WorldWideScience

Sample records for polyphenol active lactobacilli

  1. Lactobacilli Differentially Activate Natural Killer Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    bacteria on regulatory functions of NK-cells. Here, we have investigated how human gut flora-derived non-pathogenic lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human peripheral blood NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... having engulfed bacteria, stimulated the growth of the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent...

  2. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  3. MODULATION OF GROWTH AND PROTON PUMPING ATPase ACTIVITY OF PROBIOTIC Lactobacilli BY DIETARY CUCURBITS

    Directory of Open Access Journals (Sweden)

    Irfan Ahmad

    2013-12-01

    Full Text Available Gastrointestinal tract predominantly harbor probiotic Lactobacilli which exert beneficial effects on human health. Aqueous extracts from fruits of Lagenaria siceraria (Ls, Luffa cylindrica (Lc and Cucurbita maxima (Cm were prepared and lyophilized. Fruit extracts were investigated for their effects on Lactobacillus rhamnosus (L. rhamnosus, Lactobacillus plantarum (L. plantarum and Lactobacillus acidophilus (L. acidophilus. Extracts were found to enhance growth of Lactobacilli without any toxic effect (up to 1000µg/mL concentration. Minimum concentration of extracts at which growth of probiotic strains were found to be enhanced significantly were determined (103.67 µg/mL-118µg/mL and considered as effective concentration (EC or growth stimulatory concentration (GSC. Proton pumping ATPase activity of Lactobacilli were examined and found to be enhanced significantly (29.89- 61.96% in extracts treated probiotics (Lactobacilli as compared to the normal control. Inulin used as positive control and found to enhance the proton efflux activity (28.06-37.72% with respect to the control. These dietary cucurbits enhance metabolic activity of probiotic Lactobacilli by modulating their proton pumping ATPase mechanism. This study suggested that the consumption of cucurbit fruits might be a natural source of enhancing the activities of probiotic Lactobacilli in the gut.

  4. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK cells

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    2016-07-01

    Full Text Available Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulato-ry in vitro. In contrast, Staphylococcus aureus (S. aureus is known to induce excessive T cell activation. In this study we aimed to investigate S. aureus-induced activation of human muco-sal associated invariant T cells (MAIT cells, γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation.PBMC were cultured with S. aureus 161:2 cell free supernatant (CFS, staphylococcal en-terotoxin A or CD3/CD28-beads alone or in combination with Lactobacillus rhamnosus (L. rhamnosus GG-CFS or Lactobacillus reuteri (L. reuteri DSM 17938-CFS, and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Co-stimulation with lactobacilli-CFS dampened lymphocyte activation in all cell types analysed. Pre-incubation with lactobacilli-CFS was enough to reduce subsequent activation and the ab-sence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Final-ly, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in modulation of induced T and NK cell activation.

  5. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity.

    Directory of Open Access Journals (Sweden)

    Carola Parolin

    Full Text Available Healthy vaginal microbiota is dominated by Lactobacillus spp., which form a critical line of defence against pathogens, including Candida spp. The present study aims to identify vaginal lactobacilli exerting in vitro activity against Candida spp. and to characterize their antifungal mechanisms of action. Lactobacillus strains were isolated from vaginal swabs of healthy premenopausal women. The isolates were taxonomically identified to species level (L. crispatus B1-BC8, L. gasseri BC9-BC14 and L. vaginalis BC15-BC17 by sequencing the 16S rRNA genes. All strains produced hydrogen peroxide and lactate. Fungistatic and fungicidal activities against C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis and C. lusitaniae were evaluated by broth micro-dilution method. The broadest spectrum of activity was observed for L. crispatus BC1, BC4, BC5 and L. vaginalis BC15, demonstrating fungicidal activity against all isolates of C. albicans and C. lusitaniae. Metabolic profiles of lactobacilli supernatants were studied by 1H-NMR analysis. Metabolome was found to be correlated with both taxonomy and activity score. Exclusion, competition and displacement experiments were carried out to investigate the interference exerted by lactobacilli toward the yeast adhesion to HeLa cells. Most Lactobacillus strains significantly reduced C. albicans adhesion through all mechanisms. In particular, L. crispatus BC2, L. gasseri BC10 and L. gasseri BC11 appeared to be the most active strains in reducing pathogen adhesion, as their effects were mediated by both cells and supernatants. Inhibition of histone deacetylases was hypothesised to support the antifungal activity of vaginal lactobacilli. Our results are prerequisites for the development of new therapeutic agents based on probiotics for prophylaxis and adjuvant therapy of Candida infection.

  6. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  7. Study of β-Galactosidase Enzyme Activity Produced by Lactobacilli in Milk and Cheese

    Directory of Open Access Journals (Sweden)

    J. Nowroozi

    2008-04-01

    Full Text Available Background and objectiveLactose intolerance is a discomfort state that occurs in some people after ingestion of milk and it is due to insufficient amount of beta galactosidase in the human gut to digest lactose. The aim of this study was to observe the presence of beta galactosidase enzyme produced by isolated lactobacilli from milk and cheese. Methods In this descriptive study, milk and cheese samples with different brand were bought from different shops. Lactobacilli were identified by plating samples on MRS medium, Gram staining and standard biochemical methods. β-galactosidase production by bacteria was assessed by X-Gal and ONPG methods. β-galactosidase was also detected by SDS-PAGE. ResultsFourteen genus of lactobacillus were isolated From 50 samples. All of the bacteria produced green color colonies on X-Gal plates (but in different times that indicated the presence of enzyme in the bacteria. All isolated lactobacilli were shown β-galactosidase activity in ONPG test. The highest enzymatic activity was seen in one strain of Lactobacillus Delbrueckii (1966 Miller unit /ml. In some bacteria (37% a strong β-galactosidase band(116-kDa was seen by SDS-PAGE.ConclusionAddition of beta galactosidase containing lactobacilli as a probiotic agent to milk, cheese, and other dairy products could ameliorate lactose intolerance. Meanwhile X-gal and ONPG methods which are simple, rapid and cheap can be used instead of SDS-PAGE.Keywords: Lactobacillus, Beta-Galactosidase, Nitrophenylgalactosids

  8. In Vitro Activity of Lactobacilli with Probiotic Potential Isolated from Cocoa Fermentation against Gardnerella vaginalis

    Directory of Open Access Journals (Sweden)

    Wallace Felipe Blohem Pessoa

    2017-01-01

    Full Text Available Study of the probiotic potential of microorganisms isolated from fermented foods has been increasing, especially studies related to lactobacilli. In intestinal models, lactobacilli have demonstrated beneficial properties, such as anti-inflammatory activity and increased antibody production, but the molecular mechanisms involving probiotic and antagonistic action as well as their effect on human vaginal cells have not yet been fully elucidated. The aim of this study was to evaluate the functional and antagonistic properties of three strains of lactobacilli isolated from cocoa fermentation (Lactobacillus fermentum 5.2, L. plantarum 6.2, and L. plantarum 7.1 against Gardnerella vaginalis. Our results show that the lactobacilli have potential use as probiotics, since they have high hydrophobicity and autoaggregation properties and effectively adhere to vaginal cells. Metabolites secreted into the culture medium and whole cells of the strains under study are capable of interfering with the growth of G. vaginalis to different degrees. The elucidation of the antagonistic mechanisms as well as their effect on human cells may be useful in the development of a product containing such microorganisms or products secreted by them.

  9. Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food.

    Science.gov (United States)

    Zhang, Yingchun; Zhang, Lanwei; Du, Ming; Yi, Huaxi; Guo, Chunfeng; Tuo, Yanfeng; Han, Xue; Li, Jingyan; Zhang, Lili; Yang, Lin

    2011-12-20

    Four lactobacilli strains (Lactobacillus paracasei subp. paracasei M5-L, Lactobacillus rhamnosus J10-L, Lactobacillus casei Q8-L and L. rhamnosus GG (LGG), were systematically assessed for the production of antimicrobial substances active towards Shigella sonnei, Escherichia coli and Salmonella typhimurium. Agar-well assay showed that the four lactobacilli strains displayed strong antibacterial activity towards S. sonnei. The nature of antimicrobial substances was also investigated and shown to be dependent on the production of organic acids, in particular the lactic acid. Time-kill assay showed that the viability of the S. sonnei was decreased by 2.7-3.6logCFU/ml after contact with CFCS (cell-free culture supernatants) of four lactobacilli for 2h, which confirmed the result of the agar-well assay. Further analysis of the organic acid composition in the CFCS revealed that the content of lactic acid range from 227 to 293mM. In addition, the aggregations properties, adherence properties and tolerance to simulated gastrointestinal conditions were also investigated in vitro tests. The result suggested that the M5-L, J10-L and Q8-L strains possess desirable antimicrobial activity towards S. sonnei and probiotic properties as LGG and could be potentially used as novel probiotic strains in the food industry. Copyright © 2011. Published by Elsevier GmbH.

  10. Dynamics of the Content of Lactobacilli, Microbial Metabolites and Antimicrobial Activity of Growing Culture of Lactobacillus Plantarum 8P-A3

    Directory of Open Access Journals (Sweden)

    I. Yu. Chicherin

    2013-01-01

    Full Text Available The dynamics of the content of lactobacilli, microbial metabolites and antimicrobial activity of growing cultures of Lactobacillus plantarum 8Р-А3 was studied. Lactobacilli L. plantarum 8Р-А3 and test microorganisms isolated from the intestinal contents of patients with dysbacteriosis were used in experiments. Study of the component composition of growing culture supernatant of lactobacilli was carried out by gas liquid chromatography with mass selective detection. By 54 h of cultivation the content of viable microbial cells in the native culture of Lactobacillus achieves 3,0·109 in 1 mL without further increase during the cultivation. The principal component of lactobacilli culture medium possessing antibacterial activity is lactic acid. In addition to lactic acid, which accounts for 70% of the total metabolites, the culture medium and the supernatant contain salts of phosphoric acid (14% as well as amino acids, carboxylic acids, fatty acids, sugars and polyhydric alcohol constituting of up to 16% of the total metabolites. It is found that during the cultivation in liquid medium lactobacilli produce metabolites which possess antibacterial activity against pathogenic bacteria that cause intestinal infections.

  11. Oral Lactobacilli and Dental Caries

    Science.gov (United States)

    Caufield, P.W.; Schön, C.N.; Saraithong, P.; Li, Y.; Argimón, S.

    2015-01-01

    Lactobacilli have been associated with dental caries for over a century. Here, we review the pertinent literature along with findings from our own study to formulate a working hypothesis about the natural history and role of lactobacilli. Unlike most indigenous microbes that stably colonize a host, lactobacilli appear to be planktonic, opportunistic settlers that can gather and multiply only in certain restrictive niches of the host, at least within the oral cavity. We postulate that the following essential requirements are necessary for sustained colonization of lactobacilli in humans: 1) a stagnant, retentive niche that is mostly anaerobic; 2) a low pH milieu; and 3) ready access to carbohydrates. Three sites on the human body meet these specifications: caries lesions, the stomach, and the vagina. Only a handful of Lactobacillus species is found in caries lesions, but they are largely absent in caries-free children. Lactobacilli present in caries lesions represent both a major contributor to caries progression and a major reservoir to the gastrointestinal (GI) tract. We extend the assertion from other investigators that lactobacilli found in the GI tract originate in the oral cavity by proposing that lactobacilli in the oral cavity arise from caries lesions. This, in turn, leads us to reflect on the health implications of the lactobacilli in the mouth and downstream GI and to ponder whether these or any of the Lactobacillus species are truly indigenous to the human GI tract or the oral cavity. PMID:25758458

  12. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Purpose: To assess the antioxidant and antimicrobial activities of polyphenolic extracts of three wild red wild berry fruit species from Southeast Serbia, viz, European cornel (Cornus mas), blackthorn (Prunus spinosa L.) and wild blackberry (Rubus fruticosus). Methods: Polyphenol content was determined using ...

  13. Adhesive Properties and Acid-Forming Activity of Lactobacilli and Streptococci Under Inhibitory Substances, Such as Nitrates.

    Science.gov (United States)

    Hakobyan, L; Harutyunyan, K; Harutyunyan, N; Melik-Andreasyan, G; Trchounian, A

    2016-06-01

    One of the main requirements for probiotics is their ability to survive during passage through gastrointestinal tract and to maintain their activity at different adverse conditions. The aim of the study was to look for the strains of lactobacilli and streptococci with high adhesive properties even affected by inhibitory substances, such as nitrates (NO3 (-)). To study the adhesion properties hemagglutination reaction of bacterial cells with red blood cells of different animals and humans was used. The acid formation ability of bacteria was determined by the method of titration after 7 days of incubation in the sterile milk. These properties were investigated at different concentrations of NO3 (-). The high concentration (mostly ≥2.0 %) NO3 (-) inhibited the growth of both lactobacilli and streptococci, but compared with streptococcal cultures lactobacilli, especially Lactobacillus acidophilus Ep 317/402, have shown more stability and higher adhesive properties. In addition, the concentrations of NO3 (-) of 0.5-2.0 % decreased the acid-forming activity of the strains, but even under these conditions they coagulated milk and, in comparison to control, formed low acidity in milk. Thus, the L. acidophilus Ep 317/402 with high adhesive properties has demonstrated a higher activity of NO3 (-) transformation.

  14. Probiotic Properties of Lactobacilli Isolated from Thai Traditional Food

    OpenAIRE

    KLAYRAUNG, Srikanjana; VIERNSTEIN, Helmut; SIRITHUNYALUG, Jakkapan; OKONOGI, Siriporn

    2008-01-01

    Certain properties relevant to probiotic action, e.g. resistance to acid, bile tolerance, adhesive properties, antibacterial activity, and antibiotic susceptibility were investigated of lactobacilli isolated from four kinds of Thai traditional fermented foods. Media of pH = 2.0–7.0 and bile salt concentrations of 0.3–1.0% were used as stress conditions. The adhesive properties were assessed by determination of bacterial hydrophobicity. Antibacterial activity of the probiotic lactobacilli was ...

  15. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Science.gov (United States)

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  16. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Directory of Open Access Journals (Sweden)

    Yuko Shimamura

    Full Text Available This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA. Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  17. Immunochemical detection of food-derived polyphenols in the aorta: macrophages as a major target underlying the anti-atherosclerotic activity of polyphenols.

    Science.gov (United States)

    Kawai, Yoshichika

    2011-01-01

    It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.

  18. Immunomodulating Activity of Aronia melanocarpa Polyphenols

    Directory of Open Access Journals (Sweden)

    Giang T. T. Ho

    2014-06-01

    Full Text Available The immunomodulating effects of isolated proanthocyanidin-rich fractions, procyanidins C1, B5 and B2 and anthocyanins of Aronia melanocarpa were investigated. In this work, the complement-modulating activities, the inhibitory activities on nitric oxide (NO production in LPS-induced RAW 264.7 macrophages and effects on cell viability of these polyphenols were studied. Several of the proanthocyanidin-rich fractions, the procyanidins C1, B5 and B2 and the cyanidin aglycone possessed strong complement-fixing activities. Cyanidin 3-glucoside possessed stronger activity than the other anthocyanins. Procyanidins C1, B5 and B2 and proanthocyanidin-rich fractions having an average degree of polymerization (PD of 7 and 34 showed inhibitory activities on NO production in LPS-stimulated RAW 264.7 mouse macrophages. All, except for the fraction containing proanthocyanidins with PD 34, showed inhibitory effects without affecting cell viability. This study suggests that polyphenolic compounds of A. melanocarpa may have beneficial effects as immunomodulators and anti-inflammatory agents.

  19. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    the medicinal plants were screened for their antioxidant and antimicrobial activities against pathogenic micro organisms (Staphylococcus aureus, Streptococcus pyogenes, Esherichia coli and Candida albicans). The medicinal plants displayed different polyphenols contents and antioxidant activities. In addition, varying ...

  20. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.

    Science.gov (United States)

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-02-22

    Professional antigen-presenting dendritic cells (DCs) are critical in regulating T cell immune responses at both systemic and mucosal sites. Many Lactobacillus species are normal members of the human gut microflora and most are regarded as safe when administered as probiotics. Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs) and found that they modulated the phenotype and functions of human MDCs. Lactobacillus-exposed MDCs up-regulated HLA-DR, CD83, CD40, CD80, and CD86 and secreted high levels of IL-12 and IL-18, but not IL-10. IL-12 was sustained in MDCs exposed to all three Lactobacillus species in the presence of LPS from Escherichia coli, whereas LPS-induced IL-10 was greatly inhibited. MDCs activated with lactobacilli clearly skewed CD4(+) and CD8(+) T cells to T helper 1 and Tc1 polarization, as evidenced by secretion of IFN-gamma, but not IL-4 or IL-13. These results emphasize a potentially important role for lactobacilli in modulating immunological functions of DCs and suggest that certain strains could be particularly advantageous as vaccine adjuvants, by promoting DCs to regulate T cell responses toward T helper 1 and Tc1 pathways.

  1. Activity of Polyphenolic Compounds against Candida glabrata

    Directory of Open Access Journals (Sweden)

    Ricardo Salazar-Aranda

    2015-09-01

    Full Text Available Opportunistic mycoses increase the morbidity and mortality of immuno-compromised patients. Five Candida species have been shown to be responsible for 97% of worldwide cases of invasive candidiasis. Resistance of C. glabrata and C. krusei to azoles has been reported, and new, improved antifungal agents are needed. The current study was designed to evaluatethe activity of various polyphenolic compounds against Candida species. Antifungal activity was evaluated following the M27-A3 protocol of the Clinical and Laboratory Standards Institute, and antioxidant activity was determined using the DPPH assay. Myricetin and baicalein inhibited the growth of all species tested. This effect was strongest against C. glabrata, for which the minimum inhibitory concentration (MIC value was lower than that of fluconazole. The MIC values against C. glabrata for myricitrin, luteolin, quercetin, 3-hydroxyflavone, and fisetin were similar to that of fluconazole. The antioxidant activity of all compounds was confirmed, and polyphenolic compounds with antioxidant activity had the greatest activity against C. glabrata. The structure and position of their hydroxyl groups appear to influence their activity against C. glabrata.

  2. Antagonistic activity of dairy lactobacilli against gram-foodborne pathogens - doi: 10.4025/actascitechnol.v36i1.18776

    Directory of Open Access Journals (Sweden)

    Marco Geria

    2014-01-01

    Full Text Available Thirty-five strains of lactic acid bacteria were isolated from artisanal raw milk cheese, presumptively identified and tested against one dairy Escherichia coli strain. Six lactobacilli, exhibiting antagonistic activity, were identified at the species level and their action was evaluated against four strains of Gram-foodborne pathogens (Escherichia coli O26, Escherichia coli O157:H7, Salmonella spp. 1023, and Salmonella Typhimurium and the control strain Escherichia coli ATCC 45922. The antagonistic activity was determined by spot method and the inhibition zones were measured by Autodesk AutoCAD 2007. Three strains, all Lactobacillus paracasei, were active against all the pathogens; the other strains, all Lactobacillus plantarum, showed antagonistic activity against some pathogens. This study highlights the intense and different antagonistic activity induced by lactobacilli against various foodborne pathogens thus demonstrating that using selected lactic acid bacteria strains as adjunct cultures could be an effective strategy to prevent the development of foodborne pathogens in artisanal raw milk cheeses, and thus improving their safety.

  3. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense

    Directory of Open Access Journals (Sweden)

    Piera Valenti

    2018-03-01

    Full Text Available The innate defense system of the female mucosal genital tract involves a close and complex interaction among the healthy vaginal microbiota, different cells, and various proteins that protect the host from pathogens. Vaginal lactobacilli and lactoferrin represent two essential actors in the vaginal environment. Lactobacilli represent the dominant bacterial species able to prevent facultative and obligate anaerobes outnumber in vaginal microbiota maintaining healthy microbial homeostasis. Several mechanisms underlie the protection exerted by lactobacilli: competition for nutrients and tissue adherence, reduction of the vaginal pH, modulation of immunity, and production of bioactive compounds. Among bioactive factors of cervicovaginal mucosa, lactoferrin, an iron-binding cationic glycoprotein, is a multifunctional glycoprotein with antibacterial, antifungal, antiviral, and antiparasitic activities, recently emerging as an important modulator of inflammation. Lactobacilli and lactoferrin are largely under the influence of female hormones and of paracrine production of various cytokines. Lactoferrin is strongly increased in lower genital tract mucosal fluid of women affected by Neisseria gonorrheae, Chlamydia trachomatis, and Trichomonas vaginalis infections promoting both innate and adaptive immune responses. In vaginal dysbiosis characterized by low amounts of vaginal lactobacilli and increased levels of endogenous anaerobic bacteria, the increase in lactoferrin could act as an immune modulator assuming the role normally played by the healthy microbiota in vaginal mucosa. Then lactoferrin and lactobacilli may be considered as biomarkers of altered microbial homeostasis at vaginal level. Considering the shortage of effective treatments to counteract recurrent and/or antibiotic-resistant bacterial infections, the intravaginal administration of lactobacilli and lactoferrin could be a novel efficient therapeutic strategy and a valuable tool to restore

  4. The scavenging effects of tea polyphenol and quercetin on active oxygen species

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiechen; Dong Jirong; Wang Wenfeng; Lin Nianyun

    1993-01-01

    The abilities of scavenging active oxygen species, O 2 free radical and OH., by tea polyphenols and quercetin have been studied by chemiluminescence, ESR and pulse radiolysis. Tea polyphenols and quercetin are all phenolic antioxidants. The synergetic studies show that both tea polyphenols and quercetin are strong free radical scavengers. Tea polyphenols are better than quercetin. the results from CL studies are in good accord with those from ESR and PR studies

  5. Antioxidant activity of polyphenol-enriched apple juice

    Directory of Open Access Journals (Sweden)

    Šumić Zdravko M.

    2009-01-01

    Full Text Available This paper shows that it is possible to improve antioxidant activity of apple juice by extraction of polyphenolic compounds from apple pomace, as waste, and their addition to the apple juice. Raw apple juice was prepared by pressing of apple mash. After thermal treatment of raw apple juice, depectinisation, additional clarification and filtration, the clarified juice was obtained. In raw and clarified apple juice soluble solids, acidity, reducing sugar, total sugars and brown component content were determined, as well as total dry matter, ash, acidity, reducing sugar, total sugars, total pectins, cellulose and starch content in apple mash and pomace. The total cotent of phenolics in clarified apple juice and apple pomace extract, determined spectrophotometrically using the Folin- Ciocalteu reagent, was 0.496 mg/ml and 6.505 mg/g, respectively. The antioxidant activity of clarified and polyphenol-enriched clarified juice (with addition of apple pomace extract in the concentrations 0.05 g, 0.1 g, 0.5 g and 1 g of phenolic compounds per liter of clarified apple juice was examined on stable 1,1-diphenyl-2-picrylhydrazyl (DPPH free radicals. Based on the obtained results it can be concluded that polyphenol-enriched clarified juice was more effective on DPPH radicals than the clarified apple juice.

  6. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  7. Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE Fruits

    Directory of Open Access Journals (Sweden)

    Tunde Jurikova

    2012-12-01

    Full Text Available Chinese hawthorn (Crataegus pinnatifida Bge. fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid—active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  8. Antioxidant activity and nutrient release from polyphenol-enriched cheese in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Langlois, Ariane; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2016-03-01

    Green tea polyphenols are recognized for their antioxidant properties and their effects on lipid digestion kinetics. Polyphenols are sensitive to degradation in the intestinal environment. Interactions with dairy proteins could modulate the stability and biological activity of polyphenols during digestion. The objective of this study was to evaluate the release of nutrients (polyphenols, fatty acids and peptides) and the antioxidant activity in polyphenol-enriched cheese containing different levels of calcium in a simulated gastrointestinal environment. The relationship between cheese matrix texture, matrix degradation and nutrient release during digestion was also studied. Green tea extract was added to milk at 0% or 0.1%, and cheeses were produced on a laboratory scale. The level of available calcium was adjusted to low (Ca(low)), regular (Ca(reg)) or high (Ca(high)) during the salting step of the cheese-making process. Cheeses were subjected to simulated digestion. The rate and extent of fatty acid release were 21% lower for Ca(low) cheese than for Ca(reg) and Ca(high) cheeses. The greater adhesiveness of Ca(low) cheese, which resulted in lower rates of matrix degradation and proteolysis, contributed to the reduced rate of lipolysis. The presence of green tea extract in cheese reduced the release of free fatty acids at the end of digestion by 7%. The addition of green tea extract increased cheese hardness but did not influence matrix degradation or proteolysis profiles. The formation of complexes between tea polyphenols and proteins within the cheese matrix resulted in a more than twofold increase in polyphenol recovery in the intestinal phase compared with the control (tea polyphenol extract incubated with polyphenol-free cheese). Antioxidant activity was 14% higher in the digest from polyphenol-enriched cheese than in the control. These results suggest that cheese is an effective matrix for the controlled release of nutrients and for the protection of green

  9. Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso

    NARCIS (Netherlands)

    Karou, D.; Dicko, M.H.; Simpore, J.; Traore, A.S.

    2005-01-01

    Polyphenols from four medicinal plants of Burkina Faso, Combretum micranthum, Khaya senegalensis, Pterocarpus erinaceus and Sida acuta, were screened for their antioxidant and antimicrobial activities against pathogenic bacteria. The medicinal plants displayed different polyphenols contents and

  10. Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2016-10-01

    Full Text Available In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42% had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001. Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%, Lactobacillus plantarum 1086-1 (82%, Lactobacillus casei 1089 (81%, Lactobacillus casei 1138 (79%, Lactobacillus buchneri 1059 (78

  11. Lactobacilli interfere with Streptococcus pyogenes hemolytic activity and adherence to host epithelial cells

    Directory of Open Access Journals (Sweden)

    Sunil D Saroj

    2016-07-01

    Full Text Available Streptococcus pyogenes (Group A streptococcus (GAS, a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of GAS. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS. Conditioned medium (CM from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289 and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics.

  12. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts

    Directory of Open Access Journals (Sweden)

    Gabriela Paun

    Full Text Available ABSTRACT This study evaluated the anti-inflammatory and antioxidant activities of Impatiens noli-tangere L., Balsaminaceae, and of Stachys officinalis L., Lamiaceae, polyphenolic-rich extracts obtained by nanofiltration process. Results showed the great potential and efficiency of the nanofiltration process to concentrate the herbal extract's main polyphenolic compounds (over 91% phenolic acids and flavonoids retention. S. officinalis polyphenolic-rich extracts had high antioxidant activities (IC50 2.5 µg/ml compared to I. noli-tangere polyphenolic-rich extracts (IC50 19.3 µg/ml and similar with that of ascorbic acid. Polyphenolic-rich extracts were investigated to determine the pro-inflammatory enzymes lipoxygenase, cyclooxygenase-1 and cyclooxygenase-2 and their inhibitory activity. Furthermore, high inhibitory activity of the examined extracts was reported for the first time, for both lipoxygenase (IC50 2.46 and 1.22 µg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively, cyclooxygenase-1 (IC50 18.4 and 10.1 µg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively and cyclooxygenase-2 (IC50 = 1.9 and 1.2 mg/ml for I. noli-tangere and S. officinalis polyphenolic-rich extracts, respectively. Additionally, the in vivo studies showed that S. officinalis polyphenolic-rich extract has a higher anti-inflammatory effect, the hind-paw volume employed for both models determined that I. noli-tangere polyphenolic-rich extract and is also higher than that of diclofenac. It was noticed that their anti-inflammatory effect persists for more than 24 h. The I. noli-tangere and S. officinalis polyphenolic-rich extracts exert anti-inflammatory and antioxidant activities and these properties can be at least partly assigned to the presence of ursolic acid, caffeic acid, rosmarinic acid, quercetin and also anthocyanidins (genistin. The obtained results indicate the anti-inflammatory potential of the

  13. Optimization of Conditions for Extraction of Polyphenols and the Determination of the Impact of Cooking on Total Polyphenolic, Antioxidant, and Anticholinesterase Activities of Potato

    Science.gov (United States)

    Laib, Imen; Barkat, Malika

    2018-01-01

    In this work we optimized the cooking and extraction conditions for obtaining high yields of total polyphenols from potato and studied the effect of three domestic methods of cooking on total phenols, antioxidant activity, and anticholinesterase activities. The optimization of the experiment was carried out by the experimental designs. The extraction of the polyphenols was carried out by maceration and ultrasonication. Determination of the polyphenols was performed by using the Folin-Ciocalteau reagent method. The antioxidant activity was evaluated by three methods: 1,1-diphenyl-2-picryl-hydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and CUPRAC(Cupric reducing antioxidant capacity), the anticholinesterase activity was evaluated by the method of Elmann. The optimum of total phenolic obtained was: 4.668 × 104, 1.406 × 104, 3357.009, 16,208.99 µg Gallic Acid Equivalent (GAE)/g of dry extract for crude potato, steamed potatoes, in boiling water, and by microwave, respectively. The three modes of cooking cause a decrease in the total polyphenol contents, antioxidant and anticholinesterase activities. PMID:29522482

  14. Retaining Oxidative Stability of Emulsified Foods by Novel Nonmigratory Polyphenol Coated Active Packaging.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2016-07-13

    Oxidation causes lipid rancidity, discoloration, and nutrient degradation that decrease shelf life of packaged foods. Synthetic additives are effective oxidation inhibitors, but are undesirable to consumers who prefer "clean" label products. The aim of this study was to improve oxidative stability of emulsified foods by a novel nonmigratory polyphenol coated active packaging. Polyphenol coatings were applied to chitosan functionalized polypropylene (PP) by laccase assisted polymerization of catechol and catechin. Polyphenol coated PP exhibited both metal chelating (39.3 ± 2.5 nmol Fe(3+) cm(-2), pH 4.0) and radical scavenging (up to 52.9 ± 1.8 nmol Trolox eq cm(-2)) capacity, resulting in dual antioxidant functionality to inhibit lipid oxidation and lycopene degradation in emulsions. Nonmigratory polyphenol coated PP inhibited ferric iron promoted degradation better than soluble chelators, potentially by partitioning iron from the emulsion droplet interface. This work demonstrates that polyphenol coatings can be designed for advanced material chemistry solutions in active food packaging.

  15. Determination of biologically active phenols and polyphenols in various objects by chromatographic techniques

    International Nuclear Information System (INIS)

    Kochetova, M V; Semenistaya, E N; Larionov, Oleg G; Revina, A A

    2007-01-01

    Chromatographic techniques for determination of biologically active phenols and polyphenols are considered. Various methods for sample preparation and detection are compared. The advantages of high performance liquid chromatography with spectrophotometric detection for determination of antioxidants are demonstrated. Data on determination of biologically active phenols and polyphenols published in the period from 1995 to 2005 are analysed.

  16. The Antibacterial Activity of Date Syrup Polyphenols against S. aureus and E. coli.

    Science.gov (United States)

    Taleb, Hajer; Maddocks, Sarah E; Morris, R Keith; Kanekanian, Ara D

    2016-01-01

    Plant-derived products such as date syrup (DS) have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. DS is rich in polyphenols and this study hypothesized that DS polyphenols demonstrate inherent antimicrobial activity, which cause oxidative damage. This investigation revealed that DS has a high content of total polyphenols (605 mg/100 g), and is rich in tannins (357 mg/100 g), flavonoids (40.5 mg/100 g), and flavanols (31.7 mg/100 g) that are known potent antioxidants. Furthermore, DS, and polyphenols extracted from DS, the most abundant bioactive constituent of DS are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus, respectively. It has further been shown that the extracted polyphenols independently suppress the growth of bacteria at minimum inhibitory concentration (MIC) of 30 and 20 mg/mL for E. coli and S. aureus, and have observed that DS behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. At sub-lethal MIC concentrations DS demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations DS demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in DS did not significantly contribute to this effect. These findings highlight that DS's antimicrobial activity is mediated through hydrogen peroxide generation in inducing oxidative stress in bacteria.

  17. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    Science.gov (United States)

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Polyphenols and Glycemic Control

    Directory of Open Access Journals (Sweden)

    Yoona Kim

    2016-01-01

    Full Text Available Growing evidence from animal studies supports the anti-diabetic properties of some dietary polyphenols, suggesting that dietary polyphenols could be one dietary therapy for the prevention and management of Type 2 diabetes. This review aims to address the potential mechanisms of action of dietary polyphenols in the regulation of glucose homeostasis and insulin sensitivity based on in vitro and in vivo studies, and to provide a comprehensive overview of the anti-diabetic effects of commonly consumed dietary polyphenols including polyphenol-rich mixed diets, tea and coffee, chocolate and cocoa, cinnamon, grape, pomegranate, red wine, berries and olive oil, with a focus on human clinical trials. Dietary polyphenols may inhibit α-amylase and α-glucosidase, inhibit glucose absorption in the intestine by sodium-dependent glucose transporter 1 (SGLT1, stimulate insulin secretion and reduce hepatic glucose output. Polyphenols may also enhance insulin-dependent glucose uptake, activate 5′ adenosine monophosphate-activated protein kinase (AMPK, modify the microbiome and have anti-inflammatory effects. However, human epidemiological and intervention studies have shown inconsistent results. Further intervention studies are essential to clarify the conflicting findings and confirm or refute the anti-diabetic effects of dietary polyphenols.

  19. Separation of polyphenols and arecoline from areca nut (Areca catechu L.) by solvent extraction, its antioxidant activity, and identification of polyphenols.

    Science.gov (United States)

    Chavan, Yogita V; Singhal, Rekha S

    2013-08-15

    Areca nut (Areca catechu L.) or betel nut, a commercial cash crop, is a rich source of polyphenols but also contains toxic alkaloids, mainly arecoline. Separation of these bioactive polyphenols from toxic constituents could propel the safe and beneficial use of betel nut; also it will help arecanut processing industries to produce arecoline-free products. With the aim to develop an effective method for maximum extraction of polyphenols with minimum arecoline, several factors such as nature of the solvent, pH (2-10), substrate concentration (6-14 %) and extraction time (30-150 min) under shaking conditions were evaluated. Qualitative analysis was done using spectrophotometry and high-performance liquid chromatography (HPLC). Maximum extraction of polyphenols (407.47 mg GAE g(-1)), total tannin and its antioxidant activity with minimum arecoline (1.73 mg g(-1) of sample) was achieved by using 80% acetone at pH 4 for 90 min with 10% w/v substrate under shaking conditions. Solvent extraction under optimized parameters gave maximum polyphenols with minimum extraction of arecoline, and highest ratio of polyphenols to arecoline. HPLC and liquid chromatography-mass spectrometry results confirmed the presence of catechin and epicatechin in the extract, which suggests its potential as a source of bioactives. © 2013 Society of Chemical Industry.

  20. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: targeting cell membrane.

    Science.gov (United States)

    Bhattacharya, D; Ghosh, D; Bhattacharya, S; Sarkar, S; Karmakar, P; Koley, H; Gachhui, R

    2018-02-01

    The present study was undertaken to determine the mechanism of antibacterial activity of a polyphenolic fraction, composed of mainly catechin and isorhamnetin, previously isolated from Kombucha, a 14-day fermented beverage of sugared black tea, against the enteropathogen Vibrio cholerae N16961. Bacterial growth was found to be seriously impaired by the polyphenolic fraction in a dose-dependent manner. Scanning Electron Microscopy demonstrated morphological alterations in bacterial cells when exposed to the polyphenolic fraction in a concentration-dependent manner. Permeabilization assays confirmed that the fraction disrupted bacterial membrane integrity in both time- and dose-dependent manners, which were proportional to the production of intracellular reactive oxygen species (ROS). Furthermore, each of the polyphenols catechin and isorhamnetin showed the ability to permeate bacterial cell membranes by generating oxidative stress, thereby suggesting their role in the antibacterial potential of Kombucha. Thus, the basic mechanism of antibacterial activity of the Kombucha polyphenolic fraction against V. cholerae involved bacterial membrane permeabilization and morphological changes, which might be due to the generation of intracellular ROS. To the best of our knowledge, this is the first report on the investigation of antibacterial mechanism of Kombucha, which is mostly attributed to its polyphenolic content. The emergence of multidrug-resistant Vibrio cholerae strains has hindered an efficient anti-Vibrio therapy. This study has demonstrated the membrane damage-mediated antibacterial mechanism of Kombucha, a popular fermented beverage of sugared tea, which is mostly attributed to its polyphenolic content. This study also implies the exploitation of Kombucha as a potential new source of bioactive polyphenols against V. cholerae. © 2017 The Society for Applied Microbiology.

  1. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  2. Effects of vaginal lactobacilli in Chlamydia trachomatis infection.

    Science.gov (United States)

    Mastromarino, Paola; Di Pietro, Marisa; Schiavoni, Giovanna; Nardis, Chiara; Gentile, Massimo; Sessa, Rosa

    2014-07-01

    Increasing evidence indicates that abnormal vaginal flora lacking lactobacilli facilitates the acquisition of several sexually transmitted diseases including Chlamydia trachomatis. C. trachomatis, the most common bacterial agent of genital infections worldwide, can progress from the lower to upper reproductive tract and induce severe sequelae. The ability of C. trachomatis to develop into a persistent form has been suggested as key pathogenetic mechanism underlying chronic infections and sequelae. The aim of our study was to investigate the C. trachomatis interaction with vaginal microbiota analyzing the effects of Lactobacillus strains (L. brevis and L. salivarius) on the different phases of C. trachomatis developmental cycle. In addition, the effect of lactobacilli on persistent chlamydial forms induced by HSV-2 coinfection has also been evaluated. Our results demonstrated significant inhibition of C. trachomatis multiplication by vaginal lactobacilli. L. brevis was significantly more effective than L. salivarius (pinfection cycle suggesting that the ability of lactobacilli to protect from infection is strain-dependent. Lactobacilli had an adverse effect on elementary chlamydial bodies (pvaginal microbiota can reduce the risk of acquiring C. trachomatis infection and counteract the development of persistent chlamydial forms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Importance of lactobacilli in food and feed biotechnology.

    Science.gov (United States)

    Giraffa, Giorgio; Chanishvili, Nina; Widyastuti, Yantyati

    2010-01-01

    The genus Lactobacillus is a heterogeneous group of lactic acid bacteria (LAB) with important implications in food fermentation. The ability to colonize a variety of habitats is a direct consequence of the wide metabolic versatility of this group of LAB. Consequently, lactobacilli have been used for decades in food preservation, as starters for dairy products, fermented vegetables, fish and sausages as well as silage inoculants. Lactobacilli have also been proposed as probiotics and microbial cell factories for the production of nutraceuticals. However, a wide range of applications of lactobacilli in food biotechnology remains potential, whereas a number of important strains still need to be discovered and characterized. This article provides an overview of the taxonomy of lactobacilli and describes four of the most significant case studies on the application of this group of LAB in food and feed biotechnology, including their use as probiotics, dairy starters, silage inoculants, and microbial cell factories. The importance of access to and exchange of biological material within and between different strain collections as a crucial step in expanding the range of different biotechnological applications of lactobacilli is also emphasized. (c) 2010 Elsevier Masson SAS. All rights reserved.

  4. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2018-01-01

    Full Text Available The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics.

  5. The In Vitro Antioxidant Activity and Inhibition of Intracellular Reactive Oxygen Species of Sweet Potato Leaf Polyphenols

    Science.gov (United States)

    Sun, Hongnan; Mu, Bona; Song, Zhen; Ma, Zhimin

    2018-01-01

    The in vitro antioxidant activity and inhibition of intracellular reactive oxygen species (ROS) of the total and individual phenolic compounds from Yuzi No. 7 sweet potato leaves were investigated in this study. Sweet potato leaf polyphenols possessed significantly higher antioxidant activity than ascorbic acid, tea polyphenols, and grape seed polyphenols. Among the individual phenolic compounds, caffeic acid showed the highest antioxidant activity, followed by monocaffeoylquinic acids and dicaffeoylquinic acids, while 3,4,5-tri-O-caffeoylquinic acid showed the lowest value. Sweet potato leaf polyphenols could significantly decrease the level of intracellular ROS in a dose-dependent manner. The order of the inhibiting effect of individual phenolic compounds on the intracellular ROS level was not in accordance with that of antioxidant activity, suggesting that there was no direct relationship between antioxidant activity and intracellular ROS-inhibiting effect. Sweet potato leaves could be a good source of biologically active polyphenols with multiple applications in the development of foods, health products, pharmaceuticals, and cosmetics. PMID:29643978

  6. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis.

    Science.gov (United States)

    Razzak, Mohammad Sabri A; Al-Charrakh, Alaa H; Al-Greitty, Bara Hamid

    2011-04-01

    Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effects of some antibiotics on Lactobacilli isolates. In this study (110) vaginal swabs were obtained from women suffering from vaginitis who admitted to Babylon Hospital of Maternity and Paediatrics in Babylon province, Iraq. The study involved the role of intrauterine device among married women with vaginitis and also involved isolation of opportunistic bacterial isolates among pregnant and non pregnant women. This study also involved studying probiotic role of Lactobacilli by production of some defense factors like hydrogen peroxide, bacteriocin, and lactic acid. Results revealed that a total of 130 bacterial isolates were obtained. Intrauterine device was a predisposing factor for vaginitis. The most common opportunistic bacterial isolates were Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, and Klebsiella pneumoniae. All Lactobacilli were hydrogen peroxide producers while some isolates were bacteriocin producers that inhibited some of opportunistic pathogens (S. aureus, E. coli). Lactobacilli were sensitive to erythromycin while 93.3% of them were resistant to ciprofloxacin and (40%, 53.3%) of them were resistant to amoxicillin and gentamycin respectively. Results revealed that there was an inverse relationship between Lactobacilli presence and organisms causing vaginitis. This may be attributed to the production of defense factors by Lactobacilli. The types of antibiotics used to treat vaginitis must be very selective in order not to kill the beneficial bacteria

  7. Antioxidant and antimicrobial activities of polyphenols from ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... population depend on them as primary health care. (Akinyemi ... The mechanism of polyphenols toxicity against microbes may be related to ... and incubated at room temperature for 3 min. ..... polyphenols in copper foliage.

  8. Vaginal Lactobacilli Reduce Neisseria gonorrhoeae Viability through Multiple Strategies: An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Claudio Foschi

    2017-12-01

    Full Text Available The emergence and spread of antimicrobial resistance in Neisseria gonorrhoeae (GC underline the need of “antibiotic-free” strategies for the control of gonorrhea. The aim of this study was to assess the anti-gonococcal activity of 14 vaginal Lactobacillus strains, belonging to different species (L. crispatus, L. gasseri, L. vaginalis, isolated from healthy pre-menopausal women. In particular, we performed “inhibition” experiments, evaluating the ability of both lactobacilli cells and culture supernatants in reducing GC viability, at two different contact times (7 and 60 min. First, we found that the acidic environment, associated to lactobacilli metabolism, is extremely effective in counteracting GC growth, in a pH- and time-dependent manner. Indeed, a complete abolishment of GC viability by lactobacilli supernatants was observed only for pH values < 4.0, even at short contact times. On the contrary, for higher pH values, no 100%-reduction of GC growth was reached at any contact time. Experiments with organic/inorganic acid solutions confirmed the strict correlation between the pH levels and the anti-gonococcal effect. In this context, the presence of lactate seemed to be crucial for the anti-gonococcal activity, especially for pH values in the range 4.4–5.3, indicating that the presence of H+ ions is necessary but not sufficient to kill gonococci. Moreover, experiments with buffered supernatants led to exclude a direct role in the GC killing by other bioactive molecules produced by lactobacilli. Second, we noticed that lactobacilli cells are able to reduce GC viability and to co-aggregate with gonococci. In this context, we demonstrated that released-surface components with biosurfactant properties, isolated from “highly-aggregating” lactobacilli, could affect GC viability. The antimicrobial potential of biosurfactants isolated from lactobacilli against pathogens has been largely investigated, but this is the first report about a

  9. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    -free and caries-susceptible individuals. Conclusions. The selected lactobacilli displayed co-aggregation activity and inhibited growth of clinical mutans streptococci. The growth inhibition was strain-specific and dependent on pH and cell concentration. The findings indicate that the outcome of lactobacilli...

  10. Lactobacilli Activate Human Dendritic Cells that Skew T Cells Toward T Helper 1 Polarization

    National Research Council Canada - National Science Library

    Mohamadzadeh, Mansour; Olson, Scott; Kalina, Warren V; Ruthel, Gordon; Demmin, Gretchen L; Warfield, Kelly L; Bavari, Sina; Klaenhammer, Todd R

    2005-01-01

    .... Because DCs can naturally or therapeutically encounter lactobacilli, we investigated the effects of several well defined strains, representing three species of Lactobacillus on human myeloid DCs (MDCs...

  11. Antibacterial Activity of Polyphenolic Fraction of Kombucha Against Enteric Bacterial Pathogens.

    Science.gov (United States)

    Bhattacharya, Debanjana; Bhattacharya, Semantee; Patra, Madhu Manti; Chakravorty, Somnath; Sarkar, Soumyadev; Chakraborty, Writachit; Koley, Hemanta; Gachhui, Ratan

    2016-12-01

    The emergence of multi-drug-resistant enteric pathogens has prompted the scientist community to explore the therapeutic potentials of traditional foods and beverages. The present study was undertaken to investigate the efficacy of Kombucha, a fermented beverage of sugared black tea, against enterotoxigenic Escherichia coli, Vibrio cholerae, Shigella flexneri and Salmonella Typhimurium followed by the identification of the antibacterial components present in Kombucha. The antibacterial activity was evaluated by determining the inhibition zone diameter, minimal inhibitory concentration and minimal bactericidal concentration. Kombucha fermented for 14 days showed maximum activity against the bacterial strains. Its ethyl acetate extract was found to be the most effective upon sequential solvent extraction of the 14-day Kombucha. This potent ethyl acetate extract was then subjected to thin layer chromatography for further purification of antibacterial ingredients which led to the isolation of an active polyphenolic fraction. Catechin and isorhamnetin were detected as the major antibacterial compounds present in this polyphenolic fraction of Kombucha by High Performance Liquid Chromatography. Catechin, one of the primary antibacterial polyphenols in tea was also found to be present in Kombucha. But isorhamnetin is not reported to be present in tea, which may thereby suggest the role of fermentation process of black tea for its production in Kombucha. To the best of our knowledge, this is the first report on the presence of isorhamnetin in Kombucha. The overall study suggests that Kombucha can be used as a potent antibacterial agent against entero-pathogenic bacterial infections, which mainly is attributed to its polyphenolic content.

  12. Immunomodulatory effects and anti-Candida activity of lactobacilli in macrophages and in invertebrate model of Galleria mellonella.

    Science.gov (United States)

    de Oliveira, Felipe Eduardo; Rossoni, Rodnei Dennis; de Barros, Patricia Pimentel; Begnini, Barbara Evelyn; Junqueira, Juliana Campos; Jorge, Antonio Olavo Cardoso; Leão, Mariella Vieira Pereira; de Oliveira, Luciane Dias

    2017-09-01

    Due to the growing number of multi-resistant Candida spp., adjuvant treatments that may help combat these fungal pathogens are relevant and useful. This study evaluated the immunomodulation and anti-Candida activity of Lactobacillus rhamnosus (LR), Lactobacillus acidophilus and Lactobacillus paracasei suspensions, either single- or multiple-strain, in mouse macrophages (RAW 264.7) and Galleria mellonella (GM). Mouse macrophages were activated by different lactobacilli suspensions and challenged with C. albicans (CA). Tumor necrosis factor (TNF)-α, interleukin IL-1β, IL-6 and IL-17 production and cell viability were investigated. LR was the best suspension for stimulating all evaluated cytokines and thus was used in subsequent in vivo assays. Two C. albicans clinical strains, CA21 and CA60, were then added to the GM assays to further confirm the results. LR suspension was injected into the larvae 24 h before challenging with CA. Survival curve, CFU per larva and hemocytes were counted. In the GM, the LR suspension increased the survival rate and hemocyte counts and decreased the CFU per larva counts for all groups. Lactobacilli suspensions presented strain-dependent immunomodulation; however, single suspensions showed better results. Anti-Candida activity was demonstrated by decreased Candida counts in the GM with the use of LR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Analysis of Lactobacillus Products for Phages and Bacteriocins That Inhibit Vaginal Lactobacilli

    Directory of Open Access Journals (Sweden)

    Lin Tao

    1997-01-01

    Full Text Available Objective: Bacterial vaginosis is associated with an unexplained loss of vaginal lactobacilli. Previously, we have identified certain vaginal lactobacilli-released phages that can inhibit in vitro other vaginal lactobacilli. However, there is no apparent route for phages to be transmitted among women. The purpose of this study was to identify whether certain Lactobacillus products commonly used by women release phages or bacteriocins that can inhibit vaginal lactobacilli.

  14. Characterization and Genetic Improvement of Lactobacilli for Application in Probiotic Dairy Products

    OpenAIRE

    Ismail, Elsayed

    2007-01-01

    Lactobacilli have a worldwide industrial use as starters in the manufacturing of fermented dairy products. Moreover, some Lactobacillus strains have probiotic characteristics leading to increasing the use of lactobacilli in fermented food products. Increasing of probiotic lactobacilli in food products and nutritional supplements underscores the need to evaluate and correctly identify these useful bacteria. The aims of this study were to evaluate putative probiotic lactobacilli isolated from d...

  15. Molecular characterization of lactobacilli isolated from fermented idli batter

    Directory of Open Access Journals (Sweden)

    Perumal Jayaprabha Agaliya

    2013-12-01

    Full Text Available Lactic acid bacteria are non pathogenic organism widely distributed in nature typically involved in a large number of spontaneous food fermentation. The purpose of this study was to characterize the bacteriocinogenic lactobacilli from fermented idli batter which can find application in biopreservation and biomedicine. Eight most promising lactobacilli were chosen from twenty two isolates based on their spectrum of activity against other lactic acid bacteria and pathogens. The eight lactobacilli were characterized based on the various classical phenotypic tests, physiological tests and biochemical tests including various carbohydrate utilization profiles. All isolates were homo fermentative, catalase, and gelatin negative. Molecular characterization was performed by RAPD, 16S rRNA analysis, 16S ARDRA, and Multiplex PCR for species identification. RAPD was carried out using the primer R2 and M13. Five different clusters were obtained based on RAPD indicating strain level variation. 16S rRNA analysis showed 99 to 100% homology towards Lactobacillus plantarum. The restriction digestion pattern was similar for all the isolates with the restriction enzyme AluI. The subspecies were identified by performing Multiplex PCR using species specific primer. Among the five clusters, three clusters were clearly identified as Lactobacillus plantarum subsp. plantarum, Lactobacillus pentosus, and Lactobacillus plantarum subsp. argentoratensis.

  16. Isolation of tannin-degrading lactobacilli from humans and fermented foods.

    Science.gov (United States)

    Osawa, R; Kuroiso, K; Goto, S; Shimizu, A

    2000-07-01

    Lactobacilli with tannase activity were isolated from human feces and fermented foods. A PCR-based taxonomic assay revealed that the isolates belong to Lactobacillus plantarum, L. paraplantarum, and L. pentosus. Additional studies on a range of Lactobacillus species from established culture collections confirmed that this enzymatic activity is a phenotypic property common to these three species.

  17. Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting

    Science.gov (United States)

    Dybkowska, Ewa; Sadowska, Anna; Rakowska, Rita; Dębowska, Maria; Świderski, Franciszek; Świąder, Katarzyna

    The roasting stage constitutes a key component in the manufacturing process of natural coffee because temperature elicits changes in bioactive compounds such as polyphenols and that Maillard-reaction compounds appear, thus affecting the product’s sensory and antioxidant properties. Actual contents of these compounds may depend on which region the coffee is cultivated as well as the extent to which the beans are roasted To determine polyphenols content and antioxidant activity in the ‘Arabica’ coffee type coming from various world regions of its cultivation and which have undergone industrial roasting. Also to establish which coffee, taking into account the degree of roasting (ie. light, medium and strong), is nutritionally the most beneficial The study material was natural coffee beans (100% Arabica) roasted to various degrees, as aforementioned, that had been cultivated in Brazil, Ethiopia, Columbia and India. Polyphenols were measured in the coffee beans by spectrophotometric means based on the Folin-Ciocalteu reaction, whereas antioxidant activity was measured colourimetrically using ABTS+ cat-ionic radicals Polyphenol content and antioxidant activity were found to depend both on the coffee’s origin and degree of roasting. Longer roasting times resulted in greater polyphenol degradation. The highest polyphenol concentrations were found in lightly roasted coffee, ranging 39.27 to 43.0 mg/g, whereas levels in medium and strongly roasted coffee respectively ranged 34.06 to 38.43 mg/g and 29.21 to 36.89 mg/g. Antioxidant activity however significantly rose with the degree of roasting, where strongly roasted coffee had higher such activity than lightly roasted coffee. This can be explained by the formation of Maillard-reaction compounds during roasting, leading then to the formation of antioxidant melanoidin compounds which, to a large extent, compensate for the decrease in polyphenols during roasting Polyphenols levels and antioxidant activities in the

  18. Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine.

    Science.gov (United States)

    Nardini, Mirella; Garaguso, Ivana

    2018-03-09

    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1-10 μg) in the standard assays resulted in a significant, positive interference in the Folin-Ciocalteu's assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1-20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25-200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine.

  19. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity.

    Science.gov (United States)

    Kobori, Kinji; Maruta, Yuto; Mineo, Shigeru; Shigematsu, Toru; Hirayama, Masao

    2013-10-14

    Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO₂) extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1%) and polyphenols (84.7%). The antioxidant activity of the decaffeinated cocoa powder (DCP) made with this optimized SCCO₂ extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO₂ extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC). The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO₂ extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  20. Polyphenol-Retaining Decaffeinated Cocoa Powder Obtained by Supercritical Carbon Dioxide Extraction and Its Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Kinji Kobori

    2013-10-01

    Full Text Available Cocoa beans contain many functional ingredients such as theobromine and polyphenols, but also contain a relatively high amount of caffeine, which can negatively impact human health. It is therefore desirable to reduce caffeine levels in cocoa powder used to make chocolate or cocoa beverages while retaining functional ingredients. We have established conditions for supercritical carbon dioxide (SCCO2 extraction that remove 80.1% of the caffeine from cocoa powder while retaining theobromine (94.1% and polyphenols (84.7%. The antioxidant activity of the decaffeinated cocoa powder (DCP made with this optimized SCCO2 extraction method was 85.3% that of non-processed cocoa powder. The total procyanidin and total polyphenol concentrations of the DCPs resulting from various SCCO2 extractions showed a significant positive correlation with oxygen radical absorbance capacity (ORAC. The correlation coefficient between total polyphenols and ORAC was higher than that between total procyanidins and ORAC; thus, the concentration of total polyphenols might be a greater factor in the antioxidant activity of DCP. These results indicate that we could remove large quantities of caffeine from conventional high-cocoa products while retaining the functional benefits of high polyphenol content. This SCCO2 extraction method is expected to be applicable high-cocoa products, such as dark chocolate.

  1. Correlation of antioxidant activity of dried berry infusions with the polyphenols and selected microelements contents

    Directory of Open Access Journals (Sweden)

    M. M. Bratu

    2018-04-01

    Full Text Available Antioxidant activity was measured by ferric reducing ability of plasma (FRAP assay in seven types of infusions prepared from commercial dried berry fruit products: Rosa canina, Vaccinium vitis-idaea, Hiphophae rhamnoides, Hibiscus sabdariffa and three fruit mixtures. Total polyphenols (TP, total anthocyanins and the polyphenolic compounds were determined by HPLC equipped with diode array detector. To estimate the amount of elements released from fruits into the water extracts, levels of Fe, Mn, Zn and Cu in dried samples and in infusions were determined by flame atomic absorption spectrometry. The correlation between polyphenols content and the antioxidant activities and the microelements in the infusions and the antioxidant activities were estimated using the Pearson’s correlation test. The results showed a high, positive and significant correlation (r = 0.9465 between the FRAP values and TP content, meaning that the concentration of phenolic compounds may be a good indicator of the reducing capacity in the infusions. Correlations varied (positive, negative and weak between antioxidant and mineral extractability of berry infusions. Among the polyphenolic compounds, gallic acid contributed particularly to the antioxidant capacity of the studied samples (r = 0.563. The correlation of antioxidants, total polyphenols with mineral extractability showed the influence of antioxidant compound on mineral bioavailability.

  2. Prevention of urogenital infections by oral administration of probiotic lactobacilli

    Directory of Open Access Journals (Sweden)

    Vedran Slačanac

    2010-09-01

    Full Text Available In general, lactobacilli are nonpathogenic part of the normal urogenital microflora and have been recognized as a barrier against colonization of unwanted (pathogen microflora. The results of many in vitro studies suggest following mechanisms of probiotic lactobacilli action in urogenital tract: adhesion to urogenital cells, competition with pathogens for adhesive sites, production of biosurfactants, co-aggregation with pathogens, production of antimicrobial substances (organic acids, hydrogen peroxide and bacteriocins and stimulation of immune system. From 80 different lactobacilli species isolated from human or animal intestinal and urogenital tract, only few lactobacilli strains possess optimal properties to be effective as probiotic therapeutics against infections in the urogenital tract. Combination of Lactobacillus rhamnosus GR-1 and Lactobacillus fermentum RC-14 was proposed as the best one for epithelial vaginal cells colonization and inhibition of uropathogens adhesion. The results of a number of clinical studies confirmed beneficial role of oral lactobacilli. However, the most of commercially available Lactobacillus strains, which are ordinary used in fermented dairy products,are seriously limited in protection of urogenital tract when they are ingested orally.

  3. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Methods: Polyphenol content was determined using spectrophotometric and High performance liquid ... Keywords: European cornel, Blackthorn, Wild blackberry, Polyphenols, Antioxidant, Antimicrobial. Tropical ... Acetonitrile, and acetic acid of HPLC-grade were ..... Anthocyanin Quantification and radical scavenging.

  4. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils

    Science.gov (United States)

    Yakushev, A. V.; Kuznetsova, I. N.; Blagodatskaya, E. V.; Blagodatsky, S. A.

    2014-05-01

    Under conditions of the global climate warming, the changes in the reserves of soil humus depend on the temperature sensitivities of polyphenol peroxidases (PPPOs) and polyphenol oxidases (PPOs). They play an important role in lignin decomposition, mineralization, and humus formation. The temperature dependence of the potential enzyme activity in modern and buried soils has been studied during incubation at 10 or 20°C. The experimental results indicate that it depends on the availability of the substrate and the presence of oxygen. The activity of PPOs during incubation in the absence of oxygen for two months decreases by 2-2.5 times, which is balanced by an increase in the activity of PPPOs by 2-3 times. The increase in the incubation temperature to 20°C and the addition of glucose accelerates this transition due to the more abrupt decrease in the activity of PPOs. The preincubation of the soil with glucose doubles the activity of PPPOs but has no significant effect on the activity of PPOs. The different effects of temperature on two groups of the studied oxidases and the possibility of substituting enzymes by those of another type under changing aeration conditions should be taken into consideration in predicting the effect of the climate warming on the mineralization of the soil organic matter. The absence of statistically significant differences in the enzymatic activity between the buried and modern soil horizons indicates the retention by the buried soil of some of its properties (soil memory) and the rapid restoration of high enzymatic activity during the preincubation.

