WorldWideScience

Sample records for polymeric micelles encapsulating

  1. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Science.gov (United States)

    Capretto, Lorenzo; Mazzitelli, Stefania; Brognara, Eleonora; Lampronti, Ilaria; Carugo, Dario; Hill, Martyn; Zhang, Xunli; Gambari, Roberto; Nastruzzi, Claudio

    2012-01-01

    This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of β-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying β-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for β-thalassemia. PMID:22287841

  2. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Capretto L

    2012-01-01

    Full Text Available Lorenzo Capretto1, Stefania Mazzitelli2, Eleonora Brognara2, Ilaria Lampronti2, Dario Carugo1, Martyn Hill1, Xunli Zhang1, Roberto Gambari2, Claudio Nastruzzi31Engineering Sciences, University of Southampton, Southampton, UK; 2Department of Biochemistry and Molecular Biology, 3Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, ItalyAbstract: This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH, based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of ß-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying ß-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol

  3. Polymeric micelles encapsulating fisetin improve the therapeutic effect in colon cancer.

    Science.gov (United States)

    Chen, Yishan; Wu, Qinjie; Song, Linjiang; He, Tao; Li, Yuchen; Li, Ling; Su, Weijun; Liu, Lei; Qian, Zhiyong; Gong, Changyang

    2015-01-14

    The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) was discovered to possess antitumor activity, revealing its potential value in future chemotherapy. However, its poor water solubility makes it difficult for intravenous administration. In this study, the monomethyl poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) copolymer was applied to prepare nanoassemblies of fisetin by a self-assembly procedure. The prepared fisetin micelles gained a mean particle size of 22 ± 3 nm, polydisperse index of 0.163 ± 0.032, drug loading of 9.88 ± 0.14%, and encapsulation efficiency of 98.53 ± 0.02%. Compared with free fisetin, fisetin micelles demonstrated a sustained and prolonged in vitro release behavior, as well as enhanced cytotoxicity, cellular uptake, and fisetin-induced apoptosis in CT26 cells. As for in vivo studies, fisetin micelles were more competent for suppressing tumor growth and prolonging survival time than free fisetin in the subcutaneous CT26 tumor model. Furthermore, histological analysis, terminal deoxynucleotidyl transferase-mediated nick-end labeling assay, immunohistochemical detection of Ki-67, and microvessel density detection were conducted, demonstrating that fisetin micelles gained increased tumor apoptosis induction, proliferation suppression, and antiangiogenesis activities. In conclusion, we have successfully produced a MPEG-PCL-based nanocarrier encapsulating fisetin with enhanced antitumor activity.

  4. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  5. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  6. Fisetin and polymeric micelles encapsulating fisetin exhibit potent cytotoxic effects towards ovarian cancer cells.

    Science.gov (United States)

    Xiao, Xue; Zou, Juan; Fang, Yin; Meng, Yibo; Xiao, Chao; Fu, Jiaxin; Liu, Shiyu; Bai, Peng; Yao, Yuan

    2018-03-15

    The anti-tumor activities of Natural compounds and their derivatives are of great interest to pharmaceutical industries. Fisetin is one of prospective natural compounds in this regard but unfortunately with poor hydrophilicity. The effects of unmodified and modified fisetin in cultured ovarian cancer cells were compared by transmission electronmicroscopy to determine apoptotic bodies, MTT assay to quantitate cell numbers, and fluorescence activated cell sorting analyse of various markers to determine the apoptotic state. In addition, the efficacy of fisetin and fisetin-micelles in vivo was determined by using immunocompromised mice. Apoptosis was measured by established markers using both western blot analysis and immunochemistry. Angiogenesis in a xenograft mouse model carring SKOV3 cells was evaluated by color Doppler ultrasound and immunohistochemistry. Multiple lines of evidence indicated that fisetin and fisetin micelles induce apoptosis in ovarian cancer cells in a dose-dependent manner. Histological analysis, terminal deoxynucleotidyltransferase-mediated nick-end labeling assay, western blot, immunohistochemical detection and microvessel density detection demonstrated that fisetin and fisetin micelles induced increased tumor apoptosis, proliferation suppression and antiangiogenesis activities. As far as we know, the present study is the first time to demonstrate the potency of both fisetin and fisetin micelles inducing apoptosis in ovarian cancer cells. Further studies will be needed to validate the therapeutic potential of fisetin and fisetin micelles in ovarian cancer treatment.

  7. In situ electron-beam polymerization stabilized quantum dot micelles.

    Science.gov (United States)

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  8. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  9. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  10. Novel polymeric micelles for insect pest control: encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control

    Directory of Open Access Journals (Sweden)

    Alejandro Lucia

    2017-04-01

    Full Text Available Background Essential oil components (EOCs are molecules with interesting application in pest control, these have been evaluated against different insect pest from more than 100 years, but their practical use is rather limited. Thus, the enhancement of their bioavailability and manageability due to their dispersion in water can open new perspective for the preparation of formulations for the control of insect pest. In this work, we studied the encapsulation of different monoterpenes in a poloxamer shell in order to prepare aqueous formulations that can be used for the development of platforms used in pest control. Methods Micellar systems containing a 5 wt% of poloxamer 407 and 1.25 wt% of the different monoterpenes were prepared. Dynamic Light Scattering (DLS experiments were carried out to characterize the dispersion of the EOCs in water. The pediculicidal activity of these micellar systems was tested on head lice using an ex vivo immersion test. Results The poloxamers allowed the dispersion of EOCs in water due to their encapsulation inside the hydrophobic core of the copolymer micelles. From this study, we concluded that it is possible to make stable micellar systems containing water (>90 wt%, 1.25 wt% of different monoterpenes and a highly safe polymer (5wt% Poloxamer 407. These formulations were effective against head lice with mortality ranging from 30 to 60%, being the most effective emulsions those containing linalool, 1,8-cineole, α-terpineol, thymol, eugenol, geraniol and nonyl alcohol which lead to mortalities above 50%. Discussion Since these systems showed good pediculicidal activity and high physicochemical stability, they could be a new route for the green fabrication of biocompatible and biosustainable insecticide formulations.

  11. Hyaluronan polymeric micelles for topical drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šmejkalová, D.; Muthný, T.; Nešporová, K.; Hermannová, M.; Achbergerová, E.; Huerta-Angelesa, G.; Marek Svoboda, M.; Čepa, M.; Machalová, V.; Luptáková, Dominika; Velebný, V.

    2017-01-01

    Roč. 156, JAN 20 (2017), s. 86-96 ISSN 0144-8617 Institutional support: RVO:61388971 Keywords : Skin penetration * Polymeric micelle * Hyaluronan Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.811, year: 2016

  12. Neutral Polymeric Micelles for RNA Delivery

    Science.gov (United States)

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  13. Chemotherapeutic Effect of CD147 Antibody-labeled Micelles Encapsulating Doxorubicin Conjugate Targeting CD147-Expressing Carcinoma Cells.

    Science.gov (United States)

    Asakura, Tadashi; Yokoyama, Masayuki; Shiraishi, Koichi; Aoki, Katsuhiko; Ohkawa, Kiyoshi

    2018-03-01

    CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  14. Modification of encapsulation pressure of reverse micelles in liquid ethane.

    Science.gov (United States)

    Peterson, Ronald W; Nucci, Nathaniel V; Wand, A Joshua

    2011-09-01

    Encapsulation within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5000 psi to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Multifunctional doxorubicin/superparamagnetic iron oxide-encapsulated Pluronic F127 micelles used for chemotherapy/magnetic resonance imaging

    Science.gov (United States)

    Lai, Jian-Ren; Chang, Yong-Wei; Yen, Hung-Chi; Yuan, Nai-Yi; Liao, Ming-Yuan; Hsu, Chia-Yen; Tsai, Jai-Lin; Lai, Ping-Shan

    2010-05-01

    Polymeric micelles are frequently used to transport and deliver drugs throughout the body because they protect against degradation. Research on functional polymeric micelles for biomedical applications has generally shown that micelles have beneficial properties, such as specific functionality, enhanced specific tumor targeting, and stabilized nanostructures. The particular aim of this study was to synthesize and characterize multifunctional polymeric micelles for use in controlled drug delivery systems and biomedical imaging. In this study, a theranostic agent, doxorubicin/superparamagnetic iron oxide (SPIO)-encapsulated Pluronic F127 (F127) micelles, was developed for dual chemotherapy/magnetic resonance imaging (MRI) purposes, and the structure and composition of the micellar SPIO were characterized by transmission electron microscopy and magnetic measurements. Our results revealed that the micellar SPIO with a diameter of around 100 nm led to a significant advantage in terms of T2 relaxation as compared with a commercial SPIO contrast agent (Resovist®) without cell toxicity. After doxorubicin encapsulation, a dose-dependent darkening of MR images was observed and HeLa cells were killed by this theranostic micelle. These findings demonstrate that F127 micelles containing chemotherapeutic agents and SPIO could be used as a multifunctional nanocarrier for cancer treatment and imaging.

  16. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  17. pH dependent polymeric micelle adsorption

    Energy Technology Data Exchange (ETDEWEB)

    McLean, S C; Gee, M L [The University of Melbourne, VIC (Australia). School of Chemistry

    2003-07-01

    Full text: Poly(2-vinylpyridine)-poly(ethylene oxide) (P2VP-PEO) shows potential as a possible drug delivery system for anti-tumour drugs since it forms pH dependent polymeric micelles. Hence to better understand the adsorption behaviour of this polymer we have studied the interaction forces between layers of P2VP-PEO adsorbed onto silica as a function of solution pH using an Atomic Force Microscope (AFM). When P2VP-PEO is initially adsorbed above the pKa of the P2VP block, P2VP-PEO adsorbs from solution as micelles that exist as either partially collapsed- or a hemi-micelles at the silica surface. Below the pKa of P2VP, the P2VP-PEO adsorbs as unimers, forming a compact layer with little looping and tailing into solution. When initial adsorption of P2VP-PEO is in the form of unimers, any driving force to self-assembly of the now charge neutral polymer is kinetically hindered. Hence, after initial adsorption at pH 3.6, a subsequent increase in pH to 6.6 results in a slow surface restructuring towards self-assembly and equilibrium. When the pH is increased from pH 6.6 to 9.7 there is a continuation of the evolution of the system to its equilibrium position during which the adsorbed P2VP-PEO unimers continue to 'unravel' from the surface, extending away from it, towards eventual complete surface self-assembly.

  18. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    Science.gov (United States)

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  19. Stimuli-responsive biodegradable polymeric micelles for targeted cancer therapy

    NARCIS (Netherlands)

    Talelli, M.A.

    2011-01-01

    Thermosensitive and biodegradable polymeric micelles based on mPEG-b-pHPMAmLacn have shown very promising results during the past years. The results presented in this thesis illustrate the high potential of these micelles for anticancer therapy and imaging and fully justify further pharmaceutical

  20. Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

    Science.gov (United States)

    Cavallaro, Gennara; Maniscalco, Laura; Licciardi, Mariano; Giammona, Gaetano

    2004-11-20

    Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.

  1. Selective in vitro anticancer effect of superparamagnetic iron oxide nanoparticles loaded in hyaluronan polymeric micelles.

    Science.gov (United States)

    Smejkalová, Daniela; Nešporová, Kristina; Huerta-Angeles, Gloria; Syrovátka, Jakub; Jirák, Daniel; Gálisová, Andrea; Velebný, Vladimír

    2014-11-10

    Due to its native origin, excellent biocompatibility and biodegradability, hyaluronan (HA) represents an attractive polymer for superparamagnetic iron oxide nanoparticles (SPION) coating. Herein, we report HA polymeric micelles encapsulating oleic acid coated SPIONs, having a hydrodynamic size of about 100 nm and SPION loading capacity of 1-2 wt %. The HA-SPION polymeric micelles were found to be selectively cytotoxic toward a number of human cancer cell lines, mainly those of colon adenocarcinoma (HT-29). The selective inhibition of cell growth was even observed when the SPION loaded HA polymeric micelles were incubated with a mixture of control and cancer cells. The selective in vitro inhibition could not be connected with an enhanced CD44 uptake or radical oxygen species formation and was rather connected with a different way of SPION intracellular release. While aggregated iron particles were visualized in control cells, nonaggregated solubilized iron oxide particles were detected in cancer cells. In vivo SPION accumulation in intramuscular tumor following an intravenous micelle administration was confirmed by magnetic resonance (MR) imaging and histological analysis. Having a suitable hydrodynamic size, high magnetic relaxivity, and being cancer specific and able to accumulate in vivo in tumors, SPION-loaded HA micelles represent a promising platform for theranostic applications.

  2. Spectroscopic investigation of the aggregation state of amphotericin B during loading, freeze-drying, and reconstitution of polymeric micelles.

    Science.gov (United States)

    Adams, Monica; Kwon, Glen S

    2004-11-22

    To investigate the relative aggregation state of amphotericin B (AmB) during loading and reconstitution of polymeric micelles. Hexanoate and stearate derivatives of PEO-b-p (L-Asp) were prepared. The polymers and AmB were dissolved in methanol (MeOH). Milli-Q water was then added slowly, and the MeOH was removed via rotary evaporation. The solutions were freeze-dried in the presence of trehalose. During micelle preparation, the aggregation state of AmB was assessed using absorption spectroscopy. Upon reconstitution, the samples were analyzed using vapor-pressure osmometry, size-exclusion chromatography (SEC), and absorption spectroscopy. The absorption spectrum of AmB in the presence of the block copolymers was compared to that of AmB alone under the same conditions. AmB was loaded into micelles prepared from acyl derivatives of PEO-b-p (L-Asp). Absorption spectroscopy indicated that the aggregation state was preserved during the loading process. AmB exists in a self-aggregated state in polymeric micelles containing hexanoate ester cores and in a relatively monomeric state in polymeric micelles containing stearate ester cores. Vapor-pressure osmometry confirmed the isotonicity of the formulations, while SEC indicated that the micelles were approximately 10(6) g/mol. Depending on the polymer structure and assembly conditions, it is possible to encapsulate AmB in a relatively nonaggregated or aggregated state in micelles prepared from acyl derivatives of PEO-b-p (L-Asp). In polymeric micelles containing stearate side chains, AmB was loaded in a nearly monomeric state, possibly due to interaction with the stearate side chains. The final aggregation state of the drug is preserved during lyophilization and reconstitution of polymeric micelles prepared by a novel solvent evaporation procedure.

  3. Applications of polymeric micelles with tumor targeted in chemotherapy

    International Nuclear Information System (INIS)

    Ding Hui; Wang Xiaojun; Zhang Song; Liu Xinli

    2012-01-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core–shell structure (with diameters of 10 ∼ 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles’ surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  4. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  5. Clinical application of polymeric micelles for the treatment of cancer

    NARCIS (Netherlands)

    Varela Moreira, A.A.; Shi, Y.; Fens, M.H.A.M.; Lammers, T.G.G.M.; Hennink, W.E.; Schiffelers, R.M.

    2017-01-01

    The in vivo administration of chemotherapeutic drugs is a challenge due to their poor pharmacokinetic (PK) and biodistribution profiles. For this reason, the development of delivery systems capable of targeting these compounds to pathological sites is of great importance. Polymeric micelles (PMs)

  6. Premature drug release of polymeric micelles and its effects on tumor targeting.

    Science.gov (United States)

    Miller, Tobias; Breyer, Sandra; van Colen, Gwenaelle; Mier, Walter; Haberkorn, Uwe; Geissler, Simon; Voss, Senta; Weigandt, Markus; Goepferich, Achim

    2013-03-10

    Based on the enhanced permeability and retention (EPR) effect, nanoparticles are believed to accumulate in tumors. In this conjunction, the stability of drug encapsulation is assumed to be sufficient. For clarification purposes, PEGylated poly-(D,L-lactic acid) (PEG-PDLLA) micelles which incorporated the hydrophobic model drug dechloro-4-iodo-fenofibrate (IFF) were investigated. H2N-PEG-PDLLA was synthesized, coupled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with 111-indium. From this polymeric species, mixed micelles with H3CO-PEG-PDLLA were prepared which encapsulated the 125-iodine or 131-iodine labeled drug IFF. Bioimaging and biodistribution experiments in healthy and AR42J-tumor bearing mice were carried out to quantify the uptake of the drug and its carrier in single organs. As a result, upon injection of this system, a rapid dissociation of the polymeric carrier and the incorporated drug (system allowed for successful solubilization of the hydrophobic drug by physical incorporation into micelles whereas the tumor targeting properties of the drug delivery system could not be sufficiently shown. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Controlled Fab installation onto polymeric micelle nanoparticles for tuned bioactivity

    Science.gov (United States)

    Chen, Shaoyi; Florinas, Stelios; Teitgen, Abigail; Xu, Ze-Qi; Gao, Changshou; Wu, Herren; Kataoka, Kazunori; Cabral, Horacio; Christie, R. James

    2017-12-01

    Antibodies and antigen-binding fragments (Fabs) can be used to modify the surface of nanoparticles for enhanced target binding. In our previous work, site-specific conjugation of Fabs to polymeric micelles using conventional methods was limited to approximately 30% efficiency, possibly due to steric hindrance related to macromolecular reactants. Here, we report a new method that enables conjugation of Fabs onto a micelle surface in a controlled manner with up to quantitative conversion of nanoparticle reactive groups. Variation of (i) PEG spacer length in a heterofunctionalized cross-linker and (ii) Fab/polymer feed ratios resulted in production of nanoparticles with a range of Fab densities on the surface up to the theoretical maximum value. The biological impact of variable Fab density was evaluated in vitro with respect to cell uptake and cytotoxicity of a drug-loaded (SN38) targeted polymeric micelle bearing anti-EphA2 Fabs. Fab conjugation increased cell uptake and potency compared with non-targeted micelles, although a Fab density of 60% resulted in decreased uptake and potency of the targeted micelles. Altogether, our findings demonstrate that conjugation strategies can be optimized to allow control of Fab density on the surface of nanoparticles and also that Fab density may need to be optimized for a given cell-surface target to achieve the highest bioactivity.

  8. Polymeric micelles for potentiated antiulcer and anticancer activities of naringin

    Science.gov (United States)

    Mohamed, Elham Abdelmonem; Abu Hashim, Irhan Ibrahim; Yusif, Rehab Mohammad; Shaaban, Ahmed Abdel Aziz; El-Sheakh, Ahmed Ramadan; Hamed, Mohammed Fawzy; Badria, Farid Abd Elreheem

    2018-01-01

    Naringin is one of the most interesting phytopharmaceuticals that has been widely investigated for various biological actions. Yet, its low water solubility, limited permeability, and suboptimal bioavailability limited its use. Therefore, in this study, polymeric micelles of naringin based on pluronic F68 (PF68) were developed, fully characterized, and optimized. The optimized formula was investigated regarding in vitro release, storage stability, and in vitro cytotoxicity vs different cell lines. Also, cytoprotection against ethanol-induced ulcer in rats and antitumor activity against Ehrlich ascites carcinoma in mice were investigated. Nanoscopic and nearly spherical 1:50 micelles with the mean diameter of 74.80±6.56 nm and narrow size distribution were obtained. These micelles showed the highest entrapment efficiency (EE%; 96.14±2.29). The micelles exhibited prolonged release up to 48 vs 10 h for free naringin. The stability of micelles was confirmed by insignificant changes in drug entrapment, particle size, and retention (%) (91.99±3.24). At lower dose than free naringin, effective cytoprotection of 1:50 micelles against ethanol-induced ulcer in rat model has been indicated by significant reduction in mucosal damage, gastric level of malondialdehyde, gastric expression of tumor necrosis factor-alpha, caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, and interleukin-6 with the elevation of gastric reduced glutathione and superoxide dismutase when compared with the positive control group. As well, these micelles provoked pronounced antitumor activity assessed by potentiated in vitro cytotoxicity particularly against colorectal carcinoma cells and tumor growth inhibition when compared with free naringin. In conclusion, 1:50 naringin–PF68 micelles can be represented as a potential stable nanodrug delivery system with prolonged release and enhanced antiulcer as well as antitumor activities. PMID:29497294

  9. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    Science.gov (United States)

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  10. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann

    as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent‐like copolymers......This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete......‐life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A glycerolipid and a cholesteryl ether were synthesized with free primary alcohols and a series of their sulphonates (Ms, Ts, Tf) were...

  11. Measuring the Acoustic Release of a Chemotherapeutic Agent from Folate-Targeted Polymeric Micelles.

    Science.gov (United States)

    Abusara, Ayah; Abdel-Hafez, Mamoun; Husseini, Ghaleb

    2018-08-01

    In this paper, we compare the use of Bayesian filters for the estimation of release and re-encapsulation rates of a chemotherapeutic agent (namely Doxorubicin) from nanocarriers in an acoustically activated drug release system. The study is implemented using an advanced kinetic model that takes into account cavitation events causing the antineoplastic agent's release from polymeric micelles upon exposure to ultrasound. This model is an improvement over the previous representations of acoustic release that used simple zero-, first- and second-order release and re-encapsulation kinetics to study acoustically triggered drug release from polymeric micelles. The new model incorporates drug release and micellar reassembly events caused by cavitation allowing for the controlled release of chemotherapeutics specially and temporally. Different Bayesian estimators are tested for this purpose including Kalman filters (KF), Extended Kalman filters (EKF), Particle filters (PF), and multi-model KF and EKF. Simulated and experimental results are used to verify the performance of the above-mentioned estimators. The proposed methods demonstrate the utility and high-accuracy of using estimation methods in modeling this drug delivery technique. The results show that, in both cases (linear and non-linear dynamics), the modeling errors are expensive but can be minimized using a multi-model approach. In addition, particle filters are more flexible filters that perform reasonably well compared to the other two filters. The study improved the accuracy of the kinetic models used to capture acoustically activated drug release from polymeric micelles, which may in turn help in designing hardware and software capable of precisely controlling the delivered amount of chemotherapeutics to cancerous tissue.

  12. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ingemann Jensen, A.T.

    2013-06-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  13. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    International Nuclear Information System (INIS)

    Ingemann Jensen, A.T.

    2013-01-01

    This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete reference list is compiled in the end, immediately after the three chapters. This is followed by the supplementary information, divided into appropriate sections. Finally, the two first-authored manuscripts are attached as appendices. Chapter 1. The field of nanoparticulate drug delivery has been hailed as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent-like copolymers, that self-assemble in water. Therapy with nanoparticles is hampered by often poor tumor accumulation, combined with massive uptake by macrophages in the liver and spleen. For this reason, visualizing nanoparticle pharmacokinetics in-vivo is a valuable tool in the on-going research. Such visualization can be done by labeling with radio isotopes. Isotopes that emit positrons (PET-isotopes) can be detected by PET (positron emission tomography) technology, an accurate technique that has gained popularity in recent years. PET-isotopes of interest include 18F and 64Cu. In addition to being a research tool, radiolabeled nanoparticles hold promise as a radiopharmaceutical in themselves, as a means of imaging tumor tissue, aiding in diagnosis and surgery. Chapter 2. A method for labeling liposomes with 18F (97% positron decay, T = 110 min) was investigated. 18F is widely available, but is hampered by a short half-life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A

  14. Application of polymeric nanoparticles and micelles in insulin oral delivery

    Directory of Open Access Journals (Sweden)

    Milind Sadashiv Alai

    2015-09-01

    Full Text Available Diabetes mellitus is an endocrine disease in which the pancreas does not produce sufficient insulin or the body cannot effectively use the insulin it produces. Insulin therapy has been the best choice for the clinical management of diabetes mellitus. The current insulin therapy is via subcutaneous injection, which often fails to mimic the glucose homeostasis that occurs in normal individuals. This provokes numerous attempts to develop a safe and effective noninvasive route for insulin delivery. Oral delivery is the most convenient administration route. However, insulin cannot be well absorbed orally because of its rapid enzymatic degradation in the gastrointestinal tract. Therefore, nanoparticulate carriers such as polymeric nanoparticles and micelles are employed for the oral delivery of insulin. These nanocarriers protect insulin from degradation and facilitate insulin uptake via a transcellular and/or paracellular pathway. This review article focuses on the application of nanoparticles and micelles in insulin oral delivery. The recent advances in this topic are also reviewed.

  15. Polymeric Micelles as Novel Carriers for Poorly Soluble Drugs--A Review.

    Science.gov (United States)

    Reddy, B Pavan Kumar; Yadav, Hemant K S; Nagesha, Dattatri K; Raizaday, Abhay; Karim, Abdul

    2015-06-01

    Polymeric micelles are used as 'smart drug carriers' for targeting certain areas of the body by making them stimuli-sensitive or by attachment of a specific ligand molecule onto their surface. The main aim of using polymeric micelles is to deliver the poorly water soluble drugs. Now-a-days they are used especially in the areas of cancer therapy also. In this article we have reviewed several aspects of polymeric micelles concerning their mechanism of formation, chemical nature, preparation and characterization techniques, and their applications in the areas of drug delivery.

  16. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo

    Science.gov (United States)

    Gou, Maling; Men, Ke; Shi, Huashan; Xiang, Mingli; Zhang, Juan; Song, Jia; Long, Jianlin; Wan, Yang; Luo, Feng; Zhao, Xia; Qian, Zhiyong

    2011-04-01

    Curcumin is an effective and safe anticancer agent, but its hydrophobicity inhibits its clinical application. Nanotechnology provides an effective method to improve the water solubility of hydrophobic drug. In this work, curcumin was encapsulated into monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles through a single-step nano-precipitation method, creating curcumin-loaded MPEG-PCL (Cur/MPEG-PCL) micelles. These Cur/MPEG-PCL micelles were monodisperse (PDI = 0.097 +/- 0.011) with a mean particle size of 27.3 +/- 1.3 nm, good re-solubility after freeze-drying, an encapsulation efficiency of 99.16 +/- 1.02%, and drug loading of 12.95 +/- 0.15%. Moreover, these micelles were prepared by a simple and reproducible procedure, making them potentially suitable for scale-up. Curcumin was molecularly dispersed in the PCL core of MPEG-PCL micelles, and could be slow-released in vitro. Encapsulation of curcumin in MPEG-PCL micelles improved the t1/2 and AUC of curcuminin vivo. As well as free curcumin, Cur/MPEG-PCL micelles efficiently inhibited the angiogenesis on transgenic zebrafish model. In an alginate-encapsulated cancer cell assay, intravenous application of Cur/MPEG-PCL micelles more efficiently inhibited the tumor cell-induced angiogenesisin vivo than that of free curcumin. MPEG-PCL micelle-encapsulated curcumin maintained the cytotoxicity of curcumin on C-26 colon carcinoma cellsin vitro. Intravenous application of Cur/MPEG-PCL micelle (25 mg kg-1curcumin) inhibited the growth of subcutaneous C-26 colon carcinoma in vivo (p curcumin (p curcumin; this formulation can inhibit the growth of colon carcinoma through inhibiting angiogenesis and directly killing cancer cells.

  17. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    Science.gov (United States)

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  19. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    International Nuclear Information System (INIS)

    Gou Maling; Shi Huashan; Guo Gang; Men Ke; Zhang Juan; Li Zhiyong; Luo Feng; Qian Zhiyong; Wei Yuquan; Zheng Lan; Zhao Xia

    2011-01-01

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and ∼ 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  20. Improving anticancer activity and reducing systemic toxicity of doxorubicin by self-assembled polymeric micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gou Maling; Shi Huashan; Guo Gang; Men Ke; Zhang Juan; Li Zhiyong; Luo Feng; Qian Zhiyong; Wei Yuquan [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Zheng Lan; Zhao Xia, E-mail: anderson-qian@163.com [West China Second University Hospital, West China Women' s and Children' s Hospital, Sichuan University, Chengdu 610041 (China)

    2011-03-04

    In an attempt to improve anticancer activity and reduce systemic toxicity of doxorubicin (Dox), we encapsulated Dox in monomethoxy poly(ethylene glycol)-poly({epsilon}-caprolactone) (MPEG-PCL) micelles by a novel self-assembly procedure without using surfactants, organic solvents or vigorous stirring. These Dox encapsulated MPEG-PCL (Dox/MPEG-PCL) micelles with drug loading of 4.2% were monodisperse and {approx} 20 nm in diameter. The Dox can be released from the Dox/MPEG-PCL micelles; the Dox-release at pH 5.5 was faster than that at pH 7.0. Encapsulation of Dox in MPEG-PCL micelles enhanced the cellular uptake and cytotoxicity of Dox on the C-26 colon carcinoma cell in vitro, and slowed the extravasation of Dox in the transgenic zebrafish model. Compared to free Dox, Dox/MPEG-PCL micelles were more effective in inhibiting tumor growth in the subcutaneous C-26 colon carcinoma and Lewis lung carcinoma models, and prolonging survival of mice bearing these tumors. Dox/MPEG-PCL micelles also induced lower systemic toxicity than free Dox. In conclusion, incorporation of Dox in MPEG-PCL micelles enhanced the anticancer activity and decreased the systemic toxicity of Dox; these Dox/MPEG-PCL micelles are an interesting formulation of Dox and may have potential clinical applications in cancer therapy.

  1. Improvement of in vivo efficacy of recombinant human erythropoietin by encapsulation in PEG–PLA micelle

    Directory of Open Access Journals (Sweden)

    Shi YN

    2012-12-01

    Full Text Available Yanan Shi,1,2,* Wan Huang,1,* Rongcai Liang,1–3 Kaoxiang Sun,2,3 Fangxi Zhang,2,3 Wanhui Liu,2,3 Youxin Li1–31College of Life Science, Jilin University, Changchun, China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co, Ltd, Yantai, China; 3School of Pharmacy, Yantai University, Yantai, China*These authors contributed equally to this workAbstract: To improve the pharmacokinetics and stability of recombinant human erythropoietin (rhEPO, rhEPO was successfully formulated into poly(ethylene glycol–poly(d,l-lactide (PEG–PLA di-block copolymeric micelles at diameters ranging from 60 to 200 nm with narrow polydispersity indices (PDIs; PDI < 0.3 and trace amount of protein aggregation. The zeta potential of the spherical micelles was in the range of −3.78 to 4.65 mV and the highest encapsulation efficiency of rhEPO in the PEG–PLA micelles was about 80%. In vitro release profiles indicated that the stability of rhEPO in the micelles was improved significantly and only a trace amount of aggregate was found. Pharmacokinetic studies in rats showed highly enhanced plasma retention time of the rhEPO-loaded PEG-PLA micelles in comparison with the native rhEPO group. Increased hemoglobin concentrations were also found in the rat study. Native polyacrylamide gel electrophoresis results demonstrated that rhEPO was successfully encapsulated into the micelles, which was stable in phosphate buffered saline with different pHs and concentrations of NaCl. Therefore, PEG–PLA micelles can be a potential protein drug delivery system.Keywords: rhEPO, PEG–PLA micelle, in vitro, pharmacokinetics, pharmacodynamics

  2. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; Shi, Yang; Van Nostrum, Cornelus F.|info:eu-repo/dai/nl/134498690; Anuchapreeda, Songyot; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Okonogi, Siriporn

    2015-01-01

    Abstract Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of

  3. Influence of serum albumin on intracellular delivery of drug-loaded hyaluronan polymeric micelles

    Czech Academy of Sciences Publication Activity Database

    Nešporová, K.; Sogorková, J.; Smejkalova, D.; Kulhánek, J.; Huerta-Angeles, G.; Kubala, Lukáš; Velebný, V.

    2016-01-01

    Roč. 511, č. 1 (2016), s. 638-647 ISSN 0378-5173 Institutional support: RVO:68081707 Keywords : Polymeric micelle * Hyaluronan * Fatty acid Subject RIV: BO - Biophysics Impact factor: 3.649, year: 2016

  4. Structural properties of self-assembled polymeric micelles

    DEFF Research Database (Denmark)

    Mortensen, K.

    1998-01-01

    At present, the thermodynamic understanding of complex copolymer systems is undergoing important developments. Block copolymers aggregate in selective solvents into micelles of various form and size depending on molecular architecture and interaction parameters. The micelles constitute the basis ...

  5. Injectable Thermoresponsive Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System.

    Science.gov (United States)

    Liu, Min; Song, Xia; Wen, Yuting; Zhu, Jing-Ling; Li, Jun

    2017-10-18

    In this work, we have synthesized a thermoresponsive copolymer, alginate-g-poly(N-isopropylacrylamide) (alginate-g-PNIPAAm) by conjugating PNIPAAm to alginate, where PNIPAAm with different molecular weights and narrow molecular weight distribution was synthesized by atomic transfer radical polymerization. The copolymer dissolved in water or phosphate-buffered saline buffer solution at room temperature and formed self-assembled micelles with low critical micellization concentrations when the temperature increased to above their critical micellization temperatures. At higher concentration, that is, 7.4 wt % in water, the copolymer formed solutions at 25 °C and turned into thermosensitive hydrogels when temperature increased to the body temperature (37 °C). Herein, we hypothesized that the thermoresponsive hydrogels could produce self-assembled micelles with the dissolution of the alginate-g-PNIPAAm hydrogels in a biological fluid or drug release medium. If the drug was hydrophobic, the hydrogel eventually could release and produce drug-encapsulated micelles. In our experiments, we loaded the anticancer drug doxorubicin (DOX) into the alginate-g-PNIPAAm hydrogels and demonstrated that the hydrogels released DOX-encapsulated micelles in a sustained manner. The slowly released DOX-loaded micelles enhanced the cellular uptake of DOX in multidrug resistant AT3B-1 cells, showing the effect of overcoming the drug resistance and achieving better efficiency for killing the cancer cells. Therefore, the injectable thermoresponsive hydrogels formed by alginate-g-PNIPAAm and loaded with DOX turned into a smart drug delivery system, releasing DOX-encapsulated micelles in a sustained manner, showing great potential for overcoming the drug resistance in cancer therapy.

  6. Preparation of Polymeric Micelles for use as Carriers of ...

    African Journals Online (AJOL)

    These micelles were characterized by dynamic light scattering, to measure the micelle diameter; by acid-base titration, to determine the percentage of carboxylic groups occupied by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); and visual control and spectrophotometric ...

  7. Preparation of Polymeric Micelles for Use as Carriers of ...

    African Journals Online (AJOL)

    Erah

    Tropical Journal of Pharmaceutical Research, December 2007; 6 (4): 815-824 ... by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); ... Furthermore, the micelles were stable in vitro, exhibiting a low level of CMC and stronger anti- ... that take the form of micelles 5, 6, 7, 8.

  8. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    Science.gov (United States)

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  9. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  10. Formulation and in vitro evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG) loaded polymeric mixed micelles for glioblastoma multiforme.

    Science.gov (United States)

    Saxena, Vipin; Hussain, Muhammad Delwar

    2013-12-01

    Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in human. 17-Allylamino-17-demethoxy geldanamycin (17-AAG) is an inhibitor of heat shock protein 90 (HSP90). The highly lipophilic nature and selective targeting of tumor cells makes 17-AAG a promising candidate for therapy of GBMs but poor water solubility, short biological half-life and hepatotoxicity limited its clinical use. Polymeric mixed micelles composed of Pluronic® P-123 and F-127 (2:1 (w/w)) containing 17-AAG were prepared and characterized. Cellular uptake and in vitro cytotoxicity of the prepared micelles were determined in U87MG human glioblastoma cells. The particle size of 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles was 22.2 ± 0.1 nm; drug loading was about 4.0 ± 0.5% (w/w) with 88.2 ± 3.1% (w/w) encapsulation efficiency. About 90% of drug was released from the nanoparticles over 8 days. Cellular uptake studies showed intracellular uptake of mixed micelles. Cytotoxicity study showed 5-fold increase (P AAG-loaded mixed micelles to free 17-AAG. Due to their targeting ability, size, high drug loading and controlled release behavior, 17-AAG loaded Pluronic(®) P-123 and F-127 mixed micelles might be developed as a delivery system for GBM treatment. © 2013 Elsevier B.V. All rights reserved.

  11. Core-cross-linked polymeric micelles: a versatile nanomedicine platform with broad applicability

    NARCIS (Netherlands)

    Hu, Q.

    2015-01-01

    This dissertation addresses the broad applicability of the nanomedicine platform core-cross-linked polymeric micelles (CCL-PMs) composed of thermosensitive mPEG-b-pHPMAmLacn block copolymers. In Chapter 1, a general introduction to nanomedicines is provided, with a particular focus on polymeric

  12. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli, E-mail: zwllz@163.com; Liu, Jianping, E-mail: liujianpingljp@hotmail.com [China Pharmaceutical University, Department of Pharmaceutics (China)

    2016-09-15

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10–100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer–polymer and polymer–cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.Graphical Abstract.

  13. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  14. Encapsulation of Curcumin in Diblock Copolymer Micelles for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Alizadeh

    2015-01-01

    Full Text Available Application of nanoparticles has recently promising results for water insoluble agents like curcumin. In this study, we synthesized polymeric nanoparticle-curcumin (PNPC and then showed its efficiency, drug loading, stability, and safety. Therapeutic effects of PNPC were also assessed on two cell lines and in an animal model of breast cancer. PNPC remarkably suppressed mammary and hepatocellular carcinoma cells proliferation (P<0.05. Under the dosing procedure, PNPC was safe at 31.25 mg/kg and lower doses. Higher doses demonstrated minimal hepatocellular and renal toxicity in paraclinical and histopathological examinations. Tumor take rate in PNPC-treated group was 37.5% compared with 87.5% in control (P<0.05. Average tumor size and weight were significantly lower in PNPC group than control (P<0.05. PNPC increased proapoptotic Bax protein expression (P<0.05. Antiapoptotic Bcl-2 protein expression, however, was lower in PNPC-treated animals than the control ones (P<0.05. In addition, proliferative and angiogenic parameters were statistically decreased in PNPC-treated animals (P<0.05. These results highlight the suppressing role for PNPC in in vitro and in vivo tumor growth models. Our findings provide credible evidence for superior biocompatibility of the polymeric nanocarrier in pharmacological arena together with an excellent tumor-suppressing response.

  15. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.

    Science.gov (United States)

    Mandal, Abhirup; Bisht, Rohit; Rupenthal, Ilva D; Mitra, Ashim K

    2017-02-28

    Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    Science.gov (United States)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  17. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    Science.gov (United States)

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  18. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application.

    Science.gov (United States)

    Sanna, Vanna; Lubinu, Giuseppe; Madau, Pierluigi; Pala, Nicolino; Nurra, Salvatore; Mariani, Alberto; Sechi, Mario

    2015-02-25

    With the aim to obtain controlled release and to preserve the antioxidant activity of the polyphenols, nanoencapsulation of white tea extract into polymeric nanoparticles (NPs) based on poly(ε-caprolactone) (PCL) and alginate was successfully performed. NPs were prepared by nanoprecipitation method and were characterized in terms of morphology and chemical properties. Total polyphenols and catechins contents before and after encapsulation were determined. Moreover, in vitro release profiles of encapsulated polyphenols from NPs were investigated in simulated gastrointestinal fluids. The antioxidant activity and stability of encapsulated extract were further evaluated. Interestingly, NPs released 20% of the polyphenols in simulated gastric medium, and 80% after 5 h at pH 7.4, showing a good capacity to control the polyphenols delivery. Furthermore, DPPH(•) assay confirmed that white tea extract retained its antioxidant activity and NPs protected tea polyphenols from degradation, thus opening new perspectives for the exploitation of white tea extract-loaded NPs for nutraceutical applications.

  19. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure.

    Science.gov (United States)

    Zhao, Bo; Wang, Xue-Qing; Wang, Xiao-You; Zhang, Hua; Dai, Wen-Bing; Wang, Jun; Zhong, Zhen-Lin; Wu, Hou-Nan; Zhang, Qiang

    2013-10-03

    Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research. Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared. In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice. All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs. These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more

  20. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  1. New Strategies for Constructing Polymeric Micelles and Hollow Spheres Via Self-Assembly

    Institute of Scientific and Technical Information of China (English)

    Ming Jiang

    2005-01-01

    @@ 1Introduction In recent years, self-assembly of block copolymers leading to micelles in selective solvents, which dissolve only one of the blocks, has developed rapidly because the micelles are very strong candidates for potential applications in advanced technologies. The micelles usually have core-shell structure which are connected by covalent bonds. Based on our long-term research on interpolymer complexation due to hydrogen bonding, where we noticed that the complexation often led to the formation of irregular aggregates, we succeeded recently in developing a series of new approaches to polymeric micelles and hollow spheres via specific intermolecular interactions. As in these approaches, a variety of polymers with interacting groups i.e. homopolymers, random copolymers, graft copolymers as well as low mass compounds (LMC), can be used as building blocks, our research strategies have substantially extended the field of self-assembly.

  2. Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications

    Czech Academy of Sciences Publication Activity Database

    Hu, Q.; Rijcken, C. J. F.; van Gaal, E.; Brundel, P.; Kostková, Hana; Etrych, Tomáš; Weber, B.; Barz, M.; Kiessling, F.; Prakash, J.; Storm, G.; Hennink, W. E.; Lammers, T.

    2016-01-01

    Roč. 244, Part B (2016), s. 314-325 ISSN 0168-3659. [European Symposium on Controlled Drug Delivery /14./. Egmond aan Zee, 13.04.2016-15.04.2016] Institutional support: RVO:61389013 Keywords : nanomedicine * drug targeting * polymeric micelles Subject RIV: CD - Macromolecular Chemistry Impact factor: 7.786, year: 2016

  3. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    Czech Academy of Sciences Publication Activity Database

    Talelli, M.; Oliveira, S.; Rijcken, C. J. F.; Pieters, E. H. E.; Etrych, Tomáš; Ulbrich, Karel; van Nostrum, R. C. F.; Storm, G.; Hennink, W. E.; Lammers, T.

    2013-01-01

    Roč. 34, č. 4 (2013), s. 1255-1260 ISSN 0142-9612 R&D Projects: GA AV ČR IAA400500806; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric micelle * doxorubicin * active targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.312, year: 2013

  4. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  5. Radiation-induced crosslinking of polymeric micelles as nanoparticle for immobilization of bioactive compound

    International Nuclear Information System (INIS)

    Rida Tajau; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Wan Md Zin Wan Yunus; Kamaruddin Hashim; Nor Azowa Ibrahim; Maznah Ismail; Mek Zah Salleh

    2012-01-01

    The purpose of this study was to develop the bioactive-loaded polymeric nanoparticle by radiation-induced crosslinking technique. The polymeric micelles consist of acrylated palm oil (APO), anionic surfactant and aqueous solution was prepared for immobilization of bioactive compound for example the Thymoquinone (TQ). The TQ-loaded APO micelle was subjected to ionizing radiation to induce crosslinked polymeric structure of the TQ-loaded APO nanoparticle. The formation of TQ-loaded APO micro micelle and nano particle were evaluated by the Dynamic Light Scattering (DLS), the Fourier Transform Infrared (FTIR) Spectroscopy and the Transmission Electron Microscopy (TEM) for characterization the size, the shape, the chemical structure and the irradiation effect of the micelle and the nano particle. The results indicate that the size of APO micro and nano particles varies from 120 to 270 nanometer (nm) upon gamma irradiation at doses ranging from 1 to 25 kilo gray (kGy). In addition, size of the particle was found decreasing upon irradiation due to the crosslinking interaction. The study demonstrated that the APO micro-and nanoparticle can retained and controlled the release rate of the thymoquinone at up to 24 hours as determined using ultraviolet-visible (UV-Vis) spectrophotometer. These findings suggested that the ionizing radiation method can be utilized to prepare nano-size APO particles, with the presence of TQ. (author)

  6. Polymeric microcapsules assembled from a cationic/zwitterionic pair of responsive block copolymer micelles.

    Science.gov (United States)

    Addison, Timothy; Cayre, Olivier J; Biggs, Simon; Armes, Steven P; York, David

    2010-05-04

    /shell structure of the micelles remains intact. Finally, thermogravimetric analysis (TGA) of dried capsules confirmed complete removal of the sacrificial inorganic template. As far as we are aware, this is the first demonstration of LbL assembled capsules composed entirely from responsive block copolymer micelles. The results presented here when combined with our previous findings demonstrate that such systems have potential application in the encapsulation and triggered release of actives.

  7. GOLD NANOPARTICLES ENCAPSULATED IN A POLYMERIC MATRIX OF SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    Oana Lelia POP

    2016-11-01

    Full Text Available Plasmonic nanoparticles can be used as building blocks for the design of multifunctional systems based on polymeric capsules. The use of functionalised particles in therapeutics and imaging and understanding their effect on the cell functions are among the current challenges in nanobiotechnology and nanomedicine. The aim of the study was to manufacture and characterize polymeric microstructures by encapsulating plasmonic gold nanoparticles in biocompatible matrix of sodium alginate. The gold nanoparticles were obtained by reduction of tetracluoroauric acid with sodium citrate. To characterize the microcapsules, UV-Vis and FTIR spectroscopy, optical and confocal microscopy experiments were performed. In vitro cytotoxicity tests on HFL-1 cells were also performed. The capsules have spherical shape and 120 μm diameter. The presence of encapsulated gold nanoparticles is also shown by confocal microscopy. In vitro tests show that the microcapsules are not cytotoxic upon 24 h of cells exposure to microcapsules concentrations ranging from 2.5 to 25 capsules per cell. The obtained microcapsules of sodium alginate loaded with plasmonic gold nanoparticles could potentially be considered as release systems for biologically relevant molecules.

