilholt, Hans

    2002-01-01

    Flament-wound textile hemp yarn was used in combination with unmodified or maleated polypropylene (PP) films to produce plates of unidirectional composites.......Flament-wound textile hemp yarn was used in combination with unmodified or maleated polypropylene (PP) films to produce plates of unidirectional composites....

  8. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    International Nuclear Information System (INIS)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F.

    2015-01-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ( 60 Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  9. Physicochemical Study of Irradiated polypropylene/Organo :Modified Montmorillonite Composites by Using Electron Beam Irradiation Technique

    International Nuclear Information System (INIS)

    Hassan, M.S.

    2008-01-01

    Polypropylene/ Organo modified montmorillonite composites (PP/ OMMT) were prepared by melt blending with a twin screw extruder. The thermal properties by thermo gravimetric analysis (TGA), the dispersion of OMMT of macromolecules by X-ray diffraction (XRD), mechanical properties and the morphology by scanning electron microscopy (SEM) were investigated. The effect of electron beam irradiation on these properties was also studied. The results showed an intercalation between the silicate layers and the PP polymer matrix. The (PP/ OMMT) composites exhibit higher thermal stability and lower mechanical properties than pure polypropylene

  10. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ({sup 60}Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  11. Modification of bentonite clay and application on polypropylene nano composites

    International Nuclear Information System (INIS)

    Oliveira, Akidauana D.B.; Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A.

    2009-01-01

    This work consisted on the modification of Brasgel PA clay with ionic surfactant Praepagen WB and its incorporation into polypropylene. The results of infrared and DR-X was showed that the intercalation of surfactant in the clay and the incorporation of organoclay in PP matrix resulted in the formation of an intercalated structure. The impact strength of PP increased with the incorporation of organoclay. (author)

  12. Flexural behaviour of reinforced concrete beams with discrete steel – polypropylene fibres

    Directory of Open Access Journals (Sweden)

    Amizah Wan Jusoh Wan

    2017-01-01

    Full Text Available This paper discusses the experimental results on the flexural test of concrete containing different proportions of steel fibre (SF and polypropylene fibre (PPF. The flexural test was carried out under 4-point bending load and followed the relevant standards to FRC. Hooked-end deformed SF fibre with 60 mm length and fibrillated virgin PPF fibre with 19 mm length were used in this study. Meanwhile, the concrete was designed for high strength concrete of C60. The mixture included both single SF and PPF, and also the combination of both fibres; Control beam (PC, beam with 75%SF, beam with 75%SF + 25%PPF and beam with 25%PPF. The total fibre volume fraction (Vf was fixed at 1.5%. The experimental results show that the percentage proportion of combined SF-PPF at 75-25% had the best performance for its flexural capacity. Mixture with single PPF was also found not effective in delaying the onset of tension cracks and to increase the tensile strength of the concrete. Experimental result also shows beam with 75%SF +25%PPF had their structural stiffness improved the most as compared with the others. For the compressive strength, beam with 75%SF + 25%PPF also revealed comparable performance with the control for high strength composite concrete.

  13. Analysis of Nanodomain Composition in High-Impact Polypropylene by Atomic Force Microscopy-Infrared.

    Science.gov (United States)

    Tang, Fuguang; Bao, Peite; Su, Zhaohui

    2016-05-03

    In this paper, compositions of nanodomains in a commercial high-impact polypropylene (HIPP) were investigated by an atomic force microscopy-infrared (AFM-IR) technique. An AFM-IR quantitative analysis method was established for the first time, which was then employed to analyze the polyethylene content in the nanoscopic domains of the rubber particles dispersed in the polypropylene matrix. It was found that the polyethylene content in the matrix was close to zero and was high in the rubbery intermediate layers, both as expected. However, the major component of the rigid cores of the rubber particles was found to be polypropylene rather than polyethylene, contrary to what was previously believed. The finding provides new insight into the complicated structure of HIPPs, and the AFM-IR quantitative method reported here offers a useful tool for assessing compositions of nanoscopic domains in complex polymeric systems.

  14. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Science.gov (United States)

    Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura

    2015-12-01

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  15. A Study on Creep Behavior of Wood Flour- Recycled Polypropylene Composite

    Directory of Open Access Journals (Sweden)

    Saman Ghahri

    2013-06-01

    Full Text Available The creep behavior of wood flour- recycled polypropylene composites (with and without compatibilizer has been evaluated in this study. For this purpose, virgin polypropylene (PP was thermo-mechanically degraded by five times of extrusion under controlled conditions in a twin-screw extruder at a rotor speed of 100 rpm and at temperature of 1900C. The virgin and recycled polypropylene were mixed with the wood flour (50/50% W/W as well as the compatibilizer (0, 2% W/W by a counter-rotating twin-screw extruder to manufacture the wood flour-PP composites (WPCs samples. The nominal cross section of the manufactured composites was 70×10 mm2. Short term flexural creep test at 30% of ultimate bending load was performed by using flexural creep equipment. The total time to complete every test was 120 min (60 min creep and 60 min recovery. Results revealed that recycling of the PP reduced the creep resistance in composites containing recycled polypropylene. Also results have shown that with the presence of compatibilizer (MAPP creep deflection, creep factor and relative creep decrease and creep modulus increase. The composites containing virgin PP and MAPP exhibited higher creep resistance than those containing recycled PP.

  16. Polypropylene reinforced with organophilic clay and brazilian nut fibers; Polipropileno reforcado com argila verde lodo e fibra da castanha-do-brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha-Gomes, L.V.; Mondelo-Garcia, F.J.; Vaccioli, K.; Valera, S.T.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R., E-mail: leila@ifes.edu.br [Universidade de Sao Paulo (LPSS/PMT/EP/USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais. Lab. de Materiais Nao-Metalicos

    2014-07-01

    Polymer nanocomposites have been shown to possess better properties when compared with traditional composites. This study aims to investigate the effects of the addition of organophilic clay and Brazilian nut fiber on the polypropylene (PP). First, 5%, 10% and 20% PP/compatibilizer maleic anhydride (PP-g-MA) by weight was added to Pure PP, respectively. From the results, 5% PP-g-MA was defined for preparing the nanocomposites. Samples were prepared containing 5% PP / PP-g-MA reinforced with 5% organophilic Brazilian smectite clay and 5%, 10% and 15% Brazilian nut fiber. Specimens were tested for tensile strength and impact. The materials were characterized by laser diffraction particle size and X-ray diffraction, and the nanocomposites, by mechanical strength and impact. The best result was obtained by inserting 15% fiber. (author)

  17. Repairing reinforced concrete slabs using composite layers

    International Nuclear Information System (INIS)

    Naghibdehi, M. Ghasemi; Sharbatdar, M.K.; Mastali, M.

    2014-01-01

    There are several strengthening methods for rehabilitation of RC structural elements. The efficiency of these methods has been demonstrated by many researchers. Due to their mechanical properties, using fibrous materials in rehabilitation applications is growing fast. Therefore, this study presents rehabilitation of slabs in such a way that plain concrete layers on top, on bottom, on the entire cross section are replaced by reinforced concrete layers. In order to reinforce the concrete, Polypropylene (PP) and steel fibers were used by 0.5%, 1% and 2% fiber volume fractions. Nineteen slabs were studied under flexural loadings and fibrous material effects on the initial crack force, the maximum loading carrying capacity, absorbed energy and ductility were investigated. The obtained results demonstrated that increasing the fiber volume fraction or using reinforced concrete layer on top, bottom, or at the entire cross section of the slabs not only always leads to improvement in the slab performance, but also sometimes debilitates the slab performance. Hence, this study will propose the best positioning of reinforced concrete layer, fiber volume fraction and fiber type to achieve the best flexural performance of slabs. - Highlights: • Using PP fibers at the bottom layer led to the best slab performance in bending. • Using steel fiber at the top layer and entire cross-section led to the best slab performance. • Maximum increase in the initial crack force and loading were obtained at 2% steel fiber. • Maximum increase in the initial crack force and loading were obtained at 1% PP fiber

  18. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  19. Mechanical performance of hemp fiber polypropylene composites at different operating temperatures

    Science.gov (United States)

    Mehdi Tajvidi; Nazanin Motie; Ghonche Rassam; Robert H. Falk; Colin Felton

    2010-01-01

    In order to quantify the effect of temperature on the mechanical properties of hemp fiber polypropylene composites, formulations containing 25% and 40% (by weight) hemp fiber were produced and tested at three representative temperatures of 256, 296, and 336 K. Flexural, tensile, and impact tests, as well as dynamic mechanical analysis, were performed and the reduction...

  20. Polypropylene /Aspen/ liquid polybutadienes composites: maximization of impact strength, tensile and modulus by statistical experimental design

    Czech Academy of Sciences Publication Activity Database

    Kokta, B. V.; Fortelný, Ivan; Kruliš, Zdeněk; Horák, Zdeněk; Michálková, Danuše

    2005-01-01

    Roč. 99, - (2005), s. 10-11 ISSN 0009-2770. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. 10.5.2005-12.5.2005, Bratislava] Institutional research plan: CEZ:AV0Z40500505 Keywords : polypropylene * Aspen-PP composite Subject RIV: CD - Macromolecular Chemistry

  1. Flow-induced solidification of high-impact polypropylene copolymer compositions : morphological and mechanical effects

    NARCIS (Netherlands)

    Drongelen, van M.; Gahleitner, M.; Spoelstra, A.B.; Govaert, L.E.; Peters, G.W.M.

    2015-01-01

    Polypropylene-based impact copolymers are a complex composition of matrix material, a dispersed phase and many optional modifiers. The final heterophasic morphology of such systems is influenced significantly by the processing step, adding an additional level of complexity to understanding the

  2. Ag2S deposited on oxidized polypropylene as composite material for solar light absorption

    NARCIS (Netherlands)

    Krylovaa, V.; Milbrat, Alexander; Embrachts, A.; Baltrusaitis, Jonas

    2014-01-01

    Thin film metal chalcogenides are superior solar light absorbers and can be combined into a functional material when deposited on polymeric substrates. Ag2S composite materials were synthesized on oxidized polypropylene using chemical bath deposition method and their properties were explored using

  3. PROPERTIES OF CHITIN REINFORCES COMPOSITES: A REVIEW

    African Journals Online (AJOL)

    user

    mechanical and thermal properties of chitin reinforced composites. ..... with crabyon fiber and normal viscose filaments. Also. Zhang et al.,[65] successfully blended chitin/cellulose using two different coagulating systems (immersed in 5.

  4. Characterising the thermoforming behaviour of glass fibre textile reinforced thermoplastic composite materials

    Science.gov (United States)

    Kuhtz, M.; Maron, B.; Hornig, A.; Müller, M.; Langkamp, A.; Gude, M.

    2018-05-01

    Textile reinforced thermoplastic composites are predestined for highly automated medium- and high-volume production processes. The presented work focusses on experimental studies of different types of glass fibre reinforced polypropylene (GF-PP) semi-finished thermoplastic textiles to characterise the forming behaviour. The main deformation modes fabric shear, tension, thought-thickness compression and bending are investigated with special emphasis on the impact of the textile structure, the deformation temperature and rate dependency. The understanding of the fundamental forming behaviour is required to allow FEM based assessment and improvement of thermoforming process chains.

  5. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  6. Irradiation and processing of oil palm empty fruit bunch fibres - polypropylene composites

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan; Syarifah Hanisah Syed Abdul Aziz

    2000-01-01

    In this study, polypropylene was blended with oil palm empty fruit bunch fibres at a ratio of 60 to 40 by weight, respectively. Trimethylolpropane triacrylate (TMPTA) was used as the crosslinking agent. Homopolymer Polypropylene of MFI 14.0 and EFB fibres of 0.5 -1.0 mm sizes were used through out the experiment. Processing parameters such as temperature, rotor speed and processing time were optimized. Modes of irradiation were established to determine the optimum properties of the composites. The mechanical properties of the composite such as tensile strength, tensile modulus, flexural strength and flexural modulus were measured. The results indicate that temperature, 185 degree C, with a rotor speed of 40 rpm and 9 minutes processing time are sufficient to produce the optimum mechanical properties of PP/EFB composite. Modes of adding TMPTA into the blend and modes of irradiation also have influenced the properties of the composites

  7. Reinforced Conductive Polyaniline-Paper Composites

    Directory of Open Access Journals (Sweden)

    Jinhua Yan

    2015-05-01

    Full Text Available A method for direct aniline interfacial polymerization on polyamideamine-epichlorohydrin (PAE-reinforced paper substrate is introduced in this paper. Cellulose-based papers with and without reinforcement were considered. The polyaniline (PANI-paper composites had surface resistivity lower than 100 Ω/sq after more than 3 polymerizations. Their mechanical strength and thermal stability were analyzed by tensile tests and thermogravimetric analysis (TGA. Fourier transform infrared (FTIR results revealed that there was strong interaction between NH groups in aniline monomers and OH groups in fibers, which did not disappear until after 3 polymerizations. Scanning electron microscopy (SEM and field emission (FE SEM images showed morphological differences between composites using reinforced and untreated base papers. Conductive composites made with PAE-reinforced base paper had both good thermal stability and good mechanical strength, with high conductivity and a smaller PANI amount.

  8. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    Science.gov (United States)

    Abral, H.; Kenedy, E.

    2015-07-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.

  9. Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites

    International Nuclear Information System (INIS)

    Abral, H; Kenedy, E

    2015-01-01

    The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix. (paper)

  10. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 31750 Perak (Malaysia)

    2014-10-24

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  11. Evaluation of the acquirement of nano composites of polypropylene and a bentonite organophilized by different methodologies

    International Nuclear Information System (INIS)

    Paiva, Lucilene B. de; Morales, Ana R.; Branciforti, Marcia C.; Bretas, Rosario E.S.

    2009-01-01

    This work describes the organophilization of an argentinean sodium bentonite with a quaternary ammo nium salt, by two methodologies: cation exchange in aqueous dispersion and intercalation in semi-solid medium. The modified samples were used in the preparation of nano composites, with polypropylene as a matrix and polypropylene-graft-maleic anhydride as a coupling agent, through melt intercalation by using a twin-screw micro extruder. The organophilic bentonites were characterized by the swelling capacity test in water and in xylene and by X-ray diffraction, and the nano composites were characterized by X-ray diffraction and transmission electronic microscopy. The results showed that were obtained nano composites with structures partially intercalated and exfoliated. (author)

  12. Topological and thermal properties of polypropylene composites based on oil palm biomass

    International Nuclear Information System (INIS)

    Bhat, A. H.; Dasan, Y. K.

    2014-01-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred

  13. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    International Nuclear Information System (INIS)

    Beg, M.D.H.; Pickering, K.L.; Weal, S.J.

    2005-01-01

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre

  14. Corn gluten meal as a biodegradable matrix material in wood fibre reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Beg, M.D.H. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Pickering, K.L. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)]. E-mail: klp@waikato.ac.nz; Weal, S.J. [Department of Materials and Process Engineering, University of Waikato, Private Bag 3105, Hamilton (New Zealand)

    2005-12-05

    This study was undertaken to investigate corn gluten meal (CGM) as a biodegradable matrix material for wood fibre reinforced composites. CGM was used alone, as well as hybridized with polypropylene, and reinforced with radiata pine (Pinus Radiata) fibre using a twin-screw extruder followed by injection moulding. Tensile testing, scanning electron microscopy and differential scanning calorimetry were carried out to assess the composites. For composites from CGM and wood fibres, extrusion was carried out with the aid of the following plasticizers: octanoic acid, glycerol, polyethylene glycol and water. Windows of processability for the different plasticizers were obtained for all plasticizers. These were found to lie between 20 and 50 wt.% of plasticizer with a maximum of approximately 20% wood fibre reinforcement. The best mechanical properties were obtained with a matrix containing 10 wt.% octanoic acid and 30 wt.% water, which gave a tensile strength and Young's modulus of 18.7 MPa and 4 GPa, respectively. Hybrid matrix composites were compounded with a maleated polypropylene coupling agent and benzoyl peroxide as a cross-linking agent. The highest tensile strength and Young's modulus obtained from hybrid matrix composites were 36.9 MPa and 5.8 GPa with 50 wt.% fibre.

  15. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    Science.gov (United States)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  16. The influence of filler surface modification on mechanical and material properties of layered double hydroxide -containing polypropylene composites

    CSIR Research Space (South Africa)

    Moyo, Lumbidzani

    2017-03-01

    Full Text Available The processing and properties of layered double hydroxides (LDHs)-containing polypropylene (PP) composites have been studied extensively. However, no detailed studies have reported on how stearic acid (SA)-intercalated and SA-coated LDHs influence...

  17. Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation

    NARCIS (Netherlands)

    Miltner, H.E.; Grossiord, N.; Lu, K.; Loos, J.; Koning, C.E.; Van Mele, B.

    2008-01-01

    During nonisothermal crystallization of highly dispersed polypropylene/carbon nanotube (CNT) composites, considerable heterogeneous nucleation is observed to an extent scaling with the CNT surface area. Saturation occurs at higher loadings, reaching a plateau value for the crystallization onset

  18. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    Han, Song Hee; Oh, Hyun Ju; Kim, Seong Su

    2013-01-01

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  19. Bamboo reinforced polymer composite - A comprehensive review

    Science.gov (United States)

    Roslan, S. A. H.; Rasid, Z. A.; Hassan, M. Z.

    2018-04-01

    Bamboo has greatly attention of researchers due to their advantages over synthetic polymers. It is entirely renewable, environmentally-friendly, non-toxic, cheap, non-abrasive and fully biodegradable. This review paper summarized an oveview of the bamboo, fiber extraction and mechanical behavior of bamboo reinforced composites. A number of studies proved that mechanical properties of bamboo fibers reinforced reinforced polymer composites are excellent and competent to be utilized in high-tech applications. The properties of the laminate are influenced by the fiber loading, fibre orientation, physical and interlaminar adhesion between fibre and matrix. In contrast, the presence of chemical constituents such as cellulose, lignin, hemicellulose and wax substances in natural fibres preventing them from firmly binding with polymer resin. Thus, led to poor mechanical properties for composites. Many attempt has been made in order to overcome this issue by using the chemical treatment.

  20. Mechanical properties of unidirectional and randomly oriented kenaf bast fibre composites using polypropylene resin matrix

    International Nuclear Information System (INIS)

    Sharifah Hanisah Syed Abd Aziz; Khairul Zaman Mohd Dahlan

    2004-01-01

    Fibres are known to confer strength and rigidity to the weak and brittle matrix and currently, research in composite materials is being directed at using natural fibers instead of synthetic fibres. In this work long and random kenaf fibers were used in the as-received condition and alkalized with a 0.06M NaOH solution. They were combined with polypropylene thin sheets and hot-pressed to form natural fibre composites. The mechanical properties of the composites were investigated to observe the effect of fibre alignment, fibre treatment, and the method of moulding technique used. A general trend was observed whereby alkalized and long fibre composites give higher flexural modulus and flexural strength compared with random mat and untreated fibres. The long fibre composites also gave a higher work of fracture. However, the correlation between fibre surface treatment and the work of fracture was less clear. The method of moulding used also need to be improved to optimize the performance of the composites manufactured as the overall mechanical test result showed some irregularities. Pre-irradiation on the polypropylene pellets before the composite is manufactured will be considered as one of the mechanism in enhancing the mechanical performance of the composites in future work. (Author)

  1. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent

    International Nuclear Information System (INIS)

    Ulloa, Maritza Eliza Perez

    2007-01-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the sample

  2. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  3. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  4. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Science.gov (United States)

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  5. Kenaf/PP and EFB/PP: Effect of fibre loading on the mechanical properties of polypropylene composites

    Science.gov (United States)

    Anuar, N. I. S.; Zakaria, S.; Harun, J.; Wang, C.

    2017-07-01

    Kenaf and empty fruit bunch (EFB) fibre which are the important natural fibres in Malaysia were studied as nonwoven polymer composites. The effect of fibre loading on kenaf polypropylene and EFB polypropylene nonwoven composite was studied at different mixture ratio. Kenaf polypropylene nonwoven composite (KPNC) and EFB polypropylene nonwoven composite (EPNC) were prepared by carding and needle-punching techniques, followed by a compression moulding at 6 mm thickness. This study was conducted to identify the optimum fibre loading of nonwoven polypropylene composite and their effect on the mechanical strength. The study was designed at 40%, 50%, 60% and 70% of fibre content in nonwoven mat and composite. The tensile strength, flexural strength and compression strength were tested to evaluate the composite mechanical properties. It was found that the mechanical properties for both kenaf and EFB nonwoven composites were influenced by the fibre content. KPNC showed higher mechanical strength than EPNC. The highest flexural strength was obtained at 60% KPNC and the lowest value was showed by 40% EPNC. The tensile and flexural strength for both KPNC and EPNC decreased after the fibre loading of 60%.

  6. Rheological properties of molten flax- and Tencel"®-polypropylene composites: Influence of fiber morphology and concentration

    International Nuclear Information System (INIS)

    Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana

    2016-01-01

    The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel"® are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel"® is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel"®, but aspect ratio of flax is smaller. The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel"®-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions

  7. Polypropylene-modified kaolinite composites: Effect of chemical ...

    African Journals Online (AJOL)

    PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. The thermogravimetric analysis thermograms (TGA) ...

  8. Influence of injection temperatures and fiberglass compositions on mechanical properties of polypropylene

    Science.gov (United States)

    Keey, Tony Tiew Chun; Azuddin, M.

    2017-06-01

    Injection molding process appears to be one of the most suitable mass and cost efficiency manufacturing processes for polymeric parts nowadays due to its high efficiency of large scale production. When down-scaling the products and components, the limits of conventional injection molding process are reached. These constraints had initiated the development of conventional injection molding process into a new era of micro injection molding technology. In this study, fiberglass reinforced polypropylenes (PP) with various glass fiber percentage materials were used. The study start with fabrication of micro tensile specimens at three different injection temperature, 260°C, 270°C and 280°C for different percentage by weight of fiberglass reinforced PP. Then evaluate the effects of various injection temperatures on the tensile properties of micro tensile specimens. Different percentage by weight of fiberglass reinforced PP were tested as well and it was found that 20% fiberglass reinforced PP possessed the greatest percentage increase of tensile strength with increasing temperatures.

  9. Serviceability behavior of Reinforcement Concrete beams with polypropylene and steel fibers

    OpenAIRE

    NaserKabashi; Cenë Krasniqi

    2015-01-01

    Serviceability Limit States (SLS) may lead to the design of concrete elements internally reinforced with Fiber Reinforced Polymer (FRP).In many types of concrete structure loss the serviceability due to wide cracks, number of cracks or large deflection is not uncommon behaviour in concrete structures or concrete beams.The flexural ductility affects the serviceability deflection of RC beams once flexural cracking take place.Imprvement will be focused on the use of polypropilene fib...

  10. GLASS-FIBRE REINFORCED COMPOSITES: THE EFFECT OF ...

    African Journals Online (AJOL)

    HOD

    mechanical and corrosion wear behaviour of any reinforced composites. In other ..... physical properties of glass fibre reinforced epoxy resin and the following .... waste in concrete and cement composites," Journal of Cleaner Production, vol.

  11. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    Science.gov (United States)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  12. Mechanical Properties and Weathering Behavior of Polypropylene-Hemp Shives Composites

    Directory of Open Access Journals (Sweden)

    Marcel Ionel Popa

    2013-01-01

    Full Text Available This paper presents the obtaining and the characterization of composites with polypropylene matrix and hemp shives as filler in different ratios and containing poly(propylene-co maleic anhydride (MAH-PP 3% wt as compatibility agent. The weathering behavior of the composite enclosing 60% hemp shives, performed after the exposure to UV radiations at different exposure times, was evaluated. The changes in the chemical and morphological structures were investigated by FT-IR and RAMAN spectroscopies and AFM microscopy. The mechanical characteristics of the composites were determined before and after an artificial aging process, and they are within the limits of the values reported for polyolefin-based composites and materials with natural fillers. During the accelerated weathering process, the correlation between the chemical degradation of the main components of the composite and the modification of the mechanical properties after the process of aging has been observed.

  13. Pre-irradiation technique for processing of oil palm fruit bunch fibers - polypropylene composites

    International Nuclear Information System (INIS)

    Khairul Zaman Dahlan; Manarpaac, G.A.; Harun Jalaluddin

    2002-01-01

    Researches on oil palm empty fruit bunch (EFB) fibers and thermoplastic composites have been carried out by many workers in the last decade. The main focus was to enhance the properties of the resultant composites in view of the incompatibility of the two components. Thus, efforts have been made to enhance their properties by using coupling agents, treating the fibers and modifying the matrices. In this study, the effects of electron beam (EB) irradiation and some reactive additives (RAs) on the mechanical properties of EFB-PP (polypropylene) composites were evaluated. Different modes of irradiation were investigated. Mono, di and tri functional of monomers of RAs were used. irradiating PP alone, compared to irradiating the EFB fibers or irradiating both components, gave optimum properties for EFB-PP composites. Further, improvements of the properties of the composites were achieved with the addition of RAs with TMPTA (trymethylol propane triacrylate) giving the optimum results. (Author)

  14. Removal of light petroleum hydrocarbons from water sources using polypropylene and titanium dioxide nano-composite

    Directory of Open Access Journals (Sweden)

    H. Karyab

    2016-08-01

    Full Text Available Background: Petroleum hydrocarbons are the most important pollutants which threat human health and aquatics. Adsorbents are one of the common equipment in water pollution management; however, their applications have been associated with limitations. Objective: To evaluate the potential of polypropylene/titanium dioxide Nano-composite in adsorption of light petroleum hydrocarbons from water sources. Methods: This experimental study was conducted at school of health, Qazvin University of Medical Sciences in 2014-15. Activation of polypropylene fibers, with 1 cm length and 300 microns diameters, was achieved with wet heating. To synthesize of nano-composite the fibers were coated with nano-titanium dioxide with 20 nm diameter. The sonication was performed at 26 kHz and 100 W of power in 40ºc. The morphology of the fractured surfaces of impact specimens was examined by FESEM. The adsorption rate of petrol and gasoline, as surrogate of TPH, was evaluated in different retention time within polyamide mesh aperture diameter of 250 nm. Average of TPH adsorbing, per unit weight of adsorbent, were analyzed with analysis of variance and Scheffe post hoc tests. Findings: The FESEM micrographs showed that the dispersion of the nano-Tio2 particles was relatively good and only few aggregations exist. The maximum adsorption capacity of petrol and gasoline was obtained in 30 minute. The adsorption rate of gasoline was 6.49±0.10 g/g and oil was 7.01±0.13 g/g. Conclusion: According to the results and in comparison with commercial imported adsorbents, the synthesized Nano-composite had favorable performance. The results show that the polypropylene/Tio2 Nano-composite can be used effectively in light petroleum hydrocarbons removal from polluted water sources.