  5. The study of Antimicrobial and Anti-adhesive effect of ProbioticLactobacilli on Uropathogenic Escherichia coli (UPEC

    Directory of Open Access Journals (Sweden)

    Mahsa Sadri

    2016-06-01

    Full Text Available Introduction: One of the most important factors in Urinary Tract Infection caused by Uropathogenic Escherichia coli, is the attachment of bacteria to the host cell surface. Thus, inhibition of bacterial attachment is the appropriate action to prevent infection. The aim of this study was to investigate the antimicrobial and especially anti adhesive characteristics of probiotic bacteria against Escherichia coli by using microbial techniques. Materials and methods: In this study two strains of Lactobacillus acidophilus PTCC 1643 and Lactobacillus casei PTCC 1608 were used .40 Uropathogenic Escherichia coli were collected from Semnan province hospitals.20 samples with the more capability of biofilm production were selected for microbial tests. To evaluate the antimicrobial activity of complete culture and supernatant of probiotic lactobacilli, modified double layer method and dilution of supernatant were used, respectively. The mechanism of co- aggregation of lactobacilli with pathogens was examined. The microtitre plate method was used to detect anti-adhesive activity of Lactobacilli supernatant. Results: The antimicrobial and anti-adhesive effects of probiotic lactobacilli on Uropathogenic Escherichia coli were confirmed in all tests. In this study, Lactobacillus casie with the growth inhibitory (42/7 mm and anti-adhesive (46/7mm effects were reported as a proper probiotic bacterium. Discussion and conclusion: According to the results, the probiotic lactobacilli have spectacular effects to prevent attachment, biofilm formation and pathogenicity of UPEC, so using them to prevent and treat Urinary tract infection is a practical, reasonable and acceptable method.

  6. Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese.

    Science.gov (United States)

    Zhang, Bei; Wang, Yanping; Tan, Zhongfang; Li, Zongwei; Jiao, Zhen; Huang, Qunce

    2016-10-01

    In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (pstrains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78%), Lactobacillus plantarum1141 (75%), and Lactobacillus plantarum 1197 (71%). Together, these results suggest

  7. Tentative identification of polyphenols in Sempervivum tectorum and assessment of the antimicrobial activity of Sempervivum L.

    Science.gov (United States)

    Abram, V; Donko, M

    1999-02-01

    Polyphenols were isolated from sliced fresh leaves of Sempervivum tectorum. After 21 h of extraction by methanol and removal of chlorophyll, ethyl acetate was used to separate oligomeric and polymeric polyphenols: 0.07% of oligomeric and 0.13% of polymeric polyphenols were found. After acidic hydrolysis of the oligomeric polyphenols, it was established by TLC, HPLC, and FAB mass spectra that kaempferol was the unique aglycon of the three main oligomeric constituents of S. tectorum. Paper chromatography suggested delphinidol to be the only anthocyanidin detectable in the material obtained by acidic hydrolysis of the polymeric polyphenol fraction. After Haslam degradation of the same polymeric polyphenol fraction, only 4-thiobenzyl-(-)-epigallocatechin and 4-thiobenzyl-(-)-epigallocatechin-3-gallate were found and tentatively identified. We concluded that procyanidins of B2 type could be the major components of the polymeric polyphenol fraction of this plant. Antimicrobial activity of Sempervivum L. leaves against six of seven selected microorganisms was observed.

  8. Adhesion forces and coaggregation between vaginal staphylococci and lactobacilli.

    Directory of Open Access Journals (Sweden)

    Jessica A Younes

    Full Text Available Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2-6.4 nN than between staphylococcal pairs (2.2-3.4 nN, especially for the probiotic Lactobacillus reuteri RC-14 (4.0-6.4 nN after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens.

  9. [Lectins, adhesins, and lectin-like substances of lactobacilli and bifidobacteria].

    Science.gov (United States)

    Lakhtin, V M; Aleshkin, V A; Lakhtin, M V; Afanas'ev, S S; Pospelova, V V; Shenderov, B A

    2006-01-01

    Cell-surface adhesion factors of lactobacilli and bifidobacteria, such as lectin/adhesin proteins of S-layers, secreted lectin-like bacteriocins, and lectin-like complexes, are considered and classified in the article. Certain general and specific properties of these factors are noted, such as in vitro and in vivo adhesion, cell co(aggregation), participation in the forming of microbial biofilms and colonization of mammalian alimentary tract, as well as complexation with biopolymers and bioeffectors, specificity to glycanes and natural glycoconjugates, domain and spatial organization of adhesion factors, co-functioning with other cytokines (pro- and anti-inflammatory ones), regulation of target cell properties, and other biological and physiological activities. The authors also note possibilities of application of lectins and lectin-like proteins of probiotic strains of lactobacilli and bifidobacteria in medicine and biotechnology.

  10. Conventional, organic and biodynamic farming: differences in polyphenol content and antioxidant activity of Batavia lettuce.

    Science.gov (United States)

    Heimler, Daniela; Vignolini, Pamela; Arfaioli, Paola; Isolani, Laura; Romani, Annalisa

    2012-02-01

    Lactuca sativa L. ssp. acephala L., cv. Batavia red Mohican plants were cultivated under intensive conventional, organic and biodynamic farming and were analyzed for their polyphenol content and antiradical activity in order to demonstrate the influence of farming on yield, polyphenol content and antiradical activity. The yield of plants from conventional farming was the highest (2.89 kg m⁻²), while polyphenol content, measured by spectrophotometry, of these plants was lower at P flavonoid and hydroxycinnamic acid contents. Flavonoid, hydroxycinnamic acid and anthocyan patterns were not affected by the type of cultivation, while quantitative differences were demonstrated and some differences were found between conventional farming and organic or biodynamic farming. The yield of conventionally grown salads was the highest. Copyright © 2011 Society of Chemical Industry.

  11. Screening of potential lactobacilli antigenotoxicity by microbial and mammalian cell-based tests.

    Science.gov (United States)

    Caldini, G; Trotta, F; Villarini, M; Moretti, M; Pasquini, R; Scassellati-Sforzolini, G; Cenci, G

    2005-06-25

    Antigenotoxicity is considered an important property for probiotic lactobacilli. The ability of non probiotic lactobacilli from dairy products and starters to inhibit two reference genotoxins: 4-nitroquinoline-1-oxide and N-methyl-N'-nitro-N-nitrosoguanidine was evaluated. The study was carried out using short-term assays with different targets, such as procaryotic cells (SOS-Chromotest for genotoxicity in Escherichia coli and Ames test for mutagenicity in Salmonella typhimurium) and eucaryotic cells (Comet assay for genotoxicity in Caco-2 enterocytes). A high proportion of strains inhibiting 4-nitroquinoline-1-oxide activity was found in Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus plantarum. Inhibition of N-methyl-N'-nitro-N-nitrosoguanidine activity occurred in only one L. acidophilus strain. All the strains with antigenotoxic properties also demonstrated antimutagenic activity and produced modifications in genotoxin spectroscopic profiles. Strain viability during and after genotoxin exposure was confirmed. Concordance of the results obtained with microbial and mammalian cell-based tests is underlined.

  12. In Vitro Antioxidant Activities of Three Red Wine Polyphenols and Their Mixtures: An Interaction Study

    Directory of Open Access Journals (Sweden)

    Elena Kurin

    2012-12-01

    Full Text Available The well-known antioxidant activity of red wine is explained mostly by its polyphenols content, where the final effect is based on the wine components’ interaction. The aim of our work was the study of the interaction of three red wine polyphenols—quercetin, resveratrol and caffeic acid—alone and in their equimolar binary and ternary mixtures in different antioxidant/scavenging assays (inhibition of 2-deoxy-D-ribose degradation by hydroxyl radical, FRAP, Fe(III reducing power, DPPH, ABTS and NO scavenging, respectively. Interaction analysis, based on median effect equation, was performed for the determination of synergy and/or antagonism. The obtained results indicate that the mutual interactions of tested polyphenols in their mixtures are markedly different from each other, depending on the reaction mechanism of the assay used. The measured antioxidant activity of individual polyphenols is not a constant value when other substances are present in the mixture with this polyphenol. Interactions can cause the finally observed synergy/antagonism/additive effects without any possibility of predicting them from the known activities of single compounds. This “unpredictability” claim based on in vitro assay results should be very important in multiple systems and processes in Nature, where the interactions among compounds in mixtures need to be take into account.

  13. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  14. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Inass Leouifoudi

    2015-01-01

    Full Text Available Natural polyphenols extracts have been usually associated with great bioactive properties. In this work, we investigated in vitro antioxidant and antimicrobial potential of the phenolic olive mill wastewater extracts (OWWE and the olive cake extracts (OCE. Using the Folin Ciocalteux method, OWWE contained higher total phenol content compared to OCE (8.90±0.728 g/L versus 0.95±0.017 mg/g. The phenolic compounds identification was carried out with a performance liquid chromatograph coupled to tandem mass spectrometry equipment (HPLC-ESI-MS. With this method, a list of polyphenols from OWWE and OCE was obtained. The antioxidant activity was measured in aqueous (DPPH and emulsion (BCBT systems. Using the DPPH assay, the results show that OWWE was more active than OCE and interestingly the extracts originating from mountainous areas were more active than those produced from plain areas (EC50=12.1±5.6 μg/mL; EC50=157.7±34.9 μg/mL, resp.. However, when the antioxidant activity was reversed in the BCBT, OCE produced from plain area was more potent than mountainous OCE. Testing by the gel diffusion assay, all the tested extracts have showed significant spectrum antibacterial activity against Staphylococcus aureus, whereas the biophenols extracts showed more limited activity against Escherichia coli and Streptococcus faecalis.

  15. Analysis of supercooling activity of tannin-related polyphenols.

    Science.gov (United States)

    Kuwabara, Chikako; Wang, Donghui; Endoh, Keita; Fukushi, Yukiharu; Arakawa, Keita; Fujikawa, Seizo

    2013-08-01

    Based on the discovery of novel supercooling-promoting hydrolyzable gallotannins from deep supercooling xylem parenchyma cells (XPCs) in Katsura tree (see Wang et al. (2012) [38]), supercooling capability of a wide variety of tannin-related polyphenols (TRPs) was examined in order to find more effective supercooling-promoting substances for their applications. The TRPs examined were single compounds including six kinds of hydrolyzable tannins, 11 kinds of catechin derivatives, two kinds of structural analogs of catechin and six kinds of phenolcarboxylic acid derivatives, 11 kinds of polyphenol mixtures and five kinds of crude plant tannin extracts. The effects of these TRPs on freezing were examined by droplet freezing assays using various solutions containing different kinds of identified ice nucleators such as the ice nucleation bacterium (INB) Erwinia ananas, the INB Xanthomonas campestris, silver iodide and phloroglucinol as well as a solution containing only unintentionally included unidentified airborne ice nucleators. Among the 41 kinds of TRPs examined, all of the hydrolyzable tannins, catechin derivatives, polyphenol mixtures and crude plant tannin extracts as well as a few structural analogs of catechin and phenolcarboxylic acid derivatives exhibited supercooling-promoting activity (SCA) with significant differences (p>0.05) from at least one of the solutions containing different kinds of ice nucleators. It should be noted that there were no TRPs exhibiting ice nucleation-enhancing activity (INA) in all solutions containing identified ice nucleators, whereas there were many TRPs exhibiting INA with significant differences in solutions containing unidentified ice nucleators alone. An emulsion freezing assay confirmed that these TRPs did not essentially affect homogeneous ice nucleation temperatures. It is thought that not only SCA but also INA in the TRPs are produced by interactions with heterogeneous ice nucleators, not by direct interaction with water

  16. Polyphenols From Cutch Tree (Acacia catechu Willd.: Normalize In Vitro Oxidative Stress and Exerts Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2017-10-01

    Full Text Available ABSTRACT Oxidative stress, being the main cause of most of the human diseases, has always been the highlight of research worldwide. This stress can be overcome by administration of natural polyphenols. The Acacia catechu Willd. has many refrences available in Ayurveda as important disease curative plant. Its leaves are investigated for ameliorating oxidative stress in present work. Leaves of A. catechu were extracted with 80% methanol to get methanol extract (AME. It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays. DNA protective activity was also investigated using plasmid nicking assay. Further, antiproliferative activity was determined using MTT assay in various human cancer cell lines. The quantification of polyphenols was done by UHPLC analysis. Results confirmed that polyphenols of A. catechu were successful in normalizing oxidative stress. AME was found to be most effective in scavenging ABTS radicals while least effective in scavenging ferric ions. UHPLC analysis showed abundance of ellagic acid, rutin and quercetin in AME. Further, AME showed maximum antiproliferative activity against Hep G2 cancer cells. It is concluded that the polyphenols from A. catechu effectively remediates oxidative stress and hence can be used in curing numerous dreadful diseases.

  17. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    Science.gov (United States)

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Lactobacilli Modulate Natural Killer Cell Responses In Vitro

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. CD3-CD56+ NK cells were isolated from...... monocytes present, probably because cytokines, secreted by monocytes having engulfed bacteria, stimulated the NK cells. In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have...

  19. Spirit drinks: a source of dietary polyphenols

    Directory of Open Access Journals (Sweden)

    Sanja Posavec

    2012-01-01

    Full Text Available There is a long tradition in the production of spirit drinks and using them in the human diet, especially in the Southeast European and Mediterranean regions. The objective of this study was to evaluate whether and which spirits can serve, and to what extent, as a source of biologically active compounds in the human diet. Polyphenolic compounds are biologically active compounds of fruits, vegetables and derived beverages, which have been implicated in their antioxidant activity. Therefore, the total polyphenol content (TPC and antioxidative properties of 46 spirit drinks and liqueurs produced in Croatia were examined. The total polyphenol content and antioxidant activity were estimated using spectrophotometric methods (Folin-Ciocalteu, DPPH and FRAP, while certain phenols were detected by the HPLC. It was established that spirit drinks aged in wooden casks, such as wine or plum brandy, contain polyphenols ranging from 40-90 mg GAE/L (gallic acid equivalents, whereas walnut or sour cherry liquors contain much more polyphenols ranging from 680-3360 mg GAE/L. The antioxidant activity of analyzed spirit drinks was in correlation with TPC. Walnut and sour cherry liqueur samples had very high antioxidant activity, within the range of those obtained with 1.26 mM Trolox-DPPH assay and 9.5 mM Trolox-FRAP assay.

  20. Evaluation and comparison of the content of total polyphenols and antioxidant activity of selected species of the genus Allium

    Directory of Open Access Journals (Sweden)

    Marianna LENKOVÁ

    2016-12-01

    Full Text Available The species of the genus Allium are very important crops for human health. They contain many health beneficial substances, such as polyphenols (especially flavonoids, sulphur compounds, vitamins, mineral substances and substances with antioxidant activity. This work has focused on the comparison of total phenolic content and antioxidant activity of selected species of the genus Allium – garlic (Allium sativum L., chives (Allium schoenoprasum L., ramson (Allium ursinum L. and red, yellow and white onion (Allium cepa L.. Samples of plant material were collected at the stage of full maturity in the area of Nitra. Total polyphenols content was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols were in the range 444.3 - 1591 mg*kg-1. Total polyphenols content in the observed crops declined in the following order: chives > red onion > garlic > yellow onion > ramson > white onion. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl. Determined the value of antioxidant activity ranged 12.29 – 76.57%. Antioxidant activity observed in crops declined in the following order: chives > ramson > red onion > yellow onion > garlic > white onion. In all the analysed crop plants was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenolic substances.

  1. Total Content of Polyphenols and Antioxidant Activity of Different Melliferous Plants

    Directory of Open Access Journals (Sweden)

    Claudia Pasca

    2016-01-01

    Full Text Available In this study polyphenols content and antioxidant activity of melliferous plants for the following: mint (Mentha pulegium, burdock (Arctium lappa, comfrey (Symphytum officinale, plantain (Pantago lanceolata, thyme (Thymus vulgaris, sage (Salvia officinalis, marigold (Calendula officinalis, small marshmallow (Althaea officinalis, echinacea (Echinaceea angustifolia and black popular (Populus nigra were investigated, using two different extraction methods. High content of polyphenols and flavones were extracted from Populus nigra, with an average of both extractions 23.14 mg GAE/g and 78.07 mg QE/g flavones. Among the studied plants, Arctium lappa registered the highest antioxidant activity (0.129 mmol Trolox/mL in alcoholic extract and Echinaceea angustifolia with a value of 0.122 mmol Trolox/mL in aqueous extract. The lowest values were recorded for the antioxidant activity of Althaea officinalis (alcoholic extract and Arctium lappa (aqueous extract. The results show that Arctium lappa, Echinaceea angustifolia and Populus nigra can be considered melliferous plants for their high biologically active compounds potential and bee products (honey and pollen that having the composition of these plants will have high antioxidant and antibacterial properties.

  2. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains.

    Science.gov (United States)

    Konaté, Kiessoun; Hilou, Adama; Mavoungou, Jacques François; Lepengué, Alexis Nicaise; Souza, Alain; Barro, Nicolas; Datté, Jacques Y; M'batchi, Bertrand; Nacoulma, Odile Germaine

    2012-02-24

    The increased resistance of microorganisms to the currently used antimicrobials has lead to the evaluation of other agents that might have antimicrobial activity. Medicinal plants are sources of phytochemicals which are able to initiate different biological activities including antimicrobials In vitro antibacterial (MIC, MBC and time-kill studies) of polyphenol-rich fractions from Sida alba L. (Malvaceae) was assessed using ten bacteria strains (Gram-negative and Gram-positive). All test bacteria were susceptible to the polyphenol-rich fractions. Time-kill results showed that after 5 h exposition there was no viable microorganism in the initial inoculum and the effect of polyphenol-rich fractions was faster on Enterococcus faecalis (Gram-positive bacterium) comparatively to the other bacteria strains. The data analysis indicates that the tested of polyphenol-rich fractions has significant effects when compared with the standard antibiotic. These results therefore justify the traditional use of sida alba L., alone or in combination with other herbs to treat bacterial infections.

  3. [Isolation and characterization of vaginal lactobacilli producing hydrogen peroxide].

    Science.gov (United States)

    Pashaian, M M; Oganesian, G G

    2011-01-01

    Isolation and characteristics of vaginal lactobacilli that actively generate H2O2 and have high antagonistic activity. Staphylococcus aureus 8956, Escherichia coli 8852, Klebsiella pneumoniae 8795 and Candida albicans 5646 were used as target-strains. Skim milk and MRS medium were used for lactobacilli isolation and cultivation. Antagonism was studied in complete agar and Saburo medium. Merckoquant peroxide test (Merck) stripes were used for the determination of H2O2. Antibacterial activity was determined by diffusion into agar. Specific culture growth rate was determined by conventional method, acidification of the culture medium--by pH-meter. 12 strains were isolated from vaginal smears of healthy women. These strains have an ability to ferment milk among which a highly active H2O2 producer was isolated and attributed to Lactobacillus delbrueckii by the results of 16S rRNA and alpha-subunit RNA polymerase gene sequence analysis (16S rDNA and rpoA genes are registered in GenBank, numbers HQ379171 and HQ379180 respectively). L. delbrueckii MH-10 bacterial cells were characterized by specific growth speed 1.26 per hour, reaching a maximum titer of 2 x 10(9) PFU/ml with lowering medium pH to 4.0. Under aerated conditions H2O2 concentration reached 100 microg/ml or more. L. delbrueckii MH-10 has high antibacterial activity against S. aureus, E. coli, K. pneumoniae. L. delbrueckii MH-10 isolate is an active H2O2 producer, has high growth speed and broad antibacterial activity spectrum, is a perspective candidate for the development of probiotic preparation for the prophylaxis and therapy of vaginoses.

  4. Plant polyphenols: chemical properties, biological activities, and synthesis.

    Science.gov (United States)

    Quideau, Stéphane; Deffieux, Denis; Douat-Casassus, Céline; Pouységu, Laurent

    2011-01-17

    Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modulation of plasma antioxidant activity in weaned piglets by plant polyphenols

    Directory of Open Access Journals (Sweden)

    Hai J. Zhang

    2014-06-01

    Full Text Available This study was conducted to evaluate the effect of plant polyphenols (PP on antioxidant activity in weaned piglets. First, a uniform design, one optimising an experimental technique that can rationally arrange the concentrations of mixture components, was used to obtain the best PP mixture of apple, grape seed, green tea and olive leaf polyphenols based on in vitro antioxidant capacity and inhibitory action on bacterial growth. Second, the optimised PP mixture was tested in vivo with an efficacy trial on piglets. The optimal effects of the mix were observed in vitro when apple, grape seed, green tea, olive leaf polyphenols and a carrier (silicon dioxide accounted for 16.5, 27.5, 30, 2.5 and 23.5%, respectively, of the mixture. Forty-eight weaned piglets were randomly allocated to two dietary treatments (6 replicates of 4 piglets each per treatment and fed a control diet (CTR or CTR supplemented with 0.1% of the optimised PP mixture. Dietary PP did not affect growth performance compared to the CTR group. Plasma total protein, urea nitrogen and lysozyme content were not affected by dietary treatment. No differences of E. coli or Clostridia counts in the faeces and caecum content between the CTR and PP groups were observed. A reduced malondialdehyde concentration in the PP group was observed on day 21 compared to the CTR group (P=0.02. In conclusion, the prepared PP mixture has the potential to improve plasma antioxidant activity.

  6. Prophylactic co-trimoxazole and lactobacilli preparation in neutropenic patients.

    Science.gov (United States)

    Ekert, H; Jurk, I H; Waters, K D; Tiedemann, K

    1980-01-01

    A randomized study of intestinal decontamination was undertaken in 68 children with leukemia and solid tumours. Framycetin, colymycin, nystatin, and metronidazole were given in 35 neutropenic episodes in 33 children, while co-trimoxazole and lactobacilli preparation were administered in 35 episodes in 35 children. The diseases, severity of neutropenia, and incidence of infection at entry into study were comparable in the two groups. There was no significant difference in the incidence of infections developing during the phase of neutropenia. The median and range of time required to recover from neutropenia were also not different. Co-trimoxazole and lactobacilli were significantly better tolerated, there being no nausea and vomiting, no refusal to take medication, no dose reduction or change to an alternative regimen. We conclude that co-trimoxazole and lactobacilli preparation improve quality of life during a neutropenic episode and have the additional advantage of being relatively inexpensive.

  7. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  8. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  9. Activation of macrophages by a laccase-polymerized polyphenol is dependent on phosphorylation of Rac1.

    Science.gov (United States)

    Tajima, Katsuya; Akanuma, Satoshi; Matsumoto-Akanuma, Akiko; Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2018-01-15

    Various physiologically active effects of polymerized polyphenols have been reported. In this study, we synthesized a polymerized polyphenol (mL2a-pCA) by polymerizing caffeic acid using mutant Agaricus brasiliensis laccase and analyzed its physiological activity and mechanism of action. We found that mL2a-pCA induced morphological changes and the production of cytokines and chemokines in C3H/HeN mouse-derived resident peritoneal macrophages in vitro. The mechanisms of action of polymerized polyphenols on in vitro mouse resident peritoneal cells have not been characterized in detail previously. Herein, we report that the mL2a-pCA-induced production of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in C3H/HeN mouse-derived resident peritoneal cells was inhibited by treatment with the Rac1 inhibitor NSC23766 trihydrochloride. In addition, we found that mL2a-pCA activated the phosphorylation Rac1. Taken together, the results show that mL2a-pCA induced macrophage activation via Rac1 phosphorylation-dependent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Extra virgin olive oil rich in polyphenols modulates VEGF-induced angiogenic responses by preventing NADPH oxidase activity and expression.

    Science.gov (United States)

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; D'Amore, Simona; Gnoni, Antonio; Pellegrino, Mariangela; Storelli, Carlo; De Caterina, Raffaele; Palasciano, Giuseppe; Carluccio, Maria Annunziata

    2016-02-01

    Previous studies have shown the antiinflammatory, antioxidant and antiangiogenic properties by pure olive oil polyphenols; however, the effects of olive oil phenolic fraction on the inflammatory angiogenesis are unknown. In this study, we investigated the effects of the phenolic fraction (olive oil polyphenolic extract, OOPE) from extra virgin olive oil and related circulating metabolites on the VEGF-induced angiogenic responses and NADPH oxidase activity and expression in human cultured endothelial cells. We found that OOPE (1-10 μg/ml), at concentrations achievable nutritionally, significantly reduced, in a concentration-dependent manner, the VEGF-induced cell migration, invasiveness and tube-like structure formation through the inhibition of MMP-2 and MMP-9. OOPE significantly (Pextra virgin olive oil, with high polyphenol content, decreased VEGF-induced NADPH oxidase activity and Nox4 expression, as well as, MMP-9 expression, as compared with fasting control serum. Overall, native polyphenols and serum metabolites of extra virgin olive oil rich in polyphenols are able to lower the VEGF-induced angiogenic responses by preventing endothelial NADPH oxidase activity and decreasing the expression of selective NADPH oxidase subunits. Our results provide an alternative mechanism by which the consumption of olive oil rich in polyphenols may account for a reduction of oxidative stress inflammatory-related sequelae associated with chronic degenerative diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    Science.gov (United States)

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Biological activities of selected polyphenol-rich fruits related to immunity and gastrointestinal health

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Kratchanova, M.; Číž, Milan; Lojek, Antonín; Vašíček, Ondřej; Nedelcheva, P.; Blazheva, D.; Toshkova, R.; Gardeva, E.; Yossifova, L.; Hyršl, P.; Vojtek, L.

    2014-01-01

    Roč. 157, AUG2014 (2014), s. 37-44 ISSN 0308-8146 Institutional support: RVO:68081707 Keywords : Small fruits * Polyphenols * Antioxidant activity Subject RIV: BO - Biophysics Impact factor: 3.391, year: 2014

  13. Increased antioxidant activity and polyphenol metabolites in methyl jasmonate treated mung bean (Vigna radiata sprouts

    Directory of Open Access Journals (Sweden)

    Li LI

    Full Text Available Abstract Mung bean sprouts are a popular health food both in China and worldwide. We determined the optimal concentration of exogenous methyl jasmonate (MeJA for the promotion of the sprouting in mung beans (Vigna radiata. The 1,1-diphenyl-2- picrylhydrazyl radical (DPPH scavenging test showed that MeJA application resulted in significantly improved antioxidant capacity in the sprouts 72 h later. Measurement of total polyphenols in MeJA-treated beans from 0 to 168 h, using Folin–Ciocalteu colorimetry, showed that the polyphenols changing was significantly correlated with antioxidant activity. The main polyphenols isovitexin, kaempferol-3-O-rutinoside, daidzein, genistein, isoquercitrin, p-coumaric acid, and caffeic acid were quantified using high-performance liquid chromatography (HPLC/QqQ MS and partial least squares discriminant analysis (PLS-DA. MeJA promoted the production of polyphenols, metabolites, and antioxidants in the sprouts; therefore, its use may allow sprouts to be prepared more quickly or increase their nutritional value.

  14. Impact of oral Lactobacillus acidophilus gavage on rooster seminal and cloacal Lactobacilli concentrations.

    Science.gov (United States)

    Kiess, A S; Hirai, J H; Triplett, M D; Parker, H M; McDaniel, C D

    2016-08-01

    The use of antibiotics in poultry is being heavily scrutinized, therefore alternatives such as probiotics are being investigated. Lactobacilli spp. are a commonly used bacteria in formulating probiotics, and the addition of Lactobacilli to broiler diets has demonstrated increased growth rates, stimulated immune systems, and reduced pathogen loads in the gastro-intestinal tract ( GI: ) tract. However, previous research has shown that when rooster semen is directly exposed to Lactobacillus acidophilus (L. acidophilus) sperm quality is reduced. Therefore, the objective of the current study was to determine if oral administration of L. acidophilus increases the concentration of Lactobacilli in semen as well as the cloaca. A total of 30 roosters were used: 15 roosters were gavaged with 1X PBS (Control) and 15 roosters were gavaged with 10(7) cfu/mL of L. acidophilus (Treated). All roosters were gavaged for 14 consecutive days. Semen was collected on a 3 d interval, and cloacal swabs were collected on a 2 d interval, beginning on the first day prior to oral administration. Semen and cloacal swabs were serial diluted, and 100 μL of each dilution was then plated on Man, Rogosa, Sharpe ( MRS: ) agar plates. All plates were incubated for 48 h at 37°C under anaerobic conditions and counted. All Lactobacilli counts were first log transformed, then log transformed (day 0) pre-counts were subtracted from the log transformed day counts providing log differences for the analysis. Seminal Lactobacilli counts were not altered by treatments. However, the main effect of treatment (P = 0.026) for cloacal counts indicated that roosters gavaged with Lactobacilli yielded higher counts than the controls. Additionally, cloaca samples also demonstrated a treatment by day interaction trend (P = 0.082), where Lactobacilli was higher in the L. acidophilus gavaged roosters than the controls only on days 3, 5, 13, and 15. In conclusion, the addition of L. acidophilus to the male breeder diet

  15. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    Science.gov (United States)

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Comparative study of the protective capacity against Salmonella infection between probiotic and nonprobiotic Lactobacilli.

    Science.gov (United States)

    Castillo, N A; de Moreno de LeBlanc, A; M Galdeano, C; Perdigón, G

    2013-03-01

    To investigate the immunoprotective ability of three Lactobacilli strains against Salmonella enterica serovar Typhimurium in a mouse model. To identify the probiotic properties involved in the protection against infection caused by this pathogen. The immunomodulatory effect of three different lactobacilli strains: Lactobacillus (Lact.) casei CRL 431 (probiotic bacterium), Lact. delbrueckii subsp. bulgaricus CRL 423 (Lact. bulgaricus) and Lact.acidophilus CRL 730 was compared using a mouse model of Salmonella infection. Lactobacillus casei continuous administration improved animal survival, diminished pathogen spreading outside the intestine, attenuated the intestinal inflammation, modulated cytokine profile previous and postinfection and increased the expression and secretion of IgA in the gut. Additionally, the administration of this lactobacilli increased peritoneal, Peyer's patches and spleen macrophages' phagocytic activity in healthy mice and monocyte chemotactic protein (MCP-1) released by intestinal epithelial cells in an in vitro assay. Although Lact. acidophilus increased the number of IgA-secreting cells previous and postinfection, and Lact. bulgaricus increased MCP-1 released by intestinal epithelial cells and the phagocytic activity of macrophages, these effects alone were not enough to confer protection against Salmonella Typhimurium infection in mouse. Probiotic strain Lact. casei CRL 431 was the one that induced protection against Salmonella, by increasing the intestinal barrier function and by decreasing the local inflammatory response. Salmonella spp. constitutes an important agent of foodborne diseases in the world. Not all lactobacilli, even with some immunostimulating properties at gut level, can protect against Salmonella infection. Lactobacillus casei CRL 431, a probiotic bacterium, could be useful as an oral mucosal adjuvant of the immune system to improve gut health, especially in the prevention or amelioration of Salmonella infections. We

  17. EFFECT OF POLYPHENOLIC COMPLEX FROM WINE ON RATS ANTIOXIDANT ENZYMES ACTIVITY AT X-RAY IRRADIATION LOW DOSES

    Directory of Open Access Journals (Sweden)

    U. V. Datsyuk

    2014-04-01

    Full Text Available It is shown that the consumption of natural polyphenolic complex from grape wine in drinking water in the daily dose 2.5 ± 1.1 mg polyphenols/kg body mass of rats during the 10 day before exposure to radiation leads to increased of superoxide dismutase and gluthathione reductase activities in peripheral blood on 24 and 48 hours after full body X-ray irradiation (30 cGy. The of catalase, gluthathione peroxidase activities and the of the reactive thiobarbituric acid substances content in total lysates of peripheral blood within 72 hours after exposure are comparable to those in control rats. Marked decreased of catalase and superoxide dismutase activities at 24, 48 and 24 hours, respectively, was observed after exposure to ionizing radiation and increased content of lipid peroxidation products in all above mentioned time points. The decreased of superoxide dismutase and gluthathione peroxidase activities in lysates of rats aorta at 48 hour and increased content of the reactive thiobarbituric acid substances during 72 hours after radiation exposure were observed. The consumption of polyphenolic complex from wine did not change the superoxide dismutase and catalase activities in lysates of aorta rats treated with ionizing radiation, whereas gluthathione reductase and gluthathione peroxidase activities was increased during 72 hours after radiation influence. The content of TBA reactive substances was significantly decreased in lysates of aorta rats that were exposed to radiation and polyphenols of grape wine, compared with those of animals that were exposed to radiation alone.

  18. Red Wine Polyphenols for Cancer Prevention

    Science.gov (United States)

    He, Shan; Sun, Cuirong; Pan, Yuanjiang

    2008-01-01

    Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin. PMID:19325788

  19. Red Wine Polyphenols for Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Yuanjiang Pan

    2008-05-01

    Full Text Available Conventional cancer therapies, the second leading cause of death worldwide, result in serious side effects and, at best, merely extend the patient's lifespan by a few years. Searching for effective prevention is of high priority in both basic and clinical sciences. In recent decades natural products have been considered to be an important source of cancer chemopreventive agents. Red wine polyphenols, which consisted of various powerful antioxidants such as flavonoids and stilbenes, have been implicated in cancer prevention and that promote human health without recognizable side effects. Since resveratrol, a major component of red wine polyphenols, has been studied and reviewed extensively for its chemopreventive activity to interfere with the multi-stage carcinogenesis, this review focuses on recent progress in studies on cancer chemopreventive activities of red wine polyphenol extracts and fractions as well as other red wine polyphenols, like procyanidin B5 analogues and myricetin.

  20. Cholic acid is accumulated spontaneously, driven by membrane Delta pH, in many lactobacilli

    NARCIS (Netherlands)

    Kurdi, P; van Veen, HW; Tanaka, H; Mierau, [No Value; Konings, WN; Tannock, GW; Tomita, F; Yokota, A

    2000-01-01

    Many lactobacilli from various origins were found to apparently lack cholic acid extrusion activity. Cholic acid was accumulated spontaneously, driven by the transmembrane proton gradient. Accumulation is a newly identified kind of interaction between intestinal microbes and unconjugated bile acids

  1. Effect of different brewing times on antioxidant activity and polyphenol content of loosely packed and bagged black teas (Camellia sinensis L.).

    Science.gov (United States)

    Nikniaz, Zeinab; Mahdavi, Reza; Ghaemmaghami, Seyed Jamal; Lotfi Yagin, Neda; Nikniaz, Leila

    2016-01-01

    Determination and comparison of the effect of infusion time on the antioxidant activity and total polyphenol contents of bagged and loosely packed black teas. For twenty loosely packed and eleven bagged tea samples, the antioxidant activity and total polyphenol content were analyzed using FRAP and Folin-Ciocalteau methods, respectively. The ANOVA with Tukey post-hoc test and independent t-test were used for statistical analysis. The antioxidant activity and polyphenol content of various brands of tea samples were significantly different. There were significant differences in the antioxidant activity of loosely packed teas between 5, 15(p=0.03), 30(p=0.02) and 60(p=0.007) minutes of brewing times. Besides, there was a significant difference in antioxidant activity of bagged samples infused for 1 minute with four other infusion time points (pbrewing times (p=0.15). However, in bagged samples, the polyphenol contents of samples that were brewed for 1 minute were significantly lower than samples brewed for 3, 4, and 5 minutes (pbrewing time (p<0.001). The infusion time and the form of tea (loosely packed or bagged) were shown to be important determinants of the antioxidant activity and polyphenol content of black tea infusions in addition to the variety, growing environment and manufacturing conditions.

  2. Genotypic analyses of lactobacilli with a range of tannase activities isolated from human feces and fermented foods.

    Science.gov (United States)

    Nishitani, Yosuke; Sasaki, Eiki; Fujisawa, Tomohiko; Osawa, Ro

    2004-02-01

    A total of 77 tannase producing lactobacilli strains isolated from human feces or fermented foods were examined for their genotypic profiles and intensities of tannase production. With a PCR-based assay targeting recA gene, all strains except one isolate were assigned to either Lactobacillus plantarum, L. paraplantarum, or L. pentosus whereas a 16/23S rDNA targeted PCR-based assay identified all except 6 isolates (inclusive of the above one isolate) as one of the closely related species. Subsequent DNA/DNA hybridization assays revealed that these 6 exceptional isolates showed low homology (between 1.2% and 55.8% relative DNA binding) against type strains of the three species. Supplemental carbohydrate fermentation profiles on the 6 isolates indicated that two of them were identified as L. acidophilus, one as Pediococcus acidilactici, one as P. pentosaceus, and two remained unidentifiable. The evidence suggests that the 16/23S rDNA targeted PCR assay can be used as a reliable identification tool for the closely related lactobacilli, and that the tannase gene is widely distributed within members of the Lactobacillaceae family. Meanwhile, a randomly amplified polymorphism DNA (RAPD) analysis revealed that all except 8 isolates were well allocated in 4 major RAPD clusters, though not species specific, consisting of two L. plantarum predominant clusters, one L. paraplantarum predominant, and one L. pentosus predominant. The RAPD patterns of the 8 non-clustered isolates, which consisted of the 6 unidentifiable isolates and 2 isolates identified as L. pentosus, were tannase activities showed that there was a marked variation in the activities among the strains, which did not correlate with either species identification or clustering by RAPD.

  3. The changes of the polyphenol content and antioxidant activity in potato tubers (Solanum tuberosum L. due to nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Diana Hrabovská

    2013-11-01

    Full Text Available 96 Normal 0 false false false CS JA X-NONE Cultivar is one of the most important internal factors affecting polyphenol concentration in the plants. However, influence of the grown locality, climate conditions and way of cultivation belong to important external factors. In our experiment the influence of different nitrogen doses (0 - 40 - 80 - 120 - 160 - 240 kg N.ha-1 applied in the form of Vermikompost on the total polyphenol content and derived total antioxidant activity in cv. Sorento were investigated. While in the 1st - 5th variants the determined polyphenol content in dry mater of potato tubers decreased from 399.2 to 70.40 mg.kg-1, in the 6th variant that was twice higher in comparison to the 5th variants (135.6 mg.kg-1. The statistically significant differences in values of total polyphenol content between variants (polynomial function of 2nd degree were confirmed. The study also confirmed a strong statistical correlation between the content of polyphenols and the content of antioxidant activity has been confirmed (sign. F: 3.24E-10. The highest value of antioxidant activity was observed in the first variant. From the first to the fifth variant (7.62 - 4.84%, the value of antioxidant activity was decreasing and in the sixth variant this value increased to 6.31%.

  4. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    OpenAIRE

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly i...

  5. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China.

    Science.gov (United States)

    Su, Xianming; Zhang, Jian; Wang, Hongqing; Xu, Jing; He, Jiuming; Liu, Liying; Zhang, Ting; Chen, Ruoyun; Kang, Jie

    2017-02-18

    To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs) content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA) regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O'Neal, and Misty) were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS²). The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH]) assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS) induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH]) and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]) activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs) (miR-21, miR-146a, and miR-125b) to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.

  6. Phenolic Acid Profiling, Antioxidant, and Anti-Inflammatory Activities, and miRNA Regulation in the Polyphenols of 16 Blueberry Samples from China

    Directory of Open Access Journals (Sweden)

    Xianming Su

    2017-02-01

    Full Text Available To investigate the anti-atherosclerosis related mechanism of blueberries, the phenolic acids (PAs content, antioxidant and anti-inflammatory activities, as well as the microRNA (miRNA regulation of polyphenol fractions in blueberry samples from China were studied. Sixteen batches of blueberries including 14 commercialized cultivars (Reka, Patriot, Brigitta, Bluecrop, Berkeley, Duke, Darrow, Northland, Northblue, Northcountry, Bluesource, Southgood, O’Neal, and Misty were used in this study. Seven PAs in the polyphenol fractions from 16 blueberry samples in China were quantified by high performance liquid chromatography/tandem mass spectrometry (HPLC/MS2. The antioxidant activities of blueberry polyphenols were tested by (1,1-diphenyl-2-picrylhydrazyl [DPPH] assay. The anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6] activities of the polyphenol fractions of the blueberries were investigated by using lipopolysaccharide (LPS induced RAW 264.7 macrophages. The correlation analysis showed that the antioxidant (1,1-diphenyl-2-picrylhydrazyl [DPPH] and anti-inflammatory (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6] activities of the polyphenol fractions of the blueberries were in accordance with their PA contents. Although the polyphenol-enriched fractions of blueberries could inhibit the microRNAs (miRNAs (miR-21, miR-146a, and miR-125b to different extents, no significant contribution from the PAs was observed. The inhibition of these miRNAs could mostly be attributed to the other compounds present in the polyphenol-enriched fraction of the blueberries. This is the first study to evaluate the PAs content, antioxidant and anti-inflammatory activities, and miRNA regulation of Chinese blueberries.

  7. Polyphenols and Sunburn

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-09-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA and ultraviolet B (UVB radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats. Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP, Calluna vulgaris (Cv, grape seeds, honeybush, and Lepidium meyenii (maca. Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  8. Polyphenols and Sunburn.

    Science.gov (United States)

    Saric, Suzana; Sivamani, Raja K

    2016-09-09

    Polyphenols are antioxidant molecules found in many foods such as green tea, chocolate, grape seeds, and wine. Polyphenols have antioxidant, anti-inflammatory, and antineoplastic properties. Growing evidence suggests that polyphenols may be used for the prevention of sunburns as polyphenols decrease the damaging effects of ultraviolet A (UVA) and ultraviolet B (UVB) radiation on the skin. This review was conducted to examine the evidence for use of topically and orally ingested polyphenols in prevention of sunburns. The PubMed database was searched for studies that examined polyphenols and its effects on sunburns. Of the 27 studies found, 15 met the inclusion criteria. Seven studies were conducted on human subjects and eight on animals (mice and rats). Eleven studies evaluated the effects of topical polyphenols, two studies examined ingested polyphenols, and two studies examined both topical and ingested polyphenols. Polyphenol sources included the following plant origins: green tea, white tea, cocoa, Romanian propolis (RP), Calluna vulgaris (Cv), grape seeds, honeybush, and Lepidium meyenii (maca). Eight studies examined green tea. Overall, based on the studies, there is evidence that polyphenols in both oral and topical form may provide protection from UV damage and sunburn, and thus are beneficial to skin health. However, current studies are limited and further research is necessary to evaluate the efficacy, mechanism of action, and potential side effects of various forms and concentrations of polyphenols.

  9. Relationship between lactobacilli and opportunistic bacterial pathogens associated with vaginitis

    OpenAIRE

    Razzak, Mohammad Sabri A.; Al-Charrakh, Alaa H.; AL-Greitty, Bara Hamid

    2011-01-01

    Background: Vaginitis, is an infectious inflammation of the vaginal mucosa, which sometimes involves the vulva. The balance of the vaginal flora is maintained by the Lactobacilli and its protective and probiotic role in treating and preventing vaginal infection by producing antagonizing compounds which are regarded as safe for humans. Aim: The aim of this study was to evaluate the protective role of Lactobacilli against common bacterial opportunistic pathogens in vaginitis and study the effec...

  10. Polyphenol composition and antioxidant activity of Kei-apple (Dovyalis caffra) juice.

    Science.gov (United States)

    Loots, Du Toit; van der Westhuizen, Francois H; Jerling, Johann

    2006-02-22

    The polyphenolic and ascorbate (ASC) components as well as the antioxidant capacity of Kei-apple (Dovyalis caffra) juice were analyzed and compared to three other fruit juices. The Kei-apple juice had significantly the highest total polyphenolic concentrations (1013 mg gallic acid equivalent/L), and solid phase (C(18)) fractionation identified the majority of these polyphenols to be phenolic acids. The Kei-apple juice also had significantly the highest ASC concentrations (658 mg/L), which showed exceptional heat stability with very little conversion to dehydroascorbate (DHA). Antioxidant capacities of both the unfractionated fruit juices and their solid phase-extracted fractions, as determined by oxygen radical absorbance capacity and ferric reducing antioxidant power analyses, correlated well to the polyphenol concentrations. Gas chromatography-mass spectrometry analyses showed caffeic acid as the most abundant polyphenol present (128.7 mg/L) in the Kei-apple juice; it contributed to 63% of the total antioxidant capacity (of all of the individual compounds identified). Other notable polyphenols identified in higher concentrations included p-coumaric acid, p-hydroxyphenylacetic acid, and protocatechuic acid. Our results therefore support the putative high antioxidant value linked to this fruit and better define this potential in terms of the major antioxidants that exist in the Kei-apple.

  11. Evaluation of Antioxidant Activity, Polyphenolic Compounds, Amino Acids and Mineral Elements of Representative Genotypes of Lonicera edulis

    Directory of Open Access Journals (Sweden)

    Jiri Sochor

    2014-05-01

    Full Text Available The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis. A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC–UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity during one growing season.

  12. Shelf life stability of lactobacilli encapsulated in raspberry powder: insights into non-dairy probiotics.

    Science.gov (United States)

    Anekella, Kartheek; Orsat, Valérie

    2014-06-01

    Study the shelf-life quality changes in raspberry juice with encapsulated lactobacilli (Lactobacillus rhamnosus NRRL B-4495 and Lactobacillus acidophilus NRRL B-442) obtained by spray drying and understand the various factors involved. Raspberry powder was obtained from spray drying lactobacilli and raspberry juice with maltodextrin as an additive. Shelf life of the powder was analyzed over a period of 30 d. Acid and bile tolerance and antibiotic resistance was compared before and after spray drying. Water activity, survival, and scanning electron microscope images were also measured during the shelf life. A combination of processing conditions: inlet temperature (°C), maltodextrin to juice solids ratio and inlet feed rate (ml/min) during spray drying had a significant role on the survival of lactobacilli during shelf life. Refrigerated storage provided a higher shelf-life stability with regards to CFU/g (as high as 84% on day 0 and 98% retention by the end of 30 d) compared to room temperature storage. Probiotic properties during shelf life are affected by the processing conditions and encapsulated food matrix. Thus, understanding these aspects in vitro during shelf life gives us a brief insight into the future of non-dairy probiotics.

  13. Polyphenolic content, in vitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk.

    Science.gov (United States)

    Hernández, Cristian; Ascacio-Valdés, Juan; De la Garza, Heliodoro; Wong-Paz, Jorge; Aguilar, Cristóbal Noé; Martínez-Ávila, Guillermo Cristian; Castro-López, Cecilia; Aguilera-Carbó, Antonio

    2017-12-01

    To determinate the recovery of total polyphenolic compounds content, in vitro antioxidant activity and HPLC/ESI/MS characterization of extract from Nephelium lappaceum L. (Mexican rambutan). The rambutan husk extract was obtained by aqueous extraction and a polyphenolic fraction was recovered using Amberlite XAD-16. The total polyphenolic compounds content was determined by the Folin Ciocalteu and butanol-HCI methods. In vitro antioxidant activity was performed using ABTS and ferric reducing antioxidant power methods. Mexican rambutan husk showed a total polyphenolic content of 582 mg/g and an evident antioxidant activity by ABTS and ferric reducing antioxidant power analysis. The HPLC/ESI/MS assay allowed the identification of 13 compounds, most of which belong to ellagitannins. Geraniin, corilagin and ellagic acid were present in the sample; the mineral composition was also evaluated. Rambutan husk cultivated in Mexico is a promising source for the recovery of added value bioactive compounds with antioxidant activity, which have potential applications as bioactive antioxidant agents for the treatment of diseases. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  15. A Review of Polyphenolics in Oak Woods

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-03-01

    Full Text Available Polyphenolics, which are ubiquitous in plants, currently are among the most studied phytochemicals because of their perceptible chemical properties and antioxidant activity. Oak barrels and their alternatives, which are widely used in winemaking nowadays, contribute polyphenolics to wines and are thought to play crucial roles in the development of wines during aging. This study summarizes the detailed information of polyphenolics in oak woods and their products by examining their structures and discussing their chemical reactions during wine aging. This paper evaluates the most recent developments in polyphenolic chemistry by summarizing their extraction, separation, and their identification by the use of chromatographic and spectral techniques. In addition, this paper also introduces polyphenol bioactive ingredients in other plant foods.

  16. The scavenger activities of tea polyphenol and quercetin against oxygen radicals

    International Nuclear Information System (INIS)

    Fang Ruoying; Cheng Jiwu; Hu Tianxi; Tu Tiecheng; Dong Jirong; Wang Wenfeng; Lin nianyun

    1992-01-01

    Studies of free radical biology and medicine have shown that carcinogenesis, vascular diseases of heart and brain, radiation injuries, ageing etc are strictly correlated with free radical injury of tissues. Thus, pharmacologists and biologists are focusing attention on searching for scavengers, especially naturally occurring antioxidant of oxidizing free radicals. Previous studies have indicated that phenolic antioxidants have efficient scavenger activities. Utilizing following methods including chemical luminescence, ESR spectroscopy and pulse radiolysis techniques the scavenger activities of tea polyphenols and quercetin against active species of oxygen have been studied

  17. Lactobacilli Dominance and Vaginal pH: Why is the Human Vaginal Microbiome Unique?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Miller

    2016-12-01

    Full Text Available The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N=21 mammals for pH and 14 mammals for lactobacilli abundance. We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4 to 7.8. Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99. Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  18. Identification of vaginal lactobacilli with potential probiotic properties isolated from women in North Lebanon.

    Science.gov (United States)

    Al Kassaa, Imad; Hamze, Monzer; Hober, Didier; Chihib, Nour-Eddine; Drider, Djamel

    2014-04-01

    The aim of this work was to study the diversity of vaginal lactobacilli in Lebanese women and to evaluate the antagonism, hydrophobicity, and safety characteristics of these strains. This study was performed on samples from 135 women who visited a gynecology clinic in the north of Lebanon, between September 2012 and January 2013. From these samples, 53 different isolates of vaginal lactobacilli were collected from vaginal swabs and identified using biochemical and molecular methods. The use of genotypic Rep-PCR fingerprinting allowed for the organization of these isolates into 23 different groups. Seven of the isolated lactobacilli were antagonistic against the following vaginal pathogens: Gardnerella vaginalis CIP7074T, Staphylococcus aureus ATCC33862, Escherichia coli CIP103982, and Candida albicans ATCC10231. The antagonistic lactobacilli strains were then identified using 16S rDNA sequence. The data of this study show that the antagonistic lactobacilli were non-hemolytic, sensitive to most antibiotic tests, free of plasmid DNA, and exhibited interesting hydrophobicity and autoaggregation properties positioning them as potential candidates for probiotic design.

  19. Plant polyphenols and their anti-cariogenic properties: a review

    OpenAIRE

    Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A.

    2011-01-01

    Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which...

  20. The influence of starter and adjunct lactobacilli culture on the ripening of washed curd cheeses

    Directory of Open Access Journals (Sweden)

    E. Hynes

    2002-12-01

    Full Text Available Ten strains of lactobacillus from the CNRZ collection were tested as adjunct culture in miniature washed curd cheeses manufactured under controlled bacteriological conditions with two different starters, Lactococcus lactis subsp. lactis IL 416 and Lactococcus lactis subsp. cremoris AM2. Lactobacilli growth seemed to be dependent on the Lactobacillus strain but was not influenced by the starter strain or counts. Lactococci counts were higher in the miniature cheeses with AM2 starter and added lactobacilli than in the control cheeses without lactobacilli. Gross composition and hydrolysis of s1 casein were similar for miniature cheeses with and without lactobacilli. In the miniature cheeses manufactured with IL416 starter, the lactobacilli adjunct slightly increased the soluble nitrogen content, but that was not verified in the AM2 miniature cheeses. Phosphotungstic acid nitrogen content increased in miniature cheeses manufactured with IL416 when Lactobacillus plantarum 1572 and 1310 adjunct cultures were added. That was also verified for several Lactobacillus strains, specially Lactobacillus casei 1227, for miniature cheeses manufactured with AM2 starter. Free fatty acid content increased in miniature cheeses made with lactobacilli adjuncts 1310, 1308 and 1219 with IL416 starter, and with strains 1218, 1244 and 1308 for miniature cheeses with AM2 starter. These results indicate that production of soluble nitrogen compounds as well as free fatty acid content could be influenced by the lactobacilli adjunct, depending on the starter strain.

  1. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    OpenAIRE

    Thea Magrone; Matteo Antonio Russo; Emilio Jirillo; Emilio Jirillo

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothe...

  2. The antibacterial activity of date syrup polyphenols against S. aureus and E. coli

    Directory of Open Access Journals (Sweden)

    Hajer eTaleb

    2016-02-01

    Full Text Available The increase in antibiotic-resistant bacteria poses a threat to health care worldwide; this has resulted in a revived interest in plant products as adjunct antimicrobial agents to control pathogenic microorganisms. A major plant group used for traditional medicinal applications is Phoenix Dactylifera L, more commonly known as the date palm. Fruit of the date palm have been used customarily in the treatment of intestinal disturbances, hypertension, oedema and gastrointestinal disease, the nomadic tribes in the Middle East have been known to use traditional date syrup as an antimicrobial agent for wound healing. In some cases these ailments can be attributed to or are strongly associated with a variety of bacterial infections and inflammation. Plant-derived products such as date syrup have demonstrated antibacterial activity and can inhibit bacteria through numerous different mechanisms, which may be attributed to bioactive compounds including plant-derived phenolic molecules. Many such products derive their inherent antimicrobial activity from the presence of polyphenols, which cause oxidative damage. This investigation demonstrated that date syrup, and polyphenols extracted from date syrup, the most abundant bioactive constituent of date syrup are bacteriostatic to both Gram positive and Gram negative Escherichia coli and Staphylococcus aureus. We have further shown that the extracted polyphenols independently suppress the growth of bacteria and have observed that date syrup behaves as a prooxidant by generating hydrogen peroxide that mediates bacterial growth inhibition as a result of oxidative stress. at sub-lethal MIC concentrations date syrup demonstrated antioxidative activity by reducing hydrogen peroxide, and at lethal concentrations date syrup demonstrated prooxidant activity that inhibited the growth of E. coli and S. aureus. The high sugar content naturally present in date syrup did not significantly contribute to this effect. These

  3. Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from individuals following omnivorous, vegetarian and vegan diets.

    Science.gov (United States)

    Luongo, Diomira; Treppiccione, Lucia; Sorrentino, Alida; Ferrocino, Ilario; Turroni, Silvia; Gatti, Monica; Di Cagno, Raffaella; Sanz, Yolanda; Rossi, Mauro

    2017-09-01

    Lactobacilli and bifidobacteria play a primary role in modulation of gut immunity. By considering that microbiota composition depends on various factors, including diet, we asked whether functional differences could characterize faecal populations of lactobacilli and bifidobacteria isolated from individuals with different dietary habits. 155 healthy volunteers who followed omnivorous, ovo-lacto-vegetarian or vegan diets were recruited at four Italian centres (Turin, Parma, Bologna and Bari). Faecal samples were collected; lactobacilli and bifidobacteria were isolated on selective media and their immunomodulatory activity was tested in mouse dendritic cells (DCs). Pre-incubation with lactobacilli increased LPS-induced expression of the maturation markers CD80 and CD86, whereas pre-incubation with bifidobacteria decreased such expression. Analysis of the cytokine profile indicated that strains of both genera induced down-regulation of IL-12 and up-regulation of IL-10, whereas expression of TNF-α was not modulated. Notably, analysis of anti-inflammatory potential (IL-10/IL-12 ratio) showed that lactobacilli evoked a greater anti-inflammatory effect than did bifidobacteria in the omnivorous group (P<0.05). We also found significantly reduced anti-inflammatory potential in the bacterial strains isolated from Bari's volunteers in comparison with those from the cognate groups from the other centres. In conclusion, lactobacilli and bifidobacteria showed a genus-specific ability of modulating in vitro innate immunity associated with a specific dietary habit. Furthermore, the geographical area had a significant impact on the anti-inflammatory potential of some components of faecal microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation and comparison of the content of total polyphenols and antioxidant activity in garlic (Allium sativum L.

    Directory of Open Access Journals (Sweden)

    Marianna Lenková

    2017-01-01

    Full Text Available Garlic (Allium sativum L. is one of the oldest cultivated plants in the world and highly valued throughout the ages as a culinary spice. It is a hardy perennial belonging to the Alliaceae family. The garlic bulb is the most commonly used portion of the plant, composed of 5 - 20 individual. It is a very good source of manganese, selenium, vitamin C and vitamin B6 (pyridoxine. In addition, garlic is a good source of other minerals, including phosphorous, calcium, potassium, iron and copper. Many of the perceived therapeutic effects of garlic are thought to be due to its active ingredient allicin. This sulphur-containing compound gives garlic its distinctive pungent smell and taste. Garlic possesses antiviral, antibacterial, anti-fungal properties allowing it to stand against all infections. This work has focused on the evaluation and comparison of total content of polyphenols and antioxidant activity in five varieties of garlic - Mojmír, Záhorský, Lukan, Havran and Makoi. Samples of plant material were collected at the stage of full maturity in the area of Nitra. The total content of polyphenols was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols in garlic were in the range 621.13 mg.kg-1 (Záhorský to 763.28 mg.kg-1 (Havran. Total polyphenols content in garlic declined in the following order: Havran >Mojmír >Makoi >Lukan >Záhorský. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl. Statistically significant highest value of antioxidant was recorded in 20.22% (Mojmír and the lowest value was in 13.61% (Záhorský. The values of antioxidant activity observed in the varieties of garlic may be arranged as follows: Mojmír >Havran >Lukan >Makoi >Záhorský. In all the analysed varieties of garlic was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenols.

  5. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States.

    Science.gov (United States)

    Miller, Kenneth B; Stuart, David A; Smith, Nancy L; Lee, Chang Y; McHale, Nancy L; Flanagan, Judith A; Ou, Boxin; Hurst, W Jeffrey

    2006-05-31

    In the United States, commercially available foods, including cocoa and chocolate, are being marketed with statements referring to the level of antioxidant activity and polyphenols. For cocoa-containing foods, there has been no comprehensive survey of the content of these and other chemistries. A survey of cocoa and chocolate-containing products marketed in the United States was conducted to determine antioxidant activity and polyphenol and procyanidin contents. Commercially available samples consisted of the top market share products in each of the following six categories: natural cocoa, unsweetened baking chocolate, dark chocolate, semisweet baking chips, milk chocolate, and chocolate syrup. Composite samples were characterized using four different methods: oxygen radical absorbance capacity (ORAC), vitamin C equivalence antioxidant capacity (VCEAC), total polyphenols, and procyanidins. All composite lots were further characterized for percent nonfat cocoa solids (NFCS) and percent fat. Natural cocoas had the highest levels of antioxidant activities, total polyphenols, and procyanidins followed by baking chocolates, dark chocolates and baking chips, and finally milk chocolate and syrups. The results showed a strong linear correlation between NFCS and ORAC (R (2) = 0.9849), total polyphenols (R (2) = 0.9793), and procyanidins (R (2) = 0.946), respectively. On the basis of principal component analysis, 81.4% of the sample set was associated with NFCS, antioxidant activity, total polyphenols, and procyanidins. The results indicated that, regardless of the product category, NFCS were the primary factor contributing to the level of cocoa antioxidants in the products tested. Results further suggested that differences in cocoa bean blends and processing, with the possible exception of Dutching, are minor factors in determining the level of antioxidants in commercially available cocoa-containing products in the United States.

  6. Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion.