  8. Cell membrane-inspired polymeric micelles as carriers for drug delivery.

    Science.gov (United States)

    Liu, Gongyan; Luo, Quanqing; Gao, Haiqi; Chen, Yuan; Wei, Xing; Dai, Hong; Zhang, Zongcai; Ji, Jian

    2015-03-01

    In cancer therapy, surface engineering of drug delivery systems plays an essential role in their colloidal stability, biocompatibility and prolonged blood circulation. Inspired by the cell membrane consisting of phospholipids and glycolipids, a zwitterionic phosphorylcholine functionalized chitosan oligosaccharide (PC-CSO) was first synthesized to mimic the hydrophilic head groups of those amphipathic lipids. Then hydrophobic stearic acid (SA) similar to lipid fatty acids was grafted onto PC-CSO to form amphiphilic PC-CSO-SA copolymers. Cell membrane-mimetic micelles with a zwitterionic surface and a hydrophobic SA core were prepared by the self-assembly of PC-CSO-SA copolymers, showing excellent stability under extreme conditions including protein containing media, high salt content or a wide pH range. Doxorubicin (DOX) was successfully entrapped into polymeric micelles through the hydrophobic interaction between DOX and SA segments. After fast internalization by cancer cells, sustained drug release from micelles to the cytoplasm and nucleus was achieved. This result suggests that these biomimetic polymeric micelles may be promising drug delivery systems in cancer therapy.

  9. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    Science.gov (United States)

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  10. Assessment of Palmitoyl and Sulphate Conjugated Glycol Chitosan for Development of Polymeric Micelles

    Directory of Open Access Journals (Sweden)

    Ikram Ullah Khan

    2013-06-01

    Full Text Available Introduction: Amphiphilic copolymers are capable of forming core shell-like structures at the critical micellar concentration (CMC; hence, they can serve as drug carriers. Thus, in the present work, polymeric micelles based on novel chitosan derivative were synthesized. Methods: Block copolymer of palmitoyl glycol chitosan sulfate (PGCS was prepared by grafting palmitoyl and sulfate groups serving as hydrophobic and hydrophilic fractions, respectively. Then, fourier transform infrared spectra (FTIR and spectral changes in iodine/iodide mixture were carried out. Results: FTIR studies confirmed the formation of palmitoyl glycol chitosan sulfate (PGCS and spectral changes in iodine/iodide mixture indicated CMC which lies in the range of 0.003-0.2 mg/ml. Conclusion: Therefore, our study indicated that polymeric micelles based on palmitoyl glycol chitosan sulphate could be used as a prospective carrier for water insoluble drugs.

  11. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    Science.gov (United States)

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  12. Polymeric Micelles with Ionic Cores Containing Biodegradable Crosslinks for Delivery of Chemotherapeutic Agents

    OpenAIRE

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V.; Bronich, Tatiana K.

    2010-01-01

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca2+) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like n...

  13. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  14. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    Science.gov (United States)

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tang XJ

    2016-10-01

    Full Text Available Xiang-Jun Tang,1,* Kuan-Ming Huang,1,* Hui Gui,1,* Jun-Jie Wang,2 Jun-Ti Lu,1 Long-Jun Dai,1,3 Li Zhang,1 Gang Wang2 1Department of Neurosurgery, TaiHe Hospital, Hubei University of Medicine, Shiyan, 2Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Jiangsu University, Shanghai, People’s Republic of China; 3Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Abstract: As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence

  16. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy.

    Directory of Open Access Journals (Sweden)

    Jeffersson Krishan Trigo Gutierrez

    Full Text Available Curcumin (CUR has been used as photosensitizer in antimicrobial Photodynamic Therapy (aPDT. However its poor water solubility, instability, and scarce bioavalibility hinder its in vivo application. The aim of this study was to synthesize curcumin in polymeric nanoparticles (NP and to evaluate their antimicrobial photodynamic effect and cytoxicity. CUR in anionic and cationic NP was synthesized using polylactic acid and dextran sulfate by the nanoprecipitation method. For cationic NP, cetyltrimethylammonium bromide was added. CUR-NP were characterized by physicochemical properties, photodegradation, encapsulation efficiency and release of curcumin from nanoparticles. CUR-NP was compared with free CUR in 10% dimethyl sulfoxide (DMSO as a photosensitizer for aPDT against planktonic and biofilms (mono-, dual- and triple-species cultures of Streptococcus mutans, Candida albicans and Methicillin-Resistant Staphylococcus aureus. The cytotoxicity effect of formulations was evaluated on keratinocytes. Data were analysed by parametric (ANOVA and non-parametric (Kruskal-Wallis tests (α = 0.05. CUR-NP showed alteration in the physicochemical properties along time, photodegradation similar to free curcumin, encapsulation efficiency up to 67%, and 96% of release after 48h. After aPDT planktonic cultures showed reductions from 0.78 log10 to complete eradication, while biofilms showed no antimicrobial effect or reductions up to 4.44 log10. Anionic CUR-NP showed reduced photoinactivation of biofilms. Cationic CUR-NP showed microbicidal effect even in absence of light. Anionic formulations showed no cytotoxic effect compared with free CUR and cationic CUR-NP and NP. The synthesized formulations improved the water solubility of CUR, showed higher antimicrobial photodynamic effect for planktonic cultures than for biofilms, and the encapsulation of CUR in anionic NP reduced the cytotoxicity of 10% DMSO used for free CUR.

  17. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy

    Science.gov (United States)

    Trigo Gutierrez, Jeffersson Krishan; Zanatta, Gabriela Cristina; Ortega, Ana Laura Mira; Balastegui, Maria Isabella Cuba; Sanitá, Paula Volpato; Pavarina, Ana Cláudia; Barbugli, Paula Aboud

    2017-01-01

    Curcumin (CUR) has been used as photosensitizer in antimicrobial Photodynamic Therapy (aPDT). However its poor water solubility, instability, and scarce bioavalibility hinder its in vivo application. The aim of this study was to synthesize curcumin in polymeric nanoparticles (NP) and to evaluate their antimicrobial photodynamic effect and cytoxicity. CUR in anionic and cationic NP was synthesized using polylactic acid and dextran sulfate by the nanoprecipitation method. For cationic NP, cetyltrimethylammonium bromide was added. CUR-NP were characterized by physicochemical properties, photodegradation, encapsulation efficiency and release of curcumin from nanoparticles. CUR-NP was compared with free CUR in 10% dimethyl sulfoxide (DMSO) as a photosensitizer for aPDT against planktonic and biofilms (mono-, dual- and triple-species) cultures of Streptococcus mutans, Candida albicans and Methicillin-Resistant Staphylococcus aureus. The cytotoxicity effect of formulations was evaluated on keratinocytes. Data were analysed by parametric (ANOVA) and non-parametric (Kruskal-Wallis) tests (α = 0.05). CUR-NP showed alteration in the physicochemical properties along time, photodegradation similar to free curcumin, encapsulation efficiency up to 67%, and 96% of release after 48h. After aPDT planktonic cultures showed reductions from 0.78 log10 to complete eradication, while biofilms showed no antimicrobial effect or reductions up to 4.44 log10. Anionic CUR-NP showed reduced photoinactivation of biofilms. Cationic CUR-NP showed microbicidal effect even in absence of light. Anionic formulations showed no cytotoxic effect compared with free CUR and cationic CUR-NP and NP. The synthesized formulations improved the water solubility of CUR, showed higher antimicrobial photodynamic effect for planktonic cultures than for biofilms, and the encapsulation of CUR in anionic NP reduced the cytotoxicity of 10% DMSO used for free CUR. PMID:29107978

  18. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide Copolymer for Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Gyung Mo Son

    2014-09-01

    Full Text Available Graft copolymer composed hyaluronic acid (HA and poly(d,l-lactide-co-glycolide (PLGA (HAgLG was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA to have amine end group in the end of chain (PLGA-amine. PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting.

  19. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide) Copolymer for Tumor Targeting

    Science.gov (United States)

    Son, Gyung Mo; Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Kang, Dae Hwan; Park, Su Bum; Jeong, Young-IL

    2014-01-01

    Graft copolymer composed hyaluronic acid (HA) and poly(d,l-lactide-co-glycolide) (PLGA) (HAgLG) was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA) to have amine end group in the end of chain (PLGA-amine). PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX)-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC)-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting. PMID:25216338

  20. Polymeric micelles with ionic cores containing biodegradable cross-links for delivery of chemotherapeutic agents.

    Science.gov (United States)

    Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K

    2010-04-12

    Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.

  1. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  2. The potential of polymeric micelles in the context of glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Ramin eMorshed

    2013-12-01

    Full Text Available Glioblastoma multiforme (GBM, a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. Despite these advantages however, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.

  3. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  4. PSMA ligand conjugated PCL-PEG polymeric micelles targeted to prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Jian Jin

    Full Text Available In this content, a small molecular ligand of prostate specific membrane antigen (SMLP conjugated poly (caprolactone (PCL-b-poly (ethylene glycol (PEG copolymers with different block lengths were synthesized to construct a satisfactory drug delivery system. Four different docetaxel-loaded polymeric micelles (DTX-PMs were prepared by dialysis with particle sizes less than 60 nm as characterized by dynamic light scattering (DLS and transmission electron microscope (TEM. Optimization of the prepared micelles was conducted based on short-term stability and drug-loading content. The results showed that optimized systems were able to remain stable over 7 days. Compared with Taxotere, DTX-PMs with the same ratio of hydrophilic/hydrophobic chain length displayed similar sustained release behaviors. The cytotoxicity of the optimized targeted DTX-PCL12K-PEG5K-SMLP micelles (DTX-PMs2 and non-targeted DTX-PCL12K-mPEG5K micelles (DTX-PMs1 were evaluated by MTT assays using prostate specific membrane antigen (PSMA positive prostate adenocarcinoma cells (LNCaP. The results showed that the targeted micelles had a much lower IC50 than their non-targeted counterparts (48 h: 0.87 ± 0.27 vs 13.48 ± 1.03 µg/ml; 72 h: 0.02 ± 0.008 vs 1.35 ± 0.54 µg/ml. In vitro cellular uptake of PMs2 showed 5-fold higher fluorescence intensity than that of PMs1 after 4 h incubation. According to these results, the novel nano-sized drug delivery system based on DTX-PCL-PEG-SMLP offers great promise for the treatment of prostatic cancer.

  5. Fluorine-18-labeling of polymerized nano-micelles for in vivo PET imaging

    International Nuclear Information System (INIS)

    Kuhnast, B.; Hinnen, F.; Mackiewicz, N.; Tavitian, B.; Duconge, F.; Dolle, F.; Gravel, E.; Doris, E.

    2011-01-01

    Complete text of publication follows: Objectives: One of the key issues in nano-medicine, and in particular in the field of cancer treatment and follow up, is the development of nano-particles able to improve the delivery of drugs or contrast agents. It is well established that passive targeting by nano-particles is favoured by specific features of tumors, a phenomena usually defined as the enhanced permeability and retention (EPR) effect. While several nano-particulate systems in the 70- 200 nm size range have been explored for cancer targeting by the EPR effect (liposomes, dendrimers, ceramic or metallic nano-particles, carbon nano-tubes...), recent studies suggested that particles of smaller sizes (≤ 30 nm) might better diffuse through blood vessel walls and reach deeper tumor tissues. Recently, a novel series of small-sized (diameter of ca. 10 nm) and highly stable (polymerized) micelles were designed as drug nano-carriers. For in vivo 3D-imaging purposes, these micelles were provided with a sulfhydryl function permitting prosthetic conjugation with maleimide-based reagents such as AlexaFluor680 R (AF680) for optical fluorescence imaging and [ 18 F]FPyME (1-[3-(2-[ 18 F]fluoropyridin-3-yloxy)propyl]pyrrole-2, 5-dione), a prosthetic reagent labeled with the positron-emitter fluorine-18 for PET imaging, which latter work is presented herein. Methods: nano-micelles were synthesized using standard already reported procedures and comprise a defined molar ratio of functionalized diacetylene-containing poly(ethyleneglycol) (PEG-2000) lipids (pentacosa-10, 12- diyn-1-oxy-penta-tetraconta-ethylene-glycols). Preparation includes polymerization of the diacetylene functions borne by the C-25 lipophilic chains upon UV-irradiation at 254 nm via a topochemical 1, 4-addition mechanism. [ 18 F]FPyME was conjugated with the micelles in a 1/9 (v:v) mixture (1 mL) of DMSO and 0.1 M aq. PBS (pH 7.5) at room temperature for 15 min. The conjugated micelles were then separated from

  6. Evaluation of the uptake of CDDP-containing polymeric micelles in single pancreatic cancer cells

    International Nuclear Information System (INIS)

    Mizuno, Kazue; Uesaka, Mitsuru; Matsuyama, Shigeo; Ito, Y.; Ishii, Keizo; Yamazaki, Hiromichi

    2010-01-01

    Highly functionalized drugs delivered via a drug delivery system are expected to have less side effects and higher accumulation rates compared to conventional anticancer drugs. An understanding of the kinetics of drugs contained within a delivery system is necessary to obtain the maximum therapeutic effect. We performed micro-elemental analysis of human pancreatic cancer cells treated with cis-diamminedichloroplatinum(II) (CDDP)-containing polymeric micelles. The results showed that the platinum signals were distributed inside the cellular nuclei and the cytoplasm indicating that CDDP was delivered into the cells. The results from this study will be useful for designing an optimum carrier for platinum-containing anticancer drugs. (author)

  7. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study.

    Science.gov (United States)

    Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A

    2018-11-01

    This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.

  8. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model

    Directory of Open Access Journals (Sweden)

    Vinh NQ

    2015-06-01

    Full Text Available Nguyen Quoc Vinh,1 Shigeyuki Naka,1 Horacio Cabral,2 Hiroyuki Murayama,1 Sachiko Kaida,1 Kazunori Kataoka,2 Shigehiro Morikawa,3 Tohru Tani4 1Department of Surgery, Shiga University of Medical Science, Shiga, Japan; 2Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; 3Department of Nursing, Shiga University of Medical Science, Shiga, Japan; 4Biomedical Innovation Center, Shiga University of Medical Science, Shiga, Japan Abstract: Hepatocellular carcinoma (HCC is one of the most intractable and lethal cancers; most cases are diagnosed at advanced stages with underlying liver dysfunction and are frequently resistant to conventional chemotherapy and radiotherapy. The development of tumor-targeting systems may improve treatment outcomes. Nanomedicine platforms are of particular interest for enhancing chemotherapeutic efficiency, and they include polymeric micelles, which enable targeting of multiple drugs to solid tumors, including imaging and therapeutic agents. This allows concurrent diagnosis, targeting strategy validation, and efficacy assessment. We used polymeric micelles containing the T1-weighted magnetic resonance imaging contrast agent gadolinium-diethylenetriaminpentaacetic acid (Gd-DTPA and the parent complex of the anticancer drug oxaliplatin [(1,2-diaminocyclohexaneplatinum(II (DACHPt] for simultaneous imaging and therapy in an orthotopic rat model of HCC. The Gd-DTPA/DACHPt-loaded micelles were injected into the hepatic artery, and magnetic resonance imaging performance and antitumor activity against HCC, as well as adverse drug reactions were assessed. After a single administration, the micelles achieved strong and specific tumor contrast enhancement, induced high levels of tumor apoptosis, and significantly suppressed tumor size and growth. Moreover, the micelles did not induce severe adverse reactions and significantly improved survival outcomes in comparison to oxaliplatin or

  9. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  10. Preparation of a folate-mediated tumor targeting ultraparamagnetic polymeric micelles and its in vitro experimental study

    International Nuclear Information System (INIS)

    Hong Guobin; Zhou Jingxing; Shen Jun; Liang Biling; Yuan Renxu; Shuai Xintao

    2008-01-01

    Objective: To evaluate the tumor targeting characteristic of the Folate-SPIO-DOX- Micelles by in vitro studies, and to test the feasibility of monitor tumor targeting using it and clinical MRI. Methods: The polymeric micelles, Folate-SPIO-DOXO-Micelles were prepared. The in vitro tumor cell targeting efficacy of these folate modified and DOX or SPIO-loaded micelles (Folate-SPIO-DOX- MiceUes) was evaluated by observing the cellular uptake of micelles by human hepatic carcinoma cells (Bel 7402 cells) which overexpressed folate surface receptors. Cell suspensions were incubated with Folate-SPIO- DOXO-Micelles for 1 h. Prussian blue staining was performed to show intracellular irons. Flow cytometry was used to further quantify the cellular uptake of the nanoparticles into Bel 7402 cells. MRI was performed to show the signal intensity changes by using T 2 WI sequences at a clinical 1.5 T MR system. Results Prussian blue staining showed much more intracellular iron in cells incubated with Folate-SPIO-DOX- Micelles than the cells incubated with the non-targeting SPIO-DOX-Micelles. As revealed by flow cytometry, the mean fluorescence intensity of cells in the folate group and the non-folate group were 117.88 and 46. 33, respectively. The T 2 signal intensity in MRI of cells treated with the folate targeting micelles decreased significantly(when the concentration of SPIO in cell culture medium was 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -5.02%, -23.58%, -45.89%, -70.34%, and -92.41%, respectively). In contrast, T 2 signal intensity did not show obvious decrease for cells treated with the folate-free micelles (when the concentration of SPIO in cell culture medium was at 5, 10, 20, 40, and 80 μg/ml, respectively, T 2 signal intensity decreased by -3.77%, -2.16%, -2.18%, -2.74% and -19.77%, respectively). Conclusion: The polymeric micelles, Folate-SPIO-DOX-Micelles has good targeting ability to the hepatic carcinoma cells in vitro, and

  11. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    Science.gov (United States)

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  12. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery

    NARCIS (Netherlands)

    Shi, Y.; Lammers, Twan Gerardus Gertudis Maria; Storm, Gerrit; Hennink, W.E.

    2017-01-01

    Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on

  13. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Biological assessment of self-assembled polymeric micelles for pulmonary administration of insulin.

    Science.gov (United States)

    Andrade, Fernanda; das Neves, José; Gener, Petra; Schwartz, Simó; Ferreira, Domingos; Oliva, Mireia; Sarmento, Bruno

    2015-10-01

    Pulmonary delivery of drugs for both local and systemic action has gained new attention over the last decades. In this work, different amphiphilic polymers (Soluplus®, Pluronic® F68, Pluronic® F108 and Pluronic® F127) were used to produce lyophilized formulations for inhalation of insulin. Development of stimuli-responsive, namely glucose-sensitive, formulations was also attempted with the addition of phenylboronic acid (PBA). Despite influencing the in vitro release of insulin from micelles, PBA did not confer glucose-sensitive properties to formulations. Lyophilized powders with aerodynamic diameter (<6 μm) compatible with good deposition in the lungs did not present significant in vitro toxicity for respiratory cell lines. Additionally, some formulations, in particular Pluronic® F127-based formulations, enhanced the permeation of insulin through pulmonary epithelial models and underwent minimal internalization by macrophages in vitro. Overall, formulations based on polymeric micelles presenting promising characteristics were developed for the delivery of insulin by inhalation. The ability to deliver other systemic drugs via inhalation has received renewed interests in the clinical setting. This is especially true for drugs which usually require injections for delivery, like insulin. In this article, the authors investigated their previously developed amphiphilic polymers for inhalation of insulin in an in vitro model. The results should provide basis for future in vivo studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fragrance encapsulation in polymeric matrices by emulsion electrospinning

    OpenAIRE

    Camerlo Agathe; Vebert-Nardin Corinne; Rossi René Michel; Popa Ana Maria

    2013-01-01

    We present the successful application of emulsion electrospinning for the encapsulation of a model for highly volatile fragrances namely (R) (+) limonene in a poly(vinyl alcohol) (PVA) fibrous matrix. The influence of the emulsion formulation and of its colloidal properties on the fiber morphology as well as on the limonene encapsulation efficiency is described. The release profile of the fragrance from the electrospun nanofibers over a fifteen days range shows that this type of nanofibrous m...

  17. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630.

    Science.gov (United States)

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was -10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs.

  18. Effect of Molecular Weight and Molar Ratio of Dextran on Self-Assembly of Dextran Stearate Polymeric Micelles as Nanocarriers for Etoposide

    Directory of Open Access Journals (Sweden)

    Jaleh Varshosaz

    2012-01-01

    Full Text Available Amphiphilic polymer surfactants are composed of hydrophilic and hydrophobic polymers and are widely used in targeted drug delivery. The purpose of this study was the evaluation of the effect of molecular weight and molar ratio of dextran on physicochemical properties of dextran stearate polymeric micelles. Dextran stearate was synthesized by acylation of dextran with stearoyl chloride. Etoposide loaded polymeric micelles were prepared by dialysis method. The resulting micelles were evaluated for particle size, zeta potential, critical micelle concentration (CMC, drug loading capacity, and release efficiency. Cytotoxicity and cellular uptake of micelles were studied in CT-26 colorectal carcinoma cell line. Molecular weight and molar ratio of dextran-stearate were impressive on zeta potential, CMC, drug loading capacity, and release efficiency. Unlike polymer molecular weight, molar ratio of stearate had a significant effect on cytotoxicity and particle size of etoposide loaded micelles. Although molecular weight of dextran had no significant effect on cytotoxicity of micelles on CT-26 cells, it had drastic attributes for stability of polymeric micelles. Consequently, both variables of molecular weight of dextran and molar ratio of stearate should be taken into account to have a stable and effective micelle of dextran-stearate.

  19. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  20. Isomerization of Orthogonal Molecular Switches Encapsulated within Micelles Solubilizing Carbon Nanotubes

    DEFF Research Database (Denmark)

    Kreft, Stefanie K.; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted

    2015-01-01

    We study the effects of the proximity of the orthogonal dipole-switching moiety dihydroazulene/vinylheptafulvene (DHA/VHF) to carbon nanotubes (CNTs). The switches are introduced into a micelle surrounding the CNTs, thereby achieving very close proximity between the molecules and the CNTs...... of the CNTs and the resulting reversible redshift of the nanotubes' emission by the change of the molecules' conformation....

  1. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  2. Polymeric Nano-Micelles as Novel Cargo-Carriers for LY2157299 Liver Cancer Cells Delivery

    Directory of Open Access Journals (Sweden)

    Nemany Abdelhamid Nemany Hanafy

    2018-03-01

    Full Text Available LY2157299 (LY, which is very small molecule bringing high cancer diffusion, is a pathway antagonist against TGFβ. LY dosage can be diluted by blood plasma, can be captured by immune system or it might be dissolved during digestion in gastrointestinal tract. The aim of our study is to optimize a “nano-elastic” carrier to avoid acidic pH of gastrointestinal tract, colon alkaline pH, and anti-immune recognition. Polygalacturonic acid (PgA is not degradable in the gastrointestinal tract due to its insolubility at acidic pH. To avoid PgA solubility in the colon, we have designed its conjugation with Polyacrylic acid (PAA. PgA-PAA conjugation has enhanced their potential use for oral and injected dosage. Following these pre-requisites, novel polymeric nano-micelles derived from PgA-PAA conjugation and loading LY2157299 are developed and characterized. Efficacy, uptake and targeting against a hepatocellular carcinoma cell line (HLF have also been demonstrated.

  3. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  4. Comparison of Different Encapsulating Adhesives to Enhance the Efficiencies and Lifetimes of Polymeric Solar Cells

    Science.gov (United States)

    Chung, Ming-Hua; Chen, Chen-Ming; Hsieh, Tsung-Eong; Tang, Rong-Ming; Tsai, Yu Sheng; Chu, Wei-Ping; Liu, Mark O.; Juang, Fuh-Shyang

    2009-04-01

    Polymeric solar cells (PSCs) with a derivative of C60 [[6,6]-phenyl C61-butyric acid methyl ester (PCBM)], and 3-hexylthiophene (P3HT) as active layers have been fabricated. The PSC devices were also packaged with glass and novel UV glues to improve their lifetimes and power conversion efficiencies (PCEs). After encapsulation with UV glue I, II, and III, the PCEs of PSCs reached 4, 4.82, and 6%, respectively, and their half-lifetimes increased to 16-18, 26-28, and 90 h, respectively, while the PCEs and half-lifetimes of PSCs without encapsulation were 3.76% and 2.5 h, respectively.

  5. Self-folding polymeric containers for encapsulation and delivery of drugs.

    Science.gov (United States)

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-04-01

    Full Text Available Lei Zhang,1 Faming Gong,2 Fang Zhang,3 Jing Ma,1 Peidong Zhang,1 Jun Shen3 1Department of Hepatobiliary and Pancreatic Surgery, 2PCFM Laboratory of Ministry of Education, School of Chemistry and Chemical Engineering, 3Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China Background: The purpose of this study was to evaluate the inhibitory effect of targeted folate-functionalized micelles containing superparamagnetic iron oxide nanoparticles (SPIONs and sorafenib on human hepatic carcinoma (HepG2 cells in vitro, and to observe the feasibility of surveillance of this targeting therapeutic effect by magnetic resonance imaging. Methods: Sorafenib and SPIONs were loaded into polymeric micelles. The targeted nanocarrier was synthesized by functionalizing the micelles with folate. Folate-free micelles loaded with sorafenib and SPIONs were used as control (nontargeted micelles. Uptake of the nanocarrier by cells was assessed using Prussian blue staining after 1 hour of incubation with the polymeric micelles. The inhibitory effect of the targeted micelles on HepG2 cell proliferation at various concentrations of sorafenib was assessed in vitro using the methyl thiazolyl tetrazolium (MTT assay and apoptotic analysis using flow cytometry. Magnetic resonance imaging using a clinical 1.5 T scanner was performed to detect changes in the signal intensity of cells after incubation with the targeted micelles. Results: Prussian blue staining showed significantly more intracellular SPIONs in cells incubated with the targeted micelles than those incubated with nontargeted micelles. The MTT assay showed that the average inhibitory ratio in the targeted group was significantly higher than that in the nontargeted group (38.13% versus 22.54%, P = 0.028. The mean apoptotic rate in the targeted cells, nontargeted cells, and untreated cells was 17.01%, 11.04%, and 7.89%, respectively. The apoptotic rate in the

  7. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles

    Directory of Open Access Journals (Sweden)

    Chen YC

    2015-12-01

    Full Text Available Ying-Chen Chen,* Chia-Yu Su,* Hua-Jun Jhan, Hsiu-O Ho, Ming-Thau Sheu School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to this work Abstract: To alleviate the inherent problems of amphotericin B (AmB, such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic®, Kolliphor®, d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol-2000 (DSPE-PEG2K was developed. An optimal formulation (Ambicelles composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone®, the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone® did. With pretreatment of 50 µg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 µg/mL, whereas that of Ambicelles was 1 µg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect. Keywords: amphotericin B, micelle, amphiphilic polymer, lecithin, DSPE-PEG

  8. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Faridi-Majidi, R. [School of Chemistry, University College of Science, Tehran University, Tehran (Iran, Islamic Republic of)]. E-mail: refaridi@khayam.ut.ac.ir; Sharifi-Sanjani, N. [School of Chemistry, University College of Science, Tehran University, Tehran (Iran, Islamic Republic of); Agend, F. [Malek-Ashtar University, Lavizan, Tehran (Iran, Islamic Republic of)

    2006-09-25

    Magnetite nanoparticles (Fe{sub 3}O{sub 4}), with an average size of about 10 nm, were encapsulated with polystyrene using a new method based on emulsifier-free miniemulsion polymerization in the presence of 2, 2' azobis (2-amidinopropane) dihydrochloride (V-50) as a cationic ionizable water-soluble initiator and hexadecane as a hydrophobe. Transmission electron microscopy (TEM) proved the presence of magnetite in polymer particles which appeared to be monodisperse in size, approximately 100-300 nm in diameter, through TEM and scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) measurement was used to determine the percentage of magnetite in the products. The results of emulsifier-free miniemulsion polymerization were compared with those of conventional emulsifier-free emulsion polymerization using (V-50) as the initiator in both cases.

  9. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization

    International Nuclear Information System (INIS)

    Faridi-Majidi, R.; Sharifi-Sanjani, N.; Agend, F.

    2006-01-01

    Magnetite nanoparticles (Fe 3 O 4 ), with an average size of about 10 nm, were encapsulated with polystyrene using a new method based on emulsifier-free miniemulsion polymerization in the presence of 2, 2' azobis (2-amidinopropane) dihydrochloride (V-50) as a cationic ionizable water-soluble initiator and hexadecane as a hydrophobe. Transmission electron microscopy (TEM) proved the presence of magnetite in polymer particles which appeared to be monodisperse in size, approximately 100-300 nm in diameter, through TEM and scanning electron microscopy (SEM). Thermogravimetric analysis (TGA) measurement was used to determine the percentage of magnetite in the products. The results of emulsifier-free miniemulsion polymerization were compared with those of conventional emulsifier-free emulsion polymerization using (V-50) as the initiator in both cases

  10. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for cross-linking of polymeric micelles in nanomedicine.

    Science.gov (United States)

    Jensen, Andreas I; Binderup, Tina; Ek, Pramod Kumar; Grandjean, Constance E; Rasmussen, Palle H; Kjaer, Andreas; Andresen, Thomas L

    2017-06-30

    Polymeric micelles in nanomedicine are often cross-linked to prevent disintegration in vivo. This typically requires clinically problematic chemicals or laborious procedures. In addition, cross-linking may interfere with advanced release strategies. Despite this, it is often not investigated whether cross-linking is necessary for efficient drug delivery. We used positron emission tomography (PET) imaging with 64 Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA) with CB-TE2A chelators. Polymeric micelles were formed by dialysis and one half was core cross-linked (CL) by UV light and the other half was not (nonCL). Both CL and nonCL were radiolabeled with 64 Cu and compared in vivo in tumor-bearing mice, with free 64 Cu as control. Accumulation in relevant organs was quantified by region of interest analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64 Cu). This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable in circulation even without cross-linking. The methodology presented here where individual unimers are radiolabeled is applicable to a wide range of polymeric micelle types. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Folate-conjugated polymeric micelle HB-loaded on targeting effect by intraperitoneal to ovarian cancer in vitro and in vivo.

    Science.gov (United States)

    Li, Jie; Yao, Shu; Wang, Kai; Lu, Zaijun; Su, Xuantao; Li, Li; Yuan, Cunzhong; Feng, Jinbo; Yan, Shi; Kong, Beihua; Song, Kun

    2018-04-04

    Photodynamic therapy (PDT) is considered as an innovative and attractive modality to treat ovarian cancer. In this study, a biodegradable polymer poly (ethylene glycol)-poly (lactic acid)(PLA)-folate (FA-PEG-PLA) was prepared in order to synthesize an active targeting, water soluble and pharmacomodulated photosensitizer nano-carriers. The drug loading content, encapsulation efficiency, in vitro and in vivo release were characterized, in which HB/FA-PEG-PLA micelles had a high encapsulation efficiency and much slower control release for drugs compared to free drugs (pHB/FA-PEG-PLA micelles, the cellular uptake study in vitro were tested, which owned significantly enhanced uptake of HB/FA-PEG-PLA micelles in SKOV3 (FR+) compared to A2780 cancer cells (FR-). The enhanced uptake of HB/FA-PEG-PLA micelles to cancer cells resulted in a more effective post-PDT killing of SKOV3 cells compared to plain micelles and free drugs. Binding and uptake of HB/FA-PEG-PLA micelles by SKOV3 cells were also observed in vivo after intraperitoneal injection of folate targeted micelles in tumor-bearing ascitic ovarian cancer animals. The drug levels in ascitic tumor tissues were increased by 20-fold (pHB-loaded micelles were mainly distributed in kidney and liver (the main clearance organs) in biodistribution. These results demonstrated that our new developed PDT photosensitizer HB/FA-PEG-PLA micelles has a high drug-loading capacity, good biocompatibility, control drug release, and enhanced targeting and antitumor effect, which is a potential approach to future targeting ovarian cancer therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles.

    Science.gov (United States)

    Chen, Ying-Chen; Su, Chia-Yu; Jhan, Hua-Jun; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-01-01

    To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic(®), Kolliphor(®), d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone(®), the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone(®) did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect.

  13. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor

  14. Bioflavonoid Fisetin Loaded α-Tocopherol-Poly(lactic acid)-Based Polymeric Micelles for Enhanced Anticancer Efficacy in Breast Cancers.

    Science.gov (United States)

    Wang, Lei; Zhang, De-Zhong; Wang, Yu-Xia

    2017-02-01

    In this study, tocopherol based polymeric micelles were successfully prepared to enhance the anticancer effect of fisetin (FIS) in breast cancer cells. The drug-loaded carrier was characterized in terms of physicochemical and in vivo parameters. Compared to FIS, FIS-TPN showed higher cellular uptake in MCF-7 breast cancer cells as revealed by CLSM and flow cytometry. The cytotoxicity assay results clearly showed that the free FIS and FIS-TPN exhibited a typical dose-dependent toxic effect in MCF-7 breast cancer cells. Especially, enhanced cytotoxic effect of FIS was observed when loaded in a nanocarrier. Free FIS induced a ~11% apoptosis whereas FIS-TPN induced a significantly greater apoptosis of ~20% by the end of 24 h. At 48 h, similar trend continued and free FIS showed ~30% of apoptosis whereas ~42% cell apoptosis was observed in FIS-TPN treated group. Notably, migration of cancer cell was significantly inhibited when treated with FIS-TPN formulations. The FIS-TPN significantly reduced to tumor burden and H&E staining showed the lowest tumor volume and higher cell apoptosis. All the findings suggest that the fisetin-loaded TPGS-PLA polymeric micelles serve as a potential candidate and promising alternative for the effective treatment of breast cancers.

  15. Curcumin-Loaded Blood-Stable Polymeric Micelles for Enhancing Therapeutic Effect on Erythroleukemia.

    Science.gov (United States)

    Gong, Feirong; Chen, Dan; Teng, Xin; Ge, Junhua; Ning, Xianfeng; Shen, Ya-Ling; Li, Jian; Wang, Shanfeng

    2017-08-07

    Curcumin has high potential in suppressing many types of cancer and overcoming multidrug resistance in a multifaceted manner by targeting diverse molecular targets. However, the rather low systemic bioavailability resulted from its poor solubility in water and fast metabolism/excretion in vivo has hampered its applications in cancer therapy. To increase the aqueous solubility of curcumin while retaining the stability in blood circulation, here we report curcumin-loaded copolymer micelles with excellent in vitro and in vivo stability and antitumor efficacy. The two copolymers used for comparison were methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-PCL) and N-(tert-butoxycarbonyl)-l-phenylalanine end-capped mPEG-PCL (mPEG-PCL-Phe(Boc)). In vitro cytotoxicity evaluation against human pancreatic SW1990 cell line showed that the delivery of curcumin in mPEG-PCL-Phe(Boc) micelles to cancer cells was efficient and dosage-dependent. The pharmacokinetics in ICR mice indicated that intravenous (i.v.) administration of curcumin/mPEG-PCL-Phe(Boc) micelles could retain curcumin in plasma much better than curcumin/mPEG-PCL micelles. Biodistribution results in Sprague-Dawley rats also showed higher uptake and slower elimination of curcumin into liver, lung, kidney, and brain, and lower uptake into heart and spleen of mPEG-PCL-Phe(Boc) micelles, as compared with mPEG-PCL micelles. Further in vivo efficacy evaluation in multidrug-resistant human erythroleukemia K562/ADR xenograft model revealed that i.v. administration of curcumin-loaded mPEG-PCL-Phe(Boc) micelles significantly delayed tumor growth, which was attributed to the improved stability of curcumin in the bloodstream and increased systemic bioavailability. The mPEG-PCL-Phe(Boc) micellar system is promising in overcoming the key challenge of curcumin's to promote its applications in cancer therapy.

  16. Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Wan, Xiaomeng; Min, Yuanzeng; Bludau, Herdis; Keith, Andrew; Sheiko, Sergei S; Jordan, Rainer; Wang, Andrew Z; Sokolsky-Papkov, Marina; Kabanov, Alexander V

    2018-03-27

    Nanoparticle-based systems for concurrent delivery of multiple drugs can improve outcomes of cancer treatments, but face challenges because of differential solubility and fairly low threshold for incorporation of many drugs. Here we demonstrate that this approach can be used to greatly improve the treatment outcomes of etoposide (ETO) and platinum drug combination ("EP/PE") therapy that is the backbone for treatment of prevalent and deadly small cell lung cancer (SCLC). A polymeric micelle system based on amphiphilic block copolymer poly(2-oxazoline)s (POx) poly(2-methyl-2-oxazoline- block-2-butyl-2-oxazoline- block-2-methyl-2-oxazoline) (P(MeOx- b-BuOx- b-MeOx) is used along with an alkylated cisplatin prodrug to enable co-formulation of EP/PE in a single high-capacity vehicle. A broad range of drug mixing ratios and exceptionally high two-drug loading of over 50% wt. drug in dispersed phase is demonstrated. The highly loaded POx micelles have worm-like morphology, unprecedented for drug loaded polymeric micelles reported so far, which usually form spheres upon drug loading. The drugs co-loading in the micelles result in a slowed-down release, improved pharmacokinetics, and increased tumor distribution of both drugs. A superior antitumor activity of co-loaded EP/PE drug micelles compared to single drug micelles or their combination as well as free drug combination was demonstrated using several animal models of SCLC and non-small cell lung cancer.

  17. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2016-03-01

    Full Text Available Yumin Zhang,1,* Junhui Zhou,2,* Cuihong Yang,1 Weiwei Wang,3 Liping Chu,1 Fan Huang,1 Qiang Liu,1 Liandong Deng,2 Deling Kong,3 Jianfeng Liu,1 Jinjian Liu1 1Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, 2Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 3Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, People’s Republic of China *These authors contributed equally in this work Abstract: Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM. Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against

  18. Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease.

    Science.gov (United States)

    Greish, Khaled; Taha, Safa; Jasim, Anfal; Elghany, Sara Abd; Sultan, Ameera; AlKhateeb, Ali; Othman, Manal; Jun, Fang; Taurin, Sebastien; Bakhiet, Moiz

    2017-12-01

    Inflammatory bowel disease (IBD) comprises a group of disorders that manifest through chronic inflammation of the colon and small intestine. Although the exact cause of IBD is still unclear, dysfunctional immunoregulation involving overproduction of inflammatory cytokines such as TNF-α, and IL-6 have been implicated in pathogenesis. Current therapy relies on immunosuppression, cytotoxic drugs, and monoclonal antibodies against TNF-α. These classes of drugs have severe side-effects, especially when used for long duration. Our previous work with raloxifene, a selective estrogen receptor modulator, has shown that the drug, and to a greater extent its micellar formulation, has a significant suppressive effect on NF-κB, an essential immune-regulator. This finding directed the current work towards testing the anti-inflammatory and immunomodulatory effects of raloxifene using cell lines, as well as testing the potential use of the styrene maleic acid (SMA) micelles loaded with raloxifene (SMA-Ral) against dextran sulfate sodium (DSS) induced colitis in an in vivo model of IBD. Treatment of MCF-7 cells with TNF-α was shown to protect the cells from the cytotoxic effect of raloxifene (42 vs. 10% cell death, with TNF-α. Treating CaCo-2 cells with both free and SMA-Ral improved cell survival after exposure to 2% DDS with significantly higher protection with SMA-Ral. Treatment of U-937 with SMA-Ral and free-Ral resulted in down-regulation of TNF-α, IL-1β, IL-6, and MIP1α, with greater inhibition of the SMA-Ral, compared to free Ral. Balb/c mice treated with raloxifene and SMA-Ral showed weight gain at 14 days, compared to the control group (122, and 115% respectively). Treatment with raloxifene prevented DSS-induced diarrhea in 6/6 of free raloxifene treated mice and in 5/6 mice treated with SMA-Ral. Control group of DSS-treated mice showed average colon length of 7.4 cm compared to 13 cm in the control group. The average colon length was 12.3 and 11.5 cm for

  19. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery.

    Science.gov (United States)

    Mandracchia, Delia; Rosato, Antonio; Trapani, Adriana; Chlapanidas, Theodora; Montagner, Isabella Monia; Perteghella, Sara; Di Franco, Cinzia; Torre, Maria Luisa; Trapani, Giuseppe; Tripodo, Giuseppe

    2017-04-01

    Here, long-circulating behaviors of Inulin-based nanomicelles are demonstrated for the first time in vivo. We show the synthesis and evaluation of biotin (BIO)-decorated polymeric INVITE micelles constituted of substances of natural origin, Inulin (INU) and Vitamin E (VITE), as long-circulating carriers for receptor-mediated targeted drug delivery. The resulting INVITE or INVITE-BIO micelles, nanometrically sized, did not reveal any cytotoxicity after 24h of incubation with Caco-2 cells. Moreover, in vitro studies on Caco-2 cells monolayers indicated that the transport of INVITE-BIO micelles was faster than surface unmodified INVITE micelles. In vivo optical imaging studies evidenced that, upon intravenous administration, INVITE-BIO micelles were quantitatively present in the body up to 48h. Instead, after oral administration, the micelles were not found in the systemic circulation but eliminated with the normal intestinal content. In conclusion, INVITE-BIO micelles may enhance drug accumulation in tumor-cells over-expressing the receptor for biotin through receptor mediated endocytosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. pH- and NIR Light-Responsive Polymeric Prodrug Micelles for Hyperthermia-Assisted Site-Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment.

    Science.gov (United States)

    Li, Zuhong; Wang, Haibo; Chen, Yangjun; Wang, Yin; Li, Huan; Han, Haijie; Chen, Tingting; Jin, Qiao; Ji, Jian

    2016-05-01

    Despite the exciting advances in cancer chemotherapy over past decades, drug resistance in cancer treatment remains one of the primary reasons for therapeutic failure. IR-780 loaded pH-responsive polymeric prodrug micelles with near infrared (NIR) photothermal effect are developed to circumvent the drug resistance in cancer treatment. The polymeric prodrug micelles are stable in physiological environment, while exhibit fast doxorubicin (DOX) release in acidic condition and significant temperature elevation under NIR laser irradiation. Phosphorylcholine-based biomimetic micellar shell and acid-sensitive drug conjugation endow them with prolonged circulation time and reduced premature drug release during circulation to conduct tumor site-specific chemotherapy. The polymeric prodrug micelles combined with NIR laser irradiation could significantly enhance intracellular DOX accumulation and synergistically induce the cell apoptosis in DOX-resistant MCF-7/ADR cells. Meanwhile, the tumor site-specific chemotherapy combined with hyperthermia effect induces significant inhibition of MCF-7/ADR tumor growth in tumor-bearing mice. These results demonstrate that the well-designed IR-780 loaded polymeric prodrug micelles for hyperthermia-assisted site-specific chemotherapy present an effective approach to reverse drug resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Co-delivery of resveratrol and docetaxel via polymeric micelles to improve the treatment of drug-resistant tumors

    DEFF Research Database (Denmark)

    Guo, Xiong; Zhao, Zhiyue; Chen, Dawei

    2018-01-01

    Co-delivery of anti-cancer drugs is promising to improve the efficacy of cancer treatment. This study was aiming to investigate the potential of concurrent delivery of resveratrol (RES) and docetaxel (DTX) via polymeric nanocarriers to treat breast cancer. To this end, methoxyl poly(ethylene glycol...... profiles, and enhanced cytotoxicity in vitro against MCF-7 cells. The AUC(0→t) of DTX and RES in mPEG-PDLA micelles after i.v. administration to rats were 3.0-fold and 1.6-fold higher than that of i.v. injections of the individual drugs. These findings indicated that the co-delivery of RES and DTX using m...

  2. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    Science.gov (United States)

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  3. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.

    Science.gov (United States)

    Wang, Qin; Jiang, Hao; Li, Yan; Chen, Wenfei; Li, Hanmei; Peng, Ke; Zhang, Zhirong; Sun, Xun

    2017-04-01

    The transcription factor NF-kB plays a pivotal role in the pathogenesis of rheumatoid arthritis. Here we attempt to slow arthritis progression by co-delivering the glucocorticoid dexamethasone (Dex) and small-interfering RNA targeting NF-kB p65 using our previously developed polymeric hybrid micelle system. These micelles contain two similar amphiphilic copolymers: polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). The hybrid micelles loaded with Dex and siRNA effectively inhibited NF-kB signaling in murine macrophages more efficiently than micelles containing either Dex or siRNA on their own. In addition, the co-delivery system was able to switch macrophages from the M1 to M2 state. Injecting hybrid micelles containing Dex and siRNA into mice with collagen-induced arthritis led the therapeutic agents to accumulate in inflamed joints and reduce inflammation, without damaging renal or liver function. Thus, blocking NF-kB activation in inflammatory tissue using micelle-based co-delivery may provide a new approach for treating inflammatory disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles

    Science.gov (United States)

    Chen, Ying-Chen; Su, Chia-Yu; Jhan, Hua-Jun; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-01-01

    To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic®, Kolliphor®, d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone®, the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone® did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect. PMID:26664117

  5. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study.