  15. The influence of irradiated wood filler on some properties of polypropylene - wood composites

    Directory of Open Access Journals (Sweden)

    Điporović-Momčilović Milanka

    2007-01-01

    Full Text Available The problem of compatibility between the wood filler and thermoplastic matrix is of essential importance in composite production. Numerous methods have been developed for increasing this compatibility, which is still representing a challenging objective of composite research throughout the world. The research into these methods is primarily directed towards their efficiency from the viewpoint of the composite performance and their economical acceptability. The latter is of particular importance for the composite production in the developing countries with respect to the shortage of the corresponding funds. With this respect, the utilization of ionizing radiation might have considerable advantages. In this research, the beech wood flour was irradiated by a dose of 10 kGy of 60Co gamma rays for purpose of provoking the changes by the ionizing effect. The effects of ionizing radiation upon the properties of wood particles have been examined by IR spectroscopy and by determination of contents of hydroxyl groups in wood by acetylating as an indirect method. All these methods have been expected to reveal the chemical effects of the applied radiation treatment. The irradiated and the control wood flour were used in order to produce the samples of composite with polypropylene. The polypropylene-wood flour (PP-WF composites were produced with 40% of wood particles having fraction size 0.3 mm. The melt-blended composites were modified with amido-acrylic acid (AMACA as a new coupling agent synthesized for this propose in amount of 6 wt.% (based on wood filler and successively with 0.05 wt.% (based on PP of organic peroxide during mixing step. The composites containing coupling agents showed superior mechanical properties, compared to the untreated one. The highest extent of improvement of tensile was achieved in PP-WFl composites modified with AMACA coupling agent.

  16. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  17. Design and analysis of reinforced fiber composites

    CERN Document Server

    Yamagata, Nobuki

    2016-01-01

    The papers in this volume present a broad range of applications for reinforced fiber composites - from thin shell structures to tires. Linear and nonlinear structural behavior (from linear buckling to nonlinear yelding and fracture) are discussed as well as different materials are presented. Latest developments in computational methods for constructíons are presented which will help to save money and time. This is an edited collection of papers presented at a symposium at the WCCM, Barcelona, 2014.

  18. Ferroelastic ceramic-reinforced metal matrix composites

    OpenAIRE

    2006-01-01

    Composite materials comprising ferroelastic ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the ferroelastic ceramic particulates are subjected to stress, such as the cyclic stress experienced during vibration of the material, internal stresses in the ceramic cause the material to deform via twinning, domain rotation or domain motion thereby dissipating the vibrational energy. The ferroelastic ceramic particulates may also act as reinforcements to impro...

  19. Piezoelectric ceramic-reinforced metal matrix composites

    OpenAIRE

    2004-01-01

    Composite materials comprising piezoelectric ceramic particulates dispersed in a metal matrix are capable of vibration damping. When the piezoelectric ceramic particulates are subjected to strain, such as the strain experienced during vibration of the material, they generate an electrical voltage that is converted into Joule heat in the surrounding metal matrix, thereby dissipating the vibrational energy. The piezoelectric ceramic particulates may also act as reinforcements to improve the mec...

  20. Effect of compatibilizer, bamboo fiber size and content on the mechanical properties of PP-g-MA compatibilized polypropylene/bamboo fiber composites

    International Nuclear Information System (INIS)

    Caranti, Lilian R.A.; Bonse, Baltus C.; Costa, Ricardo A. da

    2011-01-01

    The contemporary need for ecological preservation is a challenge to the realms of science to develop environmentally sustainable materials and processes. Research on composites reinforced with natural cellulosic fibers seeks to meet that need. An investigation was performed on the mechanical and thermal behavior of a composite comprising a polypropylene thermoplastic matrix and bamboo fibers (Phyllostachys Edulis). Interfacial adhesion between the two materials was achieved by the addition of compatibilizer maleic anhydride grafted polypropylene PPg- MA. An investigation was carried out with 8 compositions by varying the average fiber size (lower level = 0.94 mm and upper level = 2.19 mm), fiber content (20 and 40 weight %) and compatibilizer PP-g-MA (1 and 4 weight %). The mechanical behavior of the composites was studied by carrying out tensile, flexural, impact and fatigue tests. Thermal behavior was investigated by heat deflection temperature tests. Crystallinity was measured by means of X Ray diffraction and fractured surfaces were observed and analyzed by scanning electron microscopy. (author)

  1. Titanium reinforced boron-polyimide composite

    Science.gov (United States)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  2. Effects of consolidation process on microstructure and mechanical properties of commingled glass/polypropylene composites

    International Nuclear Information System (INIS)

    Tufail, M.; Long, A.C.; Rudd, C.D.

    2001-01-01

    The thermal history of a thermoplastic composite material during forming and consolidation is critical to the quality of the component. Attempts to process outside the normal melt region will result in incomplete consolidation and voidage. Clearly then, the preheat phase plays a key role in successful processing. Too low a preheat temperature results in insufficient matrix flow while, if the temperature is increased too much, degradation of the matrix occurs, again resulting in poor quality of the composite. In particular polypropylene has poor chemical (oxidative) resistance, and oxidative degradation reduces the average molecular weight of the materials. If excessive, this can result in a dramatic reduction in mechanical properties. Flat plaques of braided, commingled glass/polypropylene yarn were produced to examine these effects using both isothermal and non-isothermal consolidation. Woven plaques were also produced from commingled yarn in a similar fashion as control samples in order to identify any effects specific to the braiding process. This paper describes the effect of heating and stamping cycles on the properties of these composites, concentrating on the effects of temperature, heating time and compaction rate. (author)

  3. Reinforcing of Cement Composites by Estabragh Fibres

    Science.gov (United States)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  4. Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride.

    Science.gov (United States)

    Chen, Lin; Xu, Hong-Fei; He, Shao-Jian; Du, Yi-Hang; Yu, Nan-Jie; Du, Xiao-Ze; Lin, Jun; Nazarenko, Sergei

    2017-01-01

    Mussel-inspired approach was attempted to non-covalently functionalize the surfaces of boron nitride (BN) with self-polymerized dopamine coatings in order to reduce the interfacial thermal barrier and enhance the thermal conductivity of BN-containing composites. Compared to the polypropylene (PP) composites filled with pristine BN at the same filler content, thermal conductivity was much higher for those filled with both functionalized BN (f-BN) and maleic anhydride grafted PP (PP-g-ma) due to the improved filler dispersion and better interfacial filler-matrix compatibility, which facilitated the development of more thermal paths. Theoretical models were also applied to predict the composite thermal conductivity in which the Nielsen model was found to fit well with the experimental results, and the estimated effective aspect ratio of fillers well corresponded to the degree of filler aggregation as observed in the morphological study.

  5. Effects of Particle Size and Surface Chemistry on the Dispersion of Graphite Nanoplates in Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Raquel M. Santos

    2018-02-01

    Full Text Available Carbon nanoparticles tend to form agglomerates with considerable cohesive strength, depending on particle morphology and chemistry, thus presenting different dispersion challenges. The present work studies the dispersion of three types of graphite nanoplates (GnP with different flake sizes and bulk densities in a polypropylene melt, using a prototype extensional mixer under comparable hydrodynamic stresses. The nanoparticles were also chemically functionalized by covalent bonding polymer molecules to their surface, and the dispersion of the functionalized GnP was studied. The effects of stress relaxation on dispersion were also analyzed. Samples were removed along the mixer length, and characterized by microscopy and dielectric spectroscopy. A lower dispersion rate was observed for GnP with larger surface area and higher bulk density. Significant re-agglomeration was observed for all materials when the deformation rate was reduced. The polypropylene-functionalized GnP, characterized by increased compatibility with the polymer matrix, showed similar dispersion effects, albeit presenting slightly higher dispersion levels. All the composites exhibit dielectric behavior, however, the alternate current (AC conductivity is systematically higher for the composites with larger flake GnP.

  6. Processes for fabricating composite reinforced material

    Science.gov (United States)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  7. Micromechanical failure in fiber-reinforced composites

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial

    Micromechanical failure mechanisms occurring in unidirectional fiber-reinforced composites are studied by means of the finite element method as well as experimental testing. This study highlights the effect of micro-scale features such as fiber/matrix interfacial debonding, matrix cracking...... and microvoids on the microscopic and macroscopic mechanical response of composite materials. To this end, first a numerical study is carried out to explore ways to stabilize interfacial crack growth under dominant Mode-I fracture using the cohesive zone model. Consequently, this study suggests a method...... composites. In the first approach, the J2 plasticity model is implemented to model the elasto-plastic behavior of the matrix while in the second strategy the modified Drucker-Prager plasticity model is utilized to account for brittle-like and pressure dependent behavior of an epoxy matrix. In addition...

  8. Reinforced concrete treatment as composite material

    International Nuclear Information System (INIS)

    Oller, S.; Onate, E.; Miguel, J.

    1995-01-01

    This paper presents the general mixing theory applied to the numerical simulation of multiphase composite material behaviour as reinforced concrete materials. This theory is based on the mixture of that composite basic substances and allows to evaluate the inter-dependence behaviour between the different compounding constitutive models. If it would be necessary to consider the initial anisotropy of each compound it could be done by mean of the mapped isotropic plastic formulation. The approach is a generalization of the classic isotropic plasticity theory to be applied to either ortho tropic or anisotropic materials such as reinforced concrete. The existence of a stress and strain real anisotropic spaces, and the respective fictitious isotropic spaces are assumed, where a mapped fictitious problem is solved. Those spaces are relating by means of two fourth order transformation tensors. Both formulation are joined establishing a powerful work tool for the treatment of bulk-fiber composite materials. The induced anisotropy behaviour is take into account by each compounding constitutive formulation. (author). 24 refs., 3 figs

  9. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications☆

    Institute of Scientific and Technical Information of China (English)

    Majid Niaz Akhtar; Abu Bakar Sulong; M.K. Fadzly Radzi; N.F. Ismail; M.R. Raza; Norhamidi Muhamad; Muhammad Azhar Khan

    2017-01-01

    Due to current trend and increasing interest towards natural based fiber products, Kenaf (Hibiscus cannabinus) fibers have been used for the developments of many products. Therefore, Kenaf fiber-reinforced composites have been widely used in engineering and industrial applications. The present work deals with the fabricating and characterization of untreated and treated kenaf/polypropylene (PP)-reinforced composites. Composites of PP reinforced with treated and untreated kenaf fibers were fabricated using the injection molding technique. Different fiber loadings of 10, 20, 30, 40, 50 wt%treated and untreated kenaf composites were also prepared. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA) were performed on the treated, untreated kenaf fibers and kenaf/PP composites. Moreover, the alkaline-treated kenaf composites exhibit better physical, morphological, and mechanical properties because of the compatibility of kenaf with PP. However, variations in tensile and flexural properties depend on treatment and kenaf fiber contents. The percentage increase in the mechanical properties of the treated kenaf/PP composites relative to that of PP was also measured. In addition, 40 wt%kenaf fiber loading resulted in higher mechanical properties. By contrast, kenaf/PP composite with 50%fiber loading was not successfully prepared because of improper mixing and the burning of kenaf fibers in the PP matrix. To conclude, 40%kenaf/PP composites with superior physical and mechanical properties may be used in variety of applications such as automotive, sports, construction, animal bedding, and mass production industries.

  10. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications

    Institute of Scientific and Technical Information of China (English)

    Majid Niaz Akhtar; Abu Bakar Sulong; M.K.Fadzly Radzi; N.F.Ismail; M.R.Raza; Norhamidi Muhamad; Muhammad Azhar Khan

    2016-01-01

    Due to current trend and increasing interest towards natural based fiber products,Kenaf (Hibiscus cannabinus) fibers have been used for the developments of many products.Therefore,Kenaf fiber-reinforced composites have been widely used in engineering and industrial applications.The present work deals with the fabricating and characterization of untreated and treated kenaf/polypropylene (PP)-reinforced composites.Composites of PP reinforced with treated and untreated kenaf fibers were fabricated using the injection molding technique.Different fiber loadings of 10,20,30,40,50 wt% treated and untreated kenaf composites were also prepared.Xray diffraction (XRD),scanning electron microscopy (SEM),Fourier transform infrared (FTIR) spectroscopy and thermo gravimetric analysis (TGA) were performed on the treated,untreated kenaf fibers and kenaf/PP composites.Moreover,the alkaline-treated kenaf composites exhibit better physical,morphological,and mechanical properties because of the compatibility of kenaf with PP.However,variations in tensile and flexural properties depend on treatment and kenaf fiber contents.The percentage increase in the mechanical properties of the treated kenaf/PP composites relative to that of PP was also measured.In addition,40 wt%kenaf fiber loading resulted in higher mechanical properties.By contrast,kenaf/PP composite with 50% fiber loading was not successfully prepared because of improper mixing and the burning of kenaf fibers in the PP matrix.To conclude,40% kenaf/PP composites with superior physical and mechanical properties may be used in variety of applications such as automotive,sports,construction,animal bedding,and mass production industries.

  11. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications

    Directory of Open Access Journals (Sweden)

    Majid Niaz Akhtar

    2016-12-01

    Full Text Available Due to current trend and increasing interest towards natural based fiber products, Kenaf (Hibiscus cannabinus fibers have been used for the developments of many products. Therefore, Kenaf fiber-reinforced composites have been widely used in engineering and industrial applications. The present work deals with the fabricating and characterization of untreated and treated kenaf/polypropylene (PP-reinforced composites. Composites of PP reinforced with treated and untreated kenaf fibers were fabricated using the injection molding technique. Different fiber loadings of 10, 20, 30, 40, 50 wt% treated and untreated kenaf composites were also prepared. X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy and thermo gravimetric analysis (TGA were performed on the treated, untreated kenaf fibers and kenaf/PP composites. Moreover, the alkaline-treated kenaf composites exhibit better physical, morphological, and mechanical properties because of the compatibility of kenaf with PP. However, variations in tensile and flexural properties depend on treatment and kenaf fiber contents. The percentage increase in the mechanical properties of the treated kenaf/PP composites relative to that of PP was also measured. In addition, 40 wt% kenaf fiber loading resulted in higher mechanical properties. By contrast, kenaf/PP composite with 50% fiber loading was not successfully prepared because of improper mixing and the burning of kenaf fibers in the PP matrix. To conclude, 40% kenaf/PP composites with superior physical and mechanical properties may be used in variety of applications such as automotive, sports, construction, animal bedding, and mass production industries.

  12. Effect of processing conditions on the mechanical properties of polypropylene/bentonite nano composites

    International Nuclear Information System (INIS)

    Alves, Tatianny S.; Cipriano, Pamela B.; Lira, Vanize F.; Canedo, Eduardo L.; Carvalho, Laura H. de

    2009-01-01

    This work dealt with the effect of processing conditions on the properties of polypropylene/bentonite compounds, using natural clay and an organoclay prepared with hexadecyl trimethyl ammonium bromide. Compounds with 1% clay were prepared by melt compounding in a single-screw extruder and in a counter-rotating twin-screw extruder, and characterized x-ray diffraction; tensile and impact mechanical tests. X ray diffraction results on clays and compounds show that the surfactant was incorporated within the clay galleries and that intercalated nano composites were obtained with the organoclay processed in either the single or the twin-screw extruder. The data also indicated that, without the addition of a compatibilizer, no significant variation of mechanical properties was observed for the composites processed in either extruder. (author)

  13. Natural fiber-reinforced polymer composites

    International Nuclear Information System (INIS)

    Taj, S.; Khan, S.; Munawar, M.A.

    2007-01-01

    Natural fibers have been used to reinforce materials for over 3,000 years. More recently they have been employed in combination with plastics. Many types of natural fi fibers have been investigated for use in plastics including Flax, hemp, jute, straw, wood fiber, rice husks, wheat, barley, oats, rye, cane (sugar and bamboo), grass reeds, kenaf, ramie, oil palm empty fruit bunch, sisal, coir, water hyacinth, pennywort, kapok, paper-mulberry, raphia, banana fiber, pineapple leaf fiber and papyrus. Natural fibers have the advantage that they are renewable resources and have marketing appeal. The Asian markets have been using natural fibers for many years e.g., jute is a common reinforcement in India. Natural fibers are increasingly used in automotive and packaging materials. Pakistan is an agricultural country and it is the main stay of Pakistan's economy. Thousands of tons of different crops are produced but most of their wastes do not have any useful utilization. Agricultural wastes include wheat husk, rice husk, and their straw, hemp fiber and shells of various dry fruits. These agricultural wastes can be used to prepare fiber reinforced polymer composites for commercial use. This report examines the different types of fibers available and the current status of research. Many references to the latest work on properties, processing and application have been cited in this review. (author)

  14. Thermomechanical properties of polypropylene-based lightweight composites modeled on the mesoscale

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, L.; Kadeřávek, Lukáš; Pěnčík, J.

    2017-01-01

    Roč. 26, Oct (2017), s. 5166-5172 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:68378297 Keywords : building material * composite * creep tests * mesomechanical model * thermal insulation Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.331, year: 2016

  15. Composites reinforcement by rods a SAS study

    CERN Document Server

    Urban, V; Pyckhout-Hintzen, W; Richter, D; Straube, E

    2002-01-01

    The mechanical properties of composites are governed by size, shape and dispersion degree of so-called reinforcing particles. Polymeric fillers based on thermodynamically driven microphase separation of block copolymers offer the opportunity to study a model system of controlled rod-like filler particles. We chose a triblock copolymer (PBPSPB) and carried out SAS measurements with both X-rays and neutrons, in order to characterize separately the hard phase and the cross-linked PB matrix. The properties of the material depend strongly on the way that stress is carried and transferred between the soft matrix and the hard fibers. The failure of the strain-amplification concept and the change of topological contributions to the free energy and scattering factor have to be addressed. In this respect the composite shows a similarity to a two-network system, i.e. interpenetrating rubber and rod-like filler networks. (orig.)

  16. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  17. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Jong Won Kim

    2016-05-01

    Full Text Available A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF and polypropylene (PP were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction (Vf, and void content (Vc, were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS, impact property, and scanning electron microscopy (SEM were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, Vc decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  18. Influence of Interleaved Films on the Mechanical Properties of Carbon Fiber Fabric/Polypropylene Thermoplastic Composites.

    Science.gov (United States)

    Kim, Jong Won; Lee, Joon Seok

    2016-05-06

    A laminated composite was produced using a thermoplastic prepreg by inserting an interleaved film with the same type of matrix as the prepreg during the lay-up process to improve the low interlaminar properties, which is a known weakness of laminated composites. Carbon fiber fabric (CFF) and polypropylene (PP) were used to manufacture the thermoplastic prepregs. Eight prepregs were used to produce the laminated composites. Interleaved films with different thicknesses were inserted into each prepreg. The physical properties of the composite, such as thickness, density, fiber volume fraction ( V f ), and void content ( V c ), were examined. The tensile strength, flexural strength, interlaminar shear strength (ILSS), impact property, and scanning electron microscopy (SEM) were used to characterize the mechanical properties. Compared to the composite without any inserted interleaved film, as the thickness of the inserted interleaved resin film was increased, V c decreased by 51.45%. At the same time, however, the tensile strength decreased by 8.75%. Flexural strength increased by 3.79% and flexural modulus decreased by 15.02%. Interlaminar shear strength increased by 11.05% and impact strength increased by 15.38%. Fracture toughness of the laminated composite was improved due to insertion of interleaved film.

  19. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding

    Directory of Open Access Journals (Sweden)

    Fakhr E. Alam

    2017-12-01

    Full Text Available The extensive use of electronic equipment in modern life causes potential electromagnetic pollution harmful to human health. Therefore, it is of great significance to enhance the electrical conductivity of polymers, which are widely used in electronic components, to screen out electromagnetic waves. The fabrication of graphene/polymer composites has attracted much attention in recent years due to the excellent electrical properties of graphene. However, the uniform distribution of graphene nanoplatelets (GNPs in a non-polar polymer matrix like polypropylene (PP still remains a challenge, resulting in the limited improvement of electrical conductivity of PP-based composites achieved to date. Here, we propose a single-step approach to prepare GNPs/PP composites embedded with a segregated architecture of GNPs by coating PP particles with GNPs, followed by hot-pressing. As a result, the electrical conductivity of 10 wt % GNPs-loaded composites reaches 10.86 S·cm−1, which is ≈7 times higher than that of the composites made by the melt-blending process. Accordingly, a high electromagnetic interference shielding effectiveness (EMI SE of 19.3 dB can be achieved. Our method is green, low-cost, and scalable to develop 3D GNPs architecture in a polymer matrix, providing a versatile composite material suitable for use in electronics, aerospace, and automotive industries.

  20. Studying nanostructure gradients in injection-molded polypropylene/montmorillonite composites by microbeam small-angle x-ray scattering

    DEFF Research Database (Denmark)

    Stribeck, Norbert; Schneider, Konrad; Zeinolebadi, Ahmad

    2014-01-01

    The core–shell structure in oriented cylindrical rods of polypropylene (PP) and nanoclay composites (NCs) from PP and montmorillonite (MMT) is studied by microbeam small-angle x-ray scattering (SAXS). The structure of neat PP is almost homogeneous across the rod showing regular semicrystalline......-shaped phyllosilicate filler particles....

  1. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries

    International Nuclear Information System (INIS)

    Wang, Jing; Hu, Zhiyu; Yin, Xiunan; Li, Yunchao; Huo, Hong; Zhou, Jianjun; Li, Lin

    2015-01-01

    Highlights: • PEK-C (T g : ∼230 °C) was used as binder to prepare ceramic coated composite PP separator. • The composite PP separator was stable and showed low thermal shrinkage in the electrolyte solvent. • The composite PP separator was helpful for high current density discharge. • The composite PP separator improved the safety performance of the coin cells. - Abstract: One way to obtain the lithium ion power battery with better safety performance was to increase the thermal shrinkage resistance of the separator at higher temperature. Phenolphthalein polyetherketone (PEK-C) is a polymer that can withstand high temperature to about 230 °C. Here, we developed a new Al 2 O 3 coated composite polypropylene (PP) separator with PEK-C as binder. The coating layer was formed on the surface of the PP separator and both ceramic particles and binder did not infiltrated into the separator along the thickness direction. The composite separator with 4 μm coating layer provided balanced permeability and thermal shrinkage properties. The composite separator was stable at the electrochemical window for lithium ion battery. The coin cells with composite separator showed better charge/discharge performance than that of the cells with the PP separator. It seemed that the composite separator was helpful for high current density discharge. Also, the battery safety performance test had verified that the Al 2 O 3 coated composite separator with PEK-C as binder had truly improved the safety performance of the coin cells. So, the newly developed Al 2 O 3 coated composite PP separator was a promising safety product for lithium ion power batteries with high energy density

  2. UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE

    Directory of Open Access Journals (Sweden)

    Subyakto Subyakto

    2013-06-01

    Full Text Available Sisal (Agave sisalana as a perennial tropical plant grows abundantly in Indonesia. Its fibers can be used as the reinforcement agent of biocomposite products. Utilization of sisal as natural fiber has some notable benefits compared to synthetic fibers, such as renewable, light in weight, and low in cost. Manufacture of biocomposite requires the use of matrix such as thermoplastic polymer, e.g. polypropylene (PP and polylactic acid (PLA to bond together with the reinforcement agent (e.g. sisal fibers. In relevant, experiment was conducted on biocomposites manufacture that comprised sisal fibers and PP as well as PLA. Sisal fibers were converted into pulp, then refined to micro-size fibrillated fibers such that their diameter reduced to about 10 μm, and dried in an oven. The dry microfibrillated sisal pulp fibers cellulose (MSFC were thoroughly mixed with either PP or PLA with varying ratios of MSFC/PP as well as MSFC/PLA, and then shaped into the mat (i.e. MSFC-PP and MSFC-PLA biocomposites. Two kinds of shaping was employed, i.e. hot-press molding and injection molding. In the hot-press molding, the ratio of  MSFC/PP as well as MSFC/PLA ranged about 30/70-50/50. Meanwhile in the injection (employed only on assembling the MSFC-PLA biocomposite, the ratio of MSFC/PLA varied about 10/90-30/70. The resulting shaped MSFC-PP and MSFC-PLA biocomposites were then tested of its physical and mechanical properties. With the hot-press molding device, the physical and mechanical (strength properties of MSFC-PLA biocomposite were higher than those of  MSFC-PP biocomposite. The optimum ratio of  MSFC/PP as well as MSFC/PLA reached concurrently at 40/60. The strengths of MSFC-PP as well as MSFC-PLA biocomposites were greater than those of individual polymer (PP and PLA. With the injection molding device, only the MSFC-PLA  biocomposite  was formed  and its strengths  reached  maximum  at 30/70  ratio.  The particular strengths (MOR and MOE of MSFC

  3. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  4. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  5. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  6. Poly(lauryl acrylate) and poly(stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Jankova Atanasova, Katja; Hvilsted, Søren

    2014-01-01

    Two new polymer grafts on an industrial grade multiwalled carbon nanotube (MWCNT) were prepared through a non-oxidative pathway employing controlled free radical polymerization for surface initiated polymer grafting. After photochemical introduction of an ATRP initiator onto the MWCNT......, polymerizations of lauryl or stearyl acrylate were performed, resulting in two novel polymer modifications on the MWCNT (poly(lauryl acrylate) or poly(stearyl acrylate)). The method was found to give time dependent loading of polymers as a function of time (up to 38 wt% for both acrylates), and showed a plateau...... in loading after 12 h of polymerization. The modified nanomaterials were melt mixed into polypropylene composites with very low filler loading (0.3 wt%), whereafter both the thermal and electrical properties were investigated by DSC and dielectric resonance spectroscopy. The electrical properties were found...

  7. Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites

    International Nuclear Information System (INIS)

    Ganss, Martin; Satapathy, Bhabani K.; Thunga, Mahendra; Weidisch, Roland; Poetschke, Petra; Jehnichen, Dieter

    2008-01-01

    The deformation and crack resistance behavior of polypropylene (PP) multi-walled carbon nanotube (MWNT) composites have been studied and their interrelation to the structural attributes studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarization light microscopy has been discussed. The composites were produced from industrial available MWNT by extrusion melt-mixing and injection-molding. In stress-strain measurements a strong increase in the yield stress and the Young's modulus at low MWNT contents has been observed, which was attributed to an efficient load transfer between the carbon nanotubes and polypropylene matrix through a good polymer-nanotube adhesion as indicated by SEM. The extent of enhancement in mechanical properties above 1.5 wt.% of MWNT decreased due to an apparently increased tendency of clustering of carbon nanotubes. Several theoretical models have been taken into account to explain the mechanical properties and to demonstrate the applicability of such models to the system under investigation. The crack resistance behavior has been studied with the essential work of fracture (EWF) approach based on post-yield fracture mechanics (PYFM) concept. A maximum in the non-essential work of fracture was observed at 0.5 wt.% MWNT demonstrating enhanced toughness compared to pure PP, followed by a sharp decline as the MWNT content was increased to 1.5 wt.% reveals a ductile-to-semi-ductile transition. Studies on the kinetics of crack propagation aspects have revealed a qualitative picture of the nature of such a transition in the fracture modes

  8. Strengthening of the Timber Members Using Fibre Reinforced Polymer Composites

    Directory of Open Access Journals (Sweden)

    Ioana-Sorina Enţuc

    2004-01-01

    Full Text Available The reinforcement of structural wood products has become in the last decades an efficient method of improving structural capabilities of load carrying members made of this material. Some important steps in earlier stages of research were focused on using metallic reinforcement, including steel bars, prestressed stranded cables, and bonded steel and aluminum plates. A disadvantage of the metallic reinforcement was the poor compatibility between the wood and the reinforcing materials. In comparison with metallic reinforcement, fiber reinforced polymers (FRP composites are compatible with structural wood products leading to efficient hybrid members. Some interesting strengthening alternatives using FRP applied to wood beams and to wood columns are presented in this paper.