    Science.gov (United States)

    Francavilla, Ruggiero; De Angelis, Maria; Rizzello, Carlo Giuseppe; Cavallo, Noemi; Dal Bello, Fabio; Gobbetti, Marco

    2017-07-15

    The aim of this study was to demonstrate the capacity of probiotic lactobacilli to hydrolyze immunogenic gluten peptides. Eighteen commercial strains of probiotic lactobacilli with highly variable peptidase activity (i.e., aminopeptidase N, iminopeptidase, prolyl endopeptidyl peptidase, tripeptidase, prolidase, prolinase, and dipeptidase), including toward Pro-rich peptides, were tested in this study. Ten probiotic strains were selected on the basis of their specific enzyme activity. When pooled, these 10 strains provided the peptidase portfolio that is required to completely degrade the immunogenic gluten peptides involved in celiac disease (CD). The selected probiotic mixture was able to completely hydrolyze well-known immunogenic epitopes, including the gliadin 33-mer peptide, the peptide spanning residues 57 to 68 of the α9-gliadin (α9-gliadin peptide 57-68), A-gliadin peptide 62-75, and γ-gliadin peptide 62-75. During digestion under simulated gastrointestinal conditions, the pool of 10 selected probiotic lactobacilli strongly hydrolyzed the wheat bread gluten (ca. 18,000 ppm) to less than 10 ppm after 360 min of treatment. As determined by multidimensional chromatography (MDLC) coupled to nanoelectrospray ionization (nano-ESI)-tandem mass spectrometry (MS/MS), no known immunogenic peptides were detected in wheat bread that was digested in the presence of the probiotics. Accordingly, the level of cytokines (interleukin 2 [IL-2], IL-10, and interferon gamma [IFN-γ]) produced by duodenal biopsy specimens from CD patients who consumed wheat bread digested by probiotics was similar to the baseline value (negative control). Probiotics that specifically hydrolyze gluten polypeptides could also be used to hydrolyze immunogenic peptides that contaminate gluten-free products. This could provide a new and safe adjunctive therapy alternative to the gluten-free diet (GFD). IMPORTANCE This study confirmed that probiotic Lactobacillus strains have different enzymatic

  7. Antibiofilm Effects of Lactobacilli against Ciprofloxacin-Resistant Uropathogenic Escherichia coli strains in Pasteurized Milk

    Directory of Open Access Journals (Sweden)

    Mahsa Yeganeh

    2017-11-01

    Full Text Available  Background and Objective: Uropathogenic Escherichia coli-induced urinary tract infections are the most common uropathogenic Escherichia coli etiological agent. In addition, most of biofilms created by these bacteria can be regarded as a serious problem in the food industry. Foodborne diseases have always been considered an emerging public health concern throughout the world. Many outbreaks have been found to be associated with biofilms. Thus, the aim of the present study is to investigate the anti-adhesive effects of lactic acid bacteria against strains of Ciprofloxacin-Resistant Uropathogenic Escherichia coli using microbial techniques in pasteurized milk.Material and Methods: In this study, strains of Lactobacillus plantarum, Lactobacillus casei and Lactobacillus acidophilus were provided from Pasteur Institute of Iran. Twenty strains of Uropathogenic Escherichia coli-Induced Urinary Tract Infections were isolated from patients with urinary tract infection in Shahid Labbafinejad hospital of Iran. Eight strains with ability of biofilm formation were selected for microbial tests. All of these eight strains were resistant to ciprofloxacin. Disk diffusion method was used to assess the susceptibility of all isolates to the ten common antibiotics. Eight samples of Uropathogenic Escherichia coli were inoculated in pasteurized milk. The microtitre plate 100 method was used to detect anti-adhesive activity of lactobacilli supernatant.Results and Conclusion: Results showed that the eight human isolates were resistant to antibiotics. Isolate of number 4 was the most susceptible strains to antibiofilm effects of lactobacilli in the pasteurized milk. The anti-adhesive effects of lactobacilli on Uropathogenic were confirmed in all microbial tests. In this study, Lactobacillus plantarum revealed the highest inhibitory activity against Uropathogenic Escherichia coli 4 strain with inhibition zones of 42 mm. This strain was reported as a proper probiotic

  8. Potential Health Benefits of Olive Oil and Plant Polyphenols.

    Science.gov (United States)

    Gorzynik-Debicka, Monika; Przychodzen, Paulina; Cappello, Francesco; Kuban-Jankowska, Alicja; Marino Gammazza, Antonella; Knap, Narcyz; Wozniak, Michal; Gorska-Ponikowska, Magdalena

    2018-02-28

    Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate), as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  9. Potential Health Benefits of Olive Oil and Plant Polyphenols

    Directory of Open Access Journals (Sweden)

    Monika Gorzynik-Debicka

    2018-02-01

    Full Text Available Beneficial effects of natural plant polyphenols on the human body have been evaluated in a number of scientific research projects. Bioactive polyphenols are natural compounds of various chemical structures. Their sources are mostly fruits, vegetables, nuts and seeds, roots, bark, leaves of different plants, herbs, whole grain products, processed foods (dark chocolate, as well as tea, coffee, and red wine. Polyphenols are believed to reduce morbidity and/or slow down the development of cardiovascular and neurodegenerative diseases as well as cancer. Biological activity of polyphenols is strongly related to their antioxidant properties. They tend to reduce the pool of reactive oxygen species as well as to neutralize potentially carcinogenic metabolites. A broad spectrum of health-promoting properties of plant polyphenols comprises antioxidant, anti-inflammatory, anti-allergic, anti-atherogenic, anti-thrombotic, and anti-mutagenic effects. Scientific studies present the ability of polyphenols to modulate the human immune system by affecting the proliferation of white blood cells, and also the production of cytokines or other factors that participate in the immunological defense. The aim of the review is to focus on polyphenols of olive oil in context of their biological activities.

  10. Effect of lyophilized lactobacilli and 0.03 mg estriol (Gynoflor®) on vaginitis and vaginosis with disrupted vaginal microflora: a multicenter, randomized, single-blind, active-controlled pilot study.

    Science.gov (United States)

    Donders, G G G; Van Bulck, B; Van de Walle, P; Kaiser, R R; Pohlig, G; Gonser, S; Graf, F

    2010-01-01

    To evaluate the efficacy of lyophilized lactobacilli in combination with 0.03 mg estriol when compared to metronidazole in the treatment of bacterial vaginal infections. Multicenter, randomized, single-blind, active-controlled pilot study in 3 independent gynecological practices in Belgium. Forty-six, 18- to 50-year-old premenopausal women with a disrupted vaginal flora due to a bacterial vaginal infection (bacterial vaginosis, aerobic vaginitis) were included, provided that fresh phase-contrast microscopy of the vaginal fluid showed lactobacillary flora grade 2B or 3. Patients were given a blinded box with either 12 vaginal tablets of Gynoflor® (study medication) or 6 vaginal suppositories containing 500 mg metronidazole (control medication). Eight efficacy variables were studied to assess the status of the vaginal flora at entry, 3-7 days (control 1), 4-6 (control 2) weeks and 4 months after the end of therapy. At control 1, the combined variables equally improved in the lactobacilli group as in the metronidazole group. At control 2, the lactobacillus preparation showed slightly inferior results when compared to metronidazole. At 4 months, this analysis could not be performed due to low numbers, but analysis of recurrence rate and extra medication needed was not different between both groups. Lyophilized lactobacilli in combination with low-dose estriol are equivalent to metronidazole in the short-term treatment of bacterial vaginal infections, but have less effect after 1 month. Further studies are required to evaluate the long-term efficacy of lactobacilli when applied repeatedly. Copyright © 2010 S. Karger AG, Basel.

  11. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?

    Directory of Open Access Journals (Sweden)

    Thibault Allain

    2018-02-01

    Full Text Available Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals.

  12. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Science.gov (United States)

    Jakobek, Lidija

    2015-05-15

    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    Science.gov (United States)

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  14. Polyphenols from cocoa and vascular health-a critical review.

    Science.gov (United States)

    Rimbach, Gerald; Melchin, Mona; Moehring, Jennifer; Wagner, Anika E

    2009-11-20

    Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted.

  15. Activity and concentration of polyphenolic antioxidants in apple juice 1 Effect of existing production methods

    NARCIS (Netherlands)

    Sluis, van der A.A.; Dekker, M.; Skrede, G.; Jongen, W.M.F.

    2002-01-01

    Apples are an important source of flavonoids in the human diet. The effect of processing apples into juice on polyphenolic antioxidant content and activity is described. Raw juice obtained from Jonagold apples by pulping and straight pressing or after pulp enzyming had an antioxidant activity that

  16. Natural polyphenols: Influence on membrane transporters

    Directory of Open Access Journals (Sweden)

    Saad Abdulrahman Hussain

    2016-03-01

    Full Text Available Accumulated evidences have focused on the use of natural polyphenolic compounds as nutraceuticals, since they showed a wide range of bioactivities and exhibited protection against variety of age related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as ATP-Binding Cassette transporters, like multidrug resistance protein (MDRP, and p-glycoprotein (P-gp. Some of the efflux transporters are generally linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. Additionally, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology. [J Complement Med Res 2016; 5(1.000: 97-104

  17. Dual Effects of Lactobacilli as a Cholesterol Assimilator and an Inhibitor ofGastrointestinal Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Amir Emami

    2014-02-01

    Full Text Available Background: Probiotics are live microbial supplements which can improve the healthy intestinal microbial balance. Lactobacilli are a group of lactic acid producing bacteria (LAB that are known as natural probiotics found in the dairy products. Objectives: In this study, we aimed to detect the most potent Lactobacillus isolates of the Fars province local dairy products in cholesterol removal and investigate their antibacterial properties against some gastrointestinal pathogens. Materials and Methods: Fifteen locally produced yogurt samples of the Fars province were collected and characterized with routine microbiology methods. Cholesterol removal ability of the Lactobacilli isolates were determined, and their growth inhibitory effect on some standard pathogenic strains pathogen was evaluated using the well-diffusion method. Results: In this study, five common strains of Lactobacilli including L. acidophilus, L. casei, L. fermentum, L. lactis, and L. bulgaricus were identified in the samples obtained from the locally produced yogurt in the Fars province. L. lactis and L. acidophilus were determined as the two most active strains with the maximum rate of cholesterol assimilation (5.6 and 4.5 mg/mL, respectively in the process of cholesterol removal. In the antibacterial activity assay, the two mentioned strains had significant inhibitory effect on all of the tested bacteria except for B. subtilis. Conclusions: Cholesterol removal ability had a direct relation with bacterial growth, so it is suggested to use the probiotic bacteria in the growth phase to achieve better results.

  18. Physical and antibacterial properties of edible films formulated with apple skin polyphenols.

    Science.gov (United States)

    Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H

    2011-03-01

    Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.

  19. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.).

    Science.gov (United States)

    Smeriglio, A; Denaro, M; Barreca, D; D'Angelo, V; Germanò, M P; Trombetta, D

    2018-01-01

    Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.).

    Science.gov (United States)

    Teixeira, L L; Costa, G R; Dörr, F A; Ong, T P; Pinto, E; Lajolo, F M; Hassimotto, N M A

    2017-06-21

    The bioavailability and metabolism of anthocyanins and ellagitannins following acute intake of grumixama fruit, native Brazilian cherry, by humans, and its in vitro antiproliferative activity against breast cancer cells (MDA-MB-231) were investigated. A single dose of grumixama juice was administered to healthy women (n = 10) and polyphenol metabolites were analyzed in urine and plasma samples collected over 24 h. The majority of the metabolites circulating and excreted in urine were phenolic acids and urolithin conjugates, the gut microbiota catabolites of both classes of polyphenols, respectively. According to pharmacokinetic parameters, the subjects were divided into two distinct groups, high and low urinary metabolite excretors. The pool of polyphenol metabolites found in urine samples showed a significant inhibition of cell proliferation and G2/M cell cycle arrest in MDA-MB-231 cells. Our findings demonstrate the large interindividual variability concerning the polyphenol metabolism, which possibly could reflect in health promotion.

  1. In vitro and in vivo antioxidant activities of polyphenol extracted from black garlic

    Directory of Open Access Journals (Sweden)

    Weidong WANG

    Full Text Available Abstract This study investigated the in vitro and in vivo antioxidant activities of polyphenol extracted from black garlic. Black garlic polyphenol (BGP was extracted from black garlic. The in vitro antioxidant activities of BGP were determined using DPPH·, OH and O2– radical scavenging assays. The in vivo antioxidant activities were determined by detecting the malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities in mice. Results showed that, the DPPH· radical inhibition rate of 200 and 250 μg/mL BGP was equivalent with Vc (P > 0.05. With concentration of 400 and 500 μg/mL, the OH radical inhibition rate of BGP was slightly lower than Vc (P > 0.05. The O2– radical inhibition rates of 200, 400, 600, 800 and 1000 μg/mL BGP were significantly lower than Vc (P < 0.05. In the groups treated with BGP with suitable dose, the serum MDA content was significantly decreased compared with model group (P < 0.05, and the serum SOD and GSH-Px activities were significantly increased (P < 0.05. BGP has obvious DPPH· and ·OH radical scavenging activities, and can significantly decrease the serum MDA content in mice with oxidative damage, and increase the serum SOD and GSH-Px activities.

  2. Polyphenols in preventing endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Sylwia Biegańska-Hensoldt

    2017-03-01

    Full Text Available One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions.Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS and increased production of nitric oxide (NO and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules – sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  3. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Kati Hanhineva

    2010-03-01

    Full Text Available Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic b-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  4. Effect of temperature stress on polyphenol oxidase activity in grains of some wheat cultivars

    International Nuclear Information System (INIS)

    Kayani, W.K.

    2011-01-01

    Color is a key quality trait of wheat-based products and polyphenol oxidase (PPO) is implicated to play a significant role in their undesirable darkening. Polyphenol oxidase catalyzes the oxidation of phenols to quinines, which auto oxidize and polymerize with amino acid of cellular proteins resulting brown and black pigmentation propounding reduced nutritional values. In present study, the PPO activity in 50 different Pakistani wheat cultivars was investigated and grouped into three categories viz; low, medium and high PPO activity cultivars. PPO is a heat labile enzyme. To investigate effect of heat stress, nine cultivars from each category were chosen for treatment at 30, 40 and 50 deg. C for 30, 60, and 120 minutes each. A substantial change was experienced in PPO activity as compared to room temperature. Two wheat cultivar Wafaq-2001 and AS-2002 showed a compromising attitude of minimum PPO activity at 30 deg. C for a period of 30 and 60 minutes of incubation. In general, an incubation of 30 deg. C or 60 deg. C (low or high) for a period of 30 minutes can be recommended for suppressing PPO activity. (author)

  5. Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae).

    Science.gov (United States)

    Hanganu, Daniela; Olah, Neli Kinga; Benedec, Daniela; Mocan, Andrei; Crisan, Gianina; Vlase, Laurian; Popica, Iulia; Oniga, Ilioara

    2016-01-01

    The aim of this study was focused on the polyphenolic composition and antioxidant capacity of Genista tinctoria L. and Genistella sagittalis (L.) Gams. A qualitative and quantitative characterization of the main phenolic compounds from the extracts were carried out using a HPLC-MS method. The total polyphenolic and flavonoid content was spectrophotometrically determined. The antioxidant activity towards various radicals generated in different systems was evaluated usingDPPH bleaching method, Trolox equivalent antioxidant capacity assay (TEAC) and Oxygen radical absorbance capacity (ORAC), and all indicated that G. tinctoria extract was more antioxidant than G. sagittalis extract.That was in good agreement with the total polyphenolic and flavonoidic content.Chlorogenic acid, p-coumaric acid, isoquercitrin and apigenin were identified in bothspecies. Caffeic acid, ferulic acid, hyperoside, rutin, quercitrin and luteolin were found only in G. tinctoria, while quercetin was determined in G. sagittalis.

  6. Modulation of neurotrophic signaling pathways by polyphenols

    Directory of Open Access Journals (Sweden)

    Moosavi F

    2015-12-01

    Full Text Available Fatemeh Moosavi,1,2 Razieh Hosseini,1,2 Luciano Saso,3 Omidreza Firuzi1 1Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; 2Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; 3Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy Abstract: Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK and phosphoinositide 3-kinase (PI3K/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate

  7. Differential protective effects of red wine polyphenol extracts (RWEs) on colon carcinogenesis.

    Science.gov (United States)

    Mazué, Frédéric; Delmas, Dominique; Murillo, Genoveva; Saleiro, Diana; Limagne, Emeric; Latruffe, Norbert

    2014-04-01

    Various epidemiological studies have shown that a regular and moderate consumption of red wine is correlated with a decreased relative risk of developing coronary heart disease and cancer. These health benefits are commonly attributed to high contents of polyphenols, particularly resveratrol, representing important sources of antioxidants. However, resveratrol does not seem to be the only bioactive compound present in the wine which contains numerous other polyphenols. The present study investigates the efficiency of red wine extracts (RWEs), containing different polyphenols, on colon cancer cell proliferation in vitro and on colonic aberrant crypt foci (ACF) in vivo. Proliferation, cell cycle analysis and incidence of ACF were monitored to examine the effects of RWEs. RWEs derived from a long vinification process exhibit superior anti-proliferative activity in colon cancer cells and prevent the appearance of ACF in mice. Interestingly, quercetin and resveratrol, representing two major bio-active polyphenols, exhibit synergistic anti-proliferative effects. These data suggest that the efficacy of RWEs on colon carcinogenesis may depend on the polyphenolic content, synergistic interaction of bio-active polyphenols and modulation of cellular uptake of polyphenols.

  8. Polyphenols from the stems of Morus alba and their inhibitory activity against nitric oxide production by lipopolysaccharide-activated microglia.

    Science.gov (United States)

    Rivière, Céline; Krisa, Stéphanie; Péchamat, Laurent; Nassra, Merian; Delaunay, Jean-Claude; Marchal, Axel; Badoc, Alain; Waffo-Téguo, Pierre; Mérillon, Jean-Michel

    2014-09-01

    Neuroinflammatory processes are involved in the pathogenesis of many neurodegenerative disorders. Microglial cells, the main immune cells of the central nervous system, represent a target of interest to search for naturally occurring anti-inflammatory products. In this study, we evaluated the anti-inflammatory properties of polyphenols obtained from the stems of Morus alba. This edible species, known as white mulberry, is frequently studied because of its traditional use in Asian medicine and its richness in different types of polyphenols, some of which are known to be phytoalexins. One new coumarin glycoside, isoscopoletin 6-(6-O-β-apiofuranosyl-β-glucopyranoside) (1) was mainly isolated by CPC (centrifugal partition chromatography) from this plant, together with seven known polyphenols (2-8). Their structures were established on the basis of spectroscopic analyses including extensive 2D NMR studies. The eight isolated compounds were evaluated for their inhibitory activities on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. The absence of cell toxicity is checked by a MTT assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Polyphenols from Cocoa and Vascular Health—A Critical Review

    Directory of Open Access Journals (Sweden)

    Anika E. Wagner

    2009-09-01

    Full Text Available Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design as well as prospective studies are warranted.

  10. Recent advances on tea polyphenols

    Science.gov (United States)

    Kanwar, Jyoti; Taskeen, Mujtaba; Mohammad, Imthiyaz; Huo, Congde; Chan, Tak Hang; Dou, Qing Ping

    2012-01-01

    Over the past decade many scientific and medical studies have focused on green tea for its long-purported health benefits. There is convincing evidence that tea is a cup of life. It has multiple preventive and therapeutic effects. This review thus focuses on the recent advances of tea polyphenols and their applications in the prevention and treatment of human cancers. Of the various polyphenols in tea, (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant, and active compound studied in tea research. EGCG inhibits several molecular targets to inhibit cancer initiation and modulates several essential survival pathways to block cancer progression. Herein, we describe the various mechanisms of action of EGCG and also discuss previous and current ongoing clinical trials of EGCG and green tea polyphenols in different cancer types. PMID:22201858

  11. Ultrasound-assisted extraction of polyphenols from Thymus serpyllum and its antioxidant activity

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandra A.

    2016-01-01

    Full Text Available The present study was designed to establish and optimize a method for extracting natural bioactive compounds from Thymus serpyllum which possess antioxidant, antimicrobial, antispasmotic and stimulant properties. Ultrasound-assisted extraction (UAE is a well-established method in the processing of plant material, particularly for extraction of bioactive substances such as polyphenols. The influential factors including extraction time (3, 7 and 10 minutes, solid:solvent ratio (1:10, 1:20 and 1:30 and particle size (0.3, 0.7 and 1.5 mm, have been studied to optimize the extraction process, while using 30% ethanol as an extraction medium and amplitude set to 65%. The yield of UAE was expressed via total phenol content and antioxidant activity of the obtained extracts. The optimum process paremeters were found to be: extraction time, 3 min; solid:solvent ratio, 1:30; particle size, 0.3 mm. Under these conditions, the yield of total polyphenols was raised up to 23.03 mg/L GA and the highest antioxidant activity was recorded (10.32 mmol/mg Trolox and IC50 3.00 mg/ml. [Projekat Ministarstva nauke Republike Srbije, br. 46010 i br. 46013

  12. Effects of water blanching on polyphenol reaction kinetics and quality of cocoa beans

    Science.gov (United States)

    Menon, A. S.; Hii, C. L.; Law, C. L.; Suzannah, S.; Djaeni, M.

    2015-12-01

    Several studies have been reported on the potential health benefits of cocoa polyphenols. However, drying has an inhibitory effect on the substantial recovery of cocoa polyphenols. This is majorly because of the high degradation of polyphenol compounds as well as the enhanced activity of polyphenol oxidases; a pre-cursor for browning of polyphenols during drying. Pre-treatment technique such as water blanching (80° and 90°C for 5 min, 10 min and 15 min exposure times respectively) can inactivate the polyphenol oxidases enzyme and promote high percent of the polyphenol recovery in dried cocoa bean. The degradation kinetics of cocoa polyphenols during hot water blanching are analyzed; The rate constant for the polyphenol degradation after blanching was found to be ranging from 0.0208 to 0.0340 /min. The results for dried fresh cocoa beans showed an optimal level of polyphenol recovery (118 mg GAE/g) when blanched at 90°C for 5 minutes duration. The antioxidant activity is also analyzed using DPPH scavenging assay.

  13. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo.

    Science.gov (United States)

    Harlow, Brittany E; Lawrence, Laurie M; Harris, Patricia A; Aiken, Glen E; Flythe, Michael D

    2017-01-01

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not decrease total (24 h) starch utilization in any case. These results indicate that exogenous lactobacilli can impact the microbial community and pH of cereal grain fermentations by equine fecal microflora ex vivo. Additionally, dead (autoclaved) exogenous lactobacilli had similar effects as live lactobacilli on fermentation. This latter result indicates that the mechanism by which lactobacilli impact other amylolytic bacteria is not simple resource competition.

  14. Lactobacilli inactivate Chlamydia trachomatis through lactic acid but not H2O2.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Lactobacillus species dominate the microbiome in the lower genital tract of most reproductive-age women. Producing lactic acid and H2O2, lactobacilli are believed to play an important role in prevention of colonization by and growth of pathogens. However, to date, there have been no reported studies characterizing how lactobacilli interact with Chlamydia trachomatis, a leading sexually transmitted bacterium. In this report, we demonstrate inactivation of C. trachomatis infectivity by culture media conditioned by Lactobacillus crispatus, L. gasseri and L. jensenii, known to be dominating organisms in the human vaginal microbiome. Lactobacillus still cultures produced lactic acid, leading to time- and concentration-dependent killing of C. trachomatis. Neutralization of the acidic media completely reversed chlamydia killing. Addition of lactic acid into Lactobacillus-unconditioned growth medium recapitulated the chlamydiacidal activity of conditioned media. The H2O2 concentrations in the still cultures were found to be comparable to those reported for the cervicovaginal fluid, but insufficient to inactivate chlamydiae. Aeration of Lactobacillus cultures by shaking markedly induced H2O2 production, but strongly inhibited Lactobacillus growth and lactic acid production, and thus severely affected acidification, leading to significantly reduced chlamydiacidal efficiency. These observations indicate lactobacilli inactivate chlamydiae primarily through maintaining acidity in a relatively hypoxic environment in the vaginal lumen with limited H2O2, which is consistent with the notion that women with higher vaginal pH are more prone to sexually transmitted C. trachomatis infection. In addition to lactic acid, formic acid and acetic acid also exhibited potent chlamydiacidal activities. Taken together, our findings imply that lowering the vaginal pH through engineering of the vaginal microbiome and other means will make women less susceptible to C

  15. A Prospective Evaluation of Plasma Polyphenol Levels and Colon Cancer Risk

    DEFF Research Database (Denmark)

    Murphy, Neil; Achaintre, David; Zamora-Ros, Raul

    2018-01-01

    Polyphenols have been shown to exert biological activity in experimental models of colon cancer; however, human data linking specific polyphenols to colon cancer is limited. We assessed the relationship between pre-diagnostic plasma polyphenols and colon cancer risk in a case-control study nested...

  16. Association between salivary level of infection with Streptococcus mutans/Lactobacilli and caries-risk factors in mothers.

    Science.gov (United States)

    Latifi-Xhemajli, B; Véronneau, J; Begzati, A; Bytyci, A; Kutllovci, T; Rexhepi, A

    2016-03-01

    Understanding factors in mothers associated with high and low salivary levels of Streptococcus mutans and Lactobacilli is an important strategy for early childhood caries prevention. Aim of the study was to identify the association between salivary levels of Streptococcus mutans/Lactobacillus and potential caries risk factors in mothers. Cross-sectional design used a voluntary sample of 300 mothers of young children. Close-ended questions and observations were used to identify mothers' potential caries risk factors. The presence of Streptococcus mutans and Lactobacilli was determined using the CRT bacteria test (Ivoclar Vivadent). All collected information was converted into frequency and proportion describing the prevalence factor in correlation with Streptococcus mutans and Lactobacilli cariogenic bacteria levels of infection. Results Sample participants showed a high caries risk based on socioeconomic, behavioural and clinical factors. also showed high levels (>105) of Streptococcus mutans and Lactobacilli infections among 28% of mothers. Three factors were significantly associated with Streptococcus mutans infection: level of education, past caries experiences, and observable dental plaque, whereas, a fourth factor, frequency of daily tooth brushing, was associated to Lactobacilli infection. This study showed that easily collectible informations such as maternal level of education, frequency of daily tooth brushing and past clinical factors tend to be associated with high level of Streptococcus mutans and Lactobacilli infections in caregivers.

  17. of polyphenolic compounds in Ilex Sp.

    Directory of Open Access Journals (Sweden)

    Zwyrzykowska Anna

    2015-11-01

    Full Text Available Natural compounds are an important source of desired biological activity which help to improve nutritional status, enhance productivity and bring many health benefits. The leaves of the Ilex paraguariensis (Aquifoliaceae are used for preparing a beverage known as yerba mate and represent a proven source of natural polyphenols which are known to foster biological activity with the emphasis on antioxidant properties. In present work we focused on the polyphenolic content of air-dried leaves of Ilex aquifolium L., Ilex aquifolium ‘Argentea Mariginata’, Ilex meserveae ‘Blue Angel’, and a commercially available mate as the reference product. Liquid chromatography combined with mass spectrometry (HPLC and LC-MS and thin layer chromatography (TLC, were used to establish polyphenolic substances content in aqueous methanolic extracts obtained from the biological matter. Up to 20 polyphenolic compounds were identified in the extracts, including rutin, quinic acid and its caffeoyl esters, i.e. chlorogenic acid and its isomers as well as dicaffeoyl derivatives. We took chlorogenic acid and rutin as reference compounds to quantify their levels in the extracts. It was determined that in all tested plants, high levels of these antioxidants were present. This led us to the conclusion that their leaves might serve as valuable food additives.

  18. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    Science.gov (United States)

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects.

  19. Impact of polyphenolic extracts on resistance to fungal ...

    African Journals Online (AJOL)

    Our results lend support of the creation of varieties bean high in polyphenols, which act as natural preservatives and bio-effective agents, and offer an alternative to chemical agents for protection of harvested beans in storage structures. Keywords: Polyphenols, antifungal activity, dry bean. African Journal of Biotechnology ...

  20. Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae).

    Science.gov (United States)

    Mendonça-Filho, Ricardo R; Rodrigues, Igor A; Alviano, Daniela S; Santos, André L S; Soares, Rosangela M A; Alviano, Celuta S; Lopes, Angela H C S; Rosa, Maria do Socorro S

    2004-04-01

    The available therapy for leishmaniasis, which affects 2 million people per annum, still causes serious side effects. The polyphenolic-rich extract from the husk fiber of Cocos nucifera Linn. (Palmae) presents antibacterial and antiviral activities, also inhibiting lymphocyte proliferation, as shown by our group in previous works. In the present study, the in vitro leishmanicidal effects of C. nucifera on Leishmania amazonensis were evaluated. The minimal inhibitory concentration of the polyphenolic-rich extract from C. nucifera to completely abrogate parasite growth was 10 microg/ml. Pretreatment of peritoneal mouse macrophages with 10 microg/ml of C. nucifera polyphenolic-rich extract reduced approximately 44% the association index between these macrophages and L. amazonensis promastigotes, with a concomitant increase of 182% in nitric oxide production by the infected macrophage in comparison to nontreated macrophages. These results provide new perspectives on drug development against leishmaniasis, since the extract of C. nucifera at 10 microg/ml is a strikingly potent leishmanicidal substance which inhibited the growth of both promastigote and amastigote developmental stages of L. amazonensis after 60 min, presenting no in vivo allergenic reactions or in vitro cytotoxic effects in mammalian systems.

  1. The Efect of Probiotic Lactobacilli and Alginite on the Cellular Immune Response in Salmonella Infected Mice

    Directory of Open Access Journals (Sweden)

    Hlubeňová K.

    2017-06-01

    Full Text Available Alginite is organic matter rich in humic substances and commonly found in nature, but despite that, the knowledge of its biological effects is limited. In our study we focused on monitoring the effects of alginite alone, as well as its effect as a carrier of probiotic lactobacilli on the cellular immune response in SPF mice after infection with Salmonella Typhimurium. Sixty six conventional SPF female mice of the Balb/c line were divided into 4 groups: 1. infection free negative control (NK supplied neither alginite nor probiotic lactobacilli in the feed; 2. infection free alginite control (Alg supplied feed with 10 % alginite; infected control supplied alginite in the feed but no lactobacilli; 3. infectious control (Alg + Sal - animals infected with salmonella and supplied 10 % alginite in the feed but no lactobacilli;and 4. probiotic group (Lab + Alg + Sal - animals infected with salmonella and administered 10 % alginite and Lactobacillus reuteri 2/6 in the feed. On day 21 of the experiments, the mice were bled and their mesenteric lymph nodes were taken after their death. The peripheral blood of the mice was analysed for the activity of phagocytes and the percentage of selected lymphocyte subpopulations was determined in the mesenteric lymph nodes and blood. The significantly highest phagocytic activity (FA was noted in the infected group with alginite (Alg + Sal. The FA was significantly increased in groups Alg and Lab + Alg + Sal in comparison with the NK group. The highest engulfing ability of phagocytes (phagocytic index was observed in the Lab + Alg + Sal group in comparison with other groups, but also in Alg group in comparison with NK. In the Lab + Alg + Sal group, we observed a significantly higher percentage of B-lymphocytes, CD4+CD8+ and natural killer T cells (NKT, but more significant impact on the numbers of subpopulations of lymphocytes was observed in the mesenteric lymph nodes, with the significantly highest proportions of CD4

  2. The Relevance of Dietary Polyphenols in Cardiovascular Protection.

    Science.gov (United States)

    Murillo, Ana G; Fernandez, Maria L

    2017-01-01

    The chemical structure of polyphenols consisting of aromatic rings, capable of quenching free radicals, makes them ideal candidates to protect against oxidation. Polyphenols are present in a variety of foods including grapes, berries, dark chocolate, coffee and tea to mention a few. A number of studies have shown that dietary polyphenols exert a protective effect against hypertension, dyslipidemias, inflammation, endothelial function and atherosclerosis, conditions associated with increased risk for cardiovascular disease. Studies indicate that by decreasing cholesterol absorption, polyphenols alter hepatic cholesterol homeostasis resulting in decreases in plasma lipids and reduction in atherogenic lipoproteins thus having a protective effect against atherosclerosis; polyphenols have also been shown to decrease the activity of enzymes involved in the renin-angiotensinaldosterone system and improve blood pressure. Further, they have been recognized to increase nitric oxide production and to improve endothelial function. In this review we will present some of the evidence derived from epidemiological studies, clinical interventions as well as animal and cell studies supporting the cardioprotective effects of dietary polyphenols. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis.

    Science.gov (United States)

    Afaq, F; Katiyar, S K

    2011-12-01

    Polyphenols are a large family of naturally occurring plant products and are widely distributed in plant foods, such as, fruits, vegetables, nuts, flowers, bark and seeds, etc. These polyphenols contribute to the beneficial health effects of dietary products. Clinical and epidemiological studies suggest that exposure of the skin to environmental factors/pollutants, such as solar ultraviolet (UV) radiation induce harmful effects and leads to various skin diseases including the risk of melanoma and non-melanoma skin cancers. The incidence of non-melanoma skin cancer, comprising of squamous cell carcinoma and basal cell carcinoma, is a significant public health concern world-wide. Exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. The regular intake of natural plant products, especially polyphenols, which are widely present in fruits, vegetables, dry legumes and beverages have gained considerable attention as protective agents against the adverse effects of UV radiation. In this article, we first discussed the impact of polyphenols on human health based on their structure-activity relationship and bioavailability. We then discussed in detail the photoprotective effects of some selected polyphenols on UV-induced skin inflammation, proliferation, immunosuppression, DNA damage and dysregulation of important cellular signaling pathways and their implications in skin cancer management. The selected polyphenols include: green tea polyphenols, pomegranate fruit extract, grape seed proanthocyanidins, resveratrol, silymarin, genistein and delphinidin. The new information on the mechanisms of action of these polyphenols supports their potential use in skin photoprotection and prevention of photocarcinogenesis in humans.

  4. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera

    Science.gov (United States)

    Sun, Zhihong; Harris, Hugh M. B.; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C.; Kagawa, Todd F.; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C.; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P.; Paul Ross, R.; Yang, Ruifu; Briner, Alexandra E.; Felis, Giovanna E.; de Vos, Willem M.; Barrangou, Rodolphe; Klaenhammer, Todd R.; Caufield, Page W.; Cui, Yujun; Zhang, Heping; O'Toole, Paul W.

    2015-01-01

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species. PMID:26415554

  5. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera.

    Science.gov (United States)

    Sun, Zhihong; Harris, Hugh M B; McCann, Angela; Guo, Chenyi; Argimón, Silvia; Zhang, Wenyi; Yang, Xianwei; Jeffery, Ian B; Cooney, Jakki C; Kagawa, Todd F; Liu, Wenjun; Song, Yuqin; Salvetti, Elisa; Wrobel, Agnieszka; Rasinkangas, Pia; Parkhill, Julian; Rea, Mary C; O'Sullivan, Orla; Ritari, Jarmo; Douillard, François P; Paul Ross, R; Yang, Ruifu; Briner, Alexandra E; Felis, Giovanna E; de Vos, Willem M; Barrangou, Rodolphe; Klaenhammer, Todd R; Caufield, Page W; Cui, Yujun; Zhang, Heping; O'Toole, Paul W

    2015-09-29

    Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.

  6. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells.

    Science.gov (United States)

    Taleb, Hajer; Morris, R Keith; Withycombe, Cathryn E; Maddocks, Sarah E; Kanekanian, Ara D

    2016-07-01

    Bioactive components such as polyphenols, present in many plants, are purported to have anti-inflammatory and antiangiogenic properties. Date syrup, produced from date fruit of the date palm tree, has traditionally been used to treat a wide range of diseases with etiologies involving angiogenesis and inflammation. It was hypothesized that polyphenols in date syrup reduce angiogenic responses such as cell migration, tube formation, and matrix metalloproteinase activity in an inflammatory model by exhibiting anti-inflammatory activity mediated by vascular endothelial growth factor (VEGF) and the prostaglandin enzyme cyclooxygenase-2 (COX-2) in endothelial cells. Date syrup polyphenols at 60 and 600μg/mL reduced inflammation and suppressed several stages of angiogenesis, including endothelial cell migration, invasion, matrix metalloproteinase activity, and tube formation, without evidence of cytotoxicity. VEGF and COX-2 expression induced by tumor necrosis factor-alpha at both gene expression and protein level was significantly reduced by date syrup polyphenols in comparison to untreated cells. In conclusion, polyphenols in date syrup attenuated angiogenic responses and exhibited anti-inflammatory activity mediated by VEGF and COX-2 expression in endothelial cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Polyphenol Concentrate from Kazakhstan Cabernet Sauvignon Collection of Grapes

    Directory of Open Access Journals (Sweden)

    Zarina Shulgau

    2014-12-01

    Full Text Available Introduction. Nowadays, most of the research in the field of gerontology is focused on the effects of the grape polyphenols. In particular, resveratrol has been shown to increase life expectancy of various living organisms, including mammals. Resveratrol also plays an important role in cancer prevention and decreases the risk of developing cardiovascular disease. In our research, we proposed the development of the therapeutic product from Cabernet Sauvignon grapes that would exhibit the beneficial properties of polyphenols. Standard operating procedures were developed in our laboratories to collect alcohol free concentrate of polyphenols from the Kazakhstan Cabernet Sauvignon collection of grapes. The purpose of the study was to investigate the composition, biological safety, and potential therapeutic effects of the polyphenol concentrate.Methods. The total polyphenol amount was determined using the Enology Analyzer Y15 (BioSystems, Spain. HPLC analysis of the polyphenol composition was performed using Agilent 1290 chromatograph. The polyphenol concentrate was analyzed for the microbiological purity and the presence of the toxic elements. The cytoprotective effect of the polyphenol concentrate was studied in experimental models of diabetes, toxic hepatitis, doxorubicin cardiomyopathy, and acute radiation sickness.Results. The total polyphenol amount in one sample was 12,819 mg/l. Polyphenol composition analysis showed presence of the following polyphenols: catechin, epicatechin, gallic acid, quercetin, miricetin, 3-glucosylkaempferol, epicatechin gallate, 3-(3,4-Dihydroxyphenyl-2-propenoic acid, catechin gallate, pitseid, kaempferol, n-hydroxy-cinnamic acid, resveratrol and chlorogenic acid. The concentrate was proven to be biologically safe and acceptable for use as a dietary supplement. The polyphenol concentrate demonstrated high antioxidant activity against ABTS and DPPH radicals in vitro. It also showed the following impacts on the various

  8. EVALUATION OF THE GROWTH OF SELECTED LACTOBACILLI IN PSEUDOCEREAL SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Denisa Liptáková

    2011-12-01

    Full Text Available The growth dynamics of Lactobacillus spp. in sweet water- and milk-based substrates from cooked buckwheat and amaranth flour were studied in this work. The numbers of lactobacilli were observed during fermentation in 5% CO2 atmosphere at 37 °C and storage (3 weeks at 6 °C. The earned data and estimated growth parameters showed that certain strains grew well in the milk-based gruels, even water-based amaranth gruel. This was also the case of the species under study characterized with the fastest growth. Based on the rates, only the strains of Lactobacillus rhamnosus GG and VT1 were able to grow with the values higher than 0.6 log CFU.ml-1.h-1 that can be expressed as the times to double (td lower than 0.5 h. This was found in both the amaranth and buckwheat milk-based gruels and water-based amaranth gruels but fermented only by the probiotic GG strain. The 3-week storage tests aimed on survival of the lactobacilli at 6 °C showed minimal decrease of the counts in buckwheat gruels with the average rates of -0.084 and -0.004 log CFU.ml-1.d-1 in water- and milk-based gruels, respectively. On the other hand in amaranth gruels, the numbers of lactobacilli slightly increased with the rate of 0.02 log CFU.ml-1.d-1, on average. The results of this pilot study pointed out that the selection of suitable lactic acid bacteria should be performed for optimal fermentation of pseudo-cereal substrates. The numbers of lactobacilli at the end of fermentation were not or very slightly affected by the type of substrate at 6 °C during three weeks.doi:10.5219/169

  9. Determination of Antibacterial and Technological Properties of Vaginal Lactobacilli for Their Potential Application in Dairy Products

    OpenAIRE

    Siroli, Lorenzo; Patrignani, Francesca; Serrazanetti, Diana I.; Parolin, Carola; ?ahui Palomino, Rogers A.; Vitali, Beatrice; Lanciotti, Rosalba

    2017-01-01

    Functional foods could differently affect human health in relation to the gender. Recent studies have highlighted the anti-Candida and anti-Chlamydia activities of some Lactobacillus strains isolated from the vagina of healthy women. Considering these important beneficial activities on women's health, the preparation of functional food containing active vaginal lactobacilli can represent a great scientific challenge for the female gender. In this context, the aim of this work was to study som...

  10. Influence of diabetes on the pharmacokinetic behavior of natural polyphenols.

    Science.gov (United States)

    Xiao, Jianbo; Högger, Petra

    2014-01-01

    The development of food fortified with polyphenols and polyphenol-rich foods represents a novel approach to prevent or attenuate type 2 diabetes. It has been reported that type 2 diabetes may affect the pharmacokinetics of various drugs in several animal models. There is powerful evidence linking dietary polyphenols consumption with the risk factors defining type 2 diabetes, even if some opposite results occurred. This mini-review summarizes important advances on diabetes-associated changes in pharmacokinetics of natural polyphenols. The pharmacokinetic behavior between drugs and dietary polyphenols probably may be different due to (i) Ingested dose/amount per day. The dietary polyphenol intake per day is much higher than that of clinical drugs; (ii) Complexity of the components. Clinical drugs are well-characterized and typically small molecules. However, the polyphenols in diet are unimaginably complex; (iii) Interaction with food proteins. Although the effects of food proteins on the bioavailability of polyphenols are still not examined in much detail, direct binding interactions of polyphenols to proteins always occur; (iv) The most common polyphenols in the human diet have a low intrinsic activity and are poorly absorbed from the intestine, highly metabolized, or rapidly eliminated. Although there is very limited information available so far, it is proposed that type 2 diabetes influences the pharmacokinetic behavior of dietary polyphenols including: i) competition of glucose with polyphenols regarding binding to plasma proteins; ii) weakened non-covalent interaction affinities of plasma proteins for natural polyphenols due to protein glycation in type II diabetes; iii) the enhanced clearance of polyphenols in type 2 diabetes. An understanding of diabetes-associated changes in absorption, distribution, metabolism, elimination and bioactivities of natural polyphenols as well as the mechanism of the variability should lead to the improvement of the benefits of

  11. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp.

    Directory of Open Access Journals (Sweden)

    Sumanpreet Kaur

    2018-04-01

    Full Text Available Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62–85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19–57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62–82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive

  12. Study of irradiation effect on curcuma polyphenols

    International Nuclear Information System (INIS)

    Rejeb, Imen

    2008-01-01

    The present study was carried out to evaluate the effect of gamma irradiation on curcumin (Curcuma Longa rhizome) component, particularly the polyphenolic fraction. Powdered rhizome was irradiated at 0, 5, 10 and 15 KGy (dose rate of 6 KGy / H). Polyphenolics were extracted and total polyphenols conent (TPC) was quantified using the Folin-Ciocalteau method. The irradiation effect was also evaluated by the HPLC technique. The chromatographic analysis showed that the irradiated and non-irradiated curcumin spectrum gave similar data. The antioxidant and antibacterial activities of the phenolic extracts were also assessed. the anti oxidative potential of the sample was evaluated using two radical scavenging methods with DPPH and ABTS. The antimicrobial analysis showed that the phenolic extracts of curcumin inhibited the growth of the studied microorganisms. Our results showed that irradiated samples were not affected in terms of polyphenols content and characteristics. (Author)

  13. Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations

    Directory of Open Access Journals (Sweden)

    Jorge Jesús Veloz

    2016-01-01

    Full Text Available Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans. Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition.

  14. Cancer Prevention by Tocopherols and Tea Polyphenols

    Science.gov (United States)

    Yang, Chung S.; Li, Guangxun; Yang, Zhihong; Guan, Fei; Chen, Amber; Ju, Jihyeung

    2013-01-01

    Tocopherols (vitamin E) and tea polyphenols have been reported to have cancer preventive activities. Large-scale human trials with high doses of alpha-tocopherol, however, have produced disappointing results. This review presents data showing that γ- and δ-tocopherols inhibit colon, lung, mammary and prostate carcinogenesis in animal models, whereas α-tocopherol is ineffective in animal and human studies. Possible mechanisms of action are discussed. A broad cancer preventive activity of green tea polyphenols has been demonstrated in animal models, and many mechanisms have been proposed. The cancer preventive activity of green tea in humans, however, has not been conclusively demonstrated and remains to be further investigated. PMID:23403075

  15. Screening of Riboflavin-Producing Lactobacilli by a Polymerase-Chain-Reaction-Based Approach and Microbiological Assay.

    Science.gov (United States)

    Thakur, Kiran; Tomar, Sudhir Kumar; Brahma, Biswajit; De, Sachinandan

    2016-03-09

    Riboflavin has an important role in various cellular metabolic activities through its participation in oxidation-reduction reactions. In this study, as many as 60 lactobacilli were screened for the presence or absence of riboflavin biosynthesis genes and riboflavin production. Of these, only 14 strains were able to grow in a commercial riboflavin-free medium. We observed that the presence of riboflavin biosynthesis genes is strain-specific across different species of lactobacilli. The microbiological assay was found to be appreciably reproducible, sensitive, rapid, and inexpensive and, hence, can be employed for screening the riboflavin-producing strains. The study thus represents a convenient and efficient method for selection of novel riboflavin producers. These riboflavin(+) strains thus identified and characterized could be explored as potent candidates for the development of a wide range of dairy- and cereal-based foods for the delivery of in situ riboflavin to consumers.

  16. Anti-Oxidative Polyphenolic Compounds of Cocoa.

    Science.gov (United States)

    Nabavi, Seyed F; Sureda, Antoni; Daglia, Maria; Rezaei, Parizad; Nabavi, Seyed M

    2015-01-01

    Oxidative stress plays a key role in the pathogenesis of different serious chronic diseases such as cancer, diabetes, cardiovascular and neurodegenerative disorders, etc. Recent research has been focused on the beneficial role of dietary antioxidants against oxidative stress both under in vitro and in vivo conditions. Theobroma cacao L. (cacao tree) is an evergreen tree which is native to South America. It is a plant of great economic importance and its seeds are commonly used to produce cocoa powder and chocolate. In addition to its uses in food industry, cocoa is a rich source of polyphenolic antioxidants. There is a plethora of in vitro and in vivo studies that report cocoa antioxidant capacity. The protective activity of cocoa seems to be due to its phytochemical constituents, especially catechins. However, bioavailability of cocoa polyphenolic constituents following oral administration is very low (nanomolar concentrations). In the present paper, we critically reviewed the available literature on the antioxidant and free radical scavenging activities of cocoa and its polyphenolic constituents. In addition to these, we provide brief information about cultivation, phytochemistry, bioavailability and clinical impacts of cocoa.

  17. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    Science.gov (United States)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  18. Anti-inflammatory effects of polyphenols in arthritis.

    Science.gov (United States)

    Oliviero, Francesca; Scanu, Anna; Zamudio-Cuevas, Yessica; Punzi, Leonardo; Spinella, Paolo

    2018-03-01

    Polyphenols have been extensively investigated with regard to their antioxidant, anti-inflammatory, and immunomodulant properties in many inflammatory chronic conditions. The aim of this review is to summarise how these compounds can modulate the inflammatory pathways which characterise the most prevalent arthropathies including osteoarthritis, rheumatoid arthritis and crystal-induced arthritis. Among polyphenols, epigallocatechin gallate, carnosol, hydroxytyrosol, curcumin, resveratrol, kaempferol and genistein have been the most widely investigated in arthritis. The most important results of the studies outlined in this article show how polyphenolic compounds are able to inhibit the expression and the release of a number of pro-inflammatory mediators and proteolytic enzymes, the activity of different transcriptional factors and the production of reactive oxygen species in vitro. Studies on animal models of rheumatoid arthritis, osteoarthritis and gout show interesting results in terms of reduced tissue damage, restored cartilage homeostasis, and decreased levels of uric acid, respectively. Despite the multiple protective effects of polyphenols, there are no dietary recommendations for patients affected by rheumatic diseases. Future studies, including intervention trials, should be conducted to determine the relevance of polyphenols consumption or supplementation in arthritis. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Ultrastructural changes in biofilm forms of staphylococci cultivated in a mixed culture with lactobacilli

    Directory of Open Access Journals (Sweden)

    G. Lavryk

    2017-02-01

    Full Text Available The capacity of opportunistic bacteria for biofilm formation plays an important role in the development of chronic inflammatory processes, which are difficult to treat. To improve antimicrobial therapy methods, the influence of lactobacilli on the ultrastructure of biofilm-forming clinical strains of staphylococci when co-cultured was investigated. 5 biofilm-forming clinical strains of S. aureus from the skin of acne vulgaris patients (n = 24 were isolated. Using transmission electron microscopy (TEM the morphological changes of S. aureus cells in the mixed culture with standard strains of Lactobacillus plantarum 8P-A3 and clinical strains of L. fermentum (n = 4 were studied. It was found that in 48 hours after the inoculation on the medium of samples of mixed cultures of L. plantarum 8P-A3 and S. aureus growth of staphylococci was not revealed. Only in some cases of mixed cultures of L. fermentum and biofilm-forming staphylococci was growth of S. aureus obtained. In electron diffraction patterns of control samples of 24-hour staphylococcal monocultures and 48-hour lactobacilli monocultures, natural development of the population at the cellular level was observed. Destructive changes under the influence of lactobacilli (probiotic and clinical strains were detected in all ultrathin sections of the cells of biofilm-forming and planktonic staphylococci. Significant destructive changes in the cell wall of the staphylococci were observed: thickening, obtaining of irregular form, detachment of the cytoplasmic membrane, the complete destruction of the peptidoglycan layer and the emergence of "shadow cells". On all electron diffraction patterns fibrillar-threadlike structures of DNA could not be observed, but in some cases mesosome-like formations were poorly contrasted. It was established that the surface S-layer of lactobacilli was expressed on a significantly larger scale in the mixed culture with staphylococci. In mixed culture of clinical strains

  20. Antioxidant activity and polyphenol profile of Vranac red wines from Balkan region

    Directory of Open Access Journals (Sweden)

    Mitić Milan N.

    2016-01-01

    Full Text Available The objective of the present study was to investigate the correlation between the radical-scavenging properties (measured by evaluating the quenching of the stable 2,2-diphenyl-1-picrylhydrazil radical of Serbian, Macedonian and Montenegran red wine Vranac of different geographical origins, and their contents of total phenolics, total flavonoids and polyphenol profile. All tested Vranac wines samples showed a high antioxidant activity ranging from 13.00 to 15.02 mmol/L, while the total polyphenolic content was between 3478.70 and 3935.19 mg/L. The predominant anthocyanin was malvidin-3-glucoside (179.04-281.31 mg/L, predominant flavonol was quercetin-3-glucoronide (5.88-11.78 mg/L, predominant flavan-3-ol was catechin (24.43 - 76.78 mg/L and predominant hydroxicinnamic acid was t-caftaric acid (13.46-38.56 mg/L. Generally, red wines Vranac produced from Balkan regions are a rich source of phenolics, which the evident antioxidant capacity showed. [Projekat Ministarstva nauke Republike Srbije, br. 174007 i br. TR31060

  1. The role of lactobacilli and probiotics in maintaining vaginal health.

    Science.gov (United States)

    Borges, Sandra; Silva, Joana; Teixeira, Paula

    2014-03-01

    The vaginal microbiota of healthy women consists typically of a diversity of anaerobic and aerobic microorganisms. Lactobacilli are the most prevalent and often numerically dominant microorganisms and are relevant as a barrier to infection. The capacity of lactobacilli to adhere and compete for adhesion sites in the vaginal epithelium and the capacity to produce antimicrobial compounds (hydrogen peroxide, lactic acid, bacteriocin-like substances), are important in the impairment of colonization by pathogens. This review summarizes the role of lactic acid bacteria in preventing illness of the host, including bacterial vaginosis, yeast vaginitis, urinary tract infection and sexually transmitted diseases. The administration of probiotics that colonize the vaginal tract can be important in maintaining a normal urogenital health and also to prevent or treat infections.

  2. The effect of new probiotic strain Lactobacillus plantarum on counts of coliforms, lactobacilli and bacterial enzyme activities in rats exposed to N,N-dimethylhydrazine (chemical carcinogen

    Directory of Open Access Journals (Sweden)

    Denisa Čokášová

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the effect of the new probiotic strain Lactobacillus plantarum on chemically induced carcinogenesis in rats. Sprague dowley rats (n = 33 were divided into control and experimental groups and were fed a conventional laboratory diet. In the experimental group, rats were treated with the probiotic at the dose of 1 × 109 CFU (colony-forming units/ml. Two weeks after the beginning of the trial, N,N-dimethylhydrazine (chemical carcinogen injections were applied s.c. at the dose of 21 mg/kg b.w., 5 × weekly. At the end of the 8-month experimental period, faeces samples were taken from the rats and used for laboratory analysis. The counts of lactobacilli and coliforms and bacterial enzyme activity were determined. The probiotic strain L. plantarum as single species or in combination with oil (Lini oleum virginale decreased the count of total coliforms and increased lactobacilli in faeces of rats. Application of probiotic microorganisms significantly (P < 0.05 decreased the activities of bacterial enzymes (β-galactosidase and β-glucuronidase compared to the control group rats. The results of this study indicate that probiotic microorganisms could exert a preventive effect on colon carcinogenesis induced by N,N-dimethylhydrazine.

  3. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  4. Polyphenols produced during red wine ageing.

    Science.gov (United States)

    Brouillard, R; George, F; Fougerousse, A

    1997-01-01

    Over the past few years, it has been accepted that a moderate red wine consumption is a factor beneficial to human health. Indeed, people of France and Italy, the two major wine-producing European countries, eat a lot of fatty foods but suffer less from fatal heart strokes than people in North-America or in the northern regions of Europe, where wine is not consumed on a regular basis. For a time, ethanol was thought to be the "good" chemical species hiding behind what is known as the "French paradox". Researchers now have turned their investigations towards a family of natural substances called "polyphenols", which are only found in plants and are abundant in grapes. It is well known that these molecules behave as radical scavengers and antioxidants, and it has been demonstrated that they can protect cholesterol in the LDL species from oxidation, a process thought to be at the origin of many fatal heart attacks. However, taken one by one, it remains difficult to demonstrate which are the best polyphenols as far as their antioxidant activities are concerned. The main obstacle in that kind of research is not the design of the chemical and biological tests themselves, but surprisingly enough, the limited access to chemically pure and structurally elucidated polyphenolic compounds. In this article, particular attention will be paid to polyphenols of red wine made from Vitis vinifera cultivars. With respect to the "French paradox", we address the following question: are wine polyphenolic compounds identical to those found in grapes (skin, pulp and seed), or are there biochemical modifications specifically taking place on the native flavonoids when a wine ages? Indeed, structural changes occur during wine conservation, and one of the most studied of those changes concerns red wine colour evolution, called "wine ageing". As a wine ages, it has been demonstrated that the initially present grape pigments slowly turn into new more stable red pigments. That phenomenon goes on

  5. Do vaginal lactobacilli prevent preterm labour? | Kotze | South ...

    African Journals Online (AJOL)

    South African Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 87, No 8 (1997) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Do vaginal lactobacilli prevent preterm labour? I.R. Kotze ...

  6. Polyphenol-Protein Complexes and Their Consequences for the Redox Activity, Structure and Function of Honey. A Current View and New Hypothesis – a Review

    Directory of Open Access Journals (Sweden)

    Brudzynski Katrina

    2015-06-01

    Full Text Available There is increasing evidence that protein complexation by honey polyphenols is changing honey structure and function. This relatively less investigated filed of honey research is presented in a context of known mechanism of formation of the stable polyphenol-protein complexes in other foods. At a core of these interactions lies the ability of polyphenols to form non-covalent and covalent bonds with proteins leading to transient and/or irreversible complexes, respectively. Honey storage and thermal processing induces non-enzymatic oxidation of polyphenols to reactive quinones and enables them to form covalent bonds with proteins. In this short review, we present data from our laboratory on previously unrecognized types of protein-polyphenol complexes that differed in size, stoichiometry, and antioxidant capacities, and the implications they have to honey antioxidant and antibacterial activities. Our intent is to provide a current understanding of protein-polyphenol complexation in honey and also some new thoughts /hypotheses that can be useful in directing future research.

  7. Plant polyphenols and their anti-cariogenic properties: a review.

    Science.gov (United States)

    Ferrazzano, Gianmaria F; Amato, Ivana; Ingenito, Aniello; Zarrelli, Armando; Pinto, Gabriele; Pollio, Antonino

    2011-02-11

    Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1) a direct effect against S. mutans; (2) an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3) the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  8. Plant Polyphenols and Their Anti-Cariogenic Properties: A Review

    Directory of Open Access Journals (Sweden)

    Gabriele Pinto

    2011-02-01

    Full Text Available Polyphenols constitute one of the most common groups of substances in plants. Polyphenolic compounds have been reported to have a wide range of biological activities, many of which are related to their conventional antioxidant action; however, increasing scientific knowledge has highlighted their potential activity in preventing oral disease, including the prevention of tooth decay. The aim of this review is to show the emerging findings on the anti-cariogenic properties of polyphenols, which have been obtained from several in vitro studies investigating the effects of these bioactive molecules against Streptococcus mutans, as well as in vivo studies. The analysis of the literature supports the anti-bacterial role of polyphenols on cariogenic streptococci, suggesting (1 a direct effect against S. mutans; (2 an interaction with microbial membrane proteins inhibiting the adherence of bacterial cells to the tooth surface; and (3 the inhibition of glucosyl transferase and amylase. However, more studies, particularly in vivo and in situ, are necessary to establish conclusive evidence for the effectiveness and the clinical applications of these compounds in the prevention of dental caries. It is essential to better determine the nature and distribution of these compounds in our diet and to identify which of the hundreds of existing polyphenols are likely to provide the greatest effects.

  9. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects

    Directory of Open Access Journals (Sweden)

    Eva Brglez Mojzer

    2016-07-01

    Full Text Available Being secondary plant metabolites, polyphenols represent a large and diverse group of substances abundantly present in a majority of fruits, herbs and vegetables. The current contribution is focused on their bioavailability, antioxidative and anticarcinogenic properties. An overview of extraction methods is also given, with supercritical fluid extraction highlighted as a promising eco-friendly alternative providing exceptional separation and protection from degradation of unstable polyphenols. The protective role of polyphenols against reactive oxygen and nitrogen species, UV light, plant pathogens, parasites and predators results in several beneficial biological activities giving rise to prophylaxis or possibly even to a cure for several prevailing human diseases, especially various cancer types. Omnipresence, specificity of the response and the absence of or low toxicity are crucial advantages of polyphenols as anticancer agents. The main problem represents their low bioavailability and rapid metabolism. One of the promising solutions lies in nanoformulation of polyphenols that prevents their degradation and thus enables significantly higher concentrations to reach the target cells. Another, more practiced, solution is the use of mixtures of various polyphenols that bring synergistic effects, resulting in lowering of the required therapeutic dose and in multitargeted action. The combination of polyphenols with existing drugs and therapies also shows promising results and significantly reduces their toxicity.

  10. Enhancing the polyphenol content of a red-fleshed Japanese plum (Prunus salicina Lindl.) nectar by incorporating a polyphenol-rich extract from the skins.

    Science.gov (United States)

    de Beer, Dalene; Steyn, Naomi; Joubert, Elizabeth; Muller, Nina

    2012-10-01

    Plum skins are a waste product generated during production of plum juice or pulp. Polyphenols, shown to have various health-promoting properties, can be recovered from this waste product. Red-fleshed plum nectar formulations containing plum skin extract in varying amounts were characterised in terms of intensity of sensory attributes, consumer acceptability, colour, polyphenol content and antioxidant activity. Commercial beverages containing red fruits were used as benchmarks. The polyphenolic profile of the plum skin extract was similar to that of the pulp, including anthocyanins, flavonols, flavan-3-ols and a phenolic acid. Addition of the extract to plum nectar, which enhanced the colour, polyphenol content and antioxidant capacity, was limited by its negative sensory impact. The formulations were deemed acceptable by consumers, although a decrease in positive sensory attributes (plum flavour, plum aroma and sweetness) and an increase in negative sensory attributes (plant-like flavour, plant-like aroma, acidity and astringency) were observed with increasing skin extract content. The formulations compared favourably with commercial beverages in terms of colour total polyphenol content and antioxidant activity. Plum skins were successfully used to enhance the functional status of plum nectar. Use of a functional ingredient from plum skins is, therefore, a feasible value-addition strategy. Copyright © 2012 Society of Chemical Industry.