    Science.gov (United States)

    Chen, Ling-Chun; Chen, Ying-Chen; Su, Chia-Yu; Hong, Chung-Shu; Ho, Hsiu-O; Sheu, Ming-Thau

    2016-01-01

    Quercetin (Que) is known to have biological benefits including an anticancer effect, but low water solubility limits its clinical application. The aim of this study was to develop a lecithin-based mixed polymeric micelle (LMPM) delivery system to improve the solubility and bioavailability of Que. The optimal Que-LMPM, composed of Que, lecithin, Pluronic(®) P123, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy[poly(ethylene glycol)-2000] in a proportion of 3:1:17.5:2.5 (w/w), was prepared by a thin-film method. The average size, polydispersion index, encapsulating efficiency, and drug loading of Que-LMPM were 61.60 ± 5.02 nm, 0.589 ± 0.198, 96.87% ± 9.04%, and 12.18% ± 1.11%, respectively. The solubility of Que in the Que-LMPM system increased to 5.81 mg/mL, compared to that of free Que in water of 0.17-7.7 μg/mL. The Que-LMPM system presented a sustained-release property in vitro. The in vitro cytotoxicity assay showed that the 50% inhibitory concentration values toward MCF-7 breast cancer cells for free Que, blank LMPMs, and Que-LMPMs were >200, >200, and 110 μM, respectively, indicating the nontoxicity of the LMPM carrier, but the LMPM formulation enhanced the cytotoxicity of Que against MCF-7 cells. A cellular uptake assay also confirmed the intake of Que-LMPM by MCF-7 cells. An in vivo pharmacokinetic study demonstrated that Que-LMPMs had higher area under the concentration-time curve and a longer half-life, leading to better bioavailability compared to a free Que injection. Due to their nanosize, core-shell structure, and solubilization potential, LMPMs were successfully developed as a drug delivery system for Que to improve its solubility and bioavailability.

  6. Demonstrating the Feasibility of Molten Aluminum for Destroying Polymeric Encapsulants in SNF-Bearing Metallographic Mounts. Final Technical Report

    International Nuclear Information System (INIS)

    Dan Stout; Scott Ploger

    2004-01-01

    DOE-owned spent nuclear fuel (SNF) rods have been cross sectioned and mounted for metallography throughout the history of nuclear reactors. Many hundreds of these ''met mounts'' have accumulated in storage across the DOE complex. However, because of potential hydrogen generation from radiolysis of the polymeric encapsulants, the met mounts are problematic for eventual disposal in a geologic repository

  7. Evaluation of nano encapsulation techniques in different polymeric system for the delivery of anti-tuberculosis drugs (ATD)

    CSIR Research Space (South Africa)

    Swai, H

    2006-02-01

    Full Text Available In this study, isoniazid, one of the most potent anti-TB drugs, was successfully encapsulated in poly (D, L- lactide-co-glycolide) (PLG) and in alginate-chitosan polymeric systems using a double-emulsion method and a cation-induced gelation method...

  8. Synthesis of potassium cobalt hexacyanoferrate encapsulated polymeric beads for extraction of Cs from acidic solution

    International Nuclear Information System (INIS)

    Kanagare, Anant B.; Singh, Krishan Kant; Kumar, Manmohan; Shinde, Vaishali S.

    2016-01-01

    137 Cs is one of the major radionuclides formed during the fission of 235 U in nuclear reactors. It is a main source of radiation in High Level Liquid Waste (HLLW) generated after the reprocessing of spent nuclear fuel. Separation of Cs from HLLW, decreases radiation exposure throughout the vitrification process and avoids thermal deformation of conditioned waste matrix during storage. Therefore, there is a necessity for selective separation of Cs from HLLW and other such acidic waste streams. The liquid-liquid extraction is widely used as a technology for separation and recovery of metal ions from radioactive wastes. Such technologies play an important role in all the bulk separation processes, but they have noticeable limitations, such as difficulty in handling, losses of extractant in aqueous phase, secondary waste generation, third phase problems at higher metal loading, etc. Due to these limitations it is necessary to explore the advance, more capable and exactly feasible alternatives. In this respect it is assumed that solid-liquid based Extractant Encapsulated Polymeric Beads (EEPBs) may resolve some of these limitations. The metal hexacyanoferrates (HCFs) are preferred as Cs extractant over the other materials due to their selectivity and high capacity to remove cesium from aqueous radioactive wastes. Here we report the synthesis and characterization of a novel potasium cobalt hexacyanoferrate (KCoHCF) encapsulated polyether sulphone beads, and its use as a cesium sorbent material

  9. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  10. Synthesis of encapsulated pigments based on Fe, Co and Si by route of polymeric precursors

    International Nuclear Information System (INIS)

    Macedo, D.S.S.M.; Macedo Neto, O.C.; Paskocimas, C.A.; Varela, M.L.N.

    2012-01-01

    The objective is to apply the polymeric precursor method to obtain encapsulated pigments, the basis of oxides of iron and cobalt deposited on silica. The method has advantages such as reduction of time and reproducibility in the conventional methods, and also improves optical properties, thermal stability and morphology. The synthesis was based on the dissolution of the citric acid (complexing agent), addition of oxides of iron and cobalt (ions chromophores) polymerization of ethylene glycol and silica coating. The mixture was pre-calcined to form the precursor powder was analyzed by TG and DTA. Was then split, and calcined at different temperatures (700 ° C - 900 ° C) and analyzed by BET, DRX, MEV and UV-Visible. The pigments were stable thermally, with surface area ranging between 3,09 and 7,65 m² / g, formation of crystalline phases of cobalt ferrite (CoFe 2 O 4 ) and Cristobalite (SiO 2 ) and agglomerates of particles slightly rounded. (author)

  11. Studies on Benzo-DODA encapsulated polymeric beads for separation of Pu from acidic solution

    International Nuclear Information System (INIS)

    Singh, K.K.; Panja, S.; Kumar, M.; Ruhela, R.; Tripathi, S.C.; Singh, A.K.; Hubli, R.C.; Bajaj, P.N.

    2014-01-01

    High level liquid waste (HLLW) generated during the reprocessing of spent fuel contains a few mg of Pu per litre of waste volume. Therefore, there is a need for selective separation of Pu from above solution as well as other such acidic waste streams. The widely used technology for separation and recovery of metal ions from radioactive wastes is liquid-liquid extraction.Though, such technologies play major role in all the bulk separation processes, they have marked limitations involving the losses of extractant in aqueous phase, third phase problems at higher metal loading, etc. These limitations have necessitated the exploration of advance, more efficient and technically feasible alternatives. In this regard it is thought that solid-liquid based Extractant Encapsulated Polymeric Beads (EEPBs) may solve some of the problems. Benzodioxodiamide (BenzoDODA) is a recently reported extractant for the separation of plutonium from radioactive waste, containing nitric acid. BenzoDODA extractant encapsulated polymeric beads were prepared by phase inversion technique and found to be quite stable as no significant structural deformation or leaching out of the extractant was observed in 4.0 M HNO 3 solution, up to studied equilibration time of 8 days. These beads have been characterized by FT-IR, TGA and SEM techniques to gain insight into their structure and morphology. Morphology and porosity of the beads, as studied by the SEM analysis, indicate that the surface of the beads is quite rough, and has enough porosity. Thermo gravimetric analysis of the synthesized composite beads shows a weight loss of ∼74% during the heating from room temperature to 120℃, due to the loss of water present in the swollen beads. Such high water content also confirms that the beads have enough porosity for efficient exchange of metal ions.The synthesized beads were evaluated, for their ability to absorb Pu from acidic solution. The kinetics measurement showed that about 45 min of

  12. Polymeric nanoparticle-encapsulated curcumin ("nanocurcumin": a novel strategy for human cancer therapy

    Directory of Open Access Journals (Sweden)

    Maitra Amarnath

    2007-04-01

    Full Text Available Abstract Background Curcumin, a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa, has potent anti-cancer properties as demonstrated in a plethora of human cancer cell line and animal carcinogenesis models. Nevertheless, widespread clinical application of this relatively efficacious agent in cancer and other diseases has been limited due to poor aqueous solubility, and consequently, minimal systemic bioavailability. Nanoparticle-based drug delivery approaches have the potential for rendering hydrophobic agents like curcumin dispersible in aqueous media, thus circumventing the pitfalls of poor solubility. Results We have synthesized polymeric nanoparticle encapsulated formulation of curcumin – nanocurcumin – utilizing the micellar aggregates of cross-linked and random copolymers of N-isopropylacrylamide (NIPAAM, with N-vinyl-2-pyrrolidone (VP and poly(ethyleneglycolmonoacrylate (PEG-A. Physico-chemical characterization of the polymeric nanoparticles by dynamic laser light scattering and transmission electron microscopy confirms a narrow size distribution in the 50 nm range. Nanocurcumin, unlike free curcumin, is readily dispersed in aqueous media. Nanocurcumin demonstrates comparable in vitro therapeutic efficacy to free curcumin against a panel of human pancreatic cancer cell lines, as assessed by cell viability and clonogenicity assays in soft agar. Further, nanocurcumin's mechanisms of action on pancreatic cancer cells mirror that of free curcumin, including induction of cellular apoptosis, blockade of nuclear factor kappa B (NFκB activation, and downregulation of steady state levels of multiple pro-inflammatory cytokines (IL-6, IL-8, and TNFα. Conclusion Nanocurcumin provides an opportunity to expand the clinical repertoire of this efficacious agent by enabling ready aqueous dispersion. Future studies utilizing nanocurcumin are warranted in pre-clinical in vivo models of cancer and other diseases that might benefit

  13. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    Science.gov (United States)

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  14. Triolimus: A Multi-Drug Loaded Polymeric Micelle Containing Paclitaxel, 17-AAG, and Rapamycin as a Novel Radiosensitizer.

    Science.gov (United States)

    Tomoda, Keishiro; Tam, Yu Tong; Cho, Hyunah; Buehler, Darya; Kozak, Kevin R; Kwon, Glen S

    2017-01-01

    Triolimus is a multi-drug loaded polymeric micelle containing paclitaxel (PTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin (RAP). This study examines the radiosensitizing effect of Triolimus in vitro and in vivo. Radiosensitizing effects of Triolimus on A549 cells are dose dependent and at 2 × 10 -9 m, Triolimus shows significant radiosensitization even at low radiation doses (2 Gy). By sensitivity enhancement ratio, PTX alone, dual drug combinations, and Triolimus treatment at 2 × 10 -9 m have radiosensitizing effects with potency as follows: PTX alone (PTX) > PTX and RAP (P/R) > Triolimus (TRIO) > PTX and 17-AAG (P/17) >17-AAG and RAP (17/R). In vivo, fractionated radiation of 15 Gy preceded by infusion of PTX alone, dual drug combinations, or an intermediate dose of Triolimus (Int. TRIO: PTX/17-AAG/RAP at 15/15/7.5 mg kg -1 ) strongly inhibits A549 tumor growth. Notably, pretreatment with high dose of Triolimus (High TRIO: PTX/17-AAG/RAP at 60/60/30 mg kg -1 ) before the fractionated radiation leads to tumor control for up to 24 weeks. An enhanced radiosensitizing effect is observed without an increase in acute toxicity compared to PTX alone or radiation alone. These results suggest that further investigations of Triolimus in combination with radiation therapy are merited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10 14 pores per m2), reproducible in m2 scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments. © 2011 American Chemical Society.

  16. Toxicity evaluation of methoxy poly(ethylene oxide)-block-poly(ε-caprolactone) polymeric micelles following multiple oral and intraperitoneal administration to rats.

    Science.gov (United States)

    Binkhathlan, Ziyad; Qamar, Wajhul; Ali, Raisuddin; Kfoury, Hala; Alghonaim, Mohammed

    2017-09-01

    Methoxy poly(ethylene oxide)- block -poly(ɛ-caprolactone) (PEO- b -PCL) copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO- b -PCL block copolymers and assess the toxic effects of drug-free PEO- b -PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip) administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO- b -PCL micelles, sixty animals were divided into two major groups: The first group received PEO- b -PCL micelles (100 mg/kg) by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen) were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  17. Toxicity evaluation of methoxy poly(ethylene oxide-block-poly(ε-caprolactone polymeric micelles following multiple oral and intraperitoneal administration to rats

    Directory of Open Access Journals (Sweden)

    Ziyad Binkhathlan

    2017-09-01

    Full Text Available Methoxy poly(ethylene oxide-block-poly(ɛ-caprolactone (PEO-b-PCL copolymers are amphiphilic and biodegradable copolymers designed to deliver a variety of drugs and diagnostic agents. The aim of this study was to synthesize PEO-b-PCL block copolymers and assess the toxic effects of drug-free PEO-b-PCL micelles after multiple-dose administrations via oral or intraperitoneal (ip administration in rats. Assembly of block copolymers was achieved by co-solvent evaporation method. To investigate the toxicity profile of PEO-b-PCL micelles, sixty animals were divided into two major groups: The first group received PEO-b-PCL micelles (100 mg/kg by oral gavage daily for seven days, while the other group received the same dose of micelles by ip injections daily for seven days. Twenty-four hours following the last dose, half of the animals from each group were sacrificed and blood and organs (lung, liver, kidneys, heart and spleen were collected. Remaining animals were observed for further 14 days and was sacrificed at the end of the third week, and blood and organs were collected. None of the polymeric micelles administered caused any significant effects on relative organ weight, animal body weight, leucocytes count, % lymphocytes, liver and kidney toxicity markers and organs histology. Although the dose of copolymers used in this study is much higher than those used for drug delivery, it did not cause any significant toxic effects in rats. Histological examination of all the organs confirmed the nontoxic nature of the micelles.

  18. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model

    Directory of Open Access Journals (Sweden)

    Parayath NN

    2016-08-01

    Full Text Available Neha N Parayath,1 Hayley Nehoff,1 Samuel E Norton,2 Andrew J Highton,2 Sebastien Taurin,1,3 Roslyn A Kemp,2 Khaled Greish1,4 1Department of Pharmacology and Toxicology, 2Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; 3Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA; 4Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Oral administration of paclitaxel (PTX, a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid (SMA. Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg compared to the commercially available PTX formulation (PTX [Ebewe]. In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe. In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer. Keywords: oral delivery, anticancer nanomedicine, CT-26, enhanced permeability and retention (EPR effect, HUVEC, antiangiogenic

  19. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  20. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  1. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    Science.gov (United States)

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A polymeric micelle magnetic resonance imaging (MRI) contrast agent reveals blood-brain barrier (BBB) permeability for macromolecules in cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Shiraishi, Kouichi; Wang, Zuojun; Kokuryo, Daisuke; Aoki, Ichio; Yokoyama, Masayuki

    2017-05-10

    Blood-brain barrier (BBB) opening is a key phenomenon for understanding ischemia-reperfusion injuries that are directly linked to hemorrhagic transformation. The recombinant human tissue-type plasminogen activator (rtPA) increases the risk of symptomatic intracranial hemorrhages. Recent imaging technologies have advanced our understanding of pathological BBB disorders; however, an ongoing challenge in the pre-"rtPA treatment" stage is the task of developing a rigorous method for hemorrhage-risk assessments. Therefore, we examined a novel method for assessment of rtPA-extravasation through a hyper-permeable BBB. To examine the image diagnosis of rtPA-extravasation for a rat transient occlusion-reperfusion model, in this study we used a polymeric micelle MRI contrast-agent (Gd-micelles). Specifically, we used two MRI contrast agents at 1h after reperfusion. Gd-micelles provided very clear contrast images in 15.5±10.3% of the ischemic hemisphere at 30min after i.v. injection, whereas a classic gadolinium chelate MRI contrast agent provided no satisfactorily clear images. The obtained images indicate both the hyper-permeable BBB area for macromolecules and the distribution area of macromolecules in the ischemic hemisphere. Owing to their large molecular weight, Gd-micelles remained in the ischemic hemisphere through the hyper-permeable BBB. Our results indicate the feasibility of a novel clinical diagnosis for evaluating rtPA-related hemorrhage risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study

    Science.gov (United States)

    Chen, Ling-Chun; Chen, Ying-Chen; Su, Chia-Yu; Hong, Chung-Shu; Ho, Hsiu-O; Sheu, Ming-Thau

    2016-01-01

    Quercetin (Que) is known to have biological benefits including an anticancer effect, but low water solubility limits its clinical application. The aim of this study was to develop a lecithin-based mixed polymeric micelle (LMPM) delivery system to improve the solubility and bioavailability of Que. The optimal Que-LMPM, composed of Que, lecithin, Pluronic® P123, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy[poly(ethylene glycol)-2000] in a proportion of 3:1:17.5:2.5 (w/w), was prepared by a thin-film method. The average size, polydispersion index, encapsulating efficiency, and drug loading of Que-LMPM were 61.60±5.02 nm, 0.589±0.198, 96.87%±9.04%, and 12.18%±1.11%, respectively. The solubility of Que in the Que-LMPM system increased to 5.81 mg/mL, compared to that of free Que in water of 0.17–7.7 μg/mL. The Que-LMPM system presented a sustained-release property in vitro. The in vitro cytotoxicity assay showed that the 50% inhibitory concentration values toward MCF-7 breast cancer cells for free Que, blank LMPMs, and Que-LMPMs were >200, >200, and 110 μM, respectively, indicating the nontoxicity of the LMPM carrier, but the LMPM formulation enhanced the cytotoxicity of Que against MCF-7 cells. A cellular uptake assay also confirmed the intake of Que-LMPM by MCF-7 cells. An in vivo pharmacokinetic study demonstrated that Que-LMPMs had higher area under the concentration–time curve and a longer half-life, leading to better bioavailability compared to a free Que injection. Due to their nanosize, core–shell structure, and solubilization potential, LMPMs were successfully developed as a drug delivery system for Que to improve its solubility and bioavailability. PMID:27143878

  4. Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H. [Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-07-01

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

  5. A fluorescent molecular sensor for pH windows in traditional and polymeric biocompatible micelles: comicellization of anionic species to shift and reshape the ON window.

    Science.gov (United States)

    Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro

    2011-09-12

    A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Positron emission tomography based analysis of long-circulating cross-linked triblock polymeric micelles in a U87MG mouse xenograft model and comparison of DOTA and CB-TE2A as chelators of copper-64.

    Science.gov (United States)

    Jensen, Andreas I; Binderup, Tina; Kumar EK, Pramod; Kjær, Andreas; Rasmussen, Palle H; Andresen, Thomas L

    2014-05-12

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of (64)Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm(2) for 30 min. The cross-linked micelles were labeled with (64)Cu at room temperature for 2 h (DOTA) or 80 °C for 3 h (CB-TE2A), giving labeling efficiencies of 60-76% (DOTA) and 40-47% (CB-TE2A). (64)Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20-26 h) and tumor uptake that was comparable with other nanoparticle systems. The DOTA micelles showed a biodistribution similar to the CB-TE2A micelles and the tumor uptake was comparable for both micelle types at 1 h (1.9% ID/g) and 22 h (3.9% ID/g) but diverged at 46 h with 3.6% ID/g (DOTA) and 4.9% ID/g (CB-TE2A). On the basis of our data, we conclude that cross-linked PEG-PHEMA-PCMA micelles have long circulating properties resulting in tumor accumulation and that DOTA and CB-TE2A (64)Cu-chelates show similar in vivo stability for the studied micelle system.

  7. Glutathione-responsive core cross-linked micelles for controlled cabazitaxel delivery

    Science.gov (United States)

    Han, Xiaoxiong; Gong, Feirong; Sun, Jing; Li, Yueqi; Liu, XiaoFei; Chen, Dan; Liu, Jianwen; Shen, Yaling

    2018-02-01

    Stimulus-responsive polymeric micelles (PMs) have recently received attention due to the controlled delivery of drug or gene for application in cancer diagnosis and treatment. In this work, novel glutathione-responsive PMs were prepared to encapsulate hydrophobic antineoplastic drug, cabazitaxel (CTX), to improve its solubility and toxicity. These CTX-loaded micelles core cross-linked by disulfide bonds (DCL-CTX micelles) were prepared by a novel copolymer, lipoic acid grafted mPEG-PLA. These micelles had regular spherical shape, homogeneous diameter of 18.97 ± 0.23 nm, and a narrow size distribution. The DCL-CTX micelles showed high encapsulation efficiency of 98.65 ± 1.77%, and the aqueous solubility of CTX was improved by a factor of 1:1200. In vitro release investigation showed that DCL-CTX micelles were stable in the medium without glutathione (GSH), whereas the micelles had burst CTX release in the medium with 10 mM GSH. Cell uptake results implied that DCL-CTX micelles were internalized into MCF-7 cells through clathrin-mediated endocytosis and released cargo more effectively than Jevtana (commercially available CTX) owing to GSH-stimulated degradation. In MTT assay against MCF-7 cells, these micelles inhibited tumor cell proliferation more effectively than Jevtana due to their GSH-responsive CTX release. All results revealed the potency of GSH-responsive DCL-CTX micelles for stable delivery in blood circulation and for intracellular GSH-trigged release of CTX. Therefore, DCL-CTX micelles show potential as safe and effective CTX delivery carriers and as a cancer chemotherapy formulation.

  8. Amphiphilic polymeric micelles originating from 1,4-β-D-glucan-g-polyphenylene oxide as the carriers for delivery of docetaxel and the corresponding release behaviors.

    Science.gov (United States)

    Yang, Fang; Xiao, Dan; Han, Huaxin; Chen, Yuhuan; Li, Gang

    2018-07-15

    A novel amphiphilic polymeric drug carrier was synthesized through grafting polymerization of water-soluble 1,4-β-D-glucan from cotton cellulose tailored and polypropylene oxide (PPO), and then use thereof to synthesize graft copolymer 1,4-β-D-glucan-PPO-docetaxel (DTX). The products were characterized by FTIR, 1 H NMR, and 13 C NMR. The physicochemical characteristics of 1,4-β-D-glucan-PPO and 1,4-β-D-glucan-PPO-DTX such as molecular weight distribution (MWD), micro-morphology, size, critical micelle concentration (CMC), aggregation number of micelle (N), in vitro stability and drug pharmacokinetic study in vivo were investigated. The results reveal that the degree of polymerization (DP) of the water-soluble 1,4-β-D-glucan from cotton cellulose tailored is equal to 7; the 1,4-β-D-glucan-PPO surfactant possesses good surface activity while the adduct number of propylene oxide reaches appropriately to 20; the DTX is completely dispersed in water medium with 1,4-β-D-glucan-PPO-DTX micelle and the drug conjugated percent is up to 40.3%; In vitro study confirms that 1,4-β-D-glucan-PPO-DTX has the capacity for sustained drug release; In plasma, 1,4-β-D-glucan-PPO-DTX exhibits a significantly enhanced C max , AUC (0-t) and T 1/2 compared with DTX. These results demonstrate that 1,4-β-D-glucan-PPO has the potential to be used as a novel biocompatible biomaterial for drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Synthesis and Characterization of Encapsulated Nanosilica Particles with an Acrylic Copolymer by in Situ Emulsion Polymerization Using Thermoresponsive Nonionic Surfactant

    Directory of Open Access Journals (Sweden)

    Daryoosh Vashaee

    2013-08-01

    Full Text Available Nanocomposites of encapsulated silica nanoparticles were prepared by in situ emulsion polymerization of acrylate monomers. The synthesized material showed good uniformity and dispersion of the inorganic components in the base polymer, which enhances the properties of the nanocomposite material. A nonionic surfactant with lower critical solution temperature (LCST was used to encapsulate the silica nanoparticles in the acrylic copolymer matrix. This in situ method combined the surface modification and the encapsulation in a single pot, which greatly simplified the process compared with other conventional methods requiring separate processing steps. The morphology of the encapsulated nanosilica particles was investigated by dynamic light scattering (DLS and transmission electron microscopy (TEM, which confirmed the uniform distribution of the nanoparticles without any agglomerations. A neat copolymer was also prepared as a control sample. Both the neat copolymer and the prepared nanocomposite were characterized by Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analyses (TGA, dynamic mechanical thermal analysis (DMTA and the flame resistance test. Due to the uniform dispersion of the non-agglomerated nanoparticles in the matrix of the polymer, TGA and flame resistance test results showed remarkably improved thermal stability. Furthermore, DMTA results demonstrated an enhanced storage modulus of the nanocomposite samples compared with that of the neat copolymer, indicating its superior mechanical properties.

  10. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles

    Directory of Open Access Journals (Sweden)

    Cheng CC

    2013-04-01

    Full Text Available Chun-Chia Cheng,1,2,* Chiung-Fang Huang,3,4,* Ai-Sheng Ho,5 Cheng-Liang Peng,6 Chun-Chao Chang,7,8 Fu-Der Mai,1,9 Ling-Yun Chen,10 Tsai-Yueh Luo,2 Jungshan Chang1,11,121Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, 2Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, 3School of Dental Technology, Taipei Medical University, Taipei, 4Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, 5Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, 6Institute of Biomedical Engineering, National Taiwan University, Taipei, 7Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, 8Department of Internal Medicine, Taipei Medical University, Taipei, 9Department of Biochemistry, Taipei Medical University, Taipei, 10Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, 11Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 12Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan*These authors contributed equally to this workAbstract: Increased expression of cellular membrane bound glucose-regulated protein 78 (GRP78 is considered to be one of the biomarkers for gastric cancers. Therefore, peptides or molecules with specific recognition to GRP78 can act as a guiding probe to direct conjugated imaging agents to localized cancers. Based on this rationale, GRP78-guided polymeric micelles were designed and manufactured for nuclear imaging detection of tumors. Thiolated GRP78 binding peptide (GRP78BP was first labeled with maleimide-terminated poly(ethylene glycol–poly(ε-caprolactone and then mixed with diethylenetriaminepentaacetic acid (DTPA-linked poly(ethylene glycol–poly(ε-caprolactone to form DTPA/GRP78BP-conjugated micelles. The coupling efficiency of micelles with

  11. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.; Philippova, Olga E.

    2013-01-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very

  12. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    Directory of Open Access Journals (Sweden)

    Cvetelina Gorinova

    2016-09-01

    Full Text Available Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer. Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepared and loaded with curcumin by applying the dissolution method. Higher encapsulation efficiency was observed in the micelles formulated with Pluronic® P 123. These micelles were characterized with small size and narrow size distribution. The effects of micellar curcumin were investigated in two in vitro models. First, the capacity of micellar curcumin to inhibit iron/ascorbic acid-induced lipid peroxidation in rat liver microsomes was evaluated. Micellar curcumin and free drug showed similar inhibition of lipid peroxidation. Second, micellar curcumin and free curcumin showed protective potential in a model of 6-hydroxydopamine induced neurotoxicity in rat brain synaptosomes. The results from both methods indicated preservation of antioxidant and neuroprotective activity of curcumin in micelles. The small micellar size, high loading capacity and preservation of antioxidant activity of curcumin into Pluronic micelles, suggested their further evaluation as a curcumin delivery system.

  13. New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin

    International Nuclear Information System (INIS)

    Efthimiadou, E. K.; Tapeinos, C.; Bilalis, P.; Kordas, G.

    2011-01-01

    Amphiphilic block copolymers are well established as building blocks for the preparation of micellar drug carriers. The functional polymer micelles possess several advantages, such as high drug efficiency, targeted delivery, and minimized cytotoxicity. The synthesis of block copolymers using nano-structured templates has emerged as a useful and versatile approach for preparing drug carriers. Here, we report the synthesis of a smart polymeric compound of a diblock PLA-Lys-b-PEG copolymer containing doxorubicin. We have synthesized functionalized diblock copolymers, with lysinol, poly(lactide) and monomethoxy poly(ethylene glycol) via thermal ring-opening polymerization and a subsequent six-step substitution reaction. A variety of spectroscopic methods were employed here to verify the product of our synthesis. 1 H-Nuclear magnetic resonance and Fourier transform infrared studies validated the expected synthesis of copolymers. Doxorubicin is chemically loaded into micelles, and the ex vitro release can be evaluated either in weak acidic or in SBF solution by UV–vis spectroscopy. Dynamic light scattering, thermo gravimetric analysis, and size exclusion chromatography have also been used.

  14. Silica-Polystyrene Nanocomposite Particles Synthesized by Nitroxide-Mediated Polymerization and Their Encapsulation through Miniemulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Bérangère Bailly

    2006-01-01

    Full Text Available Polystyrene (PS chains with molecular weights comprised between 8000 and 64000 g⋅mol-1 and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp. through nitroxide-mediated polymerization (NMP. Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.

  15. Positron Emission Tomography Based Analysis of Long-Circulating Cross-Linked Triblock Polymeric Micelles in a U87MG Mouse Xenograft Model and Comparison of DOTA and CB-TE2A as Chelators of Copper-64

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2014-01-01

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system...... we compared the in vivo stabilities of DOTA and CB-TE2A as chelators of 64Cu in micelle nanoparticles. The coumarin polymer (PCMA-block) micelle core was cross-linked by UV irradiation at 2 W/cm2 for 30 min. The cross-linked micelles were labeled with 64Cu at room temperature for 2 h (DOTA) or 80 °C...... for 3 h (CB-TE2A), giving labeling efficiencies of 60–76% (DOTA) and 40–47% (CB-TE2A). 64Cu-micelles were injected into tumor-bearing mice (8 mg/kg) and PET/CT scans were carried out at 1, 22, and 46 h postinjection. The micelles showed good blood stability (T1/2: 20–26 h) and tumor uptake...

  16. Glucose-installed, SPIO-loaded PEG- b-PCL micelles as MR contrast agents to target prostate cancer cells

    Science.gov (United States)

    Theerasilp, Man; Sunintaboon, Panya; Sungkarat, Witaya; Nasongkla, Norased

    2017-11-01

    Polymeric micelles of poly(ethylene glycol)- block-poly(ɛ-caprolactone) bearing glucose analog encapsulated with superparamagnetic iron oxide nanoparticles (Glu-SPIO micelles) were synthesized as an MRI contrast agent to target cancer cells based on high-glucose metabolism. Compared to SPIO micelles (non-targeting SPIO micelles), Glu-SPIO micelles demonstrated higher toxicity to human prostate cancer cell lines (PC-3) at high concentration. Atomic absorption spectroscopy was used to determine the amount of iron in cells. It was found that the iron in cancer cells treated by Glu-SPIO micelles were 27-fold higher than cancer cells treated by SPIO micelles at the iron concentration of 25 ppm and fivefold at the iron concentration of 100 ppm. To implement Glu-SPIO micelles as a MR contrast agent, the 3-T clinical MRI was applied to determine transverse relaxivities ( r 2*) and relaxation rate (1/ T 2*) values. In vitro MRI showed different MRI signal from cancer cells after cellular uptake of SPIO micelles and Glu-SPIO micelles. Glu-SPIO micelles was highly sensitive with the r 2* in agarose gel at 155 mM-1 s-1. Moreover, the higher 1/ T 2* value was found for cancer cells treated with Glu-SPIO micelles. These results supported that glucose ligand increased the cellular uptake of micelles by PC-3 cells with over-expressing glucose transporter on the cell membrane. Thus, glucose can be used as a small molecule ligand for targeting prostate cancer cells overexpressing glucose transporter.

  17. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ming-Fa Hsieh

    2010-12-01

    Full Text Available The triblock copolymer is composed of two identical hydrophilic segments: Monomethoxy poly(ethylene glycol (mPEG and one hydrophobic segment poly(ε‑caprolactone (PCL; which is synthesized by coupling of mPEG-PCL-OH and mPEG‑COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14 of DOX-loaded micelles as compared to multiple administrations of free DOX.

  18. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen-Van [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Department of Chemical Engineering, Ho Chi Minh City University of Industry, 12 Nguyen Van Bao St, Ho Chi Minh (Viet Nam); Jiang, Jian-Lin; Li, Yu-Lun [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China); Chen, Jim-Ray [Department of Pathology, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Jwo, Shyh-Chuan [Division of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan and Chang Gung University, College of Medicine, Taoyuan, Taiwan (China); Hsieh, Ming-Fa, E-mail: mfhsieh@cycu.edu.tw [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Rd., Chung Li, Taiwan (China)

    2010-12-28

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX.

  19. Doxorubicin-Loaded PEG-PCL-PEG Micelle Using Xenograft Model of Nude Mice: Effect of Multiple Administration of Micelle on the Suppression of Human Breast Cancer

    International Nuclear Information System (INIS)

    Cuong, Nguyen-Van; Jiang, Jian-Lin; Li, Yu-Lun; Chen, Jim-Ray; Jwo, Shyh-Chuan; Hsieh, Ming-Fa

    2010-01-01

    The triblock copolymer is composed of two identical hydrophilic segments Monomethoxy poly(ethylene glycol) (mPEG) and one hydrophobic segment poly(ε-caprolactone) (PCL); which is synthesized by coupling of mPEG-PCL-OH and mPEG-COOH in a mild condition using dicyclohexylcarbodiimide and 4-dimethylamino pyridine. The amphiphilic block copolymer can self-assemble into nanoscopic micelles to accommodate doxorubixin (DOX) in the hydrophobic core. The physicochemical properties and in vitro tests, including cytotoxicity of the micelles, have been characterized in our previous study. In this study, DOX was encapsulated into micelles with a drug loading content of 8.5%. Confocal microscopy indicated that DOX was internalized into the cytoplasm via endocystosis. A dose-finding scheme of the polymeric micelle (placebo) showed a safe dose of PEG-PCL-PEG micelles was 71.4 mg/kg in mice. Importantly, the circulation time of DOX-loaded micelles in the plasma significantly increased compared to that of free DOX in rats. A biodistribution study displayed that plasma extravasation of DOX in liver and spleen occurred in the first four hours. Lastly, the tumor growth of human breast cancer cells in nude mice was suppressed by multiple injections (5 mg/kg, three times daily on day 0, 7 and 14) of DOX-loaded micelles as compared to multiple administrations of free DOX

  20. Investigation on rare earth magnets recycling by organophosphoric extractant encapsulated polymeric beads for separation of dysprosium

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Kain, V.

    2017-01-01

    Rare earth elements (REEs) are a basic requirement of the electronics and new industries including green technology. In the present work an organophosphoric extractant encapsulating polyethersulfone (PES) beads has been developed and employed for dysprosium (Dy) separation from aqueous stream. Polyethersulfonic beads encapsulating PC88A were prepared by phase inversion method. During the synthesis of the beads, preparatory parameters were also optimized to obtain best suited beads which were subsequently characterized for their encapsulation capacity and micro structural investigation. The results obtained in the present investigation suggested that PES/PVAJPC88A composite beads could be used for separation of rare earths from aqueous medium obtained from the solubilisation of magnetic scrap materials

  1. Micelles as delivery vehicles for oligofluorene for bioimaging.

    Science.gov (United States)

    Su, Fengyu; Alam, Ruhaniyah; Mei, Qian; Tian, Yanqing; Meldrum, Deirdre R

    2011-01-01

    With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH(2)) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

  2. Micelles as delivery vehicles for oligofluorene for bioimaging.

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    Full Text Available With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone-block-poly(ethylene glycol (PCL-b-PEG-NH(2 to incorporate a hydrophobic blue emitter oligofluorene (OF to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF. In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG and esophagus premalignant (CP-A, were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields.

  3. Conjugation of Lectin to Poly(ε-caprolactone-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ning Ning Li

    2016-10-01

    Full Text Available Amphiphilic poly(ε-caprolactone-block-poly[2-(α-d-mannopyranosyloxy ethyl acrylamide] (PCL-b-PManEA block copolymers were synthesized via a combination of ring-opening polymerization (ROP, reversible addition-fragmentation chain transfer (RAFT polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX. To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.

  4. Synthesis of a large-sized mesoporous phosphosilicate thin film through evaporation-induced polymeric micelle assembly.

    Science.gov (United States)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Imura, Masataka; Suzuki, Norihiro; Jiang, Xiangfen; Ohki, Shinobu; Deguchi, Kenzo; Suzuki, Madoka; Arai, Satoshi; Yamauchi, Yusuke

    2015-01-01

    A triblock copolymer, poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) was used as a soft template to synthesize large-sized mesoporous phosphosilicate thin films. The kinetically frozen PS core stabilizes the micelles. The strong interaction of the inorganic precursors with the P2VP shell enables the fabrication of highly robust walls of phosphosilicate and the PEO helps orderly packing of the micelles during solvent evaporation. The molar ratio of phosphoric acid and tetraethyl orthosilicate is crucial to achieve the final mesostructure. The insertion of phosphorus species into the siloxane network is studied by (29) Si and (31) P MAS NMR spectra. The mesoporous phosphosilicate films exhibit steady cell adhesion properties and show great promise as excellent materials in bone-growth engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method

    DEFF Research Database (Denmark)

    Li, Xiujuan; Chang, Si; Du, Guangsheng

    2012-01-01

    Azithromycin loaded microspheres with blends of poly-l-lactide and ploy-D,L-lactide-co-glycolide as matrices were prepared by the atmosphere-solvent evaporation (ASE) and reduced pressure-solvent evaporation (RSE) method. Both the X-ray diffraction spectra and DSC thermographs demonstrated...... characteristics and release profiles of microspheres. In conclusion, the overall improvement of microspheres in appearance, encapsulation efficiency and controlled drug release through the RSE method could be easily fulfilled under optimal preparation conditions....

  6. Enhanced polymeric encapsulation for MEMS based multi sensors for fisheries research

    DEFF Research Database (Denmark)

    Birkelund, Karen; Nørgaard, Lars; Thomsen, Erik Vilain

    2011-01-01

    light intensity, temperature, pressure and conductivity. For precise and fast measurements a direct exposure of the sensor to the water is desirable. A potted tube encapsulation concept has shown to be promising for accurate and fast measurements in harsh environment, provided a tight sealing......This paper presents the challenges of a packaged MEMS-based multi sensor system that allow for direct exposure of the sensing part to sea water. The system is part of a data storage tag used on fish to provide the researcher with information on fish behaviour and migration. The sensor measures...... compared to low pressure chemical vapor deposited (LPCVD) silicon nitride and untreated silicon dioxide....

  7. Folate-targeted paclitaxel-conjugated polymeric micelles inhibits pulmonary metastatic hepatoma in experimental murine H22 metastasis models

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2014-04-01

    Full Text Available Yan Zhang,1 Hui Zhang,2 Wenbin Wu,2 Fuhong Zhang,3,4 Shi Liu,3 Rui Wang,3 Yingchun Sun,1 Ti Tong,1 Xiabin Jing3 1Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China; 2Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, People's Republic of China; 3State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, People's Republic of China; 4Department of Otolaryngology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China Abstract: Hepatocellular carcinoma shows low response to most conventional chemotherapies; additionally, extrahepatic metastasis from hepatoma is considered refractory to conventional systemic chemotherapy. Target therapy is a promising strategy for advanced hepatoma; however, targeted accumulation and controlled release of therapeutic agents into the metastatic site is still a great challenge. Folic acid (FA and paclitaxel (PTX containing composite micelles (FA-M[PTX] were prepared by coassembling the FA polymer conjugate and PTX polymer conjugate. The main purpose of this study is to investigate the inhibitory efficacy of FA-M(PTX on the pulmonary metastasis of intravenously injected murine hepatoma 22 (H22 on BALB/c mice models. The lung metastatic burden of H22 were measured and tissues were analyzed by immunohistochemistry and histology (hematoxylin and eosin stain, followed by survival analysis. The results indicated that FA-M(PTX prevented pulmonary metastasis of H22, and the efficacy was stronger than pure PTX and simple PTX-conjugated micelles. In particular, the formation of lung metastasis colonies in mice was evidently inhibited, which was paralleled with the downregulated expression of matrix metalloproteinase-2 and matrix metalloproteinase-9. Furthermore, the mice bearing pulmonary metastatic hepatoma in the FA

  8. Dominant role of wormlike micelles in temperature-responsive viscoelastic properties of their mixtures with polymeric chains

    KAUST Repository

    Molchanov, Vyacheslav S.

    2013-03-01

    Temperature effects on the rheological properties of viscoelastic solutions containing entangled wormlike micelles of potassium oleate and hydrophobically modified polyacrylamide were studied in a wide range of polymer concentrations. A very pronounced drop of viscosity by four orders of magnitude was observed at heating from 20 to 78 °C both in the presence and in the absence of polymer indicating that the wormlike micelles are mainly responsible for this effect. The highly thermosensitive behavior was attributed to the shortening of micellar chains induced by heating. Although the decrease in viscosity is almost the same for both surfactant and surfactant/polymer systems, the absolute values of the viscosity in the presence of polymer are by few orders of magnitude higher, which is due to the formation of a common network of entangled polymer and micellar chains. As a result, the added polymer allows one to get highly temperature responsive system that keeps viscoelastic properties in a much wider range of temperatures, which makes it very promising for various practical applications. © 2012 Elsevier Inc.

  9. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  10. Conjugated and Entrapped HPMA-PLA Nano-Polymeric Micelles Based Dual Delivery of First Line Anti TB Drugs: Improved and Safe Drug Delivery against Sensitive and Resistant Mycobacterium Tuberculosis.

    Science.gov (United States)

    Upadhyay, Seema; Khan, Iliyas; Gothwal, Avinash; Pachouri, Praveen K; Bhaskar, N; Gupta, Umesh D; Chauhan, Devendra S; Gupta, Umesh

    2017-09-01

    First line antiTB drugs have several physical and toxic manifestations which limit their applications. RIF is a hydrophobic drug and has low water solubility and INH is hepatotoxic. The main objective of the study was to synthesize, characterize HPMA-PLA co-polymeric micelles for the effective dual delivery of INH and RIF. HPMA-PLA co-polymer and HPMA-PLA-INH (HPI) conjugates were synthesized and characterized by FT-IR and 1 H-NMR spectroscopy. Later on RIF loaded HPMA-PLA-INH co-polymeric micelles (PMRI) were formulated and characterized for size, zeta potential and surface morphology (SEM, TEM) as well as critical micellar concentration. The safety was assessed through RBC's interaction study. The prepared PMRI were evaluated through MABA assay against sensitive and resistant strains of M. Tuberculosis. Size, zeta and entrapment efficiency for RIF loaded HPMA-PLA-INH polymeric micelles (PMRI) was 87.64 ± 1.98 nm, -19 ± 1.93 mV and 97.2 ± 1.56%, respectively. In vitro release followed controlled and sustained delivery pattern. Sustained release was also supported by release kinetics. Haemolytic toxicity of HPI and PMRI was 8.57 and 7.05% (p PLA polymeric micelles (PMRI) were more effective against sensitive and resistant M tuberculosis. The developed approach can lead to improved patient compliance and reduced dosing in future, offering improved treatment of tuberculosis.

  11. Comparative evaluation of polymersome versus micelle structures as vehicles for the controlled release of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Alibolandi, Mona [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of); Ramezani, Mohammad; Abnous, Khalil [Mashhad University of Medical Sciences, Pharmaceutical Research Center, School of Pharmacy (Iran, Islamic Republic of); Sadeghi, Fatemeh, E-mail: sadeghif@mums.ac.ir [Mashhad University of Medical Sciences, Targeted Drug Delivery Research Center, School of Pharmacy (Iran, Islamic Republic of); Hadizadeh, Farzin, E-mail: hadizadehf@mums.ac.ir [Mashhad University of Medical Sciences, Biotechnology Research Center, School of Pharmacy (Iran, Islamic Republic of)

    2015-02-15

    Di-block copolymers composed of two biocompatible polymers, poly(ethylene glycol) and poly(d,l-lactide), were synthesized by ring-opening polymerization for the preparation of doxorubicin-loaded self-assembled nanostructures, including polymeric vesicles (polymersomes) and micelles. The capability and stability of the nanostructures prepared for the controlled release of DOX are discussed in this paper. The in vitro drug release at 37 °C was evaluated up to 6 days at pH 7.4 and 5.5 and in the presence of 50 % FBS. The cellular uptake and cytotoxicity effect of both formulations were also evaluated in the MCF-7 cell line. The SEM and AFM images confirmed the hollow spherical structure of the polymersomes and the solid round structures of the micelles. The TEM results also revealed the uniformity in size and shape of the drug-loaded micelle and polymersome nanostructures. The DOX-loaded micelles and polymersomes presented efficient anticancer performance, as verified by flow cytometry and MTT assay tests. The most important finding of this study is that the prepared nanopolymersomes presented significant increases in the doxorubicin encapsulation efficiency and the stability of the formulation in comparison with the micelle formulation. In vitro studies revealed that polymersomes may be stable in the blood circulation and meet the requirements for an effective drug delivery system.