  9. The study of mechanical properties of pineapple leaf fibre reinforced tapioca based bioplastic resin composite

    Directory of Open Access Journals (Sweden)

    Mathivanan D.

    2016-01-01

    Full Text Available Natural fibre reinforced composite has brought the material engineering to a high new level of research. Natural fibres are compatible with matrices like polypropylene and can be used as reinforcement material to reduce the composition of plastic in a material. Natural fibres such as kenaf, pineapple leaf, and coir already found its importance in reducing the dependence of petroleum based products. However the biodegradability of the product at the end of the intended lifespan is still questionable. This has led many researches to look for a suitable replacement for synthetic fibres and achieve better adhesion between fibre and matrix. In this study, fiber and matrix which are hydrophilic in nature was used and the mixture was extruded and hot compressed to acquire better mechanical properties. The specimens were fabricated and tested according to ASTM D638. The 30% composition illustrates the best average modulus value among other composition and from this result it can be concluded that the increase of PALF fibre in TBR composite increases the modulus strength of the composite.

  10. Thermoforming of Continuous Fibre Reinforced Thermoplastic Composites

    International Nuclear Information System (INIS)

    McCool, Rauri; Murphy, Adrian; Wilson, Ryan; Jiang Zhenyu; Price, Mark

    2011-01-01

    The introduction of new materials, particularly for aerospace products, is not a simple, quick or cheap task. New materials require extensive and expensive qualification and must meet challenging strength, stiffness, durability, manufacturing, inspection and maintenance requirements. Growth in industry acceptance for fibre reinforced thermoplastic composite systems requires the determination of whole life attributes including both part processing and processed part performance data. For thermoplastic composite materials the interactions between the processing parameters, in-service structural performance and end of life recyclability are potentially interrelated. Given the large number and range of parameters and the complexity of the potential relationships, understanding for whole life design must be developed in a systematic building block approach. To assess and demonstrate such an approach this article documents initial coupon level thermoforming trials for a commercially available fibre reinforced thermoplastic laminate, identifying the key interactions between processing and whole life performance characteristics. To examine the role of the thermoforming process parameters on the whole life performance characteristics of the formed part requires a series of manufacturing trials combined with a series of characterisation tests on the manufacturing trial output. Using a full factorial test programme and considering all possible process parameters over a range of potential magnitudes would result in a very large number of manufacturing trials and accompanying characterisation tests. Such an approach would clearly be expensive and require significant time to complete, therefore failing to address the key requirement for a future design methodology capable of rapidly generating design knowledge for new materials and processes. In this work the role of mould tool temperature and blank forming temperature on the thermoforming of a commercially available

  11. Ecotoxicity and fungal deterioration of recycled polypropylene/wood composites: effect of wood content and coupling.

    Science.gov (United States)

    Sudár, András; López, María J; Keledi, Gergely; Vargas-García, M Carmen; Suárez-Estrella, Francisca; Moreno, Joaquín; Burgstaller, Christoph; Pukánszky, Béla

    2013-09-01

    Recycled polypropylene (rPP) was recovered from an industrial shredder and composites were prepared with a relatively wide range of wood content and with two coupling agents, a maleated PP (MAPP) and a maleated ethylene-propylene-diene elastomer (MAEPDM). The mechanical properties of the composites showed that the coupling agents change structure only slightly, but interfacial adhesion quite drastically. The durability of the materials was determined by exposing them to a range of fungi and, ecotoxicity was studied on the aquatic organism Vibrio fischeri. The composites generally exhibit low acute toxicity, with values below the levels considered to have direct ecotoxic effect on aquatic ecosystems (deterioration proved that wood facilitates fungal colonization. Fungi caused slight mass loss (below 3%) but it was not correlated with substantial deterioration in material properties. MAPP seems to be beneficial in the retention of mechanical properties during fungal attack. rPP/wood composites can be considered non-ecotoxic and quite durable, but the influence of wood content on resistance to fungal attack must be taken into account for materials intended for applications requiring long-term outdoor exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  13. Thermal Analysis of Filler Reinforced Polymeric Composites

    Science.gov (United States)

    Ghadge, Mahesh Devidas

    compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.

  14. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  15. Study of the rice husk ash utilization as filler polypropylene matrix and ionization radiation effect on this composite

    International Nuclear Information System (INIS)

    Alfaro, Eduardo de Faria

    2010-01-01

    In the first step of this work, it was evaluated the possibility of using rice husk ash as a filler in polypropylene (PP) making a comparison with talc which is the most used mineral filler in polymers. This comparison was made by using polypropylene with 20% rice husk ash as well as polypropylene with 20% talc measuring their properties. Despite the properties of the PP with 20% rice husk ash decreased compared with the composite of polypropylene with 20% talc it can be said that the rice husk ash can be used as filler for or other utilization less noble of PP . This way it is being given a destination for this residue that it is disposable in the environment contributing to its preservation, moreover reducing the product cost. This work had also as an aim to study the ionizing radiation effect in the properties of these composites. It was used the coupling agent, maleic anhydride , to verify a best sample homogenization. According to the results it can be said that PP is a semicrystalline polymer, and so it has its morphology modified when exposed to the irradiation process. This fact is due to the scission mechanisms of the polymeric chains which it is in compliance to the literature. (author)

  16. Polypropylene compositional evolution under 3.5 MeV He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, M., E-mail: abdesselam_m@yahoo.fr [Faculte de Physique, USTHB, BP32, El Alia, 16111 BEZ (Algeria); Muller, D. [InESS, UMR7163, 23 rue du Loess, BP20, F-67037 Strasbourg Cedex 02 (France); Djebara, M.; Chami, A.C. [Faculte de Physique, USTHB, BP32, El Alia, 16111 BEZ (Algeria); Montgomery, P. [InESS, UMR7163, 23 rue du Loess, BP20, F-67037 Strasbourg Cedex 02 (France)

    2012-05-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 {mu}m in thickness. The fluence ranges from 2 Multiplication-Sign 10{sup 12} to 3.5 Multiplication-Sign 10{sup 15} cm{sup -2}. The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C({alpha}, {alpha})C) and hydrogen elastic recoil detection (H({alpha}, H){alpha}), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of {approx}5 Multiplication-Sign 10{sup 13} He{sup +} cm{sup -2}. The carbon depletion levels off at a fluence of {approx}5 Multiplication-Sign 10{sup 14} He{sup +} cm{sup -2} approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 Multiplication-Sign 10{sup -16} cm{sup 2}, respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He{sup +} beam is made.

  17. Polypropylene compositional evolution under 3.5 MeV He+ ion irradiation

    International Nuclear Information System (INIS)

    Abdesselam, M.; Muller, D.; Djebara, M.; Chami, A.C.; Montgomery, P.

    2012-01-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 μm in thickness. The fluence ranges from 2 × 10 12 to 3.5 × 10 15 cm −2 . The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C(α, α)C) and hydrogen elastic recoil detection (H(α, H)α), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of ∼5 × 10 13 He + cm −2 . The carbon depletion levels off at a fluence of ∼5 × 10 14 He + cm −2 approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 × 10 −16 cm 2 , respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He + beam is made.

  18. Polypropylene compositional evolution under 3.5 MeV He+ ion irradiation

    Science.gov (United States)

    Abdesselam, M.; Muller, D.; Djebara, M.; Chami, A. C.; Montgomery, P.

    2012-05-01

    A helium beam at 3.5 MeV was used to induce damage in thin polypropylene film of 5.1 μm in thickness. The fluence ranges from 2 × 1012 to 3.5 × 1015 cm-2. The evolution of the atomic composition (C and H) as a function of the fluence was investigated in situ by forward elastic scattering (C(α, α)C) and hydrogen elastic recoil detection (H(α, H)α), respectively. The helium beam was used at the same time for irradiation and analysis. In respect to the high sensitivity of the polypropylene to radiation damage, the beam current was kept at very low intensity of 0.5 nA. The mass loss becomes significant above a fluence of ˜5 × 1013 He+ cm-2. The carbon depletion levels off at a fluence of ˜5 × 1014 He+ cm-2 approximately while hydrogen loss continues to be present along the whole of the studied fluence range. The final carbon and hydrogen losses, at the highest fluence, are around 17% and 48% of their initial contents, respectively. Satisfactory fits to the release curves have been obtained in the framework of the bulk molecular recombination model (BMR). The deduced hydrogen and carbon release cross sections are 7.8 and 65.2 × 10-16 cm2, respectively. A comparison with our previous measurements of polyethylene terephthalate (PET) film irradiated with 3.7 MeV He+ beam is made.

  19. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  20. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  1. Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-01-01

    Full Text Available This study evaluated the bond properties of polypropylene (PP fiber in plain cementitious composites (PCCs and styrene butadiene latex polymer cementitious composites (LCCs at different nanosilica contents. The bond tests were evaluated according to JCI SF-8, in which the contents of nanosilica in the cement were 0, 2, 4, 6, 8, and 10 wt%, based on cement weight. The addition of nanosilica significantly affected the bond properties between macro PP fiber and cementitious composites. For PCCs, the addition of 0–2 wt% nanosilica enhanced bond strength and interface toughness, whereas the addition of 4 wt% or more reduced bond strength and interface toughness. The bond strength and interfacial toughness of LCCs also increased with the addition of up to 6% nanosilica. The analysis of the relative bond strength showed that the addition of nanosilica affects the bond properties of both PCC and LCC. This result was confirmed via microstructural analysis of the macro PP fiber surface after the bond tests, which revealed an increase in scratches due to frictional forces and fiber tearing.

  2. Radiation processing for PTFE composite reinforced with carbon fiber

    International Nuclear Information System (INIS)

    Akihiro Oshima; Akira Udagawa; Yousuke Morita

    1999-01-01

    The present work is an attempt to evaluate the performance of crosslinked PTFE as a polymer matrix for carbon fiber-reinforced composite materials. The carbon fiber-reinforced PTFE pre-composite, which is laminated with PTFE fine powder, is crosslinked by electron beam irradiation. Mechanical and frictional properties of the crosslinked PTFE composite obtained are higher than those of PTFE resin. The crosslinked PTFE composite with high mechanical and radiation resistant performance is obtained by radiation crosslinking process

  3. Quantitative radiographic analysis of fiber reinforced polymer composites.

    Science.gov (United States)

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  4. CO2-laser-assisted processing of glass fiber-reinforced thermoplastic composites

    Science.gov (United States)

    Brecher, Christian; Emonts, Michael; Schares, Richard Ludwig; Stimpfl, Joffrey

    2013-02-01

    To fully exploit the potential of fiber-reinforced thermoplastic composites (FRTC) and to achieve a broad industrial application, automated manufacturing systems are crucial. Investigations at Fraunhofer IPT have proven that the use of laser system technology in processing FRTC allows to achieve high throughput, quality, flexibility, reproducibility and out-of-autoclave processing simultaneously. As 90% of the FRP in Europe1 are glass fiber-reinforced a high impact can be achieved by introducing laser-assisted processing with all its benefits to glass fiber-reinforced thermoplastics (GFRTC). Fraunhofer IPT has developed the diode laser-assisted tape placement (laying and winding) to process carbon fiber-reinforced thermoplastic composites (CFRTC) for years. However, this technology cannot be transferred unchanged to process milky transparent GFRTC prepregs (preimpregnated fibers). Due to the short wavelength (approx. 980 nm) and therefore high transmission less than 20% of the diode laser energy is absorbed as heat into non-colored GFRTC prepregs. Hence, the use of a different wave length, e.g. CO2-laser (10.6 μm) with more than 90% laser absorption, is required to allow the full potential of laser-assisted processing of GFRTC. Also the absorption of CO2-laser radiation at the surface compared to volume absorption of diode laser radiation is beneficial for the interlaminar joining of GFRTC. Fraunhofer IPT is currently developing and investigating the CO2-laser-assisted tape placement including new system, beam guiding, process and monitoring technology to enable a resource and energy efficient mass production of GFRP composites, e.g. pipes, tanks, masts. The successful processing of non-colored glass fiber-reinforced Polypropylene (PP) and Polyphenylene Sulfide (PPS) has already been proven.

  5. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    Directory of Open Access Journals (Sweden)

    S. Toommee

    2018-06-01

    Full Text Available Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging. Keywords: Zeolite, Composite, Polypropylene, Packaging, PEG-template

  6. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    Science.gov (United States)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  7. Fire retardancy assessment of polypropylene composite filed with nano clay prepared from Iraqi bentonite

    Science.gov (United States)

    Kareem Salih, Watheq

    2018-05-01

    Fire retardants have an extraordinary importance because of their role in saving the people, property and reducing the damages and minimizing the dangers resulting from fires and burning of polymeric composites which are used in different civil and industrial fields. The work in this paper can be divided into two main stages. In first one nano-clay was manufactured from Iraqi bentonite and it was characterized using AFM, XRD, XRF, SEM, and BET. The AFM test showed the particle size of prepared nano clay was about 99.25 nm. In the second stage, polypropylene/nano clay composites at three low loading percents (0%,2%,4%,6%) were formulated via twin screw extruder. The fire retardancy tests included burning rate according to ASTM:D-635 and maximum flame height of flame according to ASTM:D-3014. Besides, the mechanical tests and thermal behavior of prepared samples were investigated. The results showed that (4%) of nano-clay had the maximum fire retardancy and while at (2%) loading, the maximum value of tensile strength and Yong modulus were obtained. The maximum heat of fusion was recorded for 6% nano clay sample. The final results assessment confirmed on the possibility of using low loadings of prepared nano clay to improve the fire retardancy, mechanical and thermal properties successfully.

  8. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  9. LOSS FACTOR AND DYNAMIC YOUNG MODULUS DETERMINATION FOR COMPOSITE SANDWICH BARS REINFORCED WITH STEEL FABRIC

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2015-05-01

    Full Text Available In this paper I have build some composite sandwich bars. For these bars I have determined the dynamic response by recording their free vibrations. These bars have the core made of polypropylene honeycomb with upper and lower layers reinforced with steel wire mesh. For these bars I have determined the the eigenfrequency of the first eigenmode in this way: the bar was embedded at one end and free at the other where there was placed an accelerometer at 10 mm distance from the edge and I applied an initial force at the free end. I have determined the eigenfrequency because I will use its values for the loss factor and dynamic Young modulus determination.

  10. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    OpenAIRE

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  11. STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    唐涛

    2009-01-01

    A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene(PP)/organically modified montmorillonite(OMMT) nanocomposites.The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation.The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis(TGA).The structural evolution and composition change in the surface region of...

  12. Polypropylene Nano composites Obtained by In Situ Polymerization Using Metallocenes Catalyst: Influence of the Nanoparticles on the Final Polymer Morphology

    International Nuclear Information System (INIS)

    Zapata, P.; Quijada, R.

    2012-01-01

    Polypropylene nano composites containing silica nanospheres based on the sol-gel methods were produced via in situ polymerization using a rac-Et(Ind) 2 ZrCl 2 /methylaluminoxane (MAO) system. Two different routes were used depending on the interaction between the silica nanoparticles with the catalytic system. In route 1 the nanoparticles were added together with the catalytic system (rac-Et(Ind) 2 ZrCl 2 )/(MAO) directly into the reactor, and in route 2 the metallocenes rac-Et(Ind) 2 ZrCl 2 was supported on silica nanospheres pretreated with (MAO). SEM images show that when the nanospheres were added by both routes, they were replicated in the final polymer particle morphology; this phenomenon was more pronounced for PP obtained by route 2. The polypropylene (PP) nano composites obtained by both routes had a slightly higher percent crystallinity and crystallinity temperatures than pure PP. Transmission electron microscopy (TEM) images show that the nanospheres were well dispersed into the polypropylene matrix, particularly in the nano composites obtained by the support system (route 2).

  13. Antifriction basalt-plastics based on polypropylene

    Science.gov (United States)

    Bashtannik, P. I.; Ovcharenko, V. G.

    1997-05-01

    A study is made of the dependence of the mechanical and friction-engineering properties of polypropylene reinforced with basalt fibers on the viscosity of the polymer matrix. It is established that the main factors that determine the mechanical properties of the plastics are the quality of impregnation of the fibers by the binder and the residual length of the reinforcing filler in the composite after extrusion and injection molding. The material that was developed has a low friction coefficient and low rate of wear within a relatively brood range of friction conditions. The basalt-plastics can be used in the rubbing parts of machines and mechanisms subjected to dry friction.

  14. Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

    OpenAIRE

    M. Aruna

    2014-01-01

    Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fibre-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced Composite is one such material, which has reformed the concept of high strength. ...

  15. Reinforced magnesium composites by metallic particles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Vahid, Alireza; Hodgson, Peter [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); Li, Yuncang, E-mail: yuncang.li@rmit.edu.au [Institute for Frontier Materials, Deakin University, Geelong, Victoria 3217 (Australia); School of Engineering, RMIT University, Melbourne, Victoria 3001 (Australia)

    2017-02-08

    Pure magnesium (Mg) implants have unsatisfactory mechanical properties, particularly in loadbearing applications. Particulate-reinforced Mg composites are known as promising materials to provide higher strength implants compared to unreinforced metals. In the current work biocompatible niobium (Nb) and tantalum (Ta) particles are selected as reinforcement, and Mg-Nb and Mg-Ta composites fabricated via a powder metallurgy process associated with the ball milling technique. The effect of Nb and Ta contents on the microstructure and mechanical properties of Mg matrix was investigated. There was a uniform distribution of reinforcements in the Mg matrix with reasonable integrity and no intermetallic formation. The compressive mechanical properties of composites vary with reinforcement contents. The optimal parameters to fabricate biocompatible Mg composites and the optimal composition with appropriate strength, hardness and ductility are recommended.

  16. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  17. Superelastic SMA–FRP composite reinforcement for concrete structures

    International Nuclear Information System (INIS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-01-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA–FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA–FRP composites are studied experimentally and analytically. Tests of SMA–FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA–FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA–FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA–FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement

  18. Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites

    International Nuclear Information System (INIS)

    Bahlouli, Nadia; Pessey, Daniel; Raveyre, Claude; Guillet, Jacques; Ahzi, Said; Dahoun, Abdessalam; Hiver, Jean Marie

    2012-01-01

    Highlights: → Recycling effect on high impact PP with or without talc for automotive industries. → Rheological/mechanical tests, effect of molecular weight, deformation and damage. → Embrittlement of the amorphous matrix by chain scissions and growth of cavitation. → Better stability for talc filled HiPP, but decreased failure stress. → Interfaces talc/PP matrix and EPDM droplets/PP matrix are degraded. -- Abstract: As recycled materials are increasingly used in design of structural components, it is necessary to understand the effect of recycling on the properties and durability of these materials. In this work, the recycling effects on two high impact polypropylenes (HiPP) are studied. The recycling process was simulated by performing several extrusion runs with the same material in order to get a better understanding of the multi recycling effects. These effects were identified not only on the molecular weight and the rheological properties but also on the mechanical properties and the deformation mechanisms. The volume strain has been also measured as a damage indicator in the studied polymers. For both materials, the analysis of the different results showed that the rheological and the mechanical properties were affected by the thermomechanical recycling process. In particular, this process led to the decrease of the molecular weight, the decrease of the failure stress and the decrease of the impact energy. Moreover, Scanning Electronic Micoscopy (SEM) pictures showed a modification of the deformation process due to the embrittlement of the amorphous matrix by the chain scission and by cavitation. Moreover, a better stability for talc filled HiPP was observed but a decrease of the failure stress was obtained because the interfaces talc/polypropylene (PP) matrix and ethylene propylene diene monomer (EPDM) droplets/PP matrix were degraded. Indeed, the knowledge of the molecular characteristics as well as the rheological and mechanical properties of

  19. On the simulation of kink bands in fiber reinforced composites

    DEFF Research Database (Denmark)

    Sørensen, K.D.; Mikkelsen, Lars Pilgaard; Jensen, H.M.

    2007-01-01

    Simulations of kink band formation in fiber reinforced composites are carried out using the commercial finite element program ABAQUS. A smeared-out, plane constitutive model for fiber reinforced materials is implemented as a user subroutine, and effects of fiber misalignment on elastic and plastic...

  20. Strength and thermal stability of fiber reinforced plastic composites ...

    African Journals Online (AJOL)

    Therefore, the strength properties and thermal stability of plastic composites reinforced with rattan fibers were investigated in this work. Particles of rattan species (Eremospatha macrocarpa (EM) and Laccosperma secundiflorum (LS)) were blended with High-Density Polyethylene (HDPE) to produce fiber reinforced plastic ...

  1. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  2. Influence of the chemical modification and content of the clay on the mechanical properties of polypropylene and national bentonite composites

    International Nuclear Information System (INIS)

    Libano, Elaine V.D.G.; Pacheco, Elen B.A.V.; Visconte, Leila L.Y.

    2011-01-01

    The polypropylene/national clay composite was prepared by melt intercalation in a counter-rotating twin screw extruder, using bentonite as filler either in the natural (BENT) form or modified with the ammonium salt, cetyltrimethylammonium chloride (BENT-org). The clay was used in 1, 3 and 5%w. The influence of the modification and content of clay on the mechanical properties of this system was analysed. The analyses of infrared spectroscopy (FTIR) and X-ray diffraction (XRD) showed that clay organophilization did occur. The tensile modulus and the tensile strength at the yield point were not affected by chemical modification (BENT and BENT-org) or clay content. On the other hand, it was evidenced that the elongation at the yield point decreased with the addition of BENT and BENT-org to polypropylene. According to the thermogravimetric results, it was evidenced that the incorporation of clay into polypropylene improved thermal stability of the polymer in the composites with 5%w of BENT and 3 and 5%w of BENT-org. (author)

  3. SYNTHESIS AND CHARACTERIZATION OF CANNABIS INDICA FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Amar Singh Singha

    2011-04-01

    Full Text Available This paper reports on the synthesis of Cannabis indica fiber-reinforced composites using Urea-Resorcinol-Formaldehyde (URF as a novel matrix through compression molding technique. The polycondensation between urea, resorcinol, and formaldehyde in different molar ratios was applied to the synthesis of the URF polymer matrix. A thermosetting matrix based composite, reinforced with lignocellulose from Cannabis indica with different fiber loadings 10, 20, 30, 40, and 50% by weight, was obtained. The mechanical properties of randomly oriented intimately mixed fiber particle reinforced composites were determined. Effects of fiber loadings on mechanical properties such as tensile, compressive, flexural strength, and wear resistance were evaluated. Results showed that mechanical properties of URF resin matrix increased considerably when reinforced with particles of Cannabis indica fiber. Thermal (TGA/DTA/DTG and morphological studies (SEM of the resin, fiber and polymer composite thus synthesized were carried out.

  4. Fiber-reinforced Composite for Chairside Replacement of Anterior ...

    African Journals Online (AJOL)

    Fiber-reinforced Composite for Chairside Replacement of Anterior Teeth: A Case Report. ... investigation will be required to provide additional information on the survival of directly-bonded anterior fixed prosthesis made with FRC systems.

  5. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  6. Compressive behavior of wire reinforced bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yub [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Clausen, Bjorn [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Uestuendag, Ersan [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Choi-Yim, Haein [Department of Materials Science, M/C 138-78, California Institute of Technology, Pasadena, CA 91125 (United States); Aydiner, C. Can [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Bourke, Mark A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2005-06-15

    Bulk metallic glasses (BMGs) possess a unique set of mechanical properties that make them attractive structural materials. However, when loaded without constraint, BMGs fracture catastrophically due to formation of macroscopic shear bands and this behavior reduces their reliability. To address this issue, BMG matrix composites have been developed. In this investigation, neutron diffraction was used during uniaxial compressive loading to measure the internal strains in the second phases of various BMG composites reinforced with Ta, Mo, or stainless steel wires. The diffraction data were then employed to develop a finite element model that deduced the in situ constitutive behavior of each phase. It was found that the reinforcements yielded first and started transferring load to the matrix, which remained elastic during the whole experiment. While the present composites exhibited enhanced ductility, largely due to their ductile reinforcements, they yielded at applied stresses lower than those found in W reinforced composites.

  7. Technology and development of self-reinforced polymer composites

    NARCIS (Netherlands)

    Alcock, B.; Peijs, T.

    2013-01-01

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first

  8. Manufacturing of composite parts reinforced through-thickness by tufting

    OpenAIRE

    Dell'Anno, G.; Treiber, J. W G; Partridge, Ivana K

    2016-01-01

    The paper aims at providing practical guidelines for the manufacture of composite parts reinforced by tufting. The need for through-thickness reinforcement of high performance carbon fibre composite structures is reviewed and various options are presented. The tufting process is described in detail and relevant aspects of the technology are analysed such as: equipment configuration and setup, latest advances in tooling, thread selection, preform supporting systems and choice of ancillary mate...

  9. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    OpenAIRE

    Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino;  , Roberto

    2015-01-01

    In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanica...

  10. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  11. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  12. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    Science.gov (United States)

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  13. PEG-template for surface modification of zeolite: A convenient material to the design of polypropylene based composite for packaging films

    Science.gov (United States)

    Toommee, S.; Pratumpong, P.

    2018-06-01

    Zeolite was successfully modified by conventional synthetic route. Polyethylene glycol was employed for surface modification of zeolite. The surface of zeolite exhibited therefore hydrophobic properties. Less than 5 wt% of modified zeolites with uniform size and shape were integrated into polypropylene matrix. Mechanical properties of composite exhibited the similar trend compare to neat polypropylene. Oxygen transmission rate and water vapor transmission rate were evaluated and it exhibited the strong potential to be a good candidate material in active packaging.

  14. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  15. Radiation processing for carbon fiber-reinforced polytetrafluoroethylene composite materials

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    The present work is an attempt to evaluate the performance of the fiber composites with crosslinked polytetrafluoroethylene (PTFE) as a polymer matrix by radiation. The uni-directional carbon fiber-reinforced composites were fabricated with PTFE fine powder impregnation method and then crosslinked by electron beams irradiation under selective conditions. The carbon fiber-reinforced crosslinked PTFE composites show good mechanical properties compared with crosslinked PTFE. The radiation resistance of crosslinked PTFE composites is improved more than that of crosslinked resin without fiber. (author)

  16. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  17. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  18. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    Science.gov (United States)

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-10-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as `3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  19. Designing bioinspired composite reinforcement architectures via 3D magnetic printing.

    Science.gov (United States)

    Martin, Joshua J; Fiore, Brad E; Erb, Randall M

    2015-10-23

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as '3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries.