  11. Anticancer Efficacy of Polyphenols and Their Combinations

    Directory of Open Access Journals (Sweden)

    Aleksandra Niedzwiecki

    2016-09-01

    Full Text Available Polyphenols, found abundantly in plants, display many anticarcinogenic properties including their inhibitory effects on cancer cell proliferation, tumor growth, angiogenesis, metastasis, and inflammation as well as inducing apoptosis. In addition, they can modulate immune system response and protect normal cells against free radicals damage. Most investigations on anticancer mechanisms of polyphenols were conducted with individual compounds. However, several studies, including ours, have indicated that anti-cancer efficacy and scope of action can be further enhanced by combining them synergistically with chemically similar or different compounds. While most studies investigated the anti-cancer effects of combinations of two or three compounds, we used more comprehensive mixtures of specific polyphenols and mixtures of polyphenols with vitamins, amino acids and other micronutrients. The mixture containing quercetin, curcumin, green tea, cruciferex, and resveratrol (PB demonstrated significant inhibition of the growth of Fanconi anemia head and neck squamous cell carcinoma and dose-dependent inhibition of cell proliferation, matrix metalloproteinase (MMP-2 and -9 secretion, cell migration and invasion through Matrigel. PB was found effective in inhibition of fibrosarcoma HT-1080 and melanoma A2058 cell proliferation, MMP-2 and -9 expression, invasion through Matrigel and inducing apoptosis, important parameters for cancer prevention. A combination of polyphenols (quercetin and green tea extract with vitamin C, amino acids and other micronutrients (EPQ demonstrated significant suppression of ovarian cancer ES-2 xenograft tumor growth and suppression of ovarian tumor growth and lung metastasis from IP injection of ovarian cancer A-2780 cells. The EPQ mixture without quercetin (NM also has shown potent anticancer activity in vivo and in vitro in a few dozen cancer cell lines by inhibiting tumor growth and metastasis, MMP-2 and -9 secretion, invasion

  12. Galloylation of polyphenols alters their biological activity

    Czech Academy of Sciences Publication Activity Database

    Karas, D.; Ulrichová, J.; Valentová, Kateřina

    2017-01-01

    Roč. 105, JUL 2017 (2017), s. 223-240 ISSN 0278-6915 R&D Projects: GA MŠk(CZ) LD15082; GA MŠk(CZ) LD15084; GA MŠk(CZ) LO1304 Grant - others:GA ČR(CZ) GAP303/12/G163 Program:GA Institutional support: RVO:61388971 Keywords : Polyphenols * Gallic acid * Galloylation Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.778, year: 2016

  13. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace

    Science.gov (United States)

    Grape pomace (GP) is a polyphenolic-rich byproduct of wine production. As most polyphenolics are either bound to cellular matrices or present as free polymeric forms, treatment with hydrolytic enzymes may act to increase GP functionalities. The aim of this study was to examine the impact of tannase ...

  14. Lactobacilli as live vaccine delivery vectors: Progress and prospects

    NARCIS (Netherlands)

    Seegers, J.F.M.L.

    2002-01-01

    Evidence is accumulating that lactobacilli influence the immune response in a strain-dependent manner. This immunomodulatory capacity is important for the development of the immune response, and also identifies Lactobacillus as a potent oral vaccine carrier. Most of our current knowledge of the use

  15. Enzymatic processing of pigmented and non pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity.

    Science.gov (United States)

    Prabhu, Ashish A; Jayadeep, A

    2015-10-01

    Bran from different rice varieties is a treasure of nutrients and nutraceuticals, and its use is limited due to the poor sensory and functional properties. Application of enzymes can alter the functional and phytochemical properties. So the effect of endo-xylanase, cellulase and their combination on microstructural, nutraceutical and antioxidant properties of pigmented (Jyothi) and non-pigmented (IR64) rice bran were investigated. Scanning electron micrograph revealed micro structural changes in fibre structures on processing. All the enzymatic processing methods resulted in an increase in the content of oryzanol, soluble, bound and total polyphenols, flavonoid and tannin. It also showed an increase in the bioactivity with respect to free radical scavenging activity and total antioxidant activity. However, extent of the increase in bio-actives varied with the type of bran and enzyme application method. Endo-xylanase showed higher percentage difference compared to controls of Jyothi and IR64 bran extracts respectively in the content of the bound (10 & 19 %) and total (20 & 14 %) polyphenols. Combination of both the enzymes resulted in higher percentage increase of bioactive components and properties. It resulted in greater percentage difference compared to controls of Jyothi and IR64 extracts respectively in the content of soluble (58 & 17 %) and total (21 & 14 %) polyphenols, flavonoids (12 & 38 %), γ-oryzanol (10 & 12 %), free radical scavenging activity (64 & 30 %) and total antioxidant activity (82 & 136 %). It may be concluded that enzymatic bio-processing of bran with cellulose and hemicellulose degrading enzymes can improve its nutraceutical properties, and it may be used for development of functional foods.

  16. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols.

    Science.gov (United States)

    Bisignano, Carlo; Filocamo, Angela; Faulks, Richard M; Mandalari, Giuseppina

    2013-04-01

    We investigated the antimicrobial properties of polyphenol-rich fractions derived from raw shelled and roasted salted pistachios. American Type Culture Collection (ATCC), food and clinical isolates, of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Pseudomonas mirabilis), Gram-positive bacteria (Listeria monocytogenes, Enterococcus hirae, Enterococcus faecium, Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus), the yeasts Candida albicans and Candida parapsilosis and the fungus Aspergillus niger were used. Pistachio extracts were active against Gram-positive bacteria with a bactericidal effect observed against L. monocytogenes (ATCC strains and food isolates), S. aureus and MRSA clinical isolates. Extracts from raw shelled pistachios were more active than those from roasted salted pistachios. The bactericidal activity of pistachio extracts could be used to help control the growth of some microorganisms in foods to improve safety and may find application as a topical treatment for S. aureus. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Modulation of interferon-γ synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions.

    Science.gov (United States)

    Yamanaka, Daisuke; Motoi, Masuro; Ishibashi, Ken-ichi; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2013-12-15

    Lignin-like polymerized polyphenols strongly activate lymphocytes and induce cytokine synthesis. We aimed to characterise the mechanisms of action of polymerized polyphenols on immunomodulating functions. We compared the reactivity of leukocytes from various organs to that of polymerized polyphenols. Splenocytes and resident peritoneal cavity cells (PCCs) responded to polymerized polyphenols and released several cytokines, whereas thymocytes and bone-marrow cells showed no response. Next, we eliminated antigen-presenting cells (APCs) from splenocytes to study their involvement in cytokine synthesis. We found that APC-negative splenocytes showed significantly reduced cytokine production induced by polymerized polyphenols. Additionally, adequate interferon-γ (IFN-γ) induction by polymerized polyphenols was mediated by the coexistence of APCs and T cells because the addition of T cells to PCCs increased IFN-γ production. Furthermore, inhibition of the T cell-APC interaction using neutralising antibodies significantly decreased cytokine production. Thus, cytokine induction by polymerized polyphenols was mediated by the interaction between APCs and T cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Anti-inflammatory and antioxidant activity of polyphenolic extracts from Lactuca sativa (var. Maravilla de Verano) under different farming methods.

    Science.gov (United States)

    Adesso, Simona; Pepe, Giacomo; Sommella, Eduardo; Manfra, Michele; Scopa, Antonio; Sofo, Adriano; Tenore, Gian Carlo; Russo, Mariateresa; Di Gaudio, Francesca; Autore, Giuseppina; Campiglia, Pietro; Marzocco, Stefania

    2016-09-01

    Besides their nutritional value, vegetables are a source of health-promoting compounds, such as polyphenols, and their content can be influenced by the particular farming method. In this study polyphenolic extracts from Lactuca sativa (var. Maravilla de verano) plants cultivated with different farming methods were chemically characterised and tested in vitro and ex vivo inflammation models. The tested extacts (250-2.5 µg mL(-1) ) were able to reduce both the inflammatory and oxidative stress in LPS-stimulated J774A.1 murine monocyte macrophage cells, by lowering the release of nitric oxide (NO) and reactive oxygen species (ROS) and promoting nuclear translocation of nuclear factor (erythroid-derived 2)-like 2; (Nrf2) and nuclear factor-κB (NF-κB). In this regard, quantitative profiles revealed different amounts of polyphenols, in particular quercetin levels were higher in plants under mineral fertilised treatment. Those extract showed an enhanced anti-inflammatory and antioxidant activity. Our data showed the anti-inflammatory and antioxidant potential of Maravilla de Verano polyphenolic extracts. The effect of farming methods on polyphenolic levels was highlighted. The higher reduction of inflammatory mediators release in extracts from plants cultivated under mineral fertilisation treatment was correlated to the higher amount of quercetin. These results can be useful for both nutraceutical or agronomic purposes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Inhibition of beet molasses alcoholic fermentation by lactobacilli

    Energy Technology Data Exchange (ETDEWEB)

    Essia Ngang, J.J.; Letourneau, F.; Wolniewicz, E.; Villa, P. (Amiens Univ., 80 (France). Lab. de Chimie Organique et Cinetique)

    1990-08-01

    Alcohol production rate decreases as the concentration of bacterial contaminants increases. In complex medium, such as beet molasses, an alternative mechanism can be used by homofermentative lactic bacteria (Lactobacillus casei). Lactic acid and associated products, especially acetic acid, are liberated into the medium. The inhibition induced by these metabolites was reinforced by the presence of viable lactobacilli. (orig.).

  20. Physicochemical properties and anticoagulant activity of polyphenols derived from Lachnum singerianum

    Directory of Open Access Journals (Sweden)

    Shuai Zong

    2017-10-01

    Full Text Available In this study, polyphenols (LSP were obtained from the fermentation broth of Lachnum singerianum. Two fractions were isolated by Sephadex LH-20 chromatographic column, and the primary fraction (LSP-1 was collected. The comprehensive physicochemical properties of phenolic acids and polyhydroxy phenolic compounds of LSP-1 were determined by UV-visible spectroscopy, Fourier transform infrared spectroscopy, and gas chromatography–mass spectrometry. Results of anticoagulant activity assay in vitro showed that LSP-1 could lengthen prothrombin time, activated partial thromboplastin time, and thrombin time of mouse plasma. In addition, anticoagulant activity results in vivo showed that high dose of LSP-1 could significantly prolong bleeding time, coagulation time, prothrombin time, activated partial thromboplastin time, and thrombin time of hypercoagulable mice induced by adrenaline, reduce the content of fibrinogen and enhance antithrombin III activity. All results indicated that the LSP-1 could serve well as an anticoagulant, and might be used as a potential natural drug candidate for thrombosis.

  1. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    Science.gov (United States)

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    Science.gov (United States)

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  3. Polyphenol-Rich Propolis Extracts Strengthen Intestinal Barrier Function by Activating AMPK and ERK Signaling

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2016-05-01

    Full Text Available Propolis has abundant polyphenolic constituents and is used widely as a health/functional food. Here, we investigated the effects of polyphenol-rich propolis extracts (PPE on intestinal barrier function in human intestinal epithelial Caco-2 cells, as well as in rats. In Caco-2 cells, PPE increased transepithelial electrical resistance and decreased lucifer yellow flux. PPE-treated cells showed increased expression of the tight junction (TJ loci occludin and zona occludens (ZO-1. Confocal microscopy showed organized expressions in proteins related to TJ assembly, i.e., occludin and ZO-1, in response to PPE. Furthermore, PPE led to the activation of AMPK, ERK1/2, p38, and Akt. Using selective inhibitors, we found that the positive effects of PPE on barrier function were abolished in cells in which AMPK and ERK1/2 signaling were inhibited. Moreover, rats fed a diet supplemented with PPE (0.3% in the diet exhibited increased colonic epithelium ZO-1 expression. Overall, these data suggest that PPE strengthens intestinal barrier function by activating AMPK and ERK signaling and provide novel insights into the potential application of propolis for human gut health.

  4. Polyphenols profile and antioxidant activity of skin and pulp of a rare apple from Marche region (Italy).

    Science.gov (United States)

    Giomaro, Giovanna; Karioti, Anastasia; Bilia, Anna Rita; Bucchini, Anahi; Giamperi, Laura; Ricci, Donata; Fraternale, Daniele

    2014-01-01

    Apples are an important source of polyphenols in the human diet and the consumption of this fruit has been linked to the prevention of degenerative diseases. CATECHINS, PROCYANIDINS, HYDROXYCINNAMIC ACIDS, FLAVONOL GLYCOSIDES, DIHYDROCHALCONE GLYCOSIDES AND ONE ANTHOCYANIN: cyanidin-3-O-galactoside, were identified both in the peel and pulp. Procyanidins, catechins and flavonols represent the main constituents of peel. Concerning the antioxidant activity, in the reduction of the stable DPPH radical and in the inhibition of lipid peroxidation, the ethanolic extracts of red peel and red pulp showed a good similar activity comparable to ascorbic acid in the DPPH test and about ten times more active than BHT in the lipoxygenase test, and were much more active than aqueous extracts. The ORAC value of red pulp aqueous extract resulted comparable to that of red berries: vaccinium, rubus and ribes, foods appreciated for their health value. This apple contains an appreciable amount of polyphenols also in the flesh; this variety with red flesh can also be useful for researchers engaged in apples varietal innovation in addition to being used as food apple.

  5. Antibacterial efficacy of Salvadora persica as a cleansing teeth towards Streptococcus mutans and Lactobacilli colonies

    Directory of Open Access Journals (Sweden)

    Erlina Sih Mahanani

    2012-12-01

    Full Text Available Background: Salvadora persica is a traditional chewing stick for cleaning teeth that it is known Siwak. Several studies have demonstrated the antimicrobial effects of Salvadora persica. Purpose: This study was aimed to examine the effectiveness of Salvadora persica in several modified preparation against the salivary Streptoccocus mutans and Lactobacilli. Methods: A single-blind, randomized clinical trial study with crossover design was used. The study comprised of 5 groups, per group consisted of 14 healthy dental students who had good oral hygiene. Each participant was given 5 intervention to clean their teeth using, electric toothbrush modified with siwak, electric toothbrush with siwak toothpaste (colgate kayu sugi toothpaste, electric toothbrush with general toothpaste (colgate total toothpaste, original siwak chewing stick and normal saline. The wash out periode each intervention was 3 days. Patients’ saliva was used to quantify the levels of Streptococcus mutans and Lactobacilli using caries risk test (CRT kit from Vivadent. Results: The results showed that there was a reduction in Streptococcus mutans and Lactobacilli risk score after cleansing different intervention except electric toothbrush modified with siwak. However, there was no significant difference for Streptococcus mutans (p=0.158 and Lactobacilli (p=0.396 risk score reduction when comparison was done between the groups. Conclusion: The original siwak chewing stick has antimicrobial effects similar to toothbrushing with general toothpaste and salvadora persica toothpaste. However, electric toothbrush modified with siwak has no effect on microbial reduction.Latar belakang: Salvadora persica adalah pembersih gigi tradisional yang lebih dikenal dengan sebutan Siwak. Beberapa penelitian menunjukkan bahwa Salvadora persica memiliki daya antibakteri. Tujuan: Penelitian ini bertujuan untuk mengetahui efektivitas Salvadora persica dalam berbagai bentuk sediaan untuk membersihkan

  6. Interactions between CYP3A4 and Dietary Polyphenols

    Directory of Open Access Journals (Sweden)

    Loai Basheer

    2015-01-01

    Full Text Available The human cytochrome P450 enzymes (P450s catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact with CYP3A4 and alter its expression and activity. Traditionally, the liver was considered the prime site of CYP3A-mediated first-pass metabolic extraction, but in vitro and in vivo studies now suggest that the small intestine can be of equal or even greater importance for the metabolism of polyphenolics and drugs. Recent studies have pointed to the role of gut microbiota in the metabolic fate of polyphenolics in human, suggesting their involvement in the complex interactions between dietary polyphenols and CYP3A4. Last but not least, all the above suggests that coadministration of drugs and foods that are rich in polyphenols is expected to stimulate undesirable clinical consequences. This review focuses on interactions between dietary polyphenols and CYP3A4 as they relate to structural considerations, food-drug interactions, and potential negative consequences of interactions between CYP3A4 and polyphenols.

  7. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  8. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine.

    Science.gov (United States)

    Miura, Yukari; Inai, Miyuki; Honda, Sari; Masuda, Akiko; Masuda, Toshiya

    2014-10-01

    The effect of polyphenols and related phenolic compounds on the reduction of metmyoglobin (MetMb) to oxymyoglobin (MbO2), in the presence of cysteine, was investigated. Caffeic acid, dihydrocaffeic acid, and hydroxtyrosol (600 μmol/L) did not show any reducing activity individually. However, their highly potent activity in the reduction of MetMb to MbO2 was observed in the presence of equimolar amounts of cysteine. On the basis of the analytical results for the redox reaction products generated during the MetMb-reducing reaction of caffeic acid, we proposed a mechanism for the polyphenol-mediated reduction of MetMb. As per the proposed mechanism, the antioxidant polyphenols having a catechol substructure can effectively reduce MetMb to MbO2 with chemical assistance from nucleophilic reactive thiol compounds such as cysteine. Moreover, cysteine-coupled polyphenols such as cysteinylcaffeic acids (which are coupling products of caffeic acid and cysteine) can be used as preserving agents for retaining the fresh meat color, because of their powerful reducing effect on MetMb. The reduction of MetMb to MbO2 changes the color of meat from brown to the more desirable bright red.

  9. Stimulation of indigenous lactobacilli by fermented milk prepared with probiotic bacterium, Lactobacillus delbrueckii subsp. bulgaricus strain 2038, in the pigs.

    Science.gov (United States)

    Ohashi, Yuji; Tokunaga, Makoto; Taketomo, Naoki; Ushida, Kazunari

    2007-02-01

    The aim of this study was to evaluate the effect of feeding yoghurt, prepared with Lactobacillus delbrueckii subsp. bulgaricus strain 2038, on indigenous lactobacilli in the pig cecum. Three female pigs fistulated at the cecum were fed 250 g of this yoghurt that contained over 10(11) colony-forming units of L. delbrueckii subsp. bulgaricus strain 2038 with their daily meal for 2 wk. The relative abundance and the composition of cecal lactobacilli was monitored by analysis of bacterial 16S rDNA with real time PCR and amplified bacterial rDNA restriction analysis using Lactobacillus-group specific primers, respectively, for 2 wk prior to, at the end of 2 wk of and 2 wk after the administration of this yoghurt. The relative abundance of lactobacilli was significantly increased by feeding yoghurt (pdelbrueckii subsp. bulgaricus strain 2038 was not detected by amplified bacterial rDNA restriction analysis during this study. The number of operational taxonomic units (OTUs) detected was increased with feeding of the yoghurt in all pigs. At the same time, the estimated cell number of each OTU was increased with feeding of the yoghurt. It is demonstrated that continuous consumption of the probiotic lactobacilli will stimulate the growth of some indigenous lactobacilli and alter the composition of the lactobacilli.

  10. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy).

    Science.gov (United States)

    Andrighetto, C; Zampese, L; Lombardi, A

    2001-07-01

    The study was carried out to evaluate the use of randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) as a method for the identification of lactobacilli isolated from meat products. RAPD-PCR with primers M13 and D8635 was applied to the identification and intraspecific differentiation of 53 lactobacilli isolates originating from traditional fermented sausages and artisanal meat plants of the Veneto region (Italy). Most of the isolates were assigned to the species Lactobacillus sakei and Lact. curvatus; differentiation of groups of strains within the species was also possible. RAPD-PCR could be applied to the identification of lactobacilli species most commonly found in meat products. The method, which is easy and rapid to perform, could be useful for the study of the lactobacilli populations present in fermented sausages, and could help in the selection of candidate strains to use as starter cultures in meat fermentation.

  11. Polyphenol supplementation: benefits for exercise performance or oxidative stress?

    Science.gov (United States)

    Myburgh, Kathryn H

    2014-05-01

    Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.

  12. Green tea and its major polyphenol EGCG increase the activity of oral peroxidases.

    Science.gov (United States)

    Narotzki, Baruch; Levy, Yishai; Aizenbud, Dror; Reznick, Abraham Z

    2013-01-01

    Oral peroxidases (OPO) consist mainly of salivary peroxidase and myeloperoxidase and are involved in oral defense mechanisms. Salivary peroxidase is synthesized and secreted by salivary glands, whereas myeloperoxidase is found in polymorphonuclear leukocytes, which migrate into the oral cavity at gingival crevices. Green tea is the world's second most popular drink after water. Polyphenols are the most biologically active group of tea components. The purpose of our study was to elucidate the interaction between green tea & EGCG (Epigallocatechin 3-gallate), its main polyphenol and OPO. In previous studies we have shown that elderly trained people who drink green tea for 3 months, have a higher level of OPO activity compared to non-drinkers. Thus, we decided to extend our project in order to understand the above observations by studying the interaction of green tea and OPO both in vitro and in vivo. Addition of green tea and black tea infusions (50 μl/ml) and EGCG (50 μM) to saliva, resulted in a sharp rise of OPO activity +280% (p = 0.009), 54% (p = 0.04) and 42% (p = 0.009), respectively. The elevation of OPO activity due to addition of green tea and EGCG was in a dose dependent manner: r = 0.91 (p = 0.001) and r = 0.637 (p = 0.019), respectively. Also, following green tea infusion mouth rinsing, a rise of OPO activity was observed: +268% (p = 0.159). These results may be of great clinical importance, as tea consumer's oral epithelium may have better protection against the deleterious effects of hydroxyl radicals, produced by not removed hydrogen peroxides in the presence of metal ions. Higher OPO activity upon green tea drinking may provide an extra protection against oxidative stress in the oral cavity.

  13. Antiproliferative, Cytotoxic, Antioxidant Activity and Polyphenols Contents in Leaves of Four Staphylea L. Species

    Directory of Open Access Journals (Sweden)

    Daniel Grancai

    2009-08-01

    Full Text Available Staphylea has been used for long time in Traditional Chinese Medicine (TCM and by Native Americans in a number of therapeutical indications. The present study describes in vitro antiproliferative, cytotoxic properties (MTT and LDH test and antioxidant activities (reduction of DPPH radical and peroxynitrite radical of Staphylea colchica Stev. (SC, S. elegans Zab. (SC, S. holocarpa Hemsl. (SH and S. pinnata L. (SP leave water extracts. Time- (24 and 72 h and dose- (1-150 μg/mL dependent effects of the above extracts were tested at the mitochondrial (MTT test and plasma membrane level (LDH leakage in A431 human skin carcinoma cells. Screening of these properties has shown time and dose dependent increase of harmful effects, the highest activity was observed for the SE, while the less active was the SH extract. The ED50 values for the mitochondrial and membrane damage were nearly identical for the SE and very similar for SH extract. These findings indicate simultaneous injury of both cell compartments by SE and SH extracts. The highest antioxidant potential of SE species is accompanied by the highest content of flavones/flavonols and polyphenols. Only flavonoid contents are associated with antiproliferative effects and cell membrane injury, while antioxidant properties are the result of polyphenol content. The data clearly demonstrate that individual Staphylea L. species differ, not only in the amount of biologically active compounds, but also by the extent of harmful and beneficial effects.

  14. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage.

    Science.gov (United States)

    Altındağ, Melek; Türkyılmaz, Meltem; Özkan, Mehmet

    2018-05-01

    Changes in polyphenols have important effects on the quality (especially color) and health benefits of dried apricots. SO 2 concentration, storage and the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were factors which had significant effects on polyphenols. Polyphenol profile and activities of PPO and PAL in sulfured dried apricots (SDAs, 0, 451, 832, 2112 and 3241 mg SO 2 kg -1 ) were monitored during storage at 4, 20 and 30 °C for 379 days for the first time. Even the lowest SO 2 concentration (451 mg kg -1 ) was sufficient to inactivate PPO during the entire storage period. However, while SO 2 led to the increase in PAL activity of the samples (r = 0.767) before storage, PAL activities of SDAs decreased during storage. After 90 days of storage, PAL activity was determined in only non-sulfured dried apricots (NSDAs) and dried apricots containing 451 mg SO 2 kg -1 . Although the major polyphenol in NSDAs was epicatechin (611.4 mg kg -1 ), that in SDAs was chlorogenic acid (455-1508 mg kg -1 ), followed by epicatechin (0-426.8 mg kg -1 ), rutin (148.9-477.3 mg kg -1 ), ferulic acid (23.3-55.3 mg kg -1 ) and gallic acid (2.4-43.6 mg kg -1 ). After storage at 30 °C for 379 days, the major polyphenol in SDAs was gallic acid (706-2324 mg kg -1 ). However, the major polyphenol in NSDAs did not change after storage. The highest total polyphenol content was detected in SDAs containing 2112 mg SO 2 kg -1 and stored at 30 °C. To produce dried apricots having high polyphenol content, ∼2000 mg SO 2 kg -1 should be used. Low storage temperature (<30 °C) was not necessary for the protection of polyphenols. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus nigra L.) extracts.

    Science.gov (United States)

    Pliszka, Barbara

    2017-01-01

    The pharmaceutical and food industries expect detailed knowledge on the physicochemical properties of elderberry fruit extracts, their stability and microbiological quality, as well as the polyphenol content in elderberry cultivars. The characteristics of the extracts might be additionally modified by citric acid, which improves the stability of anthocyanins and protects processed fruits and syrups from pathogenic microorganisms. The choice of the method with citric acid was a consequence of the physicochemical charac teristics of elderberry pigments, which are not stable under the effect of light in alcoholic solutions. The aim of study was to analyze the properties of elderberry fruit extracts regarding polyphenol content and antiradical activity, as well as their stability and microbiological quality. The plant material consisted of fruit from four cultivars (Alleso, Korsor, Sampo, Samyl) of black elderberry (Sambucus nigra L.). The following were determined in fruit extracts: polyphe- nolic content (HPLC), antiradical activity (ABTS and DPPH) and stability and microbiological quality. The HPLC analysis of polyphenols demonstrated that the extracts from fruits collected from cv. Samyl had the highest 3-sambubioside cyanidin content and those from cv. Korsor contained the highest quantity of 3-glucoside cyanidin. The extracts from cv. Sampo fruit had a dominant 3-sambubioside-5-gluco- side cyanidin and 3,5-diglucoside cyanidin content. The highest quercetin (5.92 mg 100 mg-1 of extract) and caffeic acid (1.21 mg 100 mg-1 of extract) content was found in fruit extracts from cv. Alleso. The cultivars Samyl and Korsor had a higher level of anthocyanins and higher antiradical activity (ABTS) in fruit extracts than cv. Alleso and Sampo. The antiradical activity (DPPH) of fruit extracts from elderberry cultivars as- sessed in this research was similar. The degradation index for all fruit extracts was similar (DI = 1.035). The microbiological species detected in

  16. Polyphenols as Modulators of Aquaporin Family in Health and Disease

    Directory of Open Access Journals (Sweden)

    Diana Fiorentini

    2015-01-01

    Full Text Available Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  17. Polyphenols as Modulators of Aquaporin Family in Health and Disease.

    Science.gov (United States)

    Fiorentini, Diana; Zambonin, Laura; Dalla Sega, Francesco Vieceli; Hrelia, Silvana

    2015-01-01

    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy.

  18. Antioxidant activity of polyphenols from green and toasted mate tea.

    Science.gov (United States)

    Coentrão, Patricia de Abreu Marques; Teixeira, Valéria Laneuville; Netto, Annibal Duarte Pereira

    2011-05-01

    The production and distribution of toasted mate tea in Brazil has increased, which has resulted in its greater consumption. Mate tea is obtained by roasting non-fermented erva-mate in order to produce toasted erva-mate or toasted mate tea. However, although the product is much appreciated, studies of its chemical composition and the concentration of polyphenols, particularly flavonols present in toasted mate tea, are few and often controversial. This paper elucidates some misunderstandings involving the nomenclature of erva-mate and toasted mate, and mainly provides an overview of the composition of polyphenols and antioxidant capacity of toasted mate tea and its raw material, erva-mate, in comparison with other teas, the compositions of which were found in the literature.

  19. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    Ranjita Sengupta

    2013-01-01

    Full Text Available Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health.

  20. rich extract on total polyphenols and antioxidant activity obtained

    African Journals Online (AJOL)

    Z. Ghouila

    USTHB, Organic Functional Analysis Laboratory, 16111 Bab Ezzouar, Algiers, ... Keywords: Ahmeur Bouamer, extraction, grape seeds, total polyphenols, ... These compounds are known as good natural antioxidant agents arising from natural ... surface between solid and liquid phases; this is mainly due to the dispersion of ...

  1. Screening local Lactobacilli from Iran in terms of production of lactic acid and identification of superior strains

    Directory of Open Access Journals (Sweden)

    Fatemeh Soleimanifard

    2015-12-01

    Full Text Available Introduction: Lactobacilli are a group of lactic acid bacteria that their final product of fermentation is lactic acid. The objective of this research is selection of local Lactobacilli producing L (+ lactic acid. Materials and methods: In this research the local strains were screened based on the ability to produce lactic acid. The screening was performed in two stages. The first stage was the titration method and the second stage was the enzymatic method. The superior strains obtained from titration method were selected to do enzymatic test. Finally, the superior strains in the second stage (enzymatic which had the ability to produce L(+ lactic acid were identified by biochemical tests. Then, molecular identification of strains was performed by using 16S rRNA sequencing. Results: In this study, the ability of 79 strains of local Lactobacilli in terms of production of lactic acid was studied. The highest and lowest rates of lactic acid production was 34.8 and 12.4 mg/g. Superior Lactobacilli in terms of production of lactic acid ability of producing had an optical isomer L(+, the highest levels of L(+ lactic acid were with 3.99 and the lowest amount equal to 1.03 mg/g. The biochemical and molecular identification of superior strains showed that strains are Lactobacillus paracasei. Then the sequences of 16S rRNA of superior strains were reported in NCBI with accession numbers KF735654، KF735655، KJ508201and KJ508202. Discussion and conclusion: The amounts of lactic acid production by local Lactobacilli were very different and producing some of these strains on available reports showed more products. The results of this research suggest the use of superior strains of Lactobacilli for production of pure L(+ lactic acid.

  2. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Science.gov (United States)

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  3. Contribution of galloylation and polymerization to the antioxidant activity of polyphenols in fish lipid systems.

    Science.gov (United States)

    Iglesias, Jacobo; Pazos, Manuel; Lois, Salomé; Medina, Isabel

    2010-06-23

    Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.

  4. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria tomentosa Bark and Leaves.

    Science.gov (United States)

    Navarro-Hoyos, Mirtha; Alvarado-Corella, Diego; Moreira-Gonzalez, Ileana; Arnaez-Serrano, Elizabeth; Monagas-Juan, Maria

    2018-05-11

    Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa , using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves ( n = 16), using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS). A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans⁻cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA) indicated that the contents of procyanidin and propelargonidin dimers were significantly different ( p rich in proanthocyanidins and exhibiting high antioxidant activity.

  5. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2005-07-13

    Wine aging on yeast lees is a traditional enological practice used during the manufacture of wines. This technique has increased in popularity in recent years for the aging of red wines. Although wine polyphenols interact with yeast lees to a limited extent, such interactions have a large effect on the reactivity toward oxygen of wine polyphenolic compounds and yeast lees. Various domains of the yeast cell wall are protected by wine polyphenols from the action of extracellular hydrolytic enzymatic activities. Polysaccharides released during autolysis are thought to exert a significant effect on the sensory qualities of wine. We studied the chemical composition of polyphenolic compounds remaining in solution or adsorbed on yeast lees after various contact times during the simulation of wine aging. The analysis of the remnant polyphenols in the wine indicated that wine polyphenols adsorption on yeast lees follows biphasic kinetics. An initial and rapid fixation is followed by a slow, constant, and saturating fixation that reaches its maximum after about 1 week. Only very few monomeric phenolic compounds remained adsorbed on yeast lees, and no preferential adsorption of low or high polymeric size tannins occurred. The remnant condensed tannins in the wine contained fewer epigallocatechin units than the initial tannins, indicating that polar condensed tannins were preferentially adsorbed on yeast lees. Conversely, the efficiency of anthocyanin adsorption on yeast lees was unrelated to its polarity.

  6. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats.

    Science.gov (United States)

    Messaoudi, Michaël; Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Javelot, Hervé

    2008-12-01

    Depression is a major public health problem affecting about 12% of the world population. Drugs exist but they have many side effects. In the last few years, natural substances (e.g. flavonoids) have been tested to cure such disorders. Cocoa polyphenolic extract is a complex compound prepared from non-roasted cocoa beans containing high levels of flavonoids. The antidepressant-like effect of cocoa polyphenolic extract was evaluated using the forced swimming test in rats. Cocoa polyphenolic extract significantly reduced the duration of immobility at both doses of 24 mg/kg/14 days and 48 mg/kg/14 days, although no change of motor dysfunction was observed with the two doses tested in the open field. The results of the forced swimming test after a subchronic treatment and after an additional locomotor activity test confirm the assumption that the antidepressant-like effect of cocoa polyphenolic extract in the forced swimming test model is specific. Further, it can be speculated that this effect might be related to its content of active polyphenols.

  7. Acid production by oral strains of Candida albicans and Lactobacilli

    NARCIS (Netherlands)

    Klinke, T.; Kneist, S.; de Soet, J.J.; Kuhlisch, E.; Mauersberger, S.; Forster, A.; Klimm, W.

    2009-01-01

    Both Candida albicans and lactobacilli are common colonizers of carious lesions in children and adolescents. The purpose of this study is to compare the velocity of acid production between C. albicans and several Lactobacillus species at different pH levels and concentrations of glucose. Washed,

  8. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications.

    Science.gov (United States)

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  9. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Thea Magrone

    2017-06-01

    Full Text Available It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit.

  10. Cocoa and Dark Chocolate Polyphenols: From Biology to Clinical Applications

    Science.gov (United States)

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2017-01-01

    It is well known that cocoa and dark chocolate possess polyphenols as major constituents whose dietary consumption has been associated to beneficial effects. In fact, cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities switching on some important signaling pathways such as toll-like receptor 4/nuclear factor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols induce release of nitric oxide (NO) through activation of endothelial NO synthase which, in turn, accounts for vasodilation and cardioprotective effects. In the light of the above described properties, a number of clinical trials based on the consumption of cocoa and dark chocolate have been conducted in healthy subjects as well as in different categories of patients, such as those affected by cardiovascular, neurological, intestinal, and metabolic pathologies. Even if data are not always concordant, modifications of biomarkers of disease are frequently associated to improvement of clinical manifestations. Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage the consumption of cocoa and dark chocolate by aged people for the recovery of the neurovascular unit. PMID:28649251

  11. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy.

    Science.gov (United States)

    Turrini, Eleonora; Ferruzzi, Lorenzo; Fimognari, Carmela

    2015-01-01

    Cancer is the second leading cause of death and is becoming the leading one in old age. Vegetable and fruit consumption is inversely associated with cancer incidence and mortality. Currently, interest in a number of fruits high in polyphenols has been raised due to their reported chemopreventive and/or chemotherapeutic potential. Pomegranate has been shown to exert anticancer activity, which is generally attributed to its high content of polyphenols. This review provides a comprehensive analysis of known targets and mechanisms along with a critical evaluation of pomegranate polyphenols as future anticancer agents. Pomegranate evokes antiproliferative, anti-invasive, and antimetastatic effects, induces apoptosis through the modulation of Bcl-2 proteins, upregulates p21 and p27, and downregulates cyclin-cdk network. Furthermore, pomegranate blocks the activation of inflammatory pathways including, but not limited to, the NF-κB pathway. The strongest evidence for its anticancer activity comes from studies on prostate cancer. Accordingly, some exploratory clinical studies investigating pomegranate found a trend of efficacy in increasing prostate-specific antigen doubling time in patients with prostate cancer. However, the genotoxicity reported for pomegranate raised certain concerns over its safety and an accurate assessment of the risk/benefit should be performed before suggesting the use of pomegranate or its polyphenols for cancer-related therapeutic purposes.

  12. Hormonal effect on polyphenol accumulation in Cassia tissues cultured in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Shah, R R; Subbaiah, K V; Mehta, A R

    1976-06-01

    Effects of auxin and kinetin on growth and production of phenolic compounds in cultured Cassia fistula L. tissues were examined. Initiation of polyphenols was largely determined by the auxin concentration in the medium. Growth of the cells in relation to accumulation of polyphenols was studied at different auxin and kinetin concentrations. The accumulation of phenolic materials was essentially restricted to the most rapid phase of the growth cycle. Progressive changes in the pattern of peroxidase activity were followed and their relationship with polyphenol synthesis is examined.

  13. Development of a Rapid and Simple Method to Remove Polyphenols from Plant Extracts

    Directory of Open Access Journals (Sweden)

    Imali Ranatunge

    2017-01-01

    Full Text Available Polyphenols are secondary metabolites of plants, which are responsible for prevention of many diseases. Polyvinylpolypyrrolidone (PVPP has a high affinity towards polyphenols. This method involves the use of PVPP column to remove polyphenols under centrifugal force. Standards of gallic acid, epigallocatechin gallate, vanillin, and tea extracts (Camellia sinensis were used in this study. PVPP powder was packed in a syringe with different quantities. The test samples were layered over the PVPP column and subjected to centrifugation. Supernatant was tested for the total phenol content. The presence of phenolic compounds and caffeine was screened by HPLC and measuring the absorbance at 280. The antioxidant capacity of standards and tea extracts was compared with the polyphenol removed fractions using DPPH scavenging assay. No polyphenols were found in polyphenolic standards or tea extracts after PVPP treatment. The method described in the present study to remove polyphenols is simple, inexpensive, rapid, and efficient and can be employed to investigate the contribution of polyphenols present in natural products to their biological activity.

  14. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon.

    Science.gov (United States)

    Singh, Barinderjit; Singh, Narpinder; Thakur, Sheetal; Kaur, Amritpal

    2017-03-01

    In this study, extraction of polyphenols using different solvents (acetone, ethanol, methanol and water) with ultrasound and conventional method from whole mung bean (WMB), hull and cotyledon was conducted. Total phenolic content (TPC), total flavonoids content (TFC), total antioxidant activities (TAA), ferric reducing power (FRP) and DPPH radical scavenging activity were determined. Ultrasound treated extracts exhibited higher TPC, TFC, TAA, FRP and DPPH in different mung bean fractions than CSE. Among the solvents, acetone showed better TPC, TFC, TAA, FRP and DPPH. Hull had significantly higher TPC, TFC, TAA, FRP and DPPH than WMB and cotyledon. Sinapic acid (SA) was the major polyphenol in different fractions. Acetone extract of hull showed high polyphenol content. SA, ferulic acid, catechin, p-coumaric acid, resveratrol, quercetin and luteolin were the major contributors to antioxidant activity of acetone extract. Mung bean hull contained the maximum polyphenols and acetone was observed to be the best extraction medium for polyphenols in combination with ultrasound.

  15. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages.

    Science.gov (United States)

    Ito, Hideyuki; Gonthier, Marie-Paule; Manach, Claudine; Morand, Christine; Mennen, Louise; Rémésy, Christian; Scalbert, Augustin

    2005-10-01

    Dietary polyphenols are suggested to participate in the prevention of CVD and cancer. It is essential for epidemiological studies to be able to compare intake of the main dietary polyphenols in populations. The present paper describes a fast method suitable for the analysis of polyphenols in urine, selected as potential biomarkers of intake. This method is applied to the estimation of polyphenol recovery after ingestion of six different polyphenol-rich beverages. Fifteen polyphenols including mammalian lignans (enterodiol and enterolactone), several phenolic acids (chlorogenic, caffeic, m-coumaric, gallic, and 4-O-methylgallic acids), phloretin and various flavonoids (catechin, epicatechin, quercetin, isorhamnetin, kaempferol, hesperetin, and naringenin) were simultaneously quantified in human urine by HPLC coupled with electrospray ionisation mass-MS (HPLC-electrospray-tandem mass spectrometry) with a run time of 6 min per sample. The method has been validated with regard to linearity, precision, and accuracy in intra- and inter-day assays. It was applied to urine samples collected from nine volunteers in the 24 h following consumption of either green tea, a grape-skin extract, cocoa beverage, coffee, grapefruit juice or orange juice. Levels of urinary excretion suggest that chlorogenic acid, gallic acid, epicatechin, naringenin or hesperetin could be used as specific biomarkers to evaluate the consumption of coffee, wine, tea or cocoa, and citrus juices respectively.

  16. Polyphenols, Antioxidants and the Sympathetic Nervous System.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2018-01-01

    A high dietary intake of polyphenols has been associated with a reduced cardiovascular mortality, due to their antioxidant properties. However, growing evidence suggests that counteracting oxidative stress in cardiovascular disease might also reduce sympathetic nervous system overactivity. This article reviews the most commonly used techniques to measure sympathetic activity in humans; the role of sympathetic activation in the pathophysiology of cardiovascular diseases; current evidence demonstrating that oxidative stress is involved in the regulation of sympathetic activity and how antioxidants and polyphenols might counteract sympathetic overactivity, particularly focusing on preliminary data from human studies. The main mechanisms by which polyphenols are cardioprotective are related to the improvement of vascular function and their anti-atherogenic effect. Furthermore, a blood pressure-lowering effect was consistently demonstrated in randomized controlled trials in humans, when the effect of flavonoid-rich foods, such as tea and chocolate, was tested. More recent studies suggest that inhibition of sympathetic overactivity might be one of the mechanisms by which these substances exert their cardioprotective effects. Indeed, an increased adrenergic traffic to the vasculature is a major mechanism of disease in a number of cardiovascular and extra-cardiac diseases, including hypertension, obesity, metabolic syndrome and heart failure. A considerable body of evidence, mostly from experimental studies, support the hypothesis that reactive oxygen species might exert sympathoexcitatory effects both at the central and at the peripheral level. Accordingly, supplementation with antioxidants might reduce adrenergic overdrive to the vasculature and blunt cardiovascular reactivity to stress. While supplementation with "classical" antioxidants such as ROS-scavengers has many limitations, increasing the intake of polyphenol-rich foods seems to be a promising novel therapeutic

  17. Dietary Polyphenols and Their Biological Significance

    Directory of Open Access Journals (Sweden)

    Hongxiang Lou

    2007-09-01

    Full Text Available Dietary polyphenols represent a wide variety of compounds that occur in fruits,vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products. They aremostly derivatives and/or isomers of flavones, isoflavones, flavonols, catechins andphenolic acids, and possess diverse biological properties such as antioxidant, antiapoptosis,anti-aging, anticarcinogen, anti-inflammation, anti-atherosclerosis, cardiovascularprotection, improvement of the endothelial function, as well as inhibition of angiogenesisand cell proliferation activity. Most of these biological actions have been attributed to theirintrinsic reducing capabilities. They may also offer indirect protection by activatingendogenous defense systems and by modulating cellular signaling processes such asnuclear factor-kappa B (NF-кB activation, activator protein-1(AP-1 DNA binding,glutathione biosynthesis, phosphoinositide 3 (PI3-kinase/protein kinase B (Akt pathway,mitogen-activated protein kinase (MAPK proteins [extracellular signal-regulated proteinkinase (ERK, c-jun N-terminal kinase (JNK and P38 ] activation, and the translocationinto the nucleus of nuclear factor erythroid 2 related factor 2 (Nrf2. This paper covers themost recent literature on the subject, and describes the biological mechanisms of action andprotective effects of dietary polyphenols.

  18. Enhanced anodic Ru(bpy)32+ electrogenerated chemiluminescence by polyphenols

    International Nuclear Information System (INIS)

    Lei Rong; Xu Xiao; Xu Da; Zhu Gang; Li Na; Liu Huwei; Li Kean

    2008-01-01

    Anodic Ru(bpy) 3 2+ electrogenerated chemiluminescence (ECL) can be enhanced by polyphenols in alkaline solution. Spin trapping-electron spin resonance (ESR) experiments verified that reactive oxygen species (ROS) were generated during the electrolysis of Ru(bpy) 3 2+ in alkaline solution, and oxidation of quercetin enhanced Ru(bpy) 3 2+ ECL at anodic potential by producing additional ROS. This ECL enhancement can be used to analyze real sample and evaluate antioxidant activity of polyphenols

  19. Isolation, structural characterization and bioactivities of naturally occurring polysaccharide-polyphenolic conjugates from medicinal plants-A reivew.

    Science.gov (United States)

    Liu, Jun; Bai, Ruyu; Liu, Yunpeng; Zhang, Xin; Kan, Juan; Jin, Changhai

    2018-02-01

    In recent years, several medicinal plants have been demonstrated as valuable resources of naturally occurring polysaccharide-polyphenolic conjugates. For the first time, this article introduces recent advances of polysaccharide-polyphenolic conjugates isolated from different medicinal plants. The isolation, purification, structural characterization and biological activities of polysaccharide-polyphenolic conjugates are introduced in details. In general, polysaccharide-polyphenolic conjugates can be isolated by hot water or alkaline extraction followed by purification through anion exchange chromatography or gel filtration chromatography. The structures of conjugates are usually characterized by chemical composition analysis, UV-vis, Fourier-transform infrared and nuclear magnetic resonance spectroscopy. Moreover, polysaccharide-polyphenolic conjugates exhibit several biological activities including anticoagulant, antioxidant, radioprotective, anti-platelet, antitussive and bronchodilatory effects. Therefore, polysaccharide-polyphenolic conjugates isolated from medicinal plants are certain to have a bright prospect in the field of food and pharmaceutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Dietary polyphenol intake in Europe

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Knaze, Viktoria; Rothwell, Joseph A

    2016-01-01

    were collected using a standardized 24-h dietary recall software administered to 36,037 adult subjects. Dietary data were linked with Phenol-Explorer, a database with data on 502 individual polyphenols in 452 foods and data on polyphenol losses due to cooking and food processing. RESULTS: Mean total....... The current cross-sectional analysis aimed at estimating dietary intakes of all currently known individual polyphenols and total intake per class and subclass, and to identify their main food sources in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Dietary data at baseline...... polyphenol intake was the highest in Aarhus-Denmark (1786 mg/day in men and 1626 mg/day in women) and the lowest in Greece (744 mg/day in men and 584 mg/day in women). When dividing the subjects into three regions, the highest intake of total polyphenols was observed in the UK health-conscious group...

  1. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  2. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Thierry Franck

    2012-01-01

    Full Text Available Young leaves of Manihot esculenta Crantz (Euphorbiaceae, Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae and Pteridium aquilinum (Dennstaedtiaceae are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS and the release of myeloperoxidase (MPO by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA. The ROS production was measured by lucigenin-enhanced chemiluminescence (CL, and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health.

  3. [Mass Transfer Kinetics Model of Ultrasonic Extraction of Pomegranate Peel Polyphenols].

    Science.gov (United States)

    Wang, Zhan-yi; Zhang, Li-hua; Wang, Yu-hai; Zhang, Yuan-hu; Ma, Li; Zheng, Dan-dan

    2015-05-01

    The dynamic mathematical model of ultrasonic extraction of polyphenols from pomegranate peel was constructed with the Fick's second law as the theoretical basis. The spherical model was selected, with mass concentrations of pomegranate peel polyphenols as the index, 50% ethanol as the extraction solvent and ultrasonic extraction as the extraction method. In different test conditions including the liquid ratio, extraction temperature and extraction time, a series of kinetic parameters were solved, such as the extraction process (k), relative raffinate rate, surface diffusion coefficient(D(S)), half life (t½) and the apparent activation energy (E(a)). With the extraction temperature increasing, k and D(S) were gradually increased with t½ decreasing,which indicated that the elevated temperature was favorable to the extraction of pomegranate peel polyphenols. The exponential equation of relative raffinate rate showed that the established numerical dynamics model fitted the extraction of pomegranate peel polyphenols, and the relationship between the reaction conditions and pomegranate peel polyphenols concentration was well reflected by the model. Based on the experimental results, a feasible and reliable kinetic model for ultrasonic extraction of polyphenols from pomegranate peel is established, which can be used for the optimization control of engineering magnifying production.

  4. Comparative Study between Ethanolic and β-Cyclodextrin Assisted Extraction of Polyphenols from Peach Pomace

    Directory of Open Access Journals (Sweden)

    Nada El Darra

    2018-01-01

    Full Text Available Peach byproducts are often regarded as food waste despite their high content in health-promoting components. Amongst the latter, polyphenols are bioactive molecules with significant health benefits. The present study investigated an eco-friendly and cost-effective method using a GRAS food additive, β-cyclodextrin (β-CD, for the recovery of polyphenols from peach pomace. β-CD assisted extraction of polyphenols was compared to that of conventional solvent (ethanol extraction at the same concentrations (10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL, and 50 mg/mL in terms of quality (antiradical activity and quantity. The extract obtained by 50 mg/mL β-CD assisted extraction showed the highest polyphenol (0.72 mg GAE/g DM and flavonoid (0.35 mg catechin/g of DM concentrations as maximal antiradical activity (6.82% and a noted antibacterial activity. Our results showed the competitiveness of β-CD assisted extraction to recover a high quantity and quality of polyphenols from peach pomace suggesting β-CD as a green alternative method for phenolic extraction.

  5. Evaluation of polyphenolic content and antioxidant activity in two onion varieties grown under organic and conventional production systems.

    Science.gov (United States)

    Ren, Feiyue; Reilly, Kim; Gaffney, Michael; Kerry, Joseph P; Hossain, Mohammad; Rai, Dilip K

    2017-07-01

    Onions contain a number of bioactive compounds, in particular polyphenols. They are rich sources of such compounds in the human diet and offer significant health benefits to the consumer. Demand for organic crops is steadily increasing partly based on the expected health benefits of organic food consumption. The current study examines the influence of organic and conventional crop management practices on bioactive polyphenolic content of onion. We examined the effect of conventional, organic, and mixed cultivation practices on the content of total phenolics, total flavonoids and antioxidant activity in two varieties of onion grown over 4 years in a split-plot factorial systems comparison trial. Levels of total phenolics and total flavonoids showed a significant year-on-year variation and were significantly different between organic and conventional production systems. The levels of total phenolics, total flavonoids and antioxidant activity in general were significantly higher (P onion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Content of polyphenol compound in mangrove and macroalga extracts

    Science.gov (United States)

    Takarina, N. D.; Patria, M. P.

    2017-07-01

    Polyphenol or phenolic are compounds containing one or more hydroxyl group of the aromatic ring [1]. These compounds have some activities like antibacterial, antiseptic, and antioxidants. Natural resources like mangrove and macroalga were known containing these compounds. The purpose of the research was to investigate polyphenol content in mangrove and macroalga. Materials used in this research were mangrove (Avicennia sp.) leaves and the whole part of macroalga (Caulerpa racemosa). Samples were dried for 5 days then macerated in order to get an extract. Maceration were done using methanol for 48 hours (first) and 24 hours (second) continously. Polyphenol content was determined using phytochemical screening on both extracts. The quantitative test was carried out to determine catechin and tannin as polyphenol compound. The result showed that catechin was observed in both extracts while tannin in mangrove extract only. According to quantitative test, mangrove has a higher content of catechin and tannin which were 12.37-13.44 % compared to macroalga which was 2.57-4.58 %. Those indicated that both materials can be the source of polyphenol compound with higher content on mangrove. Moreover, according to this result, these resources can be utilized for advanced studies and human needs like medical drug.

  7. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    Science.gov (United States)

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  8. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs.

    Science.gov (United States)

    Chohan, Magali; Naughton, Declan P; Jones, Lucy; Opara, Elizabeth I

    2012-01-01

    There is little research on how cooking and digestion affect the anti-inflammatory activity of culinary herbs. Thus, the aim of this paper was to investigate this activity following cooking and in vitro digestion of the common culinary herbs, rosemary, sage, and thyme, and the relationship between their anti-inflammatory activity, polyphenol content, and antioxidant capacity. The anti-inflammatory activity of uncooked (U), cooked (C), cooked and in vitro digested (C&D), and standardised (STD, 30 mg/mL) culinary herbs was assessed by measuring their effect on interleukin 8 (IL-8) release from stimulated human peripheral blood lymphocytes (PBLs) and Caco-2 cells. The trolox equivalent capacity (TEAC) and estimated total phenolic content of the herbs were also determined. There was a significant decrease in IL-8 release from PBLs stimulated with H(2)O(2) incubated with (U), (C), (C&D), and (STD) herbs and from Caco-2 cells stimulated with TNFα incubated with (C&D) and (STD) herbs. PBLs pre-incubated with (C&D) herbs prior to stimulation (H(2)O(2) or TNFα) caused a significant inhibition in IL-8 release. The significant correlations between TEAC and estimated phenolic content and the anti-inflammatory activity suggest a possible contributory role of polyphenols to the anti-inflammatory activity of the culinary herbs investigated.

  9. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis.

    Science.gov (United States)

    Skarin, A; Sylwan, J

    1986-12-01

    On a solid agar medium the growth-inhibitory effect of 9 Lactobacillus strains cultured from vaginal content was tested on bacteria cultured from vaginal content of women with bacterial vaginosis: Mobiluncus, Gardnerella vaginalis, Bacteroides and anaerobic cocci. Inhibition zones were observed in the growth of all of the strains isolated from women with bacterial vaginosis around all lactobacilli. The inhibitory effect of the lactobacilli was further tested on various anaerobic and facultatively anaerobic species, both type strains and fresh extragenitally cultured strains. Four Bacteroides fragilis strains as well as 2 out of 4 Staphylococcus aureus strains were clearly inhibited by the lactobacilli. The inhibition zones were generally wider at pH 5.5 than at 6.0. For all inhibited strains, (the S. aureus excepted) a low pH on the agar around the lactobacilli correlated to wider growth-inhibition zones.

  10. Utilization of tomato waste as a source of polyphenolic antioxidants

    Directory of Open Access Journals (Sweden)

    Savatović Slađana M.

    2010-01-01

    Full Text Available This study is concerned with the effects of two extraction procedures (using ultrasonic bath and high performance homogenizer on the extraction efficiency of polyphenolics present in the tomato waste. The isolation of flavonoid fraction of obtained extracts was performed by solid-phase extraction. The antioxidant activity of flavonoid fractions was determined using different spectrophotometric tests, including reducing power and 2,2- diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assays. The content of total polyphenolics and flavonoids in extract obtained employing homogenizer (E2 was higher than in the extract obtained employing ultrasonic bath (E1, and it was 14.33 mg/g and 7.70 mg/g, respectively. The flavonoid fraction (EF2 of extract E2 showed higher antioxidant activity than flavonoid fraction (EF1 of extract E1. The DPPH free radical scavenging activity of fractions EF1 and EF2, expressed as EC50 value, were 0.78 mg/ml and 0.45 mg/ml, respectively. The obtained results show that tomato wastes can be used as an easily accessible source of antioxidant polyphenolics.

  11. Benefits of Wine Polyphenols on Human Health: A Review

    Directory of Open Access Journals (Sweden)

    Roxana Banc

    2014-11-01

    Full Text Available This paper presents  an overview of the health benefits of wine polyphenols, induced by a moderate consumption. Several studies have shown that moderate wine intake may have many beneficial effects on human health and these effects are mainly attributed to the phenolic derivatives, especially flavonoids. Beside flavonoid compounds, phenolic acids (hydroxybenzoic acids and hydroxycinnamic acids and stilbenes are important non-flavonoid compounds present in grapes and wine. In the present review, the biological role of these classes of polyphenols in wine is briefly introduced, together with the knowledge on their bioavailability. The health-protective properties of wines are mainly due to antioxidant activities and capability to eliminate free radicals of the phenolic compounds. Additionally, these compounds (e.g. catechin and their oligomers and proanthocyanidins, quercetin, resveratrol have been reported to have multiple biological activities, including cardioprotective, anti-carcinogenic, anti-atherogenic, anti-inflammatory, antiviral and antibacterial properties. Epidemiological and clinical studies have pointed out that regular and moderate red wine consumption (one to two glasses a day is associated with decreased incidence of cardiovascular disease, hypertension, diabetes, and certain types of cancer, including lung, esophagus, stomach, colon, endometrium, ovarian and prostate cancer. The bioavailability of phenolic compounds differs largely among different polyphenol molecules, thus the most abundant polyphenols in wines are not necessarily those leading to the highest levels of active metabolites in target tissues. Therefore, since wine is a complex mixture, it is likely that a multitude of chemical constituents, as well as their metabolites, act synergistically on human health.

  12. The content of total polyphenols, ascorbic acid and antioxidant activity in selected varieties of quince (Cydonia oblonga mill.

    Directory of Open Access Journals (Sweden)

    Judita Bystrická

    2017-01-01

    Full Text Available Quince fruit (Cydonia oblonga Miller is an important source of bioactive compounds, especially of polyphenolic compounds, phenolic acids, flavonoids also of minerals and vitamins. This compounds exhibit health promoting properties including antibacterial, anti-inflammatory, anticancer, antidiabetic and cardioprotective properties. Quine fruit have a high therapeutic value, can be used as good sources of antioxidants. This study provides some knowledge about content of total polyphenols, ascorbic acid and antioxidant activity in selected varieties of quince fruit samples. Four quince fruit cultivars (Semenáč, Konstantinopler Apfelquitte, Cydora Robusta, Mammut were analysed. The content of the total polyphenols (TPC was determined by the Folin-Ciocalteu reagent (FCR at 765 nm using spectrophotometer. Ascorbic acid (AsA content was determined using standard HPLC gradient method. Antioxidant activity (AA was measures using a compound DPPH˙(2.2-diphenyl-1-picrylhydrazyl. The content of (TPC in fresh samples of quince fruit ranged from 661 ±11.60 mg.kg-1 to 1044 ±11.03 mg.kg-1 and content of AsA were in interval from 151 ±0.58 mg.kg-1 to 215 ±0.75 mg.kg-1. The values of antioxidant activity in quince fruit samples were in range from 26.90 ±0.61% to 49.14 ±0.38%. Statistically significant highest content TPC, AsA and AA was recorded in cultivar Konstaninopler Apfelquitte and statistically lowest content was recorded in cultivar Semenáč. The content of TPC, AsA and AA beside the variety may be affected by many factors also climatic conditions and the agrochemical composition of the soil. 

  13. Antioxidant Activity of Chinese Shanxi Aged Vinegar and Its Correlation with Polyphenols and Flavonoids During the Brewing Process.

    Science.gov (United States)

    Xie, Xiaolin; Zheng, Yu; Liu, Xian; Cheng, Cheng; Zhang, Xianglong; Xia, Ting; Yu, Songfeng; Wang, Min

    2017-10-01

    One of the most famous Chinese vinegars, Shanxi aged vinegar (SAV), is produced with solid-state fermentation technology. Total antioxidant activity (TAC) is a special property for SAV. In this study, we investigate correlations between total antioxidant activity (TAC) and total polyphenol (TP) and total flavonoid (TF) contents of SAV, especially during the brewing process. For SAV, TAC, TP, and TF increased with the increase of aging time. The correlation coefficients between TAC and TP were 0.869 and 0.934, respectively, when analyzed with the method of ABTS and FRAP. They were 0.828 (ABTS) and 0.877 (FRAP) between the TAC and TF. In smoking pei stage that is a special technique for SAV different from other Chinese cereal vinegars, TAC increased by 120% (ABTS) and 111% (FRAP) mainly due to the increase of TP (89%) and TF (75%), which was more obvious than that during alcohol fermentation and acetic acid fermentation stages. Moreover, variation during brewing process of 8 main polyphenol compounds that were proved responsible for the TAC of SAV was analyzed. In addition to catechins and chlorogenic acid, gallic acid serves as one of the principal antioxidant ingredients in SAV. Total antioxidant activity (TAC) of Shanxi aged vinegar (SAV), which is highly correlated with total polyphenol and total flavonoid, increased with aging time, however, there is a little loss of total antioxidant after more than 8 y. During the brewing process smoking pei technique is important for enhancing the TAC of SAV suggesting critical controlled and thoroughly study of smoking pei stage are needed to improve the quality of SAV. © 2017 Institute of Food Technologists®.