  12. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong, E-mail: pharmsong@henu.edu.cn [Henan University, Institute of Pharmacy (China)

    2016-11-15

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  13. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    International Nuclear Information System (INIS)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-01-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  14. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies.

    Science.gov (United States)

    Nour, Samia A; Abdelmalak, Nevine S; Naguib, Marianne J; Rashed, Hassan M; Ibrahim, Ahmed B

    2016-11-01

    Clonazepam (CZ) is an anti-epileptic drug used mainly in status epilepticus (SE). The drug belongs to Class II according to BCS classification with very limited solubility and high permeability and it suffers from extensive first-pass metabolism. The aim of the present study was to develop CZ-loaded polymeric micelles (PM) for direct brain delivery allowing immediate control of SE. PM were prepared via thin film hydration (TFH) technique adopting a central composite face-centered design (CCFD). The seventeen developed formulae were evaluated in terms of entrapment efficiency (EE), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and in vitro release. For evaluating the in vivo behavior of the optimized formula, both biodistrbution using 99m Tc-radiolabeled CZ and pharmacodynamics studies were done in addition to ex vivo cytotoxicty. At a drug:Pluronic® P123:Pluronic® L121 ratio of 1:20:20 (PM7), a high EE, ZP, Q8h, and a low PDI was achieved. The biodistribution studies revealed that the optimized formula had significantly higher drug targeting efficiency (DTE = 242.3%), drug targeting index (DTI = 144.25), and nose-to-brain direct transport percentage (DTP = 99.30%) and a significant prolongation of protection from seizures in comparison to the intranasally administered solution with minor histopathological changes. The declared results reveal the ability of the developed PM to be a strong potential candidate for the emergency treatment of SE.

  15. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.

    Science.gov (United States)

    Hu, Liwen; Tu, Jiguo; Jiao, Shuqiang; Hou, Jungang; Zhu, Hongmin; Fray, Derek J

    2012-12-05

    Highly porous nanorod-PANI-Graphene composite films were prepared by in situ electrochemical polymerization onto an ITO substrate in a reverse micelle electrolyte. The morphology and microstructure of the composite films were analyzed by using a field emission scanning electron microscope. It was observed that the films were highly porous and the nanorod PANI films were inserted by graphene nanosheets. This indicated that a good conductive network between PANI nanorods and graphene sheets was formed. Further electrochemical tests involved cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) in 1 mol L(-1) HClO(4) solution. The results showed that the composite film had a favorable capacitance with a high electron transfer rate and low resistance. The highest specific capacitance that could be achieved was as high as 878.57 F g(-1) with the charge loading of 500 mC at a current density of 1 A g(-1). The GCD at different charge loadings showed good cycle stability with a low fading rate of specific capacitance after 1000 cycles. The results demonstrated that the nanorod-PANI-Graphene composite was proved to be of great potential as an electrode material for supercapacitors.

  16. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  17. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy.

    Science.gov (United States)

    Mi, Peng; Dewi, Novriana; Yanagie, Hironobu; Kokuryo, Daisuke; Suzuki, Minoru; Sakurai, Yoshinori; Li, Yanmin; Aoki, Ichio; Ono, Koji; Takahashi, Hiroyuki; Cabral, Horacio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-06-23

    Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.

  18. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    Science.gov (United States)

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  19. AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells.

    Science.gov (United States)

    Rafael, Diana; Gener, Petra; Andrade, Fernanda; Seras-Franzoso, Joaquin; Montero, Sara; Fernández, Yolanda; Hidalgo, Manuel; Arango, Diego; Sayós, Joan; Florindo, Helena F; Abasolo, Ibane; Schwartz, Simó; Videira, Mafalda

    2018-11-01

    Development of RNA interference-based therapies with appropriate therapeutic window remains a challenge for advanced cancers. Because cancer stem cells (CSC) are responsible of sustaining the metastatic spread of the disease to distal organs and the progressive gain of resistance of advanced cancers, new anticancer therapies should be validated specifically for this subpopulation of cells. A new amphihilic-based gene delivery system that combines Pluronic ® F127 micelles with polyplexes spontaneously formed by electrostatic interaction between anionic siRNA and cationic polyethylenimine (PEI) 10K, was designed (PM). Resultant PM gather the requirements for an efficient and safe transport of siRNA in terms of its physicochemical characteristics, internalization capacity, toxicity profile and silencing efficacy. PM were loaded with a siRNA against AKT2, an important oncogene involved in breast cancer tumorigenesis, with a special role in CSC malignancy. Efficacy of siAKT2-PM was validated in CSC isolated from two breast cancer cell lines: MCF-7 and Triple Negative MDA-MB-231 corresponding to an aggressive subtype of breast cancer. In both cases, we observed significant reduction on cell invasion capacity and strong inhibition of mammosphere formation after treatment. These results prompt AKT2 inhibition as a powerful therapeutic target against CSC and pave the way to the appearance of more effective nanomedicine-based gene therapies aimed to prevent CSC-related tumor recurrence.

  20. Recombinant Amphiphilic Protein Micelles for Drug Delivery

    OpenAIRE

    Kim, Wookhyun; Xiao, Jiantao; Chaikof, Elliot L.

    2011-01-01

    Amphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery. Drug-loaded micelles were produced by encapsulating dipyridamole as a model hydrophobic drug with anti-inflammatory activit...

  1. Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Directory of Open Access Journals (Sweden)

    Yang Zhuoli

    2009-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol-poly(lactide (mPEG-PLA diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.

  2. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martinus Abraham

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and

  3. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417)

  4. Curcumin-carboxymethyl chitosan (CNC) conjugate and CNC/LHR mixed polymeric micelles as new approaches to improve the oral absorption of P-gp substrate drugs.

    Science.gov (United States)

    Ni, Jiang; Tian, Fengchun; Dahmani, Fatima Zohra; Yang, Hui; Yue, Deren; He, Shuwang; Zhou, Jianping; Yao, Jing

    2016-11-01

    The low oral bioavailability of numerous drugs has been mostly attributed to the significant effect of P-gp-mediated efflux on intestinal drug transport. Herein, we developed mixed polymeric micelles (MPMs) comprised of curcumin-carboxymethyl chitosan (CNC) conjugate, as a potential inhibitor of P-gp-mediated efflux and gastrointestinal absorption enhancer, and low-molecular-weight heparin-all-trans-retinoid acid (LHR) conjugate, as loading material, with the aim to improve the oral absorption of P-gp substrate drugs. CNC conjugate was synthesized by chemical bonding of curcumin (Cur) and carboxymethyl chitosan (CMCS) taking advantage of the inhibition of intestinal P-gp-mediated secretion by Cur and the intestinal absorption enhancement by CMCS. The chemical structure of CNC conjugate was characterized by 1 H NMR with a degree of substitution of Cur of 4.52-10.20%. More importantly, CNC conjugate markedly improved the stability of Cur in physiological pH. Cyclosporine A-loaded CNC/LHR MPMs (CsA-CNC/LHR MPMs) were prepared by dialysis method, with high drug loading 25.45% and nanoscaled particle size (∼200 nm). In situ single-pass perfusion studies in rats showed that both CsA + CNC mixture and CsA-CNC/LHR MPMs achieved significantly higher K a and P eff than CsA suspension in the duodenum and jejunum segments (p CNC mixture and CsA-CNC/LHR MPMs significantly increased the oral bioavailability of CsA as compared to CsA suspension. These results suggest that CNC conjugate might be considered as a promising gastrointestinal absorption enhancer, while CNC/LHR MPMs had the potential to improve the oral absorption of P-gp substrate drugs.

  5. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  6. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  7. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui-Kang [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2014-08-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior.

  8. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    International Nuclear Information System (INIS)

    Yang, Hui-Kang; Zhang, Li-Ming

    2014-01-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior

  9. PET imaging with copper-64 as a tool for real-time in vivo investigations of the necessity for crosslinking of polymeric micelles in nanomedicine

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar

    2017-01-01

    crosslinking is necessary for efficient drug delivery. We used PET imaging with 64Cu to demonstrate general methodology for real-time in vivo investigations of micelle stability. Triblock copolymers with 4-methylcoumarin cores of ABC-type (PEG-PHEMA-PCMA) were functionalized in the handle region (PHEMA...... was quantified by ROI analysis on PET images and ex vivo counting. It was observed that CL and nonCL showed limited differences in biodistribution from each other, whereas both differed markedly from control (free 64Cu). This demonstrated that 4-methylcoumarin core micelles may form micelles that are stable...

  10. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  11. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures

    NARCIS (Netherlands)

    Hove, ten J.B.; Wang, J.; Leeuwen, van F.W.B.; Velders, A.H.

    2017-01-01

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold

  12. Near infrared imaging-guided photodynamic therapy under an extremely low energy of light by galactose targeted amphiphilic polypeptide micelle encapsulating BODIPY-Br2.

    Science.gov (United States)

    Liu, Le; Ruan, Zheng; Li, Tuanwei; Yuan, Pan; Yan, Lifeng

    2016-10-18

    Near infrared (NIR) imaging-guided photodynamic therapy (PDT) is attractive, especially the utilization of one dye as both a photosensitizer and fluorescent probe, and the as-synthesized BODIPY-Br 2 molecule is a candidate. Here, a galactose targeted amphiphilic copolymer of a polypeptide was synthesized and its micelles work as nanocarriers for BODIPY for targeting the NIR imaging-guided PDT of hepatoma cancer cells. At the same time, BODIPY could light up the cytoplasm for real-time imaging and kill cancer cells when the light was switched on. In vitro tests performed on both HepG2 and HeLa cells confirmed that the as-prepared PMAGP-POEGMA-PLys-B micelles showed efficient cell suppression of the cells with galactose receptors in the presence of light under an extremely low energy density (6.5 J cm -2 ). This protocol highlights the potential of polypeptides as biodegradable carriers for NIR image-guided and confined targeting photodynamic therapy.

  13. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    International Nuclear Information System (INIS)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2014-01-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by 1 H and 31 P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior

  14. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  15. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core

    NARCIS (Netherlands)

    Hofs, P.S.; Brzozowska, A.M.; Keizer, de A.; Norde, W.; Cohen Stuart, M.A.

    2008-01-01

    Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene] hydrochloride)49-block-poly(ethylene oxide)212 and poly([4-(2-carboxy-ethylthio)-butylene] sodium salt)47-block-poly(ethylene oxide)212 adsorb in equal

  16. Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core

    NARCIS (Netherlands)

    Hofs, B.; Brzozowska, A.; de Keizer, A.; Norde, W.; Stuart, Martien A. Cohen

    2008-01-01

    Adsorption studies by optical reflectometry show that complex coacervate core micelles (C3Ms) composed of poly([4-(2-amino-ethylthio)-butylene]hydrochloride)(49)-block-poly(ethylene oxide)(212) and poly([4-(2carboxy-ethylthio)-butylene] sodium salt)(47)-block-poly(ethylene oxide)(212) adsorb in

  17. Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment

    Directory of Open Access Journals (Sweden)

    Omaima M Sabek

    2016-04-01

    Full Text Available Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow–derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland to support islet-like insulin-producing aggregates’ survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland—islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy.

  18. Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment.

    Science.gov (United States)

    Sabek, Omaima M; Farina, Marco; Fraga, Daniel W; Afshar, Solmaz; Ballerini, Andrea; Filgueira, Carly S; Thekkedath, Usha R; Grattoni, Alessandro; Gaber, A Osama

    2016-01-01

    Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization. To overcome the limitations of poor islet availability, here, we investigate the potential of bone marrow-derived mesenchymal stem cells differentiated into islet-like insulin-producing aggregates. Islet-like insulin-producing aggregates, characterized by gene expression, are shown to be similar to pancreatic islets and display positive immunostaining for insulin and glucagon. To address the limits of current encapsulation systems, we developed a novel three-dimensional printed, scalable, and potentially refillable polymeric construct (nanogland) to support islet-like insulin-producing aggregates' survival and function in the host body. In vitro studies showed that encapsulated islet-like insulin-producing aggregates maintained viability and function, producing steady levels of insulin for at least 4 weeks. Nanogland-islet-like insulin-producing aggregate technology here investigated as a proof of concept holds potential as an effective and innovative approach for diabetes cell therapy.

  19. Dendrimer-encapsulated nanoparticle-core micelles as a modular strategy for particle-in-a-box-in-a-box nanostructures.

    Science.gov (United States)

    Ten Hove, J B; Wang, J; van Leeuwen, F W B; Velders, A H

    2017-12-07

    The hierarchically controlled synthesis and characterization of self-assembling macromolecules and particles are key to explore and exploit new nanomaterials. Here we present a versatile strategy for constructing particle-in-a-box-in-a-box systems by assembling dendrimer-encapsulated gold nanoparticles (DENs) into dendrimicelles. This is realized by combining positively charged PAMAM dendrimers with a negative-neutral block copolymer. The number of particles per dendrimicelle can be controlled by mixing DENs with empty PAMAM dendrimers. The dendrimicelles are stable in solution for months and provide improved resistance for the nanoparticles against degradation. The dendrimicelle strategy provides a flexible platform with a plethora of options for variation in the type of nanoparticles, dendrimers and block copolymers used, and hence is tunable for applications ranging from nanomedicine to catalysis.

  20. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai

    2018-01-31

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self-assembled micelles were immobilized by cross-linking reaction of VTES in a shell layer of micelles. The chemical structures of block copolymers and morphology of micelles were characterized in detail. It was found that the size of immobilized micelles was strongly affected by the copolymer concentration, composition of mixture solvent, and block ratios.

  1. Bioavailability, rheology and sensory evaluation of fat-free yogurt enriched with VD3 encapsulated in re-assembled casein micelles.

    Science.gov (United States)

    Levinson, Yonatan; Ish-Shalom, Sophia; Segal, Elena; Livney, Yoav D

    2016-03-01

    Vitamin D3 (VD3) deficiency is a global problem. Better ways are needed to enrich foods with this important nutraceutical. VD3 is fat-soluble, hence requiring a suitable vehicle for enriching nonfat foods. Our objectives were to assess the bioavailability of VD3, from fat-free yogurt, in re-assembled casein micelles (rCMs) compared to that in polysorbate-80 (PS80/Tween-80) a commonly used synthetic emulsifier, and to assess and compare their rheology and palatability. We enriched fat-free yogurt with VD3 loaded into either rCM (VD3-rCMs) or PS80 (VD3-PS80). In vivo VD3 bioavailability was evaluated by a large randomized, double blind, placebo-controlled clinical trial, measuring serum 25(OH)D increase in subjects who consumed fat-free yogurt with 50,000 IU of either VD3-rCM, VD3-PS80, or VD3-free placebo yogurt. Both VD3-rCM and VD3-PS80 increased the serum 25(OH)D levels by ∼8 ng ml(-1) and no significant differences in mean 25(OH)D levels were observed, evidencing the fact that VD3 bioavailability in rCM was as high as that in the synthetic emulsifier. VD3-rCM yogurt had a higher viscosity than VD3-PS80 yogurt. In sensory evaluations, panelists were able to discern between VD3-rCM and VD3-PS80 yogurt, and showed a dislike for PS80 yogurt, compared to rCM or the unenriched control. These results complement our past results showing higher protection against thermal treatment, UV irradiation, and deterioration during shelf life, conferred to hydrophobic nutraceuticals by rCM compared to that by the synthetic surfactant or to the unprotected bioactive, in showing the advantageous use of rCM over the synthetic emulsifier as a delivery system for the enrichment of food with VD3 and other hydrophobic nutraceuticals.

  2. Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles.

    Science.gov (United States)

    Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna

    2017-11-01

    Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

  3. Solubility enhancement and in vitro evaluation of PEG-b-PLA micelles as nanocarrier of semi-synthetic andrographolide analogue for cholangiocarcinoma chemotherapy.

    Science.gov (United States)

    Puntawee, Sujittra; Theerasilp, Man; Reabroi, Somrudee; Saeeng, Rungnapha; Piyachaturawat, Pawinee; Chairoungdua, Arthit; Nasongkla, Norased

    2016-01-01

    Semi-synthetic andrographolide analogue (19-triphenylmethyl ether andrographolide, AG 050) is a C-19 substituted andrographolide which is the major constituent from Andrographis Paniculata Nees (Acanthaceae). The analogue has previously been reported to be highly cytotoxic against several cancer cell lines. Nevertheless, its poor water solubility limits clinical applications of this compound. To improve the aqueous solubility and bioavailability of AG 050 by protonation and encapsulation in poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-b-PLA) polymeric micelles. PEG-b-PLA micelle was employed as a nanocarrier for AG 050. The physicochemical properties and in vitro cytotoxicity against cholangiocarcinoma (CCA) (KKU-M213) cell line were done in this study. Hydrochloride salt of AG 050 (AG 050-P) greatly enhanced the solubility of this compound (15-fold). PEG-b-PLA was able to encapsulate AG 050-P in hydrophobic core with a significant increase in the amount of AG 050-P in aqueous solution (280-fold). Film sonication method provided greater results in drug-loading study as compared to micelles via solvent evaporation. In addition, the encapsulated AG 050-P exhibited sustained release pattern and excellent cytotoxicity activity against KKU-M213 with IC50 of 3.33 µM. Nanoencapsulation of AG 050-P implicated its potential development for clinical use in CCA treatment.

  4. Synthesis and immobilization of polystyreneb-polyvinyltriethoxysilane micelles

    KAUST Repository

    Zhu, Saisai; Zhu, Hui; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Cao, Ming; Yang, Bin; Miao, Jibin; Su, Lifen; Song, Changjiang

    2018-01-01

    Diblock copolymers polystyrene-block-polyvinyltriethoxysilane (PS-b-PVTES) were synthesized via atom transfer radical polymerization (ATRP), which self-assembled into spherical micelles in solvent of THF-methanol mixtures. The self

  5. Cotton fibers encapsulated with homo- and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations.

    Science.gov (United States)

    Castelvetro, Valter; Geppi, Marco; Giaiacopi, Simone; Mollica, Giulia

    2007-02-01

    Cotton fibers were modified by surface-initiated atom transfer radical polymerization of ethyl acrylate (EA) followed by copolymerization with styrene. Either ethyl 2-bromopropionate as a sacrificial free initiator or Cu(II) as a deactivator was used to optimize the EA grafting yield and to preserve the livingness of the chain ends for the subsequent growth of a poly(styrene) (PSty) block from the poly(ethyl acrylate) (PEA) grafts. The polymer-encapsulated cotton fibers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, and solid-state NMR (high-resolution 13C cross-polarization magic angle spinning, 1H spin-lattice relaxation times, and 1H free induction decay analysis NMR). The latter allowed the detection of the dynamic modifications associated with the presence of homo- and block copolymer grafts. In particular, the results of the DSC and NMR investigations suggest a heterogeneous morphology of the g-PEA-b-PSty grafted skin, which could be described as an inner layer of g-PEA sandwiched between the semicrystalline cellulose of the core fiber and the high glass transition temperature PSty of the covalently linked outer layer. Such morphology results in a reduced molecular mobility of the PEA chains.

  6. Effects of Encapsulated Fish Oil by Polymerized Whey Protein on the Textural and Sensory Characteristics of Low-Fat Yogurt

    Directory of Open Access Journals (Sweden)

    Liu Diru

    2016-07-01

    Full Text Available Five types of polymerized whey protein (PWP1, PWP2, PWP3, PWP4 and PWP5 containing different amounts of fish oil were added to low-fat yogurt as fat replacers. The texture, apparent viscosity, and sensory properties of the yogurts were analyzed in comparison with full-fat ( 3.0%, w/w, fat and low-fat (1.5%, w/w; and 1.2%, w/w milk yogurt controls. The majority (~85% of the particle size distribution was in the range of 1106±158 nm. Thermal property analysis indicated PWP was thermally stable between 50°C and 90°C. Yogurts formulated with 12% of PWP4 and 14% of PWP5 demonstrated higher firmness, springiness and adhesiveness (P<0.05, and lower cohesiveness (P<0.05 than the low-fat milk yogurt controls. There was no fat separation and they had less fishy smell. Yogurts incorporated with 12% of PWP4 had comparable sensory and textural characteristics to the full- -fat milk yogurt control.

  7. Colorful packages : fluorescent proteins in complex coacervate core micelles

    NARCIS (Netherlands)

    Nolles, Antsje

    2018-01-01

    This thesis explores the encapsulation of fluorescent proteins (FPs) into complex coacervate core micelles (C3Ms) and features the impact of this encapsulation on the biophysical properties of the FPs. In total eight different FPs were investigated originating from two different classes

  8. In vitro evaluation of antioxidant and neuroprotective effects of curcumin loaded in Pluronic micelles

    OpenAIRE

    Cvetelina Gorinova; Denitsa Aluani; Yordan Yordanov; Magdalena Kondeva-Burdina; Virginia Tzankova; Cvetelina Popova; Krassimira Yoncheva

    2016-01-01

    Curcumin is a polyphenolic substance with attractive pharmacological activities (e.g. antioxidant, anti-inflammatory, anticancer). Incorporation of curcumin in polymeric micelles could overcome the problems associated with its instability and low aqueous solubility. The aim of this study was to load curcumin in polymeric micelles based on Pluronic® P 123 or Pluronic® F 127 triblock copolymers and evaluate the antioxidant and neuroprotective effects after micellization. The micelles were prepa...

  9. Reduction-responsive interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry for drug controlled release

    Science.gov (United States)

    Dai, Yu; Wang, Hongquan; Zhang, Xiaojin

    2017-12-01

    To improve the stability of polymeric micelles, here we describe interlayer-crosslinked micelles prepared from star-shaped copolymer via click chemistry. The formation of interlayer-crosslinked micelles was investigated and confirmed by proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, and fluorescence spectroscopy. The morphology of un-crosslinked micelles and crosslinked micelles observed by transmission electron microscope is both uniform nano-sized spheres (approximately 20 nm). The crosslinking enhances the stability of polymeric micelles and improves the drug loading capacity of polymeric micelles. The interlayer-crosslinked micelles prepared from star-shaped copolymer and a crosslinker containing a disulfide bond are reduction-responsive and can release the drug quickly in the presence of the reducing agents such as glutathione (GSH).

  10. A combined interfacial and in-situ polymerization strategy to construct well-defined core-shell epoxy-containing SiO2-based microcapsules with high encapsulation loading, super thermal stability and nonpolar solvent tolerance

    Directory of Open Access Journals (Sweden)

    Yin Jia

    2016-10-01

    Full Text Available SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.

  11. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptide-activated stimuli-sensitive polymeric micelles for delivery of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Meng Meng [Tsinghua University, Department of Chemical Engineering (China); Kang, Yoon Joong [Jungwon University, Department of Biomedical Science (Korea, Republic of); Sohn, Youngjoo [Kyung Hee University, Department of Anatomy, College of Korean Medicine (Korea, Republic of); Kim, Do Kyung, E-mail: eurokorean@gmail.com, E-mail: dokyung@konyang.ac.kr [Konyang University, Industry Cooperation Foundation (Korea, Republic of)

    2015-06-15

    A double targeting strategy of anti-neoplastic agent paclitaxel (PTX) was developed by incorporating magnetic nanoparticles and RGD peptide for enhanced cell cytotoxicity effect at lower dosage. A dual targeting mechanism including magnetic targeting and RGD ligand-specific targeting enhanced the overall cytotoxicity and reduced the effective dosage of PTX to achieve enhanced and sustained release of PTX in vitro. We addressed the issues of water-insolubility of oleic acid (OA)-stabilized SPIONs and low incorporation efficiency of hydrophobic PTX with SPION nanocarriers by using an amphiphilic polymer poly[(N-isopropylacrylamide-r-acrylamide)-b-l-lactic acid] (PNAL) as micelle-forming materials. A targeting moiety, GGGGRGD peptide, a RGD sequence-containing peptide with a short linker, is attached to the surface of PNAL-SPIONs via a homo-crosslinker. Confocal microscopy image analysis revealed that the cellular uptake was increased from (1.5 ± 0.5 % (PNAL) to 11.7 ± 0.8 % (RGD-PNAL-SPIONs) at 6 h incubation, once both RGD peptide and magnetic force attraction were incorporated into the carriers. Such multi-targeting nanocarriers showed promising potential in cancer-oriented diagnosis and therapy.

  12. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena; Kalkowski, Joseph; Luo, Hanying; Donovan, Alexander J.; Zhang, Pin; Liu, Chang; Shang, Weifeng; Irving, Thomas; Herrera-Alonso, Margarita; Liu, Ying (JHU); (IIT); (UIC)

    2017-08-31

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  13. Core–Shell Structure and Aggregation Number of Micelles Composed of Amphiphilic Block Copolymers and Amphiphilic Heterografted Polymer Brushes Determined by Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Szymusiak, Magdalena [Department; Kalkowski, Joseph [Department; Luo, Hanying [Department; Donovan, Alexander J. [Department; Zhang, Pin [Department; Liu, Chang [Department; Shang, Weifeng [Department; Irving, Thomas [Department; Herrera-Alonso, Margarita [Department; Liu, Ying [Department; Department

    2017-08-16

    A large group of functional nanomaterials employed in biomedical applications, including targeted drug delivery, relies on amphiphilic polymers to encapsulate therapeutic payloads via self-assembly processes. Knowledge of the micelle structures will provide critical insights into design of polymeric drug delivery systems. Core–shell micelles composed of linear diblock copolymers poly(ethylene glycol)-b-poly(caprolactone) (PEG-b-PCL), poly(ethylene oxide)-b-poly(lactic acid) (PEG-b-PLA), as well as a heterografted brush consisting of a poly(glycidyl methacrylate) backbone with PEG and PLA branches (PGMA-g-PEG/PLA) were characterized by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) measurements to gain structural information regarding the particle morphology, core–shell size, and aggregation number. The structural information at this quasi-equilibrium state can also be used as a reference when studying the kinetics of polymer micellization.

  14. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  15. Development of chitosan oleate ionic micelles loaded with silver sulfadiazine to be associated with platelet lysate for application in wound healing.

    Science.gov (United States)

    Dellera, Eleonora; Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Ferrari, Franca; Del Fante, Claudia; Perotti, Cesare; Grisoli, Pietro; Caramella, Carla

    2014-11-01

    In the treatment of chronic wounds, topical application of anti-infective drugs such as silver sulfadiazine (AgSD) is of primary importance to avoid infections and accelerate wound repair. AgSD is used in burns and chronic wounds for its wide antibacterial spectrum, but presents limitations due to poor solubility and cytotoxicity. In the present work polymeric micelles obtained by self-assembling of chitosan ionically modified by interaction with oleic acid were developed as carriers for AgSD to overcome the drawbacks of the drug. The AgSD loaded micelles were intended to be associated in wound healing with platelet lysate (PL), a hemoderivative rich in growth factors. Unloaded micelles demonstrated good compatibility with both fibroblasts and PL. The relevance of chitosan concentration and of the ratio between chitosan and oleic acid to the drug loading and the particle size of nanoparticles was studied. A marked increase (up to 100 times with respect to saturated solution) of AgSD concentration in micelle dispersion was obtained. Moreover, the encapsulation reduced the cytotoxic effect of the drug towards fibroblasts and the drug incompatibility with PDGF-AB (platelet derived growth factor), chosen as representative of platelet growth factors. Copyright © 2014. Published by Elsevier B.V.

  16. An Open-Label, Randomized, Parallel, Phase III Trial Evaluating the Efficacy and Safety of Polymeric Micelle-Formulated Paclitaxel Compared to Conventional Cremophor EL-Based Paclitaxel for Recurrent or Metastatic HER2-Negative Breast Cancer.

    Science.gov (United States)

    Park, In Hae; Sohn, Joo Hyuk; Kim, Sung Bae; Lee, Keun Seok; Chung, Joo Seop; Lee, Soo Hyeon; Kim, Tae You; Jung, Kyung Hae; Cho, Eun Kyung; Kim, Yang Soo; Song, Hong Suk; Seo, Jae Hong; Ryoo, Hun Mo; Lee, Sun Ah; Yoon, So Young; Kim, Chul Soo; Kim, Yong Tai; Kim, Si Young; Jin, Mi Ryung; Ro, Jungsil

    2017-07-01

    Genexol-PM is a Cremophor EL-free formulation of low-molecular-weight, non-toxic, and biodegradable polymeric micelle-bound paclitaxel. We conducted a phase III study comparing the clinical efficacy and toxicity of Genexol-PM with conventional paclitaxel (Genexol). Patients were randomly assigned (1:1) to receive Genexol-PM 260 mg/m 2 or Genexol 175 mg/m 2 intravenously every 3 weeks. The primary outcome was the objective response rate (ORR). The study enrolled 212 patients, of whom 105 were allocated to receive Genexol-PM. The mean received dose intensity of Genexol-PM was 246.8±21.3 mg/m 2 (95.0%), and that of Genexol was 168.3±10.6 mg/m 2 (96.2%). After a median follow-up of 24.5 months (range, 0.0 to 48.7 months), the ORR of Genexol-PM was 39.1% (95% confidence interval [CI], 31.2 to 46.9) and the ORR of Genexol was 24.3% (95% CI, 17.5 to 31.1) (p non-inferiority =0.021, p superiority =0.016). The two groups did not differ significantly in overall survival (28.8 months for Genexol-PM vs. 23.8 months for Genexol; p=0.52) or progression-free survival (8.0 months for Genexol-PM vs. 6.7 months for Genexol; p=0.26). In both groups, the most common toxicities were neutropenia, with 68.6% occurrence in the Genexol-PM group versus 40.2% in the Genexol group (p cancer.

  17. Stable and biocompatible genipin-inducing interlayer-crosslinked micelles for sustained drug release

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yu; Zhang, Xiaojin, E-mail: zhangxj@cug.edu.cn [China University of Geosciences, Faculty of Materials Science and Chemistry (China)

    2017-05-15

    To develop the sustained drug release system, here we describe genipin-inducing interlayer-crosslinked micelles crosslinked via Schiff bases between the amines of amphiphilic linear-hyperbranched polymer poly(ethylene glycol)-branched polyethylenimine-poly(ε-caprolactone) (PEG-PEI-PCL) and genipin. The generation of Schiff bases was confirmed by the color changes and UV-Vis absorption spectra of polymeric micelles after adding genipin. The particle size, morphology, stability, in vitro cytotoxicity, drug loading capacity, and in vitro drug release behavior of crosslinked micelles as well as non-crosslinked micelles were characterized. The results indicated that genipin-inducing interlayer-crosslinked micelles had better stability and biocompatibility than non-crosslinked micelles and glutaraldehyde-inducing interlayer-crosslinked micelles. In addition, genipin-inducing interlayer-crosslinked micelles were able to improve drug loading capacity, reduce the initial burst release, and achieve sustained drug release.

  18. TNYL peptide functional chitosan-g-stearate conjugate micelles for tumor specific targeting

    Directory of Open Access Journals (Sweden)

    Chen FY

    2014-09-01

    Full Text Available Feng-Ying Chen,1 Jing-Jing Yan,1 Han-Xi Yi,2 Fu-Qiang Hu,2 Yong-Zhong Du,2 Hong Yuan,2 Jian You,2 Meng-Dan Zhao1 1Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China; 2College of Pharmaceutical Science, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Nowadays, a real challenge in cancer therapy is to design drug delivery systems that can achieve high concentrations of drugs at the target site for improved therapeutic effect with reduced side effects. In this research, we designed and synthesized a homing peptide-(TNYLFSPNGPIA, TNYL modified chitosan-g-stearate (CS polymer micelle (named T-CS for targeting delivery. The peptide displayed specific binding affinity to EphB4 which is a member of the Eph family of receptor tyrosine protein kinases. The amphiphilic polymer T-CS can gather into micelles by themselves in an aqueous environment with a low critical micelle concentration value (91.2 µg/L and nano-scaled size (82.1±2.8 nm. The drug encapsulation efficiency reached 86.43% after loading the hydrophobic drug doxorubicin (DOX. The cytotoxicity of T-CS/DOX against SKOV3 cells was enhanced by approximately 2.3-fold when compared with CS/DOX. The quantitative and qualitative analysis for cellular uptake indicated that TNYL modification can markedly increase cellular internalization in the EphB4-overexpressing SKOV3 cell line, especially with a short incubation time. It is interesting that relatively higher uptake of the T-CS/DOX micelles by SKOV3 cells (positive-EphB4 than A549 cells (negative-EphB4 was observed when the two cells were co-incubated. Furthermore, in vivo distribution experiment using a bilateral-tumor model showed that there was more fluorescence accumulation in the SKOV3 tumor than in the A549 tumor over the whole experiment. These results suggest that TNYL-modified CS micelles may be promising drug carriers as targeting therapy for the EphB4-overexpressing

  19. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    International Nuclear Information System (INIS)

    Nazari, K.; Adhami, F.; Najjar-Safari, A.; Salmani, S.; Mahmoudi, A.

    2011-01-01

    Highlights: → Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. → Main advantage of this simple method is producing soluble encapsulated nanowires. → Nanowire can be easily precipitated and separated by dilution with distilled water. → Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. → Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  20. Biocatalytic synthesis of polymeric nanowires by micellar templates of ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, K., E-mail: nazarikh@ripi.ir [Research Institute of Petroleum Industry, NIOC, P.O. Box 14665-137, Tehran (Iran, Islamic Republic of); Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Adhami, F.; Najjar-Safari, A.; Salmani, S. [Chemistry Dept., Shahr Rey Islamic Azad University, P.O. Box 18735-334, Tehran (Iran, Islamic Republic of); Mahmoudi, A. [Chemistry Dept., Karaj Islamic Azad University, Karaj (Iran, Islamic Republic of)

    2011-07-15

    Highlights: {yields} Soft-template production of polyguaiacol nanowire was done by peroxidase enzyme. {yields} Main advantage of this simple method is producing soluble encapsulated nanowires. {yields} Nanowire can be easily precipitated and separated by dilution with distilled water. {yields} Size tuned templates of sodium decyl sulfate (d = 2.7 nm) gave nanowires with d = 2-4 nm. {yields} Dried surfactant-coated wires recover freshly on specified and desired applications. -- Abstract: Micelle-templated polyguaiacol nanowires were successfully prepared via polymerization oxidation of guaiacol (o-methoxy phenol) by peroxidase enzyme in the presence of hydrogen peroxide at mild reaction conditions. The dimensions of the prepared nanowires were controlled by tuning the size and shape of the micelle structure via changing and controlling the type, chain length and molar concentrations of the ionic surfactant. The progress of the reaction and estimation of the size of soft micellar templates were followed by UV-Vis spectroscopy and dynamic light scattering (DLS). The resulting micelle encapsulated or purified polyguaiacol nanowires were characterized using transmission electron microscopy (TEM).

  1. NC-6301, a polymeric micelle rationally optimized for effective release of docetaxel, is potent but is less toxic than native docetaxel in vivo

    Directory of Open Access Journals (Sweden)

    Harada M

    2012-05-01

    Full Text Available Mitsunori Harada,1 Caname Iwata,2 Hiroyuki Saito,1 Kenta Ishii,1 Tatsuyuki Hayashi,1 Masakazu Yashiro,3 Kosei Hirakawa,3 Kohei Miyazono,2 Yasuki Kato,1 Mitsunobu R Kano21Research Division, NanoCarrier Co, Ltd, Chiba, Japan; 2Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; 3Department of Surgical Oncology, Osaka City University, Osaka, JapanAbstract: Drug release rate is an important factor in determining efficacy and toxicity of nanoscale drug delivery systems. However, optimization of the release rate in polymeric micellar nanoscale drug delivery systems has not been fully investigated. In this study NC-6301, a poly(ethylene glycol-poly(aspartate block copolymer with docetaxel (DTX covalently bound via ester link, was synthesized with various numbers of DTX molecules bound to the polymer backbone. The number of DTX molecules was determined up to 14 to achieve an optimal release rate, based upon the authors' own pharmacokinetic model using known patient data. Efficacy and toxicity of the formulation was then tested in animals. When administered three times at 4-day intervals, the maximum tolerated doses of NC-6301 and native DTX were 50 and 10 mg/kg, respectively, in nude mice. Tissue distribution studies of NC-6301 in mice at 50 mg/kg revealed prolonged release of free DTX in the tumor for at least 120 hours, thus supporting its effectiveness. Furthermore, in cynomolgus monkeys, NC-6301 at 6 mg/kg three times at 2-week intervals showed marginal toxicity, whereas native DTX, at 3 mg/kg with the same schedule, induced significant decrease of food consumption and neutrophil count. NC-6301 at 50 mg/kg in mice also regressed a xenografted tumor of MDA-MB-231 human breast cancer. Native DTX, on the other hand, produced only transient and slight regression of the same tumor xenograft. NC-6301 also significantly inhibited growth of OCUM-2MLN human scirrhous gastric carcinoma in an orthotopic mouse

  2. Thermoresponsive polymer micelles as potential nanosized cancerostatics

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Janoušková, Olga; Ulbrich, Karel; Pola, Robert; Blažková, Jana; Filippov, Sergey K.; Etrych, Tomáš; Pechar, Michal

    2015-01-01

    Roč. 16, č. 8 (2015), s. 2493-2505 ISSN 1525-7797 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : RAFT polymerization * polymer therapeutics * thermo-responsive micelles Subject RIV: CE - Biochemistry Impact factor: 5.583, year: 2015

  3. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  4. Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhu WT

    2017-04-01

    Full Text Available Wen-Ting Zhu,1,2,* Sheng-Yao Liu,3,* Lei Wu,1,2 Hua-Li Xu,4 Jun Wang,1,2 Guo-Xin Ni,3,5 Qing-Bing Zeng1,2 1Biomaterial Research Center, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; 2Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; 3Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China; 4Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; 5Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, China *These authors contributed equally to this work Background: It has been widely reported that curcumin (CUR exhibits anticancer activity and triggers the apoptosis of human A549 non-small-cell lung cancer (NSCLC cells. However, its application is limited owing to its poor solubility and bioavailability. Therefore, there is an urgent need to develop a new CUR formulation with higher water solubility and better biocompatibility for clinical application in the future. Materials and methods: In this study, CUR-loaded methoxy polyethylene glycol–polylactide (CUR/mPEG–PLA polymeric micelles were prepared by a thin-film hydration method. Their characteristics and antitumor effects were evaluated subsequently. Results: The average size of CUR/mPEG–PLA micelles was 34.9±2.1 nm with its polydispersity index (PDI in the range of 0.067–0.168. The encapsulation efficiency and drug loading were 90.2%±0.78% and 9.1%±0.07%, respectively. CUR was constantly released from the CUR/mPEG–PLA micelles, and its cellular uptake in A549 cells was significantly increased. It was also found that CUR/mPEG–PLA micelles inhibited A549 cell proliferation, increased the cell cytotoxicity, induced G2/M stage arrest and promoted cell apoptosis. Moreover, the CUR/mPEG–PLA micelles suppressed the

  5. Small angle neutron scattering study of the micelle structure of amphiphilic block copolymers

    International Nuclear Information System (INIS)

    Yamaoka, H.; Matsuoka, H.; Sumaru, K.; Hanada, S.

    1994-01-01

    The amphiphilic block copolymers of vinyl ether were prepared by living cationic polymerization. The partially deuterated copolymers for SANS experiments were especially synthesized by introducing deuterated phenyl units in the hydrophobic chain. SANS measurements were performed for aqueous solutions of these copolymers by changing H 2 O/D 2 O ratios. The SANS profiles indicate that the micelles in the present system exhibit a core-shell structure and that the size and shape of micelles are largely dependent on the length of hydrophobic chain. The micelle of shorter hydrophobic chain was found to be nearly spherical, whereas the micelle of longer hydrophobic chain was confirmed to have an ellipsoidal shape

  6. A Robust Oil-in-Oil Emulsion for the Nonaqueous Encapsulation of Hydrophilic Payloads.

    Science.gov (United States)

    Lu, Xiaocun; Katz, Joshua S; Schmitt, Adam K; Moore, Jeffrey S

    2018-03-14

    Compartmentalized structures widely exist in cellular systems (organelles) and perform essential functions in smart composite materials (microcapsules, vasculatures, and micelles) to provide localized functionality and enhance materials' compatibility. An entirely water-free compartmentalization system is of significant value to the materials community as nonaqueous conditions are critical to packaging microcapsules with water-free hydrophilic payloads while avoiding energy-intensive drying steps. Few nonaqueous encapsulation techniques are known, especially when considering just the scalable processes that operate in batch mode. Herein, we report a robust oil-in-oil Pickering emulsion system that is compatible with nonaqueous interfacial reactions as required for encapsulation of hydrophilic payloads. A major conceptual advance of this work is the notion of the partitioning inhibitor-a chemical agent that greatly reduces the payload's distribution between the emulsion's two phases, thus providing appropriate conditions for emulsion-templated interfacial polymerization. As a specific example, an immiscible hydrocarbon-amine pair of liquids is emulsified by the incorporation of guanidinium chloride (GuHCl) as a partitioning inhibitor into the dispersed phase. Polyisobutylene (PIB) is added into the continuous phase as a viscosity modifier for suitable modification of interfacial polymerization kinetics. The combination of GuHCl and PIB is necessary to yield a robust emulsion with stable morphology for 3 weeks. Shell wall formation was accomplished by interfacial polymerization of isocyanates delivered through the continuous phase and polyamines from the droplet core. Diethylenetriamine (DETA)-loaded microcapsules were isolated in good yield, exhibiting high thermal and chemical stabilities with extended shelf-lives even when dispersed into a reactive epoxy resin. The polyamine phase is compatible with a variety of basic and hydrophilic actives, suggesting that this

  7. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the FibPep-ION-Micelle

  8. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu [Jilin University, College of Life Science (China); Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang, E-mail: sunkx@ytu.edu.cn [Yantai University, School of Pharmacy (China); Li, Youxin, E-mail: liyouxin@jlu.edu.cn [Jilin University, College of Life Science (China)

    2013-10-15

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  9. Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle

    Science.gov (United States)

    Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu; Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang; Li, Youxin

    2013-10-01

    A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly( d, l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.

  10. Engineering single-polymer micelle shape using nonuniform spontaneous surface curvature

    Science.gov (United States)

    Moths, Brian; Witten, T. A.

    2018-03-01

    Conventional micelles, composed of simple amphiphiles, exhibit only a few standard morphologies, each characterized by its mean surface curvature set by the amphiphiles. Here we demonstrate a rational design scheme to construct micelles of more general shape from polymeric amphiphiles. We replace the many amphiphiles of a conventional micelle by a single flexible, linear, block copolymer chain containing two incompatible species arranged in multiple alternating segments. With suitable segment lengths, the chain exhibits a condensed spherical configuration in solution, similar to conventional micelles. Our design scheme posits that further shapes are attained by altering the segment lengths. As a first study of the power of this scheme, we demonstrate the capacity to produce long-lived micelles of horseshoe form using conventional bead-spring simulations in two dimensions. Modest changes in the segment lengths produce smooth changes in the micelle's shape and stability.

  11. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer.

    Science.gov (United States)

    Zhang, Ting; Luo, Jingwen; Fu, Yao; Li, Hanmei; Ding, Rui; Gong, Tao; Zhang, Zhirong

    2017-02-01

    Paclitaxel (PTX) is a widely used antineoplastic drug in clinic. Due to poor aqueous solubility, it is administrated by intravenous infusion of cremophor EL containing formulation with serious adverse effects. The low oral bioavailability is a great challenge for oral formulation development. In addition, P-gp mediated multidrug resistance limit its clinical use in various resistant cancers. In this study, a novel super-antiresistant PTX micelle formulation for oral administration was developed. A P-gp inhibitor, bromotetrandrine (W198) was co-encapsulated in the micelle. The micelles were composed of Solutol HS 15 and d-a-tocopheryl polyethylene glycol succinate to avoid Cremophor EL induced toxicity. The micelles were round with a mean particle size of ∼13nm and an encapsulation efficiency of ∼90%. A series of in vitro evaluations were performed in non-resistant MCF-7 cells and resistant MCF-7/Adr cells. The super-antiresistant PTX micelles showed higher cell uptake efficiency, significantly increased cytotoxicity and antimitotic effect in drug resistant MCF-7/Adr cells when compared with Taxol and other PTX micelle formulations. Compared with Taxol, the super-antiresistant PTX micelles significantly improved bioavailability after oral administration in rats, and inhibited tumor growth in multidrug resistance xenografted MCF-7/Adr nude mice. In summary, the noval super-antiresistant PTX micelles showed a great potential for oral delivery of PTX against resistant breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug

    Science.gov (United States)

    Wang, Jixue; Shen, Kexin; Xu, Weiguo; Ding, Jianxun; Wang, Xiaoqing; Liu, Tongjun; Wang, Chunxi; Chen, Xuesi

    2015-05-01

    Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter ( D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.