  20. The Effect of Size and Crumb Rubber Composition as a Filler with Compatibilizer Pp-G-Ma in Polypropylene Blends and Sir-20 Compound on Mechanical and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Erna Frida

    2013-04-01

    Full Text Available Having been researched the development of thermoplastic elastomer material of polypropylene and natural rubber SIR-20 compound with Crumb Rubber as the filler. Reinforced polypropylene with size 60 mesh with 1 mm, and the composition of the Crumb rubber (30, 40, and 50 wt%. Observed mechanical properties are tensile strength, fracture elongation, Young's modulus, tear strength and impact strength. Thermal properties are analyzed by DSC and DTA/TGA. It is acquired that for the size of 60 mesh crumb rubber tensile strength, fracture elongation, Young’s modulus, tear strength and impact strength are bigger than 1mm size. The addition of 60 mesh crumb rubber increases but it decreases by adding of 50 weight%. While for crumb rubber 1 mm tensile strength, fracture elongation, tear strength and impact strength decreas. Based on analysis of DSC that the addition of crumb rubber does not make a difference boiling point significantly between samples containing crumb rubber and polypropylene Analysis TGA/DTA to an increase in enthalpy and decomposition temperature with the addition of crumb rubber used and thermal stability.

  1. The effect of modified ijuk fibers to crystallinity of polypropylene composite

    Science.gov (United States)

    Prabowo, I.; Nur Pratama, J.; Chalid, M.

    2017-07-01

    Nowadays, plastics becomes concern associated with its degradation and environmental issues. It has led studies to develop an environmental-friendly material. To minimize the impact of those problems, recently the usage of natural fibers as a filler are introduced because of biodegradability and availability. The promising natural fiber is “ijuk” fiber from Arenga pinnata plant as a filler and polypropylene (PP) polymer as a matrix. Unfortunately, the natural fibers and polymers have the different properties on which polymers are polar while natural fibers are non-polar so that reducing the compatibility and resulting the poor crystallinity. To enhance the compatibility and crystallinity, ijuk fibers were prepared by multistage treatments including alkalinization with 5 and 10% sodium hydroxide (NaOH), oxidation with 3 and 6% sodium hypochlorite (NaClO) and hydrolysis with 20% sulphuric acid (H2SO4) in sequences. The purposes of multistage treatments are to remove the components such as lignin, wax, hemicellulose, to cause an oxidative fragmentation of remaining lignin and to annihilate the amorphous parts respectively. Fourier-Transform Infrared (FTIR) confirms the compatibility meanwhile Differential Scanning Calorimetry (DSC) reveals the crystallinity and Scanning Electron Microscope (SEM) displays surface morphology of polypropylene. The experiments were revealing that the effects of “ijuk” fibers by the multistage treatments of 5 and 10% NaOH resulting the crystallinity of polypropylene around 31.2 and 27.64% respectively compared to the crystallinity before adding the “ijuk” fibers for 16.8%. It indicates that the entire treatments increasing the compatibility and crystallinity of polypropylene. In addition, the use of 5% NaOH offers the better crystallinity than non-treated polypropylene. The experiments conclude that by adding alkalinized “ijuk” fibers of multistage treatments can increase the compatibility and crystallinity of polypropylene.

  2. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  3. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  4. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  5. Physical and Mechanical Properties of Jute Mat Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S.M Sadaf

    2011-11-01

    Full Text Available Cellulose jute fibre offers a number of benefits as reinforcement for synthetic polymers since it has a high specific strength and stiffness, low hardness, relatively low density and biodegradability. To reduce moisture uptake and hence to improve the mechanical properties of the composites, bleached jute mats were incorporated as reinforcing elements in the epoxy matrix. Composites at varying volume fractions and different orientations of jute mat were fabricated by hot compression machine under specific pressures and temperatures. Tensile, flexure, impact and water absorption tests of composites were conducted. Jute mat oriented at (0 ± 45–90° composites showed reduced strength compared to (0–90° fibre mat composites. Impact strength and water uptake of high volume fraction jute mat reinforced composites was higher compared to that of lower volume fraction composites. Fracture surfaces of jute mat composites were analyzed under SEM. Fracture surface of (0–90° jute mat oriented composites showed twisted fibres, while (0 ± 45–90° jute mat oriented composites had fibre pull-out without any twisting. Overall, composites containing 52% jute mat at orientations of (0–90° showed better properties compared to other fabricated composites.

  6. The Effect of Tow Shearing on Reinforcement Positional Fidelity in the Manufacture of a Continuous Fiber Reinforced Thermoplastic Matrix Composite via Pultrusion-Like Processing of Commingled Feedstock

    Science.gov (United States)

    Warlick, Kent M.

    microscopy in order to examine best and worst case scenarios. High quality fiber reinforced composite materials, in terms of low void content, high fiber volume fractions and homogeneity in microstructure, were manufactured in both of these scenarios. In order to improve fidelity and quality in fiber path transition regions, a forced air cooling manifold was designed, printed, and implemented into the current system. To better understand the composite performance that results from varying pertinent manufacturing parameters, the effect of feed rate, hot end temperature, forced air cooling, and deposition surface (polypropylene and previously deposited glass polypropylene commingled tow) on interply performance, microstructure, and positional fidelity were analyzed. Interply performance, in terms of average maximum load and average peel strength, was quantified through a t-peel test of the bonding quality between two surfaces. With use of forced air cooling, minor decreases in average peel strength were present due to a reduction in tow deposition temperature which was found to be the variable most indicative of performance. Average maximum load was comparable between the forced air cooled and non-air cooled samples. Microstructure was evaluated through characterization of composite area, void content, and flash percentage. Low void contents mostly between five to seven percent were attained. Further reduction of this void content to two percent is possible through higher processing temperatures; however, reduced composite area, low average peel strength performance, and the presence of smoke during manufacturing implied thermal degradation of the polypropylene matrix occurred in these samples with higher processing temperatures. Positional fidelity was measured through calculations of shear angle, shift width, and error of a predefined path. While positional fidelity variation was low with a polypropylene deposition surface, forced air cooling is necessary to achieve fidelity

  7. Kenaf-polypropylene composites: effect of amphiphilic coupling agent on surface properties of fibres and composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2010-10-01

    Full Text Available This paper presents an experimental study on the use of zein as a coupling agent in natural fibre composites. Kenaf nonwovens were treated with zein coupling agent, which is a protein extracted from corn. The surface characteristics of untreated...

  8. INFLUENCE OF KENAF AND POLYPROPYLENE FIBRES ON MECHANICAL AND DURABILITY PROPERTIES OF FIBRE REINFORCED LIGHTWEIGHT FOAMED CONCRETE

    Directory of Open Access Journals (Sweden)

    H. AWANG

    2015-04-01

    Full Text Available This paper investigates the mechanical and durability properties of lightweight foamed concrete (LFC with the inclusion of kenaf and polypropylene fibres. A density of 1000kg/m3 foamed concrete was used for all the tested specimens. The ratio of cement, sand and water used was 1:1.5:0.45. Polypropylene and kenaf fibres were used as additives at 0.25% and 0.4% by volume of the total mix. A 30% cement replacement by fly ash was used with each type of additive. All the experiments were set up in accordance with International standard methods of testing. Scanning electron microscopy (SEM analysis is included to have a better view of the concrete behavior with fibre inclusions. In reference to the analysis and discussion, the types of fibre used were proven to have a lesser contribution towards compressive strength or might even have reduced the result. However, the integration of fly ash enhanced the compressive strength. In addition, a higher percentage of fiber inclusions had been recorded to have a positive contribution towards flexural, tensile spiltting and shrinkage properties of LFC.

  9. Evaluation of the environmental aging and mechanical properties of the polypropylene/sugarcane bagasse composites; Avaliacao do envelhecimento ambiental e das propriedades mecanicas dos compositos de polipropileno/bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Rayane Lima de Moura; Mulinari, Daniella Regina [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil)

    2013-06-15

    Polypropylene (PP) reinforced with fibers from sugarcane bagasse composites in different proportions were prepared. Also environmental aging was conducted for the composites and their mechanical properties determined. The results showed that chemical treatment caused changes in color and chemical composition of the fibers, removing impurities and amorphous constituents such as lignin and hemicellulose, techniques of FTIR, X-ray diffraction and scanning electron microscopy confirmed these data. Also, it was observed that addition of natural fiber in PP matrix provided an improvement in the mechanical properties materials. The weathering test revealed a slight mass gain after 75 days, but it was clear that the inclusion of fibers has a higher mass gain compared to pure PP. (author)

  10. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    Science.gov (United States)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  11. Fibre Reinforced Polymer Composites as Internal and External Reinforcements for Building Elements

    Directory of Open Access Journals (Sweden)

    Cătălin Banu

    2008-01-01

    Full Text Available During the latest decades fibre reinforced polymer (FRP composite materials have proven valuable properties and suitable to be used in construction of new buildings and in upgrading the existing ones. These materials have covered the road from research laboratory and demonstration projects to implementation in actual structures. Nowadays the civil and structural engineering communities are about to commence the stage in which the use of FRP composites is becoming a routine similar to that of traditional material such as concrete, masonry and wood. Two main issues are presented in this paper, the use of FRP composite materials for new structural members (internal reinforcements and strengthening of existing members (externally bonded reinforcements. The advantages and disadvantages as well as the problems and constraints associated with both issues are discussed in detail mainly related to concrete members.

  12. Flax reinforced thermoset composites from polyfurfuryl alcohol

    CSIR Research Space (South Africa)

    Kumar, R

    2009-09-01

    Full Text Available Composites from Polyfurfuryl Alcohol Rakesh Kumar and Rajesh Anandjiwala CSIR Materials Science and Manufacturing, Nonwovens and Composites Group, Port Elizabeth Port Elizabeth 11th ICAM, Rio de Janerio, Brazil, September 20-25, 2009 © CSIR 2007...

  13. In vitro study of transverse strength of fiber reinforced composites.

    Science.gov (United States)

    Mosharraf, R; Hashemi, Z; Torkan, S

    2011-01-01

    Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey's tests. There was a significant difference among the mean primary transverse strength in the three groups (Ptransverse strength (Pstudy, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples.

  14. Fique Fabric: A Promising Reinforcement for Polymer Composites

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available A relatively unknown natural fiber extracted from the leaves of the fique plant, native of the South American Andes, has recently shown potential as reinforcement of polymer composites for engineering applications. Preliminary investigations indicated a promising substitute for synthetic fibers, competing with other well-known natural fibers. The fabric made from fique fibers have not yet been investigated as possible composite reinforcement. Therefore, in the present work a more thorough characterization of fique fabric as a reinforcement of composites with a polyester matrix was performed. Thermal mechanical properties of fique fabric composites were determined by dynamic mechanical analysis (DMA. The ballistic performance of plain woven fique fabric-reinforced polyester matrix composites was investigated as a second layer in a multilayered armor system (MAS. The results revealed a sensible improvement in thermal dynamic mechanical behavior. Both viscoelastic stiffness and glass transition temperature were increased with the amount of incorporated fique fabric. In terms of ballistic results, the fique fabric composites present a performance similar to that of the much stronger KevlarTM as an MAS second layer with the same thickness. A cost analysis indicated that armor vests with fique fabric composites as an MAS second layer would be 13 times less expensive than a similar creation made with Kevlar™.

  15. The effect of processing on the mechanical properties of self-reinforced composites

    Science.gov (United States)

    Hassani, Farzaneh; Martin, Peter J.; Falzon, Brian G.

    2018-05-01

    Hot-compaction is one of the most common manufacturing methods for creating recyclable all thermoplastic composites. The current work investigates the compaction of highly oriented self-reinforced fabrics with three processing methods to study the effect of pressure and temperature in the tensile mechanical properties of the consolidated laminates. Hot-press, calender roller and vacuum bag technique were adopted to consolidate bi-component polypropylene woven fabrics in a range of pressures and compaction temperatures. Hot-pressed samples exhibited the highest quality of compaction. The modulus of the hot-pressed samples increased with compaction temperature initially due to the improved interlayer bonding and decreased after a maximum at 150°C because of partial melting of the reinforcement phase. The calender roller technique exhibited to have smaller processing temperature window as the pressure is only applied for a short time and the fabrics start to shrink with increasing the processing temperature. The need for constraining the fabrics through the process is therefore found to be paramount. The Vacuum bag results showed this technique to be the least efficient method because of the low compaction pressure. Microscopic images and void content measurement of the consolidated samples further validate the results from tensile testing.

  16. Fabrication of tungsten wire reinforced nickel-base alloy composites

    Science.gov (United States)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  17. Graphene reinforced alumina nano-composites

    Czech Academy of Sciences Publication Activity Database

    Porwal, H.; Tatarko, Peter; Grasso, S.; Khaliq, J.; Dlouhý, Ivo; Reece, M.J.

    2013-01-01

    Roč. 64, NOV (2013), s. 359-369 ISSN 0008-6223 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : fracture toughness determination * ceramic-matrix composites * carbon nanotubes Subject RIV: JI - Composite Materials Impact factor: 6.160, year: 2013

  18. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  19. Fatigue damage propagation in unidirectional glass fibre reinforced composites

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Alzamora Guzman, Vladimir Joel; Østergaard, R.C.

    2012-01-01

    bundles. The underlying mechanisms are examined using digital microscopy, and it is postulated that fatigue damage initiates due to stress concentrations between the backing (transverse) layer and the unidirectional layer, followed by a cyclic fretting and axial fibre debonding. This fretting mechanism......Damage progression in unidirectional glass fibre reinforced composites exposed to tension fatigue is investigated, and a quantitative explanation is given for the observed stiffness loss. The stiffness degradation during fatigue is directly related to fibre breaks in the load-carrying axial fibre...... needs further attention and understanding in order to improve the fatigue life-time of glass fibre reinforced composites....

  20. Homogenization of long fiber reinforced composites including fiber bending effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization...

  1. Friction Joint Between Basalt-Reinforced Composite and Aluminum

    DEFF Research Database (Denmark)

    Costache, Andrei; Glejbøl, Kristian; Sivebæk, Ion Marius

    2015-01-01

    The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing the frictio......The purpose of this study was to anchor basalt-reinforced polymers in an aluminum grip using dry friction. Dry friction clamping is considered the optimal solution for post-mounting of load-bearing terminations on composite structures. A new test method is presented for characterizing...

  2. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  3. Fiber-reinforced composites materials, manufacturing, and design

    CERN Document Server

    Mallick, P K

    2007-01-01

    The newly expanded and revised edition of Fiber-Reinforced Composites: Materials, Manufacturing, and Design presents the most up-to-date resource available on state-of-the-art composite materials. This book is unique in that it not only offers a current analysis of mechanics and properties, but also examines the latest advances in test methods, applications, manufacturing processes, and design aspects involving composites. This third edition presents thorough coverage of newly developed materials including nanocomposites. It also adds more emphasis on underlying theories, practical methods, and problem-solving skills employed in real-world applications of composite materials. Each chapter contains new examples drawn from diverse applications and additional problems to reinforce the practical relevance of key concepts. New in The Third Edition: Contains new sections on material substitution, cost analysis, nano- and natural fibers, fiber architecture, and carbon-carbon composites Provides a new chapter on poly...

  4. Technology and Development of Self-Reinforced Polymer Composites

    Science.gov (United States)

    Alcock, Ben; Peijs, Ton

    In recent years there has been an increasing amount of interest, both commercially and scientifically, in the emerging field of "self-reinforced polymer composites". These materials, which are sometimes also referred to as "single polymer composites", or "all-polymer composites", were first conceived in the 1970s, and are now beginning to appear in a range of commercial products. While high mechanical performance polymer fibres or tapes are an obvious precursor for composite development, various different technologies have been developed to consolidate these into two- or three-dimensional structures. This paper presents a review of the various processing techniques that have been reported in the literature for the manufacture of self-reinforced polymer composites from fibres or tapes of different polymers, and so exploit the fibre or tape performance in a commercial material or product.

  5. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  6. Rheological properties of polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Camila F. de P.; Demarquette, Nicole R.

    2009-01-01

    In this work, composites of polypropylene with a master batch to obtain clay containing nano composites were obtained. The materials were characterized by X ray diffraction, small angle X-ray scattering and by rheological analysis. (author)

  7. Synthesis and characterization of polypropylene/graphite nano composite preparation for in situ polymerization

    International Nuclear Information System (INIS)

    Montagna, L.S.; Fim, F. de C.; Galland, G.B.

    2010-01-01

    This paper presents the synthesis of polypropylene/graphite nanocomposites through in situ polymerization, using the metallocene catalyst C 20 H 16 Cl 2 Zr (dichloro(rac-ethylenebis(indenyl))zircon(IV)). The graphite nanosheets in nano dimensions were added to the polymer matrix in percentages of 0.6;1.0;4.2;4.8 and 6.0% (w/w). The TEM images indicated that the thickness of graphite nanosheets ranged from 4 to 60 nm and by means of XRD analysis it was observed that the physical and chemical treatment did not destroyed the graphite layers. The presence of nanosheets did not decrease the catalytic activity of the nanocomposites. TEM images and XRD analysis of nanocomposites showed a good dispersion of the graphite nanosheets in the polypropylene matrix. (author)

  8. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  9. Study of flax hybrid preforms reinforced epoxy composites

    International Nuclear Information System (INIS)

    Muralidhar, B. A

    2013-01-01

    Highlights: • We examine the thermal, viscoelastic and mechanical behaviour of flax preform hybrid composites. • The thermal stability of the matrix decrease with increasing volume fraction of flax preforms. • The effect of number of preform layers and the lay-up architecture were studied.. • Morphological study on the fractured surface of the composite laminate is carried out. - Abstracts: This study investigates the thermal, mechanical and thermomechanical properties of flax hybrid preform reinforced epoxy composites. Flax plain weave fabric and 1 × 1 weft rib knitted structures were together used as reinforcements and the composites were produced using hand lay-up technique. Specimen preparation and testing were carried out as per ASTM standards. Thermogravimetric analysis (TGA) indicates a decrease in thermal stability of the matrix polymer with the incorporation of flax hybrid preform. The dynamic mechanical analysis revealed a shift in the T g with the addition of flax hybrid preforms. Mechanical data obtained showed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix. Additionally, investigation show that laminate with knitted preform as skin layer exhibits superior mechanical properties. However, improved tensile properties at lower fibre volume fraction, reinforces the opinion that hybrid preform composites can offer significant benefits in terms of performance, weight and overall cost. The failure mechanism was analysed, by scanning electron microscope (SEM)

  10. Modification of polypropylene with radiation-treated wood fiber

    International Nuclear Information System (INIS)

    Czvikovszky, T.; Tapolcai, I.

    1983-01-01

    The dispersed wood material is used not only as filler for thermosetting polymers but also as a new type of fibrous additive for thermoplastics e.g. polypropylene. Benefit of this additive (filler or reinforcement) is determined by the coupling between the wood and the synthetic resin. Fibrous, dispersed wood material was preirradiated in air, treated with vinyl monomer containing polyester resin and then mixed in polypropylene. Processability of such thermoplastic blends as well as reactivity of the mixed components were followed by measuring energy, absorbed during the kneading of the melt. The vinylmonomer vinylmonomer - polyester additive, activated at higher temperature by the radiation-formed peroxy groups on the wood fiber, results in good processability of the thermoplastic blend, and gives interesting mechanical properties. Calandering, extrusion, pressmoulding and mechanical testing demonstrated good workability and practical value of the polypropylene composite material containing radiation-treated wood fiber. (author)

  11. Aluminum matrix composites reinforced with alumina nanoparticles

    CERN Document Server

    Casati, Riccardo

    2016-01-01

    This book describes the latest efforts to develop aluminum nanocomposites with enhanced damping and mechanical properties and good workability. The nanocomposites exhibited high strength, improved damping behavior and good ductility, making them suitable for use as wires. Since the production of metal matrix nanocomposites by conventional melting processes is considered extremely problematic (because of the poor wettability of the nanoparticles), different powder metallurgy routes were investigated, including high-energy ball milling and unconventional compaction methods. Special attention was paid to the structural characterization at the micro- and nanoscale, as uniform nanoparticle dispersion in metal matrix is of prime importance. The aluminum nanocomposites displayed an ultrafine microstructure reinforced with alumina nanoparticles produced in situ or added ex situ. The physical, mechanical and functional characteristics of the materials produced were evaluated using different mechanical tests and micros...

  12. Infrared processed Cu composites reinforced with WC particles

    International Nuclear Information System (INIS)

    Deshpande, P.K.; Li, J.H.; Lin, R.Y.

    2006-01-01

    Copper matrix composites with WC particle reinforcements have been prepared with an innovative infrared infiltration technique. The volume content of the reinforcement particles in the composite is about 53%. The relative composite density of as high as 99.9% has been obtained with this process. The electric conductivity of composites prepared in this study as determined by a four-point probe method, is similar to commercially available Cu/W composites containing 52 vol% tungsten. Microhardness, microstructure and wear resistance of the composites were also determined. The microstructure of Cu/WC composite reveals excellent wetting between the two constituent phases, WC and copper. The microhardness values of all completely infiltrated Cu/WC composites were in the range of 360-370 HV which is significantly higher than the microhardness of pure copper, 65 HV. Wear resistance of the composites was determined with a pin on disk wear test technique. The wear test results show that composites prepared in this study performed much better than those commercially available Cu/W composites by more than two-fold against silicon carbide abrasive disks

  13. Microhardness of resin composite materials light-cured through fiber reinforced composite.

    NARCIS (Netherlands)

    Fennis, W.M.M.; Ray, N.J.; Creugers, N.H.J.; Kreulen, C.M.

    2009-01-01

    OBJECTIVES: To compare polymerization efficiency of resin composite basing materials when light-cured through resin composite and fiber reinforced composite (FRC) by testing microhardness. METHODS: Simulated indirect restorations were prepared by application of resin composite (Clearfil AP-X) or FRC

  14. Evaluation of elevated temperature influence on mechanical properties of a commercial unrefined bagasse fiber-polypropylene composite

    Directory of Open Access Journals (Sweden)

    Foroogh Dastoorian

    2014-11-01

    Full Text Available An experimental investigation was conducted to evaluate the effect of elevated temperatures, ranging from room temperature to 80oC, on mechanical characteristics of a commercial bagasse fiber/polypropylene composite. The test results were used to determine the temperature dependencies of the mechanical properties of the studied composite material at temperatures up to 80°C in order to develop temperature adjustment factors for the use in structural applications. The results have shown that as temperature increases, the material become more ductile due to increased plastic deformation gets lower stiffness and fails at higher strains. The resulted adjustment factors were different for each loading mode and the results also have indicated that the influence of elevated temperatures on values of modulus was higher than that on strengths.

  15. Reinforcing graphene oxide/cement composite with NH2 ...

    Indian Academy of Sciences (India)

    Reinforcing graphene oxide/cement composite with NH2 functionalizing group. M EBRAHIMIZADEH ABRISHAMI1,∗ and V ZAHABI2. 1Materials and Electroceramics Laboratory, Department of Physics, Ferdowsi University of Mashhad, Mashhad. 9177948974, Iran. 2Department of Civil Engineering, Islamic Azad University, ...

  16. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  17. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M

    2003-07-15

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix.

  18. Compressive yielding of tungsten fiber reinforced bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.-Y.; Uestuendag, E.; Aydiner, C.C.; Conner, R.D.; Bourke, M.A.M.

    2003-01-01

    In-situ uniaxial compression tests were conducted on four tungsten fiber reinforced bulk metallic glass matrix composites using neutron diffraction. The results were interpreted with a finite element model. Both phases were seen to approximately obey the von Mises yield criterion. The fibers were observed to yield first and then transfer load to the matrix

  19. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  20. Fiber-reinforced Composite Resin Prosthesis to Restore Missing ...

    African Journals Online (AJOL)

    A fiber-reinforced composite inlay-onlay FPD was used for a single posterior tooth replacement in a patient refusing implant for psychological reasons. The FRC-FPD was made of pre-impregnated E-glass fibers (everStick, StickTeck, Turku, Finland) embedded in a resin matrix (Stick Resin, StickTeck, Turku, Finland).

  1. Ceramic fiber reinforced glass-ceramic matrix composite

    Science.gov (United States)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  2. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    OpenAIRE

    A.E. Ismail; M.A. Che Abdul Aziz

    2015-01-01

    This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that...

  3. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    Energy Technology Data Exchange (ETDEWEB)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  4. Styrene-butadiene-styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities.

    Science.gov (United States)

    Song, Yihu; Xu, Chunfeng; Zheng, Qiang

    2014-04-21

    We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.

  5. Mechanical properties of aluminium matrix composites reinforced with intermetallics

    International Nuclear Information System (INIS)

    Torres, B.; Garcia-Escorial, A.; Ibanez, J.; Lieblich, M.

    2001-01-01

    In this work 2124 aluminium matrix composites reinforced with Ni 3 Al, NiAl, MoSi 2 and Cr 3 Si intermetallic powder particles have been investigated. For comparison purposes, un reinforced 2124 and reinforced with SiC have also been studied. In all cases, the same powder metallurgy route was used, i. e. the 2124 alloy was obtained by rapid solidification and the intermetallic particles by self-propagating high-temperature synthesis (SHS). The matrix and the intermetallics were mechanically blended, cold compacted and finally hot extruded. Tensile tests were carried out in T1 and T4 treatments. Results indicate that mechanical properties depend strongly on the tendency to form new phases at the matrix-intermetallic interface during processing and/or further thermal treatments. The materials which present better properties are those that present less reaction between matrix and intermetallic reinforcement, i. e. MoSi 2 and SiC reinforced composites. (Author) 9 refs

  6. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... are electrical insulators, and the widespread use of the epoxy resins for many high-performance applications is constrained because of their inherent brittleness, delamination and fracture toughness limitations. There were quite a few approaches to enhance...

  7. Epoxy-based carbon nanotubes reinforced composites

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2011-04-01

    Full Text Available of the three major epoxy resin producers worldwide [May, 1987]. Epoxy resin is most commonly used as a matrix for advanced composites due to their superior thermal, mechanical and electrical properties; dimensional stability and chemical resistance. Epoxy... and modifiers to create products with an almost unlimited range and variety of performance properties [The epoxy book, 2000]. Epoxy resins are widely used as high-grade synthetic resins, for example, in the electronics, aeronautics and astronautic industries...

  8. Dimensional stability of pineapple leaf fibre reinforced phenolic composites

    Science.gov (United States)

    Asim, M.; Jawaid, M.; Abdan, K.; Ishak, M. R.

    2017-12-01

    In this research, pineapple leaves fibre (PALF)/phenolic resin (PF) composites were fabricated by hand lay-up method. The aim of this work is to investigate the physical properties (water absorption and thickness swelling) of PALF reinforced phenolic resin composites. Long-term water absorption (WA) and thickness swelling (TS) behaviours of the PALF/PF composites were investigated at several water immersion times. The effects of different fibre loading on WA and TS of PALF/PF composites were also analyzed. Obtained results indicated that the WA and TS of PALF/PF composites vary with fibres content and water immersion time before reaching to equilibrium. WA and TS of PALF/PF composites were increased by increasing fibre loading. Results obtained in this study will be used for further study on hybridization of PALF and Kenaf fibre based phenolic composites.