  14. Microbiological Characterization of Wet Wheat Distillers' Grain, with Focus on Isolation of Lactobacilli with Potential as Probiotics

    OpenAIRE

    Pedersen, C.; Jonsson, H.; Lindberg, J. E.; Roos, S.

    2004-01-01

    Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lact...

  15. Characterization and antioxidant activity of the complex of pomegranate polyphenol extract and lecithin

    International Nuclear Information System (INIS)

    Li, G.; Zhao, R.

    2013-01-01

    The pomegranate polyphenol extract (PPE) was a nutraceutical with good prospect in food and medicinal industry. But its poor oil solubility limits its application in hydrophilic system. In this study, by forming the complex with lecithin, the hydrophilic solubility of PPE could be significantly improved. The physicochemical properties of the complex were analyzed by ultraviolet-visible spectrometry (UV), infrared spectrometry (IR) and X-ray diffractometry (XRD). The result showed that PPE in the complex had been completely dispersed in the lecithin matrix, not forming a new compound. It was found that the DPPH radical scavenging activity and reducing power of the complex were inferior to that of PPE while the antioxidant activity of the complex in oil was superior to that of PPE. (author)

  16. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Nadia Calabriso

    2016-08-01

    Full Text Available Matrix metalloproteinases (MMPs are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases’ activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5–25 μg/mL of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively or their specific components (0.5–25 μmol/L, before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  17. Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores

    Directory of Open Access Journals (Sweden)

    Bunešová Věra

    2017-03-01

    Full Text Available The intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. Bifidobacteria and lactobacilli represent important commensal bacteria with the ability to utilize complex carbohydrates. The main fermentation products from the breakdown of complex dietary carbohydrates are short chain fatty acids (SCFAs. We examined faecal samples of vegetarians (n = 10 and conventional omnivores (n = 10 to evaluate the counts and occurrence of cultivable bacteria, especially bifidobacteria and lactobacilli, using cultivation on selective media, and matrix-assisted laser desorption/ionization time-of-flight. Moreover, concentrations and molar proportion of SCFAs in faecal samples were measured. Total counts of Gram-negative anaerobic bacteria were significantly lower (P 0.05 between the diet groups. In total, six Bifidobacterium spp. and thirteen Lactobacillus spp. were detected via culture-dependent methods. Bifidobacteria counts and species composition in faecal samples of both groups were found to be relatively similar, regardless of the diet. Lactobacillus species varied more by individual diet.

  18. Antioxidant and antiplatelet activity by polyphenol-rich nutrients: focus on extra virgin olive oil and cocoa.

    Science.gov (United States)

    Loffredo, Lorenzo; Perri, Ludovica; Nocella, Cristina; Violi, Francesco

    2017-01-01

    Cardiovascular disease is the most common cause of death in the Western world. In the last decades nutraceutical approaches have been proposed to counteract atherosclerotic complications. In particular, polyphenols, a class of bio-active molecules prevalently contained in foods such as cocoa, fruits, vegetables, wine and tea, have been widely studied for their beneficial properties. Several epidemiological and interventional studies have shown that polyphenol-rich nutrients, as in extra virgin olive oil (EVOO) and cocoa, are associated with a risk reduction of cardiovascular events and/or modulation of cardiovascular risk factors. Definition of the mechanisms accounting for this putative cardio-protective effect is still elusive. This review focuses on the mechanisms that may be implicated in the beneficial effects of EVOO and cocoa, including down-regulation of oxidative stress and platelet aggregation, improvement of endothelial function and cardiovascular risk factor such as blood pressure, serum cholesterol and insulin sensitivity. © 2016 The British Pharmacological Society.

  19. Role of dietary polyphenols in the management of peptic ulcer.

    Science.gov (United States)

    Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-06-07

    Peptic ulcer disease is a multifactorial and complex disease involving gastric and duodenal ulcers. Despite medical advances, the management of peptic ulcer and its complications remains a challenge, with high morbidity and death rates for the disease. An accumulating body of evidence suggests that, among a broad reach of natural molecules, dietary polyphenols with multiple biological mechanisms of action play a pivotal part in the management of gastric and duodenal ulcers. The current review confirmed that dietary polyphenols possess protective and therapeutic potential in peptic ulcer mediated by: improving cytoprotection, re-epithelialization, neovascularization, and angiogenesis; up-regulating tissue growth factors and prostaglandins; down-regulating anti-angiogenic factors; enhancing endothelial nitric oxide synthase-derived NO; suppressing oxidative mucosal damage; amplifying antioxidant performance, antacid, and anti-secretory activity; increasing endogenous mucosal defensive agents; and blocking Helicobacter pylori colonization associated gastric morphological changes and gastroduodenal inflammation and ulceration. In addition, anti-inflammatory activity due to down-regulation of proinflammatory cytokines and cellular and intercellular adhesion agents, suppressing leukocyte-endothelium interaction, inhibiting nuclear signaling pathways of inflammatory process, and modulating intracellular transduction and transcription pathways have key roles in the anti-ulcer action of dietary polyphenols. In conclusion, administration of a significant amount of dietary polyphenols in the human diet or as part of dietary supplementation along with conventional treatment can result in perfect security and treatment of peptic ulcer. Further well-designed preclinical and clinical tests are recommended in order to recognize higher levels of evidence for the confirmation of bioefficacy and safety of dietary polyphenols in the management of peptic ulcer.

  20. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    International Nuclear Information System (INIS)

    Cheng Yan; Wang Haifang; Sun Hongfang; Li Hongli

    2004-01-01

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b 5 (CYb 5 ) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb 5 , whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  1. Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads.

    Science.gov (United States)

    Brachkova, Mariya I; Duarte, Maria A; Pinto, João F

    2010-12-23

    The objective of the study was to produce calcium alginate beads able to deliver Lactobacillus spp. (Lactobacillus plantarum, Lactobacillus rhamnosus GG, Lactobacillus bulgaricus and Lactobacillus lactis) with preserved viability and antibacterial activity. Four types of beads, containing entrapped (E), surface and entrapped (ES), surface (S) and concentrated surface and entrapped lactobacilli (C(ES)) were prepared and physically characterized. The antibacterial activity of lactobacilli cultures before and after immobilization, freeze-drying and throughout storage was studied in relationship to the viable number of lactobacilli. Multi-resistant clinical isolates (methicillin-resistant Staphylococcus aureus, vancomycine-resistant Enterococcus faecalis, VIM-2-metalo-β-lactamase producing Pseudomonas aeruginosa and CTX-M-15-β-lactamase producing strains: Escherichia coli and Klebsiella pneumoniae) were used as indicator strains. Alginate beads in which lactobacilli proliferated to the beads surface (ES and C(ES)) differed significantly from the other types of beads in their physicochemical properties, showing smoother surface morphology, more spherical shape, bigger weight, lower calcium content, density and crushing force. Lactobacilli cultures, at high cell concentrations (10(8)cfu/ml) were active against both Gram-positive and negative multi-resistant bacteria. Beads containing both entrapped and surface lactobacilli (ES) resulted in viability and antibacterial activity most similar to non-processed lactobacilli cultures. The viability and antibacterial activity of the immobilized lactobacilli remained stable after 6 months storage. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  3. Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Isabel Anna Maria Groh

    2013-01-01

    Full Text Available Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (−-epigallocatechin-3-gallate (EGCG and genistein (GEN as well as two oxidative methyleugenol (ME metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes.

  4. Cocoa Polyphenols: Evidence from Epidemiological Studies.

    Science.gov (United States)

    Matsumoto, Chisa

    2018-01-01

    Accumulating evidence suggests potential preventive effects of chocolate/cocoa on the risk of cardio vascular disease (CVD). However, cocoa products also contain high levels of sugar and fat, which increase CVD risk factors. Even, the identity of the substance in chocolate/cocoa that has a favorable effect on CVD and CVD risk factors remains unclear, growing evidence from experimental studies suggests that cocoa polyphenols might be a major contributor to cardiovascular-protective effects. However, epidemiological studies, which are necessary to evaluate an association between the risk of CVD and cocoa polyphenol, remain sparse. We will discuss recent evidence regarding the association between cocoa polyphenol consumption and the risks of CVD and its risk factors by reviewing recent epidemiological studies. We shall also provide some guidance for patient counseling and will discuss the public health implications for recommending cocoa polyphenol consumption to prevent CVD. Epidemiological studies evaluating the association between cocoa polyphenol itself and the risk of CVD are sparse. However, evidence from limited epidemiological studies suggests that cocoa polyphenol consumption may lower the risk of CVD. Given the potential adverse effects of the consumption of cocoa products with high fat and sugar and the fact that the most appropriate dose of cocoa polyphenol for cardio-protective effects has not yet been established, health care providers should remain cautious about recommending cocoa/cocoa polyphenol consumption to their patients to reduce the risk of CVD, taking the characteristics of individual patients into careful consideration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation in vitro

    Science.gov (United States)

    Cereal grains are often included in equine diets. Sugars and starch in grains can be digested and absorbed in the small intestine, but a high proportion of grain in the diet can allow starch to reach the hindgut, disturbing the microbial ecology. Streptococci and lactobacilli both catabolize starch ...

  6. Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge. Sok. Genotypes

    Directory of Open Access Journals (Sweden)

    Suwen Liu

    2018-01-01

    Full Text Available Seven varieties of Chinese dwarf cherries were evaluated and compared with respect to their weight, diameter, titratable acidity, total soluble solids, color, polyphenol contents, ascorbic acid levels, anthocyanin profiles, enzymatic activity, and antioxidant capacity. The fruits are rich in phenolic content (339.07–770.30 mg/100 g fresh weight. Nine anthocyanins were obtained from fruits after chromatographic separation and their structures analyzed using HPLC-ESI-MS/MS. Cyanidin-3-glucoside was the major anthocyanin with 50.36–78.39% concentration. Three anthocyanins were reported for the first time in these cherries. They exhibit low polyphenol oxidase and peroxidase activities, but their superoxide dismutase activity is high (572.75–800.17 U/g FW. The highest amounts of soluble solid content (15.67 Brix %, total titratable acid (1.90%, ascorbic acid (18.47 mg/100 g FW, and total anthocyanin (152.66 mg/100 g FW were observed. Three methods (DPPH-scavenging ability, oxygen radical absorbance capacity assay, and cellular antioxidant activity assay were employed to evaluate the antioxidant capacity of the phenolic extracts of these cherries. Number 5 has the highest values of ORAC and CAA of 205.68 μmol TE/g DM and 99.67 μmol QE/100 g FW, respectively.

  7. Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2017-01-01

    Full Text Available Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.

  8. EFFECT OF POLYPHENOLIC COMPOUNDS ISOLATED FROM CARTHAMUS TINCTORIUS AND CALENDULA OFFICINALIS L., ON FUNCTIONAL ACTIVITY OF IMMUNE CELLS UNDER CONDITIONS OF CYTOSTATIC IMMUNOSUPPRESSION

    Directory of Open Access Journals (Sweden)

    N. V. Masnaya

    2013-01-01

    Full Text Available The purpose of the study – to study the effect of polyphenolic compounds extracted from the flowers of safflower oil and calendula, the functional activity of immune cells in cytotoxic immune suppression.Conventional methods determined the total number of splenocytes, relative (% and absolute (106, the number of antibody-forming cells (AFC in the spleen of mice by local hemolysis by Cunningham.Evaluated the effect of compounds of natural origin on the cellular immune response in the delayed-type hypersensitivity (DTH. Phagocytic activity of peritoneal macrophages was determined by the method based on the intensity of their capture ink particles. We studied the functional activity of peritoneal macrophages by NBT test (spontaneous and stimulated. Studies were conducted on male mice Category 1 (conventional linear mouse line CBA/CaLac aged 2–2.5 months, weighing 20–22 g. After the introduction mice line CBA/CaLac of polyphenolic compounds derived from flowers of Carthamus tinctorius and flowers of Calendula officinalis L. during the 5-day course in dose 50 mg/kg was observed stimulation of the humoral immune response (total number of splenocytes, the number of antibodies in the spleen cells and the functional activity of macrophages and Immunomodulating effect on the humoral immunity and the functional activity of macrophages after a single injection of cyclophosphamide in dose 250 mg/kg. Immunotropic activity of polyphenolic compounds is higher than that those of the reference product of tincture of Echinacea purpurea.

  9. Managing hypertension by polyphenols.

    Science.gov (United States)

    Fernández-Arroyo, Salvador; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-06-01

    Some polyphenols, obtained from plants of broad use, induce a favorable endothelial response in hypertension and beneficial effects in the management of other metabolic cardiovascular risks. Previous studies in our laboratories using the calyces of Hibiscus sabdariffa as a source of polyphenols show that significant effects on hypertension are noticeable in humans only when provided in high amounts. Available data are suggestive in animal models and ex vivo experiments, but data in humans are difficult to acquire. Additionally, and despite the low bioavailability of polyphenols, intervention studies provide evidence for the protective effects of secondary plant metabolites. Assumptions on public health benefits are limited by the lack of scientific knowledge, robust data derived from large randomized clinical trials, and an accurate assessment of the bioactive components provided by common foodstuff. Because it is likely that clinical effects are the result of multiple interactions among different polyphenols rather than the isolated action of unique compounds, to provide polyphenol-rich botanical extracts as dietary supplements is a suggestive option. Unfortunately, the lack of patent perspectives for the pharmaceutical industries and the high cost of production and release for alimentary industries will hamper the performance of the necessary clinical trials. Here we briefly discuss whether and how such limitations may complicate the extensive use of plant-derived products in the management of hypertension and which steps are the necessary to deal with the predictable complexity in a possible clinical practice. Georg Thieme Verlag KG Stuttgart · New York.

  10. POTASSIUM AND ITS EFFECT ON THE CONTENT OF POLYPHENOLS IN ONION (ALLIUM CEPA L.

    Directory of Open Access Journals (Sweden)

    Petra Kavalcová

    2015-02-01

    Full Text Available Onion (Allium cepa L. is rich of chemoprotective compounds as polyphenols, flavonoids, anthocyanins, vitamins, sulphur compounds which have potential beneficial properties for human health. Potassium as important mineral abundant plays many vital roles in plant nutrition (reduces respiration, activates enzyme. In generally, potassium increases crop yield and improves quality of onion bulbs. The objectives of this work were to compare and evaluate the impact of potassium on the content of total polyphenols and antioxidant activity of onion (Allium cepa L.. The content of the total polyphenols was determined by using the Folin-Ciocalteu reagent (FCR. The absorbance was measured at 765 nm of wave length against blank. Antioxidant activity was measured using a compound DPPH˙ (2.2-diphenyl-1-picrylhydrazyl at 515.6 nm in the spectrophotometer. The content of total polyphenols in samples of onion during vegatation period moved in the range from 505.6 mg GAE/kg ±25.18 to 621.49 mgGAE/kg ±13.41. In this work was watched also the influence of potassium on antioxidant activity, where values were in interval from 32.20 %± 0.58 to 44.67 % ±0.68.

  11. In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese.

    Science.gov (United States)

    Melgar-Lalanne, Guiomar; Rivera-Espinoza, Yadira; Reyes Méndez, Ana Itzel; Hernández-Sánchez, Humberto

    2013-12-01

    Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties.

  12. ADHESION OF LACTOBACILLI TO URINARY CATHETERS AND DIAPERS - EFFECT OF SURFACE-PROPERTIES

    NARCIS (Netherlands)

    REID, G; LAM, D; BRUCE, AW; VANDERMEI, HC; BUSSCHER, HJ

    Thirteen strains of lactobacilli were tested for their ability to adhere to commercial devices used in the urinary tract. Although it appeared that the most hydrophilic organisms adhered in highest numbers, there was no significant correlation between water contact angle and adhesiveness to

  13. Protective effect of polyphenols on presbycusis via oxidative/nitrosative stress suppression in rats.

    Science.gov (United States)

    Sánchez-Rodríguez, Carolina; Martín-Sanz, Eduardo; Cuadrado, Esperanza; Granizo, Juan José; Sanz-Fernández, Ricardo

    2016-10-01

    Age-related hearing loss (AHL) -presbycusis- is the number one neurodegenerative disorder and top communication deficit of our aged population. Experimental evidence suggests that mitochondrial dysfunction associated with reactive oxygen species (ROS) plays a central role in the aging process of cochlear cells. Dietary antioxidants, in particular polyphenols, have been found to be beneficial in protecting against the generation of ROS in various diseases associated with oxidative stress, such as cancer, neurodegenerative diseases and aging. This study was designed to investigate the effects of polyphenols on AHL and to determine whether oxidative stress plays a role in the pathophysiology of AHL. Sprague-Dawley rats (n=100) were divided into five groups according to their age (3, 6, 12, 18 and 24months old) and treated with 100mg/kg/day body weight of polyphenols dissolved in tap water for half of the life of the animal. Auditory steady-state responses (ASSR) threshold shifts were measured before sacrificing the rats. Then, cochleae were harvested to measure total superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, reactive oxidative and nitrogen species levels, superoxide anions and nitrotyrosine levels. Increased levels of ROS and RNS in cochlea observed with age decreases with polyphenol treatment. In addition, the activity of SOD and GPx enzymes in older rats recovered after the administration of polyphenols. The reduction in oxidative and nitrosative stress in the presence of polyphenols correlates with significant improvements in ASSR threshold shifts. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. SNARE zippering is hindered by polyphenols in the neuron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yoosoo [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Se-Hyun; Heo, Paul; Kong, Byoungjae; Shin, Jonghyeok; Jung, Young-Hun; Yoon, Keejung; Chung, Woo-Jae [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Kweon, Dae-Hyuk, E-mail: dhkweon@skku.edu [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-18

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.

  15. Green Tea Polyphenols for the Protection against Renal Damage Caused by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Takako Yokozawa

    2012-01-01

    Full Text Available Green tea, prepared from the leaves of Camellia sinensis L., is a beverage that is popular worldwide. Polyphenols in green tea have been receiving much attention as potential compounds for the maintenance of human health due to their varied biological activity and low toxicity. In particular, the contribution of antioxidant activity to the prevention of diseases caused by oxidative stress has been focused upon. Therefore, in this study, we investigated the effects of (−-epigallocatechin 3-O-gallate and (−-epigallocatechin 3-O-gallate, which account for a large fraction of the components of green tea polyphenol, on oxidative stress-related renal disease. Our observations suggest that green tea polyphenols have a beneficial effect on pathological states related to oxidative stress of the kidney.

  16. Chromatographic Methods for the Analysis of Polyphenols in Wines

    Directory of Open Access Journals (Sweden)

    Medić-Šarić, M.

    2009-03-01

    Full Text Available Wine is an excellent source of various classes of polyphenols, including phenolic acids, flavonoids, and trihydroxystilbene resveratrol (Fig.1. Polyphenols play a major role in wine quality since they contribute to the sensory characteristics of wine, particularly color and astringency. A recent interest in these substances has been stimulated by abundant evidence of their beneficial effects on human health, such as anticarcinogenic, antiinflamatory and antimicrobial activities. Therefore, numerous studies have been performed in the attempt to analyze polyphenols in wine. This paper reviews the current advances in the determination of polyphenols in wine by the major chromatographic techniques such as thin-layer chromatography (TLC and high-performance liquid chromatography (HPLC.The great complexity of the polyphenolic content of wine and the difficulty in obtaining some of the standards usually require sample preparation before analysis. Two methods for sample preparation, liquid-liquid extraction and solid-phase extraction, are most commonly applied. Hydrolysis is applied frequently, but not exclusively, to remove the sugar moieties from glycosides.TLC on silica gel plates is useful for the rapid and low-cost separation and identification of the polyphenols present in wine (Fig. 2. Densitometric quantitative analysis of polyphenols in wine extracts is usually performed by scanning the TLC plates with UV light at wavelengths of 350–365 nm or 250–260 nm (Fig. 3. For the evaluation of the most efficient mobile phase and an optimal choice of the combination of two or more mobile phases, two methods may be applied: information theory and numerical taxonomy. HPLC currently represents the most popular technique for the analysis of polyphenols in wine. For this purpose, a reversed-phase HPLC method that uses gradient elution with binary elution system is usually employed. Routine detection is based on measurement of UV-Vis absorption with a diode

  17. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction.

    Science.gov (United States)

    Masci, Alessandra; Coccia, Andrea; Lendaro, Eugenio; Mosca, Luciana; Paolicelli, Patrizia; Cesa, Stefania

    2016-07-01

    Pomegranate is a functional food of great interest, due to its multiple beneficial effects on human health. This fruit is rich in anthocyanins and ellagitannins, which exert a protective role towards degenerative diseases. The aim of the present work was to optimize the extraction procedure, from different parts of the fruit, to obtain extracts enriched in selected polyphenols while retaining biological activity. Whole fruits or peels of pomegranate cultivars, with different geographic origin, were subjected to several extraction methods. The obtained extracts were analyzed for polyphenolic content, evaluated for antioxidant capacity and tested for antiproliferative activity on human bladder cancer T24 cells. Two different extraction procedures, employing ethyl acetate as a solvent, were useful in obtaining extracts enriched in ellagic acid and/or punicalagins. Antioxidative and antiproliferative assays demonstrated that the antioxidant capability is directly related to the phenolic content, whereas the antiproliferative activity is to be mainly attributed to ellagic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Cell surface-associated compounds of probiotic lactobacilli sustain the strain-specificity dogma

    NARCIS (Netherlands)

    Bron, P.A.; Tomita, S.; Mercenier, A.M.E.; Kleerebezem, M.

    2013-01-01

    Probiotic lactobacilli can positively impact on the health status of targeted (diseased) populations but efficacy depends strongly on the strain employed and the molecular basis for this phenomenon is poorly understood. This review discusses the current state-of-the-art in the field of molecular

  19. Uric acid but not apple polyphenols is responsible for the rise of plasma antioxidant activity after apple juice consumption in healthy subjects.

    Science.gov (United States)

    Godycki-Cwirko, Maciek; Krol, Maciej; Krol, Bogusław; Zwolinska, Anna; Kolodziejczyk, Krzysztof; Kasielski, Marek; Padula, Gianluca; Grebowski, Jacek; Grębocki, Jacek; Kazmierska, Paulina; Kazimierska, Paulina; Miatkowski, Marcin; Markowski, Jarosław; Nowak, Dariusz

    2010-08-01

    To determine whether (1) rapid consumption of 1 L of apple juice increases blood antioxidant capacity, measured as ferric-reducing ability of plasma (FRAP) and serum 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, and (2) apple polyphenols or fructose-induced elevation of plasma uric acid contributes to post-juice increase of blood antioxidant activity. The study involved 12 (mean age 32 ± 5 years, mean body weight 73 ± 7 kg) healthy nonsmoking subjects. Tested subjects consumed 1 L of clear apple juice and then FRAP; serum DPPH-scavenging activity, serum uric acid, and total plasma phenolics and quercetin levels were measured just before juice ingestion and 1, 2.5, and 4 hours after ingestion. This was repeated 3 times with 4-day intervals, but volunteers drank either 1 L of clear apple juice without polyphenols (placebo), or 1 L of cloudy apple juice (positive control), or 1 L of water (negative control) at the time. All juices had similar content of sugars (i.e., saccharose, glucose, and fructose) and precisely defined composition of phenolics and antioxidant activity. Consumption of all 3 juices transiently increased FRAP and serum DPPH-scavenging activity, with peak values at 1 hour post-juice ingestion. This was paralleled by the rise of serum uric acid, but no significant changes in plasma total phenolics and quercetin levels were observed after all dietary interventions. At the same time, no substantial differences were found between juices (especially between clear apple juice and clear apple juice without polyphenols) concerning the measured variables. A strong significant correlation was noted instead between serum uric acid and plasma antioxidant activity at all analyzed time points, before and after juice ingestion. Plasma total phenolics and quercetin levels were not associated with FRAP and serum DPPH radical-scavenging activity. We have demonstrated that rapid consumption of apple juice increased plasma antioxidant activity in

  20. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.

    Science.gov (United States)

    Kidd, Parris M

    2009-09-01

    Plant-derived polyphenols are increasingly receiving attention as dietary supplements for the homeostatic management of inflammation, to support detoxication, and for anticancer, weight loss, and other benefits. Their pro-homeostatic effects on genes, transcription factors, enzymes, and cell signaling pathways are being intensively explored, but the poor bioavailability of some polyphenols likely contributes to poor clinical trial outcomes. This review covers four polyphenol preparations with poor bioavailability and their complexation into phytosomes to bypass this problem. Silybin and the other silymarin flavonolignans from milk thistle conserve tissue glutathione, are liver-protective, and have anticancer potential. Curcumin and its related diphenolic curcuminoids have potent antioxidant, anti-inflammatory, and anti-carcinogenic properties. The green tea flavan-3-ol catechins have antioxidant, anti-inflammatory, cardio- and neuro-protective effects, and anti-carcinogenic benefits, with fat oxidation effects coupled to weight loss. The complex grape seed proanthocyanidin mix (including catechin and epicatechin monomers and oligomers) counters oxidative stress and protects the circulatory system. For each of these preparations, conversion into phytosomes has improved efficacy without compromising safety. The phytosome technology creates intermolecular bonding between individual polyphenol molecules and one or more molecules of the phospholipid, phosphatidylcholine (PC). Molecular imaging suggests that PC molecule(s) enwrap each polyphenol; upon oral intake the amphipathic PC molecules likely usher the polyphenol through the intestinal epithelial cell outer membrane, subsequently accessing the bloodstream. PC itself has proven clinical efficacy that contributes to phytosome in vivo actions. As a molecular delivery vehicle, phytosome technology substantially improves the clinical applicabilities of polyphenols and other poorly absorbed plant medicinals.

  1. Polyphenols as dietary supplements: A double-edged sword

    Directory of Open Access Journals (Sweden)

    Keith R Martin

    2009-12-01

    Full Text Available Keith R Martin, Christy L AppelNutrition Program, Healthy Lifestyles Research Center, College of Nursing and Health Innovation, Arizona State University, Mesa, AZ, USAAbstract: Increased consumption of fruits and vegetables is associated with a lower risk of chronic disease such as cardiovascular disease, some forms of cancer, and neurodegeneration. Pro-oxidant-induced oxidative stress contributes to the pathogenesis of numerous chronic diseases and, as such, dietary antioxidants can quench and/or retard such processes. Dietary polyphenols, ie, phenolic acids and flavonoids, are a primary source of antioxidants for humans and are derived from plants including fruits, vegetables, spices, and herbs. Based on compelling evidence regarding the health effects of polyphenol-rich foods, new dietary supplements and polyphenol-rich foods are being developed for public use. Consumption of such products can increase dietary polyphenol intake and subsequently plasma concentrations beyond expected levels associated with dietary consumption and potentially confer additional health benefits. Furthermore, bioavailability can be modified to further increase absorption and ultimately plasma concentrations of polyphenols. However, the upper limit for plasma concentrations of polyphenols before the elaboration of adverse effects is unknown for many polyphenols. Moreover, a considerable amount of evidence is accumulating which supports the hypothesis that high-dose polyphenols can mechanistically cause adverse effects through pro-oxidative action. Thus, polyphenol-rich dietary supplements can potentially confer additional benefits but high-doses may elicit toxicity thereby establishing a double-edge sword in supplement use.Keywords: antioxidant, bioavailability, flavonoids, polyphenols, supplement

  2. Evaluation of the Inhibition of Carbohydrate Hydrolyzing Enzymes, the Antioxidant Activity, and the Polyphenolic Content of Citrus limetta Peel Extract

    Directory of Open Access Journals (Sweden)

    Eduardo Padilla-Camberos

    2014-01-01

    Full Text Available Type 2 diabetes mellitus is one of the most frequent causes of death in Mexico, characterized by chronic hyperglycemia. One alternative strategy for this metabolic abnormality is inhibiting the enzymes responsible for the metabolism of carbohydrates. We evaluated whether the aqueous Citrus limetta peel extract could inhibit the metabolism of carbohydrates. We found that this extract inhibited primarily the enzyme α-amylase by 49.6% at a concentration of 20 mg/mL and to a lesser extent the enzyme α-glucosidase with an inhibition of 28.2% at the same concentration. This inhibition is likely due to the high polyphenol content in the Citrus limetta peel (19.1 mg GAE/g. Antioxidant activity of the Citrus limetta peel demonstrated dose-dependent antioxidant activity, varying from 6.5% at 1.125 mg/mL to 42.5% at 20 mg/mL. The study of these polyphenolic compounds having both antihyperglycemic and antioxidant activities may provide a new approach to the management of type 2 diabetes mellitus.

  3. Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison

    Directory of Open Access Journals (Sweden)

    Lalida Shank

    2010-09-01

    Full Text Available Peroxidases (POD and polyphenol oxidase (PPO are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX, whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X. Molecular docking of common substrates of these two enzymes was subsequently studied. It was found that epicatechin and catechin exhibited high affinity with both enzymes, even though POD and PPO have different binding pockets regarding the size and the key amino acids involved in binding. Predicted binding modes of substrates with both enzymes were also compared. The calculated docking interaction energy of trihydroxybenzoic acid related compounds shows high affinity, suggesting specificity and potential use as common inhibitor to grape ascorbate peroxidase and polyphenol oxidase.

  4. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties.

    Science.gov (United States)

    Noratto, Giuliana D; Bertoldi, Michele C; Krenek, Kimberley; Talcott, Stephen T; Stringheta, Paulo C; Mertens-Talcott, Susanne U

    2010-04-14

    Many polyphenolics contained in mango have shown anticancer activity. The objective of this study was to compare the anticancer properties of polyphenolic extracts from several mango varieties (Francis, Kent, Ataulfo, Tommy Atkins, and Haden) in cancer cell lines, including Molt-4 leukemia, A-549 lung, MDA-MB-231 breast, LnCap prostate, and SW-480 colon cancer cells and the noncancer colon cell line CCD-18Co. Cell lines were incubated with Ataulfo and Haden extracts, selected on the basis of their superior antioxidant capacity compared to the other varieties, where SW-480 and MOLT-4 were statistically equally most sensitive to both cultivars followed by MDA-MB-231, A-549, and LnCap in order of decreasing efficacy as determined by cell counting. The efficacy of extracts from all mango varieties in the inhibition of cell growth was tested in SW-480 colon carcinoma cells, where Ataulfo and Haden demonstrated superior efficacy, followed by Kent, Francis, and Tommy Atkins. At 5 mg of GAE/L, Ataulfo inhibited the growth of colon SW-480 cancer cells by approximately 72% while the growth of noncancer colonic myofibroblast CCD-18Co cells was not inhibited. The growth inhibition exerted by Ataulfo and Haden polyphenolics in SW-480 was associated with an increased mRNA expression of pro-apoptotic biomarkers and cell cycle regulators, cell cycle arrest, and a decrease in the generation of reactive oxygen species. Overall, polyphenolics from several mango varieties exerted anticancer effects, where compounds from Haden and Ataulfo mango varieties possessed superior chemopreventive activity.

  5. Investigation of the Key Pharmacological Activities of Ficus racemosa and Analysis of Its Major Bioactive Polyphenols by HPLC-DAD

    Directory of Open Access Journals (Sweden)

    Salma Akter Sumi

    2016-01-01

    Full Text Available Objective. Oxidative stress leads to numerous physiological disorders including infectious diseases, inflammation, and cancer. The present study was carried out to investigate antioxidant, antibacterial, and cytotoxic activity of methanol crude extract of leaves and fruits of the Ficus racemosa (LCME and FCME, resp. and to analyse its major bioactive polyphenols by HPLC-DAD. Methods. Antioxidant capacity of the extracts was evaluated by DPPH free radical scavenging, reducing power, total phenolic, total flavonoid, total tannin content assay, superoxide radical, hydroxyl radical, and hydrogen peroxide scavenging assay. Identification and quantification of bioactive polyphenols were done by HPLC-DAD method. Antibacterial activity was tested by “disc diffusion” method. Brine shrimp lethality assay was carried out to check the cytotoxic potential. Result. Both LCME and FCME showed DPPH scavenging ability and concentration dependent reducing power activity. They had phenolic content, flavonoid content, and tannin content. Both the extracts showed superoxide radical scavenging ability, hydroxyl radical scavenging ability, and hydrogen peroxide scavenging ability. HPLC analysis of LCME and FCME indicated the presence of significant amount of gallic acid along with other phenolic constituents. Conclusion. Significant amount of gallic acid along with other phenolic constituents might have played an important role in the observed antioxidant, antibacterial, and cytotoxic activity.

  6. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Ciolacu, Diana; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-01-01

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E H ), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  7. Green tea polyphenol epigallocatechin-3-gallate differentially modulates oxidative stress in PC12 cell compartments

    International Nuclear Information System (INIS)

    Raza, Haider; John, Annie

    2005-01-01

    Tea polyphenols have been reported to be potent antioxidants and beneficial in oxidative stress related diseases. Prooxidant effects of tea polyphenols have also been reported in cell culture systems. In the present study, we have studied oxidative stress in the subcellular compartments of PC12 cells after treatment with different concentrations of the green tea polyphenol, epigallocatechin-3-gallate (EGCG). We have demonstrated that EGCG has differentially affected the production of reactive oxygen species (ROS), glutathione (GSH) metabolism and cytochrome P450 2E1 activity in the different subcellular compartments in PC12 cells. Our results have shown that although the cell survival was not inhibited by EGCG, there was, however, an increased DNA breakdown and activation of apoptotic markers, caspase 3 and poly- (ADP-ribose) polymerase (PARP) at higher concentrations of EGCG treatment. Our results suggest that the differential effects of EGCG might be related to the alterations in oxidative stress, GSH pools and CYP2E1 activity in different cellular compartments. These results may have implications in determining the chemopreventive therapeutic use of tea polyphenols in vivo

  8. Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent

    Directory of Open Access Journals (Sweden)

    H. P. Vasantha Rupasinghe

    2015-06-01

    Full Text Available Haskap (Lonicera caerulea L. berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS. Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS-stimulation (18 h. Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05. A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6, tumour necrosis factor-alpha (TNF-α, prostaglandin (PGE2, and cyclooxygenase-2 (COX-2 enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor.

  9. SEARCH PRODUCERS OF POLYPHENOLS AND SOME PIGMENTS AMONG BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Fedotov О. V.

    2014-02-01

    Full Text Available General content of polyphenols, carotenoids and melanin in basidiomycetes carpophorus was determined. 50 species were studied, 27 of which belong to the Polyporales form and 23 are to the Agaricales form. In order to determine the total content of phenolic substances spectrophotometric methods were used. Polyphenols were studied in alcoholic extracts through the modified Folin-Chokalteu procedure; melanin — by alkaline hydrolysis and calculated using a calibration curve (by pyrocatechol, carotenoids were studied in acetone extracts and calculated by the Vetshteyn formula. Statistical and cluster analysis of the data enabled to identify species of basidiomycetes that are perspective for biotechnology. The most promising in terms of total polyphenols, carotenoids and melanins of poliporal basidiomycetes are species Fomes fomentarius, Ganoderma applanatum, Ganoderma lucidum and Laetiporus sulphureus, and among agarikal fungi — Fistulina hepatica, Flammulina velutipes, Pleurotus ostreatus, Stropharia rugosoannulata, Agrocybe cylindracea and Tricholoma flavovirens. These species of Basidiomycetes were isolated in pure mycelia culture to find out their biosynthetic activity.

  10. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  11. Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice.

    Science.gov (United States)

    Mihalev, Kiril; Schieber, Andreas; Mollov, Plamen; Carle, Reinhold

    2004-12-01

    The effects of enzymatic mash treatments on yield, turbidity, color, and polyphenolic content of cloudy apple juice were studied. Using HPLC-ESI-MS, cryptochlorogenic acid was identified in cv. Brettacher cloudy apple juice for the first time. Commercial pectolytic enzyme preparations with different levels of secondary protease activity were tested under both oxidative and nonoxidative conditions. Without the addition of ascorbic acid, oxidation substantially decreased chlorogenic acid, epicatechin, and procyanidin B2 contents due to enzymatic browning. The content of chlorogenic acid as the major polyphenolic compound was also influenced by the composition of pectolytic enzyme preparations because the presence of secondary protease activity resulted in a rise of chlorogenic acid. The latter effect was probably due to the inhibited protein-polyphenol interactions, which prevented binding of polyphenolic compounds to the matrix, thus increasing their antioxidative potential. The results obtained clearly demonstrate the advantage of the nonoxidative mash maceration for the production of cloud-stable apple juice with a high polyphenolic content, particularly in a premature processing campaign.

  12. Comparison of Microbiological and Probiotic Characteristics of Lactobacilli Isolates from Dairy Food Products and Animal Rumen Contents

    Directory of Open Access Journals (Sweden)

    Neethu Maria Jose

    2015-04-01

    Full Text Available Lactobacilli are employed in probiotic food preparations and as feed additives in poultry and livestock, due to health benefits associated with their consumption. The objective of this study was to evaluate and compare the probiotic potential of ten lactobacilli strains isolated from commercial dairy food products and animal rumen contents in New Zealand. Genetic identification of the isolates revealed that all belonged to the genus Lactobacillus, specifically the species L. reuteri, L. rhamnosus and L. plantarum. All isolates did not show any haemolytic behaviour. Isolates of dairy origin showed better tolerance to low pH stress. On the other hand, rumen isolates exhibited a higher tolerance to presence of bile salts. All isolates exhibited resistance to aminoglycoside antibiotics, however most were sensitive to ampicillin. Isolates of rumen origin demonstrated a higher inhibitory effect on Listeria monocytogenes, Enterobacter aerogenes and Salmonella menston. Bacterial adherence of all isolates increased with a decrease in pH. This screening study on lactobacilli isolates has assessed and identified potential probiotic candidates for further evaluation.

  13. An improved method for extraction of nutraceutically important polyphenolics from Berberis jaeschkeana C.K. Schneid. fruits.

    Science.gov (United States)

    Belwal, Tarun; Giri, Lalit; Bhatt, Indra D; Rawal, Ranbeer S; Pande, Veena

    2017-09-01

    Berberis jaeschkeana fruits, source of nutraceutically important polyphenolics were investigated. A total of 32 experimental run were conducted under Plackett-Burman and central composite design. Microwave power, methanol and HCl concentration significantly (pextraction of polyphenols under linear, quadratic and interactive effect. The model showed good fitness with significant (pextraction (MAE) condition the total phenolics, flavonoids, tannins and antioxidant activity were in closed context with predicted values. As compared to ultrasonic (UAE) and maceration extraction (ME), MAE showed significantly (pantioxidant activity. HPLC-DAD analysis detects a total of 10 polyphenolic compounds under MAE as compared to 9 under UAE and ME. Designing of MAE conditions showed promising results for polyphenolic antioxidants extraction as revealed by higher yield with lesser time and solvent consumption, which can contribute in green extraction technology and its application in nutraceutical industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    Directory of Open Access Journals (Sweden)

    Rodrigo Dutra Nunes

    2016-10-01

    Full Text Available Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK. AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  15. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  16. Polyphenol Compound as a Transcription Factor Inhibitor

    Directory of Open Access Journals (Sweden)

    Seyeon Park

    2015-10-01

    Full Text Available A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1, c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and β-catenin/T cell factor (Tcf.

  17. Polyphenol Compound as a Transcription Factor Inhibitor.

    Science.gov (United States)

    Park, Seyeon

    2015-10-30

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).

  18. Green Tea Polyphenols Attenuated Glutamate Excitotoxicity via Antioxidative and Antiapoptotic Pathway in the Primary Cultured Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Lin Cong

    2016-01-01

    Full Text Available Green tea polyphenols are a natural product which has antioxidative and antiapoptotic effects. It has been shown that glutamate excitotoxicity induced oxidative stress is linked to neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this study we explored the neuroprotective effect of green teen polyphenols against glutamate excitotoxicity in the primary cultured cortical neurons. We found that green tea polyphenols protected against glutamate induced neurotoxicity in the cortical neurons as measured by MTT and TUNEL assays. Green tea polyphenols were then showed to inhibit the glutamate induced ROS release and SOD activity reduction in the neurons. Furthermore, our results demonstrated that green tea polyphenols restored the dysfunction of mitochondrial pro- or antiapoptotic proteins Bax, Bcl-2, and caspase-3 caused by glutamate. Interestingly, the neuroprotective effect of green tea polyphenols was abrogated when the neurons were incubated with siBcl-2. Taken together, these results demonstrated that green tea polyphenols protected against glutamate excitotoxicity through antioxidative and antiapoptotic pathways.

  19. Effects of Polyphenols from Grape Seeds on Renal Lithiasis

    Directory of Open Access Journals (Sweden)

    Felix Grases

    2015-01-01

    Full Text Available Nephrolithiasis is a complex disease that results from a combination of factors related to both urine composition and kidney morphoanatomy. Development of calcium oxalate monohydrate papillary calculi is linked to initial subepithelial calcification of renal papilla. Progressive tissue calcification depends on preexisting injury and involves reactive oxygen species. Many plant extracts that protect against oxidative stress manifest antilithiasic activity. Our study focused on determining the effects of polyphenols on a lithiasis rat model. Rats were pretreated with polyphenols and grape seed extracts, followed by posterior induction of hyperoxalosis via treatment with ethylene glycol plus NH4Cl. The concentrations of calcium and other elements in kidney were determined, along with histological examination of kidney and 24 h urine analysis. Significant differences were observed in the renal calcium content between the control plus ethylene glycol-treated group and the epicatechin plus ethylene glycol-treated, red grape seed extract plus ethylene glycol-treated, and white grape seed extract plus ethylene glycol-treated groups, with reductions of about 50%. The antioxidant activity of polyphenols extracted from red and white grape seeds may be critical in the prevention of calcium oxalate monohydrate papillary calculus formation, particularly if calculi are induced by lesions caused by cytotoxic compounds with oxidative capacity.

  20. Characteristic of fermented spinach (Amaranthus spp.) polyphenol by kombucha culture for antioxidant compound

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Iskandar, Jeti M.; Melanie, Hakiki; Maryati, Yati; Lotulung, Puspa D.

    2017-01-01

    Fermentation on spinach (Amaranthus sp.) vegetable by kombucha culture as an effort to get poliphenol as antioxidant compound had been done. Purification of fermented spinach extract suspension was carried out through microfiltration (MF) membrane (pore size 0.15 µm) fitted in dead-end Stirred Ultrafiltration Cell (SUFC) mode at fixed condition (stirrer rotation 400 rpm, room temperature, pressure 40 psia). Result of the experimental activity showed that long fermentation time increased total acids, total polyphenol and Total Plate Count (TPC), and decreased total solids and reducing sugar in biomass. The optimal fermentation time was reached for 2 weeks with total polyphenol recovery increasing of 92.76 % from before and after fermentation. On this optimal fermentation time, biomass had identified galic acid with relative intensity of 8 %, while as polyphenol monomer was resulted 5 kinds of polyphenol compounds with total intensity 27.97 % and molecular weight (MW) 191.1736, 193.1871 and 194.2170 at T2.5, T2.86 and T3.86. Long fermentation time increased functional properties of polyphenol as antioxidant.

  1. Extraction Optimization and Antioxidant Properties of African Eggplant (Solanum macrocarpon Leaf Polyphenols

    Directory of Open Access Journals (Sweden)

    A. A. Famuwagun

    2017-01-01

    Full Text Available Optimization of the yield, total phenolic content (TPC, and total antioxidant activities (TAA of polyphenol concentrates extracted from Solanum macrocarpon leaves was studied using response surface methodology. The process variables investigated included extraction temperature (30, 50, and 70°C, extraction time (2, 4, and 6 h, and dried leaf powder : water ratio (1 : 10, 1 : 20, and 1 : 30 w/v. Box–Behnken design resulted in 15 experimental runs. The results showed the following optimum extraction conditions: temperature, 49.05°C; extraction time, 243 min; leaf powder : water ratio, 1 : 22 w/v. The optimized extraction conditions gave polyphenol concentrate yield, TPC, and TAA values of 24.94%, 421.09 mg GAE/g, and 23.81 mg AAE/g, respectively. Results of the in vitro antioxidant activities of the polyphenol concentrate showed 2, 2-diphenyl-2-picrylhydrazyl hydrate, metal chelating ability, and ferric reducing ability values of 76.78%, 80.22%, and 56.46 mg AAE/g, respectively. The study concludes that the experimental values compared closely with the predicted values, which indicates suitability of the model employed for polyphenol extraction optimization from dried S. macrocarpon leaves.

  2. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  3. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries

    Directory of Open Access Journals (Sweden)

    Hwayoung Noh

    2017-07-01

    Full Text Available We identified urinary polyphenol metabolite patterns by a novel algorithm that combines dimension reduction and variable selection methods to explain polyphenol-rich food intake, and compared their respective performance with that of single biomarkers in the European Prospective Investigation into Cancer and Nutrition (EPIC study. The study included 475 adults from four European countries (Germany, France, Italy, and Greece. Dietary intakes were assessed with 24-h dietary recalls (24-HDR and dietary questionnaires (DQ. Thirty-four polyphenols were measured by ultra-performance liquid chromatography–electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS-MS in 24-h urine. Reduced rank regression-based variable importance in projection (RRR-VIP and least absolute shrinkage and selection operator (LASSO methods were used to select polyphenol metabolites. Reduced rank regression (RRR was then used to identify patterns in these metabolites, maximizing the explained variability in intake of pre-selected polyphenol-rich foods. The performance of RRR models was evaluated using internal cross-validation to control for over-optimistic findings from over-fitting. High performance was observed for explaining recent intake (24-HDR of red wine (r = 0.65; AUC = 89.1%, coffee (r = 0.51; AUC = 89.1%, and olives (r = 0.35; AUC = 82.2%. These metabolite patterns performed better or equally well compared to single polyphenol biomarkers. Neither metabolite patterns nor single biomarkers performed well in explaining habitual intake (as reported in the DQ of polyphenol-rich foods. This proposed strategy of biomarker pattern identification has the potential of expanding the currently still limited list of available dietary intake biomarkers.

  4. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC

    Directory of Open Access Journals (Sweden)

    Maryem Ben Salem

    2017-01-01

    Full Text Available Objective. Artichoke (Cynara scolymus L. was one of the plant remedies for primary health care. The present study was focused on the determination of chemical composition, antioxidant activities, and anti-inflammatory activity and on analyzing its major bioactive polyphenols by HPLC. Methods. Artichoke Leaves Extracts (ALE were analyzed for proximate analysis and phytochemical and antioxidant activity by several methods such as DDPH, ABTS, FRAP, and beta-carotene bleaching test. The carrageenan (Carr model induced paw oedema in order to investigate the anti-inflammatory activity. Identification and quantification of bioactive polyphenols compounds were done by HPLC method. The oxidative stress parameters were determined; CAT, SOD, GSH, MDA, and AOPP activities and the histopathological examination were also performed. Results. It was noted that EtOH extract of ALE contained the highest phenolic, flavonoid, and tannin contents and the strongest antioxidants activities including DDPH (94.23%, ABTS (538.75 mmol, FRAP assay (542.62 umol, and β-carotene bleaching (70.74% compared to the other extracts of ALE. Administration of EtOH extract at dose 400 mg/kg/bw exhibited a maximum inhibition of inflammation induced by Carr for 3 and 5 hours compared to reference group Indomethacin (Indo. Conclusion. ALE displayed high potential as natural source of minerals and phytochemicals compounds with antioxidant and anti-inflammatory properties.

  5. Early colonization with a group of Lactobacilli decreases the risk for allergy at five years of age despite allergic heredity.

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    Full Text Available BACKGROUND: Microbial deprivation early in life can potentially influence immune mediated disease development such as allergy. The aims of this study were to investigate the influence of parental allergy on the infant gut colonization and associations between infant gut microbiota and allergic disease at five years of age. METHODS AND FINDINGS: Fecal samples were collected from 58 infants, with allergic or non-allergic parents respectively, at one and two weeks as well as at one, two and twelve months of life. DNA was extracted from the fecal samples and Real time PCR, using species-specific primers, was used for detection of Bifidobacterium (B. adolescentis, B. breve, B. bifidum, Clostridium (C. difficile, a group of Lactobacilli (Lactobacillus (L. casei, L. paracasei and L. rhamnosus as well as Staphylococcus (S. aureus. Infants with non-allergic parents were more frequently colonized by Lactobacilli compared to infants with allergic parents (p = 0.014. However, non-allergic five-year olds acquired Lactobacilli more frequently during their first weeks of life, than their allergic counterparts, irrespectively of parental allergy (p = 0.009, p = 0.028. Further the non-allergic children were colonized with Lactobacilli on more occasions during the first two months of life (p = 0.038. Also, significantly more non-allergic children were colonized with B. bifidum at one week of age than the children allergic at five years (p = 0.048. CONCLUSION: In this study we show that heredity for allergy has an impact on the gut microbiota in infants but also that early Lactobacilli (L. casei, L. paracasei, L. rhamnosus colonization seems to decrease the risk for allergy at five years of age despite allergic heredity.

  6. High value co-products from wine byproducts (II): polyphenols and antioxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Femenia, A.; Gonzalez-Centeno, M. R.; Garau, M. C.; Sastre-Serrano, G.; Rosello, C.

    2009-07-01

    The by-products of the grape/wine industry have recently attracted considerable interest as important sources of high-value antioxidants. these can be extracted from stems, such as resveratrol,and from grape pomace which contains polyphenols, procyanidin and antrocyanins. (Author)

  7. Changes in the GABA and polyphenols contents of foxtail millet on germination and their relationship with in vitro antioxidant activity.

    Science.gov (United States)

    Sharma, Seema; Saxena, Dharmesh C; Riar, Charanjit S

    2018-04-15

    Germination along with ultrasonic assisted extraction induced a significant beneficial effect on the characteristics of polyphenolic components profile, GABA contents and in vitro antioxidant capacity of the foxtail millet flour extracts. The total antioxidant activity (29.0-45.23 mgAAE/g) and reducing power (0.53-0.76 µg/ml) increase during germination were due to quantitative increase in phthalicacid; hex-3yl-ester; hexadecanoicacid methylester etc. whereas, increase in DPPH (48.32-59.62%) and hydrogen peroxide scavenging activities (35.44-63.07 mM-Trolox/g) were attributed to increase in hexadecanoic acid methylester; 9,12-Octadecadienoicacid ethylester and synthesis of new compounds like pentadecanoicacid; 14-methyl-methylester etc. The metal chelating abilities (34.92-57.38 mgEDTA/g) and in vitro antioxidant activity increase due to overall increase in phenolics, flavonoids along with GABA contents. Synthesis of additional polyphenolic components viz. astaxanthin, propanoicacid, 1-monolinoleoylglycerol trimethylsilylether, 9,12,15-octadecatrienoicacid etc. as a result of germinated explored the possible potential utilization of germinated foxtail millet grains in various functional and convenience food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Protective Effects of Green Tea Polyphenol Against Renal Injury Through ROS-Mediated JNK-MAPK Pathway in Lead Exposed Rats.

    Science.gov (United States)

    Wang, Haidong; Li, Deyuan; Hu, Zhongze; Zhao, Siming; Zheng, Zhejun; Li, Wei

    2016-06-30

    To investigate the potential therapeutic effects of polyphenols in treating Pb induced renal dysfunction and intoxication and to explore the detailed underlying mechanisms. Wistar rats were divided into four groups: control groups (CT), Pb exposure groups (Pb), Pb plus Polyphenols groups (Pb+PP) and Polyphenols groups (PP). Animals were kept for 60 days and sacrificed for tests of urea, serum blood urea nitrogen (BUN) and creatinine. Histological evaluations were then performed. In vitro studies were performed using primary kidney mesangial cells to reveal detailed mechanisms. Cell counting kit-8 (CCK-8) was used to evaluate cell viability. Pb induced cell apoptosis was measured by flow cytometry. Reactive oxygen species (ROS) generation and scavenging were tested by DCFH-DA. Expression level of tumor necrosis factor-α (TNF-α), interleukin-1-β (IL-1-β) and IL-6 were assayed by ELISA. Western blot and qPCR were used to measure the expression of ERK1/2, JNK1/2 and p38. Polyphenols have obvious protective effects on Pb induced renal dysfunction and intoxication both in vivo and in vitro. Polyphenols reduced Pb concentration and accumulation in kidney. Polyphenols also protected kidney mesangial cells from Pb induced apoptosis. Polyphenols scavenged Pb induced ROS generation and suppressed ROS-mediated ERK/JNK/p38 pathway. Downstream pro-inflammatory cytokines were inhibited in consistency. Polyphenol is protective in Pb induced renal intoxication and inflammatory responses. The underlying mechanisms lie on the antioxidant activity and ROS scavenging activity of polyphenols.

  9. Antioxidant and lipoxygenase activities of polyphenol extracts from oat brans treated with polysaccharide degrading enzymes

    Directory of Open Access Journals (Sweden)

    Nisita Ratnasari

    2017-07-01

    Full Text Available This study used polysaccharide degrading enzymes and protein precipitation to extract polyphenols from oats and to determine their bioactivity. Duplicate oat brans were treated with viscozyme (Vis, cellulase (Cel or no enzyme (control, CTL then, proteins were removed in one set (Vis1, Cel1, CTL1 and not in the other (Vis2, Cel2, CTL2. HPLC analyses showed that for cellulase treated brans, precipitation of proteins increased phenolic acids and avenanthramides by 14%. Meanwhile, a decreased of 67% and 20% respectively was found for viscozyme and control brans. The effect of protein precipitation on soluble polyphenols is therefore dependent of the carbohydrase, as proteins with different compositions will interact differently with other molecules. Radical scavenging data showed that Cel1 and Vis1 had higher quenching effects on ROO• radicals with activities of 22.1 ± 0.8 and 23.5 ± 1.2 μM Trolox Equivalents/g defatted brans. Meanwhile, CTL2 had the highest HO• radicals inhibition (49.4 ± 2.8% compared to 10.8–32.3% for others. Samples that highly inhibited lipoxygenase (LOX, an enzyme involved in lipid oxidation were Cel1 (23.4 ± 2.3% and CTL1 (18 ± 0.4%.

  10. Effect of Cocoa Polyphenolic Extract on Macrophage Polarization from Proinflammatory M1 to Anti-Inflammatory M2 State

    Directory of Open Access Journals (Sweden)

    Laura Dugo

    2017-01-01

    Full Text Available Polyphenols-rich cocoa has many beneficial effects on human health, such as anti-inflammatory effects. Macrophages function as control switches of the immune system, maintaining the balance between pro- and anti-inflammatory activities. We investigated the hypothesis that cocoa polyphenol extract may affect macrophage proinflammatory phenotype M1 by favoring an alternative M2 anti-inflammatory state on macrophages deriving from THP-1 cells. Chemical composition, total phenolic content, and antioxidant capacity of cocoa polyphenols extracted from roasted cocoa beans were determined. THP-1 cells were activated with both lipopolysaccharides and interferon-γ for M1 or with IL-4 for M2 switch, and specific cytokines were quantified. Cellular metabolism, through mitochondrial oxygen consumption, and ATP levels were evaluated. Here, we will show that cocoa polyphenolic extract attenuated in vitro inflammation decreasing M1 macrophage response as demonstrated by a significantly lowered secretion of proinflammatory cytokines. Moreover, treatment of M1 macrophages with cocoa polyphenols influences macrophage metabolism by promoting oxidative pathways, thus leading to a significant increase in O2 consumption by mitochondrial complexes as well as a higher production of ATP through oxidative phosphorylation. In conclusion, cocoa polyphenolic extract suppresses inflammation mediated by M1 phenotype and influences macrophage metabolism by promoting oxidative pathways and M2 polarization of active macrophages.

  11. Accelerated Aging of the Traditional Greek Distillate Tsipouro Using Wooden Chips. Part I: Effect of Static Maceration vs. Ultrasonication on the Polyphenol Extraction and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Theodora Taloumi

    2017-01-01

    Full Text Available The Greek traditional grape marc distillate Tsipouro was subjected to accelerated aging, using wooden chips from acacia, cherry, chestnut and oak wood. The processes included treatments under static maceration and ultrasonication and the evolution of the total polyphenol concentration was monitored over a period of 30 days. During this period, leaching of polyphenols from the chips into the distillate was found to obey first-order kinetics, but no statistical differences were shown between the two treatments regarding the enrichment of the liquid in polyphenolic substances. The determination of the antioxidant activity demonstrated that aging with chestnut chips may provide Tsipouro with particularly strong radical scavenging and reducing effects, highlighting its importance as a material that could be used to turn distillates into foods with functional properties.

  12. In vitro screening of potential probiotic activities of selected lactobacilli isolated from unpasteurized milk products for incorporation into soft cheese.

    Science.gov (United States)

    Coeuret, Valérie; Gueguen, Micheline; Vernoux, Jean Paul

    2004-11-01

    The aim was to select potentially probiotic lactobacilli from 88 strains isolated from unpasteurized milk and cheese products, and to incorporate these bacteria in a viable state into a soft cheese, without changing its quality. The survival of these bacteria was assessed in acidic and bile conditions, after freezing at -80 degrees C. Four strains from unpasteurized Camembert--two Lactobacillus plantarum strains and two Lb. paracasei/casei strains--were identified and typed by PCR and PFGE and were found to display potentially probiotic characteristics in addition to resistance to low pH and bile. These characteristics were resistance to lysozyme, adhesion to CACO-2 cells, antimicrobial effects against common foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, innocuity following the ingestion of high doses by mice and appropriate antibiotic susceptibility profiles. The potential of Lb. plantarum strain UCMA 3037 for incorporation into a soft cheese (Pont-l'Eveque registered designation of origin (RDO)) was investigated. This strain grew well and survived in sufficient numbers (more than 10(7) cfu/g throughout the shelf-life of the product) in the cheese. This strain did not change the quality score of the product until the best before date (75 days after manufacture). Thus, unpasteurized Camembert is a natural source of potentially probiotic lactobacilli, which could be used as an additive in the development of potentially probiotic soft cheeses. Further work is required to demonstrate the persistence and efficacy of these strains in the human host upon ingestion.