  13. Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin

    Science.gov (United States)

    Chen, Ling-Chun; Chen, Yin-Chen; Su, Chia-Yu; Wong, Wan-Ping; Sheu, Ming-Thau; Ho, Hsiu-O.

    2016-11-01

    Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of 80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

  14. Artificial Self-Sufficient P450 in Reversed Micelles

    Directory of Open Access Journals (Sweden)

    Teruyuki Nagamune

    2010-04-01

    Full Text Available Cytochrome P450s are heme-containing monooxygenases that require electron transfer proteins for their catalytic activities. They prefer hydrophobic compounds as substrates and it is, therefore, desirable to perform their reactions in non-aqueous media. Reversed micelles can stably encapsulate proteins in nano-scaled water pools in organic solvents. However, in the reversed micellar system, when multiple proteins are involved in a reaction they can be separated into different micelles and it is then difficult to transfer electrons between proteins. We show here that an artificial self-sufficient cytochrome P450, which is an enzymatically crosslinked fusion protein composed of P450 and electron transfer proteins, showed micelle-size dependent catalytic activity in a reversed micellar system. Furthermore, the presence of thermostable alcohol dehydrogenase promoted the P450-catalyzed reaction due to cofactor regeneration.

  15. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin

    2012-01-01

    Tumor targetability and stimuli responsivity of drug delivery systems (DDS) are key factors in cancer therapy. Implementation of multifunctional DDS can afford targetability and responsivity at the same time. Herein, cholesterol molecules (Ch) were coupled to hyaluronic acid (HA) backbones to afford amphiphilic conjugates that can self-assemble into stable micelles. Doxorubicin (DOX), an anticancer drug, and superparamagnetic iron oxide (SPIO) nanoparticles (NPs), magnetic resonance imaging (MRI) contrast agents, were encapsulated by Ch-HA micelles and were selectively released in the presence of hyaluronidase (Hyals) enzyme. Cytotoxicity and cell uptake studies were done using three cancer cell lines (HeLa, HepG2 and MCF7) and one normal cell line (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  16. Formation of nanoparticles on reverse micelles: SANS studies

    International Nuclear Information System (INIS)

    Sim, Jae-Hyun; Park, Jaejung; Kim, Myungwoong; Hwan Bang, Jeong; Park, Sangwook; Sohn, Daewon

    2006-01-01

    The structure of polymethyl methacrylate (PMMA) on the surface of reverse micelles was investigated by small-angle neutron scattering (SANS). The water-in-oil microemulsion containing initiators in the inner part of reverse micelle was prepared with surfactant, poly(oxyethylene) nonylphenyl ether (NP5, H(CH 2 ) 9 Ph(OC 2 H 4 ) 5 OH), water, cyclohexane and adequate initiators, sodium metabisulfate (SDS) and potassium persulfate (KPS), for aimed polymerization (PMMA). Various model fittings such as the core-shell sphere model and hard sphere model containing smearing effect reveal that polymer shell thickness changes from 52 to 60 A, respectively, with increase of monomer concentration

  17. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  18. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  19. Use of Magnetic Folate-Dextran-Retinoic Acid Micelles for Dual Targeting of Doxorubicin in Breast Cancer

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2013-01-01

    Full Text Available Amphiphilic copolymer of folate-conjugated dextran/retinoic acid (FA/DEX-RA was self-assembled into micelles by direct dissolution method. Magnetic iron oxide nanoparticles (MNPs coated with oleic acid (OA were prepared by hydrothermal method and encapsulated within the micelles. Doxorubicin HCl was loaded in the magnetic micelles. The characteristics of the magnetic micelles were determined by Fourier transform infrared (FT-IR spectroscopy, thermogravimetric analysis (TGA, transmission electron microscopy (TEM, and vibrating sample magnetometer (VSM. The crystalline state of OA-coated MNPs and their heat capacity were analyzed by X-ray diffraction (XRD and differential scanning calorimetry (DSC methods, respectively. The iron content of magnetic micelles was determined using inductively coupled plasma optical emission spectrometry (ICP-OES. Bovine serum albumin (BSA was used to test the protein binding of magnetic micelles. The cytotoxicity of doxorubicin loaded magnetic micelles was studied on MCF-7 and MDA-MB-468 cells using MTT assay and their quantitative cellular uptake by fluorimetry method. TEM results showed the MNPs in the hydrophobic core of the micelles. TGA results confirmed the presence of OA and FA/DEX-RA copolymer on the surface of MNPs and micelles, respectively. The magnetic micelles showed no significant protein bonding and reduced the IC50 of the drug to about 10 times lower than the free drug.

  20. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  1. Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Silva Pellosi, Diogo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Calori, Italo Rodrigo [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Barcelos de Paula, Leonardo [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil); Hioka, Noboru [Research Nucleus of Photodynamic Therapy, Department of Chemistry, State University of Maringá, Av. Colombo 5790, 97020-900 Maringá (Brazil); Quaglia, Fabiana [Laboratory of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesanto 49, 80131 Napoli (Italy); Tedesco, Antonio Claudio, E-mail: atedesco@usp.br [Laboratory of Phobiology and photomdicine, Department of Chemistry (FFCLRP), University of São Paulo, Av. dos Bandeirantes 3900, 14040-901, Vila Monte Alegre, Ribeirão Preto (Brazil)

    2017-02-01

    Nanotechnology development provides new strategies to treat cancer by integration of different treatment modalities in a single multifunctional nanoparticle. In this scenario, we applied the multifunctional Pluronic P123/F127 mixed micelles for Verteporfin-mediated photodynamic therapy in PC3 and MCF-7 cancer cells. Micelles functionalization aimed the targeted delivery by the insertion of biotin moiety on micelle surface and fluorescence image-based through rhodamine-B dye conjugation in the polymer chains. Multifunctional Pluronics formed spherical nanoparticulated micelles that efficiently encapsulated the photosensitizer Verteporfin maintaining its favorable photophysical properties. Lyophilized formulations were stable at least for 6 months and readily reconstituted in aqueous media. The multifunctional micelles were stable in protein-rich media due to the dual Pluronic mixed micelles characteristic: high drug loading capacity provided by its micellar core and high kinetic stability due its biocompatible shell. Biotin surface functionalized micelles showed higher internalization rates due biotin-mediated endocytosis, as demonstrated by competitive cellular uptake studies. Rhodamine B-tagged micelles allowed monitoring cellular uptake and intracellular distribution of the formulations. Confocal microscopy studies demonstrated a larger intracellular distribution of the formulation and photosensitizer, which could drive Verteporfin to act on multiple cell sites. Formulations were not toxic in the dark condition, but showed high Verteporfin-induced phototoxicity against both cancer cell lines at low drug and light doses. These results point Verteporfin-loaded multifunctional micelles as a promising tool to further developments in photodynamic therapy of cancer. - Highlights: • We optimized the theranostic mixed micelles – verteporfin formulations. • Multifunctional Pluronic micelles formed nano-sized spherical nanoparticles. • Biotin surface conjugation

  2. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    Science.gov (United States)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  3. Reactivity in inverse micelles

    International Nuclear Information System (INIS)

    Brochette, Pascal

    1987-01-01

    This research thesis reports the study of the use of micro-emulsions of water in oil as reaction support. Only the 'inverse micelles' domain of the ternary mixing (water/AOT/isooctane) has been studied. The main addressed issues have been: the micro-emulsion disturbance in presence of reactants, the determination of reactant distribution and the resulting kinetic theory, the effect of the interface on electron transfer reactions, and finally protein solubilization [fr

  4. Performance evaluation soil samples utilizing encapsulation technology

    Science.gov (United States)

    Dahlgran, James R.

    1999-01-01

    Performance evaluation soil samples and method of their preparation using encapsulation technology to encapsulate analytes which are introduced into a soil matrix for analysis and evaluation by analytical laboratories. Target analytes are mixed in an appropriate solvent at predetermined concentrations. The mixture is emulsified in a solution of polymeric film forming material. The emulsified solution is polymerized to form microcapsules. The microcapsules are recovered, quantitated and introduced into a soil matrix in a predetermined ratio to form soil samples with the desired analyte concentration.

  5. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  6. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Directory of Open Access Journals (Sweden)

    Li Xinru

    2011-01-01

    Full Text Available Abstract Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol-poly(lactide (mPEG-PLA and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15, were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12. Stability analysis of the mixed micelles in bovine serum albumin (BSA solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  7. Effects of gamma-irradiation on some properties of bovine casein micelles

    International Nuclear Information System (INIS)

    Saito, Zenichi

    1974-01-01

    Sedimentation studies and electron microscopic observations revealed that an association between casein micelles dispersed in water or milk serum was not induced significantly by gamma-irradiation of exposure up to 3 x 10 6 R, whereas a release of nonprotein nitrogen was observed to a certain extent. It was concluded from the results of turbidi-metry and gel filtration using 3 size groups of casein micelles, namely large, medium and small, that an irradiation-induced polymerization or association occurred within individual casein micelles, and strengthend the micelle structure. Thus the irradiated casein micelles resisted, more or less, to the solubilizing effect of NaCl, EDTA, pyrophosphate and urea. Stabilities of casein micelles for ethanol and for acidification to an isoelectric point were decreased and increased, respectively, after irradiation. Gamma irradiation also caused the decrease of glycomacropeptide released from casein micelles by the action of rennin, and this resulted in the delay of rennin-coagulation of casein. There were no essential differences among the 3 size groups of casein micelles concerning the above described tendencies. (auth.)

  8. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol

    Science.gov (United States)

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-12-01

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  9. Preparation and evaluation of novel mixed micelles as nanocarriers for intravenous delivery of propofol.

    Science.gov (United States)

    Li, Xinru; Zhang, Yanhui; Fan, Yating; Zhou, Yanxia; Wang, Xiaoning; Fan, Chao; Liu, Yan; Zhang, Qiang

    2011-03-31

    Novel mixed polymeric micelles formed from biocompatible polymers, poly(ethylene glycol)-poly(lactide) (mPEG-PLA) and polyoxyethylene-660-12-hydroxy stearate (Solutol HS15), were fabricated and used as a nanocarrier for solubilizing poorly soluble anesthetic drug propofol. The solubilization of propofol by the mixed micelles was more efficient than those made of mPEG-PLA alone. Micelles with the optimized composition of mPEG-PLA/Solutol HS15/propofol = 10/1/5 by weight had particle size of about 101 nm with narrow distribution (polydispersity index of about 0.12). Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicated that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of the copolymer were efficiently screened by mPEG, and propofol-loaded mixed micelles were stable upon storage for at least 6 months. The content of free propofol in the aqueous phase for mixed micelles was lower by 74% than that for the commercial lipid emulsion. No significant differences in times to unconsciousness and recovery of righting reflex were observed between mixed micelles and commercial lipid formulation. The pharmacological effect may serve as pharmaceutical nanocarriers with improved solubilization capacity for poorly soluble drugs.

  10. Characterization of lipase in reversed micelles formulated by Cibacron Blue F-3GA modified Span 85

    DEFF Research Database (Denmark)

    Zhang, Dong Hao; Guo, Zheng; Sun, Yan

    2007-01-01

    Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil...... of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant...... was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0. Introduction Reversed micelles are nanometer-scale transparent aggregates of water and surfactant...

  11. Acoustically excited encapsulated microbubbles and mitigation of biofouling

    KAUST Repository

    Qamar, Adnan

    2017-08-31

    Provided herein is a universally applicable biofouling mitigation technology using acoustically excited encapsulated microbubbles that disrupt biofilm or biofilm formation. For example, a method of reducing biofilm formation or removing biofilm in a membrane filtration system is provided in which a feed solution comprising encapsulated microbubbles is provided to the membrane under conditions that allow the encapsulated microbubbles to embed in a biofilm. Sonication of the embedded, encapsulated microbubbles disrupts the biofilm. Thus, provided herein is a membrane filtration system for performing the methods and encapsulated microbubbles specifically selected for binding to extracellular polymeric substances (EFS) in a biofilm.

  12. Encapsulation of aluminum phosphate nanoparticles (AiPO{sub 4}) functionalized with 3-mercapto-propyl trimethoxy-silane (MPTMS) by mini emulsion polymerization; Encapsulacao de nanoparticulas de fosfato de aluminio (AiPO{sub 4}) funcionalizadas com trimetoxsilano propil metacrilato (MPTMS) vip polimerizacao em miniemulsao

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Leticia A. da; Machado, Ricardo A.F.; Araujo, Pedro H.H. de; Sayer, Claudia, E-mail: leticia@enq.ufsc.br [Universidade Federal de Santa Catarina - UFSC, Florianopolis, SC (Brazil); Sudol, Edward D.; El-Aasser, Mohamed S. [Lehigh University, Bethlehem, Pensilvania (United States)

    2011-07-01

    This work aims the use of the mini emulsion polymerization process for the attainment of a copolymer latex made of styrene butyl {eta}-acrylate (50/50) in the presence of 3 wt.% of AlPO{sub 4} with the surface chemically modified with 3-Mercapto-Propyl trimethoxy-Silane (MPTMS) in three different concentrations (5, 10 and 20 wt.% based on AlPO{sub 4}). The confirmation of the AlPO{sub 4} functionalization was made by FTIR. The encapsulation efficiency was analyzed through the density gradient column, energy dispersive X-ray and transmission electron microscopy and the average particles size and its distribution by capillary hydrodynamic fractionation. Results had shown that it was possible to encapsulate the AlPO{sub 4} and that the sample functionalized with 20 wt% of MPTMS resulted in a latex with greater density and a weight average particle size of (Dw) 116 nm. (author)

  13. Nanoparticle packing within block copolymer micelles prepared by the interfacial instability method.

    Science.gov (United States)

    Nabar, Gauri M; Winter, Jessica O; Wyslouzil, Barbara E

    2018-05-02

    The interfacial instability method has emerged as a viable approach for encapsulating high concentrations of nanoparticles (NPs) within morphologically diverse micelles. In this method, transient interfacial instabilities at the surface of an emulsion droplet guide self-assembly of block co-polymers and NP encapsulants. Although used by many groups, there are no systematic investigations exploring the relationship between NP properties and micelle morphology. Here, the effect of quantum dot (QD) and superparamagnetic iron oxide NP (SPION) concentration on the shape, size, and surface deformation of initially spherical poly(styrene-b-ethylene oxide) (PS-b-PEO) micelles was examined. Multi-NP encapsulation and uniform dispersion within micelles was obtained even at low NP concentrations. Increasing NP concentration initially resulted in larger numbers of elongated micelles and cylinders with tightly-controlled diameters smaller than those of spherical micelles. Beyond a critical NP concentration, micelle formation was suppressed; the dominant morphology became densely-loaded NP structures that were coated with polymer and exhibited increased polydispersity. Transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) revealed that NPs in densely-loaded structures can be well-ordered, with packing volume fractions of up to 24%. These effects were enhanced in magnetic composites, possibly by dipole interactions. Mechanisms governing phase transitions triggered by NP loading in the interfacial instability process were proposed. The current study helps establish and elucidate the active role played by NPs in directing block copolymer assembly in the interfacial instability process, and provides important guiding principles for the use of this approach in generating NP-loaded block copolymer composites.

  14. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    Science.gov (United States)

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  15. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system.

    Science.gov (United States)

    Hu, Mei; Zhang, Jinjie; Ding, Rui; Fu, Yao; Gong, Tao; Zhang, Zhirong

    2017-04-01

    The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus ® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.

  16. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    Science.gov (United States)

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Enzymatic reactions in reversed micelles

    NARCIS (Netherlands)

    Hilhorst, M.H.

    1984-01-01

    It has been recognised that enzymes in reversed micelles have potential for application in chemical synthesis. Before these expectations will be realised many problems must be overcome. This thesis deals with some of them.
    In Chapter 1 the present knowledge about reversed micelles and

  18. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong (Rutgers)

    2015-10-15

    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.

  19. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.

    Science.gov (United States)

    Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su

    2014-02-10

    Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.

  20. Microencapsulation of superoxide dismutase into poly(epsilon-caprolactone) microparticles by reverse micelle solvent evaporation.

    Science.gov (United States)

    Youan, Bi-Botti Célestin

    2003-01-01

    The aim of this work was to encapsulate superoxide dismutase (SOD) in poly(epsilon-caprolactone) (PCL) microparticles by reverse micelle solvent evaporation. The concentration of PCL, the hydrophile-lipophile balance (HLB), and concentration of the sucrose ester used as surfactant in the organic phase were investigated as formulation variables. Relatively higher encapsulation efficiency (approximately 48%) and retained enzymatic activity (>90%) were obtained with microparticle formulation made from the 20% (w/v) PCL and 0.05% (w/v) sucrose ester of HLB = 6. This formulation allowed the in vitro release of SOD for at least 72 hr. These results showed that reverse micelle solvent evaporation can be used to efficiently encapsulate SOD in PCL microparticles. Such formulations may improve the bioavailability of SOD.

  1. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  2. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  3. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  4. Theory of the Flower Micelle Formation of Amphiphilic Random and Periodic Copolymers in Solution

    Directory of Open Access Journals (Sweden)

    Takahiro Sato

    2018-01-01

    Full Text Available The mixing Gibbs energy Δgm for the flower-micelle phase of amphiphilic random and periodic (including alternating copolymers was formulated on the basis of the lattice model. The formulated Δgm predicts (1 the inverse proportionality of the aggregation number to the degree of polymerization of the copolymer, (2 the increase of the critical micelle concentration with decreasing the hydrophobe content, and (3 the crossover from the micellization to the liquid–liquid phase separation as the hydrophobe content increases. The transition from the uni-core flower micelle to the multi-core flower necklace as the degree of polymerization increases was also implicitly indicated by the theory. These theoretical results were compared with experimental results for amphiphilic random and alternating copolymers reported so far.

  5. Corrosion Performance of Carbon Steel in Simulated Pore Solution in the Presence of Micelles

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; De Wit, J.H.W.; Kolev, H.; Van Breugel, K.

    2011-01-01

    This study presents the results on the investigation of the corrosion behavior of carbon steel in model alkaline medium in the presence of very low concentration of polymeric nanoaggregates [0.0024 wt % polyethylene oxide (PEO)113-b-PS70 micelles]. The steel electrodes were investigated in chloride

  6. A pulse radiolysis study of emulsion polymerization

    International Nuclear Information System (INIS)

    McAskill, N.A.

    1976-01-01

    The emulsion polymerisation of slightly water soluble monomers such as styrene occurs initially in micelles of surfactant swollen with monomer and later in larger particles consisting of polymer swollen with monomer and stabilized with an outer layer of surfactant. There is considerable controversy on whether the reaction sites of polymerization are inside or on the surface of the particle or micelle. The relative amounts of micelle and particles present at various stages of the polymerization are also nuclear. In the present study the OH radical formed by pulse radiolysis has been used as a probe to investigate the site of solubilization of styrene in various surfactant micelles. Two products can be distinguished by UV spectrometry, a benzyl type radical formed by OH addition to the side chain of styrene and a cyclohexadienyl type radical formed by addition to the ring. Wide differences in the relative amounts of each product were observed suggesting that in some surfactants the styrene ring is buried inside the micelle whilst in other systems the styrene appears to be so solubilized at the interface leaving both the ring and the side chain open to attack by the OH radical. (author)

  7. Y-shaped Folic Acid-Conjugated PEG-PCL Copolymeric Micelles for Delivery of Curcumin.

    Science.gov (United States)

    Feng, Runliang; Zhu, Wenxia; Chu, Wei; Teng, Fangfang; Meng, Ning; Deng, Peizong; Song, Zhimei

    2017-01-01

    Curcumin is a natural hydrophobic product showing anticancer activity. Many studies show its potential use in the field of cancer treatment due to its safety and efficiency. However, its application is limited due to its low water-solubility and poor selective delivery to cancer. A Y-shaped folic acid-modified poly (ethylene glycol)-b-poly (ε-caprolactone)2 copolymer was prepared to improve curcumin solubility and realize its selective delivery to cancer. The copolymer was synthesized through selective acylation reaction of folic acid with α- monoamino poly(ethylene glycol)-b-poly(ε-caprolactone)2. Curcumin was encapsulated into the copolymeric micelles with 93.71% of encapsulation efficiency and 11.94 % of loading capacity. The results from confocal microscopy and cellular uptake tests showed that folic acid-modified copolymeric micelles could improve cellular uptake of curcumin in Hela and HepG2 cells compared with folic acid-unmodified micelles. In vitro cytotoxicity assay showed that folic acid-modified micelles improved anticancer activity against Hela and HepG2 cells in comparison to folic acidunmodified micelles. Meanwhile, both drug-loaded micelles demonstrated higher activity against Hela cell lines than HepG2. The research results suggested that the folic acid-modified Y-shaped copolymeric micelles should be used to enhance hydrophobic anticancer drugs' solubility and their specific delivery to folic acid receptors-overexpressed cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Glycation Reactions of Casein Micelles.

    Science.gov (United States)

    Moeckel, Ulrike; Duerasch, Anja; Weiz, Alexander; Ruck, Michael; Henle, Thomas

    2016-04-13

    After suspensions of micellar casein or nonmicellar sodium caseinate had been heated, respectively, in the presence and absence of glucose for 0-4 h at 100 °C, glycation compounds were quantitated. The formation of Amadori products as indicators for the "early" Maillard reaction were in the same range for both micellar and nonmicellar caseins, indicating that reactive amino acid side chains within the micelles are accessible for glucose in a comparable way as in nonmicellar casein. Significant differences, however, were observed concerning the formation of the advanced glycation end products (AGEs), namely, N(ε)-carboxymethyllysine (CML), pyrraline, pentosidine, and glyoxal-lysine dimer (GOLD). CML could be observerd in higher amounts in nonmicellar casein, whereas in the micelles the pyrraline formation was increased. Pentosidine and GOLD were formed in comparable amounts. Furthermore, the extent of protein cross-linking was significantly higher in the glycated casein micelles than in the nonmicellar casein samples. Dynamic light scattering and scanning electron microscopy showed that glycation has no influence on the size of the casein micelles, indicating that cross-linking occurs only in the interior of the micelles, but altered the surface morphology. Studies on glycation and nonenzymatic cross-linking can contribute to the understanding of the structure of casein micelles.

  9. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    International Nuclear Information System (INIS)

    Chen, Yi Jyun; Inbaraj, Baskaran Stephen; Chen, Bing Huei; Pu, Yeong Shiau

    2014-01-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications. (paper)

  10. Combined photothermo-chemotherapy using gold nanoshells on drug-loaded micelles for colorectal cancer treatment

    Science.gov (United States)

    Lee, Shin-Yu; Shieh, Ming-Jium

    2018-02-01

    Combined photothermo-chemotherapy is a new strategy for cancer treatment which improves the therapeutic outcome by synergistic effects of both therapies. Here, we presented a multifunctional gold nanoshell that exhibited excellent photothermal conversion and delivered the hydrophobic chemotherapy drug, SN-38. The positively charged SN-38-loaded PDMA-PCL micelles were decorated with a gold layer by in situ reduction of chloroauric acid on the surface of micelles. Scanning and transmission electron microscopy images proved micelles were successfully decorated and the resulting gold nanoshells had a spherical morphology with a narrow size distribution. The synthesized gold nanoshells displayed a broad surface plasmon resonance peak in the near-infrared wavelength region and a great photothermal conversion ability. After pegylation, gold nanoshells were stable in biological media and appeared highly biocompatible in the absence of laser irradiation. Upon near-infrared laser irradiation, incident energy was converted into heat by gold nanoshells on SN-38-loaded micelles (SN-38@pGNS), which causes local temperature increase and triggers the release of encapsulated drug. Compared to SN-38, SN-38-loaded micelles, or laser with drug-free gold nanoshells alone, combined photothermo-chemotherapy using SN-38@pGNS with laser irradiation killed colorectal cancer cells with higher efficacy in vitro and demonstrated significant tumor suppression in vivo, suggesting that gold nanoshells on drug-loaded micelles delivered SN-38 and photothermal therapy in synergistic actions and might be a potential candidate for future colorectal cancer therapy.

  11. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    Science.gov (United States)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  12. Preparation of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Ehrhardt, Mark R.; Flynn, Peter F.; Wand, A. Joshua

    1999-01-01

    The majority of proteins are too large to be comprehensively examined by solution NMR methods, primarily because they tumble too slowly in solution. One potential approach to making the NMR relaxation properties of large proteins amenable to modern solution NMR techniques is to encapsulate them in a reverse micelle which is dissolved in a low viscosity fluid. Unfortunately, promising low viscosity fluids such as the short chain alkanes, supercritical carbon dioxide, and various halocarbon refrigerants all require the application of significant pressure to be kept liquefied at room temperature. Here we describe the design and use of a simple cost effective NMR tube suitable for the preparation of solutions of proteins encapsulated in reverse micelles dissolved in such fluids

  13. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles.

    Science.gov (United States)

    Kheiri Manjili, Hamidreza; Ghasemi, Parisa; Malvandi, Hojjat; Mousavi, Mir Sajjad; Attari, Elahe; Danafar, Hossein

    2017-07-01

    Curcumin (CUR) has been associated with anti-inflammatory, antimicrobial, antioxidant, anti-amyloid, and antitumor effects, but its application is limited because of its low aqueous solubility and poor oral bioavailability. To progress the bioavailability and water solubility of CUR, we synthesized five series of mono methoxy poly (ethylene glycol)-poly (ε-caprolactone) (mPEG-PCL) diblock copolymers. The structure of the copolymers was characterized by H NMR, FTIR, DSC and GPC techniques. In this study, CUR was encapsulated within micelles through a single-step nano-precipitation method, leading to formation of CUR-loaded mPEG-PCL (CUR/mPEG-PCL) micelles. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). The cytotoxicity of void CUR, mPEG-PCL and CUR/mPEG-PCL micelles was compared to each other by performing MTT assay of the treated MCF-7 and 4T1 cell line. Study of the in vivo pharmacokinetics of the CUR-loaded micelles was also carried out on selected copolymers in comparison with CUR solution formulations. The results showed that the zeta potential of CUR-loaded micelles was about -11.5mV and the average size was 81.0nm. CUR was encapsulated into mPEG-PCL micelles with loading capacity of 20.65±0.015% and entrapment efficiency of 89.32±0.34%. The plasma AUC (0-t), t 1/2 and C max of CUR micelles were increased by 52.8, 4.63 and 7.51-fold compared to the CUR solution, respectively. In vivo results showed that multiple injections of CUR-loaded micelles could prolong the circulation time and increase the therapeutic efficacy of CUR. These results suggested that mPEG-PCL micelles would be a potential carrier for CUR. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    Science.gov (United States)

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. MRI observation of the light-induced release of a contrast agent from photo-controllable polymer micelles

    International Nuclear Information System (INIS)

    Lepage, Martin; Jiang Jinqiang; Babin, Jerome; Qi, Bo; Tremblay, Luc; Zhao Yue

    2007-01-01

    The encapsulation of molecules into nanocarriers is studied for its potential in delivering a high dose of anticancer drugs to a tumor, while minimizing side effects. Most systems either release their content in a non-specific manner or under specific environmental conditions such as temperature or pH. We have synthesized a novel class of photo-controllable polymer micelles that can stably encapsulate a hydrophilic compound and subsequently release it upon absorption of UV light. Here, we describe an in vitro magnetic resonance imaging assay that can evaluate the state of incorporation of a small Gd-based contrast agent. Our results indicate that the contrast agent alone can diffuse through a filter, but that the same agent incorporated into micelles cannot. After exposure to UV light, the micelles released the contrast agent, which could then diffuse through the filter. (note)

  16. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    Science.gov (United States)

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  17. POLYETHYLENE ENCAPSULATION

    International Nuclear Information System (INIS)

    Kalb, P.

    2001-01-01

    Polyethylene microencapsulation physically homogenizes and incorporates mixed waste particles within a molten polymer matrix, forming a solidified final waste form upon cooling. Each individual particle of waste is embedded within the polymer block and is surrounded by a durable, leach-resistant coating. The process has been successfully applied for the treatment of a broad range of mixed wastes, including evaporator concentrate salts, soil, sludges, incinerator ash, off-gas blowdown solutions, decontamination solutions, molten salt oxidation process residuals, ion exchange resins, granular activated carbon, shredded dry active waste, spill clean-up residuals, depleted uranium powders, and failed grout waste forms. For waste streams containing high concentrations of soluble toxic metal contaminants, additives can be used to further reduce leachability, thus improving waste loadings while meeting or exceeding regulatory disposal criteria. In this configuration, contaminants are both chemically stabilized and physically solidified, making the process a true stabilization/solidification (S/S) technology. Unlike conventional hydraulic cement grouts or thermosetting polymers, thermoplastic polymers such as polyethylene require no chemical. reaction for solidification. Thus, a stable, solid, final waste form product is assured on cooling. Variations in waste chemistry over time do not affect processing parameters and do not require reformulation of the recipe. Incorporation of waste particles within the polymer matrix serves as an aggregate and improves the mechanical strength and integrity of the waste form. The compressive strength of polyethylene microencapsulated waste forms varies based on the type and quantity of waste encapsulated, but is typically between 7 and 17.2 MPa (1000 and 2500 psi), well above the minimum strength of 0.4 MPa (160 psi) recommended by the U.S. Nuclear Regulatory Commission (NRC) for low-level radioactive waste forms in support of 10 CFR 61

  18. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Zheng S

    2016-06-01

    Full Text Available Songping Zheng,1,* Xiang Gao,1,2,* Xiaoxiao Liu,1 Ting Yu,1 Tianying Zheng,1 Yi Wang,1 Chao You1 1Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China; 2Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA *These authors contributed equally to this work Abstract: Curcumin (Cur, a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol-poly(lactide copolymers (MPEG-PLAs. After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy. Keywords: curcumin, glioma, cell apoptosis, cell proliferation, angiogenesis 

  19. mPEG-PLA Micelle for Delivery of Effective Parts of Andrographis Paniculata.

    Science.gov (United States)

    Yao, Hailu; Song, Shiyong; Miao, Xiaolu; Liu, Xiao; Zhao, Junli; Wang, Zhen; Shao, Xiaoting; Zhang, Yu; Han, Guang

    2018-01-01

    Many studies have shown that Andrographis paniculata (Burm. f.) Nees has a good anti-tumor effect, but poor solubility in water and poor bioavailability hinder the modernization of it. To formulate the effective parts (mainly diterpene lactones) of Andrographis paniculata (AEP) into targeting drug delivery system, a series of poly(ethylene glycol)-poly(D.L-lactic acid)(mPEG-PLA) with different ratio of hydrophilic and hydrophobic segment was synthetized to encapsulate AEP. AEP micelles were prepared by a simple solvent-evaporation method. According to the loading capacity, the best polymer was chosen. mPEG-PLA micelles were characterized in terms of drug entrapping efficiency, loading capacity, size, the crystalline state of AEP, stability and release profile. Meanwhile, the cytotoxicity of micelles on mouse breast cancer 4T-1 was investigated. These micelle (mPEG-PLA-AEP) particles had a size of (92.84±5.63) nm and a high entrapping efficiency and loading capacity of (91.00±11.53)% and (32.14±3.02)%(w/w), respectively. The powder DSC showed that drugs were well encapsulated in the core of micelles. mPEG-PLA-AEP had a good stability against salt dissociation, protein adsorption and anion substitution and the solubility of andrographolide (AG) and 14-deoxy-11,12-didehydroandrographolide(DDAG) in AEP increased 4.51 times and 2.12 times in water, and the solubility of DAG showed no difference. mPEG-PLA-AEP had the same release profile in different dissolution medium. Cytotoxicity testing in vitro demonstrated that mPEG-PLA-AEP exhibited higher cell viability inhibition in mouse breast cancer 4T-1 than free AEP. mPEG-PLA micelles offer a promising alternative for TCM therapy with higher solubility and improved antitumor effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Vitamin E succinate-conjugated F68 micelles for mitoxantrone delivery in enhancing anticancer activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2016-07-01

    Full Text Available Yuling Liu,1,* Yingqi Xu,2,* Minghui Wu,3 Lijiao Fan,1 Chengwei He,2 Jian-Bo Wan,2 Peng Li,2 Meiwan Chen,2 Hui Li11Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China; 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China; 3Department of Cell Biology and Anatomy, School of Medicine, University of Florida, Gainesville, FL, USA *These authors contributed equally to this work Abstract: Mitoxantrone (MIT is a chemotherapeutic agent with promising anticancer efficacy. In this study, Pluronic F68-vitamine E succinate (F68-VES amphiphilic polymer micelles were developed for delivering MIT and enhancing its anticancer activity. MIT-loaded F68–VES (F68–VES/MIT micelles were prepared via the solvent evaporation method with self-assembly under aqueous conditions. F68–VES/MIT micelles were found to be of optimal particle size with the narrow size distribution. Transmission electron microscopy images of F68–VES/MIT micelles showed homogeneous spherical shapes and smooth surfaces. F68–VES micelles had a low critical micelle concentration value of 3.311 mg/L, as well as high encapsulation efficiency and drug loading. Moreover, F68–VES/MIT micelles were stable in the presence of fetal bovine serum for 24 hours and maintained sustained drug release in vitro. Remarkably, the half maximal inhibitory concentration (IC50 value of F68–VES/MIT micelles was lower than that of free MIT in both MDA-MB-231 and MCF-7 cells (two human breast cancer cell lines. In addition, compared with free MIT, there was an increased trend of apoptosis and cellular uptake of F68–VES/MIT micelles in MDA-MB-231 cells. Taken together, these results indicated that F68–VES polymer micelles were able to effectively deliver MIT and largely improve its potency in cancer therapy. Keywords: F68, vitamin E

  1. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  2. Micelles as Soil and Water Decontamination Agents.

    Science.gov (United States)

    Shah, Afzal; Shahzad, Suniya; Munir, Azeema; Nadagouda, Mallikarjuna N; Khan, Gul Shahzada; Shams, Dilawar Farhan; Dionysiou, Dionysios D; Rana, Usman Ali

    2016-05-25

    Contaminated soil and water pose a serious threat to human health and ecosystem. For the treatment of industrial effluents or minimizing their detrimental effects, preventive and remedial approaches must be adopted prior to the occurrence of any severe environmental, health, or safety hazard. Conventional treatment methods of wastewater are insufficient, complicated, and expensive. Therefore, a method that could use environmentally friendly surfactants for the simultaneous removal of both organic and inorganic contaminants from wastewater is deemed a smart approach. Surfactants containing potential donor ligands can coordinate with metal ions, and thus such compounds can be used for the removal of toxic metals and organometallic compounds from aqueous systems. Surfactants form host-guest complexes with the hydrophobic contaminants of water and soil by a mechanism involving the encapsulation of hydrophobes into the self-assembled aggregates (micelles) of surfactants. However, because undefined amounts of surfactants may be released into the aqueous systems, attention must be paid to their own environmental risks as well. Moreover, surfactant remediation methods must be carefully analyzed in the laboratory before field implementation. The use of biosurfactants is the best choice for the removal of water toxins as such surfactants are associated with the characteristics of biodegradability, versatility, recovery, and reuse. This Review is focused on the currently employed surfactant-based soil and wastewater treatment technologies owing to their critical role in the implementation of certain solutions for controlling pollution level, which is necessary to protect human health and ensure the quality standard of the aquatic environment.

  3. Controlled release of 9-nitro-20(S)-camptothecin from methoxy poly(ethylene glycol)-poly(D,L-lactide) micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J M [College of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ming, J [Department of Medicament, The Second People' s Hospital of Sichuan, Chengdu 610041 (China); He, B; Gu, Z W; Zhang, X D [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)], E-mail: zwgu@scu.edu.cn

    2008-03-01

    9-nitro-20(S)-camptothecin (9-NC) is a potent topoisomerase-I inhibitor, and it was applied for clinical trials in cancer treatment. However, the applications of 9-NC were limited by its poor solubility and instability. In order to overcome these disadvantages, 9-NC was encapsulated in amphiphilic copolymer micelles composed of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-PDLLA, PELA). Three diblock copolymers with different PDLLA chain lengths were synthesized. The critical micelle concentration was varied from 10{sup -4} g L{sup -1} to 10{sup -2} g L{sup -1}. The 9-NC loaded micelles were nanospheres with diameters ranging from 30 nm to 60 nm. The relationship between the composition of copolymers and the drug loading content was discussed. The encapsulation of micelles improved the solubility of 9-NC greatly. The solubility of 9-NC in micelle M1 was about 250 times higher than that of 9-NC in a phosphate buffer solution (PBS). The stability of 9-NC in micelles was also promoted. After being incubated in PBS for 160 min, 80% of 9-NC in micelles existed as an active lactone form, while 85% of 9-NC in PBS were transferred to an inactive carboxylate salt form. The release experiments were carried out in PBS and the results showed that the release processes were controllable.

  4. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs.

    Science.gov (United States)

    Eliezar, Jeaniffer; Scarano, Wei; Boase, Nathan R B; Thurecht, Kristofer J; Stenzel, Martina H

    2015-02-09

    The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.

  5. Nano-preparation of Andrographis paniculata extract by casein micelle for antidiabetic agent

    Science.gov (United States)

    Arbianti, Rita; Dewi, Veronica; Imansari, Farisa; Hermansyah, Heri; Sahlan, Muhamad

    2017-02-01

    Side effects caused by oral medications for person with diabetic are the background of the development of alternative treatments by traditional medicine, herbs. Andrographis paniculata (AP) is one of the herbs that is potent to be anti-diabetic agent. The active compound of AP, andrographolide have been examined to have anti-diabetic activity as α-glucosidase enzyme inhibitor. This research aims to encapsulate sambiloto's extract with casein micelle and produce nanoparticles which have anti-diabetic activity as α-glucosidase inhibitor. Extract of AP is encapsulated by casein micelle and made into nano size using sonicator. The dominant active compounds in AP extract coated by casein are andrographolide, neoandrographolide, 14-deoxy-11,12didehydroandrographolide with encapsulation efficiency of 68.83%, 89.15% and 81.69%, the average diameter of the particles is about 120.57 nm and its loading capacity is 28.85%. AP's extract has antidiabetic activity as α-glucosidase inhibitor with percent inhibition of 95%. The morphology of nanoencapsulated AP's extract analyzed by FE-SEM, were similar with casein micelle.

  6. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    Science.gov (United States)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  7. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  8. Fabrication and manipulation of polymeric magnetic particles with magnetorheological fluid

    International Nuclear Information System (INIS)

    Rodríguez-López, Jaime; Shum, Ho Cheung; Elvira, Luis; Montero de Espinosa, Francisco; Weitz, David A.

    2013-01-01

    Polymeric magnetic microparticles have been created using a microfluidic device via ultraviolet (UV) polymerization of double emulsions, resulting in cores of magnetorheological (MR) fluids surrounded by polymeric shells. We demonstrate that the resultant particles can be manipulated magnetically to achieve triggered rupture of the capsules. This illustrates the great potential of our capsules for triggered release of active ingredients encapsulated in the polymeric magnetic microparticles. - Highlights: ► Polymeric microparticles encapsulating MR fluids have been fabricated. ► A double-emulsion-templated approach using microfluidic techniques has been used. ► The monodisperse microparticles obtained are easily manipulated under magnetic field. ► These microparticles have great potential for encapsulation-and-release applications.

  9. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy.

    Science.gov (United States)

    Wang, Yuyuan; Wang, Yidan; Chen, Guojun; Li, Yitong; Xu, Wei; Gong, Shaoqin

    2017-09-13

    A quantum-dot (QD)-based micelle conjugated with an anti-epidermal growth factor receptor (EGFR) nanobody (Nb) and loaded with an anticancer drug, aminoflavone (AF), has been engineered for EGFR-overexpressing cancer theranostics. The near-infrared (NIR) fluorescence of the indium phosphate core/zinc sulfide shell QDs (InP/ZnS QDs) allowed for in vivo nanoparticle biodistribution studies. The anti-EGFR nanobody 7D12 conjugation improved the cellular uptake and cytotoxicity of the QD-based micelles in EGFR-overexpressing MDA-MB-468 triple-negative breast cancer (TNBC) cells. In comparison with the AF-encapsulated nontargeted (i.e., without Nb conjugation) micelles, the AF-encapsulated Nb-conjugated (i.e., targeted) micelles accumulated in tumors at higher concentrations, leading to more effective tumor regression in an orthotopic triple-negative breast cancer xenograft mouse model. Furthermore, there was no systemic toxicity observed with the treatments. Thus, this QD-based Nb-conjugated micelle may serve as an effective theranostic nanoplatform for EGFR-overexpressing cancers such as TNBCs.

  10. Nanomedicines for inflammatory arthritis : head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes

    NARCIS (Netherlands)

    Quan, Lingdong; Zhang, Yijia; Crielaard, Bart J; Dusad, Anand; Lele, Subodh M; Rijcken, Cristianne J F; Metselaar, Josbert M; Kostková, Hana; Etrych, Tomáš; Ulbrich, Karel; Kiessling, Fabian; Mikuls, Ted R; Hennink, Wim E; Storm, Gert; Lammers, Twan; Wang, Dong

    2014-01-01

    As an emerging research direction, nanomedicine has been increasingly utilized to treat inflammatory diseases. In this head-to-head comparison study, four established nanomedicine formulations of dexamethasone, including liposomes (L-Dex), core-cross-linked micelles (M-Dex), slow releasing polymeric

  11. Microstructural Characterization of Reinforced Mortar after Corrosion and Cathodic Prevention in the Presence of Core-Shell Micelles

    NARCIS (Netherlands)

    Koleva, D.A.

    2010-01-01

    This work reports on the microstructural properties of reinforced mortar after chloride-induced corrosion and two regimes of cathodic prevention. Additionally, the impact of a very low concentration polymeric nano-aggregates (core-shell micelles from PEO113-b-PS218), admixed in the mortar mixture is

  12. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    Science.gov (United States)

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    Science.gov (United States)

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.

  14. Investigation of a new thermosensitive block copolymer micelle: hydrolysis, disruption, and release.

    Science.gov (United States)

    Pelletier, Maxime; Babin, Jérôme; Tremblay, Luc; Zhao, Yue

    2008-11-04

    Thermosensitive polymer micelles are generally obtained with block copolymers in which one block exhibits a lower critical solution temperature in aqueous solution. We investigate a different design that is based on the use of one block bearing a thermally labile side group, whose hydrolysis upon heating shifts the hydrophilic-hydrophobic balance toward the destabilization of block copolymer micelles. Atom transfer radical polymerization was utilized to synthesize a series of diblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(2-tetrahydropyranyl methacrylate) (PTHPMA). We show that micelles of PEO-b-PTHPMA in aqueous solution can be destabilized as a result of the thermosensitive hydrolytic cleavage of tetrahydropyranyl (THP) groups that transforms PTHPMA into hydrophilic poly(methacrylic acid). The three related processes occurring in aqueous solution, namely, hydrolytic cleavage of THP, destabilization of micelles, and release of loaded Nile Red (NR), were investigated simultaneously using 1H NMR, dynamic light scattering, and fluorescence spectroscopy, respectively. At 80 degrees C, the results suggest that the three events proceed with a similar kinetics. Although slower than at elevated temperatures, the disruption of PEO-b-PTHPMA micelles can take place at the body temperature (approximately 37 degrees C), and the release kinetics of NR can be adjusted by changing the relative lengths of the two blocks or the pH of the solution.

  15. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing.

    Science.gov (United States)

    Chen, Zhiquan; He, Changcheng; Li, Fengbin; Tong, Ling; Liao, Xingzhi; Wang, Yong

    2010-06-01

    We reported the deliberate control on the micelle opening and closing of amphiphilic polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar films by exposing them to selective solvents. We first treated the micellar films with polar solvents including ethanol and water (pH = 4, 8, and 12) that have different affinities to P2VP. We observed opening of the micelles in all the cases. Both the size of opened pores and the opening rate are dependent on the solvency of different solvents for P2VP. We then explored the closing behavior of the opened micelles using solvents having different affinities to PS. We found that the opened micelles were recovered to their initial closed micelle forms. The recovery was accompanied by a slow micelle disassociation process which gradually reduced the micelle size. The rates of the micelle closing and disassociation are also dependent on the solvency of different solvents for PS.

  16. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: Paclitaxel-Loaded Glycyrrhizic Acid Micelles

    Directory of Open Access Journals (Sweden)

    Fu-Heng Yang

    2015-03-01

    Full Text Available Paclitaxel (PTX, taxol, a classical antitumor drug against a wide range of tumors, shows poor oral bioavailability. In order to improve the oral bioavailability of PTX, glycyrrhizic acid (GA was used as the carrier in this study. This was the first report on the preparation, characterization and the pharmacokinetic study in rats of PTX-loaded GA micelles The PTX-loaded micelles, prepared with ultrasonic dispersion method, displayed small particle sizes and spherical shapes. Differential scanning calorimeter (DSC thermograms indicated that PTX was entrapped in the GA micelles and existed as an amorphous state. The encapsulation efficiency was about 90%, and the drug loading rate could reach up to 7.90%. PTX-loaded GA micelles displayed a delayed drug release compared to Taxol in the in vitro release experiment. In pharmacokinetic study via oral administration, the area under the plasma concentration-time curve (AUC0→24 h of PTX-loaded GA micelles was about six times higher than that of Taxol (p < 0.05. The significant oral absorption enhancement of PTX from PTX-loaded GA micelles could be largely due to the increased absorption in jejunum and colon intestine. All these results suggested that GA would be a promising carrier for the oral delivery of PTX.