  9. Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature

    International Nuclear Information System (INIS)

    Díez-Pascual, Ana M.; Naffakh, Mohammed

    2013-01-01

    The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS 2 ) nanoparticles was investigated. The IF-WS 2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle–matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS 2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring's equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS 2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers. - Graphical abstract: Display Omitted - Highlights: • The thermal and mechanical behaviour of iPP/IF-WS 2 nanocomposites was studied. • Low IF-WS 2 contents provide a good balance between stiffness, strength and toughness. • Their tensile behaviour is sensitive to the strain rate and temperature. • The nanocomposites exhibit superior thermal conductivity and flame retardancy than iPP. • The benefits of using IF-WS 2 compared

  10. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  11. Basalt fiber reinforced polymer composites: Processing and properties

    Science.gov (United States)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  12. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators

    International Nuclear Information System (INIS)

    Li, Xiaofei; He, Jinlin; Wu, Dazhao; Zhang, Mingzu; Meng, Juwen; Ni, Peihong

    2015-01-01

    Graphical abstract: A composite separator based on plasma-treated fluorinated polypropylene (PP) nonwoven, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and SiO 2 nanoparticles exhibiting enhanced thermal stability, ionic conductivity and electrochemical properties. Display Omitted -- Highlights: •Fluorinated segments are introduced on the surface of PP nonwoven through plasma treatment. •The obtained composite separators exhibit better physical and electrochemical properties. •The capacity of half-cell with composite separator keeps above 150 mA h g −1 after 100 charge–discharge cycles. -- Abstract: Separators have drawn substantial attention because of their important role in achieving the safety and good electrochemical performance of lithium-ion batteries. In this study, we report a new type of composite membrane prepared by a combination of fluorinated polypropylene (PP) nonwoven fabric, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and SiO 2 nanoparticles. 2, 2, 3, 3, 4, 4, 5, 5-Octafluoropentyl methacrylate (OFPMA) is first grafted on the surface of PP nonwoven by plasma treatment to improve the nonwoven’s adhesion with PVdF-HFP. Two kinds of composite separators have been prepared by using the different PP nonwovens together with PVdF-HFP and SiO 2 nanoparticles. They were separately designated as PHS for commercially raw PP nonwoven system and PHS-n for OFPMA-modified PP nonwoven systems (n means plasma treatment time). The morphology, electrolyte uptake, ionic conductivity and electrochemical properties of the composite separators have been analyzed by scanning electron microscope (SEM) analysis, impedance measurement, charge-discharge cycle and C-rate tests, respectively. The results indicate that PHS-10 composite separator using the modified PP nonwoven treated by plasma for 10 min exhibits much better properties than PHS separator, including an improved mechanical property, thermal stability, electrolyte uptake

  13. New fillers in the synthesis of polypropylene nano composites with Ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Rosa, Jeferson L.S.; Silva, Marcelo C.V.; Marques, Maria F.V.

    2011-01-01

    In this study, Ziegler-Natta catalysts bi-supported on MgCl 2 and natural clays were prepared in order to synthesize polypropylene nanocomposites. The employed clays were bentonite, as reference, as well as halloysite, vermiculite and mica. Propylene polymerizations were carried out using those catalysts and the properties of the obtained materials were analyzed using techniques of thermogravimetric analysis X-ray diffraction, dynamic mechanical thermal analysis e scanning electronic microscopy. Results showed the production of nanocomposites with higher thermal degradation temperature. (author)

  14. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...

  15. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...

  16. Composite TiO2/hydrocarbon plasma polymer films prepared by magnetron sputtering of TiO2 and poly(propylene)

    Czech Academy of Sciences Publication Activity Database

    Drabik, M.; Hanuš, J.; Kousal, J.; Choukourov, A.; Biederman, H.; Slavínská, D.; Macková, Anna; Pešička, J.

    2007-01-01

    Roč. 4, č. 6 (2007), s. 654-663 ISSN 1612-8850 Institutional research plan: CEZ:AV0Z10480505 Keywords : composite thin films * magnetron * poly(propylene) (PP) Subject RIV: BE - Theoretical Physics Impact factor: 2.132, year: 2007

  17. Abdominal wall hernia repair with a composite ePTFE/polypropylene mesh: clinical outcome and quality of life in 152 patients

    DEFF Research Database (Denmark)

    Iversen, E; Lykke, Anna; Hensler, M

    2010-01-01

    No consensus has yet been reached regarding the optimal mesh for the repair of small ventral hernias. A composite polytetrafluoroethylene/polypropylene mesh (Ventralex(®)) is designed for this purpose, and this paper reports its use in a larger series of patients....

  18. Carbon fiber reinforcements for sheet molding composites

    Science.gov (United States)

    Ozcan, Soydan; Paulauskas, Felix L.

    2017-11-14

    A method of processing a carbon fiber tow includes the steps of providing a carbon fiber tow made of a plurality of carbon filaments, depositing a sizing composition at spaced-apart sizing sites along a length of the tow, leaving unsized interstitial regions of the tow, and cross-cutting the tow into a plurality of segments. Each segment includes at least a portion of one of the sizing sites and at least a portion of at least one of the unsized regions of the tow, the unsized region including and end portion of the segment.

  19. Fabrication and properties of carbon network reinforced composite fuel

    International Nuclear Information System (INIS)

    Umer, Malik Adeel; Mistarihi, Qusai Mahmoud; Kim, Joon Hui; Hong, Soon Hyung; Ryu, Ho Jin

    2014-01-01

    Zirconium dioxide composites reinforced with 3D glassy carbon foam was fabricated using Spark Plasma Sintering (SPS) with a heating rate of 100degC/min and a uniaxial pressure of 50 MPa at 1500degC, 1600degC, and 1700degC, respectively. The effect of carbon foam on the thermal properties of the ZrO 2 composites was investigated. In addition, the effect of the sintering temperature on the densification of the composites was also investigated and the optimized sintering temperature was identified. The microstructures of 3D carbon foam reinforced ZrO 2 composites showed that the 3D shape of carbon foam was retained after the sintering process, and the ZrO 2 was homogeneously distributed within the 3D carbon foam. At the interfaces between the 3D carbon foam and ZrO 2 , neither a chemical reaction nor a new phase formation was detected by Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). The thermal diffusivity of carbon foam reinforced ZrO 2 composites measured at 1100degC was increased by 47% and reached to 0.66 mm 2 s -1 and the thermal conductivity was increased by 50% and reached to 2.428 W/m-K. (author)

  20. Service life prediction and fibre reinforced cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis addresses the service life concept on the fibre reinforced cementitious composites. The advantages and problems of adding fibre to a cementitious matrix and the influence on service life are described. In SBI Report 221, Service life prediction and cementitious somposites......, the factors affecting the pure cementitious composite are described. Different sizes and types of fibre reinforced crmentitious composites have been chosen to illustrate different ageing and deterioration mechanisms. Some ageing mechanisms can be accelerated and others cannot which is demonstrated in a test...... programme. Moisture, micro structural and mechanical properties were measured before, during and after ageing, with the purpose of giving a detailed "picture" of the materials during ageing....

  1. Elastic properties of uniaxial-fiber reinforced composites - General features

    Science.gov (United States)

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  2. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties

    International Nuclear Information System (INIS)

    Carmisciano, Salvatore; Rosa, Igor Maria De; Sarasini, Fabrizio; Tamburrano, Alessio; Valente, Marco

    2011-01-01

    A preliminary comparative study of basalt and E-glass woven fabric reinforced composites was performed. The fabrics were characterized by the same weave pattern and the laminates tested by the same fiber volume fraction. Results of the flexural and interlaminar characterization are reported. Basalt fiber composites showed higher flexural modulus and apparent interlaminar shear strength (ILSS) in comparison with E-glass ones but also a lower flexural strength and similar electrical properties. With this fiber volume fraction, scanning electron microscopy (SEM) analysis of the fractured surfaces enabled a better understanding both of the failure modes involved and of points of concern. Nevertheless, the results of this study seem promising in view of a full exploitation of basalt fibers as reinforcement in polymer matrix composites (PMCs).

  3. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Papancea, Adina [“Transilvania” University of Brasov, Product Design Environment and Mechatronics Department, Eroilor 29 Str., 500036 Brasov (Romania); Baltes, Liana; Tierean, Mircea [“Transilvania” University of Brasov, Materials Engineering and Welding Department, Eroilor 29 Str., 500036 Brasov (Romania)

    2015-12-15

    Highlights: • Glass fibre-reinforced polyester composites surface analysis by photographic method. • The composites are submitted to accelerated ageing by UV irradiation at 254 nm. • The UV irradiation promotes differences in the surface chemistry of the composites. • MB dye is differently adsorbed on surfaces with different degradation degrees. • Good correlation between the colouring degree and surface chemistry. - Abstract: The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  4. Load sharing in tungsten fiber reinforced Kanthal composites

    International Nuclear Information System (INIS)

    Clausen, B.; Bourke, Mark A.M.; Brown, Donald W.; Ustuendag, E.

    2006-01-01

    The load sharing in three tungsten fiber reinforced Kanthal matrix composites (with fiber volume fractions of 10, 20 and 30%) have been determined using in situ neutron diffraction measurements. The expected iso-strain region was limited in the 20 and 30% composites due to thermal residual stresses. The experimental data have been used to validate the predictions of a unit-cell finite element model. The model was able to accurately predict the measured in situ loading data for all three composites using the same material properties for all calculations

  5. Load sharing in tungsten fiber reinforced Kanthal composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Los Alamos National Laboratory, LANSCE-12, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States)]. E-mail: clausen@lanl.gov; Bourke, Mark A.M. [Los Alamos National Laboratory, MST-8, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Brown, Donald W. [Los Alamos National Laboratory, MST-8, P.O. Box 1663, MS H805, Los Alamos, NM 87545 (United States); Ustuendag, E. [California Institute of Technology, Keck Laboratory, M/C 138-78, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2006-04-15

    The load sharing in three tungsten fiber reinforced Kanthal matrix composites (with fiber volume fractions of 10, 20 and 30%) have been determined using in situ neutron diffraction measurements. The expected iso-strain region was limited in the 20 and 30% composites due to thermal residual stresses. The experimental data have been used to validate the predictions of a unit-cell finite element model. The model was able to accurately predict the measured in situ loading data for all three composites using the same material properties for all calculations.

  6. Poisson's ratio of fiber-reinforced composites

    Science.gov (United States)

    Christiansson, Henrik; Helsing, Johan

    1996-05-01

    Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.

  7. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites

    International Nuclear Information System (INIS)

    Liu Mingxian; Guo Baochun; Zou Quanliang; Du Mingliang; Jia Demin

    2008-01-01

    Many types of clay tend to absorb organics via electron transferring interactions between the clay and the organics. This may be utilized to design clay incorporated polymer composites with better interfacial properties. In the present paper, 2,5-bis(2-benzoxazolyl) thiophene (BBT), capable of donating electrons, is selected as the interfacial modifier for polypropylene (PP)/halloysite nanotube (HNTs) composites. The electron transfer between HNTs and BBT are confirmed. The mechanical properties and the unique morphology of the nanocomposites are examined. Formation of fibrils of BBT in the presence of HNTs is found in the nanocomposites. The chemical composition of the fibrils in the nanocomposites is found to be composed of largely BBT and a small amount of HNTs. The formation mechanism of BBT fibrils are elucidated to be the strong interactions between BBT and HNTs under melt shearing. The formation of the BBT fibrils leads to much higher crystallinity compared with previously reported PP nanocomposites. The nanocomposites with BBT show substantially increased tensile and flexural properties, which are attributed to the enhanced crystallinity of the nanocomposites

  8. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Mingxian; Guo Baochun; Zou Quanliang; Du Mingliang; Jia Demin [Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psbcguo@scut.edu.cn

    2008-05-21

    Many types of clay tend to absorb organics via electron transferring interactions between the clay and the organics. This may be utilized to design clay incorporated polymer composites with better interfacial properties. In the present paper, 2,5-bis(2-benzoxazolyl) thiophene (BBT), capable of donating electrons, is selected as the interfacial modifier for polypropylene (PP)/halloysite nanotube (HNTs) composites. The electron transfer between HNTs and BBT are confirmed. The mechanical properties and the unique morphology of the nanocomposites are examined. Formation of fibrils of BBT in the presence of HNTs is found in the nanocomposites. The chemical composition of the fibrils in the nanocomposites is found to be composed of largely BBT and a small amount of HNTs. The formation mechanism of BBT fibrils are elucidated to be the strong interactions between BBT and HNTs under melt shearing. The formation of the BBT fibrils leads to much higher crystallinity compared with previously reported PP nanocomposites. The nanocomposites with BBT show substantially increased tensile and flexural properties, which are attributed to the enhanced crystallinity of the nanocomposites.

  9. Application of carbon fiber reinforced carbon composite to nuclear engineering

    International Nuclear Information System (INIS)

    Ishihara, Masahiro

    2003-01-01

    Carbon fiber reinforced carbon matrix composite (C/C composite) is thought to be one of promising structural materials with high temperature resistivity in the nuclear engineering field. In the high temperature gas-cooled reactors with gas outlet temperature maximum around 1000degC, high performance core internal structures, such as control rod sheath, core restraint mechanism, will be expected to achieve by the C/C composite application. Moreover, in the fusion reactors, plasma facing structures having high temperature with high neutron irradiation and particle collision will be expected to achieve by the C/C composite application. In this paper, current research and development studies of the C/C composite application on both reactors are reviewed and vista of the future on the C/C composite application is mentioned. (author)

  10. Effect of porous zeolite on temperature-dependent physical properties of polypropylene/octadecane (PP/OD composite films

    Directory of Open Access Journals (Sweden)

    D. Kim

    2018-07-01

    Full Text Available Polymeric materials with temperature-dependent gas permeabilities using a phase change material are designed and their applicability as a packaging system investigated. Polypropylene/octadecane/zeolite (PP/OD/ZL composite films were prepared via extrusion process. ZL was used as a filler to enhance the dispersion and interfacial interaction between the OD and the PP originating from different flowabilities during the extrusion process. (FTIR and (WAXD analyses showed that the incorporation of ZL increased the interfacial interaction between PP and OD, resultantly enhancing the thermal stability, mechanical properties, and the oxygen transmittance rate and mechanical properties after contact with food simulants and thermal treatment. When the temperature was elevated from 10 to 30 °C, oxygen and water vapor transmittance rate of the composite films increased sharply because of the influence of the OD content. It was surmised that temperaturedependent permeation jump caused by increasing of segmental mobility of OD phase and converting the crystalline structure to an amorphous one of OD phase in the composite films. However, the permeation jump in the composite films was weakened as the ZL content increased. These results are related to changes in the interfacial interaction and crystallinity in the composite films due to the addition of ZL.

  11. Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications

    International Nuclear Information System (INIS)

    Takahashi, Susumu; Imai, Yusuke; Kan, Akinori; Hotta, Yuji; Ogawa, Hirotaka

    2014-01-01

    Highlights: • The degree of orientation of the hBN could be controlled by the fabrication process. • The dielectric constants of composites ranged between 2.25 and 3.39. • The dielectric loss of composites was on the order of 10 −4 for all compositions. • The thermal conductivity were improved by controlling orientation of hBN. - Abstract: Dielectric composites aimed for high frequency applications were prepared by using anisotropic hexagonal boron nitride (hBN) particles as a fillers and isotactic polypropylene (iPP) as polymer matrix. Dielectric and thermal properties of the composites were studied, focusing on the filler orientation in the plate-shape specimens and filler concentration up to 40 vol%. The degree of orientation of the filler was controlled by the composite fabrication process. Hot-pressing gave relatively random orientation of the filler in the matrix, while injection molding induced a high orientation. Dielectric constant (ε r ) of the composites ranged between 2.25 and 3.39. The estimation of ε r based on the Bruggeman mixing model agreed well with the measured value. Low dielectric losses (tan δ) at microwave frequencies, on the order of 10 −4 , were obtained for all the compositions. Through-thickness thermal conductivity (k) of the hot-pressed samples showed a drastic increase with increasing the filler concentration, reaching up to 2.1 W/m K at 40 vol% of hBN. The filler concentration dependence of k was less significant for the injection molded composites. In-plane thermal expansion was almost independent on the filler orientation, while the coefficient of thermal expansion for the thickness direction of the hot-pressed sample was reduced to approximately half of the injection molded counterpart. These differences in thermal conductivity and thermal expansion are thought to arise from the difference in hBN filler orientation

  12. A study of the physical properties of carbon nanofiber reinforced polypropylene composites

    OpenAIRE

    Paleo Vieito, Antonio J.

    2013-01-01

    [Resumo]Os polímeros termoplásticos son coñecidos, en xeral, pola súa ampla empregabilidade en extrusión e moldeamento, cunha gran variedade de aplicacións tales como a embalaxe, os téxtiles e os compoñentes para a industria do automóbil. Unha tentativa de aumentar a súa aplicabilidade implica a incorporación de partículas nanométricas con propiedades eléctricas e mecánicas intrínsecas no interior da matriz termoplástica. Entre os diversos tipos de aditivos, as nanofibras de carbono, CNFs,...

  13. Characteristics of regenerated nanocellulosic fibers from cellulose dissolution in aqueous solutions for wood fiber/polypropylene composites

    Science.gov (United States)

    Sangyeob Lee; Hui Pan; Chung Y. Hse; Alfred R. Gunasekaran; Todd F. Shupe

    2014-01-01

    The effects of aqueous solutions were evaluated on the properties of regenerated cellulosic nanofibers prepared from pure cellulose fibers in various formulations of aqueous solutions. Thermoplastic composites were prepared with reinforcement of the regenerated cellulosic nanofibers. The regenerated cellulosic fibers from cellulosic woody biomass were obtained from...

  14. Fracture morphology of carbon fiber reinforced plastic composite laminates

    Directory of Open Access Journals (Sweden)

    Vinod Srinivasa

    2010-09-01

    Full Text Available Carbon fiber reinforced plastic (CFRP composites have been extensively used in fabrication of primary structures for aerospace, automobile and other engineering applications. With continuous and widespread use of these composites in several advanced technology, the frequency of failures is likely to increase. Therefore, to establish the reasons for failures, the fracture modes should be understood thoroughly and unambiguously. In this paper, CFRP composite have been tested in tension, compression and flexural loadings; and microscopic study with the aid of Scanning Electron Microscope (SEM has been performed on failed (fractured composite surfaces to identify the principle features of failure. Efforts have been made in correlating the fracture surface characteristics to the failure mode. The micro-mechanics analysis of failure serves as a useful guide in selecting constituent materials and designing composites from the failure behavior point of view. Also, the local failure initiation results obtained here has been reliably extended to global failure prediction.

  15. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    Science.gov (United States)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  16. Dielectric studies of Graphene and Glass Fiber reinforced composites

    Science.gov (United States)

    Praveen, D.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres are one of the key materials used currently due to their unique chemical and mechanical properties. Lately graphene has attracted many researchers across academic fraternity as it can yield better properties with lesser reinforcement percentages. The current research emphasizes on the development of graphene-based nanocomposites and its investigation on dielectric applications. The composites were fabricated by adding graphene reinforcements from 1%-3% by weight using conventional Hand-lay process. A thorough investigation was carried out to determine the dielectric behaviour of the nano-composites using impedance analyser according to ASTM standards. The dielectric measurements were carried out in the temperature range of 300K to 400K in a step of 20K. The current research proposes the material for application in capacitor industry as the sample of 2.5% weight fraction showed highest value of K with 14 at 26.1 Hz and 403K.

  17. Load transfer in short fibre reinforced metal matrix composites

    International Nuclear Information System (INIS)

    Garces, Gerardo; Bruno, Giovanni; Wanner, Alexander

    2007-01-01

    The internal load transfer and the deformation behaviour of aluminium-matrix composites reinforced with 2D-random alumina (Saffil) short fibres was studied for different loading modes. The evolution of stress in the metallic matrix was measured by neutron diffraction during in situ uniaxial deformation tests. Tensile and compressive tests were performed with loading axis parallel or perpendicular to the 2D-reinforcement plane. The fibre stresses were computed based on force equilibrium considerations. The results are discussed in light of a model recently established by the co-authors for composites with visco-plastic matrix behaviour and extended to the case of plastic deformation in the present study. Based on that model, the evolution of internal stresses and the macroscopic stress-strain were simulated. Comparison between the experimental and computational results shows a qualitative agreement in all relevant aspects

  18. Development of Antibacterial Composite Films Based on Isotactic Polypropylene and Coated ZnO Particles for Active Food Packaging

    Directory of Open Access Journals (Sweden)

    Clara Silvestre

    2016-01-01

    Full Text Available This study was aimed at developing new films based on isotactic polypropylene (iPP for food packaging applications using zinc oxide (ZnO with submicron dimension particles obtained by spray pyrolysis. To improve compatibility with iPP, the ZnO particles were coated with stearic acid (ZnOc. Composites based on iPP with 2 wt % and 5 wt % of ZnOc were prepared in a twin-screw extruder and then filmed by a calender. The effect of ZnOc on the properties of iPP were assessed and compared with those obtained in previous study on iPP/ZnO and iPP/iPPgMA/ZnO. For all composites, a homogeneous distribution and dispersion of ZnOc was obtained indicating that the coating with stearic acid of the ZnO particles reduces the surface polarity mismatch between iPP and ZnO. The iPP/ZnOc composite films have relevant zinc oxide with respect to E. coli, higher thermal stability and improved mechanical and impact properties than the pure polymer and the composites iPP/ZnO and iPP/iPPgMA/ZnO. This study demonstrated that iPP/ZnOc films are suitable materials for potential application in the active packaging field.

  19. A Combined Self-Consistent Method to Estimate the Effective Properties of Polypropylene/Calcium Carbonate Composites

    Directory of Open Access Journals (Sweden)

    Zhongqiang Xiong

    2018-01-01

    Full Text Available In this work, trying to avoid difficulty of application due to the irregular filler shapes in experiments, self-consistent and differential self-consistent methods were combined to obtain a decoupled equation. The combined method suggests a tenor γ independent of filler-contents being an important connection between high and low filler-contents. On one hand, the constant parameter can be calculated by Eshelby’s inclusion theory or the Mori–Tanaka method to predict effective properties of composites coinciding with its hypothesis. On the other hand, the parameter can be calculated with several experimental results to estimate the effective properties of prepared composites of other different contents. In addition, an evaluation index σ f ′ of the interactional strength between matrix and fillers is proposed based on experiments. In experiments, a hyper-dispersant was synthesized to prepare polypropylene/calcium carbonate (PP/CaCO3 composites up to 70 wt % of filler-content with dispersion, whose dosage was only 5 wt % of the CaCO3 contents. Based on several verifications, it is hoped that the combined self-consistent method is valid for other two-phase composites in experiments with the same application progress as in this work.

  20. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    International Nuclear Information System (INIS)

    Li, J.

    2009-01-01

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  1. Numerical investigation of porous materials composites reinforced with natural fibers

    Science.gov (United States)

    Chikhi, M.; Metidji, N.; Mokhtari, F.; Merzouk, N. k.

    2018-05-01

    The present article tends to predict the effective thermal properties of porous biocomposites materials. The composites matrix consists on porous materials namely gypsum and the reinforcement is a natural fiber as date palm fibers. The numerical study is done using Comsol software resolving the heat transfer equation. The results are fitted with theoretical model and experimental results. The results of this study indicate that the porosity has an effect on the Effective thermal conductivity biocompoites.

  2. Silver matrix composites reinforced with galvanically silvered particles

    OpenAIRE

    J. Śleziona; J. Wieczorek,

    2007-01-01

    Purpose: The paper presents the possibility of the application of metalic layers drifted with the use of the galvanic methods on the ceramic particles surface. The application of the layers was aimed at obtaining the rewetting of the reinforcing particles with the liquid silver in the course of the producing of silver matrix composites with the use of mechanical stirring method. To enable introducing of the iron powder and glass carbon powder to liquid silver the solution of covering the powd...

  3. Elastic constants and internal friction of fiber-reinforced composites

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1982-01-01

    We review recent experimental studies at NBS on the anisotropic elastic constants and internal friction of fiber-reinforced composites. Materials that were studied include: boron-aluminum, boron-epoxy, graphite-epoxy, glass-epoxy, and aramid-epoxy. In all cases, elastic-constant direction dependence could be described by relationships developed for single crystals of homogeneous materials. Elastic stiffness and internal friction were found to vary inversely

  4. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  5. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  6. Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Ivo; Chlup, Zdeněk

    2005-01-01

    Roč. 290, - (2005), s. 167-174 ISSN 1013-9826. [Fractography of Advanced Ceramic s /2./. Stará Lesná, 03.10.2004-06.10.2004] R&D Projects: GA AV ČR(CZ) IAA2041003; GA ČR(CZ) GA101/02/0683 Keywords : fibre-reinforced ceramic s * glass matrix composites * chevron notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.224, year: 2005

  7. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    Science.gov (United States)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  8. Experimental study on mix proportion of fiber reinforced cementitious composites

    Science.gov (United States)

    Jia, Yi; Zhao, Renda; Liao, Ping; Li, Fuhai; Yuan, Yuan; Zhou, Shuang

    2017-10-01

    To study the mechanical property of fiber reinforced cementations composites influenced by the fiber length, quartz sand diameter, matrix of water cement ratio, volume fraction of fiber and magnesium acrylate solution. Several 40×40×160 mm standard test specimens, "8" specimens and long "8" specimens and 21 groups of fiber concrete specimens were fabricated. The flexural, compressive and uniaxial tensile strength were tested by using the bending resistance, compression resistance and electronic universal testing machine. The results show that flexural and compressive strength of fiber reinforced cementations composites increases along with the increase of quartz sand diameter, with the growth of the PVA fiber length increases; When the water-binder ratio is 0.25 and powder-binder ratio is 0.3, the PVA fiber content is 1.5% of the mass of cementations materials, there is a phenomenon of strain hardening; The addition of magnesium acrylate solution reduces the tensile strength of PVA fiber reinforced cementations composites, the tensile strength of the specimens in the curing age of 7d is decreased by about 21% and the specimens in curing age of 28d is decreased by more than 50%.

  9. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  10. Energy Absorption Capacity in Natural Fiber Reinforcement Composites Structures

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2018-03-01

    Full Text Available The study of natural fiber reinforcement composite structures has focused the attention of the automobile industry due to the new regulation in relation to the recyclability and the reusability of the materials preserving and/or improving the mechanical characteristics. The influence of different parameters on the material behavior of natural fiber reinforced plastic structures has been investigated, showing the potential for transport application in energy absorbing structures. Two different woven fabrics (twill and hopsack made of flax fibers as well as a non-woven mat made of a mixture of hemp and kenaf fibers were employed as reinforcing materials. These reinforcing textiles were impregnated with both HD-PE (high-density polyethylen and PLA (polylactic acid matrix, using a continuous compression molding press. The impregnated semi-finished laminates (so-called organic sheets were thermoformed in a second step to half-tubes that were assembled through vibration-welding process to cylindric crash absorbers. The specimens were loaded by compression to determine the specific energy absorption capacity. Quasi-static test results were compared to dynamic test data obtained on a catapult arrangement. The differences on the specific energies absorption (SEA as a function of different parameters, such as the wall thickness, the weave material type, the reinforced textiles, and the matrix used, depending on the velocity rate application were quantified. In the case of quasi-static analysis it is observed a 20% increment in the SEA value when wove Hopsack fabric reinforcement is employed. No velocity rate influence from the material was observed on the SEA evaluation at higher speeds used to perform the experiments. The influence of the weave configuration (Hopsack seems to be more stable against buckling effects at low loading rates with 10% higher SEA values. An increase of SEA level of up to 72% for PLA matrix was observed when compared with HD

  11. Reinforcement Learning Based Web Service Compositions for Mobile Business

    Science.gov (United States)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  12. Process monitoring of fibre reinforced composites using optical fibre sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, G.F.; Degamber, B.