  13. Polyphenols in Food: Cancer Prevention and Apoptosis Induction.

    Science.gov (United States)

    Sharma, Ashita; Kaur, Mandeep; Katnoria, Jatinder Kaur; Nagpal, Avinash Kaur

    2017-10-06

    Polyphenols are group of water-soluble organic compounds, mainly of natural origin. The compounds having about 5-7 aromatic rings and more than 12 phenolic hydroxyl groups are classified as polyphenols. These are the antioxidants which protect the body from oxidative damage. In plants, they are the secondary metabolites produced as a defense mechanism against stress factors. Antioxidant property of polyphenols is suggested to provide protection against many diseases associated with reactive oxygen species (ROS), including cancer. Various studies carried out across the world have suggested that polyphenols can inhibit the tumor generation, induce apoptosis in cancer cells and interfere in progression of tumors. This group of wonder compounds is present in surplus in natural plants and food products. Intake of polyphenols through diet can scavenge ROS and thus can help in cancer prevention. The plant derived products can also be used along with conventional chemotherapy to enhance the chemopreventive effects. The present review focuses on various in vitro and in vivo studies carried out to assess the anti-carcinogenic potential of polyphenols present in our food. Also, the pathways involved in cancer chemopreventive effects of various subclasses (flavonoids, lignans, stilbenes and phenolic acids) of polyphenols are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Selection of propolis Tetragonula sp. extract solvent with flavonoids and polyphenols concentration and antioxidant activity parameters

    Science.gov (United States)

    Christina, Daisy; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad; Pratami, Diah Kartika; Mun'im, Abdul

    2018-02-01

    Antioxidants are inhibitory compounds that can inhibit auto oxidation reaction by binding to free radicals and highly reactive molecules. The human body needs antioxidant. Antioxidants can be obtained from a variety of natural ingredients, including propolis. Propolis is the natural sap of the bees, obtained from the herbs around the honeycomb. Ethanol is the solvent that often used to extract propolis. Although it has many advantages, ethanol also has weaknesses such as intolerance to alcohol by some people. Therefore, this research was to extract propolis Tetragonula sp. coarse (C) and soft (S) using four varieties of organic solvent, i.e. olive oil (OO), virgin coconut oil (VCO), propylene glycol (PG), and lecithin (L). It was expected to get the best solvent in extracting propolis. The selection of the best solvent was determined by total flavonoids and polyphenols content assay and antioxidant activity. At each test, the absorbance value read by a microplate reader. Flavonoids content assay is using AlCl3 method with best result on rough-VCO propolis extract of 2509,767 ± 615,02 µg/mL. Polyphenols content assay was using Folin Ciocalteu method with the best results on soft-VCO propolis extract of 1391 ± 171.47 µg/mL. Antioxidant activity assay is using DPPH method with best result on soft-VCO propolis extract with IC50 value of 1,559 ± 0,222 µg/mL.

  15. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    Science.gov (United States)

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The Antioxidant and Antihaemolytic Activities and the Polyphenolic Contents of Some Plants Seeds Extracts

    International Nuclear Information System (INIS)

    Atrooz, O.; Harb, M.; Al-Qato, M.

    2007-01-01

    Results of the this study which were carried out on yhe ethanol and acetone extracts of Prunus armeniaca, Cerasus vulgare, Nespole, Opuntia ficus-indica, Cucumis melo, and Vitis vinifera proved that theses extracts contain bioctive substances such as polyohenols and flavonids. The UV-VIS spectropgotometric assays showed that the extracted materials posses strong band in the range between 250-300 nm which confirm the presence of polyphenols and flavonoids. The concentration of these materials were different depending on the type pf plant seeds and the solvents used for extraction. The antioxidant and antihaemolytic activities of the extracts were determined by 1, 1-dipheny1-2picry1-hydeazy1 (DPPH) method, and red blood cells (RBCs) haemolysis test. Results of these extracts showed remarkable antioxidant activities depending on the origin of plant extracts. (Author's) 23 refs., 4 Tabs., 1fig

  17. Polyphenol Oxidase Enzyme and Inactivation Methods

    Directory of Open Access Journals (Sweden)

    Leman Yılmaz

    2018-03-01

    Full Text Available Polyphenol oxidase enzyme is found in vegetables and fruits, as well as in some animal organs and microorganisms. Polyphenol oxidase enzyme responsible for enzymatic browning is a group of copper proteins that catalyses the oxidation of phenolic compounds to quinones, which produce brown pigments, commonly found in fruits and vegetables. During the industrial preparation of fruits and vegetables, results of catalytic effect of polyphenol oxidase causes enzymatic browning. Enzymatic browning impairs the appearance of products containing phenolic compounds along with undesirable colour, odor and taste formation and significant loss of nutritional value of the products. This affects the acceptability of the products by the consumers and causes economic losses. In this review, some characteristics of polyphenol oxidase enzyme in different fruits and vegetables have been reviewed and information about chemical antibrowning agents, thermal applications, irradiation applications and alternative methods such as high pressure processing, pulse electric field, supercritical carbon dioxide and ultrasound applications to inactivate this enzyme has been presented.

  18. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry.

    Science.gov (United States)

    Genskowsky, Estefania; Puente, Luis A; Pérez-Álvarez, José A; Fernández-López, Juana; Muñoz, Loreto A; Viuda-Martos, Manuel

    2016-09-01

    The aim of the present study was to determine (1) the polyphenolic profile (phenolic acids, flavonoids and anthocyanins), (2) the antioxidant using four different methodologies (DPPH, ABTS, FRAP and FIC) and (3) the antibacterial properties of maqui berry [Aristotelia chilensis (Molina) Stuntz] (MB) grown in Chile. The HPLC analysis of MB showed a total of 19 polyphenolic compounds identified as anthocyanins (eight compounds), flavonols (10 compounds) and ellagic acid. Delphinidin derivatives were the predominant anthocyanins while quercetin derivatives were the predominant flavonols. MB showed an antioxidant activity measured with DPPH, ABTS, FRAP and FIC methods of 28.18, 18.66, 25.22 g Trolox equivalent kg(-1) and 0.12 g ethylenediaminetetraacetic acid equivalent kg(-1) , respectively. With regard to the antibacterial activity, all strains tested were affected by MB. Aeromonas hydrophila and Listeria innocua showed the highest sensitivity to maqui berry extracts with MIC values of 40 and a 50 mg mL(-1) , respectively. The results suggest that maqui berry has a great potential to be employed in the food industry as potential food ingredient to functional food development or as bio-preservative. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Reducing Breast Cancer Recurrence: The Role of Dietary Polyphenolics

    Directory of Open Access Journals (Sweden)

    Andrea J. Braakhuis

    2016-09-01

    Full Text Available Evidence from numerous observational and clinical studies suggest that polyphenolic phytochemicals such as phenolic acids in olive oil, flavonols in tea, chocolate and grapes, and isoflavones in soy products reduce the risk of breast cancer. A dietary food pattern naturally rich in polyphenols is the Mediterranean diet and evidence suggests those of Mediterranean descent have a lower breast cancer incidence. Whilst dietary polyphenols have been the subject of breast cancer risk-reduction, this review will focus on the clinical effects of polyphenols on reducing recurrence. Overall, we recommend breast cancer patients consume a diet naturally high in flavonol polyphenols including tea, vegetables (onion, broccoli, and fruit (apples, citrus. At least five servings of vegetables and fruit daily appear protective. Moderate soy protein consumption (5–10 g daily and the Mediterranean dietary pattern show the most promise for breast cancer patients. In this review, we present an overview of clinical trials on supplementary polyphenols of dietary patterns rich in polyphenols on breast cancer recurrence, mechanistic data, and novel delivery systems currently being researched.

  20. Wine polyphenols: potential agents in neuroprotection.

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  1. Wine Polyphenols: Potential Agents in Neuroprotection

    Science.gov (United States)

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  2. Response of nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and antioxidant activity in selected vegetable amaranth under four soil water content.

    Science.gov (United States)

    Sarker, Umakanta; Oba, Shinya

    2018-06-30

    Four selected vegetable amaranths were grown under four soil water content to evaluate their response in nutrients, minerals, antioxidant leaf pigments, vitamins, polyphenol, flavonoid and total antioxidant activity (TAC). Vegetable amaranth was significantly affected by variety, soil water content and variety × soil water content interactions for all the traits studied. Increase in water stress, resulted in significant changes in proximate compositions, minerals (macro and micro), leaf pigments, vitamin, total polyphenol content (TPC), and total flavonoid content (TFC) of vegetable amaranth. Accessions VA14 and VA16 performed better for all the traits studied. Correlation study revealed a strong antioxidant scavenging activity of leaf pigments, ascorbic acid, TPC and TFC. Vegetable amaranth can tolerate soil water stress without compromising the high quality of the final product in terms of nutrients and antioxidant profiles. Therefore, it could be a promising alternative crop in semi-arid and dry areas and also during dry seasons. Copyright © 2018. Published by Elsevier Ltd.

  3. Plasma Pharmacokinetics of Polyphenols in a Traditional Japanese Medicine, Jumihaidokuto, Which Suppresses Propionibacterium acnes-Induced Dermatitis in Rats

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    2015-09-01

    Full Text Available Most orally administered polyphenols are metabolized, with very little absorbed as aglycones and/or unchanged forms. Metabolic and pharmacokinetic studies are therefore necessary to understand the pharmacological mechanisms of polyphenols. Jumihaidokuto (JHT, a traditional Japanese medicine, has been used for treatment of skin diseases including inflammatory acne. Because JHT contains various types of bioactive polyphenols, our aim was to clarify the metabolism and pharmacokinetics of the polyphenols in JHT and identify active metabolites contributing to its antidermatitis effects. Orally administered JHT inhibited the increase in ear thickness in rats induced by intradermal injection of Propionibacterium acnes. Quantification by LC-MS/MS indicated that JHT contains various types of flavonoids and is also rich in hydrolysable tannins, such as 1,2,3,4,6-penta-O-galloyl glucose. Pharmacokinetic and antioxidant analyses showed that some flavonoid conjugates, such as genistein 7-O-glucuronide and liquiritigenin 7-O-glucuronide, appeared in rat plasma and had an activity to inhibit hydrogen peroxide-dependent oxidation. Furthermore, 4-O-methylgallic acid, a metabolite of Gallic acid, appeared in rat plasma and inhibited the nitric oxide reaction. JHT has numerous polyphenols; it inhibited dermatitis probably via the antioxidant effect of its metabolites. Our study is beneficial for understanding in vivo actions of orally administered polyphenol drugs.

  4. Dietary polyphenols and chromatin remodeling.

    Science.gov (United States)

    Russo, Gian Luigi; Vastolo, Viviana; Ciccarelli, Marco; Albano, Luigi; Macchia, Paolo Emidio; Ungaro, Paola

    2017-08-13

    Polyphenols are the most abundant phytochemicals in fruits, vegetables, and plant-derived beverages. Recent findings suggest that polyphenols display the ability to reverse adverse epigenetic regulation involved in pathological conditions, such as obesity, metabolic disorder, cardiovascular and neurodegenerative diseases, and various forms of cancer. Epigenetics, defined as heritable changes to the transcriptome, independent from those occurring in the genome, includes DNA methylation, histone modifications, and posttranscriptional gene regulation by noncoding RNAs. Sinergistically and cooperatively, these processes regulate gene expression by changing chromatin organization and DNA accessibility. Such induced epigenetic changes can be inherited during cell division, resulting in permanent maintenance of the acquired phenotype, but they may also occur throughout an individual life-course and may ultimately influence phenotypic outcomes (health and disease risk). In the last decade, a number of studies have shown that nutrients can affect metabolic traits by altering the structure of chromatin and directly regulate both transcription and translational processes. In this context, dietary polyphenol-targeted epigenetics becomes an attractive approach for disease prevention and intervention. Here, we will review how polyphenols, including flavonoids, curcuminoids, and stilbenes, modulate the establishment and maintenance of key epigenetic marks, thereby influencing gene expression and, hence, disease risk and health.

  5. Characterization and stability of lactobacilli and yeast microbiota in kefir grains.

    Science.gov (United States)

    Vardjan, T; Mohar Lorbeg, P; Rogelj, I; Čanžek Majhenič, A

    2013-05-01

    Characterization and stability of lactobacilli and yeasts from kefir grains using culture-dependent and culture-independent methods were investigated in this study. Culture-dependent analysis, followed by sequencing of 16S ribosomal DNA for bacteria and 26S rRNA gene for yeasts, revealed 3 different species of lactobacilli and yeasts, respectively. The most frequently isolated bacterial species were Lactobacillus kefiranofaciens ssp. kefirgranum, Lb. parakefiri, and Lb. kefiri, whereas yeasts belonged to Kluyveromyces marxianus, Kazachstania exigua, and Rhodosporidium kratochvilovae. This study is the first to report on the presence of R. kratochvilovae in kefir grains. On the other hand, PCR-denaturing gradient gel electrophoresis in the culture-independent method showed that the dominant microorganisms were Lb. kefiranofaciens ssp. kefirgranum, Kl. marxianus and Ka. exigua, but did not reveal bands corresponding to Lb. parakefiri, Lb. kefiri, or R. kratochvilovae. Our results support the necessity of combining more techniques for detailed and reliable study of microbial communities in kefir grains. Another interesting finding confirmed that the detected dominant microbiota of kefir grains is very stable and did not change over experimental time. This finding is important to ensure consistent product quality. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Polyphenol-Rich Lentils and Their Health Promoting Effects.

    Science.gov (United States)

    Ganesan, Kumar; Xu, Baojun

    2017-11-10

    Polyphenols are a group of plant metabolites with potent antioxidant properties, which protect against various chronic diseases induced by oxidative stress. Evidence showed that dietary polyphenols have emerged as one of the prominent scientific interests due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are measured based on the human consumption and their bioavailability. Lentil ( Lens culinaris ; Family: Fabaceae) is a great source of polyphenol compounds with various health-promoting properties. Polyphenol-rich lentils have a potential effect on human health, possessing properties such as antioxidant, antidiabetic, anti-obesity, anti-hyperlipidemic, anti-inflammatory and anticancer. Based on the explorative study, the current comprehensive review aims to give up-to-date information on nutritive compositions, bioactive compounds and the health-promoting effect of polyphenol-rich lentils, which explores their therapeutic values for future clinical studies. All data of in vitro , in vivo and clinical studies of lentils and their impact on human health were collected from a library database and electronic search (Science Direct, PubMed and Google Scholar). Health-promoting information was gathered and orchestrated in the suitable place in the review.

  7. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla).

    Science.gov (United States)

    Ma, Jun; Luo, Xiao-Dong; Protiva, Petr; Yang, Hui; Ma, Cuiying; Basile, Margaret J; Weinstein, I Bernard; Kennelly, Edward J

    2003-07-01

    Activity-guided fractionation of a methanol extract from the fruit of Manilkara zapota cv. Tikal resulted in the isolation of two new antioxidants, methyl 4-O-galloylchlorogenate (1) and 4-O-galloylchlorogenic acid (2), along with eight known polyphenolic antioxidants, namely, methyl chlorogenate (3), dihydromyricetin (4), quercitrin (5), myricitrin (6), (+)-catechin (7), (-)-epicatechin (8), (+)-gallocatechin (9), and gallic acid (10). Of the 10 polyphenols, 1 showed the highest antioxidant activity (IC(50) = 12.9 microM) in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 190 and 160 microM, respectively. Compound 2 showed high antioxidant activity (IC(50) = 23.5 microM) in the DPPH free-radical assay and displayed cytotoxicity in the HCT-116 and SW-480 human colon cancer cell lines with IC(50) values of 154 and 134 microM, respectively.

  8. Cocoa Polyphenols and Inflammatory Markers of Cardiovascular Disease

    Science.gov (United States)

    Khan, Nasiruddin; Khymenets, Olha; Urpí-Sardà, Mireia; Tulipani, Sara; Garcia-Aloy, Mar; Monagas, María; Mora-Cubillos, Ximena; Llorach, Rafael; Andres-Lacueva, Cristina

    2014-01-01

    Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review. PMID:24566441

  9. A New Laccase Biosensor For Polyphenols Determination

    Directory of Open Access Journals (Sweden)

    M. J.F. Rebelo

    2003-06-01

    Full Text Available The relevance of polyphenols in human health is a well known fact. Prompted by that, a very intensive research has been directed to get a method to detect them, wich will improve the current ones. Laccase (p-diphenol:dioxygen oxidoreductase EC 1.10.3.2 is a multi-copper oxidase, wich couples catalytic oxidation of phenolic substrates with four electron reduction of dioxygen to water [1]. A maximum catalytic response in oxigenated electrolyte was observed between 4.5 and 5.5 [2], while for pH > 6.9 the laccase was found to be inactive [3]. We prepared a biosensor with laccase immobilised on a polyether sulphone membrane, at pH 4.5, wich was applied at Universal Sensors base electrode. Reduction of the product of oxidation of several polyphenols, catalysed by laccase, was done at a potential for wich the polyphenol of interest was found to respond. Reduction of catechol was found to occur at a potential of -200mV, wich is often referred to in the literature for polyphenolic biosensors. However other polyphenols did not respond at that potential. It was observed that (+- catechin produced a very large cathodic current when +100mV were applied to the laccase biosensor, both in aqueous acetate and 12% ethanol acetate buffer, whereas caffeic acid responded at -50mV. Other polyphenols tested were gallic acid, malvidin, quercetin, rutin, trans-resveratrol

  10. Antioxidant, Antibacterial and Cell Toxicity Effects of Polyphenols

    African Journals Online (AJOL)

    Z. Ghouila, S. Laurent, S. Boutry, L. Vander Elst, F. Nateche, R. N. Muller, A. Baaliouamer

    2017-01-01

    Jan 1, 2017 ... At 100 μg/mL, GSE induced a moderate toxicity of the order of ... the many phytochemical compounds consumed in our diet, polyphenols are the most ... action of grape seed extract in many health related areas due to its antioxidant effect [11]. In ...... antibacterial activities of southern Serbian red wines.

  11. Soluble products of Escherichia coli induce mitochondrial dysfunction-related sperm membrane lipid peroxidation which is prevented by lactobacilli.

    Directory of Open Access Journals (Sweden)

    Arcangelo Barbonetti

    Full Text Available Unidentified soluble factors secreted by E. coli, a frequently isolated microorganism in genitourinary infections, have been reported to inhibit mitochondrial membrane potential (ΔΨm, motility and vitality of human spermatozoa. Here we explore the mechanisms involved in the adverse impact of E. coli on sperm motility, focusing mainly on sperm mitochondrial function and possible membrane damage induced by mitochondrial-generated reactive oxygen species (ROS. Furthermore, as lactobacilli, which dominate the vaginal ecosystem of healthy women, have been shown to exert anti-oxidant protective effects on spermatozoa, we also evaluated whether soluble products from these microorganisms could protect spermatozoa against the effects of E. coli. We assessed motility (by computer-aided semen analysis, ΔΨm (with JC-1 dye by flow cytometry, mitochondrial ROS generation (with MitoSOX red dye by flow cytometry and membrane lipid-peroxidation (with the fluorophore BODIPY C11 by flow cytometry of sperm suspensions exposed to E. coli in the presence and in the absence of a combination of 3 selected strains of lactobacilli (L. brevis, L. salivarius, L. plantarum. A Transwell system was used to avoid direct contact between spermatozoa and microorganisms. Soluble products of E. coli induced ΔΨm loss, mitochondrial generation of ROS and membrane lipid-peroxidation, resulting in motility loss. Soluble factors of lactobacilli prevented membrane lipid-peroxidation of E. coli-exposed spermatozoa, thus preserving their motility. In conclusion, sperm motility loss by soluble products of E. coli reflects a mitochondrial dysfunction-related membrane lipid-peroxidation. Lactobacilli could protect spermatozoa in the presence of vaginal disorders, by preventing ROS-induced membrane damage.

  12. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools

    DEFF Research Database (Denmark)

    Bosma, Elleke Fenna; Förster, Jochen; Nielsen, Alex Toftgaard

    2017-01-01

    This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery...... factories for biorefinery applications....

  13. Wine Polyphenols: Potential Agents in Neuroprotection

    Directory of Open Access Journals (Sweden)

    Abdelkader Basli

    2012-01-01

    Full Text Available There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson’s or Alzheimer’s diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  14. Predictive relationship between polyphenol and nonfat cocoa solids content of chocolate.

    Science.gov (United States)

    Cooper, Karen A; Campos-Giménez, Esther; Jiménez Alvarez, Diego; Rytz, Andreas; Nagy, Kornél; Williamson, Gary

    2008-01-09

    Chocolate is often labeled with percent cocoa solids content. It is assumed that higher cocoa solids contents are indicative of higher polyphenol concentrations, which have potential health benefits. However, cocoa solids include polyphenol-free cocoa butter and polyphenol-rich nonfat cocoa solids (NFCS). In this study the strength of the relationship between NFCS content (estimated by theobromine as a proxy) and polyphenol content was tested in chocolate samples with labeled cocoa solids contents in the range of 20-100%, grouped as dark (n = 46), milk (n = 8), and those chocolates containing inclusions such as wafers or nuts (n = 15). The relationship was calculated with regard to both total polyphenol content and individual polyphenols. In dark chocolates, NFCS is linearly related to total polyphenols (r2 = 0.73). Total polyphenol content appears to be systematically slightly higher for milk chocolates than estimated by the dark chocolate model, whereas for chocolates containing other ingredients, the estimates fall close to or slightly below the model results. This shows that extra components such as milk, wafers, or nuts might influence the measurements of both theobromine and polyphenol contents. For each of the six main polyphenols (as well as their sum), the relationship with the estimated NFCS was much lower than for total polyphenols (r2 chocolate type, indicating that they might still have some predictive capabilities.

  15. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    OpenAIRE

    Maria Cioroi; Daniela Dumitriu

    2010-01-01

    Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragr...

  16. Physicochemical and Antioxidant Properties of Buckwheat Protein Isolates with Different Polyphenolic Content Modified by Limited Hydrolysis with Trypsin

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Wang

    2012-01-01

    Full Text Available Effects of limited hydrolysis with trypsin on the physicochemical and antioxidant properties of buckwheat protein isolates (BPIs obtained with untreated and 2-propanol-extracted meal have been investigated and compared. The dephenolization treatment significantly improved the hydrolysis of BPI, which resulted in the gradual decrease in total and protein-bound polyphenolic content, but an increase in the free polyphenolic content. The hydrolysis of globulins was much easier than that of the albumins. The removal of polyphenols improved the hydrolysis of the albumin fraction. The modified BPIs with high polyphenolic content exhibited much higher DPPH radical scavenging activity and reducing power, but poorer ferrous ion chelating ability than those with low polyphenolic content. These results suggest that the limited hydrolysis is suitable for modification of the properties of buckwheat proteins.

  17. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L. peel using ultrasound and maceration techniques

    Directory of Open Access Journals (Sweden)

    Muhammad N. Safdar

    2017-07-01

    Full Text Available An investigation was carried out to extract polyphenols from the peel of kinnow (Citrus reticulate L. by maceration and ultrasound-assisted extraction (UAE techniques. The antioxidant potential of these polyphenols was evaluated using ferric reducing antioxidant power (FRAP, 2,2-diphenyl-1-picrylhydrazyl (DPPH, and superoxide radical scavenging assays; and their antimicrobial activity was assessed against bacterial strains Staphyloccoccus aureus, Bacillus cereus, and Salmonella typhimurium. The highest extraction yield was obtained through the solvent ethanol at 80% concentration level, whereas UAE was a more efficient technique and yielded comparatively higher polyphenol contents than maceration. Maximum polyphenols were extracted with 80% methanol [32.48 mg gallic acid equivalent (GAE/g extract] using UAE, whereas minimum phenolics (8.64 mg GAE/g extract were obtained with 80% ethyl acetate through the maceration technique. Elevated antioxidant activity of kinnow peel extracts was exhibited in three antioxidant assays, where 80% methanolic extracts showed the highest antioxidant activity (27.67±1.11mM/100 g for FRAP and the highest scavenging activity, 72.83±0.65% and 64.80±0.91% for DPPH and superoxide anion radical assays, respectively. Strong correlations between total polyphenols and antioxidant activity were recorded. Eleven phenolic compounds—including five phenolic acids and six flavonoids—were identified and quantified by high performance liquid chromatography. Ferulic acid and hesperidin were the most abundant compounds whereas caffeic acid was the least abundant phenolic compound in kinnow peel extracts. Maximum inhibition zone was recorded against S. aureus (16.00±0.58 mm whereas minimum inhibition zone was noted against S. typhimurium (9.00±1.16 mm. It was concluded that kinnow mandarin peels, being a potential source of phenolic compounds with antioxidant and antimicrobial properties, may be used as an ingredient for

  18. Peptide Extracts from Cultures of Certain Lactobacilli Inhibit Helicobacter pylori.

    Science.gov (United States)

    De Vuyst, Luc; Vincent, Pascal; Makras, Eleftherios; Leroy, Frédéric; Pot, Bruno

    2010-03-01

    Helicobacter pylori inhibition by probiotic lactobacilli has been observed in vitro and in vivo. Carefully selected probiotic Lactobacillus strains could therefore play an important role in the treatment of H. pylori infection and eradication. However, the underlying mechanism for this inhibition is not clear. The aim of this study was to examine if peptide extracts, containing bacteriocins or other antibacterial peptides, from six Lactobacillus cultures (Lactobacillus acidophilus La1, Lactobacillus amylovorus DCE 471, Lactobacillus casei YIT 9029, Lactobacillus gasseri K7, Lactobacillus johnsonii La1, and Lactobacillus rhamnosus GG) contribute to the inhibition of H. pylori. Peptide extracts from cultures of Lact. amylovorus DCE 471 and Lact. johnsonii La1 were most active, reducing the viability of H. pylori ATCC 43504 with more than 2 log units within 4 h of incubation (P < 0.001). The four other extracts were less or not active. When six clinical isolates of H. pylori were tested for their susceptibility towards five inhibitory peptide extracts, similar observations were made. Again, the peptide extracts from Lact. amylovorus DCE 471 and Lact. johnsonii La1 were the most inhibitory, while the three other extracts resulted in a much lower inhibition of H. pylori. Protease-treated extracts were inactive towards H. pylori, confirming the proteinaceous nature of the inhibitory substance.

  19. Plant Polyphenolic Antioxidants in Management of Chronic Degenerative Diseases

    Directory of Open Access Journals (Sweden)

    R.K. Das

    2017-12-01

    the etiology of these degenerative conditions suggested that, phytochemicals possesses potential antioxidative activity leading to various pathways on prevention of diseases. The present review focuses on resources of plant polyphenols and the present understanding and views on structural and functional relationship of flavonoids and their beneficial role in human health and disease with special emphasis on degenerative diseases.

  20. State of polyphenols in the drying process of fruits and vegetables.

    Science.gov (United States)

    McSweeney, M; Seetharaman, K

    2015-01-01

    This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.

  1. Polyphenolic Composition and Antioxidant Activity of Aqueous and Ethanolic Extracts from Uncaria tomentosa Bark and Leaves

    Directory of Open Access Journals (Sweden)

    Mirtha Navarro-Hoyos

    2018-05-01

    Full Text Available Uncaria tomentosa constitutes an important source of secondary metabolites with diverse biological activities mainly attributed until recently to alkaloids and triterpenes. We have previously reported for the first-time the polyphenolic profile of extracts from U. tomentosa, using a multi-step process involving organic solvents, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted the present study using food grade solvents suitable for the elaboration of commercial extracts. We report a detailed study on the polyphenolic composition of aqueous and ethanolic extracts of U. tomentosa bark and leaves (n = 16, using High Performance Liquid Chromatography coupled with Mass Spectrometry (HPLC-DAD/TQ-ESI-MS. A total of 32 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ols monomers, procyanidin dimers and trimers, flavalignans–cinchonains and propelargonidin dimers. Our findings showed that the leaves were the richest source of total phenolics and proanthocyanidins, in particular propelargonidin dimers. Two-way Analysis of Variance (ANOVA indicated that the contents of procyanidin and propelargonidin dimers were significantly different (p < 0.05 in function of the plant part, and leaves extracts showed higher contents. Oxygen Radical Absorbance Capacity (ORAC and 2,2-diphenyl-1-picrylhidrazyl (DPPH values indicated higher antioxidant capacity for the leaves (p < 0.05. Further, correlation between both methods and procyanidin dimers was found, particularly between ORAC and propelargonidin dimers. Finally, Principal Component Analysis (PCA analysis results clearly indicated that the leaves are the richest plant part in proanthocyanidins and a very homogenous material, regardless of their origin. Therefore, our findings revealed that both ethanol and water extraction processes are adequate for the elaboration of

  2. Antigenotoxic and Apoptotic Activity of Green Tea Polyphenol Extracts on Hexavalent Chromium-Induced DNA Damage in Peripheral Blood of CD-1 Mice: Analysis with Differential Acridine Orange/Ethidium Bromide Staining

    Directory of Open Access Journals (Sweden)

    María del Carmen García-Rodríguez

    2013-01-01

    Full Text Available This study was conducted to investigate the modulating effects of green tea polyphenols on genotoxic damage and apoptotic activity induced by hexavalent chromium [Cr (VI] in CD-1 mice. Animals were divided into the following groups: (i injected with vehicle; (ii treated with green tea polyphenols (30 mg/kg via gavage; (iii injected with CrO3 (20 mg/kg intraperitoneally; (iv treated with green tea polyphenols in addition to CrO3. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCEs obtained from peripheral blood at 0, 24, 48, and 72 h after treatment. Induction of apoptosis and cell viability were assessed by differential acridine orange/ethidium bromide (AO/EB staining. Treatment of green tea polyphenols led to no significant changes in the MN-PCEs. However, CrO3 treatment significantly increased MN-PCEs at 24 and 48 h after injection. Green tea polyphenols treatment prior to CrO3 injection led to a decrease in MN-PCEs compared to the group treated with CrO3 only. The average of apoptotic cells was increased at 48 h after treatment compared to control mice, suggesting that apoptosis could contribute to eliminate the DNA damaged cells induced by Cr (VI. Our findings support the proposed protective effects of green tea polyphenols against the genotoxic damage induced by Cr (VI.

  3. Dietary Polyphenols in the Prevention of Stroke

    Directory of Open Access Journals (Sweden)

    A. Tressera-Rimbau

    2017-01-01

    Full Text Available Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies.

  4. Dietary Polyphenols in the Prevention of Stroke

    Science.gov (United States)

    Eder, M.

    2017-01-01

    Polyphenols have an important protective role against a number of diseases, such as atherosclerosis, brain dysfunction, stroke, cardiovascular diseases, and cancer. Cardiovascular diseases are the number one cause of death worldwide: more people die annually from cardiovascular diseases than from any other cause. The most important behavioural risk factors of heart disease and stroke are unhealthy diet, physical inactivity, tobacco use, and excess alcohol intake. The dietary consumption of polyphenols has shown to be inversely associated with morbidity and mortality by cardio- and cerebrovascular diseases. It is well-known that the protective effects of polyphenols in vivo depend on the grade how they are extracted from food and on their intestinal absorption, metabolism, and biological action with target tissues. The aim of this review was to summarise the relation between polyphenols of different plant sources and stroke in human intervention studies, animal models, and in vitro studies. PMID:29204249

  5. Optimization of microwave-assisted extraction for anthocyanins, polyphenols, and antioxidants from raspberry (Rubus Coreanus Miq.) using response surface methodology.

    Science.gov (United States)

    Teng, Hui; Lee, Won Young; Choi, Yong Hee

    2013-09-01

    Anthocyanins (Acys), polyphenols, and antioxidants were extracted from raspberry (Rubus Coreanus Miq.) using a highly efficient microwave-assisted extraction technique. Different solvents, including methanol, ethanol, and acetone, were tested. The colors of the extracts varied from light yellow to purple red or dark red. SEM and other nutrient analyses verified that ethanol was the most favorable medium for the microwave-assisted extraction of raspberry due to its high output and low toxicity. Effects of process parameters, including microwave power, irradiation time, and solvent concentration, were investigated through response surface methodology. Canonical analysis estimated that the highest total Acys content, total polyphenols content, and antioxidant activity of raspberry were 17.93 mg cyanidin-3-O-glucoside equivalents per gram dry weight, 38.57 mg gallic acid equivalents per gram dry weight, and 81.24%, respectively. The polyphenol compositions of raspberry extract were identified by HPLC with diode array detection, and nine kinds of polyphenols were identified and quantified, revealing that chlorogenic acid, syringic acid, and rutin are the major polyphenols contained in raspberry fruits. Compared with other fruits and vegetables, raspberry contains higher Acy and polyphenol contents with stronger antioxidant activity, suggesting that raspberry fruits are a good source of natural food colorants and antioxidants. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells.

    Science.gov (United States)

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2007-09-01

    A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.

  7. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility

    Science.gov (United States)

    Ozdal, Tugba; Sela, David A.; Xiao, Jianbo; Boyacioglu, Dilek; Chen, Fang; Capanoglu, Esra

    2016-01-01

    As of late, polyphenols have increasingly interested the scientific community due to their proposed health benefits. Much of this attention has focused on their bioavailability. Polyphenol–gut microbiota interactions should be considered to understand their biological functions. The dichotomy between the biotransformation of polyphenols into their metabolites by gut microbiota and the modulation of gut microbiota composition by polyphenols contributes to positive health outcomes. Although there are many studies on the in vivo bioavailability of polyphenols, the mutual relationship between polyphenols and gut microbiota is not fully understood. This review focuses on the biotransformation of polyphenols by gut microbiota, modulation of gut microbiota by polyphenols, and the effects of these two-way mutual interactions on polyphenol bioavailability, and ultimately, human health. PMID:26861391

  8. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health

    Directory of Open Access Journals (Sweden)

    Carolina Cueva

    2017-01-01

    Full Text Available Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption. Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects and, after being absorbed, in tissues and organs (systemic effects. Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects. The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols’ metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.

  9. Population-based nutrikinetic modeling of polyphenol exposure

    NARCIS (Netherlands)

    van Velzen, E.J.J.; Westerhuis, J.A.; Grün, C.H.; Jacobs, D.M.; Eilers, P.H.C.; Mulder, Th.P.; Foltz, M.; Garczarek, U.; Kemperman, R.; Vaughan, E. E.; van Duynhoven, J.P.M.; Smilde, A.K.

    2014-01-01

    The beneficial health effects of fruits and vegetables have been attributed to their polyphenol content. These compounds undergo many bioconversions in the body. Modeling polyphenol exposure of humans upon intake is a prerequisite for understanding the modulating effect of the food matrix and the

  10. Digestibility of (Poly)phenols and Antioxidant Activity in Raw and Cooked Cactus Cladodes ( Opuntia ficus-indica).

    Science.gov (United States)

    De Santiago, Elsy; Pereira-Caro, Gema; Moreno-Rojas, José Manuel; Cid, Concepción; De Peña, María-Paz

    2018-05-29

    This study aims to investigate whether heat treatment applied to cactus cladodes influences the bioaccessibility of their (poly)phenolic compounds after simulated gastric and intestinal digestion. A total of 45 (poly)phenols were identified and quantified in raw and cooked cactus cladodes by ultra high performance liquid chromatography photodiode array detector high resolution mass spectrometry. Both flavonoids (60-68% total), mainly isorhamnetin derivatives, and phenolic acids (32-40%) with eucomic acids as the predominant ones significantly ( p < 0.05) increased with microwaving and griddling processes. After in vitro gastrointestinal digestion, 55-64% of the total (poly)phenols of cooked cactus cladodes remained bioaccessible versus 44% in raw samples. Furthermore, digestive conditions and enzymes degraded or retained more flavonoids (37-63% bioaccessibility) than phenolic acids (56-87% bioaccessibility). Microwaved cactus cladodes contributed the highest amount of (poy)phenols (143.54 mg/g dm) after gastrointestinal process, followed by griddled samples (133.98 mg/g dm), showing the highest antioxidant capacity. Additionally, gastrointestinal digestion induced isomerizations among the three stereoisomeric forms of piscidic and eucomic acids.

  11. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells.

    Science.gov (United States)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. Copyright © 2013. Published by

  12. Characterization of the Intestinal Lactobacilli Community following Galactooligosaccharides and Polydextrose Supplementation in the Neonatal Piglet.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hoeflinger

    Full Text Available Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8, formula supplemented with 2 g/L each galactooligosaccharides (GOS and polydextrose (PDX, F+GP, n = 9 or a sow-reared (SOW, n = 12 reference group for 19 days. The ileal (IL and ascending colon (AC microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05: Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04 in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater, which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp.

  13. Influence of Polyphenol Extract from Evening Primrose (Oenothera Paradoxa Seeds on Proliferation of Caco-2 Cells and on Expression, Synthesis and Activity of Matrix Metalloproteinases and Their Inhibitors

    Directory of Open Access Journals (Sweden)

    Szewczyk Karolina

    2014-09-01

    Full Text Available Evening primrose (Oenothera paradoxa Hudziok seeds are a rich source of not only a valuable oil containing an essential fatty acid - ᵧ-linolenic acid (GLA - but also polyphenols which can be obtained from the biomass remaining after oil pressing. The aim of our studies was to evaluate the influence of a polyphenol extract from defatted seeds of evening primrose on human colorectal adenocarcinoma Caco-2 cell proliferation and matrix metalloproteinases (MMPs synthesis and activity. To assess the effect of evening primrose extract on Caco-2 cell proliferation, crystal violet staining and sulforhodamine B (SRB assays were used whereas mRNA expression and activity of MMPs were evaluated by RT-PCR and gelatin zymography.

  14. Physiology and taxonomy of lactobacilli surviving radurization of meat

    International Nuclear Information System (INIS)

    Hastings, J.W.

    1986-02-01

    The aim of this study was to isolate radiation-resistant lacto-bacilli from radurized (5 kGy) vacuum-packaged meat and subject them to biochemical, metabolic and physiological testing in order to gain a clearer understanding of the taxonomy of this group as well as determine characteristics which may be of technological significance. All 113 of the lactobacilli isolated were homofermentative, aciduric and were allocated to the sub-genus Streptobacterium. Numerical taxonomy by unweighted pair-group average linkage analysis revealed the existence of 5 clusters of the isolates. The same 113 isolates were classified using a purely classical taxonomic approach where the isolates were divided into 4 groups according to species designation. The basis upon which they were identified as a particular species was mainly their carbohydrate fermentation pattern. Several of the 113 isolates were selected for tests to determine characteristics of technological importance. All L.sake isolates exhibited the phenomenon of being more resistant to irradiation in the logarithmic phase than in the stationary phase of their growth cycle. This phenomenon was not characteristic of all the bacteria and was not always related to high radiation-resistance. Four L. sake isolates and three authentic strains were subjected to radiation-sensitivity testing in a natural food system where the bacteria were irradiated in minced meat packaged under four different conditions. The organisms exhibited the highest death rates under CO 2 packaging but resistance seemed to increase under N 2 -packaging. The radiation-resistance of the isolates was greater than that of the reference strains and all strains were approximately twice as resistant in the meat microenvironment than in a synthetic medium

  15. Polyphenols in Cocoa and Cocoa Products: Is There a Link between Antioxidant Properties and Health?

    Directory of Open Access Journals (Sweden)

    Amin Ismail

    2008-09-01

    Full Text Available Cocoa and cocoa products have received much attention due to their significant polyphenol contents. Cocoa and cocoa products, namely cocoa liquor, cocoa powder and chocolates (milk and dark chocolates may present varied polyphenol contents and possess different levels of antioxidant potentials. For the past ten years, at least 28 human studies have been conducted utilizing one of these cocoa products. However, questions arise on which of these products would deliver the best polyphenol contents and antioxidant effects. Moreover, the presence of methylxanthines, peptides, and minerals could synergistically enhance or reduce antioxidant properties of cocoa and cocoa products. To a greater extent, cocoa beans from different countries of origins and the methods of preparation (primary and secondary could also partially influence the antioxidant polyphenols of cocoa products. Hence, comprehensive studies on the aforementioned factors could provide the understanding of health-promoting activities of cocoa or cocoa products components.

  16. Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Herk, van T.; Vincken, J.P.; Janssen, R.H.; Narh, D.L.; Berkel, van W.J.H.; Gruppen, H.

    2014-01-01

    Enzymatic browning is a major quality issue in fruit and vegetable processing and can be counteracted by different natural inhibitors. Often, model systems containing a single polyphenol oxidase (PPO) are used to screen for new inhibitors. To investigate the impact of the source of PPO on the

  17. Vaginal lactobacilli profile in pregnant women with normal & abnormal vaginal flora.

    Science.gov (United States)

    Yeruva, Thirupathaiah; Rajkumar, Hemalatha; Donugama, Vasundhara

    2017-10-01

    Lactobacilli species that are better adapted to vaginal environment of women may colonize better and offer protection against vaginal pathogenic bacteria. In this study, the distribution of common Lactobacillus species was investigated in pregnant women. Sixty seven pregnant women were included in the study and vaginal samples were collected for Gram staining. Women were classified as normal vaginal flora, intermediate flora and bacterial vaginosis (BV) based on Nugent's score. Vaginal samples were also collected for the identification of Lactobacillus spp. by multiplex polymerase chain reaction (PCR) profiling of 16S rDNA amplification method. Lactobacillus crispatus (100%) was the most predominant Lactobacillus spp. present in pregnant women with normal flora, followed by L. iners (77%), L. jensenii (74%) and L. helveticus (60%). While, L. iners was commonly present across groups in women with normal, intermediate or BV flora, L. crispatus, L. jensenii and L. helveticus decreased significantly as the vaginal flora changed to intermediate and BV. In women with BV, except L. iners other species of lactobacilli was less frequently prevalent. Species such as L. rhamnosus, L. fermentum, L. paracasei and L. casei were not detected in any vaginal sample. L. crispatus, L. jensinii and L. helveticus were predominant species in women with normal flora. L. crispatus alone or in combination with L. jensinii and L. helveticus may be evaluated for probiotic properties for the prevention and treatment of BV.

  18. Grape Polyphenols Increase the Activity of HDL Enzymes in Old and Obese Rats

    Directory of Open Access Journals (Sweden)

    Andriy L. Zagayko

    2013-01-01

    Full Text Available HDL particles are protein-rich particles that act as a vehicle for reverse cholesterol transport from tissues to the liver. The purpose of this study was to investigate age-dependent changes in the functional activity of HDL and the effect of high-energy diet on this index, as well as to correct it under the influence of grape polyphenols from “Enoant” obtained from Vitis vinifera grapes. We observed the age-dependent composition changes in HDL particle. It was shown that total lipids and triacylglycerol (TG levels were higher in 24-month-old animals. In obese rats, HDL total lipids and TG levels were higher in 24-month-old than in the 3-month-old and 12-month-old groups but did not differ from 24-month-old group. The plasma HDL paraoxonase (PON and lecithin:cholesterol acyltransferase (LCAT activity levels were decreased in old-aged rats, and cholesteryl ester transfer protein (CETP activity was higher in old rats. Keeping 12-month-old animals on high-fructose diet completely leveled the age differences in the data that have been measured between 12-month-old and 24-month-old rats. After “Enoant” administration, an increase of HDL PON and LCAT activity levels and a reduction of CETP activity were found in 24-month-old and obese rats.

  19. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents.

    Science.gov (United States)

    Payet, Bertrand; Shum Cheong Sing, Alain; Smadja, Jacqueline

    2005-12-28

    Seven cane brown sugars (four from La Réunion, two from Mauritius, and one from France) were investigated for their polyphenol content and volatile composition in relation to their free radical scavenging capacity determined by ABTS and DPPH assays. The thin layer coated on the sugar crystal was extracted by Soxhlet extractor with dichloromethane. The volatile compounds of brown sugars were studied by GC-MS, and 43 compounds were identified. The total phenolic content of brown sugars was determined according to the Folin-Ciocalteu method. Phenolic compounds were quantified in the brown sugar extracts by LC-UV-ESI-MS. Brown sugar aqueous solutions exhibited weak free radical scavenging activity in the DPPH assay and higher antioxidant activity in the ABTS assay at relatively high concentration. The brown sugar extracts showed interesting free radical scavenging properties despite the low concentration of phenolic and volatile compounds. Sugar is a common foodstuff traditionally used for its sweetening properties, which might be accompanied by antioxidant properties arising from molecules (polyphenols, Maillard products) other than sucrose of the cane brown sugars.

  20. Green Tea and Other Tea Polyphenols: Effects on Sebum Production and Acne Vulgaris

    Directory of Open Access Journals (Sweden)

    Suzana Saric

    2016-12-01

    Full Text Available Polyphenols are antioxidant molecules found in many foods including nuts, fruits, vegetables, chocolate, wine, and tea. Polyphenols have antimicrobial, anti-inflammatory, and antineoplastic properties. Recent studies suggest that tea polyphenols may be used for reducing sebum production in the skin and for treatment of acne vulgaris. This review examines the evidence for use of topically and orally ingested tea polyphenols against sebum production and for acne treatment and prevention. The PubMed database was searched for studies on tea polyphenols, sebum secretion, and acne vulgaris. Of the 59 studies found, eight met the inclusion criteria. Two studies evaluated tea polyphenol effects on sebum production; six studies examined tea polyphenol effects on acne vulgaris. Seven studies evaluated topical tea polyphenols; one study examined systemic tea polyphenols. None of the studies evaluated both topical and systemic tea polyphenols. Tea polyphenol sources included green tea (six studies and tea, type not specified (two studies. Overall, there is some evidence that tea polyphenols in topical formulation may be beneficial in reducing sebum secretion and in treatment of acne. Research studies of high quality and with large sample sizes are needed to assess the efficacy of tea polyphenols in topical and oral prevention of acne vulgaris and lipid synthesis by the sebaceous glands.

  1. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    Science.gov (United States)

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  2. Analytical techniques for the study of polyphenol-protein interactions.

    Science.gov (United States)

    Poklar Ulrih, Nataša

    2017-07-03

    This mini review focuses on advances in biophysical techniques to study polyphenol interactions with proteins. Polyphenols have many beneficial pharmacological properties, as a result of which they have been the subject of intensive studies. The most conventional techniques described here can be divided into three groups: (i) methods used for screening (in-situ methods); (ii) methods used to gain insight into the mechanisms of polyphenol-protein interactions; and (iii) methods used to study protein aggregation and precipitation. All of these methods used to study polyphenol-protein interactions are based on modifications to the physicochemical properties of the polyphenols or proteins after binding/complex formation in solution. To date, numerous review articles have been published in the field of polyphenols. This review will give a brief insight in computational methods and biosensors and cell-based methods, spectroscopic methods including fluorescence emission, UV-vis adsorption, circular dichroism, Fourier transform infrared and mass spectrometry, nuclear magnetic resonance, X-ray diffraction, and light scattering techniques including small-angle X-ray scattering and small-angle neutron scattering, and calorimetric techniques (isothermal titration calorimetry and differential scanning calorimetry), microscopy, the techniques which have been successfully used for polyphenol-protein interactions. At the end the new methods based on single molecule detection with high potential to study polyphenol-protein interactions will be presented. The advantages and disadvantages of each technique will be discussed as well as the thermodynamic, kinetic or structural parameters, which can be obtained. The other relevant biophysical experimental techniques that have proven to be valuable, such electrochemical methods, hydrodynamic techniques and chromatographic techniques will not be described here.

  3. Evaluation of polyphenol content in different parts of physalis ixocarpa

    International Nuclear Information System (INIS)

    Bakht, J.; Shafi, M.

    2016-01-01

    In the current study extracts of leaf, stem, fruit and calyx with different polarity was investigated for their phenolic content using high performance liquid chromatography and spectrophotometric assay. Among different parts, stem contain high concentration of total polyphenol and gallic acid. The effect of extraction solvent on polyphenol quantification was observed in both assays. Spectrophotometric analysis of the data regarding polyphenol content indicated that among different extracts from the stem, leaf and fruit tissues; ethyl acetate extracted fraction of stem measured maximum polyphenol content of 110.376 mgGAE/g of dry extract. The ethyl acetate extracted sample of leaf showed high polyphenol (Gallic acid) content of 95 mg GAE/g of dry extract using high performance liquid chromatography assay. The amounts of phenolic content (Gallic acid) extracted from the parts of the plant with the different solvent ranged from 0.0354- 95 mg GAE/g of the dry extract using HPLC, however, spectrophotometric assay indicated total polyphenol ranged from 38-110.37 mgGAE g-1 of the dry extract. The current study suggested that ethyl acetate is an effective solvent for the extraction of polyphenol in different parts of P. ixocarapa. (author)

  4. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective

    Directory of Open Access Journals (Sweden)

    Davatgaran-Taghipour Y

    2017-04-01

    bioavailability. Different types of formulations have been designed for the improvement of bioavailability of these compounds, nanonization being one of the most notable approaches among them. This study aimed to review current data on the nanoformulations of natural polyphenols as chemopreventive and chemotherapeutic agents and to discuss their molecular anticancer mechanisms of action. Nanoformulations of natural polyphenols as bioactive agents, including resveratrol, curcumin, quercetin, epigallocatechin-3-gallate, chrysin, baicalein, luteolin, honokiol, silibinin, and coumarin derivatives, in a dose-dependent manner, result in better efficacy for the prevention and treatment of cancer. The impact of nanoformulation methods for these natural agents on tumor cells has gained wider attention due to improvement in targeted therapy and bioavailability, as well as enhancement of stability. Today, several nanoformulations are designed for delivery of polyphenolic compounds, including nanosuspensions, solid lipid nanoparticles, liposomes, gold nanoparticles, and polymeric nanoparticles, which have resulted in better antineoplastic activity, higher intracellular concentration of polyphenols, slow and sustained release of the drugs, and improvement of proapoptotic activity against tumor cells. To conclude, natural polyphenols demonstrate remarkable anticancer potential in pharmacotherapy; however, the obstacles in terms of their bioavailability in and toxicity to normal cells, as well as targeted drug delivery to malignant cells, can be overcome using nanoformulation-based technologies, which optimize the bioefficacy of these natural drugs. Keywords: natural products, flavonoid, anthocyanin, tumor, malignancy

  5. Variations of internal pH in typical Italian sourdough yeasts during co-fermentation with lactobacilli

    DEFF Research Database (Denmark)

    Valmorri, Sara; Mortensen, Henrik Dam; Jespersen, Lene

    2008-01-01

    The effects of organic acids (lactic and acetic) and extracellular pH (pHex) on the intracellular pH (pHi) of Saccharomyces cerevisiae and Candida milleri during co-fermentation with lactobacilli were investigated by using Fluorescence-Ratio-Imaging-Microscopy (FRIM). Yeasts were grown in a syste...

  6. Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation.

    Science.gov (United States)

    Nasiri Esfahani, Behnaz; Kadivar, Mahdi; Shahedi, Mohammad; Soleimanian-Zad, Sabihe

    2017-11-01

    This study mainly focuses on a strategy for reducing acrylamide content in whole-wheat bread by combining lactobacilli and yeast in sourdough breadmaking. Combinations of sourdough (fermented dough using different Lactobacillus strains including Lactobacillus plantarum PTCC 1896 [probiotic], L. sakei DSM 20,017, L. rhamnosus DSM 20,021, and L. delbrueckii DSM 20,081) and yeast, in comparison with yeast alone, were used for breadmaking. The results showed that acrylamide levels in breads fermented using sourdough+yeast were in all cases much lower (6.9-20 μg/kg on a dry weight basis [d.b.]) than those in the yeast-only fermented bread (47.6 μg/kg d.b.). Significant (p bread (r = 0.925, p breads and either the reducing sugar or free amino acid contents in dough samples. According to the different effects of Lactobacillus strains, it could be concluded that the acrylamide reducing potential of lactobacilli was strain-specific, with L. rhamnosus being the most effective. This suggests that sourdough fermentation with appropriate Lactobacillus strains can be used as an advantageous technology to reduce the acrylamide content of whole-wheat breads.

  7. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  8. Effect of Chocobar Ice Cream Containing Bifidobacterium on Salivary Streptococcus mutans and Lactobacilli: A Randomised Controlled Trial.

    Science.gov (United States)

    Nagarajappa, Ramesh; Daryani, Hemasha; Sharda, Archana J; Asawa, Kailash; Batra, Mehak; Sanadhya, Sudhanshu; Ramesh, Gayathri

    2015-01-01

    To examine the effect of chocobar ice cream containing bifidobacteria on salivary mutans streptococci and lactobacilli. A double-blind, randomised controlled trial was conducted with 30 subjects (18 to 22 years of age) divided into 2 groups, test (chocobar ice cream with probiotics) and control (chocobar ice cream without probiotics). The subjects were instructed to eat the allotted chocobar ice cream once daily for 18 days. Saliva samples collected at intervals were cultured on Mitis Salivarius agar and Rogosa agar and examined for salivary mutans streptococci and lactobacilli, respectively. The Mann-Whitney U-test, Friedman and Wilcoxon signed-rank tests were used for statistical analysis. Postingestion in the test group, a statistically significant reduction (p ice cream containing probiotic bifidobacteria may reduce salivary levels of mutans streptococci in young adults.

  9. Estimated Dietary Polyphenol Intake and Major Food and Beverage Sources among Elderly Japanese

    Directory of Open Access Journals (Sweden)

    Chie Taguchi

    2015-12-01

    Full Text Available Estimating polyphenol intake contributes to the understanding of polyphenols’ health benefits. However, information about human polyphenol intake is scarce, especially in the elderly. This study aimed to estimate the dietary intake and major sources of polyphenols and to determine whether there is any relationship between polyphenol intake and micronutrient intake in healthy elderly Japanese. First, 610 subjects (569 men, 41 women; aged 67.3 ± 6.1 years completed food frequency questionnaires. We then calculated their total polyphenol intake using our polyphenol content database. Their average total polyphenol intake was 1492 ± 665 mg/day, the greatest part of which was provided by beverages (79.1%. The daily polyphenol intake differed largely among individuals (183–4854 mg/day, also attributable mostly to beverage consumption. Coffee (43.2% and green tea (26.6% were the major sources of total polyphenol; the top 20 food items accounted for >90%. The polyphenol intake did not strongly correlate with the intake of any micronutrient, suggesting that polyphenols may exert health benefits independently of nutritional intake. The polyphenol intake in this elderly population was slightly higher than previous data in Japanese adults, and beverages such as coffee and green tea contributed highly to the intake.

  10. Mathematical Evaluation of the Amino Acid and Polyphenol Content and Antioxidant Activities of Fruits from Different Apricot Cultivars

    Directory of Open Access Journals (Sweden)

    Rene Kizek

    2011-09-01

    Full Text Available Functional foods are of interest because of their significant effects on human health, which can be connected with the presence of some biologically important compounds. In this study, we carried out complex analysis of 239 apricot cultivars (Prunus armeniaca L. cultivated in Lednice (climatic area T4, South Moravia, Czech Republic. Almost all previously published studies have focused only on analysis of certain parameters. However, we focused on detection both primary and secondary metabolites in a selection of apricot cultivars with respect to their biological activity. The contents of thirteen biogenic alpha-L-amino acids (arginine, asparagine, isoleucine, lysine, serine, threonine, valine, leucine, phenylalanine, tryptophan, tyrosine, proline and alanine were determined using ion exchange chromatography with UV-Vis spectrometry detection. Profile of polyphenols, measured as content of ten polyphenols with significant antioxidant properties (gallic acid, procatechinic acid, p-aminobenzoic acid, chlorogenic acid, caffeic acid, vanillin, p-coumaric acid, rutin, ferrulic acid and quercetrin, was determined by high performance liquid chromatography with spectrometric/electrochemical detection. Moreover, content of total phenolics was determined spectrophotometrically using the Folin-Ciocalteu method. Antioxidant activity was determined using five independent spectrophotometric methods: DPPH assay, DMPD method, ABTS method, FRAP and Free Radicals methods. Considering the complexity of the obtained data, they were processed and correlated using bioinformatics techniques (cluster analysis, principal component analysis. The studied apricot cultivars were clustered according to their common biochemical properties, which has not been done before. The observed similarities and differences were discussed.

  11. CORRELATION BETWEEN HYDROPHOBICITY AND RESISTANCE TO NONOXYNOL-9 AND VANCOMYCIN FOR UROGENITAL ISOLATES OF LACTOBACILLI

    NARCIS (Netherlands)

    TOMECZEK, L; REID, G; CUPERUS, PL; MCGROARTY, JA; VANDERMEI, HC; BRUCE, AW; KHOURY, AE; BUSSCHER, HJ

    1992-01-01

    Seven clinical isolates of lactobacilli were found to be relatively hydrophobic with a mean water-contact angle of 66 +/- 15 degrees, and to be susceptible to 1% nonoxynol-9 and vancomycin. However, seven other strains were relatively hydrophilic with a mean water-contact angle of 32 +/- 13 degrees,

  12. Characterization of tea polyphenols as potential environment-friendly fire retardants

    Science.gov (United States)

    Yao, Fengqi; Zhai, Chunjie; Wang, Haihui; Tao, Junjun

    2018-02-01

    In this work we investigated the oxidation properties of tea polyphenols and their potential as the fire retardants. Two types of tea polyphenols were adopted, which were extracted from red tea and green tea leaves, respectively. Their macroscopic performance during pyrolysis and oxidation at elevated temperatures were examined by using a heating furnace. Mass change, heat evolution and gas products of tea polyphenols during heating in air were also monitored by using a thermo-gravimetric analyzer (TGA) integrated with a differential scanning calorimeter (DSC) in conjunction with online Fourier Transform Infrared Spectroscopy (FTIR) and mass spectroscopy (MS). A tea polyphenol sample first becomes a brown semi-fluid after heating, and gradually turns into highly-porous black chars with significantly expanded volume. By raising the temperature to ∼550 °C at a rate of 10 °C/min, the mass of a sample reduces by nearly 70% to form a large quantity of inert gases that are mainly composed of H2O and CO2. It was found that the aerial oxidation products of tea polyphenols in the solid phase possess good heat insulation property; meanwhile, the substantial release of a lot of water and its evaporation during oxidation of tea polyphenols removes a large amount of heat from a sample located in a heating environment. The heat insulation of tea polyphenols may withstand up to 550 °C. The present work confirms tea polyphenols as potential superior and environment-friendly fire retardants.

  13. Further Highlighting on the Prevention of Oxidative Damage by Polyphenol-Rich Wine Extracts.

    Science.gov (United States)

    Salucci, Sara; Burattini, Sabrina; Giordano, Francesco Maria; Lucarini, Simone; Diamantini, Giuseppe; Falcieri, Elisabetta

    2017-04-01

    Wine contains various polyphenols such as flavonoids, anthocyanins, and tannins. These molecules are responsible for the quality of wines, influencing their astringency, bitterness, and color and they are considered to have antioxidant activity. Polyphenols, extracted from grapes during the processes of vinification, could protect the body cells against reactive oxygen species level increase and could be useful to rescue several pathologies where oxidative stress represents the main cause. For that, in this study, red and white wine, provided by an Italian vinery (Marche region), have been analyzed. Chromatographic and morphofunctional analyses have been carried out for polyphenol extraction and to evaluate their protective effect on human myeloid U937 cells exposed to hydrogen peroxide. Both types of wines contained a mix of phenolic compounds with antioxidant properties and their content decreased, as expected, in white wine. Ultrastructural observations evidenced that wines, in particular red wine, strongly prevent mitochondrial damage and apoptotic cell death. In conclusion, the considered extracts show a relevant polyphenol content with strong antioxidant properties and abilities to prevent apoptosis. These findings suggest, for these compounds, a potential role in all pathological conditions where the body antioxidant system is overwhelmed.

  14. New Polyphenols from a Deep Sea Spiromastix sp. Fungus, and Their Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Siwen Niu

    2015-04-01

    Full Text Available Eleven new polyphenols namely spiromastols A–K (1–11 were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. The structures are classified as diphenyl ethers, diphenyl esters and isocoumarin derivatives, while the n-propyl group in the analogues is rarely found in natural products. Compounds 1–3 exhibited potent inhibitory effects against a panel of bacterial strains, including Xanthomanes vesicatoria, Pseudomonas lachrymans, Agrobacterium tumefaciens, Ralstonia solanacearum, Bacillus thuringensis, Staphylococcus aureus and Bacillus subtilis, with minimal inhibitory concentration (MIC values ranging from 0.25 to 4 µg/mL. The structure-activity relationships are discussed, while the polychlorinated analogues 1–3 are assumed to be a promising structural model for further development as antibacterial agents.