  17. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  18. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  19. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  20. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles.

    Directory of Open Access Journals (Sweden)

    Qingxiang Guan

    Full Text Available Bletilla striata polysaccharides (BSPs have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs. Docetaxel (DTX-loaded SA-BSPs (DTX-SA-BSPs copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazonium bromide assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy.

  1. Fluorescence ON–OFF switching using micelle of stimuli-responsive double hydrophilic block copolymers: Nile Red fluorescence in micelles of poly(acrylic acid-b-N-isopropylacrylamide)

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Min Min; Tsubone, Miyabi; Morita, Takuya [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan); Yusa, Shin-ichi [Department of Materials Science and Chemistry, University of Hyogo, 2167 Shosha, Himeji 671-2280 (Japan); Nakashima, Kenichi, E-mail: nakashik@cc.saga-u.ac.jp [Department of Chemistry, Graduate School of Science & Engineering, Saga University, 1 Honjo, Saga 840-8502 (Japan)

    2016-08-15

    The dual-mode fluorescence ON–OFF switching of Nile Red (NR) by using stimuli-responsive polymeric micelle of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNIPAM) has been studied. PAA-b-PNIPAM, one of double hydrophilic block copolymers, is known to form PNIPAM-core/PAA-corona micelles in aqueous solutions when the temperature of the solution is elevated up to the lower critical solution temperature (LCST) of PNIPAM block. It also forms PAA-core/PNIPAM-corona micelles when the anionic PAA block is charge-neutralized with cationic cetyltrimethylammonium ion. Fluorescence properties of NR in the micelles are elucidated by observing various fluorescence parameters such as intensity, polarization, and quantum yield. It is found that the fluorescence intensity is negligibly low (OFF-state) when PAA-b-PNIPAM exists as a form of unimer, whereas it is remarkably enhanced (ON-state) when the PNIPAM-core or PAA-core micelles are formed. These results demonstrate that a novel fluorescence ON–OFF switching system can be constructed by using PAA-b-PNIPAM micelles and NR.

  2. Preparation of Water-soluble Polyion Complex (PIC Micelles Covered with Amphoteric Random Copolymer Shells with Pendant Sulfonate and Quaternary Amino Groups

    Directory of Open Access Journals (Sweden)

    Rina Nakahata

    2018-02-01

    Full Text Available An amphoteric random copolymer (P(SA91 composed of anionic sodium 2-acrylamido-2-methylpropanesulfonate (AMPS, S and cationic 3-acrylamidopropyl trimethylammonium chloride (APTAC, A was prepared via reversible addition-fragmentation chain transfer (RAFT radical polymerization. The subscripts in the abbreviations indicate the degree of polymerization (DP. Furthermore, AMPS and APTAC were polymerized using a P(SA91 macro-chain transfer agent to prepare an anionic diblock copolymer (P(SA91S67 and a cationic diblock copolymer (P(SA91A88, respectively. The DP was estimated from quantitative 13C NMR measurements. A stoichiometrically charge neutralized mixture of the aqueous P(SA91S67 and P(SA91A88 formed water-soluble polyion complex (PIC micelles comprising PIC cores and amphoteric random copolymer shells. The PIC micelles were in a dynamic equilibrium state between PIC micelles and charge neutralized small aggregates composed of a P(SA91S67/P(SA91A88 pair. Interactions between PIC micelles and fetal bovine serum (FBS in phosphate buffered saline (PBS were evaluated by changing the hydrodynamic radius (Rh and light scattering intensity (LSI. Increases in Rh and LSI were not observed for the mixture of PIC micelles and FBS in PBS for one day. This observation suggests that there is no interaction between PIC micelles and proteins, because the PIC micelle surfaces were covered with amphoteric random copolymer shells. However, with increasing time, the diblock copolymer chains that were dissociated from PIC micelles interacted with proteins.

  3. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  4. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  5. Redox-responsive core cross-linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    X. T. Cao

    2017-10-01

    Full Text Available A pH-triggered drug delivery system of degradable core cross-linked (CCL prodrug micelles was prepared by click chemistry. Doxorubicin conjugated block copolymers of azido functional poly(ethylene oxide-b-poly(glycidyl methacrylate were synthesized by the combination of RAFT polymerization, epoxide ring-opening reaction, and acid-cleavable hydrazone linkages. The CCL prodrug micelles were produced by the reaction of dipropargyl 3,3′-dithiodipropionate and dipropargyl adipate cross-linking agents with the azido groups of the micellar core via alkyne-azide click reaction, which were denoted as CCL/SS and CCL/noSS, respectively. The TEM images of CCL/SS prodrug micelles showed a spherical shape with the average diameter of 61.0 nm from water, and the shape was maintained with an increased diameter upon dilution with 5-fold DMF. The high DOX conjugation efficiency was 88.4%. In contrast to a very slow DOX release from CCL/SS prodrug micelles under the physiological condition (pH 7.4, the drug release is much faster (90% at pH 5.0 and 10 mM of GSH after 96 h. The cytotoxicity test and confocal laser scanning microscopy analysis revealed that CCL/SS prodrug micelles had much enhanced intracellular drug release capability in HepG2 cells than CCL/noSS prodrug micelles.

  6. Multiseed liposomal drug delivery system using micelle gradient as driving force to improve amphiphilic drug retention and its anti-tumor efficacy.

    Science.gov (United States)

    Zhang, Wenli; Li, Caibin; Jin, Ya; Liu, Xinyue; Wang, Zhiyu; Shaw, John P; Baguley, Bruce C; Wu, Zimei; Liu, Jianping

    2018-11-01

    To improve drug retention in carriers for amphiphilic asulacrine (ASL), a novel active loading method using micelle gradient was developed to fabricate the ASL-loaded multiseed liposomes (ASL-ML). The empty ML were prepared by hydrating a thin film with empty micelles. Then the micelles in liposomal compartment acting as 'micelle pool' drove the drug to be loaded after the outer micelles were removed. Some reasoning studies including critical micelle concentration (CMC) determination, influencing factors tests on entrapment efficiency (EE), structure visualization, and drug release were carried out to explore the mechanism of active loading, ASL location, and the structure of ASL-ML. Comparisons were made between pre-loading and active loading method. Finally, the extended drug retention capacity of ML was evaluated through pharmacokinetic, drug tissue irritancy, and in vivo anti-tumor activity studies. Comprehensive results from fluorescent and transmission electron microscope (TEM) observation, encapsulation efficiency (EE) comparison, and release studies demonstrated the formation of ML-shell structure for ASL-ML without inter-carrier fusion. The location of drug mainly in inner micelles as well as the superiority of post-loading to the pre-loading method , in which drug in micelles shifted onto the bilayer membrane was an additional positive of this delivery system. It was observed that the drug amphiphilicity and interaction of micelles with drug were the two prerequisites for this active loading method. The extended retention capacity of ML has been verified through the prolonged half-life, reduced paw-lick responses in rats, and enhanced tumor inhibition in model mice. In conclusion, ASL-ML prepared by active loading method can effectively load drug into micelles with expected structure and improve drug retention.

  7. Spectroscopic Analysis of 10MAG/LDAO Reverse Micelles to Determine Characteristic Properties and Behavioral Extrema

    Science.gov (United States)

    Berg, Joshua; Mawson, Cara; Norris, Zach; Nucci, Nathaniel

    Reverse micelles are spontaneously organizing complexes of surfactant that encapsulate a nanoscale pool of water in a bulk non-polar solvent. Reverse micelle (RM) mixtures have a wide range of applications, including biophysical investigation of protein systems. A new RM mixture composed of decyl-1-monoglycerol (10MAG) and lauryldimethylammonium-N-oxide (LDAO) was recently described. This mixture has the potential to prove more widely applicable for use of RMs in applications that involve encapsulation of macromolecules, yet little is known about the phase behavior or size of reverse micelles created by this mixture. Data describing such behaviors for this mixture are presented here. We have used dynamic light scattering (DLS) and fluorescence spectroscopy to investigate the size and partitioning behavior of RMs in varying mixtures of 10MAG, LDAO, water, pentane, and hexanol. These data demonstrate that the 10MAG/LDAO RM mixture exhibits markedly different phase and RM size behavior than that of commonly used RM surfactant mixtures. The implications of these findings for use of the 10MAG/LDAO mix for RM applications will also be addressed. Funding provided by Rowan University.

  8. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  9. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    to chemically initiated hydrogels; however, for all hydrogels the permeability was several-fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing......Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)-dimethacrylate or poly(ethylene glycol)-diacrylate polymerized using either...

  10. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

    Directory of Open Access Journals (Sweden)

    Zhao J

    2012-09-01

    Full Text Available Jingmou Yu,1 Xin Xie,1 Meirong Zheng,1 Ling Yu,2 Lei Zhang,1 Jianguo Zhao,1 Dengzhao Jiang,1 Xiangxin Che11Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, 2Division of Nursing, 2nd Affiliated Hospital, Yichun University, Yichun, People's Republic of ChinaBackground: Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS-modified polymeric micelles were studied with the aim of improving nuclear drug delivery.Methods: In this research, cholesterol-modified glycol chitosan (CHGC was synthesized. NLS-conjugated CHGC (NCHGC was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX, an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in HeLa and HepG2 cells.Results: The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater

  11. Vibrational dynamics of ice in reverse micelles

    NARCIS (Netherlands)

    Dokter, A.M.; Petersen, C.; Woutersen, S.; Bakker, H.J.

    2008-01-01

    he ultrafast vibrational dynamics of HDO:D2O ice at 180 K in anionic reverse micelles is studied by midinfrared femtosecond pump-probe spectroscopy. Solutions containing reverse micelles are cooled to low temperatures by a fast-freezing procedure. The heating dynamics of the micellar solutions is

  12. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  13. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: A review.

    Science.gov (United States)

    Mahmood, Kashif; Zia, Khalid Mahmood; Zuber, Mohammad; Salman, Mahwish; Anjum, Muhammad Naveed

    2015-11-01

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anticoagulant and anti-infective effects. This review summarizes and discusses recently published papers on the key biomedical applications of curcumin based materials. The highlighted studies in the review provide evidence of the ability of curcumin to show the significant vitro antioxidant, diabetic complication, antimicrobial, neuroprotective, anti-cancer activities and detection of hypochlorous acid, wound healing, treatment of major depression, healing of paracentesis, and treatment of carcinoma and optical detection of pyrrole properties. Hydrophobic nature of this polyphenolic compound along with its rapid metabolism, physicochemical and biological instability contribute to its poor bioavailability. To redress these problems several approaches have been proposed like encapsulation of curcumin in liposomes and polymeric micelles, inclusion complex formation with cyclodextrin, formation of polymer-curcumin conjugates, etc. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  15. Targeting Mast Cells and Basophils with Anti-FcεRIα Fab-Conjugated Celastrol-Loaded Micelles Suppresses Allergic Inflammation.

    Science.gov (United States)

    Peng, Xia; Wang, Juan; Li, Xianyang; Lin, Lihui; Xie, Guogang; Cui, Zelin; Li, Jia; Wang, Yuping; Li, Li

    2015-12-01

    Mast cells and basophils are effector cells in the pathophysiology of allergic diseases. Targeted elimination of these cells may be a promising strategy for the treatment of allergic disorders. Our present study aims at targeted delivery of anti-FcεRIα Fab-conjugated celastrol-loaded micelles toward FcεRIα receptors expressed on mast cells and basophils to have enhanced anti-allergic effect. To achieve this aim, we prepared celastrol-loaded (PEO-block-PPO-block-PEO, Pluronic) polymeric nanomicelles using thin-film hydration method. The anti-FcεRIα Fab Fragment was then conjugated to carboxyl groups on drug-loaded micelles via EDC amidation reaction. The anti-FcεRIα Fab-conjugated celastrol-loaded micelles revealed uniform particle size (93.43 ± 12.93 nm) with high loading percentage (21.2 ± 1.5% w/w). The image of micelles showed oval and rod like. The anti-FcεRIα Fab-conjugated micelles demonstrated enhanced cellular uptake and cytotoxity toward target KU812 cells than non-conjugated micelles in vitro. Furthermore, diffusion of the drug into the cells allowed an efficient induction of cell apoptosis. In mouse model of allergic asthma, treatment with anti-FcεRIα Fab-conjugated micelles increased lung accumulation of micelles, and significantly reduced OVA-sIgE, histamine and Th2 cytokines (IL-4, IL-5, TNF-α) levels, eosinophils infiltration and mucus production. In addition, in mouse model of passive cutaneous anaphylaxis, anti-FcεRIα Fab-conjugated celastrol-loaded micelles treatment significantly decreased extravasated evan's in the ear. These results indicate that anti-FcεRIα Fab-conjugated celastrol-loaded micelles can target and selectively kill mast cells and basophils which express FcεRIα, and may be efficient reagents for the treatment of allergic disorders and mast cell related diseases.

  16. Distinct CPT-induced deaths in lung cancer cells caused by clathrin-mediated internalization of CP micelles

    Science.gov (United States)

    Liu, Yu-Sheng; Cheng, Ru-You; Lo, Yu-Lun; Hsu, Chin; Chen, Su-Hwei; Chiu, Chien-Chih; Wang, Li-Fang

    2016-02-01

    We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells.We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of

  17. Casein Micelle Dispersions under Osmotic Stress

    Science.gov (United States)

    Bouchoux, Antoine; Cayemitte, Pierre-Emerson; Jardin, Julien; Gésan-Guiziou, Geneviève; Cabane, Bernard

    2009-01-01

    Abstract Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their κ-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins. PMID:19167314

  18. Chemical reactions in reverse micelle systems

    Science.gov (United States)

    Matson, Dean W.; Fulton, John L.; Smith, Richard D.; Consani, Keith A.

    1993-08-24

    This invention is directed to conducting chemical reactions in reverse micelle or microemulsion systems comprising a substantially discontinuous phase including a polar fluid, typically an aqueous fluid, and a microemulsion promoter, typically a surfactant, for facilitating the formation of reverse micelles in the system. The system further includes a substantially continuous phase including a non-polar or low-polarity fluid material which is a gas under standard temperature and pressure and has a critical density, and which is generally a water-insoluble fluid in a near critical or supercritical state. Thus, the microemulsion system is maintained at a pressure and temperature such that the density of the non-polar or low-polarity fluid exceeds the critical density thereof. The method of carrying out chemical reactions generally comprises forming a first reverse micelle system including an aqueous fluid including reverse micelles in a water-insoluble fluid in the supercritical state. Then, a first reactant is introduced into the first reverse micelle system, and a chemical reaction is carried out with the first reactant to form a reaction product. In general, the first reactant can be incorporated into, and the product formed in, the reverse micelles. A second reactant can also be incorporated in the first reverse micelle system which is capable of reacting with the first reactant to form a product.

  19. Casein micelle structure: a concise review

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-01-01

    Full Text Available Milk is a complex biological fluid with high amount of proteins, lipid and minerals. The function of milk is to supply nutrients such as essential amino acids required for the growth of the newborn. In addition, due to the importance of casein and casein micelles for the functional behavior of dairy products, the nature and structure of casein micelles have been studied extensively. However, the exact structure of casein micelles is still under debate. Various models for casein micelle structure have been proposed. Most of the proposedmodels fall into three general categories, which are: coat-core, subunit (sub-micelles, and internal structure models. The coat-core models, proposed by Waugh and Nobel in 1965, Payens in 1966, Parry and Carroll in 1969, and Paquin and co-workers in 1987, describe the micelle as an aggregate of caseins with outer layer differing in composition form the interior, and the structure of the inner part is not accurately identified. The sub-micelle models, proposed by Morr in 1967, Slattery and Evard in 1973, Schmidt in 1980, Walstra in1984, and Ono and Obata in 1989, is considered to be composed of roughly spherical uniform subunits. The last models, the internal structure models, which were proposed by Rose in 1969, Garnier and Ribadeau- Dumas in 1970, Holt in 1992, and Horne in 1998, specify the mode of aggregation of the different caseins.

  20. Encapsulation with structured triglycerides

    Science.gov (United States)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  1. Design and evaluation of mPEG-PLA micelles functionalized with drug-interactive domains as improved drug carriers for docetaxel delivery.

    Science.gov (United States)

    Qi, Dingqing; Gong, Feirong; Teng, Xin; Ma, Mingming; Wen, Huijing; Yuan, Weihao; Cheng, Yi; Lu, Chong

    2017-10-01

    Polymeric micelles are very attractive drug delivery systems for hydrophobic agents, owing to their readily tailorable chemical structure and ease for scale-up preparation. However, the intrinsic poor stability of drug-loaded micelles presents one of the major challenges for most micellar systems in the translation to clinical applications. In this study, a simple, well-defined, and easy-to-scale up 9-Fluorenylmethoxycarbonyl (Fmoc) and tert-butoxycarbonyl (Boc) containing lysine dendronized mPEG-PLA (mPEG-PLA-Lys(FB) 2 ) micellar formulation was designed and prepared for docetaxel (DTX) delivery, in an effort to improve the stability of the micelles, and its physicochemical properties, pharmacokinetics, and anti-tumor efficacy against SKOV-3 ovarian cancer were evaluated. MPEG-PLA-Lys(FB) 2 was synthesized via a three-step synthetic route, and it actively interacted with DTX in aqueous media to form stable micelles with small particle sizes (~17-19 nm) and narrow size distribution (PI PLA-Lys(FB) 2 micelles achieved delayed and sustained release manner of DTX in comparison with mPEG-PLA micelles. Further in vivo xenograft tumor model in nude mice DTX/mPEG-PLA-Lys(FB) 2 micelles demonstrated significantly higher inhibitory effect on tumor growth than the marketed formulation Taxotere. Thus, our system may hold promise as a simple and effective delivery system for DTX with a potential for translation into clinical study.

  2. Penetration of blood-brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system.

    Science.gov (United States)

    Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou

    2017-01-01

    For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.

  3. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    Science.gov (United States)

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  4. Glioma-targeting micelles for optical/magnetic resonance dual-mode imaging

    Directory of Open Access Journals (Sweden)

    Zhou Q

    2015-03-01

    Full Text Available Qing Zhou,1,* Ketao Mu,2,* Lingyu Jiang,1 Hui Xie,3 Wei Liu,1 Zhengzheng Li,1 Hui Qi,1 Shuyan Liang,1 Huibi Xu,1 Yanhong Zhu,1 Wenzhen Zhu,2 Xiangliang Yang11National Engineering Research Center for Nanomedicine, College of Life Science and Technology, 2Radiology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 3Department of Information Processing, China Patent Information Center, Wuhan, People’s Republic of China*These authors contributed equally to this workAbstract: Surgical resection is the primary mode for glioma treatment, while gross total resection is difficult to achieve, due to the invasiveness of the gliomas. Meanwhile, the tumor-resection region is closely related to survival rate and life quality. Therefore, we developed optical/magnetic resonance imaging (MRI bifunctional targeted micelles for glioma so as to delineate the glioma location before and during operation. The micelles were constructed through encapsulation of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs with polyethylene glycol-block-polycaprolactone (PEG-b-PCL by using a solvent-evaporation method, and modified with a near-infrared fluorescent probe, Cy5.5, in addition to the glioma-targeting ligand lactoferrin (Lf. Being encapsulated by PEG-b-PCL, the hydrophobic SPIONs dispersed well in phosphate-buffered saline over 4 weeks, and the relaxivity (r2 of micelles was 215.4 mM–1·s–1, with sustained satisfactory fluorescent imaging ability, which might have been due to the interval formed by PEG-b-PCL for avoiding the fluorescence quenching caused by SPIONs. The in vivo results indicated that the nanoparticles with Lf accumulated efficiently in glioma cells and prolonged the duration of hypointensity at the tumor site over 48 hours in the MR image compared to the nontarget group. Corresponding with the MRI results, the margin of the glioma was clearly demarcated in the fluorescence image

  5. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.

    Science.gov (United States)

    Duan, Yuwei; Wang, Juan; Yang, Xiaoye; Du, Hongliang; Xi, Yanwei; Zhai, Guangxi

    2015-01-01

    Although curcumin (CUR) can inhibit proliferation and induce apoptosis of tumors, the poor water solubility restricted its clinical application. The aim of this study was to improve the aqueous solubility of CUR and make more favorable changes to bioactivity by preparing curcumin-loaded phospholipid-sodium deoxycholate-mixed micelles (CUR-PC-SDC-MMs). CUR-PC-SDC-MMs were prepared by the thin-film dispersion method. Based on the results of single factor exploration, the preparation technology was optimized using the central composite design-response surface methodology with drug loading and entrapment efficiency (EE%) as indicators. The images of transmission electron microscopy showed that the optimized CUR-PC-SDC-MMs were spherical and well dispersed. The average size of the mixed micelles was 66.5 nm, the zeta potential was about -26.96 mV and critical micelle concentration was 0.0087 g/l. CUR was encapsulated in PC-SDC-MMs with loading capacity of 13.12%, EE% of 87.58%, and the solubility of CUR in water was 3.14 mg/ml. The release results in vitro showed that the mixed micelles presented sustained release behavior compared to the propylene glycol solution of CUR. The IC50 values of CUR-loaded micelles and free drug in human breast carcinoma cell lines were 4.10 μg/ml and 6.93 µg/ml, respectively. It could be concluded from the above results that the CUR-PC-SDC-MMs system might serve as a promising nanocarrier to improve the solubility and bioactivity of CUR.

  6. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  7. Preparation and characterization of monomethoxy poly(ethylene glycol-poly(ε-caprolactone micelles for the solubilization and in vivo delivery of luteolin

    Directory of Open Access Journals (Sweden)

    Qiu JF

    2013-08-01

    Full Text Available Jin-Feng Qiu,1 Xiang Gao,1,2 Bi-Lan Wang,1 Xia-Wei Wei,1 Ma-Ling Gou,1 Ke Men,1 Xing-Yu Liu,1 Gang Guo,1 Zhi-Yong Qian,1 Mei-Juan Huang1 1Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Medical School, Sichuan University, Chengdu, People’s Republic of China; 2Medical School and Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China Abstract: Luteolin (Lu is one of the flavonoids with anticancer activity, but its poor water solubility limits its use clinically. In this work, we used monomethoxy poly(ethylene glycol-poly(ε-caprolactone (MPEG-PCL micelles to encapsulate Lu by a self-assembly method, creating a water-soluble Lu/MPEG-PCL micelle. These micelles had a mean particle size of 38.6 ± 0.6 nm (polydispersity index = 0.16 ± 0.02, encapsulation efficiency of 98.32% ± 1.12%, and drug loading of 3.93% ± 0.25%. Lu/MPEG-PCL micelles could slowly release Lu in vitro. Encapsulation of Lu in MPEG-PCL micelles improved the half-life (t½; 152.25 ± 49.92 versus [vs] 7.16 ± 1.23 minutes, P = 0.007, area under the curve (0–t (2914.05 ± 445.17 vs 502.65 ± 140.12 mg/L/minute, P = 0.001, area under the curve (0–∞ (2989.03 ± 433.22 vs 503.81 ± 141.41 mg/L/minute, P = 0.001, and peak concentration (92.70 ± 11.61 vs 38.98 ± 7.73 mg/L, P = 0.003 of Lu when the drug was intravenously administered at a dose of 30 mg/kg in rats. Also, Lu/MPEG-PCL micelles maintained the cytotoxicity of Lu on 4T1 breast cancer cells (IC50 = 6.4 ± 2.30 µg/mL and C-26 colon carcinoma cells (IC50 = 12.62 ± 2.17 µg/mL in vitro. These data suggested that encapsulation of Lu into MPEG-PCL micelles created an aqueous formulation of Lu with potential anticancer effect. Keywords: luteolin, micelle, MPEG-PCL, cancer therapy

  8. The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Kim, Kyung Ja; Shin, Young Kook

    2004-01-01

    Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 A with the increase of hydrophobic chain lengths and up to 660 m 2 /g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state 13 C and 29 Si NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates

  9. Pluronic®-bile salt mixed micelles.

    Science.gov (United States)

    Patel, Vijay; Ray, Debes; Bahadur, Anita; Ma, Junhe; Aswal, V K; Bahadur, Pratap

    2018-06-01

    The present study was aimed to examine the interaction of two bile salts viz. sodium cholate (NaC) and sodium deoxycholate (NaDC) with three ethylene polyoxide-polypropylene polyoxide (PEO-PPO-PEO) triblock copolymers with similar PPO but varying PEO micelles with a focus on the effect of pH on mixed micelles. Mixed micelles of moderately hydrophobic Pluronic ® P123 were examined in the presence of two bile salts and compared with those from very hydrophobic L121 and very hydrophilic F127. Both the bile salts increase the cloud point (CP) of copolymer solution and decreased apparent micelle hydrodynamic diameter (D h ). SANS study revealed that P123 forms small spherical micelles showing a decrease in size on progressive addition of bile salts. The negatively charged mixed micelles contained fewer P123 molecules but progressively rich in bile salt. NaDC being more hydrophobic displays more pronounced effect than NaC. Interestingly, NaC shows micellar growth in acidic media which has been attributed to the formation of bile acids by protonation of carboxylate ion and subsequent solubilization. In contrast, NaDC showed phase separation at higher concentration. Nuclear Overhauser effect spectroscopy (NOESY) experiments provided information on interaction and location of bile salts in micelles. Results are discussed in terms of hydrophobicity of bile salts and Pluronics ® and the site of bile salt in polymer micelles. Proposed molecular interactions are useful to understand more about bile salts which play important role in physiological processes. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Micelles As Delivery System for Cancer Treatment.

    Science.gov (United States)

    Keskin, Dilek; Tezcaner, Aysen

    2017-01-01

    Micelles are nanoparticles formed by the self-assembly of amphiphilic block copolymers in certain solvents above concentrations called critical micelle concentration (CMC). Micelles are used in different fields like food, cosmetics, medicine, etc. These nanosized delivery systems are under spotlight in the recent years with new achievements in terms of their in vivo stability, ability to protect entrapped drug, release kinetics, ease of cellular penetration and thereby increased therapeutic efficacy. Drug loaded micelles can be prepared by dialysis, oil-in-water method, solid dispersion, freezing, spray drying, etc. The aim of this review is to give an overview of the research on micelles (in vitro, in vivo and clinical) as delivery system for cancer treatment. Passive targeting is one route for accumulation of nanosized micellar drug formulations. Many research groups from both academia and industry focus on developing new strategies for improving the therapeutic efficacy of micellar systems (active targeting to the tumor site, designing multidrug delivery systems for overcoming multidrug resistance or micelles formed by prodrug conjugates, etc). There is only one micellar drug formulation in South Korea that has reached clinical practice. However, there are many untargeted anticancer drug loaded micellar formulations in clinical trials, which have potential for use in clinics. Many more products are expected to be on the market in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Development of fisetin-loaded folate functionalized pluronic micelles for breast cancer targeting.

    Science.gov (United States)

    Pawar, Atmaram; Singh, Srishti; Rajalakshmi, S; Shaikh, Karimunnisa; Bothiraja, C

    2018-01-15

    The natural flavonoid fisetin (FS) has shown anticancer properties but its in-vivo administration remains challenging due to its poor aqueous solubility. The aim of the study was to develop FS loaded pluronic127 (PF)-folic acid (FA) conjugated micelles (FS-PF-FA) by the way of increasing solubility, bioavailability and active targetability of FS shall increase its therapeutic efficacy. FA-conjugated PF was prepared by carbodiimide crosslinker chemistry. FS-PF-FA micelles were prepared by thin-film hydration method and evaluated in comparison with free FS and FS loaded PF micelles (FS-PF). The smooth surfaces with spherical in shape of FS-PF-PF micelles displayed smaller in size (103.2 ± 6.1 nm), good encapsulation efficiency (82.50 ± 1.78%), zeta potential (-26.7 ± 0.44 mV) and sustained FS release. Bioavailability of FS from FS-PF-PF micelles was increased by 6-fold with long circulation time, slower plasma elimination and no sign of tissue toxicity as compared to free FS. Further, the FS-PF-FA micelles demonstrated active targeting effect on folate overexpressed human breast cancer MCF-7 cells. The concentration of the drug needed for growth inhibition of 50% of cells in a designed time period (GI50) was 14.3 ± 1.2 µg/ml for FS while it was greatly decreased to 9.8 ± 0.78 µg/ml, i.e. a 31.46% decrease for the FS-PF. Furthermore, the GI50 value for FS-PF-FA was 4.9 ± 0.4 µg/ml, i.e. a 65.737% decrease compared to FS and 50% decrease compare to FS-PF. The results indicate that the FS-PF-FA micelles have the potential to be applied for targeting anticancer drug delivery.

  12. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  13. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  14. Poly (DADMAC) encapsulation in PES microcapsules utilizing gamma radiation

    International Nuclear Information System (INIS)

    Francis, Sanju; Varshney, Lalit; Tirumalesh, Keesari; Sabharwal, Sunil

    2009-01-01

    In this communication, a method for encapsulation of a polymeric resin using radiation technology is reported. The quaternary ammonium resin, polydiallyldimethylammonium chloride (PDADMAC) was incorporated in the core of a preformed hollow polyethersulfone microcapsule, using radiation technology, for the extraction of anions from aqueous solutions. The idea was to introduce the monomer into the porous microcapsules and initiate polymerization by radiation to trap the polymer formed inside the capsule. The resultant capsule was able to take up and exchange some anions (F - , Cl - , Br - , NO 3 2- and SO 4 2- ) at relatively low concentrations

  15. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  16. Self-folding micropatterned polymeric containers.

    Science.gov (United States)

    Azam, Anum; Laflin, Kate E; Jamal, Mustapha; Fernandes, Rohan; Gracias, David H

    2011-02-01

    We demonstrate self-folding of precisely patterned, optically transparent, all-polymeric containers and describe their utility in mammalian cell and microorganism encapsulation and culture. The polyhedral containers, with SU-8 faces and biodegradable polycaprolactone (PCL) hinges, spontaneously assembled on heating. Self-folding was driven by a minimization of surface area of the liquefying PCL hinges within lithographically patterned two-dimensional (2D) templates. The strategy allowed for the fabrication of containers with variable polyhedral shapes, sizes and precisely defined porosities in all three dimensions. We provide proof-of-concept for the use of these polymeric containers as encapsulants for beads, chemicals, mammalian cells and bacteria. We also compare accelerated hinge degradation rates in alkaline solutions of varying pH. These optically transparent containers resemble three-dimensional (3D) micro-Petri dishes and can be utilized to sustain, monitor and deliver living biological components.

  17. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  18. Photolithography and Fluorescence Correlation Spectroscopy used to examine the rates of exchange in reverse micelle systems

    Science.gov (United States)

    Norris, Zach; Mawson, Cara; Johnson, Kyron; Kessler, Sarah; Rebecca, Anne; Wolf, Nathan; Lim, Michael; Nucci, Nathaniel

    Reverse micelles are molecular complexes that encapsulate a nanoscale pool of water in a surfactant shell dissolved in non-polar solvent. These complexes have a wide range of applications, and in all cases, the degree to which reverse micelles (RM) exchange their contents is relevant for their use. Despite its importance, this aspect of RM behavior is poorly understood. Photolithography is employed here to create micro and nano scale fluidic systems in which mixing rates can be precisely measured using fluorescence correlation spectroscopy (FCS). Micro-channel patterns are etched using reactive ion etching process into a layer of silicon dioxide on crystalline silicon substrates. Solutions containing mixtures of reverse micelles, proteins, and fluorophores are placed into reservoirs in the patterns, while diffusion and exchange between RMs is monitored using a FCS system built from a modified confocal Raman spectrometer. Using this approach, the diffusion and exchange rates for RM systems are measured as a function of the components of the RM mixture. Funding provided by Rowan University.

  19. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  20. Lipoamino acid-based micelles as promising delivery vehicles for monomeric amphotericin B.

    Science.gov (United States)

    Serafim, Cláudia; Ferreira, Inês; Rijo, Patrícia; Pinheiro, Lídia; Faustino, Célia; Calado, António; Garcia-Rio, Luis

    2016-01-30

    Lipoamino acid-based micelles have been developed as delivery vehicles for the hydrophobic drug amphotericin B (AmB). The micellar solubilisation of AmB by a gemini lipoamino acid (LAA) derived from cysteine and its equimolar mixtures with the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC), as well as the aggregation sate of the drug in the micellar systems, was studied under biomimetic conditions (phosphate buffered-saline, pH 7.4) using UV-vis spectroscopy. Pure surfactant systems and equimolar mixtures were characterized by tensiometry and important parameters were determined, such as critical micelle concentration (CMC), surface tension at the CMC (γCMC), maximum surface excess concentration (Γmax), and minimum area occupied per molecule at the water/air interface (Amin). Rheological behaviour from viscosity measurements at different shear rates was also addressed. Solubilisation capacity was quantified in terms of molar solubilisation ratio (χ), micelle-water partition coefficient (KM) and Gibbs energy of solubilisation (ΔGs°). Formulations of AmB in micellar media were compared in terms of drug loading, encapsulation efficiency, aggregation state of AmB and in vitro antifungal activity against Candida albicans. The LAA-containing micellar systems solubilise AmB in its monomeric and less toxic form and exhibit in vitro antifungal activity comparable to that of the commercial formulation Fungizone. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    Science.gov (United States)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  2. Subcutaneous encapsulated fat necrosis

    DEFF Research Database (Denmark)

    Aydin, Dogu; Berg, Jais O

    2016-01-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help...

  3. Micelle-templated, poly(lactic-co-glycolic acid nanoparticles for hydrophobic drug delivery

    Directory of Open Access Journals (Sweden)

    Nabar GM

    2018-01-01

    Full Text Available Gauri M Nabar,1 Kalpesh D Mahajan,1 Mark A Calhoun,2 Anthony D Duong,1 Matthew S Souva,1 Jihong Xu,3,4 Catherine Czeisler,5 Vinay K Puduvalli,3,4 José Javier Otero,5 Barbara E Wyslouzil,1,6 Jessica O Winter1,2 1William G Lowrie Department of Chemical and Biomolecular Engineering, 2Department of Biomedical Engineering, 3Division of Neuro-oncology, College of Medicine, The Ohio State University Comprehensive Cancer Center, 4Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurosurgery, College of Medicine, The Ohio State University Comprehensive Cancer Center, 5Department of Pathology and the Neurological Research Institute, College of Medicine, 6Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA Purpose: Poly(lactic-co-glycolic acid (PLGA is widely used for drug delivery because of its biocompatibility, ability to solubilize a wide variety of drugs, and tunable degradation. However, achieving sub-100 nm nanoparticles (NPs, as might be desired for delivery via the enhanced permeability and retention effect, is extremely difficult via typical top-down emulsion approaches.Methods: Here, we present a bottom-up synthesis method yielding PLGA/block copolymer hybrids (ie, “PolyDots”, consisting of hydrophobic PLGA chains entrapped within self-assembling poly(styrene-b-ethylene oxide (PS-b-PEO micelles.Results: PolyDots exhibit average diameters <50 nm and lower polydispersity than conventional PLGA NPs. Drug encapsulation efficiencies of PolyDots match conventional PLGA NPs (ie, ~30% and are greater than those obtained from PS-b-PEO micelles (ie, ~7%. Increasing the PLGA:PS-b-PEO weight ratio alters the drug release mechanism from chain relaxation to erosion controlled. PolyDots are taken up by model glioma cells via endocytotic mechanisms within 24 hours, providing a potential means for delivery to cytoplasm. PolyDots can be lyophilized with minimal change in morphology and encapsulant

  4. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model.

    Science.gov (United States)

    Linsell, Oliver; Brownjohn, Philip W; Nehoff, Hayley; Greish, Khaled; Ashton, John C

    2015-05-01

    Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood-brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8 h at a dose of 11.5 mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5 h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.

  5. New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Mouffouk F

    2017-04-01

    Full Text Available Fouzi Mouffouk,1 Sihem Aouabdi,2 Entesar Al-Hetlani,1 Hacene Serrai,3 Tareq Alrefae,4 Liaohai Leo Chen5 1Department of Chemistry, Kuwait University, Safat, Kuwait; 2King Abdullah International Medical Research Center (KAIMRC, Jeddah, Kingdom of Saudi Arabia; 3Department of Radiology and Nuclear Medicine, University Hospital of Gent (UZG, Gent, Belgium; 4Department of Physics, Kuwait University, Safat, Kuwait; 5Surgical Precision Research Lab. Department of Surgery, University of Illinois at Chicago, IL, USA Abstract: Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as “tracers” to specifically target cell surface-associated epithelial mucin (MUC1, a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry. Keywords: electrochemical immunoassay, polymeric nanoparticles, breast cancer biomarkers, biosensors 

  6. pH-responsive polymer–drug conjugates as multifunctional micelles for cancer-drug delivery

    International Nuclear Information System (INIS)

    Kang, Yang; Ha, Wei; Ma, Yuan; Ding, Li-Sheng; Li, Bang-Jing; Liu, Ying-Qian; Fan, Min-Min; Zhang, Sheng

    2014-01-01

    We developed a novel linear pH-sensitive conjugate methoxy poly(ethylene glycol)-4β-aminopodophyllotoxin (mPEG-NPOD-I) by a covalently linked 4β-aminopodophyllotoxin (NPOD) and PEG via imine bond, which was amphiphilic and self-assembled to micelles in an aqueous solution. The mPEG-NPOD-I micelles simultaneously served as an anticancer drug conjugate and as drug carriers. As a drug conjugate, mPEG-NPOD-I showed a significantly faster NPOD release at a mildly acidic pH of 5.0 and 4.0 than a physiological pH of 7.4. Notably, it was confirmed that this drug conjugate could efficiently deliver NPOD to the nuclei of the tumor cells and led to much more cytotoxic effects to A549, Hela, and HepG2 cancer cells than the parent NPOD. The half maximal inhibitory concentration (IC 50 ) of mPEG-NPOD-I was about one order magnitude lower than that of the NPOD. In vivo, mPEG-NPOD-I reduced the size of the tumors significantly, and the biodistribution studies indicated that this drug conjugate could selectively accumulate in tumor tissues. As drug carriers, the mPEG-NPOD-I micelles encapsulated hydrophobic PTX with drug-loading efficiencies of 57% and drug-loading content of 16%. The loaded PTX also showed pH-triggered fast release behavior, and good additive cytotoxicity effect was observed for the PEG-NPOD-I/PTX. We are convinced that these multifunctional drug conjugate micelles have tremendous potential for targeted cancer therapy. (paper)

  7. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2013-01-01

    .16 ± 1.24% Tmx, 68.60 ± 1.58% QT at a Tmx/QT ratio of 1:2 w/w. The stability of the freeze-dried formulation was established in simulated gastrointestinal fluids for 8 h and at accelerated stability condition for 3 months. DPPH free radical scavenging assay confirmed that the functional architecture...

  8. Encapsulation of Protein-Polysaccharide HIP Complex in Polymeric Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ripal Gaudana

    2011-01-01

    Full Text Available The objective of the present study is to formulate and characterize a nanoparticulate-based formulation of a macromolecule in a hydrophobic ion pairing (HIP complex form. So far, HIP complexation approach has been studied only for proteins with molecular weight of 10–20 kDa. Hence, we have selected bovine serum albumin (BSA having higher molecular weight (66.3 kDa as a model protein and dextran sulphate (DS as a complexing polymer to generate HIP complex. We have prepared and optimized the HIP complex formation process of BSA with DS. Ionic interactions between basic amino acids of BSA with sulphate groups of DS were confirmed by FTIR analysis. Further, nanoparticles were prepared and characterized with respect to size and surface morphology. We observed significant entrapment of BSA in nanoparticles prepared with minimal amounts of PLGA polymer. Finally, results of circular dichroism and intrinsic fluorescence assay have clearly indicated that HIP complexation and method of nanoparticle preparation did not alter the secondary and tertiary structures of BSA.

  9. Encapsulation of clay through non-aqueous dispersion polymerizations

    NARCIS (Netherlands)

    Berix, M.J.A.

    2012-01-01

    In nanotechnology one very interesting theme is to combine different types of materials by inclusion of nanoparticles in polymer particles thereby enhancing for example mechanical properties, barrier properties and chemical resistance of the resulting films or foams. Several types of nanofillers

  10. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  11. Encapsulation Efficiency, Oscillatory Rheometry

    Directory of Open Access Journals (Sweden)

    Z. Mohammad Hassani

    2014-01-01

    Full Text Available Nanoliposomes are one of the most important polar lipid-based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using a modified thermal method. Only one melting peak in DSC curve of gamma oryzanol bearing liposomes was observed which could be attributed to co-crystallization of both compounds. The addition of gamma oryzanol, caused to reduce the melting point of 5% (w/v lecithin-based liposome from 207°C to 163.2°C. At high level of lecithin, increasing of liposome particle size (storage at 4°C for two months was more obvious and particle size increased from 61 and 113 to 283 and 384 nanometers, respectively. The encapsulation efficiency of gamma oryzanol increased from 60% to 84.3% with increasing lecithin content. The encapsulation stability of oryzanol in liposome was determined at different concentrations of lecithin 3, 5, 10, 20% (w/v and different storage times (1, 7, 30 and 60 days. In all concentrations, the encapsulation stability slightly decreased during 30 days storage. The scanning electron microscopy (SEM images showed relatively spherical to elliptic particles which indicated to low extent of particles coalescence. The oscillatory rheometry showed that the loss modulus of liposomes were higher than storage modulus and more liquid-like behavior than solid-like behavior. The samples storage at 25°C for one month, showed higher viscoelastic parameters than those having been stored at 4°C which were attributed to higher membrane fluidity at 25°C and their final coalescence.Nanoliposomes are one of the most important polar lipid based nanocarriers which can be used for encapsulation of both hydrophilic and hydrophobic active compounds. In this research, nanoliposomes based on lecithin-polyethylene glycol-gamma oryzanol were prepared by using modified thermal method. Only one

  12. Stability of casein micelles in milk

    Science.gov (United States)

    Tuinier, R.; de Kruif, C. G.

    2002-07-01

    Casein micelles in milk are proteinaceous colloidal particles and are essential for the production of flocculated and gelled products such as yogurt, cheese, and ice-cream. The colloidal stability of casein micelles is described here by a calculation of the pair potential, containing the essential contributions of brush repulsion, electrostatic repulsion, and van der Waals attraction. The parameters required are taken from the literature. The results are expressed by the second osmotic virial coefficient and are quite consistent with experimental findings. It appears that the stability is mainly attributable to a steric layer of κ-casein, which can be described as a salted polyelectrolyte brush.

  13. Encapsulating spent nuclear fuel

    International Nuclear Information System (INIS)

    Fleischer, L.R.; Gunasekaran, M.

    1979-01-01

    A system is described for encapsulating spent nuclear fuel discharged from nuclear reactors in the form of rods or multi-rod assemblies. The rods are completely and contiguously enclosed in concrete in which metallic fibres are incorporated to increase thermal conductivity and polymers to decrease fluid permeability. This technique provides the advantage of acceptable long-term stability for storage over the conventional underwater storage method. Examples are given of suitable concrete compositions. (UK)

  14. Solubilization of Phenol Derivatives in Polymer Micelles Formed by Cationic Block Copolymer

    Directory of Open Access Journals (Sweden)

    Irma Fuentes

    2017-01-01

    Full Text Available The aggregation of cationic block copolymers formed by polystyrene (PS and poly(ethyl-4-vinylpyridine (PS-b-PE4VP was studied in aqueous solution. Diblock copolymers of PS and poly(4-vinylpyridine were synthesized by sequential anionic polymerization using BuLi as initiator. Subsequently, the 4-vinylpyridine units were quaternized with ethyl bromide to obtain cationic PS-b-PE4VP block copolymers with different quaternization degree. The self-aggregation of cationic block copolymers was studied by fluorescence probing, whereas the morphology and size of polymer micelles were determined by transmission electronic microscopy. Results indicate that spherical micelles with sizes lower than 100 nm were formed, whereas their micropolarity decreases with increasing quaternization degree. The partition of phenols between the micellar and aqueous phase was studied by using the pseudo-phase model, and the results show that the partition coefficients increase with increasing length of the side alkyl chain and are larger for star micelles. These results are discussed in terms of three-region model.