    2006-04-15

    The deployment of optical fibre based sensor systems for process monitoring of advanced fibre reinforced organic matrix composites is reviewed. The focus is on thermosetting resins and the various optical and spectroscopy-based techniques that can be used to monitor the processing of these materials. Following brief consideration of the manufacturing methods commonly used in the production of thermoset based composites, a discussion is presented on sensor systems that can be used to facilitate real-time chemical process monitoring. Although the focus is on thermosets, the techniques described can be adapted for chemical monitoring of organic species in general. (author)

  13. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  14. MECHANICAL CHARACTERIZATION AND ANALYSIS OF RANDOMLY DISTRIBUTED SHORT BANANA FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    R. K. Misra

    2014-03-01

    Full Text Available Short banana fiber reinforced composites have been prepared in laboratory to determine mechanical properties. It has been observed that as soon as the percentage of the banana fiber increases slightly there is a tremendous increase in ultimate tensile strength, % of strain and young modulus of elasticity. Reinforcement of banana fibers in epoxy resin increases stiffness and decreases damping properties of the composites. Therefore, 2.468% banana fiber reinforced composite plate stabilizes early as compared to 7.7135 % banana fiber reinforced composite plate but less stiff as compared to 7.7135 % banana fiber reinforced composite plate

  15. Fiber reinforced silicon-containing arylacetylene resin composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available A silicon-containing arylacetylene resin (SAR, a poly(dimethylsilyleneethynylene phenyleneethynylene (PMSEPE, was synthesized. The PMSEPE is a solid resin at ambient temperature with a softening temperature about 60°C and soluble in some solvents like tetrahydrofuran. The melt viscosity of the PMSEPE resin is less than 1 Pa•s. The resin could cure at the temperature of lower than 200°C. Fiber reinforced PMSEPE composites were prepared from prepregs which were made by the impregnation of fibers in PMSEPE resin solution. The composites exhibit good mechanical properties at room temperature and 250°C. The observation on fracture surfaces of the composites reinforced by glass fibers and carbon fibers demonstrates that the adhesion between the fibers and resin is good. The results from an oxyacetylene flame test show that the composites have good ablation performance and XRD analyses indicate that SiC forms in the residues during the ablation of the composites.

  16. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Hu, Huanhuan; Asif, Muhammad; Hussain, Shahid; She, Jia

    2015-01-01

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area

  17. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Hu, Huanhuan [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Hussain, Shahid [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); She, Jia [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2015-04-10

    The aim of this study is to fabricate magnesium reinforced metal matrix composites using graphene nanoplatelets (GNPs) via powder metallurgy processing in order to enhance room temperature mechanical properties. The microstructural evaluation and mechanical behaviors of composite powders and extruded bulk materials were examined by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer and mechanical tests. The uniform dispersion and large specific surface area per volume of GNPs embedded in magnesium matrix led to increament in microhardness, tensile strength and fracture strains of the composites. For example, when employing the pure magnesium reinforced with 0.30 wt% GNPs, the increase of Young's modulus, yield strength, and failure strain of extruded nanocomposite was +131%, +49.5% and +74.2% respectively, compared to those of extruded materials with no GNPs additive. Additionally, mechanical properties of synthesized composites were compared with previously reported Mg–CNTs composites. It was found that GNPs outperform CNTs due their high specific surface area.

  18. Effects of electron beam radiation dose on the compatibilization behaviour in recycled polypropylene/microcrystalline cellulose composites

    Science.gov (United States)

    Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.

    2018-01-01

    The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.

  19. Ballistic Performance of Mallow and Jute Natural Fabrics Reinforced Epoxy Composites in Multilayered Armor

    OpenAIRE

    Nascimento, Lucio Fabio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Marçal, Rubens Lincoln Santana Blazutti; Lima Júnior, Édio Pereira; Margem, Jean Igor

    2017-01-01

    Natural fiber reinforced polymer composites have recently been investigated as a component of multilayered armor system (MAS). These composites were found to present advantages when replacing conventional high strength synthetic aramid fabric laminate composite (KevlarTM, with same thickness, as MAS second layer. Continuous and loose natural fibers were up to now mostly used to reinforce these ballistic composites. Only two natural fabrics reinforced polymer composite were so far used with sa...

  20. Fabrication and properties of graphene reinforced silicon nitride composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaping; Li, Bin, E-mail: libin@nudt.edu.cn; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-09-17

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si{sub 3}N{sub 4} ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si{sub 3}N{sub 4} ceramic matrix. β-Si{sub 3}N{sub 4,} O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si{sub 3}N{sub 4}, Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods.

  1. Fabrication and properties of graphene reinforced silicon nitride composite materials

    International Nuclear Information System (INIS)

    Yang, Yaping; Li, Bin; Zhang, Changrui; Wang, Siqing; Liu, Kun; Yang, Bei

    2015-01-01

    Silicon nitride (Si 3 N 4 ) ceramic composites reinforced with graphene platelets (GPLs) were prepared by hot pressed sintering and pressureless sintering respectively. Adequate intermixing of the GPLs and the ceramic powders was achieved in nmethyl-pyrrolidone (NMP) under ultrasonic vibration followed by ball-milling. The microstructure and phases of the Si 3 N 4 ceramic composites were investigated by Field Emission Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The effects of GPLs on the composites' mechanical properties were analyzed. The results showed that GPLs were well dispersed in the Si 3 N 4 ceramic matrix. β-Si 3 N 4, O′-sialon and GPLs were present in the hot-pressed composites while pressureless sintered composites contain β-Si 3 N 4 , Si, SiC and GPLs. Graphene has the potential to improve the mechanical properties of both the hot pressed and pressureless sintered composites. Toughening effect of GPLs on the pressureless sintered composites appeared more effective than that on the hot pressed composites. Toughening mechanisms, such as pull-out, crack bridging and crack deflection induced by GPLs were observed in the composites prepared by the two methods

  2. Chairside fabricated fiber-reinforced composite fixed partial denture

    Directory of Open Access Journals (Sweden)

    Sufyan Garoushi

    2007-01-01

    Full Text Available The advances in the materials and techniques for adhesive dentistry have allowed the development of non-invasive or minimally invasive approaches for replacing a missing tooth in those clinical situations when conservation of adjacent teeth is needed. Good mechanical and cosmetic/aesthetic properties of fiber-reinforced composite (FRC, with good bonding properties with composite resin cement and veneering composite are needed in FRC devices. Some recent studies have shown that adhesives of composite resins and luting cements allow diffusion of the adhesives to the FRC framework of the bridges. By this so-called interdiffusion bonding is formed [1]. FRC bridges can be made in dental laboratories or chairside. This article describes a clinical case of chairside (directly made FRC Bridge, which was used according to the principles of minimal invasive approach. Treatment was performed by Professor Vallittu from the University of Turku, Finland.

  3. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...... in the numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. It is demonstrated that fibers with constant strength ensure higher......Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used...

  4. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    Science.gov (United States)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  5. Electron processing of fibre-reinforced advanced composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko

    1996-01-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author)

  6. Electron processing of fibre-reinforced advanced composites

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Saunders, C.B.; Barnard, J.W.; Lopata, V.J.; Kremers, W.; McDougall, T.E.; Chung, M.; Tateishi, Miyoko [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres and up to 15 cm thick. Our work has been done principally with the AECL`s 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties. (Author).

  7. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  8. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    Science.gov (United States)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  9. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebenyi, G.; Romhany, G.; Czvikovszky, T.; Vajna, B.

    2011-01-01

    Complete text of publication follows. A small amount - less than 0.5% - carbon nanotube reinforcement may improve significantly the mechanical properties of epoxy based composite materials. The basic technical problem is on one side the dispersion of the nanotubes into the viscous matrix resin. Namely the fine, powder-like - less than 100 nanometer diameter - nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, - which is determining the success of the reinforcement, - requires some efficient adhesion promoting treatment. After an elaborate masterbatch mixing technology we applied Electron Beam treatment of epoxy-matrix polymer composites containing carbon nanotubes in presence of vinylester resins. The Raman spectra of vinylester-epoxy mixtures treated by an 8 MeV EB showed the advantage of the electron treatment. Even in the case of partially immiscible epoxy and vinylester resins, the anchorage of carbon nanotubes reflects improvement if a reasonable 25 kGy EB dose is applied. Atomic Force Microscopy as well as mechanical tests on flexural and impact properties confirm the benefits of EB treatment. Simultaneous application of multiwall carbon nanotubes and 'conventional' carbon fibers as reinforcement in vinylester modified epoxies results in new types of hybrid nanocomposites as engineering materials. The bending- and interlaminar properties of such hybrid systems showed the beneficial effect of the EB treatment. Acknowledgement: This work has been supported by the New Hungary Development Plan (Project ID: TAMOP-4.2.1/B-09/1/KMR-2010-0002).

  10. Effect of water absorption on mechanical properties of flax fibre reinforced composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2007-01-01

    Full Text Available Scutched and line flax fibres, with mean linear density of about 19.5 decitex, were utilized for this study. Mechanical properties of fibre and resin were measured for assessing their contribution in the composite matrix. Polypropylene (PP)/ short...

  11. Dynamic and Capillary Shear Rheology of Natural Fiber-Reinforced Composites

    NARCIS (Netherlands)

    Moigne, Le N.; Oever, van den M.J.A.; Budtova, T.

    2013-01-01

    An extended dynamic and capillary rheological study of molten flax and sisal polypropylene (PP) composites was performed. Fiber concentration varied from 20 to 50 wt% and shear rate from 0.1 rad s−1 to 10,000 s#142;−1. Maleic anhydride-grafted-PP was used as compatibilizer; it strongly reduces PP

  12. New Polylactic Acid Composites Reinforced with Artichoke Fibers

    Directory of Open Access Journals (Sweden)

    Luigi Botta

    2015-11-01

    Full Text Available In this work, artichoke fibers were used for the first time to prepare poly(lactic acid (PLA-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w were prepared by the film-stacking method: the first one (UNID reinforced with unidirectional long artichoke fibers, the second one (RANDOM reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM. Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%. Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.

  13. A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres

    NARCIS (Netherlands)

    Moigne, Le N.; Oever, van den M.J.A.; Budtova, T.

    2011-01-01

    Using high resolution optical microscopy coupled with image analysis software and statistical methods, fibre length and aspect ratio distributions in polypropylene composites were characterized. Three types of fibres, flax, sisal and wheat straw, were studied. Number and surface weighted

  14. FINELY DISPERSED COMPOSITE BINDER FOR REINFORCING SOILS BY INJECTION METHOD

    Directory of Open Access Journals (Sweden)

    Kharchenko Igor Yakovlevich

    2017-11-01

    Full Text Available Subject: we consider the problem of supplying the construction industry, in particular underground construction, with mineral binder for diluted aqueous suspensions that meet the requirements for reinforcement of low-strength sand and clastic soils by injections into the reinforced soil mass. Research objectives: substantiating possibility of using amorphous biosilica in combination with carbide sludge, whose particles size does not exceed 10 mm on average, as a binder for aqueous suspensions being injected. Materials and methods: as raw materials we used: common construction hydrated lime from “Stroimaterialy” JSC, Belgorod, hydrated lime in the form of carbide sludge from the dumps of Protvino plant (carbide sludge, hereafter, active mineral admixture biosilica from the group of companies “DIAMIX” and a plasticizer Sika viscocrete 5 new. Test methods are in accordance with applicable standards. To obtain samples of impregnated soils, a specially developed technique was used in the form of a unidirectional model. Results: properties of the composite binder prepared with different compositions are presented. The optimal component ratios are determined. The following properties of aqueous suspensions are studied: conditional viscosity, sedimentation and penetrating ability. Conditional viscosity is no more than 40 sec on average. Sedimentation does not exceed 1.2 %. Soil-concrete obtained by injection of a dilute aqueous suspension based on this composite binder has a compressive strength in the range from 4.44 to 12.5 MPa. Conclusions: utilization of finely dispersed composite mineral binder, which is based on interaction of amorphous silica with calcium hydroxide, as a binder for high penetration aqueous suspensions has been substantiated. This binder is not inferior to foreign analogues in terms of its strength and technological parameters and can be used for reinforcement of loose and low-strength soils. In case of using carbide

  15. Corrosion and tribological properties of basalt fiber reinforced composite materials

    Science.gov (United States)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  16. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  17. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  18. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  19. Core reilforced braided composite armour as a substitute to steel in concrete reinforcement

    OpenAIRE

    Fangueiro, Raúl; Sousa, Guilherme José Miranda de; Araújo, Mário Duarte de; Pereira, C. Gonilho; Jalali, Said

    2006-01-01

    This paper presents the work that is being done at the University of Minho concerning the development of brainded rods concrete reinforcement. Several samples of core reinforced braided fabrics have been produced varying the type of braided fabric (core reinforced and hybrid), the linear density of the core reinforcing yarns and the type of braiding structure (with or without ribs). The tensile properties of braided fabrics has also been analysed. Core reinforced braided composites rods were ...

  20. HYGROSCOPICITY OF WOOD PLASTIC COMPOSITES MADE WITH PADOU FLOUR AND POLYPROPYLENE PELLETS

    OpenAIRE

    Moise Emmanuel NZUDJOM SOUOP; Joseph Albert MUKAM FOTSING

    2012-01-01

    The manufacture of objects in wood-plastic composites which is a material already available in many developed countries seems almost unknown in Cameroon since the production factory of objects in wood-plastic composites does not exist up till here. Interested in the study of properties of wood-plastic composites throughconnection of simple plastic and wood, we have oriented our paper in the elaboration, realization and physical characterization of wood-plastic composites with Padou and polypr...

  1. EB treatment of carbon nanotube-reinforced polymer composites

    International Nuclear Information System (INIS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-01-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  2. Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min-Woo; Kim, Hyung-Il; Song, Sung-Hyuk; Ahn, Sung-Hoon [Seoul Nat’l Univ., Seoul (Korea, Republic of)

    2017-02-15

    Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

  3. Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mahjoub, Reza; Yatim, Jamaludin Mohamad; Mohd Sam, Abdul Rahman; Raftari, Mehdi

    2014-01-01

    Highlights: • To show the potential of continuous kenaf fiber to use in bio-composite. • To introduce new method of hand lay-up for fabricating bio-fiber composite. • To characterize the properties of kenaf fiber epoxy composite. • Morphology of the fracture area by using of SEM. • To use analytical method to predict the bio-composite properties. - Abstract: Kenaf fibers generally has some advantages such as eco-friendly, biodegradability, renewable nature and lighter than synthetic fibers. The aims of the study are to characterize and evaluate the physical and mechanical properties of continuous unidirectional kenaf fiber epoxy composites with various fiber volume fractions. The composites materials and sampling were prepared in the laboratory by using the hand lay-up method with a proper fabricating procedure and quality control. Samples were prepared based on ASTM: D3039-08 for tensile test and the scanning electron microscopy (SEM) was employed for microstructure analysis to observe the failure mechanisms in the fracture planes. A total of 40 samples were tested for the study. Results from the study showed that the rule of mixture (ROM) analytical model has a close agreement to predict the physical and tensile properties of unidirectional kenaf fiber reinforced epoxy composites. It was also observed that the tensile strength, tensile modulus, ultimate strain and Poisson’s ratio of 40% fiber volume content of unidirectional kenaf fiber epoxy composite were 164 MPa, 18150 MPa, 0.9% and 0.32, respectively. Due to the test results, increasing the fiber volume fraction in the composite caused the increment in the tensile modulus and reduction in the ultimate tensile strain of composite

  4. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  5. Chitosan composite hydrogels reinforced with natural clay nanotubes.

    Science.gov (United States)

    Huang, Biao; Liu, Mingxian; Zhou, Changren

    2017-11-01

    Here, chitosan composites hydrogels were prepared by addition of halloysite nanotubes (HNTs) in the chitosan KOH/LiOH/urea solution. The raw chitosan and chitosan/HNTs composite hydrogels were obtained by heat treatment at 60°C for 8h and then regeneration in ethanol solution. The viscosity of the composite solution is increased with HNTs content. The Fourier transform infrared spectroscopy (FT-IR) shows that the hydrogen bonds interactions exist between the HNTs and the chitosan. X-ray diffraction (XRD) results show that the crystal structure of HNT is not changed in the composite hydrogels. The compressive property test and storage modulus determination show that the mechanical properties and anti-deformation ability of the composite hydrogel significantly increase owing to the reinforcing effect of HNTs. The composites hydrogel with 66.7% HNTs can undergo 7 times compression cycles without breaking with compressive strength of 0.71MPa at 70% deformation, while pure chitosan hydrogel is broken after bearing 5 compression cycles with compressive strength of 0.14MPa and a maximum deformation of 59%. A porous structure with pore size of 100-500μm is found in the composite hydrogels by scanning electron microscopy (SEM), and the pore size and the swelling ratio in NaCl solution decrease by the addition of HNTs and the immersing of ethanol. Chitosan/HNTs composite hydrogels show low cytotoxicity towards MC3T3-E1 cells. Also, the composite hydrogels show a maximum drug entrapment efficiency of 45.7% for doxorubicin (DOX) which is much higher than that of pure chitosan hydrogel (27.5%). All the results illustrate that the chitosan/HNTs composite hydrogels show promising applications as biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films

    OpenAIRE

    Velichkova, Hristiana; Petrova, Ivanka; Kotsilkov, Stanislav; Ivanov, Evgeni; Vitanov, Nikolay K.; Kotsilkova, Rumiana

    2017-01-01

    The study compared the effects of swelling and dissolution of a matrix polymer by food simulants on the release of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) from poly(lactic) acid (PLA) and polypropylene (PP) composite films. The total migration was determined gravimetrically in the ethanol and acetic acid food simulants at different time and temperature conditions, while migrants were detected by laser diffraction analysis and transmission electron microscopy. Swelli...

  7. The method of polymer compositions manufacturing on the base of polypropylene[Radiation processing]; Sposob wytwarzania kompozycji polimerow na bazie polipropylenu

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z; Bulhak, Z; Bojarski, J; Stachowicz, W [Warsaw (Poland); Mirkowski, K [Legionowo (Poland)

    1966-06-28

    The method of manufacturing of radiation resistant polymer composition of medical quality have been proposed. The raw material consisted of polypropylene homopolymer with propylene-ethylene copolymer, ethylene-vinyl acetate copolymer and polystyrene suspension have been mixed and extruded during heating at 190-270{sup o}C. Then obtained mixture have been granulated. The material structure with microagglomerates is responsible for elevated radiation resistance of material being destinated for medical devices production and radiosterilization.

  8. An Investigation of Interfacial Fatigue in Fiber Reinforced Composites

    Science.gov (United States)

    Yanhua, Chen; Zhifei, Shi

    2005-09-01

    Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.

  9. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  10. Nanomodified compositions based on finely dispersed binders for soil reinforcement

    Directory of Open Access Journals (Sweden)

    Alimov Lev

    2017-01-01

    Full Text Available Theoretical prerequisites on the possibility of improvement of physical and mechanical properties of soils at underground space development, their stability at different aggressive actions by means of their structure impregnation with nanomodified suspensions on the basis of especially finely dispersed mineral binders are developed. The features of influence of plasticizers on penetration ability and sedimentation stability of suspensions are revealed. Soil body reinforcement after its impregnation may achieve considerable values, which is related to the features of interaction of components of impregnating composition with extended surface of soil pore space.

  11. Novel bio-composite of hydroxyapatite reinforced polyamide and polyethylene: Composition and properties

    International Nuclear Information System (INIS)

    Zuo Yi; Li Yubao; Li Jidong; Zhang Xiang; Liao Hongbing; Wang Yuanyuan; Yang Weihu

    2007-01-01

    A new bio-composite of hydroxyapatite reinforced polyamide 66 and high density polyethylene was prepared using melt mixing in a co-rotation twin screw extruder. Two series of composites with different composition were investigated using scanning electronic microscopy, mechanical testing, water absorption and infrared spectrometer. The results showed that the change of composition influenced significantly the properties of the composites by different mechanism. Polyethylene mixing with polyamide matrix induced different microstructure and adjusted water absorption and manufacturability. Hydrogen bonding between hydroxyapatite and the polar groups of polyamide improved the adhesion of interface

  12. Wear Characterization of Aluminium/Basalt Fiber Reinforced Metal Matrix Composites - A Novel Material

    Directory of Open Access Journals (Sweden)

    P. Amuthakkannan

    2017-06-01

    Full Text Available Aluminum alloy based metal matrix composite participate have a wider applications in wear resistance applications. Attempt made in current study is that, basalt fiber reinforced aluminum metal matrix composite have been prepared using stir casting method. Different weight percentage of basalt fiber reinforced with Al (6061 metal matrix composites are used to study the wear resistance of the composites. For wear study, percentage of reinforcement, normal load and sliding velocity are the considered as important parameters. To study the effect of basalt fiber reinforcement on the dry sliding wear of Al6061 alloy composites the Pin On wear tester is used. Initially hardness of the composites was tested, it was found that increasing reinforcement in the composite hardness value of the composites also increased. Based on the Grey relation analysis (GRA the effects of wear resistance of the composites were studied.

  13. Mechanical interaction of Engineered Cementitious Composite (ECC) reinforced with Fiber Reinforced Polymer (FRP) rebar in tensile loading

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2010-01-01

    This paper introduces a preliminary study of the composite interaction of Engineered Cementitious Composite (ECC), reinforced with Glass Fiber Reinforced Polymer (GFRP) rebar. The main topic of this paper will focus on the interaction of the two materials (ECC and GFRP) during axial loading......, particularly in post cracking phase of the concrete matrix. The experimental program carried out in this study examined composite behavior under monotonic and cyclic loading of the specimens in the elastic and inelastic deformation phases. The stiffness development of the composite during loading was evaluated...

  14. Highest recorded electrical conductivity and microstructure in polypropylene-carbon nanotubes composites and the effect of carbon nanofibers addition

    Science.gov (United States)

    Ramírez-Herrera, C. A.; Pérez-González, J.; Solorza-Feria, O.; Romero-Partida, N.; Flores-Vela, A.; Cabañas-Moreno, J. G.

    2018-04-01

    In the last decade, numerous investigations have been devoted to the preparation of polypropylene-multiwalled carbon nanotubes (PP/MWCNT) nanocomposites having enhanced properties, and in particular, high electrical conductivities (> 1 S cm-1). The present work establishes that the highest electrical conductivity in PP/MWCNT nanocomposites is limited by the amount of nanofiller content which can be incorporated in the polymer matrix, namely, about 20 wt%. This concentration of MWCNT in PP leads to a maximum electrical conductivity slightly lower than 8 S cm-1, but only by assuring an adequate combination of dispersion and spatial distribution of the carbon nanotubes. The realization of such an optimal microstructure depends on the characteristics of the production process of the PP/MWCNT nanocomposites; in our experiments, involving composite fabrication by melt mixing and hot pressing, a second re-processing cycle is shown to increase the electrical conductivity values by up to two orders of magnitude, depending on the MWCNT content of the nanocomposite. A modest increase of the highest electrical conductivity obtained in nanocomposites with 21.5 wt% MWCNT content has been produced by the combined use of carbon nanofibers (CNF) and MWCNT, so that the total nanofiller content was increased to 30 wt% in the nanocomposite with PP—15 wt% MWCNT—15 wt%CNF.

  15. STRUCTURAL EVOLUTION AND COMPOSITION CHANGE IN THE SURFACE REGION OF POLYPROPYLENE/CLAY NANOCOMPOSITES ANNEALED AT HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Zhe Wang; Rong-jun Song; Xiao-hua Du; Xiao-yu Meng; Zhi-wei Jiang; Tao Tang

    2009-01-01

    A model experiment was done to clear the formation mechanism of protective layers during combustion of polypropylene (PP)/organically modified montmorillonite (OMMT) nanocomposites. The investigation was focused on the effects of annealing temperature on the structural changes and protective layer formation. The decomposition of OMMT and degradation of PP/OMMT nanocomposites were characterized by means of thermogravimetric analysis (TGA). The structural evolution and composition change in the surface region of PP/OMMT nanocomposites during heating were monitored by means of X-ray photoelectron spectroscopy (XPS), ATR-FTIR and field emission scanning electron microscopy (FESEM). The results showed that the formation of the carbonaceous silicate barrier in the surface region of PP/OMMT nanocomposites resulted from the following three processes: (1) The formation of strong acid sites on the MMT sheets, which could promote the degradation of PP and the carbonization of its degradation products; (2) The gases and gas bubbles formed by decomposition of the surfactant and degradation of PP, which pushed the molten sample to the surface; (3) The degradation of PP and the carbonization of the degradation products, which led to accumulation of MMT sheets tightly linked by the char in the surface region.

  16. Tribological wear behavior of diamond reinforced composite coating

    International Nuclear Information System (INIS)

    Venkateswarlu, K.; Ray, Ajoy Kumar; Gunjan, Manoj Kumar; Mondal, D.P.; Pathak, L.C.

    2006-01-01

    In the present study, diamond reinforced composite (DRC) coating has been applied on mild steel substrate using thermal spray coating technique. The composite powder consists of diamond, tungsten carbide, and bronze, which was mixed in a ball mill prior deposition by thermal spray. The microstructure and the distribution of diamond and tungsten carbide particle in the bronze matrix were studied. The DRC-coated mild steel substrates were assessed in terms of their high stress abrasive wear and compared with that of uncoated mild steel substrates. It was observed that when sliding against steel, the DRC-coated sample initially gains weight, but then loses the transferred counter surface material. In case of abrasive wear, the wear rate was greatly reduced due to the coating; wherein the wear rate decreased with increase in diamond content

  17. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  18. Tensile strength of woven yarn kenaf fiber reinforced polyester composites

    Directory of Open Access Journals (Sweden)

    A.E. Ismail

    2015-12-01

    Full Text Available This paper presents the tensile strength of woven kenaf fiber reinforced polyester composites. The as-received yarn kenaf fiber is weaved and then aligned into specific fiber orientations before it is hardened with polyester resin. The composite plates are shaped according to the standard geometry and uni-axially loaded in order to investigate the tensile responses. Two important parameters are studied such as fiber orientations and number of layers. According to the results, it is shown that fiber orientations greatly affected the ultimate tensile strength but it is not for modulus of elasticity for both types of layers. It is estimated that the reductions of both ultimate tensile strength and Young’s modulus are in the range of 27.7-30.9% and 2.4-3.7% respectively, if the inclined fibers are used with respect to the principal axis.

  19. Self Healing Fibre-reinforced Polymer Composites: an Overview

    Science.gov (United States)

    Bond, Ian P.; Trask, Richard S.; Williams, Hugo R.; Williams, Gareth J.