  15. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    International Nuclear Information System (INIS)

    Liang, Jin; Li, Feng; Fang, Yong; Yang, Wenjian; An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin; Hu, Qiuhui

    2014-01-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  16. Cytotoxicity and apoptotic effects of tea polyphenol-loaded chitosan nanoparticles on human hepatoma HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jin [Key Laboratory of Tea Biochemistry and Biotechnology of Ministry of Education and Ministry of Agriculture, Anhui Agricultural University, Hefei 230036 (China); College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Li, Feng [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Fang, Yong; Yang, Wenjian [College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China); An, Xinxin; Zhao, Liyan; Xin, Zhihong; Cao, Lin [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Hu, Qiuhui, E-mail: qiuhuihu@njau.edu.cn [College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023 (China)

    2014-03-01

    Tea polyphenols have strong antioxidant and antitumor activities. However, these health benefits are limited due to their poor in vivo stability and low bioavailability. Chitosan nanoparticles as delivery systems may provide an alternative approach for enhancing bioavailability of poorly absorbed drugs. In this study, tea polyphenol-loaded chitosan nanoparticles have been prepared using two different chitosan biomaterials, and their antitumor effects were evaluated in HepG2 cells, including cell cytotoxicity comparison, cell morphology analysis, cell apoptosis and cell cycle detection. The results indicated that the tea polyphenol-loaded chitosan nanoparticles showed a branch shape and heterogeneous distribution in prepared suspension. MTT assay suggested that tea polyphenol-loaded chitosan nanoparticles could inhibit the proliferation of HepG2 cells, and the cytotoxicity rates were increased gradually and appeared an obvious dose-dependent relationship. Transmission electron microscope images showed that the HepG2 cells treated with tea polyphenol-loaded chitosan nanoparticles exhibited some typical apoptotic features, such as microvilli disappearance, margination of nuclear chromatin, intracytoplasmic vacuoles and the mitochondrial swelling. In addition, the tea polyphenol-loaded chitosan nanoparticles had relatively weak inhibitory effects on HepG2 cancer cells compared with tea polyphenols. Tea polyphenols not only induced cancer cell apoptosis, but also promoted their necrosis. However, tea polyphenol-loaded chitosan nanoparticles exhibited their antitumor effects mainly through inducing cell apoptosis. Our results revealed that the inhibition effects of tea polyphenol-loaded chitosan nanoparticles on tumor cells probably depended on their controlled drug release and effective cell delivery. The chitosan nanoparticles themselves as the delivery carrier showed limited antitumor effects compared with their encapsulated drugs. - Highlights: • Tea polyphenol

  17. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.

    Science.gov (United States)

    Mazauric, Jean-Paul; Salmon, Jean-Michel

    2006-05-31

    In the first part of this work, the analysis of the polyphenolic compounds remaining in the wine after different contact times with yeast lees during simulation of red wine aging was undertaken. To achieve a more precise view of the wine polyphenols adsorbed on lees during red wine aging and to establish a clear balance between adsorbed and remnant polyphenol compounds, the specific analysis of the chemical composition of the adsorbed polyphenolic compounds (condensed tannins and anthocyanins) after their partial desorbtion from yeast lees by denaturation treatments was realized in the second part of the study. The total recovery of polyphenol compounds from yeast lees was not complete, since a rather important part of the initial wine colored polyphenols, especially those with a dominant blue color component, remained strongly adsorbed on yeast lees, as monitored by color tristimulus and reflectance spectra measurements. All anthocyanins were recovered at a rather high percentage (about 62%), and it was demonstrated that they were not adsorbed in relation with their sole polarity. Very few monomeric phenolic compounds were extracted from yeast lees. With the use of drastic denaturing treatments, the total recovery of condensed tannins reached 83%. Such tannins extracted from yeast lees exhibited very high polymeric size and a rather high percentage of galloylated residues by comparison with initial wine tannins, indicating that nonpolar tannins were preferentially desorbed from yeast lees by the extraction treatments.

  18. Curcumin and Other Polyphenolic Compounds in Head and Neck Cancer Chemoprevention

    Directory of Open Access Journals (Sweden)

    Philipp Baumeister

    2012-01-01

    Full Text Available Despite clear results of observational studies linking a diet rich in fruits and vegetables to a decreased cancer risk, large interventional trials evaluating the impact of dietary micronutrient supplementation, mostly vitamins, could not show any beneficial effects. Today it has become clear that a single micronutrient, given in supernutritional doses, cannot match cancer preventive effects of whole fruits and vegetables. In this regard polyphenols came into focus, not only because of their antioxidant potential but also because of their ability to interact with molecular targets within the cells. Because polyphenols occur in many foods and beverages in high concentration and evidence for their anticancer activity is best for tissues they can come into direct contact with, field cancerization predestines upper aerodigestive tract epithelium for cancer chemoprevention by polyphenols. In this paper, we summarize cancer chemopreventive attempts with emphasis on head and neck carcinogenesis and discuss some methodological issues. We present data regarding antimutagenic effects of curcumin and epigallocatechin-3-gallate in human oropharyngeal mucosa cultures exposed to cigarette smoke condensate.

  19. Chitosan hydrogels enriched with polyphenols: Antibacterial activity, cell adhesion and growth and mineralization

    Czech Academy of Sciences Publication Activity Database

    Lišková, Jana; Douglas, T.E.L.; Beranová, J.; Skwarczyńska, A.; Božič, M.; Samal, S. K.; Modrzejewska, Z.; Gorgieva, S.; Kokol, V.; Bačáková, Lucie

    2015-01-01

    Roč. 129, Sep 20 (2015), s. 135-142 ISSN 0144-8617 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : hydrogel * polyphenol * cytocompatibility Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.219, year: 2015

  20. The stimulating effects of polyphenol and protein fractions from jelly fig (Ficus awkeotsang Makino achenes against proliferation of leukemia cells

    Directory of Open Access Journals (Sweden)

    Yi-Zhen Shih

    2017-10-01

    Full Text Available This study aimed to investigate the direct and immune-stimulated antiproliferative activities of jelly fig achenes fractions including pectinesterase inhibitors, crude polyphenols extract, and purified polyphenols extract (PP. Beside the measurement of cell viability of U937, the quantity of cytokines in conditioned medium and morphologic changes in leukemia were observed. After surveying all fractions in jelly fig, the obtained fractions of polyphenol exhibited the highest stimulating effects and directly cytotoxic effects against leukemia with the lowest effect found in protein fractions. The leukemia treated by our PP fraction showed dose-dependent response between the concentration and G2/M cell numbers of the U937 cells. The PP fraction had more pronounced effect on immune-stimulated than direct antiproliferative activities. The finding was also supported by morphological analysis by showing the formation of apoptotic bodies and differentiation from immature U937 cells into mature monocytes/macrophages on cells cultured with PP-conditioned medium. In conclusion, polyphenol fraction of pectinesterase inhibitors from jelly fig showed the immune-stimulated antiproliferative activities against U937 cell.

  1. Polyphenol Stilbenes from Fenugreek (Trigonella foenum-graecum L. Seeds Improve Insulin Sensitivity and Mitochondrial Function in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Gang Li

    2018-01-01

    Full Text Available Fenugreek (Trigonella foenum-graecum L. is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose (2-NBDG by promoting the phosphorylation of protein kinase B (AKT and AMP-activated protein kinase (AMPK. In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS. Results from adenosine triphosphate (ATP production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.

  2. Polyphenol content and antioxidant capacity in organically and conventionally grown vegetables

    Directory of Open Access Journals (Sweden)

    Kevser Unal

    2014-11-01

    Full Text Available Objective: To evaluate the polyphenol content and antioxidant capacity of ethanol extracts of some organically and conventionally grown leafy vegetables. Methods: The ethanol extracts of kailan (Brassica alboglabra, bayam (Amaranthus spp. and sawi (Brassica parachinensis were tested for total phenolic content (TPC, total flavonoid content (TFC, and total anthocyanin content (TAC and the antioxidant capacity of the extracts measured using 2,2-diphenyl-1-picrylhydrazyl assay. Results: In TPC test, sawi extract showed the highest phenolic content while bayam contained the least phenolic content for both organically and conventionally grown types. In TFC test, organically grown sawi extract showed the highest flavonoid content, while organically grown kailan extract showed the least flavonoid content among all types of vegetables. The flavonoid content of the conventionally grown types of vegetable extracts was the highest in kalian and the least in sawi. For 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, the activity increased with the increasing concentration of each extract. All conventionally grown vegetable extracts showed higher antioxidant activity compared to their organically grown counterparts. Extracts of conventionally grown sawi showed the highest percentage inhibition followed by conventionally grown kailan and organically grown sawi. There were no correlation between TPC, TFC, TAC and IC25 of both organically and conventionally grown vegetables. However, there was a correlation between TAC and IC25 of conventionally grown vegetable extracts. The results showed relatively similar polyphenol content between organically and conventionally grown vegetable extracts. However, the conventionally grown vegetables extracts generally have higher antioxidant activity compared to the organically grown extracts. Conclusions: These results suggested that the different types of agricultural practice had a significant contribution to the

  3. Polyphenolic Compounds and Free Radical Scavenging Activity in Eight Lamiaceae Herbs of Manipur

    Directory of Open Access Journals (Sweden)

    Sandhyarani Devi KHOMDRAM

    2011-05-01

    Full Text Available Eight plants of Lamiaceae under subfamily Nepetoideae found in Manipur, India were selected for estimation of their polyphenolic compounds and free radical scavenging activity which is expressed on dry weight basis. In this present study, the total phenol and flavonoid contents as well as the free radical scavenging activity were studied using spectrophotometric method. The total phenol content was determined based on Folin-Ciocalteau reagent, flavonoid was determined by aluminium chloride spectrophotometric method and tannin by Folin Dennis Method. The free radical scavenging activity was determined by using DPPH radical which is expressed as IC50 (μg/ml. The total phenolic content varied from 21.39±0.927 to 46.28±0.543 mg/g, flavonoids content in the selected samples varied from 13.30±0.684 to 26.03±0.217 mg/g and tannin content varied from 8.72±0.160 to 17.04±0.206 mg/g. The free radical scavenging activity among the selected samples varied from 11.67±0.221 to 38.29±0.532 μg/ml. The correlation between the free radical scavenging activity with total phenol content (R2=0.511, with flavonoids (R2=0.241 and with tannin (R2=0.690 was calculated and maximum correlation value was found between tannin content and the free radical scavenging activity of the plant samples. The result supports that tannins were more responsible for free radical scavenging activity in the presently selected plants.

  4. Metabolic fate of polyphenols in the human superorganism

    NARCIS (Netherlands)

    van Duynhoven, J.; Vaughan, E. E.; Jacobs, D.M.; Kemperman, R. A.; van Velzen, E.J.J.; Gross, G.; Roger, L. C.; Possemiers, S.; Smilde, A.K.; Doré, J.; Westerhuis, J.A.; van der Wiele, T.

    2011-01-01

    Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating

  5. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    Science.gov (United States)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or

  6. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Isabelle Ky

    2015-01-01

    Full Text Available Grape pomace seeds and skins from different Mediterranean varieties (Grenache [GRE], Syrah [SYR], Carignan [CAR], Mourvèdre [MOU] and Alicante [ALI] were extracted using water and water/ethanol 70% in order to develop edible extracts (an aqueous extract [EAQ] and a 70% hydro-alcoholic extract [EA70] for potential use in nutraceutical or cosmetic formulations. In this study, global content (total polyphenols, total anthocyanins and total tannins, flavan-3-ols and anthocyanins were assessed using HPLC-UV-Fluo-MSn. In addition, extract potential was evaluated by four different assays: Oxygen Radical Absorbance Capacity (ORAC, Ferric Reducing Antioxidant Potential assay (FRAP, Trolox equivalent antioxidant capacity (TEAC or ABTS assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. As expected, seed pomace extracts contained higher amounts of polyphenols then skin pomace extracts. Indeed, seeds from Syrah contained a particularly important amount of total polyphenols and tannins in both type of extract (up to 215.84 ± 1.47 mg of gallic acid equivalent [GAE]/g dry weight (DW and 455.42 ± 1.84 mg/g DW, respectively. These extracts also expressed the highest antioxidant potential with every test. For skins, the maximum total phenolic was found in Alicante EAQ (196.71 ± 0.37 mg GAE/g DW and in Syrah EA70 (224.92 ± 0.18 mg GAE/g DW. Results obtained in this article constitute a useful tool for the pre-selection of grape pomace seed and skin extracts for nutraceutical purposes.

  7. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli--an in vitro study

    DEFF Research Database (Denmark)

    Hasslöf, Pamela; Hedberg, Maria; Twetman, Svante

    2010-01-01

    Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available...

  8. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production.

    Science.gov (United States)

    Saxami, Georgia; Papadopoulou, Olga S; Chorianopoulos, Nikos; Kourkoutas, Yiannis; Tassou, Chrysoula C; Galanis, Alex

    2016-05-04

    A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD) analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR) assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties.

  9. The impact of polyphenols on chondrocyte growth and survival: a preliminary report

    Directory of Open Access Journals (Sweden)

    Salvador Fernández-Arroyo

    2015-10-01

    Full Text Available Background: Imbalances in the functional binding of fibroblast growth factors (FGFs to their receptors (FGFRs have consequences for cell proliferation and differentiation that in chondrocytes may lead to degraded cartilage. The toxic, proinflammatory, and oxidative response of cytokines and FGFs can be mitigated by dietary polyphenols. Objective: We explored the possible effects of polyphenols in the management of osteoarticular diseases using a model based on the transduction of a mutated human FGFR3 (G380R in murine chondrocytes. This mutation is present in most cases of skeletal dysplasia and is responsible for the overexpression of FGFR3 that, in the presence of its ligand, FGF9, results in toxic effects leading to altered cellular growth. Design: Different combinations of dietary polyphenols derived from plant extracts were assayed in FGFR3 (G380R mutated murine chondrocytes, exploring cell survival, chloride efflux, extracellular matrix (ECM generation, and grade of activation of mitogen-activated protein kinases. Results: Bioactive compounds from Hibiscus sabdariffa reversed the toxic effects of FGF9 and restored normal growth, suggesting a probable translation to clinical requests in humans. Indeed, these compounds activated the intracellular chloride efflux, increased ECM generation, and stimulated cell proliferation. The inhibition of mitogen-activated protein kinase phosphorylation was interpreted as the main mechanism governing these beneficial effects. Conclusions: These findings support the rationale behind the encouragement of the development of drugs that repress the overexpression of FGFRs and suggest the dietary incorporation of supplementary nutrients in the management of degraded cartilage.

  10. Potential protection of green tea polyphenols against 1800 MHz electromagnetic radiation-induced injury on rat cortical neurons.

    Science.gov (United States)

    Liu, Mei-Li; Wen, Jian-Qiang; Fan, Yu-Bo

    2011-10-01

    Radiofrequency electromagnetic fields (EMF) are harmful to public health, but the certain anti-irradiation mechanism is not clear yet. The present study was performed to investigate the possible protective effects of green tea polyphenols against electromagnetic radiation-induced injury in the cultured rat cortical neurons. In this study, green tea polyphenols were used in the cultured cortical neurons exposed to 1800 MHz EMFs by the mobile phone. We found that the mobile phone irradiation for 24 h induced marked neuronal cell death in the MTT (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl-tetrazolium bromide) and TUNEL (TdT mediated biotin-dUTP nicked-end labeling) assay, and protective effects of green tea polyphenols on the injured cortical neurons were demonstrated by testing the content of Bcl-2 Assaciated X protein (Bax) in the immunoprecipitation assay and Western blot assay. In our study results, the mobile phone irradiation-induced increases in the content of active Bax were inhibited significantly by green tea polyphenols, while the contents of total Bax had no marked changes after the treatment of green tea polyphenols. Our results suggested a neuroprotective effect of green tea polyphenols against the mobile phone irradiation-induced injury on the cultured rat cortical neurons.

  11. Novel strategies for preventing diabetes and obesity complications with natural polyphenols.

    Science.gov (United States)

    Carpene, C; Gomez-Zorita, S; Deleruyelle, S; Carpene, M A

    2015-01-01

    During the last years, the list of resveratrol effects has grown in parallel with the number of other members of the polyphenol family described to modulate glucose or lipid handling. In the same time, more than ten human studies on the influence of resveratrol supplementation on two related metabolic diseases, obesity and diabetes, have indicated that impressive beneficial effects co-exist with lack of demonstration of clinical relevance, irrespective of the daily dose ingested (0.075 to 1.5 g per capita) or the number of studied patients. Such contrasting observations have been proposed to depend on the degree of insulin resistance of the patients incorporated in the study. To date, no definitive conclusion can be drawn on the antidiabetic or antiobesity benefits of resveratrol. On the opposite, studies on animal models of diabesity consistently indicated that resveratrol impairs diverse insulin actions in adipocytes, blunting glucose transport, lipogenesis and adipogenesis. Since resveratrol also favours lipolysis and limits the production of proinflammatory adipokines, its administration in rodents results in limitation of fat deposition, activation of hexose uptake into muscle, improvement of insulin sensitivity, and facilitation of glucose disposal. Facing to a somewhat disappointing extrapolation to man of these promising antidiabetic and antiobesity properties, attention must be paid to re-examine resveratrol targets, especially those attainable after polyphenol ingestion and to re-define the responses to low doses. In this context, human adipocytes are proposed as a convenient model for the screening of "novel" polyphenols that can reproduce, out class, or reinforce resveratrol metabolic actions, Moreover, the use of combination of polyphenols is proposed to treat diabesity complications in view of recently reported synergisms. Lastly, multidisciplinar approaches are recommended for future investigations, considering the wide range of polyphenol actions

  12. POLYPHENOL CONTENT AND BIOACTIVITY OF SASKATOON (AMELANCHIER ALNIFOLIA NUTT.) LEAVES AND BERRIES.

    Science.gov (United States)

    Meczarska, Katarzyna; Cyboran-Mikolajczyk, Sylwia; Wloch, Aleksandra; Bonarska-Kujawa, Dorota; Oszmianski, Jan; Kleszczynska, Halina

    2017-03-01

    The studies were designed to determine the polyphenolic composition and biological activity of extracts from fruits (SFE) and leaves (SLE) of Saskatoon (Amelanchier alnifolia Nutt.) in relation to erythrocyte membranes. A detailed quantitative and qualitative analysis of extracts was conducted, using the chro- matographic (UPLC-DAD, UPLC-ESI-MS) and spectrophotometric (Folin-Ciocalteu) methods. The biological activity of the extracts was investigated in relation to erythrocytes and isolated membranes of erythrocytes by using spectrophotometric, fluorimetric and microscopic methods and determined on the basis of hemolytic and antioxidant activity of the extracts and their impact on physical properties of the membrane such as: osmotic resistance, shape of erythrocytes, packing order of the polar head of lipids and fluidity of the membrane. The results showed that the tested extracts are rich sources of polyphenols, primarily from the group of flavonoids; in leaves dominating flavonols and anthocyanins in fruits. The SFE and SLE extracts to varying degree modify the physical properties of the erythrocyte membrane, causing formation of echinocytes, an increase in osmotic resistance and changes in the polar part of the membrane. Furthermore, the substances markedly protect erythrocytes and their membranes against oxidation induced by different physico-chemical factors. The findings indicate that the polyphenolic compounds contained in extracts of Saskatoon do not destroy biological membranes but effectively protect them against oxidation by way of interacting with the membrane surface. The extracts could effectively protect the organism and food products from the harmful effects of free radicals.

  13. Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeeberry® extract

    Directory of Open Access Journals (Sweden)

    Essawet Najmi Ahmed

    2015-01-01

    Full Text Available Kombucha is a traditional beverage obtained by fermenting sweetened black tea with tea fungus, which represents a consortium of acetic acid bacteria and yeasts. Also, CoffeeBerry® products, which derived from the whole fruit of the coffee plant, are valuable ingredients with nutritional and health-enhancing potential. Samples of fermentation broths enriched with CoffeeBerry® extract and traditional Kombucha were analysed. The fermentation was performed in a bioreactor at 28±1°C for nine days. The results showed that the CoffeeBerry® extract has contributed to a faster fermentation of cultivation medium. Some individual polyphenolic compounds and catehins in fermentation broth samples were identified and quantified by High Performance Liquid Chromatography (HPLC. Among the bioactive compounds present in investigated samples obtained during Kombucha fermentation of the sweetened black tea enriched with CoffeeBerry® extract, chlorogenic acid (188.94-458.56 μg/mL was the predominant. The antioxidant activity of investigated samples was tested by measuring their ability to scavenge DPPH and reactive hydroxyl radicals by electron spin resonance (ESR spectroscopy. The scavenging activities on DPPH and hydroxyl radicals were increased with duration of fermentation. IC50 values for Kombucha fermentation broth enriched with CoffeBerry®, based on DPPH and hydroxyl radical scavenging activities, were in the range 26.33-170.13 μL/mL and 11.33-102.22 μL/mL, respectively.

  14. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese.

    Science.gov (United States)

    Henri-Dubernet, Ségolène; Desmasures, Nathalie; Guéguen, Micheline

    2008-03-01

    The diversity and dynamics of Lactobacillus populations in traditional raw milk Camembert cheese were monitored throughout the manufacturing process in 3 dairies. Culture-dependent analysis was carried out on isolates grown on acidified de Man - Rogosa - Sharpe agar and Lactobacillus anaerobic de Man Rogosa Sharpe agar supplemented with vancomycin and bromocresol green media. The isolates were identified by polymerase chain reaction - temperature gradient gel electrophoresis (PCR-TGGE) and (or) species-specific PCR and (or) sequencing, and Lactobacillus paracasei and Lactobacillus plantarum isolates were characterized by pulsed field gel electrophoresis (PFGE). Milk and cheese were subjected to culture-independent analysis by PCR-TGGE. Presumed lactobacilli were detected by plate counts throughout the ripening process. However, molecular analysis of total DNA and DNA of isolates failed to detect Lactobacillus spp. in certain cases. The dominant species in the 3 dairies was L. paracasei. PFGE analysis revealed 21 different profiles among 39 L. paracasei isolates. Lactobacillus plantarum was the second most isolated species, but it occurred nearly exclusively in one dairy. The other species isolated were Lactobacillus parabuchneri, Lactobacillus fermentum, Lactobacillus acidophilus, Lactobacillus helveticus, a Lactobacillus psittaci/delbrueckii subsp. bulgaricus/gallinarum/crispatus group, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, Lactobacillus brevis, Lactobacillus kefiri, and Lactobacillus perolens. Lactobacilli diversity at the strain level was high. Dynamics varied among dairies, and each cheese exhibited a specific picture of species and strains.

  15. Polyphenol-Rich Lentils and Their Health Promoting Effects

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-11-01

    Full Text Available Lentil (Lens culinaris; Family: Fabaceae is a potential functional dietary ingredient which has polyphenol-rich content. Several studies have demonstrated that the consumption of lentil is immensely connected to the reduction in the incidence of diseases such as diabetes, obesity, cancers and cardiovascular diseases due to its bioactive compounds. There has been increasing scientific interest in the study area of lentils as the functional food due to its high nutritive value, polyphenols, and other bioactive compounds. These polyphenols and the bioactive compounds found in lentil play an important role in the prevention of those degenerative diseases in humans. Besides that, it has health-promoting effects. Based on the in vitro, in-vivo and clinical studies, the present review focuses to provide more information on the nutritional compositions, bioactive compounds including polyphenols and health-promoting effects of lentils. Health-promoting information was gathered and orchestrated at a suitable place in the review.

  16. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    Science.gov (United States)

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  17. Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities

    Directory of Open Access Journals (Sweden)

    Sanna V

    2014-10-01

    Full Text Available Vanna Sanna,1,2 Nicolino Pala,1 Giuseppina Dessì,1 Paola Manconi,1 Alberto Mariani,1 Sonia Dedola,3 Mauro Rassu,3 Claudia Crosio,3 Ciro Iaccarino,3 Mario Sechi1,2 1Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy; 2Laboratory of Nanomedicine, Department of Chemistry and Pharmacy, University of Sassari, c/o Porto Conte Ricerche, Tramariglio, Alghero, Italy; 3Department of Biomedical Sciences, University of Sassari, Sassari, Italy Background: Gold nanoparticles (GNPs are likely to provide an attractive platform for combining a variety of biophysicochemical properties into a unified nanodevice with great therapeutic potential. In this study we investigated the capabilities of three different natural polyphenols, epigallocatechin-3-gallate (EGCG, resveratrol (RSV, and fisetin (FS, to allow synergistic chemical reduction of gold salts to GNPs and stabilization in a single-step green process. Moreover, antioxidant properties of the nanosystems, as well as preliminary antiproliferative activity and apoptotic process investigation of model EGCG-GNPs on stable clones of neuroblastoma SH-SY5Y cells expressing CFP-DEVD-YFP reporter, were examined. Methods: The GNPs were characterized by physicochemical techniques, polyphenol content, and in vitro stability. The antioxidant activity of the GNPs was also determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid cation (ABTS radical-scavenging assays. Stable clones of neuronal SH-SY5Y-CFP-DEVD-YFP were generated and characterized, and cell viability after treatment with EGCG-GNPs was assessed after 72 hours through a 3(4,5-dimethylthiazol-2yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium assay. Activation of the apoptotic pathways was also investigated by Western blot analysis. Results: With a diameter in the size range of 10–25 nm, the obtained nanoparticles (NPs were found to contain 2.71%, 3.23%, and 5.47% of EGCG

  18. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mutiu Idowu Kazeem

    2013-01-01

    Full Text Available This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg diabetic rats significantly reduced (P<0.05 the fasting blood glucose compared to control groups. There was significant increase (P<0.05 in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase in the liver of the rats treated with it and significantly reduced (P<0.05 the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  19. Polyphenol profiles of French cider apple varieties (Malus domestica sp.).

    Science.gov (United States)

    Sanoner, P; Guyot, S; Marnet, N; Molle, D; Drilleau, J P

    1999-12-01

    The cortex of 14 French apple varieties (12 cider and 2 juice varieties), one English cider variety, and one dessert apple (i.e., Golden Delicious) were studied for their polyphenol composition. Total polyphenols were assayed by the Folin-Ciocalteu method, and the precise polyphenolic composition (monomeric catechins, proanthocyanidins, hydroxycinnamic acids, and dihydrochalcones) was obtained by HPLC following thiolysis. ESI-MS and ESI-MS/MS analyses showed that chlorogenic acid and p-coumaroylquinic acid were methylated under the conditions of thiolysis. Depending on the variety, the global polyphenol concentration varied from 1 to 7 g per kilogram of fresh cortex. Cider varieties globally showed a higher polyphenol concentration than the dessert apple Golden Delicious, bitter varieties being the more concentrated. The proportion of the polyphenol classes varied greatly from one cultivar to another. For all varieties, procyanidins were always the predominant class. They were mainly constituted of (-)-epicatechin units with a small proportion of (+)-catechin as a terminal unit. The average degree of polymerization ranged between 4.2 and 7.5 depending upon the variety with an exception for the sharp varieties Guillevic and Avrolles which showed significant concentrations of procyanidins with DPn of 40 and 50, respectively.

  20. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.

    Science.gov (United States)

    Kostyuk, Vladimir A; Potapovich, Alla I; Suhan, Tatyana O; de Luca, Chiara; Korkina, Liudmila G

    2011-05-11

    Oxidized low-density lipoproteins (oxLDL) play a critical role in the initiation of atherosclerosis through activation of inflammatory signaling. In the present work we investigated the role of antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Significant decrease in intracellular NO level and superoxide overproduction was found in human umbilical vein endothelial cells (HUVEC) treated with oxLDL, but not with LDL. The redox imbalance was prevented by the addition of quercetin or resveratrol. Expression analysis of 14 genes associated with oxidative stress and inflammation revealed oxLDL-mediated up-regulation of genes specifically involved in leukocyte recruitment and adhesion. This up-regulation could be partially avoided by the addition of verbascoside or resveratrol, while treatment with quercetin resulted in a further increase in the expression of these genes. Lipopolysaccharide (LPS)-treated HUVEC were also used for the evaluation of anti-inflammatory potency of plant polyphenols. Significant differences between HUVEC treaded with oxLDL and LPS were found in both the expression pattern of inflammation-related genes and the effects of plant polyphenols on cellular responses. The present data indicate that plant polyphenols may affect vascular inflammation not only as antioxidants but also as modulators of inflammatory redox signaling pathways. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  1. Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products.

    Science.gov (United States)

    Andrighetto, C; De Dea, P; Lombardi, A; Neviani, E; Rossetti, L; Giraffa, G

    1998-10-01

    Twenty-five strains of thermophilic lactobacilli isolated from yoghurt and from semi-hard and hard cheeses (in parallel with nine type or reference strains) were identified and grouped according to their genetic relatedness. Strains were identified by sugar fermentation patterns using the "API 50 CHL" galleries, by species-specific DNA probes in dot-blot hybridization experiments, by amplification and restriction analysis of the 16S rRNA gene (ARDRA) and by polymerase chain reaction (PCR) using species-specific oligonucleotide primers. Strains were classified as Lactobacillus delbrueckii subsp. lactis and subsp. bulgaricus, L. helveticus, and L. acidophilus. Strains which were atypical by sugar fermentation patterns were also identified. Most of the strains could not be grouped using carbohydrate fermentation profiles. PCR fingerprinting was used to identify DNA profiles for the 25 lactobacilli. Experimentally obtained PCR profiles enabled discrimination of all strains, which were grouped according to the similarities in their combined patterns. In general, the clustering of the strains corresponded well with species delineation obtained by molecular identification. The dendrogram of genetic relatedness enabled the unambiguous identification of most of the strains which were shown to be atypical by the sugar fermentation profile, except for a discrepancy in one L. delbrueckii subsp. lactis strain and one atypical Lactobacillus sp. strain.

  2. Features of fiber fermentation under bifidobacteria and lactobacilli (in vitro

    Directory of Open Access Journals (Sweden)

    Sedakova Valentina

    2016-02-01

    Full Text Available The article presents experimental data on the study of fermentation of dietary fibers of different origin under the action of bifidobacteria and lactobacilli. Citrus and apple pectin, flax fiber and glucose were used as substrate. The dynamics of the process was determined by the dependence of the content of short-chain fatty acids (propionic, butyric, valeric in the analyzed systems on time. Qualitative and quantitative composition of shot-chain fatty acids were determined by gas chromatography. It was found that the amount of metabolites (propionic, butyric and isovaleric acids depends both on the type of the fermentable substrate, and the type of bacteria used for fermentation.

  3. Polyphenols from red wine are potent modulators of innate and adaptive immune responsiveness.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2010-08-01

    It is well known that the consumption of dietary polyphenols leads to beneficial effects for human health as in the case of prevention and/or attenuation of cardiovascular, inflammatory, neurodegenerative and neoplastic diseases. This review summarizes the role of polyphenols from red wine in the immune function. In particular, using healthy human peripheral blood mononuclear cells, we have demonstrated the in vitro ability of Negroamaro, an Italian red wine, to induce the release of nitric oxide and both pro-inflammatory and anti-inflammatory cytokines, thus leading to the maintenance of the immmune homeostasis in the host. All these effects were abrogated by deprivation of polyphenols from red wine samples. We have also provided evidence that Negromaro polyphenols are able to activate extracellular regulated kinase and p38 kinase and switch off the NF-kappaB pathway via an increased expression with time of the IkappaBalpha phosphorylated form. These mechanisms may represent key molecular events leading to inhibition of the pro-inflammatory cascade and atherogenesis. In conclusion, according to the current literature and our own data, moderate consumption of red wine seems to be protective for the host in the prevention of several diseases, even including aged-related diseases by virtue of its immunomodulating properties.

  4. Polyphenol-enriched berry extracts naturally modulate reactive proteins in model foods.

    Science.gov (United States)

    Lila, Mary Ann; Schneider, Maggie; Devlin, Amy; Plundrich, Nathalie; Laster, Scott; Foegeding, E Allen

    2017-12-13

    Healthy foods like polyphenol-rich berries and high quality edible proteins are in demand in today's functional food marketplace, but it can be difficult to formulate convenient food products with physiologically-relevant amounts of these ingredients and still maintain product quality. In part, this is because proteins can interact with other food ingredients and precipitate destabilizing events, which can disrupt food structure and diminish shelf life. Proteins in foods can also interact with human receptors to provoke adverse consequences such as allergies. When proteins and polyphenols were pre-aggregated into stable colloidal particles prior to use as ingredients, highly palatable food formulations (with reduced astringency of polyphenols) could be prepared, and the overall structural properties of food formulations were significantly improved. All of the nutritive and phytoactive benefits of the proteins and concentrated polyphenols remained highly bioavailable, but the protein molecules in the particle matrix did not self-aggregate into networks or react with other food ingredients. Both the drainage half-life (a marker of structural stability) and the yield stress (resistance to flow) of model foams made with the protein-polyphenol particles were increased in a dose-dependent manner. Of high significance in this complexation process, the reactive allergenic epitopes of certain proteins were effectively blunted by binding with polyphenols, attenuating the allergenicity of the food proteins. Porcine macrophages produced TNF-α proinflammatory cytokine when provoked with whey protein, but, this response was blocked completely when the cells were stimulated with particles that complexed whey protein with cinnamon-derived polyphenols. Cytokine and chemokine production characteristic of allergic reactions were blocked by the polyphenols, allowing for the potential creation of hypoallergenic protein-berry polyphenol enriched foods.

  5. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents.

    Science.gov (United States)

    Costa, Gustavo; Ferreira, João Pinto; Vitorino, Carla; Pina, Maria Eugénia; Sousa, João José; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2016-02-03

    A variety of plant polyphenols have been reported to have anti-inflammatory, frequently associated with erythema, edema, hyperplasia, skin photoaging and photocarcinogenesis. Cymbopogon citratus (DC). Stapf (Poaceae) is a worldwide known medicinal plant, used in traditional medicine in inflammation-related conditions. In this work, the anti-inflammatory potential of C. citratus infusion (CcI) and its polyphenols as topical agents was evaluated in vivo. The plant extract was prepared and its fractioning led two polyphenol-rich fractions: flavonoids fraction (CcF) and tannins fraction (CcT). An oil/water emulsion was developed with each active (CcI, CcF+CcT and diclofenac), pH and texture having been evaluated. Release tests were further performed using static Franz diffusion cells and all collected samples were monitored by HPLC-PDA. In vivo topical anti-inflammatory activity evaluation was performed by the carrageenan-induced rat paw edema model. The texture analysis revealed statistically significant differences for all tested parameters to CcF+CcT, supporting its topical application. Release experiments lead to the detection of the phenolic compounds from each sample in the receptor medium and the six major flavonoids were quantified, by HPLC-PDA: carlinoside, isoorientin, cynaroside, luteolin 7-O-neohesperidoside, kurilesin A and cassiaoccidentalin B. The CcF+CcT formulation prompted to the higher release rate for all these flavonoids. CcI4%, CcI1% and CcF+CcT exhibited an edema reduction of 43.18, 29.55 and 59.09%, respectively. Our findings highlight that CcI, containing luteolin 7-O-neohesperidoside, cassiaoccidentalin B, carlinoside, cynaroside and tannins have a potential anti-inflammatory topical activity, suggesting their promising application in the treatment of skin inflammatory pathologies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Evaluation of total polyphenol content and antioxidant capacity of different verity lupin seeds

    Directory of Open Access Journals (Sweden)

    Ismael Sulaiman Dalaram

    2017-01-01

    Full Text Available Legumes, including lupins, beans, lentil and chickpea, are one of the most important crops in the world because of their nutritional quality. Lupin seeds have been used as human food and animal feed since ancient times. It was known that antioxidant photochemical in foods have many health benefits including prevention of various diseases associated with oxidative stress such as cancer, cardiovascular disease, neuro-degeneration and diabetes. Lupin grains are rich sources of complex carbohydrates, protein, vitamins and minerals. Antioxidants can be found naturally in foods. Total polyphenols content and antioxidant activity were measured in four varieties of lupin, namely in white lupin, blue lupin, yellow lupin and Mutabilis lupin species. A majority of antioxidants naturally present in foods occur in phenolic structures and especially in flavonoid structures. The content of the total polyphenols was determined by using the Folin-Ciocalteu reagent (FCR. Antioxidant activity was measured by using a compound DPPH˙ (2.2-diphenyl-1-picrylhydrazyl. In the present experiment according to the average contents of total polyphenols (TPC in dry matter of lupin seeds there was the following line: L. Angustifolius (blue lupin (696.212 mg GAE.100g-1 > L. Albus (white lupin (614.13 mg GAE.100g-1 > L. Luteus (yellow lupin (467.78 mg GAE.100g-1 > L. Mutabilis (pearl lupin (367.36 mg GAE.100g-1. Based on the measured values of total antioxidant capacity (TAC of lupin samples can be classified as follows: L. Albus (white lupin (43.44% >L. Angustifolius (blue lupin (38.27% >L. Luteus (yellow lupin (22.29% >L. Mutabilis (Pearl lupin (20.80%. The relationship of antioxidant capacity with total polyphenolic was discussed. According to used statistical analyzes. Correlation between the phenolic contents and antioxidant capacity was significantly positive (r = 0.88. Our results confirmed that legumes can be a good source of bioactive compounds in the human nutrition

  7. Polyphenols from the Mediterranean herb rosemary (Rosmarinus officinalis for prostate cancer

    Directory of Open Access Journals (Sweden)

    Sakina M Petiwala

    2013-03-01

    Full Text Available The Mediterranean diet is rich in fruits and vegetables and has been associated with a variety of health benefits including cancer prevention. One aspect of the diet that has not received enough attention is Mediterranean herbs. Specifically, rosemary and its polyphenolic diterpenes (carnosic acid and carnosol are known to possess antioxidant activity that may be beneficial for cancer control. Herein, we describe the in vitro and in vivo studies carried out towards understanding the molecular mechanisms of carnosic acid and carnosol leading to inhibition of prostate cancer. The reported findings suggest that these polyphenols target multiple signaling pathways involved in cell cycle modulation and apoptosis. Further work is required to understand its potential for health promotion and potential drug discovery for prostate cancer chemoprevention.

  8. Polyphenols as Key Players for the Antileukaemic Effects of Propolis

    Directory of Open Access Journals (Sweden)

    Murtala B. Abubakar

    2014-01-01

    Full Text Available Propolis (a bee product which has a long history of medicinal use by humans has attracted a great deal of research interest in the recent time; this is due to its widely reported biological activities such as antiviral, antifungal, antibacterial, anti-inflammatory, antioxidant, and anticarcinogenic properties. Crude form of propolis and its phenolic contents have both been reported to exhibit antileukaemic effects in various leukaemia cell lines. The ability of the polyphenols found in propolis to arrest cell cycle and induce apoptosis and differentiation in addition to inhibition of cell growth and proliferation makes them promising antileukaemic agents, and hence, they are believed to be a key to the antileukaemic effects of propolis in different types of leukaemia. This paper reviews the molecular bases of antileukaemic activity of both crude propolis and individual polyphenols on various leukaemia cell lines, and it indicates that propolis has the potential to be used in both treatment and prevention of leukaemia. This however needs further evaluation by in vitro, in vivo, and epidemiological studies as well as clinical trials.

  9. Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-07-01

    Full Text Available This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.

  10. Strategies for the extraction and analysis of non-extractable polyphenols from plants.

    Science.gov (United States)

    Domínguez-Rodríguez, Gloria; Marina, María Luisa; Plaza, Merichel

    2017-09-08

    The majority of studies based on phenolic compounds from plants are focused on the extractable fraction derived from an aqueous or aqueous-organic extraction. However, an important fraction of polyphenols is ignored due to the fact that they remain retained in the residue of extraction. They are the so-called non-extractable polyphenols (NEPs) which are high molecular weight polymeric polyphenols or individual low molecular weight phenolics associated to macromolecules. The scarce information available about NEPs shows that these compounds possess interesting biological activities. That is why the interest about the study of these compounds has been increasing in the last years. Furthermore, the extraction and characterization of NEPs are considered a challenge because the developed analytical methodologies present some limitations. Thus, the present literature review summarizes current knowledge of NEPs and the different methodologies for the extraction of these compounds, with a particular focus on hydrolysis treatments. Besides, this review provides information on the most recent developments in the purification, separation, identification and quantification of NEPs from plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Short-term consumption of probiotic lactobacilli has no effect on acid production of supragingival plaque

    DEFF Research Database (Denmark)

    Marttinen, Aino; Haukioja, Anna; Karjalainen, Sára

    2011-01-01

    . reuteri SD2112 and PTA 5289 for 2 weeks. At baseline and at the end of each tablet period, all available supragingival plaque was collected. Lactic acid production was determined from a fixed volume (8 µl) of fresh plaque and the rest of the plaque was used for culturing MS and lactobacilli. The retention...

  12. Physiological effects of chicory root preparations with various levels of fructan and polyphenolic fractions in diets for rats.

    Science.gov (United States)

    Juśkiewicz, Jerzy; Zary-Sikorska, Ewa; Zduńczyk, Zenon; Król, Bogusław; Jurgoński, Adam

    2011-02-01

    The experiment was aimed at studying the effects of easily fermentable oligosaccharides and phenolic compounds from chicory root meal (CRM) on the fermentative processes in the caecum, the antioxidative status and the lipoprotein profile of rats. Five different diets were fed ad libitum to 40 Wistar rats (eight animals per group, individually housed): a control group (C); group PCM (10% processed CRM, deprived of polyphenolic fraction); group PCMO (8% processed CRM and 1.6% oligofructose); group UCM (10% unprocessed CRM); and group FP (8.3% fructan-polyphenol concentrate from CRM). Diets PCM, PCMO, UCM and FP induced favourable metabolic changes in the caecum, blood lipid profile and the antioxidative status of the body. In the caecum, the experimental diets increased the production of volatile fatty acids (VFA) and acidification of digesta as well as a decrease in the ammonia concentration and bacterial beta-glucuronidase activity. In blood serum, the total cholesterol concentration was reduced and, simultaneously, the proportion of HDL in the total cholesterol concentration was increased. The presence of the polyphenolic fraction in the unprocessed meal (diets UCM and FP) evoked a significant increase in the total antioxidative status in blood serum. Dietary fibre and the polyphenolic fraction present in diet UCM and the FOS-polyphenol concentrate in diet FP did not exhibit an antagonistic activity regarding the physiological parameters analysed, except for in the intensity of caecal fermentation. The results of the experiment point to the benefits of dietary supplementation with chicory preparations containing both prebiotic saccharides and polyphenolic compounds, which enable us to take advantage of the physiological traits of both components.

  13. Haematological and biochemical effects of polyphenolics in animal models.

    Science.gov (United States)

    Gnanamani, Arumugam; Sudha, Munusamy; Deepa, G; Sudha, M; Deivanai, K; Sadulla, S

    2008-07-01

    Polyphenols of natural and synthetic origin are exploited in tanning sector to convert putrescible skin/hide to non-putrescible leather. However, only 30-40% of the inputs have been taken up for processing, the remaining is released as unspent. The existing conventional wastewater treatment systems are inefficient in removing or degrading these unspent polyphenols and thus detrimental to ecosystem. The present study demonstrates the evaluation of impact of both synthetic and natural polyphenols on biochemical and haematological properties of blood and serum in animal models. The results reveal that concentrations of polyphenols play a major role. At higher concentrations, irrespective of their nature, there was a marked change in the lipid profile (81% reduction), followed by insignificant change in glucose levels, RBC and WBC counts and other haematological parameters. At lower concentrations, no significant changes in the above said properties were observed.

  14. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas

    Directory of Open Access Journals (Sweden)

    Shelly Coe

    2013-01-01

    Full Text Available Tea (Camellia sinensis is a widely consumed beverage and recognised for its potential enhancing effect on human health due to its rich polyphenol content. While a number of studies have investigated the quantity and type of polyphenols present in different tea samples, no study has reported the potential effect of digestive enzymes on the availability of tea polyphenols for human absorption or the subsequent impact on glycaemic response. The objectives of the present study were to assess the total polyphenol content of different teas, to assess the bioaccessibility of polyphenols in whole and bagged teas, and to determine the effect of black, white, and green tea infusions on sugar release. All of the teas were a significant source of polyphenols (10–116 mg Gallic acid equivalents/g. There was an overall increase in the release of polyphenols from both the bagged and the whole teas following in vitro digestion. Bagged green tea significantly ( reduced rapidly digestible starch from white bread samples compared to control and black and white bagged teas. The present study confirms that tea is a rich source of polyphenols and highlights the potential benefits it may have on modulating glycaemic response in humans.

  15. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production

    Directory of Open Access Journals (Sweden)

    Georgia Saxami

    2016-05-01

    Full Text Available A molecular method for efficient and accurate detection and identification of two potential probiotic lactobacilli strains isolated from fermented olives, namely Lactobacillus pentosus B281 and Lb. plantarum B282, was developed in the present study. Random Amplified Polymorphic DNA (RAPD analysis was performed, and strain specific primers were designed and applied in a multiplex polymerase chain reaction (PCR assay. The specificity of the assay was tested and successfully confirmed in 27 and 22 lactobacilli strains for Lb. pentosus B281 and Lb. plantarum B282, respectively. Moreover, the two strains were used as starter cultures in yogurt production. Cell enumeration followed by multiplex PCR analysis demonstrated that the two strains were present in yogurt samples at levels ≥6 log CFU/g even after 35 days of storage at 4 °C. Microbiological analysis showed that lactobacilli and streptococci were present within usual levels, whereas enterobacteriaceae and yeast/mold counts were not detected as expected. Although the pH values of the novel products were slightly lower than the control ones, the yogurt containing the probiotic cultures scored similar values compared to the control in a series of sensory tests. Overall, these results demonstrated the possible use of the two strains as starter adjuncts in the production of yogurt with potential probiotic properties.

  16. Expression analysis of polyphenol oxidase isozymes by active staining method and tissue browning of head lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Noda, Takahiro; Iimure, Kazuhiko; Okamoto, Shunsuke; Saito, Akira

    2017-08-01

    Browning of plant tissue is generally considered attributable to enzymatic oxidation by polyphenol oxidase (PPO). Electrophoresis followed by activity staining has been used as an effective procedure to visually detect and isolate isozymes; however, it has not been applied for examination of various PPO isozymes in lettuce. Our study demonstrated that different lettuce PPO isozymes could be detected at different pH in active staining, and multiple isozymes were detected only under alkaline conditions. As a result, we concluded that activity staining with approximately pH 8 enabled to detect various PPO isozymes in lettuce. By expression analysis of the PPO isozymes after wounding, PPO isozymes that correlated with time-course of tissue browning were detected. The wound-induced PPO may play a key role in enzymatic browning.

  17. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on variety, growing region, and processing operations: a review.

    Science.gov (United States)

    Oracz, Joanna; Zyzelewicz, Dorota; Nebesny, Ewa

    2015-01-01

    Polyphenols form the largest group of compounds among natural antioxidants, which largely affect the overall antioxidant and anti-free radical activity of cocoa beans. The qualitative and quantitative composition of individual fractions of polyphenolic compounds, even within one species, is very diverse and depends on many factors, mainly on the area of cocoa trees cultivation, bean maturity, climatic conditions during growth, and the harvest season and storage time after harvest. Thermal processing of cocoa beans and cocoa derivative products at relatively high temperatures may in addition to favorable physicochemical, microbiological, and organoleptic changes result in a decrease of polyphenols concentration. Technological processing of cocoa beans negatively affects the content of polyphenolic compounds.

  18. ANTIOXIDANT ACTIVITY AND POLYPHENOL CONTENT OF MALT BEVERAGES ENRICHED WITH BEE POLLEN

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2014-02-01

    Full Text Available In food industry, especially among the brewers, using of natural ingredients is increasingly growing demand. Beer is one of the most popular beverages in the world with evident positive effects on the overall health condition. It can be used as a base for developing a variety of products with specific physiological activity. Bee pollen is considered to be one of the possible sources of active ingredients for that purpose. Activity of phenolic and flavonoid compounds in bee pollen can contribute to the antioxidant potential of beer. The objective of this study was to examine the influence of different types and content of bee pollen on the antioxidant properties of malt beverages and to compare phenolic and flavonoid profiles. The technological process of malt beverages preparation with addition of bee pollen was also verified. It was found out that all beverages enriched with bee pollen had higher polyphenol, flavonoid content and antioxidant potential than control sample – pure wort. The higher antioxidant activities of all extracts was measured in sample R2 - wort with 0.6% of dry rapeseed pollen and sample R4 - wort with 0.6% of frozen rapeseed pollen. The higher phenolic content than in other samples was measured in sample M4 - wort with 0.6% of frozen poppy pollen and sample M1 - wort with 0.256% of dry poppy pollen. Higher total flavonoid content was found out in sample M2 - wort with 0.6% of dry poppy pollen and M4 - wort with 0.6% of frozen poppy pollen. In conclusion, the most noticeable results of antioxidant activity, phenolic and flavonoid content were achieved in samples with higher 0.6% addition of bee pollen, mostly poppy (Papaver somniferum L. pollen.

  19. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols.

    Science.gov (United States)

    Guo, XiaoXuan; Sha, XiaoHong; Rahman, Ebeydulla; Wang, Yong; Ji, BaoPing; Wu, Wei; Zhou, Feng

    2018-03-01

    Millet bran, the by-product of millet processing industry, contains an abundance of phytochemicals, especially polyphenols. The main objective of this study was brewing antioxidant wine from millet bran, as well as the nutritional evaluation. The total polyphenol content of wine samples was determined by Folin-Ciocalteu colorimetric method, and the antioxidant capacity was evaluated by DPPH radical-scavenging capacity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). Results showed that millet bran wine (MBW) contained as much as six times of total polyphenols compared with millet wine (MW), and performed considerably stronger antioxidant activity in DPPH, TEAC and FRAP assays. More than sixfold of total amino acids (AA) were found in MBW than in MW. Moreover, the indispensable AA and functional AA were also abundant in MBW. The major polyphenol compounds in MBW were identified using HPLC, including vanillic acid, syringic acid (SA), p -coumaric acid (CA) and ferulic acid (FA). They exhibited synergism in the antioxidant assays, especially the combinations of SA and CA, SA and FA. This study not only provides evidence for MBW as a nutraceutical with antioxidant activity, but also opens new avenues in the area of making comprehensive utilization of agricultural by-products.

  20. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, S., E-mail: sara.ferraris@polito.it [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Miola, M. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Cochis, A.; Azzimonti, B.; Rimondini, L. [Department of Health Sciences, Università del Piemonte Orientale UPO, Via Solaroli 17, 28100, Novara (Italy); Prenesti, E. [Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, Torino, 10125 (Italy); Vernè, E. [Department of Applied Science and Technology, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129, Torino (Italy)

    2017-02-28

    Highlights: • Gallic acid and natural polyphenols were grafted onto bioactive glasses. • Grafting ability was dependent on glass reactivity. • In situ reduction of silver nanoparticles was performed onto functionalized glasses. • Bioactive glasses decorated with silver nanoparticles showed antibacterial activity. - Abstract: The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules – showing reducing ability to directly obtain in situ metallic silver – and silver nanoparticles was investigated by means of UV–vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  1. Effect of lipolytic activity of Candida adriatica, Candida diddensiae and Yamadazyma terventina on the acidity of extra-virgin olive oil with a different polyphenol and water content.

    Science.gov (United States)

    Ciafardini, G; Zullo, B A

    2015-05-01

    Previous microbiological research demonstrated the presence of a rich micro-flora composed mainly of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered harmful as they can damage the quality of the olive oil through the hydrolysis of the triacylglycerols. Present research has demonstrated that the lipolytic activity of some lipase-producer strains belonging to a yeast species called Candida adriatica, Candida diddensiae and Yamadazyma terventina can be modulated by the water and the polyphenol content of olive oil. Laboratory tests highlighted a substantial increase in free fatty acid in the inoculated olive oil characterized by high water content and low polyphenol concentration. The acidity of the olive oil samples containing 0.06% and 0.31% of water increased significantly by 33% in the lipase-producer yeast strains tested during a period of 2 weeks of incubation at 30 °C. All other yeasts showed strong lipolytic activity in the presence of 1.31% of water - the only exception to this was the C. adriatica 1985 strain. The phenolic compounds typical of olive oil represent another important factor able to condition the viability and the lipolytic activity of the lipase-producer yeasts. From the tests performed on the olive oil characterized by an increasing content of total polyphenols equal to 84, 150 and 510 mg per kg of oil, the percentage of the lipase-producer yeasts able to hydrolyse the triacylglycerols was respectively 100%, 67% and 11%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Modulation of endogenous antioxidant system by wine polyphenols in human disease.

    Science.gov (United States)

    Rodrigo, Ramón; Miranda, Andrés; Vergara, Leonardo

    2011-02-20

    Numerous studies indicate that moderate red wine consumption is associated with a protective effect against all-cause mortality. Since oxidative stress constitutes a unifying mechanism of injury of many types of disease processes, it should be expected that polyphenolic antioxidants account for this beneficial effect. Nevertheless, beyond the well-known antioxidant properties of these compounds, they may exert several other protective mechanisms. Indeed, the overall protective effect of polyphenols is due to their large array of biological actions, such as free radical-scavenging, metal chelation, enzyme modulation, cell signalling pathways modulation and gene expression effects, among others. Wine possesses a variety of polyphenols, being resveratrol its most outstanding representative, due to its pleiotropic biological properties. The presence of ethanol in wine aids to polyphenol absorption, thereby contributing to their bioavailability. Before absorption, polyphenols must be hydrolyzed by intestinal enzymes or by colonic microflora. Then, they undergo intestinal and liver metabolism. There have been no reported polyphenol adverse effects derived from intakes currently associated with the normal diet. However, supplements for health-protection should be cautiously used as no level definition has been given to make sure the dose is safe. The role of oxidative stress and the beneficial effects of wine polyphenols against cardiovascular, cancer, diabetes, microbial, inflammatory, neurodegenerative and kidney diseases and ageing are reviewed. Future large scale randomized clinical trials should be conducted to fully establish the therapeutic use of each individual wine polyphenol against human disease. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    Science.gov (United States)

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  4. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    International Nuclear Information System (INIS)

    Paini, Marco; Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia; Ruggiero, Carmelina; Pastorino, Laura

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment

  5. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery

    Energy Technology Data Exchange (ETDEWEB)

    Paini, Marco, E-mail: marco.paini@unige.it [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Aliakbarian, Bahar; Casazza, Alessandro A.; Perego, Patrizia [Department of Civil, Chemical and Environmental Engineering, University of Genoa, via Opera Pia 15, 16145 Genoa (Italy); Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity (BELONG), Via Montallegro 1, 16145 Genoa (Italy); Ruggiero, Carmelina; Pastorino, Laura [Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa (Italy)

    2015-01-01

    Polysaccharide-based nanostructured polymeric microcapsules were fabricated by the electrostatic layer-by-layer self-assembly technique and used to encapsulate mixtures of four different polyphenols in order to achieve their controlled release. The real-time fabrication of the dextran/chitosan multilayer was monitored by quartz crystal microbalance with dissipation monitoring, and the morphology of the nanostructured polymeric capsules was characterized by scanning electron microscopy. The polyphenol encapsulation was obtained by reversible permeability variation of the capsule shell in ethanol:water mixtures. The loading efficiency in different water:ethanol mixtures and the release rate in acidic conditions were characterized by UV spectroscopy and HPLC. The higher loading efficiency was obtained with an ethanol:water 35:65 phenolic solution, equal to 42.0 ± 0.6%, with a total release of 11.5 ± 0.7 mg of total polyphenols per 11.3 μL of microcapsules after 240 min of incubation in acidic environment. The results suggest that polysaccharide-based capsules can be successfully used to encapsulate and release low water-soluble molecules, such as polyphenols. - Highlights: • Chitosan/dextran nanocapsules were made by layer-by-layer self-assembly technique. • Different ethanol:water mixtures of four polyphenols were encapsulated. • An encapsulation efficiency of 42.0 ± 0.6% was obtained using ethanol:water 35:65. • Release profiles in acidic environment were monitored by UV spectroscopy and HPLC. • Nanocapsules had shown a complete release after 60 min in acidic environment.

  6. Optimization and validation of Folin-Ciocalteu method for the determination of total polyphenol content of Pu-erh tea.

    Science.gov (United States)

    Musci, Marilena; Yao, Shicong

    2017-12-01

    Pu-erh tea is a post-fermented tea that has recently gained popularity worldwide, due to potential health benefits related to the antioxidant activity resulting from its high polyphenolic content. The Folin-Ciocalteu method is a simple, rapid, and inexpensive assay widely applied for the determination of total polyphenol content. Over the past years, it has been subjected to many modifications, often without any systematic optimization or validation. In our study, we sought to optimize the Folin-Ciocalteu method, evaluate quality parameters including linearity, precision and stability, and then apply the optimized model to determine the total polyphenol content of 57 Chinese teas, including green tea, aged and ripened Pu-erh tea. Our optimized Folin-Ciocalteu method reduced analysis time, allowed for the analysis of a large number of samples, to discriminate among the different teas, and to assess the effect of the post-fermentation process on polyphenol content.

  7. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Science.gov (United States)

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  8. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Directory of Open Access Journals (Sweden)

    Fenglin Gu

    2018-02-01

    Full Text Available Black pepper (Piper nigrum L. is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC and ultraviolet-visible and visible (UV-Vis spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  9. Effect of storage time and temperature of equine feces on the subsequent enumeration of lactobacilli and cellulolytic bacteria

    Science.gov (United States)

    Cellulolytic bacteria and lactobacilli are beneficial microbes in the equine hindgut. There are several existing methodologies for the enumeration of these bacteria, which vary based on selective and differential media and sample handling procedures including storage time and temperature. The object...

  10. Effect of complex polyphenols on colon carcinogenesis.

    Science.gov (United States)

    Caderni, G; Remy, S; Cheynier, V; Morozzi, G; Dolara, P

    1999-06-01

    Complex polyphenols and tannins from wine (WCPT) are being considered increasingly as potential cancer chemopreventive agents, since epidemiological studies suggest that populations consuming a high amount of polyphenols in the diet may have a lower incidence of some types of cancer. We studied the effect of WCPT on a series of parameters related to colon carcinogenesis in rats. WCPT were administered to F344 rats at a dose of 14 or 57 mg/kg/d, mixed with the diet. The higher dose is about ten times the exposure to polyphenols of a moderate drinker of red wine. In rats treated with WCPT, we measured fecal bile acids and long chain fatty acids, colon mucosa cell proliferation, apoptosis and, after administration of colon carcinogens, the number and size of aberrant crypt foci (ACF) and nuclear aberrations. Colon mucosa proliferation was not varied by chronic administration (90 d) of WCPT (14 or 57 mg/kg/d). The highest dose of WCPT decreased the number of cells in the colon crypts, but did not increase apoptosis. WCPT (57 mg/kg) administered before or after the administration of azoxymethane (AOM) did not vary the number or multiplicity of ACF in the colon. The number of nuclear aberrations (NA) in colon mucosa was studied after administration of 1,2-dimethylhydrazine (DMH) and 2-amino-3-methylimidazo (4,5-f)quinoline (IQ), colon-specific carcinogens which require metabolic activation. The effect of DMH and IQ was not varied by pre-feeding WCPT (57 mg/kg) for 10 d. Similarly, the levels of total, secondary bile acids and long chain fatty acids did not varied significantly in animals fed WCPT for 90 d. WCPT administration does not influence parameters related to colon carcinogenesis in the rat.