  15. Towards an easy access to Annexin-A5 protein binding block copolymer micelles

    International Nuclear Information System (INIS)

    Schmidt, Vanessa; Giacomelli, Cristiano; Brisson, Alain R.; Borsali, Redouane

    2008-01-01

    The formation of Annexin-A5 decorated (bio-functionalized) nanoparticles is of particular interest in micelle-mediated target drug delivery, in vivo magnetic resonance imaging, and controlled fabrication of biochips. This work describes an easy access to the synthesis and manipulation of block copolymer nano-objects exhibiting Annexin-A5 protein binding ability. Well-defined spherical micelles containing negatively charged phosphonic diacid groups - which are potential binding sites for Annexin-A5 proteins - at their hydrophilic periphery originate from the self-assembly of polystyrene-b-poly(2-phosphatethyl methacrylate-stat-2-hydroxyethyl methacrylate) (PS-b-P(PEMA-stat-HEMA)) amphiphilic macromolecules in aqueous media. PS-b-P(PEMA-stat-HEMA) can be prepared in a three-step phosphorylation/silylation/methanolysis procedure applied to PS-b-PHEMA precursors synthesized via Atom Transfer Radical Polymerization (ATRP). The herein discussed approach allows precise control over micellar dimensions and properties such as core radius (i.e., loading capacity), corona width, and density of phosphate groups at the micelle periphery

  16. Phase separation in solution of worm-like micelles: a dilute ? spin-vector model

    Science.gov (United States)

    Panizza, Pascal; Cristobal, Galder; Curély, Jacques

    1998-12-01

    We show how the dilute 0953-8984/10/50/006/img2 spin vector model introduced originally by Wheeler and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur and of living polymers may be conveniently adapted for studying phase separation in systems containing long flexible micelles. We draw an isomorphism between the coupling constant appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We solve this problem within the mean-field approximation and compare the main results we have obtained with respect to polymer theory and previous theories of phase separation in micellar solutions. We show that the attractive interaction term 0953-8984/10/50/006/img3 between monomers renormalizes the aggregation energy and subsequently the corresponding size distribution. Under these conditions, we observe that the general aspect of the phase diagram in the 0953-8984/10/50/006/img4 plane (where 0953-8984/10/50/006/img5 is the surfactant concentration) is different from previous results. The spinodal line shows a re-entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation phenomena related to the existence of a metastable transition line between a region composed of spherical micelles and another one corresponding to a dilute solution of long flexible micelles.

  17. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  18. Thermal protection of β-carotene in re-assembled casein micelles during different processing technologies applied in food industry.

    Science.gov (United States)

    Sáiz-Abajo, María-José; González-Ferrero, Carolina; Moreno-Ruiz, Ana; Romo-Hualde, Ana; González-Navarro, Carlos J

    2013-06-01

    β-Carotene is a carotenoid usually applied in the food industry as a precursor of vitamin A or as a colourant. β-Carotene is a labile compound easily degraded by light, heat and oxygen. Casein micelles were used as nanostructures to encapsulate, stabilise and protect β-carotene from degradation during processing in the food industry. Self-assembly method was applied to re-assemble nanomicelles containing β-carotene. The protective effect of the nanostructures against degradation during the most common industrial treatments (sterilisation, pasteurisation, high hydrostatic pressure and baking) was proven. Casein micelles protected β-carotene from degradation during heat stabilisation, high pressure processing and the processes most commonly used in the food industry including baking. This opens new possibilities for introducing thermolabile ingredients in bakery products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  20. Co-assembly towards Janus micelles

    NARCIS (Netherlands)

    Voets, I.K.; Leermakers, F.A.M.; Keizer, de A.; Charlaganov, M.; Cohen Stuart, M.A.

    2011-01-01

    In this paper, we report on our recent findings concerning the structure of complex coacervate core micelles composed of two types of (complementary) block copolymers. Both copolymers have a polyelectrolyte (one cationic and the other anionic) block combined with a neutral one. The opposite charges

  1. Tripartite polyionic complex (PIC) micelles as non-viral vectors for mesenchymal stem cell siRNA transfection.

    Science.gov (United States)

    Raisin, Sophie; Morille, Marie; Bony, Claire; Noël, Danièle; Devoisselle, Jean-Marie; Belamie, Emmanuel

    2017-08-22

    In the context of regenerative medicine, the use of RNA interference mechanisms has already proven its efficiency in targeting specific gene expression with the aim of enhancing, accelerating or, more generally, directing stem cell differentiation. However, achievement of good transfection levels requires the use of a gene vector. For in vivo applications, synthetic vectors are an interesting option to avoid possible issues associated with viral vectors (safety, production costs, etc.). Herein, we report on the design of tripartite polyionic complex micelles as original non-viral polymeric vectors suited for mesenchymal stem cell transfection with siRNA. Three micelle formulations were designed to exhibit pH-triggered disassembly in an acidic pH range comparable to that of endosomes. One formulation was selected as the most promising with the highest siRNA loading capacity while clearly maintaining pH-triggered disassembly properties. A thorough investigation of the internalization pathway of micelles into cells with tagged siRNA was made before showing an efficient inhibition of Runx2 expression in primary bone marrow-derived stem cells. This work evidenced PIC micelles as promising synthetic vectors that allow efficient MSC transfection and control over their behavior, from the perspective of their clinical use.

  2. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  3. Thermoresponsive latexes for fragrance encapsulation and release.

    Science.gov (United States)

    Popadyuk, N; Popadyuk, A; Kohut, A; Voronov, A

    2016-04-01

    To synthesize cross-linked latex particles protecting the encapsulated fragrance at ambient temperatures and facilitating the release of cargo at the temperature of the surface of the skin that varies in different regions of the body between 33.5 and 36.9°C. Poly(stearyl acrylate) (PSA), a polymer with long crystallizable alkyl side chains (undergoes order-disorder transitions at 45°C), was chosen as the main component of the polymer particles. As a result, new thermoresponsive polymer particles for fragrance encapsulation were synthesized and characterized, including assessing the performance of particles in triggered release by elevated temperature. To obtain network domains of various crystallinity, stearyl acrylate was copolymerized with dipropylene glycol acrylate caprylate (DGAC) (comonomer) in the presence of a dipropylene glycol diacrylate sebacate (cross-linker) using the miniemulsion process. Comonomers and a cross-linker were mixed directly in a fragrance during polymerization. Fragrance release was evaluated at 25, 31, 35 and 39°C to demonstrate a new material potential in personal/health care skin-related applications. Particles protect the fragrance from evaporation at 25°C. The fragrance release rate gradually increases at 31, 35 and 39°C. Two slopes were found on release plots. The first slope corresponds to a rapid fragrance release. The second slope indicates a subsequent reduction in the release rate. Crystalline-to-amorphous transition of PSA triggers the release of fragrances from cross-linked latex particles at elevated temperatures. The presence of the encapsulated fragrance, as well as the inclusion of amorphous fragments in the polymer network, reduces the particle crystallinity and enhances the release. Release profiles can be tuned by temperature and controlled by the amount of loaded fragrance and the ratio of comonomers in the feed mixture. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. A Lipophilic IR-780 Dye-Encapsulated Zwitterionic Polymer-Lipid Micellar Nanoparticle for Enhanced Photothermal Therapy and NIR-Based Fluorescence Imaging in a Cervical Tumor Mouse Model

    Directory of Open Access Journals (Sweden)

    Santhosh Kalash Rajendrakumar

    2018-04-01

    Full Text Available To prolong blood circulation and avoid the triggering of immune responses, nanoparticles in the bloodstream require conjugation with polyethylene glycol (PEG. However, PEGylation hinders the interaction between the nanoparticles and the tumor cells and therefore limits the applications of PEGylated nanoparticles for therapeutic drug delivery. To overcome this limitation, zwitterionic materials can be used to enhance the systemic blood circulation and tumor-specific delivery of hydrophobic agents such as IR-780 iodide dye for photothermal therapy. Herein, we developed micellar nanoparticles using the amphiphilic homopolymer poly(12-(methacryloyloxydodecyl phosphorylcholine (PCB-lipid synthesized via reversible addition–fragmentation chain transfer (RAFT polymerization. The PCB-lipid can self-assemble into micelles and encapsulate IR-780 dye (PCB-lipid–IR-780. Our results demonstrated that PCB-lipid–IR-780 nanoparticle (NP exhibited low cytotoxicity and remarkable photothermal cytotoxicity to cervical cancer cells (TC-1 upon near-infrared (NIR laser irradiation. The biodistribution of PCB-lipid–IR-780 showed higher accumulation of PCB-lipid–IR-780 than that of free IR-780 in the TC-1 tumor. Furthermore, following NIR laser irradiation of the tumor region, the PCB-lipid–IR-780 accumulated in the tumor facilitated enhanced tumor ablation and subsequent tumor regression in the TC-1 xenograft model. Hence, these zwitterionic polymer-lipid hybrid micellar nanoparticles show great potential for cancer theranostics and might be beneficial for clinical applications.

  5. Update on cellular encapsulation.

    Science.gov (United States)

    Smith, Kate E; Johnson, Robert C; Papas, Klearchos K

    2018-05-06

    There is currently a significant disparity between the number of patients who need lifesaving transplants and the number of donated human organs. Xenotransplantation is a way to address this disparity and attempts to enable the use of xenogeneic tissues have persisted for centuries. While immunologic incompatibilities have presented a persistent impediment to their use, encapsulation may represent a way forward for the use of cell-based xenogeneic therapeutics without the need for immunosuppression. In conjunction with modern innovations such as the use of bioprinting, incorporation of immune modulating molecules into capsule membranes, and genetic engineering, the application of xenogeneic cells to treat disorders ranging from pain to liver failure is becoming increasingly realistic. The present review discusses encapsulation in the context of xenotransplantation, focusing on the current status of clinical trials, persistent issues such as antigen shedding, oxygen availability, and donor selection, and recent developments that may address these limitations. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Swedish encapsulation station review

    International Nuclear Information System (INIS)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G.

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB's document 'Plan 1996'. This has been made through comparisons between the ES and BNFL's Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International's experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation

  7. Swedish encapsulation station review

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Sven Olof; Brunzell, P.; Heibel, R.; McCarthy, J.; Pennington, C.; Rusch, C.; Varley, G. [NAC International, Zuerich (Switzerland)

    1998-06-01

    In the Encapsulation Station (ES) Review performed by NAC International, a number of different areas have been studied. The main objectives with the review have been to: Perform an independent review of the cost estimates for the ES presented in SKB`s document `Plan 1996`. This has been made through comparisons between the ES and BNFL`s Waste Encapsulation Plant (WEP) at Sellafield as well as with the CLAB facility. Review the location of the ES (at the CLAB site or at the final repository) and its interaction with other parts of the Swedish system for spent fuel management. Review the logistics and plant capacity of the ES. Identify important safety aspects of the ES as a basis for future licensing activities. Based on NAC International`s experience of casks for transport and storage of spent fuel, review the basic design of the copper/steel canister and the transport cask. This review insides design, manufacturing, handling and licensing aspects. Perform an overall comparison between the ES project and the CLAB project with the objective to identify major project risks and discuss their mitigation 19 refs, 9 figs, 35 tabs

  8. Effect of hydrostatic pressure on gas solubilization in micelles.

    Science.gov (United States)

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  9. Molecular glasses for nuclear waste encapsulation

    International Nuclear Information System (INIS)

    Ropp, R.C.

    1982-01-01

    The use of a molecular glass based upon a polymerized phosphate of aluminum (PAP), indium or gallium overcomes all of the prior objections to use of glass as a high-level nuclear waste (HLW) encapsulation agent. This HLW glass product could not be made to devitrify, dissolved all of the oxides found in calcine, including the difficultly soluble ones, did not form microcrystallites in the melt or subsequent glass-casting, and possessed a hydrolytic etching rate to boiling water even lower than that of HLW-ZBS glass. A precursor compound, M(H 2 PO 4 ) 3 , is prepared, where M is a trivalent metal selected from the group consisting of aluminum, indium and gallium. The impurity level is carefully controlled so as not to exceed 300 ppm total. The precursor crystals may be washed to remove excess phosphoric acid as desired. HLW is added to the crystals and the mixture is then heated at a controlled heating rate to induce solid state polymerization and to form a melt at 1350 degrees C in which the HLW oxides dissolve rapidly

  10. Volume reduction and encapsulation process for water containing low level radioactive waste

    International Nuclear Information System (INIS)

    Miller, G.P.; Fox, D.W.; Weech, M.E.

    1982-01-01

    In encapsulating solutions or slurries of radio-active waste within polymeric material for disposal, the water is removed therefrom by adding a water insoluble liquid forming a low boiling azeotrope and evaporating the azeotrope, and then a polymerisable composition is dispersed throughout the dewatered waste and allowed to set. (author)

  11. Novel biocompatible hydrogel nanoparticles: generation and size-tuning of nanoparticles by the formation of micelle templates obtained from thermo-responsive monomers mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Khandadash, Raz; Machtey, Victoria [Bar Ilan University, Department of Chemistry (Israel); Shainer, Inbal [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences (Israel); Gottlieb, Hugo E. [Bar Ilan University, Department of Chemistry (Israel); Gothilf, Yoav [Tel-Aviv University, Department of Neurobiology, The George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience (Israel); Ebenstein, Yuval [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry (Israel); Weiss, Aryeh [Bar Ilan University, School of Engineering (Israel); Byk, Gerardo, E-mail: gerardo.byk@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2014-12-15

    Biocompatible hydrogel nanoparticles are prepared by polymerization and cross-linking of N-isopropyl acrylamide in a micelle template formed by block copolymers macro-monomers at high temperature. Different monomer ratios form, at high temperature, well-defined micelles of different sizes which are further polymerized leading to nanoparticles with varied sizes from 20 to 390 nm. Physico-chemical characterization of the nanoparticles demonstrates their composition and homogeneity. The NPs were tested in vitro and in vivo biocompatibility assays, and their lack of toxicity was proven. The NPs can be labeled with fluorescent probes, and their intracellular fate can be visualized and quantified using confocal microscopy. Their uptake by live stem cells and distribution in whole developing animals is reported. On the basis of our results, a mechanism of nanoparticle formation is suggested. The lack of toxicity makes these nanoparticles especially attractive for biological applications such as screening and bio-sensing.

  12. Thermosensitive mPEG-b-PA-g-PNIPAM comb block copolymer micelles: effect of hydrophilic chain length and camptothecin release behavior.

    Science.gov (United States)

    Yang, Xiao-Li; Luo, Yan-Ling; Xu, Feng; Chen, Ya-Shao

    2014-02-01

    Block copolymer micelles are extensively used as drug controlled release carriers, showing promising application prospects. The comb or brush copolymers are especially of great interest, whose densely-grafted side chains may be important for tuning the physicochemical properties and conformation in selective solvents, even in vitro drug release. The purpose of this work was to synthesize novel block copolymer combs via atom transfer radical polymerization, to evaluate its physicochemical features in solution, to improve drug release behavior and to enhance the bioavailablity, and to decrease cytotoxicity. The physicochemical properties of the copolymer micelles were examined by modulating the composition and the molecular weights of the building blocks. A dialysis method was used to load hydrophobic camptothecin (CPT), and the CPT release and stability were detected by UV-vis spectroscopy and high-performance liquid chromatography, and the cytotoxicity was evaluated by MTT assays. The copolymers could self-assemble into well-defined spherical core-shell micelle aggregates in aqueous solution, and showed thermo-induced micellization behavior, and the critical micelle concentration was 2.96-27.64 mg L(-1). The micelles were narrow-size-distribution, with hydrodynamic diameters about 128-193 nm, depending on the chain length of methoxy polyethylene glycol (mPEG) blocks and poly(N-isopropylacrylamide) (PNIPAM) graft chains or/and compositional ratios of mPEG to PNIPAM. The copolymer micelles could stably and effectively load CPT but avoid toxicity and side-effects, and exhibited thermo-dependent controlled and targeted drug release behavior. The copolymer micelles were safe, stable and effective, and could potentially be employed as CPT controlled release carriers.

  13. Mechanisms of pH-Sensitivity and Cellular Internalization of PEOz-b-PLA Micelles with Varied Hydrophilic/Hydrophobic Ratios and Intracellular Trafficking Routes and Fate of the Copolymer.

    Science.gov (United States)

    Wang, Dishi; Zhou, Yanxia; Li, Xinru; Qu, Xiaoyou; Deng, Yunqiang; Wang, Ziqi; He, Chuyu; Zou, Yang; Jin, Yiguang; Liu, Yan

    2017-03-01

    pH-responsive polymeric micelles have shown promise for the targeted and intracellular delivery of antitumor agents. The present study aimed to elucidate the possible mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles in detail, further unravel the effect of hydrophilic/hydrophobic ratio of the micelles on their cellular internalization, and examine the intracellular trafficking routes and fate of PEOz-b-PLA after internalization of the micelles. The results of variations in the size and Zeta potential of PEOz-b-PLA micelles and cross-sectional area of PEOz-b-PLA molecules with pH values suggested that electrostatic repulsion between PEOz chains resulting from ionization of the tertiary amide groups along PEOz chain at pH lower than its pK a was responsible for pH-sensitivity of PEOz-b-PLA micelles. Furthermore, the studies on internalization of PEOz-b-PLA micelles by MCF-7 cells revealed that the uptake of PEOz-b-PLA micelles was strongly influenced by their structural features, and showed that PEOz-b-PLA micelles with hydrophilic/hydrophobic ratio of 1.7-2.0 exhibited optimal cellular uptake. No evident alteration in cellular uptake of PEOz-b-PLA micelles was detected by flow cytometry upon the existence of EIPA and chlorpromazine. However, the intracellular uptake of the micelles in the presence of MβCD and genistein was effectively inhibited. Hence, the internalization of such micelles by MCF-7 cells appeared to proceed mainly through caveolae/lipid raft-mediated endocytosis without being influenced by their hydrophilic/hydrophobic ratio. Confocal micrographs revealed that late endosomes, mitochondria and endoplasmic reticulum were all involved in the intracellular trafficking of PEOz-b-PLA copolymers following their internalization via endocytosis, and then part of them was excreted from tumor cells to extracellular medium. These findings provided valuable information for developing desired PEOz-b-PLA micelles to improve their

  14. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  15. A Comparative Cytotoxic Evaluation of Disulfiram Encapsulated PLGA Nanoparticles on MCF-7 Cells.

    Science.gov (United States)

    Fasehee, Hamidreza; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran; Ghaffari, Seyed-Hamidollah; Faghihi, Shahab

    2017-04-01

    Background: Disulfiram is oral aldehyde dehydrogenase (ALDH) inhibitor that has been used in the treatment of alcoholism. Recent studies show that this drug has anticancer properties; however, its rapid degradation has limited its clinical application. Encapsulation of disulfiram polymeric nanoparticles (NPs) may improve its anticancer activities and protect rapid degradation of the drug. Materials and Methods: A poly (lactide-co-Glycolide) (PLGA) was developed for encapsulation of disulfiram and its delivery into breast cancer cells. Disulfiram encapsulated PLGA NPs were prepared by nanoprecipitation method and were characterized by Scanning Electron Microscopy (SEM). The loading and encapsulation efficiency of NPs were determined using UV-Visible spectroscopy. Cell cytotoxicity of free and encapsulated form of disulfiram is also determined using MTT assay. Results: Disulfiram encapsulated PLGA NPs had uniform size with 165 nm. Drug loading and entrapment efficiency were 5.35 ±0.03% and 58.85±1.01%. The results of MTT assay showed that disulfiram encapsulated PLGA NPs were more potent in induction of apoptosis compare to free disulfiram. Conclusion: Based on the results obtained in the present study it can be concluded that encapsulation of disulfiram with PLGA can protect its degradation in improve its cytotoxicity on breast cancer cells.

  16. Penetration of blood–brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system

    Directory of Open Access Journals (Sweden)

    Zou D

    2017-07-01

    Full Text Available Dan Zou,1 Wei Wang,1 Daoxi Lei,1 Ying Yin,1 Peng Ren,1 Jinju Chen,2 Tieying Yin,1 Bochu Wang,1 Guixue Wang,1 Yazhou Wang1 1Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China; 2School of Mechanical and System Engineering, Newcastle University, Newcastle Upon Tyne, UK Abstract: For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood–brain barrier (BBB. The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time. Keywords: blood–brain barrier, GM1, nanovesicles, doxorubicin, glioma, zebrafish

  17. Smart wormlike micelles design, characteristics and applications

    CERN Document Server

    Feng, Yujun; Dreiss, Cécile A

    2015-01-01

    This Brief provides an up-to-date overview of smart surfactants and describes a broad spectrum of triggers that induce the formation of wormlike micelles or reversibly tune the morphology of surfactant aggregates from wormlike micelles to another state, or vice versa. Combining the fields of chemistry, physics, polymer science, and nanotechnology, its primary focus is on the design, formulation, and processing of intelligent viscoelastic surfactant solutions, covering the scientific principles governing responsiveness to one or more particular triggers, down to the end-use-driven functions. The first chapter explains why and how surfactants self-assemble into viscoelastic wormlike micellar solutions reminiscent of polymer solutions, while the following chapters show how the response to a given trigger translates into macroscopic rheological changes, including temperature, light, pH, CO2, redox, hydrocarbon, etc. The last chapter demonstrates the applications of these viscoelastic assemblies in oil and gas pro...

  18. Palisaded encapsulated neuroma

    Directory of Open Access Journals (Sweden)

    Adesh S Manchanda

    2015-01-01

    Full Text Available Palisaded encapsulated neuroma (PEN is a benign cutaneous or mucosal neural tumor which, usually, presents as a solitary, firm, asymptomatic, papule or nodule showing striking predilection for the face. It occurs commonly in middle age, and there is no sex predilection. Oral PEN are not common, and these lesions must be distinguished from other peripheral nerve sheath tumors such as the neurofibroma, neurilemma (schwannoma, and traumatic neuroma. The major challenge in dealing with lesions of PEN is to avoid the misdiagnosis of neural tumors that may be associated with systemic syndromes such as neurofibromatosis and multiple endocrine neoplasia syndrome type 2B. Here, we present a case of benign PEN of the gingiva in the left anterior mandibular region, laying importance on immunohistochemical staining in diagnosing such lesions.

  19. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  20. Liposome-encapsulated chemotherapy

    DEFF Research Database (Denmark)

    Børresen, B.; Hansen, A. E.; Kjær, A.

    2018-01-01

    Cytotoxic drugs encapsulated into liposomes were originally designed to increase the anticancer response, while minimizing off-target adverse effects. The first liposomal chemotherapeutic drug was approved for use in humans more than 20years ago, and the first publication regarding its use...... to inherent issues with the enhanced permeability and retention effect, the tumour phenomenon which liposomal drugs exploit. This effect seems very heterogeneously distributed in the tumour. Also, it is potentially not as ubiquitously occurring as once thought, and it may prove important to select patients...... not resolve the other challenges that liposomal chemotherapy faces, and more work still needs to be done to determine which veterinary patients may benefit the most from liposomal chemotherapy....

  1. New process encapsulates

    International Nuclear Information System (INIS)

    Mueller, J.J.

    1982-01-01

    The results of the various aspects of this study indicate that the encapsulation process is not only capable of reducing the percent of Radon-222 emanation but also reduces the possibility of the leaching of toxic elements. Radon-222 emanation after solidification showed a 93.51% reduction from the slurry. The Gamma Spectral Analyses of short-lived Radon daughters supported the above findings. Leach studies on solidified refinery waste and transformer oils indicate there is a significant reduction in the possibility of toxic substances leaching out of the solidified samples. Further studies are needed to confirm the results of this investigation; however, the present findings indicate that the process could substantially reduce Radon-222 exhalation into the environment from uranium tailings ponds and reduce toxic leachates from hazardous waste materials

  2. SANS study of coated block copolymer micelles

    Czech Academy of Sciences Publication Activity Database

    Pleštil, Josef; Kříž, Jaroslav; Koňák, Čestmír; Pospíšil, Herman; Kadlec, Petr; Sedláková, Zdeňka; Grillo, I.; Cubitt, R.

    2005-01-01

    Roč. 206, č. 12 (2005), s. 1206-1215 ISSN 1022-1352 R&D Projects: GA ČR GA203/03/0600; GA AV ČR IAA1050201; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z40500505 Keywords : block copolymer micelles * core-shell polymers * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.111, year: 2005

  3. Diclofenac/biodegradable polymer micelles for ocular applications

    Science.gov (United States)

    Li, Xingyi; Zhang, Zhaoliang; Li, Jie; Sun, Shumao; Weng, Yuhua; Chen, Hao

    2012-07-01

    In this paper, methoxypoly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelle formulations as promising nano-carriers for poorly water soluble drugs were investigated for the delivery of diclofenac to the eye. Diclofenac loaded MPEG-PCL micelles were prepared by a simple solvent-diffusion method and characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), Fourier transform infra-red (FTIR), X-ray diffraction (XRD), differential scanning calorimetery (DSC), etc. With the analysis of XRD and DSC, the diclofenac was present as an amorphous state in the formulation. The in vitro release profile indicated a sustained release manner of diclofenac from the micelles. Meanwhile, in vivo studies on eye irritation were performed with blank MPEG-PCL micelles (200 mg ml-1). The results showed that the developed MPEG-PCL micelles were non-irritants to the eyes of rabbits. In vitro penetration studies across the rabbit cornea demonstrated that the micelle formulations exhibited a 17-fold increase in penetration compared with that of diclofenac phosphate buffered saline (PBS) solution. The in vivo pharmacokinetics profile of the micelle parent drug in the aqueous humor of the rabbit was evaluated and the data showed that the diclofenac loaded MPEG-PCL micelles exhibited a 2-fold increase in AUC0-24 h than that of the diclofenac PBS solution eye drops. These results suggest a great potential of our micelle formulations as a novel ocular drug delivery system to improve the bioavailability of the drugs.

  4. Stereocomplex-Reinforced PEGylated Polylactide Micelle for Optimized Drug Delivery

    Directory of Open Access Journals (Sweden)

    Chunsheng Feng

    2016-04-01

    Full Text Available The instability of PEGylated polylactide micelles is a challenge for drug delivery. Stereocomplex interaction between racemic polylactide chains with different configurations provides an effective strategy to enhance the stability of micelles as the nanocarriers of drugs. In this work, a stereocomplex micelle (SCM self-assembled from the amphiphilic triblock copolymers comprising poly(ethylene glycol (PEG, and dextrorotatory and levorotatory polylactides (PDLA and PLLA was applied for efficient drug delivery. The spherical SCM showed the smallest scale and the lowest critical micelle concentration (CMC than the micelles with single components attributed to the stereocomplex interaction between PDLA and PLLA. 10-Hydroxycamptothecin (HCPT as a model antitumor drug was loaded into micelles. Compared with the loading micelles from individual PDLA and PLLA, the HCPT-loaded SCM exhibited the highest drug loading efficiency (DLE and the slowest drug release in phosphate-buffered saline (PBS at pH 7.4, indicating its enhanced stability in circulation. More fascinatingly, the laden SCM was demonstrated to have the highest cellular uptake of HCPT and suppress malignant cells most effectively in comparison to the HCPT-loaded micelles from single copolymer. In summary, the stereocomplex-enhanced PLA–PEG–PLA micelle may be promising for optimized drug delivery in the clinic.

  5. Electrostatic interactions between polyglutamic acid and polylysine yields stable polyion complex micelles for deoxypodophyllotoxin delivery

    Directory of Open Access Journals (Sweden)

    Wang Y

    2017-10-01

    Full Text Available Yutong Wang,1–3,* Liping Huang,1,2,* Yan Shen,1,2,* Lidan Tang,1,2,4 Runing Sun,1,5 Di Shi,6 Thomas J Webster,6 Jiasheng Tu,1,2 Chunmeng Sun1,2 1Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, China Pharmaceutical University, 2State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 3Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 4Changzhou Second People’s Hospital, Changzhou, 5School of Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China; 6Department of Chemical Engineering, Northeastern University, Boston, MA, USA *These authors contributed equally to this work Abstract: To achieve enhanced physical stability of poly(ethylene glycol-poly(D,L-lactide polymeric micelles (PEG-PDLLA PMs, a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG and mPEG-PDLLA-poly(L-lysine (mPEG-PDLLA-PLL copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1H-nuclear magnetic resonance (NMR and infrared spectroscopy (IR, and their molecular weights were calculated by 1H-NMR and gel permeation chromatography (GPC. Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT. Transmission electron microscopy (TEM images showed that DPT polyion complex micelles (DPT-PCMs were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results

  6. pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol-b-PEG-b-(PAE-g-cholesterol for anticancer drug delivery and controlled release

    Directory of Open Access Journals (Sweden)

    Huang X

    2017-03-01

    Full Text Available Xiangxuan Huang,1 Wenbo Liao,1 Gang Zhang,1 Shimin Kang,1 Can Yang Zhang2 1School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA Abstract: A novel amphiphilic pH-sensitive triblock polymer brush (poly(β-amino esters-g-cholesterol-b-poly(ethylene glycol-b-(poly(β-amino esters-g-cholesterol ((PAE-g-Chol-b-PEG-b-(PAE-g-Chol was designed and synthesized successfully through a three-step reaction, and their self-assembled polymeric micelles were used as hydrophobic anticancer drug delivery carriers to realize effectively controlled release. The critical micelle concentrations were 6.8 µg/mL, 12.6 µg/mL, 17.4 µg/mL, and 26.6 µg/mL at pH values of 7.4, 6.5, 6.0, and 5.0, respectively. The trend of critical micelle concentrations indicated that the polymer had high stability that could prolong the circulation time in the body. The hydrodynamic diameter and zeta potential of the polymeric micelles were influenced significantly by the pH values. As pH decreased from 7.4 to 5.0, the particle size and zeta potential increased from 205.4 nm to 285.7 nm and from +12.7 mV to +47.0 mV, respectively. The pKb of the polymer was confirmed to be approximately 6.5 by the acid–base titration method. The results showed that the polymer had sharp pH-sensitivity because of the protonation of the amino groups, resulting in transformation of the PAE segment from hydrophobic to hydrophilic. Doxorubicin-loaded polymeric micelles were prepared with a high loading content (20% and entrapment efficiency (60% using the dialysis method. The in vitro results demonstrated that drug release rate and cumulative release were obviously dependent on pH values. Furthermore, the drug release mechanism was also controlled by the pH values. The polymer had barely any cytotoxicity, whereas the

  7. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    Science.gov (United States)

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  8. Phospholipid complex enriched micelles: A novel drug delivery approach for promoting the antidiabetic effect of repaglinide.

    Science.gov (United States)

    Kassem, Ahmed Alaa; Abd El-Alim, Sameh Hosam; Basha, Mona; Salama, Abeer

    2017-03-01

    To enhance the oral antidiabetic effect of repaglinide (RG), a newly emerging approach, based on the combination of phospholipid complexation and micelle techniques, was employed. Repaglinide-phospholipid complex (RG-PLC) was prepared by the solvent-evaporation method then characterized using Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XPRD). The results revealed obvious disappearance of the characteristic peaks of the prepared RG-PLCs confirming the formation of drug-phospholipid complex. RG-PLC enriched micelles (RG-PLC-Ms) were prepared by the solvent-evaporation technique employing poloxamer 188 as surfactant. The prepared RG-PLC-Ms showed high drug encapsulation efficiencies (93.81-99.38%), with nanometric particle diameters (500.61-665.32nm) of monodisperse distribution and high stability (Zeta potential < -29.8mV). The in vitro release of RG from RG-PLC-Ms was pH-dependant according to the release media. A higher release pattern was reported in pH=1.2 compared to a more retarded release in pH=6.8 owing to two different kinetics of drug release. Oral antidiabetic effect of two optimized RG-PLC-M formulations was evaluated in an alloxan-induced diabetic rat model for 7-day treatment protocol. The two investigated formulations depicted normal blood glucose, serum malondialdehyde and insulin levels as well as an improved lipid profile, at the end of daily oral treatment, in contrast to RG marketed tablets implying enhanced antidiabetic effect of the drug. Hence, phospholipid-complex enriched micelles approach holds a promising potential for promoting the antidiabetic effect of RG. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    Science.gov (United States)

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  10. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang CY

    2014-10-01

    Full Text Available Can Yang Zhang, Di Xiong, Yao Sun, Bin Zhao, Wen Jing Lin, Li Juan Zhang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China Abstract: A novel amphiphilic triblock pH-sensitive poly(ß-amino ester-g-poly(ethylene glycol methyl ether-cholesterol (PAE-g-MPEG-Chol was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. Keywords: micelle, pH-sensitive, cholesterol, poly(ß-amino ester, drug delivery

  11. Imprinted-like biopolymeric micelles as efficient nanovehicles for curcumin delivery.

    Science.gov (United States)

    Zhang, Lili; Qi, Zeyou; Huang, Qiyu; Zeng, Ke; Sun, Xiaoyi; Li, Juan; Liu, You-Nian

    2014-11-01

    To enhance the solubility and improve the bioavailability of hydrophobic curcumin, a new kind of imprinted-like biopolymeric micelles (IBMs) was designed. The IBMs were prepared via co-assembly of gelatin-dextran conjugates with hydrophilic tea polyphenol, then crosslinking the assembled micelles and finally removing the template tea polyphenol by dialysis. The obtained IBMs show selective binding for polyphenol analogous drugs over other drugs. Furthermore, curcumin can be effectively encapsulated into the IBMs with 5×10(4)-fold enhancement of aqueous solubility. We observed the sustained drug release behavior from the curcumin-loaded IBMs (CUR@IBMs) in typical biological buffers. In addition, we found the cell uptake of CUR@IBMs is much higher than that of free curcumin. The cell cytotoxicity results illustrated that CUR@IBMs can improve the growth inhibition of HeLa cells compared with free curcumin, while the blank IBMs have little cytotoxicity. The in vivo animal study demonstrated that the IBMs could significantly improve the oral bioavailability of curcumin. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    Science.gov (United States)

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-04-11

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  13. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  14. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  15. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  16. Photophysical properties of pyronin dyes in reverse micelles of AOT

    Energy Technology Data Exchange (ETDEWEB)

    Bayraktutan, Tuğba; Meral, Kadem; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr

    2014-01-15

    The photophysical properties of pyronin B (PyB) and pyronin Y (PyY) in reverse micelles formed with water/sodium bis (2-ethyl-1-hexyl) sulfosuccinate (AOT)/n-heptane were investigated by UV–vis absorption, steady-state and time-resolved fluorescence spectroscopy techniques. This study was carried out a wide range of reverse micelle sizes, with hydrodynamic radii ranging from 1.85 to 9.38 nm. Significant photophysical parameters as band shifts, fluorescence quantum yields and fluorescence lifetimes were determined to understand how photophysical and spectroscopic features of the dye compounds were affected by the variation of reverse micelle sizes. In this regard, control of reverse micelle size by changing W{sub 0}, the molar ratio of water to surfactant, allowed tuning the photophysical properties of the dyes in organic solvent via reverse micelle. Non-fluorescent H-aggregates of pyronin dyes were observed for the smaller reverse micelles whereas an increase in the reverse micelle size induced an increment in the amount of dye monomers instead of dye aggregates. Thus, the fluorescence intensities of the dyes were improved by increasing W{sub 0} due to the predomination of the fluorescent dye monomers. As a result, the fluorescence quantum yields also increased. The fluorescence lifetimes of the dyes in the reverse micelles were determined by the time-resolved fluorescence decay studies. Evaluation of the fluorescence lifetimes calculated for pyronin dyes in the reverse micelles showed that the size of reverse micelle affected the fluorescence lifetimes of pyronin dyes. -- Highlights: • The photophysical properties of pyronin dyes were examined by spectroscopic techniques. • Optical properties of the dyes were tuned by changing of W{sub 0} values. • The fluorescence lifetime and quantum yield values of the dyes in reverse micelles were discussed.

  17. Gravity Probe B Encapsulated

    Science.gov (United States)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  18. Sclerosing Encapsulating Peritonitis; Review

    Directory of Open Access Journals (Sweden)

    Norman O. Machado

    2016-05-01

    Full Text Available Sclerosing encapsulating peritonitis (SEP is a rare chronic inflammatory condition of the peritoneum with an unknown aetiology. Also known as abdominal cocoon, the condition occurs when loops of the bowel are encased within the peritoneal cavity by a membrane, leading to intestinal obstruction. Due to its rarity and nonspecific clinical features, it is often misdiagnosed. The condition presents with recurrent episodes of small bowel obstruction and can be idiopathic or secondary; the latter is associated with predisposing factors such as peritoneal dialysis or abdominal tuberculosis. In the early stages, patients can be managed conservatively; however, surgical intervention is necessary for those with advanced stage intestinal obstruction. A literature review revealed 118 cases of SEP; the mean age of these patients was 39 years and 68.0% were male. The predominant presentation was abdominal pain (72.0%, distension (44.9% or a mass (30.5%. Almost all of the patients underwent surgical excision (99.2% without postoperative complications (88.1%.

  19. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  20. Encapsulated microsensors for reservoir interrogation

    Science.gov (United States)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  1. Evaluation of in vitro and in vivo antitumor effects of gambogic acid-loaded layer-by-layer self-assembled micelles.

    Science.gov (United States)

    Ke, Zhongcheng; Yang, Lei; Wu, Hao; Li, Zihao; Jia, Xiaobin; Zhang, Zhenghai

    2018-04-11

    This study aimed to develop a novel type of multilayer micelle using protamine (PRM) and hyaluronic acid (HA) for the delivery of gambogic acid (GA). GA-loaded micelles (GA-M) were simply andrapidly prepared using lecithin/solutol HS15 using a film-dispersion method. PRM and HA were added in sequence to form layer-by-layer self-assembled micelles (HA-PRM-GA-M), in which particle size, zeta potential, particle morphology, drug loading, encapsulation efficiency, and in vitro release were investigated. Surface charge reversal demonstrated that rapid HA detachment exposed PRM, leading to activation of a "protonsponge"effect in the hyaluronidase (HAase)-rich tumor microenvironment. Compared with coumarin 6-loaded micelles (C6-M), more efficient intracellular trafficking was observed for HA-PRM-C6-M, which is associated with the endosomal/lysosomal escaping ability of the exposed PRM. In vivo imaging showed increased enrichment of near infrared fluorescent dye (DIR)-loaded HA-PRM-DIR-M at the tumor site, suggesting that HA enhanced the active tumor targeting of GA. Furthermore, HA-PRM-GA-M showed the stronger antitumor activity than GA and GA-M against human lung adenocarcinoma (A549) tumor xenografts in nude mice. In summary, our findings show the potential of HA-PRM-GA-M as a novel intravenous drug carrier for the treatment of lung cancer. Copyright © 2018. Published by Elsevier B.V.

  2. Lactoferrin binding to transglutaminase cross-linked casein micelles

    NARCIS (Netherlands)

    Anema, S.G.; de Kruif, C.G.|info:eu-repo/dai/nl/073609609

    2012-01-01

    Casein micelles in skim milk were either untreated (untreated milk) or were cross-linked using transglutaminase (TGA-milk). Added lactoferrin (LF) bound to the casein micelles and followed Langmuir adsorption isotherms. The adsorption level was the same in both milks and decreased the micellar zeta

  3. Characterization of Phospholipid Mixed Micelles by Translational Diffusion

    International Nuclear Information System (INIS)

    Chou, James J.; Baber, James L.; Bax, Ad

    2004-01-01

    The concentration dependence of the translational self diffusion rate, D s , has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D s =D o (1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D s at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15 N relaxation data

  4. The thermal signature of wormlike micelles

    International Nuclear Information System (INIS)

    Ito, Thiago Heiji; Clinckspoor, Karl Jan; Nunes de Souza, Renato; Sabadini, Edvaldo

    2016-01-01

    Highlights: • Giant micelle formation has a characteristic exothermic profile, for these systems. • The enthalpy of formation is dependent on the planarity of the co-solute. • The affinity is dependent on the enthalpy and critical concentration of the species. • The higher the affinity, the higher thermal stability and size of the micelles. - Abstract: The variations in enthalpy (Δ f H WLM ) and critical concentrations associated with the formation of wormlike micelles (WLMs) from combinations of tetradecyltrimethylammonium bromide (C 14 TAB) and various aromatic co-solutes were determined using isothermal titration calorimetry (ITC). Three groups of aromatic molecules were investigated: neutral (phenol), benzoate derivatives and cinnamate derivatives. In addition, the thermal stabilities of the WLMs (of hexadecyltrimethylammonium bromide, C 16 TAB) and the aromatic co-solutes of the three groups were investigated by measuring the temperatures at which the WLMs break and lose their ability to produce hydrodynamic drag reduction. A comparison of the results was used to establish correlations between the spontaneity of WLMs formation, their thermal stability and the molecular structure of the aromatic co-solutes. A characteristic thermal pattern with four steps was observed when WLMs are formed, that depended on the co-solute structure. Micellar growth was found to be an exothermic process, related to the fusion of the end caps allied with the incorporation of more co-solutes. The co-solutes that had negative charge and were able to maintain planar configuration demonstrated stronger interactions and also showed higher thermal stability through drag reduction.

  5. Polymeric micellar pH-sensitive drug delivery system for doxorubicin.

    Science.gov (United States)

    Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel

    2005-03-02

    A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.

  6. Quantification of encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods.

    Directory of Open Access Journals (Sweden)

    Anja Bauermeister

    Full Text Available Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings poses a potential risk to jeopardize scientific exploration of other celestial bodies. This is particularly critical for spacecraft components intended for hard landing. So far, it remained unclear if polymers are indeed a source of microbial contamination. In addition, data with respect to survival of microbes during the embedding/polymerization process are sparse. In this study we developed testing strategies to quantitatively examine encapsulated bioburden in five different polymers used frequently and in large quantities on spaceflight hardware. As quantitative extraction of the bioburden from polymerized (solid materials did not prove feasible, contaminants were extracted from uncured precursors. Cultivation-based analyses revealed <0.1-2.5 colony forming units (cfu per cm3 polymer, whereas quantitative PCR-based detection of contaminants indicated considerably higher values, despite low DNA extraction efficiency. Results obtained from this approach reflect the most conservative proxy for encapsulated bioburden, as they give the maximum bioburden of the polymers irrespective of any additional physical and chemical stress occurring during polymerization. To address the latter issue, we deployed an embedding model to elucidate and monitor the physiological status of embedded Bacillus safensis spores in a cured polymer. Staining approaches using AlexaFluor succinimidyl ester 488 (AF488, propidium monoazide (PMA, CTC (5-cyano-2,3-diotolyl tetrazolium chloride demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld 2216 B/A. Using the methods presented here, we were able to estimate the worst case contribution of encapsulated bioburden in different polymers to the bioburden of spacecraft. We demonstrated that spores were not affected by polymerization processes. Besides Planetary

  7. Synthesis of polyalkylacrylate nanolatexes by microemulsion polymerization method

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2012-12-01

    Full Text Available The paper concerns with the radical polymerization of [octadecyl acrylate (ODA, isooctyl acrylate (iso-OA and α-olefins 1-Octene (n-O]. These microemulsions were stabilized by sodium dodecyl sulfate (SDS and initiated by water-soluble initiator potassium persulfate (KPS. The nanolatex particle sizes were determined by transmission electron microscope (TEM. They were situated between 10 and 100 nm. The microstructures were confirmed by FT-IR and molecular weights determined by Gel permeation chromatography (GPC. The obtained M. wt. were (≈70 × 103, 101 × 103 and 153 × 103 g/mol. The polydispersity, molecular weights, and particle sizes were discussed in the light of micelle formation and shape of the alkyl group via emulsion polymerization.

  8. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers

    Directory of Open Access Journals (Sweden)

    Benjamin Weber

    2016-12-01

    Full Text Available Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth” liposomes. While poly-(ethylene glycol (PEG can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar is based on the endogenous amino acid sarcosine (N-methylated glycine, but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end group functionalization. Size exclusion chromatography (SEC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis reveals that lipopeptoids with a degree of polymerization between 10 and 100, dispersity indices around 1.1, and the absence of detectable side products are directly accessible by nucleophilic ring opening polymerization (ROP. The values for the critical micelle concentration for these lipopolymers are between 27 and 1181 mg/L for the ones with C18 hydrocarbon chain or even higher for the C14 counterparts. The lipopolypeptoid based micelles have hydrodynamic diameters between 10 and 25 nm, in which the size scales with the length of the PSar block. In addition, C18PSar50 can be incorporated in 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC monolayers up to a polymer content of 3%. Cyclic compression and expansion of the monolayer showed no significant loss of polymer, indicating a stable monolayer. Therefore, lipopolypeptoids can not only be synthesized under living conditions, but my also provide a platform to substitute PEG-based lipopolymers as excipients and/or in lipid formulations.

  9. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    Science.gov (United States)

    Hanoka, Jack I.

    2003-07-01

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  10. Synthesis and Characterization of Cleavable Core-Cross-Linked Micelles Based on Amphiphilic Block Copolypeptoids as Smart Drug Carriers.

    Science.gov (United States)

    Li, Ang; Zhang, Donghui

    2016-03-14

    Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.