    Lightweight, high-strength, high-stiffness fibre-reinforced polymer composite materials are leading contenders as component materials to improve the efficiency and sustainability of many forms of transport. For example, their widespread use is critical to the success of advanced engineering applications, such as the Boeing 787 and Airbus A380. Such materials typically comprise complex architectures of fine fibrous reinforcement e.g. carbon or glass, dispersed within a bulk polymer matrix, e.g. epoxy. This can provide exceptionally strong, stiff, and lightweight materials which are inherently anisotropic, as the fibres are usually arranged at a multitude of predetermined angles within discrete stacked 2D layers. The direction orthogonal to the 2D layers is usually without reinforcement to avoid compromising in-plane performance, which results in a vulnerability to damage in the polymer matrix caused by out-of-plane loading, i.e. impact. Their inability to plastically deform leaves only energy absorption via damage creation. This damage often manifests itself internally within the material as intra-ply matrix cracks and inter-ply delaminations, and can thus be difficult to detect visually. Since relatively minor damage can lead to a significant reduction in strength, stiffness and stability, there has been some reticence by designers for their use in safety critical applications, and the adoption of a `no growth' approach (i.e. damage propagation from a defect constitutes failure) is now the mindset of the composites industry. This has led to excessively heavy components, shackling of innovative design, and a need for frequent inspection during service (Richardson 1996; Abrate 1998).

  20. The effect of alkaline treatment and fiber orientation on impact resistant of bio-composites Sansevieria trifasciata fiber/polypropylene as automotive components material

    Science.gov (United States)

    Shieddieque, Apang Djafar; Mardiyati, Suratman, Rochim; Widyanto, Bambang

    2018-04-01

    The increasing amount of car usage is causing an escalated amount of fuel consumption and CO2 emission. It implicates demand for the automotive industry to increase the efficiency of their products, One of the most effective ways to solve the issue is to find green weight light material for the interior automotive component. The Aim of this research was to investigate the effect of alkaline treatment and fiber orientation on the impact resistant of material bio- composite sansevieiria trifasciata fiber/Polypropylene. In this research, bio-composites sansevieria trifasciata fiber/Polypropylene was prepared with random fiber orientation and unidirectional orientation by using a hot press method with pressure 140 Bar and temperature 240°C. Fiber was taken from Sansevieria trifasciata by using mechanical retting. In this study, Sansevieria fiber was given alkaline treatment (mercerization) with NaOH 3% (w/w) solution at temperature 100°C for an hour. The fraction of fiber volume that were used in this experiment are 0%, 5%, 10%, and 15%. The impact test was conducted based on ASTM D 6110 - 04, and the fracture analysis was investigated by scanning electron microscope (SEM). The best result of impact toughness and fracture analysis were achieved by bio composite untreated and unidirectional sansevieria trifasciata fiber/Polypropylene with fiber volume fraction of 15%, which was 48.092kJ/m2 for impact resistant. As compared to the impact toughness standard, which needed for interior automotive component, the impact toughness of sansevieria trifasciata fiber/Polypropylene has fulfilled the standard of the interior material automotive industry. Therefore, this material can be potentially used as materials on the car exterior component.

  1. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    International Nuclear Information System (INIS)

    Kwon, Hansang; Cho, Seungchan; Kawasaki, Akira; Leparoux, Marc

    2012-01-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al 4 C 3 ) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al 4 C 3 . Along with the CNT and the nano-SiC, Al 4 C 3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. (paper)

  2. Mechanical properties of functionalised CNT filled kenaf reinforced epoxy composites

    Science.gov (United States)

    Sapiai, Napisah; Jumahat, Aidah; Mahmud, Jamaluddin

    2018-04-01

    This paper aims to study the effect of functionalised carbon nanotubes (CNT) on mechanical properties of kenaf fibre reinforced polymer composites. The CNT was functionalised using acid mixtures of H2SO4:HNO3 and 3-Aminopropyl Triethoxysilane before it was incorporated into epoxy resin. Three different types of CNT were used, i.e. pristine (PCNT), acid-treated (ACNT) and acid-silane treated (SCNT), to fabricate kenaf composite. Three different filler contents were mixed in each composite system, i.e. 0.5, 0.75 and 1.0 wt%. The functionalised CNT was characterized using x-ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and Transmission Electron Microscopy (TEM). Tensile, flexural and Izod impact tests were conducted in order to evaluate the effect of CNT contents and surface treatment of mechanical properties of kenaf composites. It was observed that the inclusion of 1 wt% acid-silane treated CNT improved the tensile, flexural and impact strengths of kenaf/epoxy composite by 43.30%, 21.10%, and 130%, respectively. Silane modification had been proven to be beneficial in enhancing the dispersibility and reducing agglomeration of CNT in the epoxy matrix.

  3. Discontinuously reinforced titanium matrix composites for fusion applications

    International Nuclear Information System (INIS)

    Castro, V.; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M.

    2002-01-01

    We have reinforced α-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  4. Discontinuously reinforced titanium matrix composites for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, V. E-mail: mvcastro@fis.uc3m.es; Leguey, T.; Monge, M.A.; Munoz, A.; Pareja, R.; Victoria, M

    2002-12-01

    We have reinforced {alpha}-Ti with different contents of TiC particles using the in situ technique and conventional casting. Compositional and microstructural characterization of the TiC/Ti composite material was made by XRD and SEM-EDS. Tensile tests at RT, 723 and 973 K have been performed on samples heat treated at 1000 K for 30 min which were prepared from cold rolled material. The effect of the content, size and morphology of the TiC particles on the tensile properties has been investigated. The results indicate that the expected improvement in the mechanical characteristics of TiC/Ti composites is inhibited by the detrimental presence of coarse dendritic particles of TiC. The premature failure of these composites at RT is due to cracking of the coarse TiC particles. Local softening due to inhomogeneous plastic deformation of the Ti matrix appears to contribute to the tensile failure of the TiC/Ti composites deformed at 723 and 973 K.

  5. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    Science.gov (United States)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  6. Investigation of crack paths in natural fibre-reinforced composites

    Directory of Open Access Journals (Sweden)

    S. Keck

    2015-10-01

    Full Text Available Nowadays, fibre-reinforced composite materials are widely used in many fields, e.g. automotive and aerospace. Natural fibres such as flax and hemp provide good density specific mechanical properties. Additionally, the embodied production energy in natural fibres is much smaller than in synthetic ones. Within this paper the fracture mechanical behaviour of flax fibre-reinforced composites is discussed. Especially, this paper focuses on the determination and investigation of crack paths in compact tension specimens with three different fibre directions under a static as well as fatigue load. Differences and similarities in the obtained crack paths under different loading conditions are presented. Due to the pronounced orthotropic behaviour of those materials the crack path is not only governed by the stress state, but practically determined by the fibre direction and fibre volume fraction. Therefore, the well-known stress intensity factor solutions for the standard specimens are not applicable. It is necessary to carry out extensive numerical simulations to evaluate the stress intensity factor evolution along the growing crack in order to be able to determine fatigue crack growth rate curves. Those numerical crack growth simulations are performed with the three-dimensional crack simulation program ADAPCRACK3D to gain energy release rates and in addition stress intensity factors

  7. STUDY THE CREEP OF TUBULAR SHAPED FIBER REINFORCED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Najat J. Saleh

    2013-05-01

    Full Text Available Inpresent work tubular –shaped fiber reinforced composites were manufactured byusing two types of resins ( Epoxy and unsaturated polyester and separatelyreinforced with glass, carbon and kevlar-49 fibers (filament and woven roving,hybrid reinforcement composites of these fibers were also prepared. The fiberswere wet wound on a mandrel using a purposely designed winding machine,developed by modifying an ordinary lathe, in winding angle of 55° for filament. A creep test was made of either the fulltube or specimens taken from it. Creep was found to increase upon reinforcementin accordance to the rule of mixture and mainly decided by the type of singleor hybridized fibers. The creep behavior, showed that the observed strain tendsto appear much faster at higher temperature as compared with that exhibited atroom temperate. The creep rate also found to be depending on fiber type, matrixtype, and the fiber /matrix bonding. The creep energy calculated fromexperimental observations was found to exhibit highest value for hybridizedreinforcement.

  8. Tungsten fibre-reinforced composites for advanced plasma facing components

    Directory of Open Access Journals (Sweden)

    R. Neu

    2017-08-01

    Full Text Available The European Fusion Roadmap foresees water cooled plasma facing components in a first DEMO design in order to provide enough margin for the cooling capacity and to only moderately extrapolate the technology which was developed and tested for ITER. In order to make best use of the water cooling concept copper (Cu and copper-chromium-zirconium alloy (CuCrZr are envisaged as heat sink whereas as armour tungsten (W based materials will be used. Combining both materials in a high heat flux component asks for an increase of their operational range towards higher temperature in case of Cu/CuCrZr and lower temperatures for W. A remedy for both issues- brittleness of W and degrading strength of CuCrZr- could be the use of W fibres (Wf in W and Cu based composites. Fibre preforms could be manufactured with industrially viable textile techniques. Flat textiles with a combination of 150/70 µm W wires have been chosen for layered deposition of tungsten-fibre reinforced tungsten (Wf/W samples and tubular multi-layered braidings with W wire thickness of 50 µm were produced as a preform for tungsten-fibre reinforced copper (Wf /Cu tubes. Cu melt infiltration was performed together with an industrial partner resulting in sample tubes without any blowholes. Property estimation by mean field homogenisation predicts strongly enhanced strength of the Wf/CuCrZr composite compared to its pure CuCrZr counterpart. Wf /W composites show very high toughness and damage tolerance even at room temperature. Cyclic load tests reveal that the extrinsic toughening mechanisms counteracting the crack growth are active and stable. FEM simulations of the Wf/W composite suggest that the influence of fibre debonding, which is an integral part of the toughening mechanisms, and reduced thermal conductivity of the fibre due to the necessary interlayers do not strongly influence the thermal properties of future components.

  9. Study of the effect of ionizing radiation on composites of wood flour in polypropylene matrix using barium titanate as coupling agent; Estudo do efeito da radiacao ionizante em compositos de polipropileno/po de madeira usando titanato de bario como agente de acoplagem

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Maritza Eliza Perez

    2007-07-01

    The purpose of this work was to study the effects of ionizing radiation on the properties of wood flour composites in polypropylene matrix, using barium titanate as a coupling agent and the reactive monomer tripropylene glycol diacrylate (TPDGA). An electron accelerator was used in the study as the radiation source. The physical properties of virgin compounds and of the polypropylene/wood flour composite, with and without barium titanate and TPDGA addition, were investigated. The composites were developed from the load treatment, which first consisted of incorporating additives to the wood flour reinforcement and after that, the fusion process of polypropylene and composite mixing in a 'calander'. Subsequently, the samples to be irradiated and submitted to thermal and mechanical assays were molded by injection. The mechanical properties (hardness, impact resistance and molten fluidity index (MFI)), as well as the thermal properties (HDT and Vicat) of the composites were determined. The investigated compositions consisted of polypropylene/wood flour, polypropylene/wood flour with barium titanate and polypropylene/wood flour with barium titanate and TPDGA, using different wood flour concentrations of 10 por cent, 15 por cent and 20 por cent in the polypropylene matrix. The samples were separated in groups and irradiated to doses of 10 kGy and 20 kGy in the samples of the essays of traction. Besides these doses, it was also used doses of 15 kGy and 25 kGy to be observed the behavior of the sample of the sample due to the increase of the radiation. These doses were chosen to show that with low doses the composite material presents reticulation, what represents a viable commercial option. There was a reduction of the flow rate for the composites containing wood flour, being this reduction more effective in the presence of TiBa. The superficial treatment using TPDGA monomer influence in the composite samples because it acted as a plastic additive becoming the

  10. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    OpenAIRE

    Yue Lian-yong; Li Wei; Zu Xu-dong; Huang Zheng-xiang; Gao Zhen-yu

    2016-01-01

    Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made pa...

  11. Fatigue of multiscale composites with secondary nanoplatelet reinforcement: 3D computational analysis

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon, Jr.

    2014-01-01

    3D numerical simulations of fatigue damage of multiscale fiber reinforced polymer composites with secondary nanoclay reinforcement are carried out. Macro–micro FE models of the multiscale composites are generated automatically using Python based software. The effect of the nanoclay reinforcement....... Multiscale composites with exfoliated nanoreinforcement and aligned nanoplatelets ensure the better fatigue resistance than those with intercalated/clustered and randomly oriented nanoreinforcement....

  12. Reduced percolation concentration in polypropylene/expanded graphite composites: effect of viscosity and polypyrrole

    Czech Academy of Sciences Publication Activity Database

    Pionteck, J.; Melchor Valdez, E. M.; Piana, Francesco; Omastová, M.; Luyt, A. S.; Voit, B.

    2015-01-01

    Roč. 132, č. 20 (2015), 41994_1-41994_12 ISSN 0021-8995 Institutional support: RVO:61389013 Keywords : composites * graphene and fullerenes * morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.866, year: 2015

  13. Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator

    International Nuclear Information System (INIS)

    Jiang, Juan; Li, Gu; Tan, Nanshu; Ding, Qian; Mai, Kancheng

    2012-01-01

    Highlights: ► The supported calcium pimelate β-zeolite was prepared. ► The β-nucleation of zeolite was enhanced dramatically through reaction. ► High β-phase content iPP composites were obtained by introducing the β-zeolite into iPP. - Abstract: In order to prepare the zeolite filled β-iPP composites, the calcium pimelate as β-nucleator supported on the surface of zeolite (β-zeolite) was prepared by the interaction between calcified zeolite and pimelic acid. The β-nucleation, crystallization behavior and melting characteristic of zeolite, calcified zeolite and β-zeolite filled iPP composites were investigated by differential scanning calorimetry and wide-angle X-ray diffractometer. The results indicated that addition of the zeolite and calcified zeolite as well as β-zeolite increased the crystallization temperature of iPP. The zeolite and calcified zeolite filled iPP composites mainly crystallized in the α-crystal form and the strong β-heterogeneous nucleation of β-zeolite results in the formation of only β-crystal in β-zeolite filled iPP composites. The zeolite filled β-iPP composites with high β-crystal contents (above 0.90) can be easily obtained by adding β-zeolite into iPP matrix.

  14. Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method

    International Nuclear Information System (INIS)

    Jeong, Hyun Jo

    1998-01-01

    A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix (SiC p /AI) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions

  15. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    Science.gov (United States)

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  16. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  17. Kenaf-and hemp-reinforced natural fibre composites

    International Nuclear Information System (INIS)

    Sharifah Hanisah Aziz

    2003-01-01

    The main aim of this research is to combine hemp and kenaf fibres with thermosetting resin matrices to produce sustainable composites and to investigate their mechanical properties. The matirces used in this work are based on either unsaturated polyester resins or cashew nut shell liquid (CNSL). The latter can be polymerised to form a phenolic-based natural resin. Four types of differently formulated polyester resins provided by Scott Bader Ltd, a UK-based resin company, were used to assess the effect of resin formulation on the properties of natural fibre composites. CSNL resins were used because CNSL is a sustainable resource and these resins are compatible with natural fibres. Kenaf, which is extensively grown in the Far East including Malaysia, has been identified as a bast (stem) fibre with significant market potential. Hemp is a United Kingdom-grown bast fibre with strong potential as a natural fibre reinforcement. In order to improve matrix to fibre adhesion, the fibres were treated with 6 % NaOH solution before being made into composites. The composites were fabricated using unidirectional and randomly oriented fibres to assess the effect of fibre alignment on the properties of the composites. The effect of moulding pressure on the fibre volume fraction and mechanical properties was also investigated. Kenaf and hemp fibre composites were successfully hot-pressed with polyester and CNSL resin matrices. Kenaf-CNSL (treated long fibre) composites possess the highest flexural modulus (MOE) at 16.7 GPa and flexural strength (MOR) at 165.4 MPa indicating good matrix to fibre adhesion. Generally, the treated fibre composites gave higher MOE and MOR values compared to the untreated composites. However, the work of fracture values were generally higher for the untreated fibre composites. among the four types of polyester used, the molecular structure of polyester B, modified to make it more polar in nature, resulted in the best performance with treated long kenaf

  18. Development of Composite for Thermal Barriers Reinforced by Ceramic Fibers

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2018-01-01

    Full Text Available The paper introduces the development process of fiber-reinforced composite with increased resistance to elevated temperatures, which could be additionally increased by the hydrothermal curing. However, production of these composites is extremely energy intensive, and that is why the process of the design reflects environmental aspects by incorporation of waste material—fine ceramic powder applied as cement replacement. Studied composite materials consisted of the basalt aggregate, ceramic fibers applied up to 8% by volume, calcium-aluminous cement (CAC, ceramic powder up to 25% by mass (by 5% as cement replacement, plasticizer, and water. All studied mixtures were subjected to thermal loading on three thermal levels: 105°C, 600°C, and 1000°C. Experimental assessment was performed in terms of both initial and residual material properties; flow test of fresh mixtures, bulk density, compressive strength, flexural strength, fracture energy, and dynamic modulus of elasticity were investigated to find out an optimal dosage of ceramic fibers. Resulting set of composites containing 4% of ceramic fibers with various modifications by ceramic powder was cured under specific hydrothermal condition and again subjected to elevated temperatures. One of the most valuable benefits of additional hydrothermal curing of the composites lies in the higher residual mechanical properties, what allows successful utilization of cured composite as a thermal barrier in civil engineering. Mixtures containing ceramic powder as cement substitute exhibited after hydrothermal curing increase of residual flexural strength about 35%; on the other hand, pure mixture exhibited increase up to 10% even higher absolute values.

  19. Characterization of a thermoforming composite material made from hemp fibers and polypropylene

    Directory of Open Access Journals (Sweden)

    Ciupan Emilia

    2017-01-01

    Full Text Available The paper refers to a composite material developed for manufacturing thermoformed products with applications in furniture making, automotive industry etc., a method and machinery for manufacturing the material in unwoven form. From this material, Research and Development Department of TAPARO SA has designed and built a series of furniture components. The composite material made of a thermoplastic fibrous component and hemp fibre component, the way of obtaining and the properties of the thermoformed material presented in the paper are necessary in the process of designing and optimizing the parts.

  20. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    is increased to 30%, the E modulus and tensile strength of micro weld line were increased again compared with the low loading level. → Finally, an empirical prediction equation for micro injection molded weld line strength of nano PP composites was proposed for higher nano filler loading fraction than 10 wt%. - Abstract: The nano filled functional polymer materials have been widely processed with micro injection molding technology for micro electromechanical systems (MEMS) fabrication. As the unfavorable defect in micro injection molding parts, weld line brings reduced mechanical and physical properties, especially for nano filled composites. In this study, polypropylene (PP) was compounded respectively with carbon nano fibers (CNFs) and TiO 2 nano particles at various weight fractions (10, 20, 30, 35 wt%) through co-screws internal mixing. The morphological, thermal and rheological properties of nano composites were characterized by wider angle X-ray diffraction (WXRD), different scanning calorimeter (DSC) and high pressure capillary rheometer. Additionally, under the constant setting of injection molding process parameters in injection molding machine, micro tensile samples with weld lines for each nano filled PP composite were produced. The tensile tests were served as the characterizing method for weld line mechanical properties. The results show that when the CNFs is filled higher than 10 wt%, the tensile strength of samples with weld lines made of nano composites become lower than neat PP. While the raising CNFs content contributes to the improved E modulus of micro injection molded weld lines. Additionally, with the increasing fraction of CNFs in PP, the weld line area's elongation percent is decreased. Whereas for case of TiO 2 , the 10 wt% is the threshold for micro injection molded weld line tensile strength turning from decrease trend to increase. The same as CNFs, elongation of micro weld line samples were in general lower than neat PP as well, due to

  1. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    Science.gov (United States)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  2. Neutron stress measurement of W-fiber reinforced Cu composite

    International Nuclear Information System (INIS)

    Nishida, M.; Hanabusa, T.; Ikeuchi, Y.; Minakawa, N.

    2003-01-01

    Stress measurement methods using neutron and X-ray diffraction were examined by comparing the surface stresses with internal stresses in the continuous tungsten-fiber reinforced copper-matrix composite. Surface stresses were measured by X-ray stress measurement with the sin 2 ψ method. Furthermore, the sin 2 ψ method and the most common triaxal measurement method using Hooke's equation were employed for internal stress measurement by neutron diffraction. On the other hand, microstress distributions developed by the difference in the thermal expansion coefficients between these two phases were calculated by FEM. The weighted average strains and stresses were compared with the experimental results. The FEM results agreed with the experimental results qualitatively and confirmed the importance of the triaxial stress analysis in the neutron stress measurement. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites

    Science.gov (United States)

    Chien, Hsueh Fen (Karen)

    The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.

  4. Parametric Study of End Milling Glass Fibre Reinforced Composites

    International Nuclear Information System (INIS)

    Azmi, Azwan I.; Lin, Richard J. T.; Bhattacharyya, Debes

    2011-01-01

    This paper discusses the application of Taguchi 'Design of Experiment' method to investigate the effects of end milling parameters on machinability characteristics of unidirectional E-glass fibre reinforced polymer (GFRP) composites. A series of milling experiments were conducted using tungsten carbide end milling cutters at various spindle speeds, feed rates and depths of cut. Taguchi analysis was carried out and the signal to noise (S/N) ratio with analysis of variance (ANOVA) was employed to analyse the effects of those parameters on GFRP machinability. Overall, the results of the current investigations present some desirable combinations of the machining parameters that can further enhance the end milling machinability characteristics to suit the final requirements of the finished GFRP products.

  5. Study on the Properties of Microcapsulated Chlorocyclophosphazene Polypropylene Composites%三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究

    Institute of Scientific and Technical Information of China (English)

    刘亚青; 赵贵哲

    2007-01-01

    Microcapsulated chlorocyclophosphazenes were synthesized, and then microcapsulated chlorocyclophosphazene/polypropylene(PP) composites were prepared.The results showed that microcapsulated chlorocyclophosphazene had good high thermal stability through thermogravimetric analysis (TGA).The flammability and mechanical properties of microcapsulated chlorocyclophosphazene/polypropylene composites were investigated by limiting oxygen index experiment, UL 94V flame retardancy test, cone calorimetry, tensile experiment, and impact test, respectively.It was shown that the microcapsulated chlorocyclophosphazene/PP composites had better tensile strength, impact strength, flame retardant properties and smoke suppress properties compared with chlorocyclophosphazene/PP composites.

  6. Characterization of B4C-composite-reinforced aluminum alloy composites

    Science.gov (United States)

    Singh, Ram; Rai, R. N.

    2018-04-01

    Dry sliding wear tests conducted on Pin-on-disk wear test machine. The rotational speed of disc is ranging from (400-600rpm) and under loads ranging from (30-70 N) the contact time between the disc and pin is constant for each pin specimen of composites is 15 minute. In all manufacturing industries the uses of composite materials has been increasing globally, In the present study, an aluminum 5083 alloy is used as the matrix and 5% of weight percentage of Boron Carbide (B4C) as the reinforcing material. The composite is produced using stir casting technique. This is cost effective method. The aluminum 5083 matrix can be strengthened by reinforcing with hard ceramic particles like silicon carbide and boron carbide. In this experiment, aluminum 5083 alloy is selected as one of main material for making parts of the ship it has good mechanical properties, good corrosion resistance and it is can welded very easily and does have good strength. The samples are tested for hardness and tensile strength. The mechanical properties like Hardness can be increased by reinforcing aluminum 5083alloy 5% boron carbide (B4C) particles and tensile strength. Finally the Scanning Electron Microscope (SEM) analysis and EDS is done, which helps to study topography of composites and it produces images of a sample by scanning it with a focused beam of electrons and the presence of composition found in the matrix.

  7. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  8. Engineering and characterisation of the interface in flax/polypropylene composite materials

    International Nuclear Information System (INIS)

    Zafeiropoulos, Nikolaos Evangelos

    2001-01-01

    The main objectives of the present PhD project were to study the interface in flax/iPP composites, to develop and optimise an appropriate surface treatment for improving the interface in flax/iPP composites, and to assess the effect of the applied surface treatments on the properties of flax fibres (both physical and chemical). Two surface treatments, acetylation and stearation, were developed and optimised in the present study. The effect of these two surface treatments upon the structure of flax fibres was studied using XRD, SEM, ATR-FTIR, ToF-SIMS, XPS, IGC, DVS and single fibre tensile testing. It was found that the treatments did not significantly change the fibre strength, but they altered the fibre surface characteristics (chemical and physical). The water absorption was also significantly reduced after treatment, especially for green (as-received) flax, as was shown using DVS. In all cases the fibre surfaces were found to be very heterogeneous (from a chemistry point of view). The effect of the treatments and the processing conditions on the interfacial bond was studied using the single fibre fragmentation test, and it was shown that both treatments resulted in a stronger interface. The development of transcrystallinity was also found to produce a stronger interface, along with the use of slower cooling rates. However, an examination of the tensile properties of short flax fibre composites revealed that acetylation did not significantly change the tensile strength, in comparison with the untreated fibres, probably due to the manufacturing route followed in the present study that resulted in fibre lengths lower than the critical length. SEM post-mortem examination of the composites' fractured surfaces revealed that acetylation improved adhesion with iPP. (author)

  9. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  10. Lignocellulose nanofibers prepared by ionic liquid pretreatment and subsequent mechanical nanofibrillation of bagasse powder: Application to esterified bagasse/polypropylene composites.

    Science.gov (United States)

    Ninomiya, Kazuaki; Abe, Megumi; Tsukegi, Takayuki; Kuroda, Kosuke; Tsuge, Yota; Ogino, Chiaki; Taki, Kentaro; Taima, Tetsuya; Saito, Joji; Kimizu, Mitsugu; Uzawa, Kiyoshi; Takahashi, Kenji

    2018-02-15

    In the present study, we examined the efficacy of choline acetate (ChOAc, a cholinium ionic liquid))-assisted pretreatment of bagasse powder for subsequent mechanical nanofibrillation to produce lignocellulose nanofibers. Bagasse sample with ChOAc pretreatment and subsequent nanofibrillation (ChOAc/NF-bagasse) was prepared and compared to untreated control bagasse sample (control bagasse), bagasse sample with nanofibrillation only (NF-bagasse) and with ChOAc pretreatment only (ChOAc-bagasse). The specific surface area was 0.83m 2 /g, 3.1m 2 /g, 6.3m 2 /g, and 32m 2 /g for the control bagasse, ChOAc-bagasse, NF-bagasse, and the ChOAc/NF-bagasse, respectively. Esterified bagasse/polypropylene composites were prepared using the bagasse samples. ChOAc/NF-bagasse exhibited the best dispersion in the composites. The tensile toughness of the composites was 0.52J/cm 3 , 0.73J/cm 3 , 0.92J/cm 3 , and 1.29J/cm 3 for the composites prepared using control bagasse, ChOAc-bagasse, NF-bagasse, and ChOAc/NF-bagasse, respectively. Therefore, ChOAc pretreatment and subsequent nanofibrillation of bagasse powder resulted in enhanced tensile toughness of esterified bagasse/polypropylene composites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An investigation of ductile and brittle reinforcement on the fracture behavior of molybdenum disilicide composites

    International Nuclear Information System (INIS)

    Brooks, D.; Soboyejo, W.O.