  11. Apple polyphenols extract (APE) improves colon damage in a rat model of colitis.

    Science.gov (United States)

    D'Argenio, Giuseppe; Mazzone, Giovanna; Tuccillo, Concetta; Ribecco, Maria T; Graziani, Giulia; Gravina, Antonietta G; Caserta, Sergio; Guido, Stefano; Fogliano, Vincenzo; Caporaso, Nicola; Romano, Marco

    2012-07-01

    Searching for alternative therapies that are effective, safe and less expensive of those currently used for ulcerative colitis, we investigated the efficacy of a polyphenol extract from apple in rat colitis. Rats with trinitrobenzensulphonic acid-induced colitis were treated daily with rectal administration of apple polyphenols 10(-4) M for 14 days. COX-2, TNF-α, tissue transglutaminase and calpain in colon mucosa samples were assessed by reverse transcription-polymerase chain reaction and western blot analyses. To ascertain the role of tissue transglutaminase in mucosal healing, wounded rat fibroblasts were incubated with cystamine (a tissue transglutaminase activity inhibitor). Colitis was associated with increased COX-2, TNF-α, calpain, and tissue transglutaminase mRNA. The protein expression of COX-2, TNF-α and calpain was increased whilst tissue transglutaminase was decreased. Apple extract treatment reduced the severity of colitis (pApple polyphenols reduced the degradation of tissue transglutaminase protein occurring through calpain action. Apple polyphenols-treated wounded fibroblast recovered within 24h showing intense immunoreactivity for tissue transglutaminase. The efficacy of apple extract is mediated by its effects on COX-2 and TNF-α. The unbalance between calpain and tissue transglutaminase may play a role in colonic damage and future therapeutic interventions in ulcerative colitis can target this mechanisms. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. Polyphenols as potential therapeutical agents against cardiovascular diseases.

    Science.gov (United States)

    Curin, Yann; Andriantsitohaina, Ramaroson

    2005-01-01

    Increasing evidence suggests that polyphenols from fruits, vegetables and beverages such as wine and tea may exert protective effects on the cardiovascular system. Indeed, research in the field of polyphenols points out their antioxidant and free radical scavenging properties, leading to lower low-density lipoprotein (LDL) oxidation and platelet aggregation. These compounds are also able to modulate the generation of nitric oxide (NO) from vascular endothelium and to interfere with the mechanisms leading to inflammation and endothelial apoptosis, contributing to the prevention of the endothelial dysfunction, known to play a central role in the pathogenesis of cardiovascular diseases. This article reviews the potential targets of polyphenols involved in the complex pathophysiological events occurring in cardiovascular diseases, such as hypertension, atherosclerosis and stroke.

  13. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  14. Formation of Polyphenol-Denatured Protein Flocs in Alcohol Beverages Sweetened with Refined Cane Sugars.

    Science.gov (United States)

    Eggleston, Gillian; Triplett, Alexa

    2017-11-08

    The sporadic appearance of floc from refined, white cane sugars in alcohol beverages remains a technical problem for both beverage manufacturers and sugar refiners. Cane invert sugars mixed with 60% pure alcohol and water increased light scattering by up to ∼1000-fold. Insoluble and soluble starch, fat, inorganic ash, oligosaccharides, Brix, and pH were not involved in the prevailing floc-formation mechanism. Strong polynomial correlations existed between the haze floc and indicator values (IVs) (color at 420 nm pH 9.0/color at pH 4.0-an indirect measure of polyphenolic and flavonoid colorants) (R 2 = 0.815) and protein (R 2 = 0.819) content of the invert sugars. Ethanol-induced denaturation of the protein exposed hydrophobic polyphenol-binding sites that were further exposed when heated to 80 °C. A tentative mechanism for floc formation was advanced by molecular probing with a haze (floc) active protein and polyphenol as well as polar, nonpolar, and ionic solvents.

  15. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice.

    Science.gov (United States)

    Nemec, Matthew J; Kim, Hyemee; Marciante, Alexandria B; Barnes, Ryan C; Hendrick, Erik D; Bisson, William H; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2017-03-01

    The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Impacts on the metabolome of down-regulating polyphenol oxidase in transgenic potato tubers

    Science.gov (United States)

    Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified (GM) to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes ...

  17. The effect of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans.

    Science.gov (United States)

    Lin, X; Chen, X; Chen, Y; Jiang, W; Chen, H

    2015-01-01

    To compare the effects of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans (MS). Five probiotic lactobacilli bacteria (LB), Lactobacillus casei Shirota, Lactobacillus casei LC01, Lactobacillus plantarum ST-III, Lactobacillus paracasei Lpc-37, and Lactobacillus rhamnosus HN001, were used as test strains effecting on the Streptococci strain S. mutans UA159 in this study. The effect of LB strains and their supernatants on the viability of the MS was evaluated. Then, the effect of LB strains on the growth of MS biofilm formation was observed by fluorescence microscope. All of the LB strains inhibited the growth of MS at concentrations of 1 × 10(8) and 3 × 10(8) CFU ml(-1) (P strains inhibited the growth of MS (P strains inhibited the growth and biofilm formation of MS, likely through the production of an acid environment, bacteriocin-like poly peptides, or both, and the effects on MS were dependent on the LB strains used. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Polyphenols as Possible Markers of Botanical Origin of Honey.

    Science.gov (United States)

    Gašić, Uroš M; Milojković-Opsenica, Dušanka M; Tešić, Živoslav Lj

    2017-07-01

    In recent years, the botanical and geographical origin of food has become an important topic in the context of food quality and safety, as well as consumer protection, in accordance with international standards. Finding chemical markers, especially phytochemicals, characteristic for some kind of food is the subject of interest of a significant number of researchers in the world. This paper is focused on the use of polyphenols as potential markers for the determination of botanical origin of honey. It includes a review of the polyphenols present in various honey samples and the methods for their separation and identification. Special emphasis in this paper is placed on the identification of honey polyphenols using advanced LC-MS techniques in order to find specific markers of botanical origin of honey. In this regard, this study gives an overview of the literature that describes the use of LC-MS techniques for the isolation and determination of honey polyphenols. This review focuses on the research performed in the past two decades.

  19. Minerals and Total Polyphenolic Content of Some Vegetal Powders

    Directory of Open Access Journals (Sweden)

    Roxana E. TUFEANU

    2017-11-01

    Full Text Available The total polyphenolic content and minerals were determined for chia seeds, Psyllium husks and watermelon rind powder. The minerals content was performed by using the Inductively Coupled Plasma Optical Emissions Spectrometer and Atomic Absorption Spectrometer, technique FIAS-Furnace (for Se. The sample with the highest content of polyphenols was chia (2.69 mg GAE/g s. followed by the watermelon rind powder. Reduced amounts of polyphenols were found in the Psyllium husks. Also, the total polyphenol concentration increased with the increase of the extraction time on the ultrasonic water bath. Minerals analysis indicated that powders obtained from chia seeds and watermelon rind contained large amounts of potassium, calcium, phosphorus and magnesium. The most abundant mineral in the Psyllium husks powder was found potassium, followed by calcium. In conclusion, these powders can be used as ingredients for functional food and food supplements production due to the high nutritional content and bioactive properties.

  20. Development and validation of a food frequency questionnaire for consumption of polyphenol-rich foods in pregnant women.

    Science.gov (United States)

    Vian, Izabele; Zielinsky, Paulo; Zilio, Ana Maria; Mello, Anne; Lazzeri, Bruna; Oliveira, Andressa; Lampert, Kenya Venusa; Piccoli, Antônio; Nicoloso, Luis Henrique; Bubols, Guilherme Borges; Garcia, Solange Cristina

    2015-10-01

    Previous studies have shown that maternal consumption of polyphenol-rich foods after the third trimester of pregnancy may interfere with the anatomical and functional activity of the fetal heart as, to our knowledge, there are no validated instruments to quantify total polyphenols in pregnant women. The aim of this study was evaluate the reproducibility and validity of a food frequency questionnaire (FFQ), with 52 items, to assess the intake of polyphenol-rich foods in pregnant women in Brazil. This cross-sectional study included 120 pregnant women who participated in nutritional interviews in two moments. The intake of polyphenols estimated by the developed FFQ was compared with the average of two 24-h recalls (24HR), with the average intake measured by a 3-day food diary (D3days) and with the urinary excretion of total polyphenols. The triangular method was applied to calculate Pearson's correlation coefficients, intraclass correlation and Bland-Altman plots for the FFQ, using an independent biochemical marker, in addition to classification by quarters of consumption. The questionnaires were log transformed, adjusted for body mass index and gestational age. The adjustment for energy was applied only of 24HR and D3days. Analysis of the reproducibility between the FFQ showed a very high correlation (r = 0.72; P questionnaire showed reproducibility and validity for the quantification of consumption of total polyphenols in pregnant women. © 2013 John Wiley & Sons Ltd.

  1. Effect of phenol on germination capacity and polyphenol oxidase, peroxidase and catalase activities in lettuce

    Directory of Open Access Journals (Sweden)

    Tadić Vojin

    2014-01-01

    Full Text Available In this study we examined the activities of polyphenol oxidase (PPO and antioxidant enzymes, peroxidase (POX and catalase (CAT during lettuce seed germination at different concentrations of phenol. Out of eleven varieties of lettuce, four were chosen according to their germination tolerance to phenol as follows: plants exhibiting high (Ljubljanska ledenka - LJL and Nansen - N and low toleranace (Little Gem - LG and Majska kraljica - MK. A decrease in germination efficiency after exposure to LD50 of phenol was determined for these four varieties. The effects of phenol treatment on POX, CAT and PPO activities were determined after 4, 5, 6, 7 and 8 days of growth at LD50 concentrations. A trend of increased peroxidase activity was observed in seeds grown on LD50 of phenol compared to control seeds. A significant increase in CAT activity was observed at the beginning of treatment for MK, LG and N in seeds grown on phenol as well as in control seeds. A trend of increased PPO activity was observed in all control seeds. We also investigated the affinity of PPO for two different substrates that were used for the determination of enzyme activity. Our results show that LJL and N are the varieties most tolerant to growth on phenol. Here we report on the activities of their antioxidant enzymes and PPO during seed germination. [Projekat Ministarstva nauke Republike Srbije, br. ON173017

  2. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.

    Science.gov (United States)

    Can, Zehra; Dincer, Barbaros; Sahin, Huseyin; Baltas, Nimet; Yildiz, Oktay; Kolayli, Sevgi

    2014-12-01

    In this study, firstly, antioxidant and polyphenol oxidase (PPO) properties of Yomra apple were investigated. Seventeen phenolic constituents were measured by reverse phase-high-performance liquid chromatography (RP-HPLC). Total phenolic compounds (TPCs), ferric reducing antioxidant power (FRAP) and 2, 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activities were performed to measure antioxidant capacity. Some kinetic parameters (Km, Vmax), and inhibition behaviors against five different substrates were measured in the crude extract. Catechin and chlorogenic acid were found as the major components in the methanolic extract, while ferulic acid, caffeic acid, p-hydroxybenzoic acid, quercetin and p-coumaric acid were small quantities. Km values ranged from 0.70 to 10.10 mM in the substrates, and also 3-(4-hydroxyphenyl) propanoic acid (HPPA) and L-DOPA showed the highest affinity. The inhibition constant of Ki were ranged from 0.05 to 14.90 mM against sodium metabisulphite, ascorbic acid, sodium azide and benzoic acid, while ascorbic acid and sodium metabisulphite were the best inhibitors.

  3. Identification of Vitis vinifera L. grape berry skin color mutants and polyphenolic profile.

    Science.gov (United States)

    Ferreira, Vanessa; Fernandes, Fátima; Pinto-Carnide, Olinda; Valentão, Patrícia; Falco, Virgílio; Martín, Juan Pedro; Ortiz, Jesús María; Arroyo-García, Rosa; Andrade, Paula B; Castro, Isaura

    2016-03-01

    A germplasm set of twenty-five grapevine accessions, forming eleven groups of possible berry skin color mutants, were genotyped with twelve microsatellite loci, being eleven of them identified as true color mutants. The polyphenolic profiling of the confirmed mutant cultivars revealed a total of twenty-four polyphenols, comprising non-colored compounds (phenolic acids, flavan-3-ols, flavonols and a stilbene) and anthocyanins. Results showed differences in the contribution of malvidin-3-O-glucoside to the characteristic Pinot Noir anthocyanins profile. Regarding the two Pique-Poul colored variants, the lighter variant was richer than the darker one in all classes of compounds, excepting anthocyanins. In Moscatel Galego Roxo the F3'H pathway seems to be more active than F3'5'H, resulting in higher amounts of cyanidin, precursor of the cyanidin derivatives. As far as we are aware, this is the first time that a relationship between the content of polyphenolic compounds is established in groups of grape berry skin color mutant cultivars. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes.

    Science.gov (United States)

    Jeon, Jong-Rok; Kim, Eun-Ju; Kim, Young-Mo; Murugesan, Kumarasamy; Kim, Jae-Hwan; Chang, Yoon-Seok

    2009-11-01

    Natural organic coagulants (NOCs) such as chitosan and Moringa oleifera seeds have been extensively characterized for potential application in water treatment as an alternative to metal-based coagulants. However, the action of both chitosan and M. oleifera seeds is mainly restricted to anionic organic pollutants because of their cationic functional groups affording poor cationic pollutant coagulation by electrostatic repulsion. In this study, we employed ethanolic grape seed extract (GSE) and grape seed-derived polyphenols such as tannic acid and catechin in an effort to find novel NOCs showing stable anionic forms for removal of cationic organic pollutants. The target substances tested were malachite green (MG) and crystal violet (CV), both mutagenic cationic dyes. Polyphenol treatment induced fast decolorization followed by gradual floc formation concomitant with red or blue shifts in maximum absorbance wavelengths of the cationic dyes. Liquid chromatography analysis of flocs formed by polyphenols directly showed that initial supramolecular complexes attributed mainly to electrostatic attraction between polyphenol hydroxyphenyl groups and cationic dyes further progressed into stronger aggregates, leading to precipitation of dye-polyphenol complexes. Consistent with the results obtained using catechin and tannic acid, use of GSE also resulted in effective decolorization and coagulation of soluble MG and CV in aqueous solutions. Screening of several organic GSE components for NOC activity strongly suggested that natural polyphenols are the main organic ingredients causing MG and CV removal via gradual floc formation. The treatment by natural polyphenols and GSE decreased toxicity of MG- or CV-contaminated water.

  5. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    Science.gov (United States)

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  7. Manufacture of Fior di Latte cheese by incorporation of probiotic lactobacilli.

    Science.gov (United States)

    Minervini, F; Siragusa, S; Faccia, M; Dal Bello, F; Gobbetti, M; De Angelis, M

    2012-02-01

    This work aimed to select heat-resistant probiotic lactobacilli to be added to Fior di Latte (high-moisture cow milk Mozzarella) cheese. First, 18 probiotic strains belonging to Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri were screened. Resistance to heating (65 or 55°C for 10 min) varied markedly between strains. Adaptation at 42°C for 10 min increased the heat resistance at 55°C for 10 min of all probiotic lactobacilli. Heat-adapted L. delbrueckii ssp. bulgaricus SP5 (decimal reduction time at 55°C of 227.4 min) and L. paracasei BGP1 (decimal reduction time at 55°C of 40.8 min) showed the highest survival under heat conditions that mimicked the stretching of the curd and were used for the manufacture of Fior di Latte cheese. Two technology options were chosen: chemical (addition of lactic acid to milk) or biological (Streptococcus thermophilus as starter culture) acidification with or without addition of probiotics. As determined by random amplified polymorphic DNA-PCR and 16S rRNA gene analyses, the cell density of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 in chemically or biologically acidified Fior di Latte cheese was approximately 8.0 log(10)cfu/g. Microbiological, compositional, biochemical, and sensory analyses (panel test by 30 untrained judges) showed that the use of L. delbrueckii ssp. bulgaricus SP5 and L. paracasei BGP1 enhanced flavor formation and shelf-life of Fior di Latte cheeses. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants.

    Science.gov (United States)

    Shen, Jie; Gao, Guorong; Liu, Xincai; Fu, Jun

    2015-03-01

    Radiation-crosslinked UHMWPE has been used for joint implants since the 1990s. Postirradiation remelting enhances oxidative stability, but with some loss in strength and toughness. Vitamin E-stabilized crosslinked UHMWPE has shown improved strength and stability as compared with irradiated and remelted UHMWPE. With more active phenolic hydroxyl groups, natural polyphenols are widely used in the food and pharmaceutical industries as potent stabilizers and could be useful for oxidative stability in crosslinked UHMWPE. We asked whether UHMWPE blended with polyphenols would (1) show higher oxidation resistance after radiation crosslinking; (2) preserve the mechanical properties of UHMWPE after accelerated aging; and (3) alter the wear resistance of radiation-crosslinked UHMWPE. The polyphenols, gallic acid and dodecyl gallate, were blended with medical-grade UHMWPE followed by consolidation and electron beam irradiation at 100 kGy. Radiation-crosslinked virgin and vitamin E-blended UHMWPEs were used as reference materials. The UHMWPEs were aged at 120 °C in air with oxidation levels analyzed by infrared spectroscopy. Tensile (n = 5 per group) and impact (n = 3 per group) properties before and after aging as per ASTM F2003 were evaluated. The wear rates were examined by pin-on-disc testing (n = 3 per group). The data were reported as mean ± SDs. Statistical analysis was performed by using Student's t-test for a two-tailed distribution with unequal variance for tensile and impact data obtained with n ≥ 3. A significant difference is defined with p Accelerated aging of these polyphenol-blended UHMWPEs resulted in ultimate tensile strength of 50.4 ± 1.4 MPa and impact strength of 53 ± 5 kJ/m(2) for 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate, for example, in comparison to 51.2 ± 0.7 MPa (p = 0.75) and 58 ± 5 kJ/m(2) (p = 0.29) before aging. The pin-on-disc wear rates of 100 kGy-irradiated UHMWPE with 0.05 wt% dodecyl gallate and 0.05 wt% gallic acid

  9. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert.

    Science.gov (United States)

    Wong Paz, Jorge E; Muñiz Márquez, Diana B; Martínez Ávila, Guillermo C G; Belmares Cerda, Ruth E; Aguilar, Cristóbal N

    2015-01-01

    Several plants that are rich in polyphenolic compounds and exhibit biological properties are grown in the desert region of Mexico under extreme climate conditions. These compounds have been recovered by classic methodologies in these plants using organic solvents. However, little information is available regarding the use of alternative extraction technologies, such as ultrasound. In this paper, ultrasound-assisted extraction (UAE) parameters, such as the liquid:solid ratio, solvent concentration and extraction time, were studied using response surface methodology (RSM) for the extraction of polyphenols from desert plants including Jatrophadioica,Flourensiacernua, Turneradiffusa and Eucalyptuscamaldulensis. Key process variables (i.e., liquid:solid ratio and ethanol concentration) exert the greatest influence on the extraction of all of the phenolic compounds (TPC) in the studied plants. The best conditions for the extraction of TPC involved an extraction time of 40min, an ethanol concentration of 35% and a liquid:solid ratio ranging from 8 to 12mlg(-1) depending on the plant. The highest antioxidant activity was obtained in the E. camaldulensis extracts. The results indicated the ability of UAE to obtain polyphenolic antioxidant preparations from desert plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    Science.gov (United States)

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects.

  11. Characterisation of Lactobacilli from eweʼs and goatʼs milk for their further processing re-utilisation

    Directory of Open Access Journals (Sweden)

    Miroslav Kološta

    2014-02-01

    Full Text Available Raw ewe's and goat's milk is a good source for isolation of wild lactobacilli which are able to bring unique processing properties in development of dairy products - cheeses or fermented dairy products. 34 strains of lactobacilli were isolated, purified and identified from fermented ewe's and goat's dairy products. These products were processed without thermal treatment and without using of any commercial starters. After preliminary selection, the final collection of 5 strains was established. The strains were identified as: Lbc. plantarum (2, Lbc. paraplantarum (1, Lbc. paracasei (1 and Lbc. johnsonii (1. Except two strains, all were able to coagulate milk. After hydrolysis of lactose in milk, two strains were able to form sensorial attractive coagulate too. All of the strains were homofermentative, they produced lactic acid but they did not produce CO2. Their ability to produce diacetyl was low. They did not show strong proteolytic activity. All strains grew at 30 °C and 37 °C, however Lbc. johnsonii much slower at 30 °C than the others. Except Lbc. johnsonii, all strains tolerated 2% concentration of NaCl and even in presence of 5% concentration of NaCl their growth was inhibited only moderately. All of characterized strains can be provisionally used as starter or starter adjuncts in dairy technology, during production of cheeses or fermented milk products from pasteurised milk. These results will be used in further processing studies of isolated strains and will be supplemented with other properties e.g. safety, probiotic and antimicrobial properties.

  12. Dietary polyphenol supplementation prevents alterations of spatial navigation in middle-aged mice

    Directory of Open Access Journals (Sweden)

    Julien eBensalem

    2016-02-01

    Full Text Available Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB (from the Neurophenols Consortium with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal CaMKII mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of NGF mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline.

  13. Polyphenols, including the new Peapolyphenols A-C, from pea root exudates stimulate Orobanche foetida seed germination.

    Science.gov (United States)

    Evidente, Antonio; Cimmino, Alessio; Fernández-Aparicio, Monica; Andolfi, Anna; Rubiales, Diego; Motta, Andrea

    2010-03-10

    Three new polyphenols, named peapolyphenols A-C, together with an already well-known polyphenol and a chalcone (1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4-hydroxyphenyl)-1-propanone and 1-(2,4-dihydroxyphenyl)-3-(4-methoxyphenyl)propenone) were isolated from pea root exudates. They were found to strongly stimulate Orobanche and Phelipanche species seed germination. Interestingly, only peapolyphenol A, 1,3,3-substituted propanone, and 1,3-disubstituted propenone had specific stimulatory activity on O. foetida, excluding any other Orobanche or Phelipanche species tested. This species specificity is relevant, as O. foetida does not respond to the synthetic strigolactone analogue GR24, commonly used as a standard for germination assays. As characterized by spectroscopic methods, peapolyphenols A-C proved to be differently functionalized polyphenols with hydroxy and methoxy groups on both the aromatic rings and the propyl chain.

  14. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Science.gov (United States)

    Rouger, Caroline; Pagie, Sylvain; Derbré, Séverine; Le Ray, Anne-Marie; Richomme, Pascal; Charreau, Béatrice

    2016-01-01

    Endothelial cells (ECs) are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs) from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP) and two xanthones) were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin) and major histocompatibility complex (MHC) molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM) both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  15. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits

    Science.gov (United States)

    Ganesan, Kumar

    2017-01-01

    Polyphenols are plant metabolites with potent anti-oxidant properties, which help to reduce the effects of oxidative stress-induced dreaded diseases. The evidence demonstrated that dietary polyphenols are of emerging increasing scientific interest due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are based on the human consumption and their bioavailability. Common beans (Phaseolus vulgaris L.) are a greater source of polyphenolic compounds with numerous health promoting properties. Polyphenol-rich dry common beans have potential effects on human health, and possess anti-oxidant, anti-diabetic, anti-obesity, anti-inflammatory and anti-mutagenic and anti-carcinogenic properties. Based on the studies, the current comprehensive review aims to provide up-to-date information on the nutritional compositions and health-promoting effect of polyphenol-rich common beans, which help to explore their therapeutic values for future clinical studies. Investigation of common beans and their impacts on human health were obtained from various library databases and electronic searches (Science Direct PubMed, and Google Scholar). PMID:29113066

  16. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database.

    Science.gov (United States)

    Rothwell, Joseph A; Urpi-Sarda, Mireia; Boto-Ordoñez, Maria; Llorach, Rafael; Farran-Codina, Andreu; Barupal, Dinesh Kumar; Neveu, Vanessa; Manach, Claudine; Andres-Lacueva, Cristina; Scalbert, Augustin

    2016-01-01

    The Phenol-Explorer web database details 383 polyphenol metabolites identified in human and animal biofluids from 221 publications. Here, we exploit these data to characterize and visualize the polyphenol metabolome, the set of all metabolites derived from phenolic food components. Qualitative and quantitative data on 383 polyphenol metabolites as described in 424 human and animal intervention studies were systematically analyzed. Of these metabolites, 301 were identified without prior enzymatic hydrolysis of biofluids, and included glucuronide and sulfate esters, glycosides, aglycones, and O-methyl ethers. Around one-third of these compounds are also known as food constituents and corresponded to polyphenols absorbed without further metabolism. Many ring-cleavage metabolites formed by gut microbiota were noted, mostly derived from hydroxycinnamates, flavanols, and flavonols. Median maximum plasma concentrations (C(max)) of all human metabolites were 0.09 and 0.32 μM when consumed from foods or dietary supplements, respectively. Median time to reach maximum plasma concentration in humans (T(max)) was 2.18 h. These data show the complexity of the polyphenol metabolome and the need to take into account biotransformations to understand in vivo bioactivities and the role of dietary polyphenols in health and disease. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence

    Directory of Open Access Journals (Sweden)

    Marta Guasch-Ferré

    2017-01-01

    Full Text Available Dietary polyphenols come mainly from plant-based foods including fruits, vegetables, whole grains, coffee, tea, and nuts. Polyphenols may influence glycemia and type 2 diabetes (T2D through different mechanisms, such as promoting the uptake of glucose in tissues, and therefore improving insulin sensitivity. This review aims to summarize the evidence from clinical trials and observational prospective studies linking dietary polyphenols to prediabetes and T2D, with a focus on polyphenol-rich foods characteristic of the Mediterranean diet. We aimed to describe the metabolic biomarkers related to polyphenol intake and genotype-polyphenol interactions modulating the effects on T2D. Intakes of polyphenols, especially flavan-3-ols, and their food sources have demonstrated beneficial effects on insulin resistance and other cardiometabolic risk factors. Several prospective studies have shown inverse associations between polyphenol intake and T2D. The Mediterranean diet and its key components, olive oil, nuts, and red wine, have been inversely associated with insulin resistance and T2D. To some extent, these associations may be attributed to the high amount of polyphenols and bioactive compounds in typical foods conforming this traditional dietary pattern. Few studies have suggested that genetic predisposition can modulate the relationship between polyphenols and T2D risk. In conclusion, the intake of polyphenols may be beneficial for both insulin resistance and T2D risk.

  18. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems

    Czech Academy of Sciences Publication Activity Database

    Kratchanova, M.; Denev, P.; Číž, Milan; Lojek, Antonín; Mihailov, A.

    2010-01-01

    Roč. 57, č. 2 (2010), s. 229-234 ISSN 0001-527X R&D Projects: GA MŠk(CZ) OC08058 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : medicinal plants * ORAC * polyphenols Subject RIV: BO - Biophysics Impact factor: 1.234, year: 2010

  19. Green Tea Extract Ameliorates Learning and Memory Deficits in Ischemic Rats via Its Active Component Polyphenol Epigallocatechin-3-gallate by Modulation of Oxidative Stress and Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Kuo-Jen Wu

    2012-01-01

    Full Text Available Ischemic stroke results in brain damage and behavioral deficits including memory impairment. Protective effects of green tea extract (GTex and its major functional polyphenol (−-epigallocatechin gallate (EGCG on memory were examined in cerebral ischemic rats. GTex and EGCG were administered 1 hr before middle cerebral artery ligation in rats. GTex, EGCG, and pentoxifylline (PTX significantly improved ishemic-induced memory impairment in a Morris water maze test. Malondialdehyde (MDA levels, glutathione (GSH, and superoxide dismutase (SOD activity in the cerebral cortex and hippocampus were increased by long-term treatment with GTex and EGCG. Both compounds were also associated with reduced cerebral infraction breakdown of MDA and GSH in the hippocampus. In in vitro experiments, EGCG had anti-inflammatory effects in BV-2 microglia cells. EGCG inhibited lipopolysaccharide- (LPS- induced nitric oxide production and reduced cyclooxygenase-2 and inducible nitric oxide synthase expression in BV-2 cells. GTex and its active polyphenol EGCG improved learning and memory deficits in a cerebral ischemia animal model and such protection may be due to the reduction of oxidative stress and neuroinflammation.

  20. In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica

    Directory of Open Access Journals (Sweden)

    Bruno Moukette Moukette

    2015-01-01

    Full Text Available BACKGROUND: Excessive production of free radicals causes direct damage to biological molecules such as DNA, proteins, lipids, carbohydrates leading to tumor development and progression. Natural antioxidant molecules from phytochemicals of plant origin may directly inhibit either their production or limit their propagation or destroy them to protect the system. In the present study, Monodora myristica a non-timber forest product consumed in Cameroon as spice was screened for its free radical scavenging properties, antioxidant and enzymes protective activities. Its phenolic compound profile was also realized by HPLC. RESULTS: This study demonstrated that M. myristica has scavenging properties against DPPH',OH',NO', and ABTS'radicals which vary in a dose depending manner. It also showed an antioxidant potential that was comparable with that of Butylated Hydroxytoluene (BHT and vitamin C used as standard. The aqueous ethanol extract of M. myristica barks (AEH; showed a significantly higher content in polyphenolic compounds (21.44 ±0.24 mg caffeic acid/g dried extract and flavonoid (5.69 ± 0.07 quercetin equivalent mg/g of dried weight as compared to the other studied extracts. The HPLC analysis of the barks and leaves revealed the presence of several polyphenols. The acids (3,4-OH-benzoic, caffeic, gallic, O- and P- coumaric, syringic, vanillic, alcohols (tyrosol and OH-tyrosol, theobromine, quercetin, rutin, catechine and apigenin were the identified and quantified polyphenols. All the tested extracts demonstrated a high protective potential on the superoxide dismutase (SOD, catalase and peroxidase activities. CONCLUSION: Finally, the different extracts from M. myristica and specifically the aqueous ethanol extract reveal several properties such as higher free radical scavenging properties, significant antioxidant capacities and protective potential effects on liver enzymes.

  1. Wound healing activity of the ethanol root extract and polyphenolic rich fraction from Potentilla fulgens.

    Science.gov (United States)

    Kundu, Anindita; Ghosh, Arka; Singh, Narendra K; Singh, Gireesh K; Seth, Ankit; Maurya, Santosh K; Hemalatha, Siva; Laloo, Damiki

    2016-11-01

    Potentilla fulgens Wall. ex Hook (Rosaceae) is a potent medicinal plant of the Western Himalayas, where its roots are traditionally used by the local people of Uttaranchal (India) to treat wounds and tiger bites. The present study scientifically evaluates the wound healing activity of P. fulgens ethanol root extract (EPF) and its ethyl acetate fraction (PFEA) on experimental rats. Wounds were inflicted on animals by using both excision and incision models. The wounded animals were treated for 16 days with EPF (oral: 200-400 mg/kg and topical: 5-10% w/w) and PFEA (oral: 75 mg/kg; topical: 1.75% w/w). Various physical (wound contraction, epithelialization rate, tensile strength) and biochemical parameters (hydroxyproline, hexosamine, proteins, DNA) were examined during the study. Oxidant product (lipidperoxidase), antioxidant enzymes (catalase, superoxide-dismutase) and reduced glutathione were determined. Morphological and histopathological studies of the skin tissues were monitored. A significant (p EPF (10% w/w) and PFEA (1.75% w/w). A significantly (p EPF and PFEA also showed significant (p < 0.05) antioxidant activity. The present study provided the scientific evidence, where P. fulgens rich in polyphenolic components possess remarkable wound healing activities, thereby supporting the traditional claims.

  2. the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts (ID 945) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to Lactobacillus rhamnosus GR-1 (ATCC 55826) in combination with Lactobacillus reuteri RC-14 (ATCC 55845) and defence against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts. The scientific...... to be the general female population. From the clarifications provided by Member States, the Panel assumes that the claimed effect refers to defence against vaginal pathogens by increasing the number of lactobacilli and/or decreasing potentially pathogenic bacteria and/or yeasts. The Panel considers that defence...... against vaginal pathogens by increasing the proportion of lactobacilli and/or decreasing the proportion of potentially pathogenic bacteria and/or yeasts is a beneficial physiological effect. No references were provided from which conclusions could be drawn for the scientific substantiation of the claim...

  3. Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

    DEFF Research Database (Denmark)

    Zamora-Ros, Raul; Cayssials, Valerie; Jenab, Mazda

    2018-01-01

    Polyphenols may play a chemopreventive role in colorectal cancer (CRC); however, epidemiological evidence supporting a role for intake of individual polyphenol classes, other than flavonoids is insufficient. We evaluated the association between dietary intakes of total and individual classes and ...

  4. Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts.

    Directory of Open Access Journals (Sweden)

    Reza Hosseinzadeh

    Full Text Available Micelle/water mixed solutions of different surface active agents were studied for their effectiveness in the extraction of polyphenolic compounds from various varieties of apples from west Azerbaijan province in Iran. The total content of polyphenolic compound in fruit extracts were determined using ferrous tartrate and Folin-Ciocalteu assays methods and chromatographic methods and compared with theme. High performance liquid chromatography is one of the most common and important methods in biochemical compound identification. The effect of pH, ionic strength, surfactant type, surfactant concentration, extraction time and common organic solvent in the apple polyphenolics extractions was studied using HPLC-DAD. Mixtures of surfactants, water and methanol at various ratios were examined and micellar-water solutions of Brij surfactant showed the highest polyphenol extraction efficiency. Optimum conditions for the extraction of polyphenolic compounds from apple occurred at 7 mM Brij35, pH 3. Effect of ionic strength on extraction was determined and 2% (W/V potassium Chloride was determined to be the optimum salt concentration. The procedure worked well with an ultrasound bath. Total antioxidant capacity also was determined in this study. The method can be safely scaled up for pharmaceutical applications.

  5. Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: Biogenic amines formation and quality determination

    Directory of Open Access Journals (Sweden)

    Jianrong eLi

    2015-09-01

    Full Text Available Tea polyphenols (TP have shown antioxidant activity and antimicrobial properties in the food industry. Assessment of anti-oxidation potential of 6-gingerol (GR has also been verified. As little is known about the use of tea polyphenols either individually or in combination with 6-gingerol in shrimp paste, we aimed to investigate the effect of tea polyphenols combined with 6-gingerol on the biogenic amines inhibition and quality of shrimp paste stored at 25 °C for 160 days. The shrimp paste samples were assigned into four groups: (1 control; (2 tea polyphenols treatment (0.3%; (3 6-gingerol treatment (0.3%; (4 tea polyphenols (0.15% + 6-gingerol (0.15%. Samples with no addition were used as control. The results indicate that treatment with tea polyphenols + 6-gingerol (TPGR maintained paste appearance, inhibited oxidation of protein and lipids, and reduced microorganism counts compared to control treatment. The efficiency was superior to that of tea polyphenols or 6-gingerol treatment. Furthermore, shrimp paste treated with TPGR also exhibited significantly higher inhibition of biogenic amines. Total amino acids determination proved the efficacy of TPGR by maintaining the more amino acids of shrimp paste during ambient temperature storage. Our study suggests that TPGR might be a promising candidate for fermented foods due to its synergistic effect to maintain products quality and extending their shelf-life.

  6. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms.

    Science.gov (United States)

    Nichols, Joi A; Katiyar, Santosh K

    2010-03-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.

  7. Forging a modern generation of polyphenol-based therapeutics.

    Science.gov (United States)

    Wright, Bernice

    2013-06-01

    The long-standing debate that polyphenol secondary metabolites from dietary plants are important nutritional components continues due to compelling evidence for their abilities to ameliorate degenerative conditions including, cancer, neurological disorders and cardiovascular disease. The clinical use of polyphenols is not, however, mainstream as issues regarding poor selectivity, dosage, toxicity and delivery methods are unresolved. The paper by Rieder et al. suggests that the lack of selectivity, at least for the stilbene, resveratrol, may not be a major limiting factor. The present commentary is a critique of this significant finding that is focused on deciding how the use of resveratrol as clinical medicine could be advanced, and how this new information integrates with current knowledge of polyphenol physiological effects. This commentary suggests that the multi-target nature of polyphenols may be translated into reliable therapy using the current systems/network pharmacology approach concerned with developing viable therapeutic agents that achieve specific effects through interactions with a wide array of targets. This article is a commentary on Rieder et al., pp. 1244-1258 of BJP 167:6. To view this paper visit http://dx.doi.org/10.1111/j.1476-5381.2012.02063.x. © 2013 The Author. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  8. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    Science.gov (United States)

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  9. Polyphenolic chemistry of tea and coffee: a century of progress.

    Science.gov (United States)

    Wang, Yu; Ho, Chi-Tang

    2009-09-23

    Tea and coffee, the most popular beverages in the world, have been consumed for thousands of years for their alluring flavors and health benefits. Polyphenols, particularly flavonoids and phenolic acids, are of great abundance in tea and coffee and contribute a lot to their flavor and health properties. This paper reviews the polyphenol chemistry of tea and coffee, specifically their stability, and scavenging ability of reactive oxygen species (ROS) and reactive carbonyl species (RCS). During the manufacturing and brewing process, green tea and black tea polyphenols undergo epimerization and oxidation, respectively. Meanwhile, the lactonization and the polymerization of chlorogenic acid are the major causes for the degradation of polyphenols in coffee. Tea catechins, besides having antioxidant properties, have the novel characteristic of trapping reactive carbonyl species. The A ring of the catechins is the binding site for RCS trapping, whereas the B ring is the preferred site for antioxidation.

  10. INFLUENCE OF POLYPHENOLIC COMPOUNDS ON OCIMUM BASILICUM L. DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Adina Talmaciu

    2015-07-01

    Full Text Available The activities and role of phenolic compounds in the plant kingdom are well known. They are especially recognized for their function as plant growth regulators, but also for the important role in the biosynthesis process. Based on that, the aim of this work is to establish the influence of polyphenolic compounds, on the main physiological processes involved in basil cultivation under controlled conditions. Studies were carried out on sweet basil seeds (Ocimumbasilicum L. treated with different spruce bark polyphenolic extracts (aqueous extract and ultrasound assisted aqueous extract on several concentrations. The germination energy and germination capacity, plants vegetative organelles development and photoassimilatory pigments content were investigated. The results show that the Picea abies extracts, rich in phenolic compounds, have an influence on the global development of plantlets. An increased value for the growth parameters and pigments concentration was observed, compare with a control sample. Also it was shown that the effect of phenolic compounds on plants development significantly depends on their concentration.

  11. Antibacterial and antifungal activities of the polyphenolic fractions isolated from the seed coat of Abrus precatorius and Caesalpinia crista.

    Science.gov (United States)

    Mobin, Lubna; Saeed, Syed Asad; Ali, Rashida; Saeed, Syed Ghufran; Ahmed, Rahil

    2017-09-26

    Crude seed coat extracts from Abrus precatorius and Caesalpinia crista were purified into four different fractions namely phenolic acids, flavonols, flavanols and anthocyanin which were then examined for their polyphenol contents and antimicrobial potentials. The fractions derived from seed coat of A. precatorius were found more potent with high phenolic and flavonoid contents as compared to C. crista fractions. The significant antibacterial activity was observed against all strain tested by the fractions of both samples apart from anthocyanin fraction. It was interesting to note that the phenolic acid fractions of both samples was found more active against gram-negative bacteria, while gram-positive bacteria were found to be more sensitive towards flavonol fractions. The phenolic acid and flavonol fractions being potent antibacterial were selected to demonstrate the antifungal capacity of two samples. Among them, phenolic acid fraction of both samples was found active towards all the fungal strain.

  12. Quantification of almond skin polyphenols by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bolling, Bradley W; Dolnikowski, Gregory; Blumberg, Jeffrey B; Oliver Chen, C Y

    2009-01-01

    Reverse phase HPLC coupled to negative mode electrospray ionization (ESI) mass spectrometry (MS) was used to quantify 16 flavonoids and 2 phenolic acids from almond skin extracts. Calibration curves of standard compounds were run daily and daidzein was used as an internal standard. The inter-day relative standard deviation (RSD) of standard curve slopes ranged from 13% to 25% of the mean. On column (OC) limits of detection (LOD) for polyphenols ranged from 0.013 to 1.4 pmol, and flavonoid glycosides had a 7-fold greater sensitivity than aglycones. Limits of quantification were 0.043 to 2.7 pmol OC, with a mean of 0.58 pmol flavonoid OC. Mean inter-day RSD of polyphenols in almond skin extract was 6.8% with a range of 4% to 11%, and intra-day RSD was 2.4%. Liquid nitrogen (LN(2)) or hot water (HW) blanching was used to facilitate removal of the almond skins prior to extraction using assisted solvent extraction (ASE) or steeping with acidified aqueous methanol. Recovery of polyphenols was greatest in HW blanched almond extracts with a mean value of 2.1 mg/g skin. ASE and steeping extracted equivalent polyphenols, although ASE of LN(2) blanched skins yielded 52% more aglycones and 23% less flavonoid glycosides. However, the extraction methods did not alter flavonoid profile of HW blanched almond skins. The recovery of polyphenolic components that were spiked into almond skins before the steeping extraction was 97% on a mass basis. This LC-MS method presents a reliable means of quantifying almond polyphenols.

  13. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion.

    Science.gov (United States)

    Arroyo-López, Francisco N; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  14. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    Directory of Open Access Journals (Sweden)

    Francisco Noé eArroyo López

    2014-10-01

    Full Text Available The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933 and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, Lactobacillus pentosus TOMC-LAB2 and Lactobacillus pentosus TOMC-LAB4 during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens.

  15. Changes in Polyphenols Contents and Antioxidant Capacities of Organically and Conventionally Cultivated Tomato (Solanum lycopersicum L. Fruits during Ripening

    Directory of Open Access Journals (Sweden)

    Dea Anton

    2017-01-01

    Full Text Available Polyphenols of fruits and vegetables form an important part of human dietary compounds. Relatively little is known about accumulation of phenolics during fruits ripening process. The goal of this work was to study the changes in antioxidant activity and in content of 30 polyphenols during ripening of tomato fruits. Five organically and conventionally grown tomato cultivars were investigated at three different ripening stages. Phenolic compounds were extracted with methanol and extracts were analyzed by HPLC-DAD-MS/MS. During ripening, four different changing patterns were observed: (1 high level in green fruits with minimal changes; (2 continuous increase with maximum level in red-ripe fruits; (3 decrease; (4 increase and achieving maximum level at half-ripe stage. Similar change patterns were found for organic and conventional fruits. The accumulation patterns of phenolic compounds were similar in standard-type tomatoes but differed in several cases in cherry-type cultivar. Although contents of some polyphenols decreased during ripening, total phenolics and free radical scavenging activity increased in all studied cultivars and in case of both cultivation modes. The changes in content of phenolic compounds during ripening were greatly influenced by cultivars, but cultivation mode had only minor impact on dynamics in polyphenols contents in tomato fruits.

  16. Discrimination and classification of tobacco wastes by identification and quantification of polyphenols with LC–MS/MS

    Directory of Open Access Journals (Sweden)

    JUN WANG

    2010-07-01

    Full Text Available The chemical composition of polyphenols in tobacco waste was identified by HPLC-PDA–ESI/MS/MS and the contents of chlorogenic acids and rutin in 10 varieties of tobacco wastes were determined by HPLC–UV. The relationships between the contents of active polyphenols and the varieties of tobacco wastes were interpreted by hierarchical cluster analysis (HCA and principal component analysis (PCA. The results showed that 15 polyphenols were identified in a methanolic extract of dried tobacco waste. The tobacco wastes were characterized by high levels of chlorogenic acids (3-CQA, 5-CQA, and 4-CQA and rutin; their ranges in the 10 tobacco varieties were 0.116–0.196, 0.686–1.781, 0.094–0.192, and 0.413–0.998 %, respectively. According to multivariate statistics models, two active compound variables can be considered important for the discrimination of the varieties of tobacco wastes: chlorogenic acids and rutin. Consequently, samples of 10 tobacco varieties were characterized into three groups by HCA based on the PCA pattern. In conclusion, tobacco waste could be used as a new pharmaceutical material for the production of natural chlorogenic acids and rutin in the ethnopharmacological industry.

  17. VITAMIN EFFECT ON THE SYNTHESIS ОF POLYPHENOLIC SUBSTANCES BY BASIDIOMYCETES

    Directory of Open Access Journals (Sweden)

    Veligodska A. K.

    2013-12-01

    Full Text Available We studied the influence of certain vitamins on the intensity of the synthesis of polyphenolic compounds and carotenoids by some Basidiomycetes strains, such as Laetiporus sulphureus Ls-08, Fomes fomentarius Ff-1201 and Fistulina hepatica Fh-18. The registration of accumulation of dry biomass and content of polyphenols and carotenoids in the mycelia and culture filtrate of strains that were cultivated on glucose-peptone substrates (GPS with vitamins was performed. The vitamins A, E, C, B1, B12, and PP at the concentration of 0.005, 0.01 and 0.05 g/l were applied as modification of GPS. We founded the species effect on the synthesis of vitamins, polyphenols, and carotenoids. We suggested separate application of vitamins A, E, B1, and B12 at concentration of 0.01 g/ l to induce the synthesis of polyphenols and carotenoids. Results of the study will be used to develop a modification of GPS for the cultivation of strains of polyphenolic substances of basidiomycete origin.

  18. New insights into the antiangiogenic and proangiogenic properties of dietary polyphenols.

    Science.gov (United States)

    Diniz, Carmen; Suliburska, Joanna; Ferreira, Isabel M P L V O

    2017-06-01

    Polyphenols can be found in natural products of plant origin, including vegetables, fruits, and beverages. A large number of these plant origin compounds are an integral part of the human diet and in the past decade evidence has shown their beneficial properties in human health, by acting in several cell signaling pathways. Among other beneficial effects, polyphenols have been associated with angiogenesis. Increasing evidence highlighting the ability of dietary polyphenols to influence angiogenesis by interfering with multiple signaling pathways is debated. Particular emphasis is given to the mechanisms that ultimately may induce the formation of capillary-like structures (by increasing endothelial cell proliferation, migration, and invasion) or, conversely, may inhibit the steps of angiogenesis leading to the inhibition/regress of vascular development. Dietary polyphenols can, therefore, be viewed as promising nutraceuticals but important aspects have still to be further investigated, to deep knowledge concerning their concentration-mediated effects, effect of specific polyphenols, and respective metabolites, to ensure their appropriate and effective usefulness as proangiogenic or antiangiogenic nutraceuticals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Towards functional effects of polyphenols : modulation of energy metabolism revealed

    NARCIS (Netherlands)

    Boer, de V.C.J.

    2007-01-01

    A diet rich in fruits and vegetables contains high levels of polyphenols (up to 1 gram per day). Epidemiological studies suggest that a high dietary intake of selected polyphenols can be protective against development of cardiovascular heart diseases in humans. In addition, mechanistic studies

  20. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  1. Antigenotoxic Activity of Polyphenolic Rich Extracts from Aegle marmelos (L. Correa in Human Blood Lymphocytes and E.coli PQ 37

    Directory of Open Access Journals (Sweden)

    Prabhjit Kaur

    2009-01-01

    Full Text Available The present paper deals with the antigenotoxic activity of Aegle marmelos fruit extracts employing short term assays i.e. the SOS chromotest using Escherichia coli PQ37 and the Comet assay in peripheral human blood lymphocytes. Methanol extract and Acetone extract were quite effective in decreasing the SOS response induced by hydrogen peroxide and aflatoxin B1 in the SOS chromotest. Methanol extract inhibited the genotoxicity of H 2O 2 by 70.48% and that of AFB1 by 84.65%. The extracts showed significant decrease in the tail moment induced by hydrogen peroxide (9 m M in the Single Cell Gel Electrophoresis (SCGE assay. The antigenotoxic activity exhibited by the extracts may be attributed the various polyphenolic constituents present in these extracts.

  2. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    Science.gov (United States)

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  3. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    Science.gov (United States)

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  4. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    Science.gov (United States)

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  5. Polyphenols from artichoke heads (Cynara cardunculus (L.) subsp. scolymus Hayek): in vitro bio-accessibility, intestinal uptake and bioavailability.

    Science.gov (United States)

    D'Antuono, Isabella; Garbetta, Antonella; Linsalata, Vito; Minervini, Fiorenza; Cardinali, Angela

    2015-04-01

    Artichoke is a rich source of health promoting compounds such as polyphenols, important for their pharmaceutical and nutritional properties. In this study, the potential for bioavailability of the artichoke polyphenols was estimated by using both in vitro digestion and Caco-2 human intestinal cell models. In vitro digestive recoveries (bio-accessibility) were found to be 55.8% for total artichoke phenolics and in particular, 70.0% for chlorogenic acid, 41.3% for 3,5-O-dicaffeoylquinic acid, and 50.3% for 1,5-O-dicaffeoylquinic acid, highlighting potential sensitivity of these compounds to gastric and small intestinal digestive conditions. Uptake of artichoke polyphenols was rapid with peak accumulation occurring after 30 min with an efficiency of 0.16%, according to the poor uptake of dietary polyphenols. Some compounds, such as coumaric acid, caffeic acid and caffeic acid derivatives, were also detected in the basolateral side assuming extra and intracellular esterase activities on chlorogenic acid. Only apigenin-7-O-glucoside was transported through the Caco-2 monolayer demonstrating its bioavailability to the extent of 1.15% at 60 min. In addition, permeability coefficient (Papp = 2.29 × 10(-5) cm s(-1)), involving apical to basolateral transport of apigenin 7-O-glucoside, was calculated to facilitate estimation of transport through the Caco-2 monolayer. Finally, the mono and dicaffeoylquinic acids present in artichoke heads exert an antioxidant activity on the human low density lipoprotein system correlated to their chemical structure. In conclusion, the utilized in vitro models, although not fully responding to the morphological and physiological features of human in vivo conditions, could be a useful tool for investigating mechanistic effects of polyphenols released from the food matrix.

  6. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  7. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes*

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-01-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 °C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production. PMID:19946955

  8. Enhancing polyphenol extraction from unripe apples by carbohydrate-hydrolyzing enzymes.

    Science.gov (United States)

    Zheng, Hu-zhe; Hwang, In-Wook; Chung, Shin-Kyo

    2009-12-01

    The effects of process variables such as enzyme types, enzyme ratio, reaction temperature, pH, time, and ethanol concentration on the extraction of unripe apple polyphenol were investigated. The results indicated that Viscozyme L had the strongest effect on polyphenols extraction and was selected to study the polyphenol composition. The ratio of enzyme (Viscozyme L) to substrate (2 fungal beta-glucanase units (FBG)) at 0.02, reaction at pH 3.7, 50 degrees C for 12 h, and ethanol concentration of 70% were chosen as the most favorable extraction condition. Total phenolic content (TPC), reducing sugar content (RSC), and extraction yield increased by about 3, 1.5, and 2 times, respectively, compared with control. The contents of p-coumaric acid, ferulic acid, and caffeic acid increased to 8, 4, and 32 times, respectively. The enzyme-aided polyphenol extraction process from unripe apples might be applied to food industry for enhancing bioactive compound production.

  9. Sensorial properties of red wine polyphenols: Astringency and bitterness.

    Science.gov (United States)

    Soares, Susana; Brandão, Elsa; Mateus, Nuno; de Freitas, Victor

    2017-03-24

    Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.

  10. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo

    Science.gov (United States)

    Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of star...

  11. Development and Phytochemical Characterization of High Polyphenol Red Lettuce with Anti-Diabetic Properties

    Science.gov (United States)

    Cheng, Diana M.; Pogrebnyak, Natalia; Kuhn, Peter; Krueger, Christian G.; Johnson, William D.; Raskin, Ilya

    2014-01-01

    Polyphenol-rich Rutgers Scarlet Lettuce (RSL) (Lactuca sativa L.) was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents). Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg) for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water) control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes. PMID:24637790

  12. Development and phytochemical characterization of high polyphenol red lettuce with anti-diabetic properties.

    Directory of Open Access Journals (Sweden)

    Diana M Cheng

    Full Text Available Polyphenol-rich Rutgers Scarlet Lettuce (RSL (Lactuca sativa L. was developed through somaclonal variation and selection in tissue culture. RSL may contain among the highest reported contents of polyphenols and antioxidants in the category of common fruits and vegetables (95.6 mg/g dry weight and 8.7 mg/g fresh weight gallic acid equivalents and 2721 µmol/g dry weight and 223 µmol/g fresh weight Trolox equivalents. Three main compounds accumulate at particularly high levels in RSL: chlorogenic acid, up to 27.6 mg/g dry weight, cyanidin malonyl-glucoside, up to 20.5 mg/g dry weight, and quercetin malonyl-glucoside, up to 35.7 mg/g dry weight. Major polyphenolic constituents of RSL have been associated with health promotion as well as anti-diabetic and/or anti-inflammatory activities. Daily oral administration of RSL (100 or 300 mg/kg for up to eight days acutely reduced hyperglycemia and improved insulin sensitivity in high fat diet-induced obese hyperglycemic mice compared to vehicle (water control. Data presented here support possible use of RSL as a functional food for the dietary management of diabetes.

  13. Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications.

    Science.gov (United States)

    Dhand, Chetna; Harini, Sriram; Venkatesh, Mayandi; Dwivedi, Neeraj; Ng, Alice; Liu, Shouping; Verma, Navin Kumar; Ramakrishna, Seeram; Beuerman, Roger W; Loh, Xian Jun; Lakshminarayanan, Rajamani

    2016-01-20

    In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties. Among the catecholamines-reinforced films, optimum surface and bulk properties can be achieved by the oxidative products of epinephrine. For polyphenols, structure-property correlation reveals an increase in surface roughness and elasticity of PVA films with increasing number of phenolic groups in the precursors. Interestingly, PVA films reinforced with oxidized/polymerized products of pyrogallol (PG) and epinephrine (EP) display potent antimicrobial activity against pathogenic Gram-positive and Gram-negative strains, whereas hydroquinone (HQ)-reinforced PVA films display excellent antimicrobial properties against Gram-positive bacteria only. We further demonstrate that HQ and PG films retain their antimicrobial efficacy after steam sterilization. With an increasing trend of giving value to natural and renewable resources, our results have the potential as durable self-defensive antimicrobial surfaces/films for advanced healthcare and industrial applications.

  14. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices.

    Science.gov (United States)

    Guyot, Sylvain; Marnet, Nathalie; Sanoner, Philippe; Drilleau, Jean-François

    2003-10-08

    Five French cider apple varieties were compared on the basis of their detailed polyphenol profile in the cortex and in the juices. Among the factors studied, variety was the most important variability factor in fruits, whereas polyphenol profiles showed an overall stability from one year to another, and a limited decrease of polyphenol concentration was observed during the starch regression period of fruit maturation. In juices, procyanidins remained the preponderant polyphenol class with concentrations up to 2.4 g/L even in centrifuged juices. Compared to the fruits, the average degree of polymerization of procyanidins was significantly reduced in the juice. Centrifugation of the crude juice had only minor effects on the polyphenol composition. For one variety, highly polymerized procyanidins with average degrees of polymerization of 25 were shown to be soluble in the centrifuged juice at a concentration of close to 1.2 g/L. Oxygenation of the juices during processing resulted in a significant decrease of all classes of native polyphenols. Catechins and procyanidins were particularly affected by oxidation, whereas caffeoylquinic acid was partly preserved. The transfer of polyphenols after pressing was maximal for dihydrochalcones and minimal for procyanidins with extraction yield values close to 80 and 30%, respectively.

  15. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Directory of Open Access Journals (Sweden)

    María Losada-Echeberría

    2017-11-01

    Full Text Available Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs and epidermal growth factor receptor 2 (HER2. Tumors with none of these receptors are classified as triple negative breast cancer (TNBC and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.

  16. Polyphenols as Promising Drugs against Main Breast Cancer Signatures

    Science.gov (United States)

    Herranz-López, María; Micol, Vicente

    2017-01-01

    Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation. PMID:29112149

  17. Prenylated Polyphenols from Clusiaceae and Calophyllaceae with Immunomodulatory Activity on Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Caroline Rouger

    Full Text Available Endothelial cells (ECs are key players in inflammation and immune responses involved in numerous pathologies. Although attempts were experimentally undertaken to prevent and control EC activation, drug leads and probes still remain necessary. Natural products (NPs from Clusiaceous and Calophyllaceous plants were previously reported as potential candidates to prevent endothelial dysfunction. The present study aimed to identify more precisely the molecular scaffolds that could limit EC activation. Here, 13 polyphenols belonging to 5 different chemical types of secondary metabolites (i.e., mammea coumarins, a biflavonoid, a pyranochromanone acid, a polyprenylated polycyclic acylphloroglucinol (PPAP and two xanthones were tested on resting and cytokine-activated EC cultures. Quantitative and qualitative changes in the expression of both adhesion molecules (VCAM-1, ICAM-1, E-selectin and major histocompatibility complex (MHC molecules have been used to measure their pharmaceutical potential. As a result, we identified 3 mammea coumarins that efficiently reduce (up to >90% at 10 μM both basal and cytokine-regulated levels of MHC class I, class II, MICA and HLA-E on EC surface. They also prevented VCAM-1 induction upon inflammation. From a structural point of view, our results associate the loss of the free prenyl group substituting mammea coumarins with a reduced cellular cytotoxicity but also an abrogation of their anti-inflammatory potential and a reduction of their immunosuppressive effects. A PPAP, guttiferone J, also triggers a strong immunomodulation but restricted to HLA-E and MHC class II molecules. In conclusion, mammea coumarins with a free prenyl group and the PPAP guttiferone J emerge as NPs able to drastically decrease both VCAM-1 and a set of MHC molecules and to potentially reduce the immunogenicity of the endothelium.

  18. Polyphenol-aluminum complex formation: Implications for aluminum tolerance in plants

    Science.gov (United States)

    Natural polyphenols may play an important role in aluminum detoxification in some plants. We examined the interaction between Al3+ and the purified high molecular weight polyphenols pentagalloyl glucose (940 Da) and oenothein B (1568 Da), and the related compound methyl gallate (184 Da) at pH 4 and ...

  19. Cellular Targets of Dietary Polyphenol Resveratrol

    National Research Council Canada - National Science Library

    Wu, Joseph M

    2006-01-01

    To test the hypothesis that resveratrol, a grape derived polyphenol, exerts its chemopreventive properties against prostate cancer by interacting with specific cellular targets, denoted resveratrol targeting proteins (RTPs...

  20. Polyphenols isolated from Acacia mearnsii bark with anti-inflammatory and carbolytic enzyme inhibitory activities

    Institute of Scientific and Technical Information of China (English)

    XIONG Jia; GRACE Mary H; ESPOSITO Debora; KOMARNYTSKY Slavko; WANG Fei; LILA Mary Ann

    2017-01-01

    The present study was designed to characterize the polyphenols isolated from Acacia mearnsii bark crude extract (B) and fractions (B1-B7) obtained by high-speed counter-current chromatography (HSCCC) and evaluate their anti-inflammatory and carbolytic enzymes (α-glucosidase and α-amylase) inhibitory activities.Fractions B4,B5,B6,B7 (total phenolics 850.3,983.0,843.9,and 572.5 mg·g-1,respectively;proanthocyanidins 75.7,90.5,95.0,and 44.8 mg·g-1,respectively) showed significant activities against reactive oxygen species (ROS),nitric oxide (NO) production,and expression of pro-inflammatory genes interleukin-lβ (IL-1β) and inducible nitric oxide synthase (iNOS) in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line RAW 264.7.All the extracts suppressed α-glucosidase and α-amylase activities,two primary enzymes responsible for carbohydrate digestion.A.mearnsii bark samples possessed significantly stronger inhibitory effects against α-glucosidase enzyme (IC50 of 0.4-1.4 tg·mL-1) than the pharmaceutical acarbose (IC50 141.8 μg·mL-1).B6 and B7 (IC5017.6 and 11.7 μg·mL-1,respectively) exhibited α-amylase inhibitory activity as efficacious as acarbose (IC50 15.4 μg·mL-1).Moreover,B extract,at 25 μg·mL-l,significantly decreased the non-mitochondrial oxidative burst that is often associated with inflammatory response in human monocytic macrophages.