  11. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Science.gov (United States)

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  12. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    Science.gov (United States)

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  13. A Stepwise "Micellization-Crystallization" Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ligeng; Lodge, Timothy P; Hillmyer, Marc A [UMM

    2012-11-26

    Micellar polymorphism from block copolymers has been well documented, but most attention has focused on noncrystalline hydrophobic systems. We have investigated the micellization in water of model diblock copolymers with semicrystalline polyethylene (PE) as the core-forming component. Poly(N,N-dimethylacrylamide)–polyethylene (AE) diblock copolymers were synthesized by a combination of anionic and RAFT polymerizations. The bulk nanostructures were probed by small-angle X-ray scattering (SAXS) and AE diblock copolymers were found to be moderately segregated at 140 °C. Dispersions of AE amphiphiles in water were prepared by direct dissolution at 120 °C (i.e., above the melting transition of PE) followed by cooling to 25 °C. By manipulating the composition of AE diblock copolymers, discrete structures with oblate ellipsoidal, cylindrical, and bilayer morphologies were produced, as evidenced in cryogenic transmission electron microscopy (cryo-TEM). The self-assembled aggregates were also studied by small-angle neutron scattering (SANS) and dilute solution rheology. The semicrystalline nature of the nanostructures was further revealed by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). A stepwise “micellization–crystallization” process was proposed as the micelle formation mechanism, as supported by the existence of similar nanostructures at 120 °C using SANS. This strategy holds promise for a general protocol toward the production of giant wormlike micelles and vesicles with semicrystalline polymeric cores.

  14. Enhanced solubility and targeted delivery of curcumin by lipopeptide micelles.

    Science.gov (United States)

    Liang, Ju; Wu, Wenlan; Lai, Danyu; Li, Junbo; Fang, Cailin

    2015-01-01

    A lipopeptide (LP)-containing KKGRGDS as the hydrophilic heads and lauric acid (C12) as the hydrophobic tails has been designed and prepared by standard solid-phase peptide synthesis technique. LP can self-assemble into spherical micelles with the size of ~30 nm in PBS (phosphate buffer saline) (pH 7.4). Curcumin-loaded LP micelles were prepared in order to increase the water solubility, sustain the releasing rate, and improve the tumor targeted delivery of curcumin. Water solubility, cytotoxicity, in vitro release behavior, and intracellular uptake of curcumin-loaded LP micelles were investigated. The results showed that LP micelles can increase the water solubility of curcumin 1.1 × 10(3) times and sustain the release of curcumin in a low rate. Curcumin-loaded LP micelles showed much higher cell inhibition than free curcumin on human cervix carcinoma (HeLa) and HepG2 cells. When incubating these curcumin-loaded micelles with HeLa and COS7 cells, due to the over-expression of integrins on cancer cells, the micelles can efficiently use the tumor-targeting function of RGD (functionalized peptide sequences: Arg-Gly-Asp) sequence to deliver the drug into HeLa cells, and better efficiency of the self-assembled LP micelles for curcumin delivery than crude curcumin was also confirmed by LCSM (laser confocal scanning microscope) assays. Combined with the enhanced solubility and higher cell inhibition, LP micelles reported in this study may be promising in clinical application for targeted curcumin delivery.

  15. Development of test models to quantify encapsulated bioburden in spacecraft polymer materials by cultivation-dependent and molecular methods

    Science.gov (United States)

    Bauermeister, Anja; Moissl-Eichinger, Christine; Mahnert, Alexander; Probst, Alexander; Flier, Niwin; Auerbach, Anna; Weber, Christina; Haberer, Klaus; Boeker, Alexander

    Bioburden encapsulated in spacecraft polymers (such as adhesives and coatings) poses a potential risk to scientific exploration of other celestial bodies, but it is not easily detectable. In this study, we developed novel testing strategies to estimate the quantity of intrinsic encapsulated bioburden in polymers used frequently on spaceflight hardware. In particular Scotch-Weld (TM) 2216 B/A (Epoxy adhesive); MAP SG121FD (Silicone coating), Solithane (®) 113 (Urethane resin); ESP 495 (Silicone adhesive); and Dow Corning (®) 93-500 (Silicone encapsulant) were investigated. As extraction of bioburden from polymerized (solid) materials did not prove feasible, a method was devised to extract contaminants from uncured polymer precursors by dilution in organic solvents. Cultivation-dependent analyses showed less than 0.1-2.5 colony forming units (cfu) per cm³ polymer, whereas quantitative PCR with extracted DNA indicated considerably higher values, despite low DNA extraction efficiency. Results obtained by this method reflected the most conservative proxy for encapsulated bioburden. To observe the effect of physical and chemical stress occurring during polymerization on the viability of encapsulated contaminants, Bacillus safensis spores were embedded close to the surface in cured polymer, which facilitated access for different analytical techniques. Staining by AlexaFluor succinimidyl ester 488 (AF488), propidium monoazide (PMA), CTC (5-cyano-2,3-diotolyl tetrazolium chloride) and subsequent confocal laser scanning microscopy (CLSM) demonstrated that embedded spores retained integrity, germination and cultivation ability even after polymerization of the adhesive Scotch-Weld™ 2216 B/A.

  16. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  17. Kinetic assembly of block copolymers in solution helical cylindrical micelles and patchy nanoparticles

    Science.gov (United States)

    Zhong, Sheng

    There is always an interest to understand how molecules behave under different conditions. One application of this knowledge is to self-assemble molecules into increasingly complex structures in a simple fashion. Self-assembly of amphiphilic block copolymer in solution has produced a large variety of nanostructures through the manipulation in polymer chemistry, assembly environment, and additives. Moreover, some reports suggest the formation of many polymeric assemblies is driven by kinetic process. The goal of this dissertation is to study the influence of kinetics on the assembly of block copolymer. The study shows kinetic control can be a very effective way to make novel polymeric nanostructures. Two examples discussed here are helical cylindrical micelles and patchy nanoparticles. Helical cylindrical micelles are made from the co-assembly of amphiphilic triblock copolymer poly(acrylic acid)-block-poly(methyl acrylate)- block-polystyrene and organoamine molecules in a mixture of tetrahydrofuran (THF) and water (H2O). This system has already shown promise of achieving many assembled structures. The unique aspects about this system are the use of amine molecules to complex with acid groups and the existence of cosolvent system. Application of amine molecules offers a convenient control over assembled morphology and the introduction of PMA-PS selective solvent, THF, promotes the mobility of the polymer chains. In this study, multivalent organoamine molecules, such as diethylenetriamine and triethylenetetramine, are used to interact with block copolymer in THF/water mixture. As expected, the assembled morphologies are dependent on the polymer architecture, selection and quantity of the organoamine molecules, and solution composition. Under the right conditions, unprecedented, multimicrometer-long, supramolecular helical cylindrical micelles are formed. Both single-stranded and double-stranded helices are found in the same system. These helical structures share

  18. Self-assembly of micelles into designed networks

    Directory of Open Access Journals (Sweden)

    Pyatenko Alexander

    2007-01-01

    Full Text Available AbstractThe EO20PO70EO20(molecular weight 5800 amphiphile as a template is to form dispersed micelle structures. Silver nanoparticles, as inorganic precursors synthesized by a laser ablation method in pure water, are able to produce the highly ordered vesicles detected by TEM micrography. The thickness of the outer layer of a micelle, formed by the silver nanoparticles interacting preferentially with the more hydrophilic EO20block, was around 3.5 nm. The vesicular structure ensembled from micelles is due to proceeding to the mixture of cubic and hexagonal phases.

  19. Depletion interaction of casein micelles and an exocellular polysaccharide

    Science.gov (United States)

    Tuinier, R.; Ten Grotenhuis, E.; Holt, C.; Timmins, P. A.; de Kruif, C. G.

    1999-07-01

    Casein micelles become mutually attractive when an exocellular polysaccharide produced by Lactococcus lactis subsp. cremoris NIZO B40 (hereafter called EPS) is added to skim milk. The attraction can be explained as a depletion interaction between the casein micelles induced by the nonadsorbing EPS. We used three scattering techniques (small-angle neutron scattering, turbidity measurements, and dynamic light scattering) to measure the attraction. In order to connect the theory of depletion interaction with experiment, we calculated structure factors of hard spheres interacting by a depletion pair potential. Theoretical predictions and all the experiments showed that casein micelles became more attractive upon increasing the EPS concentration.

  20. Photophysical study of a charge transfer oxazole dye in micelles: Role of surfactant headgroups

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Jyotirmay [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Sarkar, Yeasmin; Parui, Partha Pratim [Department of Chemistry, Jadavpur University, Kolkata 700032 (India); Chakraborty, Sandipan [Department of Microbiology, University of Calcutta, Kolkata 700019 (India); Biswas, Suman [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India); Das, Ranjan, E-mail: ranjan.das68@gmail.com [Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-07-15

    Photophysics of 5-(4′′-dimethylaminophenyl)-2-(4′-sulfophenyl)oxazole, sodium salt (DMO) which undergoes intramolecular charge transfer in the excited state was studied in micelles. In the cationic and the nonionic micelles, significantly higher fluorescence quantum yield is observed in comparison to the anionic micelles, due to much lower accessibility of DMO to the water molecules in the former micelles than the latter. Time-resolved fluorescence decays were characterized by a fast (τ{sub 1}) and a slow (τ{sub 2}) component of decay in all the micelles. The fast decay component (τ{sub 1}) increases significantly in going from the anionic micelles to the cationic micelles, because of the poorly hydrated headgroup region of the latter micelles compared to the former. Furthermore, much higher value of the slow component of decay (τ{sub 2}) is observed for the cationic and the neutral micelles than the anionic micelles. This is attributed to the increased penetration of water molecules into the micellar core of the anionic micelles compared to the cationic and the neutral micelles. - Highlights: • Photophysics of the fluorophore are remarkably different in the cationic and the anionic micelles. • Differential hydration of the surfactant headgroups gives rise to significantly different fluorescence quantum yield and lifetime in oppositely charged micelles. • Electrostatic interactions fine tune location of the fluorophore in the micelle–water interface of ionic micelles.

  1. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-01-01

    draining lymph nodes. As early as 90 min post injection ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24 h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8+ T cell activation. PMID:24698946

  2. Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8(+) T cell responses.

    Science.gov (United States)

    Keller, Salka; Wilson, John T; Patilea, Gabriela I; Kern, Hanna B; Convertine, Anthony J; Stayton, Patrick S

    2014-10-10

    in the draining lymph nodes. As early as 90min post injection, ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non-pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8(+) T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Do encapsulated heat storage materials really retain their original thermal properties?

    Science.gov (United States)

    Chaiyasat, Preeyaporn; Noppalit, Sayrung; Okubo, Masayoshi; Chaiyasat, Amorn

    2015-01-14

    The encapsulation of Rubitherm®27 (RT27), which is one of the most common commercially supplied heat storage materials, by polystyrene (PS), polydivinyl benzene (PDVB) and polymethyl methacrylate (PMMA) was carried out using conventional radical microsuspension polymerization. The products were purified to remove free RT27 and free polymer particles without RT27. In the cases of PS and PDVB microcapsules, the latent heats of melting and crystallization for RT27 ( and , J/g-RT27) were clearly decreased by the encapsulation. On the other hand, those of the PMMA microcapsules were the same as pure RT27. A supercooling phenomenon was observed not only for PS and PDVB but also for the PMMA microcapsules. These results indicate that the thermal properties of the heat storage materials encapsulated depend on the type of polymer shells, i.e., encapsulation by polymer shell changes the thermal properties of RT27. This is quite different from the idea of other groups in the world, in which they discussed the thermal properties based on the ΔHm and ΔHc values expressed in J/g-capsule, assuming that the thermal properties of the heat storage materials are not changed by the encapsulation. Hereafter, this report should raise an alarm concerning the "wrong" common knowledge behind developing the encapsulation technology of heat storage materials.

  4. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  5. The study of size and stability of n-butylcyanoacrylate nanocapsule suspensions encapsulating green grass fragrance

    Science.gov (United States)

    Zhu, G. Y.; Lin, C. T.; Chen, J. M.; Lei, D. M.; Zhu, G. X.

    2018-01-01

    Green grass fragrance has been widely used in many fields. However, fragrances are volatile compounds that do not last long. In order to prolong its odor, nanocapsules encapsulated green grass fragrance were prepared. The paper deals with the preparation of green grass fragrance nanocapsules by emulsion polymerization. N-butylcyanoacrylate (BCA) with excellent biocompatibility and biodegradability was used as encapsulant. The nanocapsule suspension systems were characterized and its stability was investigated. The physicochemical properties of polymeric nanocapsules (average diameter and polydispersity) were evaluated as a function of time to assess the system stability. The result showed that the system (containing 0.8% of green grass fragrance, with a polydispersity index (PDI) near 0.1 and an average diameter in the range of 20-30 nm) was an ideal state and relatively stable. Besides, the distinction of stability of three nanocapsule suspensions with different green grass fragrance content was also obvious from scanning electron microscopy (SEM).

  6. Encapsulated Curcumin for Transdermal Administration

    African Journals Online (AJOL)

    Purpose: To develop a proniosomal carrier system of curcumin for transdermal delivery. Methods: Proniosomes of curcumin were prepared by encapsulation of the drug in a mixture of Span 80, cholesterol and diethyl ether by ether injection method, and then investigated as a transdermal drug delivery system (TDDS).

  7. Device for encapsulating radioactive materials

    International Nuclear Information System (INIS)

    Suthanthiran, K.

    1994-01-01

    A capsule for encapsulating radioactive material for radiation treatment comprising two or more interfitting sleeves, wherein each sleeve comprises a closed bottom portion having a circumferential wall extending therefrom, and an open end located opposite the bottom portion. The sleeves are constructed to fit over one another to thereby establish an effectively sealed capsule container. 3 figs

  8. Encapsulation of polymer photovoltaic prototypes

    DEFF Research Database (Denmark)

    Krebs, Frederik C

    2006-01-01

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows...

  9. Reactants encapsulation and Maillard Reaction

    NARCIS (Netherlands)

    Troise, A.D.; Fogliano, V.

    2013-01-01

    In the last decades many efforts have been addressed to the control of Maillard Reaction products in different foods with the aim to promote the formation of compounds having the desired color and flavor and to reduce the concentration of several potential toxic molecules. Encapsulation, already

  10. Technology of mammalian cell encapsulation

    NARCIS (Netherlands)

    Uludag, H; De Vos, P; Tresco, PA

    2000-01-01

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates

  11. Structure and reactivity in amphiphile-water micelles

    International Nuclear Information System (INIS)

    Chevalier, Yves

    1985-01-01

    Following a review of the general properties of micelles, this report contains two parts: - A structural study of octylphosphate micelles. Important structural changes have been evidenced by mean of small angle neutron scattering as the electrical charge of the interface is varied. The NMR relaxation study of the conformation of the hydrocarbon chains has shown that the micellar core is disordered in contrast with the interface which is rather structured. The diffusion motions in the interface and the segmental motions of the chains are fast. - Studies on the reactivity in micelles have been carried out. A large micellar effect on the complexation of transition ions by amphiphilic ligands is evidenced. The problem of solute localization in micelles is developed with few examples. (author) [fr

  12. Influence of succinylation on physicochemical property of yak casein micelles.

    Science.gov (United States)

    Yang, Min; Yang, Jitao; Zhang, Yuan; Zhang, Weibing

    2016-01-01

    Succinylation is a chemical-modification method that affects the physicochemical characteristics and functional properties of proteins. This study assessed the influence of succinylation on the physicochemical properties of yak casein micelles. The results revealed that surface hydrophobicity indices decreased with succinylation. Additionally, denaturation temperature and denaturation enthalpy decreased with increasing succinylation level, except at 82%. The buffering properties of yak casein micelles were affected by succinylation. It was found that chemical modification contributed to a slight shift of the buffering peak towards a lower pH value and a markedly increase of the maximum buffering values of yak casein micelles at pH 4.5-6.0 and pH casein micellar hydration and whiteness values. The findings obtained from this study will provide the basic information on the physicochemical properties of native and succinylated yak casein micelles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Interactions of casein micelles with calcium phosphate particles.

    Science.gov (United States)

    Tercinier, Lucile; Ye, Aiqian; Anema, Skelte G; Singh, Anne; Singh, Harjinder

    2014-06-25

    Insoluble calcium phosphate particles, such as hydroxyapatite (HA), are often used in calcium-fortified milks as they are considered to be chemically unreactive. However, this study showed that there was an interaction between the casein micelles in milk and HA particles. The caseins in milk were shown to bind to the HA particles, with the relative proportions of bound β-casein, αS-casein, and κ-casein different from the proportions of the individual caseins present in milk. Transmission electron microscopy showed no evidence of intact casein micelles on the surface of the HA particles, which suggested that the casein micelles dissociated either before or during binding. The HA particles behaved as ion chelators, with the ability to bind the ions contained in the milk serum phase. Consequently, the depletion of the serum minerals disrupted the milk mineral equilibrium, resulting in dissociation of the casein micelles in milk.

  14. Enzymatically triggered multifunctional delivery system based on hyaluronic acid micelles

    KAUST Repository

    Deng, Lin; Wang, Guangchao; Ren, Jian; Zhang, Bei; Yan, Jingjing; Li, Wengang; Khashab, Niveen M.

    2012-01-01

    (WI38). Higher Ch-HA micelles uptake was seen in cancer cells versus normal cells. Consequently, DOX release was elevated in cancer cells causing higher cytotoxicity and enhanced cell death. © 2012 The Royal Society of Chemistry.

  15. Gadolinium-Encapsulating Iron Oxide Nanoprobe as Activatable NMR/MRI Contrast Agent

    Science.gov (United States)

    Santra, Santimukul; Jativa, Samuel D.; Kaittanis, Charalambos; Normand, Guillaume; Grimm, Jan; Perez, J. Manuel

    2012-01-01

    Herein we report a novel gadolinium-encapsulating iron oxide nanoparticle-based activatable NMR/MRI nanoprobe. In our design, Gd-DTPA is encapsulated within the polyacrylic acid (PAA) polymer coating of a superparamagnetic iron oxide nanoparticle (IO-PAA) yielding a composite magnetic nanoprobe (IO-PAA-Gd-DTPA) with quenched longitudinal spin-lattice magnetic relaxation (T1). Upon release of the Gd-DTPA complex from the nanoprobe's polymeric coating in acidic media, an increase in the T1 relaxation rate (1/T1) of the composite magnetic nanoprobe was observed, indicating a dequenching of the nanoprobe with a corresponding increase in the T1-weighted MRI signal. When a folate-conjugated nanoprobe was incubated in HeLa cells, a cancer cell line overexpressing folate receptors, an increase in the 1/T1 signal was observed. This result suggests that upon receptor-mediated internalization, the composite magnetic nanoprobe degraded within the cell's lysosome acidic (pH = 5.0) environment, resulting in an intracellular release of Gd-DTPA complex with subsequent T1 activation. No change in T1 was observed when the Gd-DTPA complex was chemically conjugated on the surface of the nanoparticle's polymeric coating or when encapsulated in the polymeric coating of a non-magnetic nanoparticle. These results confirmed that the observed (T1) quenching of the composite magnetic nanoprobe is due to the encapsulation and close proximity of the Gd ion to the nanoparticles superparamagnetic iron oxide (IO) core. In addition, when an anticancer drug (Taxol) was co-encapsulated with the Gd-DTPA within the folate receptor targeting composite magnetic nanoprobe, the T1 activation of the probe coincide with the rate of drug release and corresponding cytotoxic effect in cell culture studies. Taken together, these results suggest that our activatable T1 nanoagent could be of great importance for the detection of acidic tumors and assessment of drug targeting and release by MRI. PMID:22809405

  16. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  17. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  18. A neutron scattering study of triblock copolymer micelles

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  19. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  20. Encapsulating contact allergens in liposomes, ethosomes, and polycaprolactone may affect their sensitizing properties

    DEFF Research Database (Denmark)

    Madsen, Jakob Torp; Vogel, Stefan; Johansen, Jeanne Duus

    2011-01-01

    Attempts to improve formulation of topical products are a continuing process and the development of micro- and nanovesicular systems as well as polymeric microparticles has led to marketing of topical drugs and cosmetics using these technologies. Encapsulation of some well-known contact allergens...... in ethanolic liposomes have been reported to enhance allergenicity compared with the allergens in similar vehicles without liposomes. The present report includes data on more sensitization studies using the mouse local lymph node assay with three contact allergens encapsulated in different dermal drug...... dichromate compared with control solutions. However, encapsulating the lipophilic contact allergen dinitrochlorobenzene (DNCB) in polycaprolactone reduced the sensitizing capacity to 1211 ± 449 compared with liposomes (7602 ± 2658) and in acetone:olive oil (4:1) (5633 ± 666). The same trend was observed...

  1. Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study

    Science.gov (United States)

    Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.

    2018-05-01

    The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.

  2. EXTRACELLULAR MIMETICS: A COMPARATIVE EVALUATION OF CELL ENCAPSULATION UTILIZING HYDROGELS AND SCAFFOLDS

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vieira Grinet

    2017-01-01

    Full Text Available An in vitro encapsulation platform utilizing hydrogels and bone matrix (BM scaffolds to investigate the effects of microenvironmental parameters on encapsulated goat mesenchymal stem cells (gMSC was presented. The base encapsulation matrix was composed of a biocompatible hydrogel formed through a photoinitiated polymerization process. Different polymer concentrations were used to compare the effects of hydrogel crosslinking density on physical properties, as well as on cell viability. The potential of BM to support the growth and differentiation of gMSC was also analyzed. Both methods were compared in order to analyze viability. Structures that better allow flow of oxygen showed more promising results, whereas BM structures require a better evaluation method for concrete results.

  3. Micelle swelling agent derived cavities for increasing hydrophobic organic compound removal efficiency by mesoporous micelle@silica hybrid materials

    KAUST Repository

    Shi, Yifeng; Li, Bin; Wang, Peng; Dua, Rubal; Zhao, Dongyuan

    2012-01-01

    Mesoporous micelle@silica hybrid materials with 2D hexagonal mesostructures were synthesized as reusable sorbents for hydrophobic organic compounds (HOCs) removal by a facile one-step aqueous solution synthesis using 3-(trimethoxysily)propyl

  4. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    Science.gov (United States)

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  5. Self-assembled polymeric nanocarriers for the targeted delivery of retinoic acid to the hair follicle

    Science.gov (United States)

    Lapteva, Maria; Möller, Michael; Gurny, Robert; Kalia, Yogeshvar N.

    2015-11-01

    Acne vulgaris is a highly prevalent dermatological disease of the pilosebaceous unit (PSU). An inability to target drug delivery to the PSU results in poor treatment efficacy and the incidence of local side-effects. Cutaneous application of nanoparticulate systems is reported to induce preferential accumulation in appendageal structures. The aim of this work was to prepare stable polymeric micelles containing retinoic acid (RA) using a biodegradable and biocompatible diblock methoxy-poly(ethylene glycol)-poly(hexylsubstituted lactic acid) copolymer (MPEG-dihexPLA) and to evaluate their ability to deliver RA to skin. An innovative punch biopsy sample preparation method was developed to selectively quantify follicular delivery; the amounts of RA present were compared to those in bulk skin, (i.e. without PSU), which served as the control. RA was successfully incorporated into micelle nanocarriers and protected from photoisomerization by inclusion of Quinoline Yellow. Incorporation into the spherical, homogeneous and nanometer-scale micelles (dn 400-fold. Drug delivery experiments in vitro showed that micelles were able to deliver RA to porcine and human skins more efficiently than Retin-A® Micro (0.04%), a marketed gel containing RA loaded microspheres, (7.1 +/- 1.1% vs. 0.4 +/- 0.1% and 7.5 +/- 0.8% vs. 0.8 +/- 0.1% of the applied dose, respectively). In contrast to a non-colloidal RA solution, Effederm® (0.05%), both the RA loaded MPEG-dihexPLA polymeric micelles (0.005%) and Retin-A® Micro (0.04%) displayed selectivity for delivery to the PSU with 2-fold higher delivery to PSU containing samples than to control samples. Moreover, the micelle formulation outperformed Retin-A® Micro in terms of delivery efficiency to PSU presenting human skin (10.4 +/- 3.2% vs. 0.6 +/- 0.2%, respectively). The results indicate that the polymeric micelle formulation enabled an increased and targeted delivery of RA to the PSU, potentially translating to a safer and more efficient

  6. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  7. Surface induced ordering of micelles at the solid-liquid interface

    International Nuclear Information System (INIS)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface. The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. copyright 1998 The American Physical Society

  8. Surface induced ordering of micelles at the solid-liquid interface

    DEFF Research Database (Denmark)

    Gerstenberg, M.C.; Pedersen, J.S.; Smith, G.S.

    1998-01-01

    The surface induced ordering of triblock copolymer micelles in aqueous solution was measured with neutron reflectivity far above the critical micelle concentration. The scattering length density profiles showed a clear indication of ordered layers of micelles perpendicular to a quartz surface....... The structure and interactions of the micelles were modeled in detail. The convolution of the center distribution of the micelles, obtained from Monte Carlo simulations of hard spheres at a hard wall, and the projected density of the micelle showed excellent agreement with the experimental profiles. [S1063-651X...

  9. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly

    Science.gov (United States)

    Boott, Charlotte E.; Gwyther, Jessica; Harniman, Robert L.; Hayward, Dominic W.; Manners, Ian

    2017-08-01

    The preparation of well-defined nanoparticles based on soft matter, using solution-processing techniques on a commercially viable scale, is a major challenge of widespread importance. Self-assembly of block copolymers in solvents that selectively solvate one of the segments provides a promising route to core-corona nanoparticles (micelles) with a wide range of potential uses. Nevertheless, significant limitations to this approach also exist. For example, the solution processing of block copolymers generally follows a separate synthesis step and is normally performed at high dilution. Moreover, non-spherical micelles—which are promising for many applications—are generally difficult to access, samples are polydisperse and precise dimensional control is not possible. Here we demonstrate the formation of platelet and cylindrical micelles at concentrations up to 25% solids via a one-pot approach—starting from monomers—that combines polymerization-induced and crystallization-driven self-assembly. We also show that performing the procedure in the presence of small seed micelles allows the scalable formation of low dispersity samples of cylindrical micelles of controlled length up to three micrometres.

  10. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    International Nuclear Information System (INIS)

    Liu Hui; Yi Jianhong

    2009-01-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis

  11. Dosimetric study of a new polymer encapsulated palladium-103 seed

    International Nuclear Information System (INIS)

    Bernard, S; Vynckier, S

    2005-01-01

    The use of low-energy photon emitters for brachytherapy applications, as in the treatment of prostate or ocular tumours, has increased significantly over the last few years. Several new seed models utilizing 103 Pd and 125 I have recently been introduced. Following the TG43U1 recommendations of the AAPM (American Association of Physicists in Medicine) (Rivard et al 2004 Med. Phys. 31 633), dose distributions around these low-energy photon emitters are characterized by the dose rate constant, the radial dose function and the anisotropy function in water. These functions and constants can be measured for each new seed in a solid phantom (i.e. solid water such as WT1) using high spatial resolution detectors such as very small thermoluminescent detectors. These experimental results in solid water must then be converted into liquid water by using Monte Carlo simulations. This paper presents the dosimetric parameters of a new palladium seed, OptiSeed TM (produced by International Brachytherapy (IBt), Seneffe, Belgium), made with a biocompatible polymeric shell and with a design that differs from the hollow titanium encapsulated seed, InterSource 103 , produced by the same company. A polymer encapsulation was chosen by the company IBt in order to reduce the quantity of radioactive material needed for a given dose rate, and to improve the symmetry of the radiation field around the seed. The necessary experimental data were obtained by measurements with LiF thermoluminescent dosimeters (1 mm 3 ) in a solid water phantom (WT1) and then converted to values in liquid water using Monte Carlo calculations (MCNP-4C). Comparison of the results with a previous study by Reniers et al (2002 Appl. Radiat. Isot. 57 805) shows very good agreement for the dose rate constant and for the radial dose function. In addition, the results also indicate an improvement in isotropy compared to a conventional titanium encapsulated seed. The relative dose (anisotropy value relative to 90 deg.) from

  12. Encapsulation of polymer photovoltaic prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Frederik C. [The Danish Polymer Centre, RISOE National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2006-12-15

    A simple and efficient method for the encapsulation of polymer and organic photovoltaic prototypes is presented. The method employs device preparation on glass substrates with subsequent sealing using glass fiber reinforced thermosetting epoxy (prepreg) against a back plate. The method allows for transporting oxygen and water sensitive devices outside a glove box environment after sealing and enables sharing of devices between research groups such that efficiency and stability can be evaluated in different laboratories. (author)

  13. Zeolite encapsulation of H2

    International Nuclear Information System (INIS)

    Cooper, S.; Lakner, J.F.

    1982-08-01

    Experiments with H 2 have shown that it is possible to encapsulate gases in the structure of certain molecular sieves. This method may offer a better means of temporarily storing and disposing of tritium over some others presently in use. The method may also prove safer, and may enable isotope separation, and removal of 3 He. Initial experiments were performed with H 2 to screen potential candidates for use with tritium

  14. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles

    NARCIS (Netherlands)

    Naksuriya, Ornchuma; van Steenbergen, Mies J.; Sastre Torano, Javier; Okonogi, Siriporn; Hennink, Wim E.

    Curcumin, a phenolic compound, possesses many pharmacological activities and is under clinical evaluation to treat different diseases. However, conflicting data about its stability have been reported. In this study, the kinetic degradation of curcumin from a natural curcuminoid mixture under various

  15. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    NARCIS (Netherlands)

    Talelli, M.; Oliveira, S.; Rijcken, C.J.; Pieters, E.H.; Etrych, T.; Ulbrich, K.; van Nostrum, C.F.; Storm, Gerrit; Hennink, W.E.; Lammers, Twan Gerardus Gertudis Maria

    2013-01-01

    Various different passively and actively targeted nanomedicines have been designed and evaluated over the years, in particular for the treatment of cancer. Reasoning that the potential of ligand-modified nanomedicines can be substantially improved if intrinsically active targeting moieties are used,

  16. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.

    Science.gov (United States)

    Jin, Rong; Guo, Xuelian; Dong, Lingli; Xie, Enyuan; Cao, Aoneng

    2017-10-01

    A group of micelles self-assembled from deoxycholic acid-doxorubicin-conjugated dextran (denoted as Dex-DCA-DOX) prodrugs were designed and prepared for pH-triggered drug release and cancer chemotherapy. These prodrugs could be successfully produced by chemically coupling hydrophobic deoxycholic acid (DCA) to dextran hydrazine (denoted as Dex-NHNH 2 ) and hydrazone linker formation between doxorubicin (DOX) and Dex-NHNH 2 . These Dex-DCA-DOX prodrugs self-assembled to form micelles under physiological conditions with varied particle sizes depending on molecular weight of dextran, degree of substitution (DS) of DCA and DOX. After optimization, Dex10k-DCA9-DOX5.5 conjugate comprising dextran of 10kDa, DCA of DS 9 and DOX loading content of 5.5wt%, formed the micelles with the smallest size (110nm). These prodrug micelles could slowly liberate DOX under physiological conditions but efficiently released the drug at an acidified endosomal pH by the hydrolysis of acid-labile hydrazone linker. In vitro cytotoxicity experiment indicated that Dex10k-DCA9-DOX5.5 micelles exerted marked antitumor activity against MCF-7 and SKOV-3 cancer cells. Besides, intravenous administration of the micelles afforded growth inhibition of SKOV-3 tumor bearing in nude mice at a dosage of 2.5mg per kg with anti-cancer efficacy comparable to free DOX-chemotherapy but low systemic toxicity. This study highlights the feasibility of bio-safe and efficient dextran-based prodrug micelles designed for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    Science.gov (United States)

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  18. Pharmaceutical micelles featured with singlet oxygen-responsive cargo release and mitochondrial targeting for enhanced photodynamic therapy

    Science.gov (United States)

    Zhang, Xin; Yan, Qi; Naer Mulatihan, Di; Zhu, Jundong; Fan, Aiping; Wang, Zheng; Zhao, Yanjun

    2018-06-01

    The efficacy of nanoparticulate photodynamic therapy is often compromised by the short life time and limited diffusion radius of singlet oxygen as well as uncontrolled intracellular distribution of photosensitizer. It was hypothesized that rapid photosensitizer release upon nanoparticle internalization and its preferred accumulation in mitochondria would address the above problems. Hence, the aim of this study was to engineer a multifunctional micellar nanosystem featured with singlet oxygen-responsive cargo release and mitochondria-targeting. An imidazole-bearing amphiphilic copolymer was employed as the micelle building block to encapsulate triphenylphosphonium-pyropheophorbide a (TPP-PPa) conjugate or PPa. Upon laser irradiation, the singlet oxygen produced by TPP-PPa/PPa oxidized the imidazole moiety to produce hydrophilic urea, leading to micelle disassembly and rapid cargo release. The co-localization analysis showed that the TPP moiety significantly enhanced the photosensitizer uptake by mitochondria, improved mitochondria depolarization upon irradiation, and hence boosted the cytotoxicity in 4T1 cells. The targeting strategy also dramatically reduced the intracellular ATP concentration as a consequence of mitochondria injury. The mitochondria damage was accompanied with the activation of the apoptosis signals (caspase 3 and caspase 9), whose level was directly correlated to the apoptosis extent. The current work provides a facile and robust means to enhance the efficacy of photodynamic therapy.

  19. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  20. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  1. Basic investigations on LCV micelle gel

    International Nuclear Information System (INIS)

    Ebenezer, S B; Rafic, M K; Ravindran, P B

    2013-01-01

    The aim of this study was to investigate the feasibility of using Leuco Crystal Violet (LCV) based micelle gel dosimeter as a quality assurance tool in radiotherapy applications. Basic properties such as absorption coefficient and diffusion of LCV gel phantom over time were evaluated. The gel formulation consisted of 25 mM Trichloroacetic acid, 1mM LCV, 4 mM Triton X-100, 4% gelatin by mass and distilled water. The advantages of using this gel are its tissue equivalence, easy and less preparation time, lower diffusion rate and it can be read with an optical scanner. We were able to reproduce some of the results of Babic et al. The peak absorption was found to be at 600 nm and hence a matrix of yellow LEDs was used as light source. The profiles obtained from projection images confirmed the diffusion of LCV gel after 6 hours of irradiation. Hence the LCV gel phantom should be read before 6 hours post irradiation to get accurate dose information as suggested previously.

  2. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  3. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  4. Preparation and surface encapsulation of hollow TiO nanoparticles for electrophoretic displays

    International Nuclear Information System (INIS)

    Zhao Qian; Tan Tingfeng; Qi Peng; Wang Shirong; Bian Shuguang; Li Xianggao; An Yong; Liu Zhaojun

    2011-01-01

    Hollow black TiO nanosparticles were obtained via deposition of inorganic coating on the surface of hollow core-shell polymer latex with Ti(OBu) 4 as precursor and subsequent calcination in ammonia gas. Hollow TiO particles were characterized by scanning electron microscope, transmission electronic microscopy, X-ray diffraction, and thermogravimetric analysis. Encapsulation of TiO via dispersion polymerization was promoved by pretreating the pigments with 3-(trimethoxysilyl) propyl methacrylate, making it possible to prepare hollow TiO-polymer particles. When St and DVB were used as polymerization monomer, hollow TiO-polymer core-shell particles came into being via dispersion polymerization, and the lipophilic degree is 28.57%. Glutin-arabic gum microcapsules containing TiO-polymer particles electrophoretic liquid were prepared using via complex coacervation. It was founded that hollow TiO-polymer particles had enough electrophoretic mobility after coating with polymer.

  5. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water.

    Science.gov (United States)

    Nie, Kaixuan; Dong, Bo; Shi, Huanhuan; Liu, Zhengchun; Liang, Bo

    2017-03-07

    A technique for encapsulating fluorescent organic probes in a micelle system offers an important alternative method to manufacture water-soluble organic nanoparticles (ONPs) for use in sensing Hg 2+ . This article reports on a study of a surfactant-free micelle-like ONPs based on a 3,6-di(2-thienyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (TDPP) amphiphile, (2-(2-(2-methoxyethoxy)ethyl)-3,6-di(2-thiophyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (NDPP) fabricated to monitor Hg 2+ in water. NDPP was synthesized through a simple one-step modification of a commercially available dye TDPP with a flexible and hydrophilic alkoxy. This study reports, for the first time, that TDPP dyes can respond reversibly, sensitively, and selectively to Hg 2+ through TDPP-Hg-TDPP complexation, similar to the well-known thymine(T)-Hg-thymine(T) model and the accompanying molecular aggregation. Interestingly, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed that, in water, NDPP forms loose micelle-like fluorescent ONPs with a hydrohobic TDPP portion encapsulated inside. These micelle-like nanoparticles offer an ideal location for TDPP-Hg complexation with a modest molecular aggregation, thereby providing both clear visual and spectroscopic signals for Hg 2+ sensing. An estimated detection limit of 11 nM for Hg 2+ sensing with this NDPP nanoparticle was obtained. In addition, NDPP ONPs show good water solubility and high selectivity to Hg 2+ in neutral or alkalescent water. It was superior to most micelle-based nanosensors, which require a complicated process in the selection or synthesis of suitable surfactants. The determinations in real samples (river water) were made and satisfactory results were achieved. This study provides a low-cost strategy for fabricating small molecule-based fluorescent nanomaterials for use in sensing Hg 2+ . Moreover, the NDPP nanoparticles show potential ability in Hg 2+ ion adsorption and recognization of cysteine

  6. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan; Degnan, Thomas; McCready, Mark; Stadtherr, Mark; Stolaroff, Joshuah; Ye, Congwang

    2016-09-30

    Ionic liquids (ILs) and Phase Change Ionic Liquids (PCILs) are excellent materials for selective removal of carbon dioxide from dilute post-combustion streams. However, they are typically characterized as having high viscosities, which impairs their effectiveness due to mass transfer limitations, caused by the high viscosities. In this project, we are examining the benefits of encapsulating ILs and PCILs in thin polymeric shells to produce particles of approximately 100 to 600 μm in diameter that can be used in a fluidized bed absorber. The particles are produced by microencapsulation of the ILs and PCILs in CO2-permeable polymer shells. Here we report on the synthesis of the IL and PCIL materials, measurements of thermophysical properties including CO2 capacity and reprotonation equilibrium and kinetics, encapsulation of the ILs and PCILs, mechanical and thermodynamic testing of the encapsulated materials, development of a rate based model of the absorber, and the design of a laboratory scale unit to test the encapsulated particles for CO2 capture ability and efficiency. We show that the IL/PCIL materials can be successfully encapsulated, that they retain CO2 uptake capacity, and that the uptake rates are increased relative to a stagnant sample of IL liquid or PCIL powder.

  7. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  8. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    Science.gov (United States)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  9. Effect of microfluidization on casein micelle size of bovine milk

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  10. Preclinical safety evaluation of intravenously administered mixed micelles.

    Science.gov (United States)

    Teelmann, K; Schläppi, B; Schüpbach, M; Kistler, A

    1984-01-01

    Mixed micelles, with their main constituents lecithin and glycocholic acid, form a new principle for the parenteral administration of compounds which are poorly water-soluble. Their composition of mainly physiological substances as well as their comparatively good stability substantiate their attractivity in comparison to existing solvents. A decomposition due to physical influences such as heat or storage for several years will almost exclusively affect the lecithin component in the form of hydrolysis into free fatty acids and lysolecithin. Their toxicity was examined experimentally in various studies using both undecomposed and artificially decomposed mixed micelles. In these studies the mixed micelles were locally and systemically well tolerated and proved to be neither embryotoxic, teratogenic nor mutagenic. Only when comparatively high doses of the undecomposed mixed micelles were administered, corresponding to approximately 30 to 50 times the anticipated clinical injection volume (of e.g. diazepam mixed micelles), did some vomitus (dogs), slight liver enzyme elevation (rats and dogs), and slightly increased liver weights (dogs) occur. After repeated injections of the artificially decomposed formulation (approximately 25% of lecithin hydrolyzed to free fatty acids and lysolecithin) effects such as intravascular haemolysis, liver enzyme elevations and intrahepatic cholestasis (dogs only) were observed but only when doses exceeding a threshold of approximately 40 to 60 mg lysolecithin/kg body weight were administered. All alterations were reversible after cessation of treatment.

  11. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Energy Technology Data Exchange (ETDEWEB)

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  12. Determination of the aggregation number for micelles by isothermal titration calorimetry

    DEFF Research Database (Denmark)

    Olesen, Niels Erik; Holm, Rene; Westh, Peter

    2014-01-01

    Isothermal titration calorimetry (ITC) has previously been applied to estimate the aggregation number (n), Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of micellization. However, some difficulties of micelle characterization by ITC still remain; most micelles have aggregation numbers...... insight into optimal design of titration protocols for micelle characterization. By applying the new method, the aggregation number of sodium dodecyl sulphate and glycochenodeoxycholate was determined at concentrations around their critical micelle concentration (CMC)...

  13. Hydrolytic Degradation of Poly (ethylene oxide)-block-Polycaprolactone Worm Micelles

    OpenAIRE

    Geng, Yan; Discher, Dennis E.

    2005-01-01

    Spherical micelles and nanoparticles made with degradable polymers have been of great interest for therapeutic application, but degradation induced changes in a spherical morphology can be subtle and mechanism/kinetics appears poorly understood. Here, we report the first preparation of giant and flexible worm micelles self-assembled from degradable copolymer poly (ethylene oxide)-block-polycaprolactone. Such worm micelles spontaneously shorten to generate spherical micelles, triggered by poly...

  14. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.

    Science.gov (United States)

    Kim, Seungjin; Bae, Wookeun; Hwang, Jungmin; Park, Jaewoo

    2010-01-01

    The degradation rates of toluene and trichloroethylene (TCE) by Pseudomonas putida and Bacillus spp. that were encapsulated in polyethylene glycol (PEG) polymers were evaluated in comparison with the results of exposure to suspended cultures. PEG monomers were polymerized together with TCE-degrading microorganisms, such that the cells were encapsulated in and protected by the matrices of the PEG polymers. TCE concentrations were varied from 0.1 to 1.5 mg/L. In the suspended cultures of P. putida, the TCE removal rate decreased as the initial TCE concentration increased, revealing TCE toxicity or a limitation of reducing power, or both. When the cells were encapsulated, an initial lag period of about 10-20 h was observed for toluene degradation. Once acclimated, the encapsulated P. putida cultures were more tolerant to TCE at an experimental range of 0.6-1.0 mg/L and gave higher transfer efficiencies (mass TCE transformed/mass toluene utilized). When the TCE concentration was low (e.g., 0.1 mg/L) the removal of TCE per unit mass of cells (specific removal) was significantly lower, probably due to a diffusion limitation into the PEG pellet. Encapsulated Bacillus spp. were able to degrade TCE cometabolically. The encapsulated Bacillus spp. gave significantly higher values than did P. putida in the specific removal and the transfer efficiency, particularly at relatively high TCE concentration of approximately 1.0±0.5 mg/L. The transfer efficiency by encapsulated Bacillus spp. in this study was 0.27 mgTCE/mgToluene, which was one to two orders of magnitude greater than the reported values.

  15. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  16. Controlled release of ethylene via polymeric films for food packaging

    Science.gov (United States)

    Pisano, Roberto; Bazzano, Marco; Capozzi, Luigi Carlo; Ferri, Ada; Sangermano, Marco

    2015-12-01

    In modern fruit supply chain a common method to trigger ripening is to keep fruits inside special chambers and initiate the ripening process through administration of ethylene. Ethylene is usually administered through cylinders with inadequate control of its final concentration in the chamber. The aim of this study is the development of a new technology to accurately regulate ethylene concentration in the atmosphere where fruits are preserved: a polymeric film, containing an inclusion complex of α-cyclodextrin with ethylene, was developed. The complex was prepared by molecular encapsulation which allows the entrapment of ethylene into the cavity of α-cyclodextrin. After encapsulation, ethylene can be gradually released from the inclusion complex and its release rate can be regulated by temperature and humidity. The inclusion complex was dispersed into a thin polymeric film produced by UV-curing. This method was used because is solvent-free and involves low operating temperature; both conditions are necessary to prevent rapid release of ethylene from the film. The polymeric films were characterized with respect to thermal behaviour, crystalline structure and kinetics of ethylene release, showing that can effectively control the release of ethylene within confined volume.

  17. Micelle fission through surface instability and formation of an interdigitating stalk

    NARCIS (Netherlands)

    Sammalkorpi, M.; Karttunen, M.E.J.; Haataja, M.

    2008-01-01

    We report on the first detailed atomic-scale studies of micelle fission in micellar systems consisting of anionic sodium dodecyl sulfate with explicit solvent. We demonstrate a new micelle fission pathway for ionic surfactants and show how micelle fission ca