    1994-01-01

    The results of an ongoing study of the effects of ductile and brittle reinforcement on the fracture toughness of particulate reinforced molybdenum disilicide matrix composites are presented. MoSi 2 composites reinforced with ductile Nb, Mo, and W particles are compared with MoSi 2 composites reinforced with SiC, TiB 2 , and partially stabilized zirconia (PSZ) particles. The effects of different degrees of yttria stabilization on zirconia reinforced composites will also be examined, as well as the effect of solid solution alloying with WSi 2 . The effects of multiple reinforcement of MoSi 2 with 20 vol.% Nb and 20 vol.% unstabilized zirconia (TZ-0) are discussed. The toughening is rationalized using micromechanical models for crack bridging, transformation toughening, and crack deflection

  12. NANOFIBRILLATED CELLULOSE (NFC AS A POTENTIAL REINFORCEMENT FOR HIGH PERFORMANCE CEMENT MORTAR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Mònica Ardanuy,

    2012-07-01

    Full Text Available In this work, nanofibrillated cellulose (NFC has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle, sisal, and cotton linters pulps, were initially characterised in order to assess their reinforcing capability. Sisal pulp was found to be most suitable as reinforcement for the brittle cementitious matrix. Nanofibrillated cellulose was produced by the application of a high intensity refining process of the sisal pulp. It was found that 6 hours of refining time was required to obtain the desired nanofibrillation of the fibers. Cement mortar composites reinforced with both the sisal fibres and the nanofibrillated cellulose were prepared, and the mechanical properties were determined under flexural tests. The cement mortar composites reinforced with the nanofibrillated cellulose exhibited enhanced flexural properties, but lower values of fracture energy, than the ones reinforced with the conventional sisal fibres.

  13. Drastic Improvements in Bonding of Fiber Reinforced Multifunctional Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Achievement of a dramatic increase in the bond strength in the composite/adhesive interfaces of existing fiber reinforced polymer (FRP) composite material joints and...

  14. Nonequilibrium Alloying of Aluminum for Improving the Corrosion Resistance of Graphite-Reinforced Metal Matrix Composites

    National Research Council Canada - National Science Library

    Shaw, Barbara

    1994-01-01

    .... Unfortunately, MMCs, especially Gr reinforced composites, are extremely susceptible to corrosion with severe attack in chloride-containing environments occurring in as little time as several weeks for Gr/Al composites...

  15. Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites

    OpenAIRE

    Ardanuy Raso, Mònica; Claramunt Blanes, Josep; Arévalo Peces, Raquel; Parés Sabatés, Ferran; Aracri, Elisabetta; Vidal Lluciá, Teresa

    2012-01-01

    In this work, nanofibrillated cellulose (NFC) has been evaluated as a potential reinforcement for cement mortar composites. Two types of vegetable fibres with different composition and properties (cellulose content and microfibrillar angle), sisal, and cotton linters pulps, were initially characterized in order to assess their reinforcement capability. Sisal pulp was found to be most suitable as reinforcement for their brittle cementitious matrix. Nanofibrillated cellulose was produced by th...

  16. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    Science.gov (United States)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  17. Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites

    Science.gov (United States)

    Gergely, Ioan

    The research presented in the present work focuses on the shear strengthening of beam column joints using carbon fiber composites, a material considered in seismic retrofit in recent years more than any other new material. These composites, or fiber reinforced polymers, offer huge advantages over structural steel reinforced concrete or timber. A few of these advantages are the superior resistance to corrosion, high stiffness to weight and strength to weight ratios, and the ability to control the material's behavior by selecting the orientation of the fibers. The design and field application research on reinforced concrete cap beam-column joints includes analytical investigations using pushover analysis; design of carbon fiber layout, experimental tests and field applications. Several beam column joints have been tested recently with design variables as the type of composite system, fiber orientation and the width of carbon fiber sheets. The surface preparation has been found to be critical for the bond between concrete and composite material, which is the most important factor in joint shear strengthening. The final goal of this thesis is to develop design aids for retrofitting reinforced concrete beam column joints. Two bridge bents were tested on the Interstate-15 corridor. One bent was tested in the as-is condition. Carbon fiber reinforced plastic composite sheets were used to externally reinforce the second bridge bent. By applying the composite, the displacement ductility has been doubled, and the bent overall lateral load capacity has been increased as well. The finite element model (using DRAIN-2DX) was calibrated to model the actual stiffness of the supports. The results were similar to the experimental findings.

  18. Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites

    International Nuclear Information System (INIS)

    Kundalwal, S I; Suresh Kumar, R; Ray, M C

    2013-01-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1–3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs. (paper)

  19. Comparison of Properties of Polymer Composite Materials Reinforced with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Zygoń P.

    2015-04-01

    Full Text Available Carbon nanotubes because of their high mechanical, optical or electrical properties, have found use as semiconducting materials constituting the reinforcing phase in composite materials. The paper presents the results of the studies on the mechanical properties of polymer composites reinforced with carbon nanotubes (CNT. Three-point bending tests were carried out on the composites. The density of each obtained composite was determined as well as the surface roughness and the resistivity at room temperature.

  20. Effects of Fiber Coating Composition on Mechanical Behavior of Silicon Carbide Fiber-Reinforced Celsian Composites

    Science.gov (United States)

    Bansal, Narottam P.; Elderidge, Jeffrey I.

    1998-01-01

    Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  1. Performance of carbon fiber reinforced rubber composite armour against shaped charge jet penetration

    Directory of Open Access Journals (Sweden)

    Yue Lian-yong

    2016-01-01

    Full Text Available Natural rubber is reinforced with carbon fiber; the protective performances of the carbonfiber reinforced rubber composite armour to shaped charge jet have been studied based on the depth of penetration experiments. The craters on the witness blocks, the nature rubber based composite plates’ deformation and the Scanning Electron Microscopy for the hybrid fiber reinforced rubber plate also is analyzed. The results showed that the composite armour can affect the stability of the jet and made part of the jet fracture. The carbon fiber reinforced rubber composite armour has good defence ablity especially when the nature rubber plate hybrid 15% volume percentage carbonfiber and the obliquity angle is 68°. The hybrid fiber reinforced rubber composite armour can be used as a new kind of light protective armour.

  2. Study of damping characteristics of fibre reinforced composite aerospace structure

    International Nuclear Information System (INIS)

    Khan, M.Z.; Saleh, S.; Munir, A.

    2006-01-01

    Composite materials are used in a variety of high demanding structural applications. Apart from their other preferable properties, they have high-energy dissipation characteristics, which is important aspect when we repeatedly wiggle the system back and forth. It is important to have thorough understanding of material damping behavior; in general materials damping tends to be complex nonlinear function of vibration amplitude, frequency of loading and material formulation. There are number of mathematical models available in literature to obtain hysteresis curves. One approach for identifying damping characteristics used mechanical hysteresis curves. In present work, a phenomenon was observed during testing of fibre reinforced composite beam of an aerospace structure, that for increase load in structure, the path of Force vs. Displacement curve is different than the path of unloading. A plot is generated which indicate the hysteresis loop representing the steady state dynamic behavior of material. The area enclosed by such curves is proportional to energy dissipation per cycle. However, the specific shape of the curve also has important implications for characterizing the specific functional form of the damping. Therefore, it is important to develop methods for accurately accounting for such effects. The current work explores the damping characteristics both theoretically and experimentally. (author)

  3. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  4. Further development of the tungsten-fibre reinforced tungsten composite

    Energy Technology Data Exchange (ETDEWEB)

    Gietl, Hanns; Hoeschen, Till; Riesch, Johann [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Aumann, Martin; Coenen, Jan [Forschungszentrum Juelich, IEK4, 52425 Juelich (Germany); Huber, Philipp [Lehrstuhl fuer Textilmaschinenbau und Institut fuer Textiltechnik (ITA), 52062 Aachen (Germany); Neu, Rudolf [Max-Planck-Institut fuer Plasmaphysik, 85748 Garching (Germany); Technische Universitaet Muenchen, 85748 Garching (Germany)

    2016-07-01

    For the use in a fusion device tungsten has a unique property combination. The brittleness below the ductile-to-brittle transition temperature and the embrittlement during operation e.g. by overheating, neutron irradiation are the main drawbacks for the use of pure tungsten. Tungsten fibre-reinforced tungsten composites utilize extrinsic mechanisms to improve the toughness. After proofing that this idea works in principle the next step is the conceptual proof for the applicability in fusion reactors. This will be done by producing mock-ups and testing them in cyclic high heat load tests. For this step all constituents of the composite, which are fibre, matrix and interface, and all process steps need to be investigated. Tungsten fibres are investigated by means of tension tests to find the optimum diameter and pretreatment. New interface concepts are investigated to meet the requirements in a fusion reactor, e.g. high thermal conductivity, low activation. In addition weaving processes are evaluated for their use in the fibre preform production. This development is accompanied by an extensive investigation of the materials properties e.g. single fibre tension tests.

  5. Primary Manufacturing Processes for Fiber Reinforced Composites: History, Development & Future Research Trends

    Science.gov (United States)

    Tapan Bhatt, Alpa; Gohil, Piyush P.; Chaudhary, Vijaykumar

    2018-03-01

    Composite Materials are becoming more popular gradually replacing traditional material with extra strength, lighter weight and superior property. The world is exploring use of fiber reinforced composites in all application which includes air, land and water transport, construction industry, toys, instrumentation, medicine and the list is endless. Based on application and reinforcement used, there are many ways to manufactures parts with fiber reinforced composites. In this paper various manufacturing processes have been discussed at length, to make fiber reinforced composites components. The authors have endeavored to include all the processes available recently in composite industry. Paper first highlights history of fiber reinforced composites manufacturing, and then the comparison of different manufacturing process to build composites have been discussed, to give clear understanding on, which process should be selected, based on reinforcement, matrix and application. All though, there are several advantages to use such fiber reinforcement composites, still industries have not grown at par and there is a lot of scope to improve these industries. At last, where India stands today, what are the challenges in market has been highlighted and future market and research trend of exploring such composite industries have been discussed. This work is carried out as a part of research project sanctioned by GUJCOST, Gandhinagar.

  6. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  7. Improvement of the piezoelectric properties of glass fiber-reinforced epoxy composites by poling treatment

    International Nuclear Information System (INIS)

    Oh, S M; Hwang, H Y

    2013-01-01

    Recently, a new non-destructive method has been proposed for damage monitoring of glass fiber-reinforced polymer composite materials using the piezoelectric characteristics of a polymeric matrix. Several studies of the piezoelectric properties of unidirectional glass fiber epoxy composites and damage monitoring of double-cantilever beams have supported the claim that the piezoelectric method is feasible and powerful enough to monitor the damage of glass fiber epoxy composites. Generally, conventional piezoelectric materials have higher piezoelectric characteristics through poling treatment. In this work, we investigated the change of the piezoelectric properties of glass fiber-reinforced epoxy composites before and after poling treatment. The piezoelectric constants (d 33 ) of glass fiber-reinforced epoxy composites increased by more than 400%. Also, x-ray diffraction tests revealed that poling treatment changed the degree of crystallinity of the epoxy matrix, and this led to the improvement of the piezoelectric characteristics of glass fiber-reinforced epoxy composites. (paper)

  8. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  9. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    International Nuclear Information System (INIS)

    Zafar, Adeel; Andrawes, Bassem

    2012-01-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA–FRP composite, which is sought in this research as reinforcing bars. SMA–FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA–FRP and glass–FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA–FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones. (paper)

  10. Efficacy of Thermally Conditioned Sisal FRP Composite on the Shear Characteristics of Reinforced Concrete Beams

    OpenAIRE

    Sen, Tara; Reddy, H. N. Jagannatha

    2013-01-01

    The development of commercially viable composites based on natural resources for a wide range of applications is on the rise. Efforts include new methods of production and the utilization of natural reinforcements to make biodegradable composites with lignocellulosic fibers, for various engineering applications. In this work, thermal conditioning of woven sisal fibre was carried out, followed by the development of woven sisal fibre reinforced polymer composite system, and its tensile and flex...

  11. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  12. 40 CFR Table 2 to Subpart Wwww of... - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

    Science.gov (United States)

    2010-07-01

    ... Reinforced Plastic Composites Facilities 2 Table 2 to Subpart WWWW of Part 63 Protection of Environment...: Reinforced Plastic Composites Production Pt. 63, Subpt. WWWW, Table 2 Table 2 to Subpart WWWW of Part 63—Compliance Dates for New and Existing Reinforced Plastic Composites Facilities As required in §§ 63.5800 and...

  13. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  14. Service tough composite structures using the Z-direction reinforcement process

    Science.gov (United States)

    Freitas, Glenn; Magee, Constance; Boyce, Joseph; Bott, Richard

    1992-01-01

    Foster-Miller has developed a new process to provide through thickness reinforcement of composite structures. The process reinforces laminates locally or globally on-tool during standard autoclave processing cycles. Initial test results indicate that the method has the potential to significantly reduce delamination in carbon-epoxy. Laminates reinforced with the z-fiber process have demonstrated significant improvements in mode 1 fracture toughness and compression strength after impact. Unlike alternative methods, in-plane properties are not adversely affected.

  15. A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report.

    Science.gov (United States)

    Kurunmäki, Hemmo; Kantola, Rosita; Hatamleh, Muhanad M; Watts, David C; Vallittu, Pekka K

    2008-11-01

    This clinical report describes the use of a glass fiber-reinforced composite (FRC) substructure to reinforce the silicone elastomer of a large facial prosthesis. The FRC substructure was shaped into a framework and embedded into the silicone elastomer to form a reinforced facial prosthesis. The prosthesis is designed to overcome the disadvantages associated with traditionally fabricated prostheses; namely, delamination of the silicone of the acrylic base, poor marginal adaptation over time, and poor simulation of facial expressions.

  16. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    Science.gov (United States)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  17. Bending test in epoxy composites reinforced with continuous and aligned PALF fibers

    Directory of Open Access Journals (Sweden)

    Gabriel Oliveira Glória

    2017-10-01

    Full Text Available Sustainable actions aiming to prevent increasing worldwide pollution are motivating the substitution of environmentally friendly materials for conventional synthetic ones. A typical example is the use of natural lignocellulosic fiber (LCF as reinforcement of polymer composites that have traditionally been reinforced with glass fiber. Both scientific research and engineering applications support the use of numerous LCFs composites. The pineapple fiber (PALF, extracted from the leaves of Ananas comosus, is considered a LCF with potential for composite reinforcement. However, specific mechanical properties and microstructural characterization are still necessary for this purpose. Therefore, the objective of this short work is to evaluate the flexural properties, by means of three points, bend tests, of epoxy composites incorporated with up to 30 vol% of PALF. Results reveal that continuous and aligned fibers significantly increase the flexural strength. Scanning electron microscopy disclosed the fracture mechanism responsible for this reinforcement. Keywords: Pineapple fibers, PALF, Flexural properties, Bending test, Epoxy composites, Fracture mechanism

  18. On Healable Polymers and Fiber-Reinforced Composites

    Science.gov (United States)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  19. An experimental study of mechanical behavior of natural fiber reinforced polymer matrix composites

    Science.gov (United States)

    Ratna, Sanatan; Misra, Sheelam

    2018-05-01

    Fibre-reinforced polymer composites have played a dominant role for a long time in a variety of applications for their high specific strength and modulus. The fibre which serves as a reinforcement in reinforced plastics may be synthetic or natural. Past studies show that only synthetic fibres such as glass, carbon etc., have been used in fibre reinforced plastics. Although glass and other synthetic fibre-reinforced plastics possess high specific strength, their fields of application are very limited because of their inherent higher cost of production. In this connection, an investigation has been carried out to make use of horse hair, an animal fibre abundantly available in India. Animal fibres are not only strong and lightweight but also relatively very cheaper than mineral fibre. The present work describes the development and characterization of a new set of animal fiber based polymer composites consisting of horse hair as reinforcement and epoxy resin. The newly developed composites are characterized with respect to their mechanical characteristics. Experiments are carried out to study the effect of fibre length on mechanical behavior of these epoxy based polymer composites. Composite made form horse hair can be used as a potential reinforcing material for many structural and non-structural applications. This work can be further extended to study other aspects of such composites like effect of fiber content, loading pattern, fibre treatment on mechanical behavior of horse hair based polymer horse hair.

  20. Flax fabric reinforced arylated soy protein composites: A brittle-matrix behaviour

    CSIR Research Space (South Africa)

    Kumar, R

    2012-05-01

    Full Text Available Biocomposites were successfully prepared by the reinforcement of soy protein isolate (SPI) with different weight fractions of woven flax fabric. The flax-fabric-reinforced SPI-based composites were then arylated with 2,2-diphenyl-2-hydroxyethanoic...

  1. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites

    International Nuclear Information System (INIS)

    Bakare, I.O.; Okieimen, F.E.; Pavithran, C.; Abdul Khalil, H.P.S.; Brahmakumar, M.

    2010-01-01

    The development of high-performance composite materials from locally sourced and renewable materials was investigated. Rubber seed oil polyurethane resin synthesized using rubber seed monoglyceride derived from glycerolysis of the oil was used as matrix in the composite samples. Rubber seed oil-based polyurethane composite reinforced with unidirectional sisal fibers were prepared and characterized. Results showed that the properties of unidirectional fiber-reinforced rubber seed oil-based polyurethane composites gave good thermal and mechanical properties. Also, the values of tensile strengths and flexural moduli of the polyurethane composites were more than tenfold and about twofold higher than un-reinforced rubber seed oil-based polyurethane. The improved thermal stability and the scanning electron micrographs of the fracture surface of the composites were attributed to good fiber-matrix interaction. These results indicate that high-performance 'all natural products' composite materials can be developed from resources that are readily available locally.

  2. A Review on the Perforated Impact Energy Absorption of Kenaf Fibres Reinforced Composites

    Science.gov (United States)

    Ismail, Al Emran; Khalid, S. N. A.; Nor, Nik Hisyamudin Muhd

    2017-10-01

    This paper reviews the potential of mechanical energy absorption of natural fiber reinforced composites subjected to perforated impact. According to literature survey, several research works discussing on the impact performances on natural fiber reinforced composites are available. However, most of these composite fibers are randomly arranged. Due to high demand for sustainable materials, many researches give high attention to enhance the mechanical capability of natural fiber composites especially focused on the fiber architecture. Therefore, it is important to review the progress of impact energy absorption on woven fiber composite in order to identify the research opportunities in the future.

  3. Pengaruh One Direction Pre-Tension pada Reinforcement Fibre terhadap Kekuatan Tarik dan Impact Fibre-Powder Reinforcement Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Gilang Gumilar

    2017-12-01

    Full Text Available Nowadays, industrial manufacturing needs environmentally and friendly material and has special properties which are difficult to obtain from the metal material. Composite is one of the alternative materials that can be used to meet those needs. A structural composite material consisting of a combination of two or more elements bonded material at the macroscopic level. This study was conducted to determine the effect of pre-tension one direction on a hybrid composite reinforcement against tensile strength and impact strength. Composite materials prepared by C-Glass fiber types woven rovings, coconut shell powder and vinyl ester resin. manufacturing composite using hand lay-up methods. The variation of the tension given 0N, 50N, 100N, 150N, and 200N. A tensile test based on the reference standard ASTM D 3039 while testing the impact based on ASTM D 6110-04. The results were obtained giving tension to the hybrid composite reinforcement increases tensile strength and impact strength of the material. The lowest tensile strength of the composite obtained in 0N treatment (without treatment ranged 71,58N / mm², and the greatest tensile strength is obtained in the pre-tension 200N, ranging from 106.05 N / mm2. As for the lowest impact on specimens obtained without treatment ranges 1,34J / mm2 and provision of pre-tension 200N biggest impact strength values obtained, ranging 15,09J / mm2.

  4. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  5. Collaboration of polymer composite reinforcement and cement concrete

    Science.gov (United States)

    Khozin, V. G.; Gizdatullin, A. R.

    2018-04-01

    The results of experimental study of bond strength of cement concrete of different types with fiber reinforcing polymer (FRP) bars are reported. The reinforcing bars were manufactured of glass fibers and had a rebar with different types of the surface relief formed by winding a thin strip impregnated with a binder or by “sanding”. The pullout tests were carried out simultaneously for the steel reinforcing ribbed bars A400. The impact of friction, adhesion and mechanical bond on the strength of bonds between FRP and concrete was studied. The influence of the concrete strength and different operation factors on the bond strength of concrete was evaluated.

  6. Study on drilling induced delamination of woven kenaf fiber reinforced epoxy composite using carbide drills

    Science.gov (United States)

    Suhaily, M.; Hassan, C. H. Che; Jaharah, A. G.; Azmi, H.; Afifah, M. A.; Khairusshima, M. K. Nor

    2018-04-01

    In this research study, it presents the influences of drilling parameters on the delamination factor during the drilling of woven kenaf fiber reinforced epoxy composite laminates when using the carbide drill bits. The purpose of this study is to investigate the influence of drilling parameters such as cutting speed, feed rate and drill sizes on the delamination produced when drilling woven kenaf reinforced epoxy composite using the non-coated carbide drill bits. The damage generated on the woven kenaf reinforced epoxy composite laminates were observed both at the entrance and exit surface during the drilling operation. The experiments were conducted according to the Box Behnken experimental designs. The results indicated that the drill diameter has a significant influence on the delamination when drilling the woven kenaf fiber reinforced epoxy composites.

  7. Fracture Toughness Improvement of Composites Reinforced with Optimally Shaped Short Ductile Fibers

    National Research Council Canada - National Science Library

    Wetherhold, Robert C; Patra, Abani K

    2001-01-01

    The fracture toughness of brittle matrix composites reinforced with ductile fibers has been greatly improved by shaping the fibers so that they fully contribute their plastic work to the fracture process...

  8. Application of ceramic short fiber reinforced Al alloy matrix composite on piston for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Wu Shenqing

    2010-11-01

    Full Text Available The preparation and properties of ceramic short fiber reinforced Al-Si alloy matrix composite and it’s application on the piston for internal combustion engines are presented. Alumina or aluminosilicate fibers reinforced Al-Si alloy matrix composite has more excellent synthetical properties at elevated temperature than the matrix alloys. A partially reinforced Al-Si alloy matrix composite piston produced by squeeze casting technique has a firm interface between reinforced and unreinforced areas, low reject rate and good technical tolerance. As a new kind of piston material, it has been used for mass production of about 400,000 pieces of automobile engines piston. China has become one of a few countries in which aluminum alloy matrix composite materials have been used in automobile industry and attained industrialization.

  9. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    Science.gov (United States)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  10. Low Cost Resin for Self-Healing High Temperature Fiber Reinforced Polymer Matrix Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past few decades, the manufacturing processes and our knowledge base for predicting the bulk mechanical response of fiber reinforced composite materials has...

  11. Flax fiber reinforced PLA composites: studies on types of PLA and different methods of fabrication

    CSIR Research Space (South Africa)

    Kumar, R

    2011-05-01

    Full Text Available Natural fibers are used as reinforcement material for number of thermoplastic/thermoset polymers. The interest in using polylactic acid (PLA) as thermoplastic matrix to produce composites completely from 100% renewable resources has increased...

  12. Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites

    International Nuclear Information System (INIS)

    Sapuan, S.M.; Pua, Fei-ling; El-Shekeil, Y.A.; AL-Oqla, Faris M.

    2013-01-01

    Highlights: • We developed composites from kenaf and thermoplastic polyurethane. • Soil burial of composites after 80 days shows increase in flexural strength. • Soil burial of composites after 80 days shows increase in flexural modulus. • Tensile properties of composites degrade after soil burial tests. • We investigate the morphological fracture through scanning electron microscopy. - Abstract: A study on mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane (TPU) composites is presented in this paper. Kenaf bast fibre reinforced TPU composites were prepared via melt-mixing method using Haake Polydrive R600 internal mixer. The composites with 30% fibre loading were prepared based on some important parameters; i.e. 190 °C for reaction temperature, 11 min for reaction time and 400 rpm for rotating speed. The composites were subjected to soil burial tests where the purpose of these tests was to study the effect of moisture absorption on the mechanical properties of the composites. Tensile and flexural properties of the composites were determined before and after the soil burial tests for 20, 40, 60 and 80 days. The percentages of both moisture uptake and weight gain after soil burial tests were recorded. Tensile strength of kenaf fibre reinforced TPU composite dropped to ∼16.14 MPa after 80 days of soil burial test. It was also observed that there was no significant change in flexural properties of soil buried kenaf fibre reinforced TPU composite specimens

  13. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    Science.gov (United States)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  14. A Review on Artificial Aging Behaviors of Fiber Reinforced Polymer-matrix Composites

    OpenAIRE

    Meng Jiangyan; Wang Yunying

    2016-01-01

    As is known, factors in climate environment such as hygrothermal effect and UV may have a negative effect on the mechanical properties of fiber reinforced polymer-matrix composites, resulting in their strength and stiffness degraded. In this review, we summarize all the recent studies on the artificial climate aging, hygrothermal aging, and thermal-oxidation aging of fiber reinforced polymer-matrix composites, as well as their artificial accelerated aging and natural aging. In addition, studi...

  15. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  16. Bisphenyl-Polymer/Carbon-Fiber-Reinforced Composite Compared to Titanium Alloy Bone Implant

    OpenAIRE

    Petersen, Richard C.

    2011-01-01

    Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats reve...

  17. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    International Nuclear Information System (INIS)

    Chen, Y.L.; Liu, B.; Hwang, K.C.; Chen, Y.L.; Huang, Y.

    2011-01-01

    Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT-) reinforced hard matrix composites is carried out on the basis of shear-lag theory and fracture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  18. Fracture Toughness of Carbon Nanotube-Reinforced Metal- and Ceramic-Matrix Composites

    Directory of Open Access Journals (Sweden)

    Y. L. Chen

    2011-01-01

    Full Text Available Hierarchical analysis of the fracture toughness enhancement of carbon nanotube- (CNT- reinforced hard matrix composites is carried out on the basis of shear-lag theory and facture mechanics. It is found that stronger CNT/matrix interfaces cannot definitely lead to the better fracture toughness of these composites, and the optimal interfacial chemical bond density is that making the failure mode just in the transition from CNT pull-out to CNT break. For hard matrix composites, the fracture toughness of composites with weak interfaces can be improved effectively by increasing the CNT length. However, for soft matrix composite, the fracture toughness improvement due to the reinforcing CNTs quickly becomes saturated with an increase in CNT length. The proposed theoretical model is also applicable to short fiber-reinforced composites.

  19. Fibre reinforced composites '84; Proceedings of the International Conference, University of Liverpool, England, April 3-5, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Among the topics discussed are phenolic resin matrix composites for high temperature and fire-exposure applications, novel resins for fiber-reinforced composite productivity improvement, the use of engineering textiles for mechanical property improvement in composites, the significance of aramid fiber reinforcement in composites, the energy absorption properties of Sheet Metal Compounds (SMCs) under crash conditions, and SMC impact behavior variations with temperature. Also covered are CFRP applications in high performance structures, composite helicopter main rotor blade technology, composite vehicular leaf springs, carbon fiber-reinforced thermoplastics, filament winding development status, the injection processing of fiber-reinforced thermoplastics, civil aircraft composite structure certification, composite radomes, design procedures for short fiber-reinforced thermoplastics, the strength limitations of mechanically fastened lap joints, environmental fatigue and creep in glass-reinforced materials, the effects of moisture on high performance laminates, the environmental behavior of SMC, and corrugated composites.

  20. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.