WorldWideScience

Sample records for polymeric hole injection

  1. Role of the polymeric hole injection layer on the efficiency and stability of organic light emitting diodes with small molecular emitters

    International Nuclear Information System (INIS)

    Chin, Byung Doo

    2008-01-01

    In this paper, an improvement in the properties of the small molecular organic light emitting diode (OLED) upon application of a polymeric hole injection layer (HIL) was reported. The luminous efficiency, operating voltage and lifetime of devices with dye-doped small molecule emitters (fluorescent and phosphorescent) were found to be sensitive to the HIL/hole transport layer (HTL) combination used, where the improved injection and brightness was shown at the hole cascading structure and the longer lifetime behaviour was obtained at the hole-trapping structure. Use of a polymeric HIL significantly increased the luminous current efficiency and lifetime for both fluorescent blue and phosphorescent green/red light emitters. The polymeric HIL was effective in terms of the driving characteristics of phosphorescent OLED, since it provides higher brightness behaviour at lower current density. The apparent shade of the pixel image at light emission, which will probably induce degradation at the pixel wall interface, will be suppressed by the use of polymeric HIL. In spite of the ambiguity in the formation of such shaded pixels and their influence at the decay of OLED, intrinsic stability of polymeric HIL/anode would be advantageous for stable storage and operation of devices.

  2. Ordered conducting polymer multilayer films and its application for hole injection layers in organic light-emitting devices

    International Nuclear Information System (INIS)

    Xu Jianhua; Yang Yajie; Yu Junsheng; Jiang Yadong

    2009-01-01

    We reported a controlled architecture growth of layer-ordered multilayer film of poly(3,4-ethylene dioxythiophene) (PEDOT) via a modified Langmuir-Blodgett (LB) method. An in situ polymerization of 3,4-ethylene dioxythiophene (EDOT) monomer in multilayer LB film occurred for the formation of ordered conducting polymer embedded multilayer film. The well-distribution of conducting polymer particles was characterized by secondary-ion mass spectrometry (SIMS). The conducting film consisting of ordered PEDOT ultrathin layers was investigated as a hole injection layer for organic light-emitting diodes (OLEDs). The results showed that, compared to conventional spin-coating PEDOT film and electrostatic self-assembly (ESA) film, the improved performance of OLEDs was obtained after using ordered PEDOT LB film as hole injection layer. It also indicated that well-ordered structure of hole injection layer was attributed to the improvement of OLED performance, leading to the increase of charged carrier mobility in hole injection layer and the recombination rate of electrons and holes in the electroluminescent layer.

  3. Interface state generation after hole injection

    International Nuclear Information System (INIS)

    Zhao, C. Z.; Zhang, J. F.; Groeseneken, G.; Degraeve, R.; Ellis, J. N.; Beech, C. D.

    2001-01-01

    After terminating electrical stresses, the generation of interface states can continue. Our previous work in this area indicates that the interface state generation following hole injection originates from a defect. These defects are inactive in a fresh device, but can be excited by hole injection and then converted into interface states under a positive gate bias after hole injection. There is little information available on these defects. This article investigates how they are formed and attempts to explain why they are sensitive to processing conditions. Roles played by hydrogen and trapped holes will be clarified. A detailed comparison between the interface state generation after hole injection in air and that in forming gas is carried out. Our results show that there are two independent processes for the generation: one is caused by H 2 cracking and the other is not. The rate limiting process for the interface state generation after hole injection is discussed and the relation between the defects responsible for this generation and hole traps is explored. [copyright] 2001 American Institute of Physics

  4. Electrically conductive polyaniline as hole-injection layer for MEH-PPV:BT based polymer light emitting diodes

    International Nuclear Information System (INIS)

    Mohsennia, M.; Bidgoli, M. Massah; Boroumand, F. Akbari; Nia, A. Mohsen

    2015-01-01

    Graphical abstract: The PANI prepared at 15 °C with higher electrical conductivity has been used as hole-injection layer (HIL) in polymer light emitting diodes (PLEDs) with structure of ITO/PANI/MEHPPV:BT/Al. - Highlights: • Polyaniline (PANI) was synthesized at different temperatures (5, 10, 15, 20 and 25 °C). • The PANI sample with higher electrical conductivity was used as HIL in the PLED devices. • The PANI injection layer yielded higher current and lower turn-on voltage. • The effect of MEH-PPV:BT weight ratio on the PLED performance has been also investigated. • The J–V characteristics of the devices have been explained by FN tunneling model. - Abstract: Polyaniline (PANI) was synthesized by oxidative polymerization of aniline at different temperatures (5, 10, 15, 20 and 25 °C). The influence of polymerization temperature on sheet resistance of PANI was investigated, and the one prepared at 15 °C which showed lowest resistivity was chosen for further analysis. PANI was subsequently used as hole-injection layer (HIL) in polymer light emitting diodes (PLEDs) with structure of poly(ethylene terephthalate) (PET)/indium tin oxide (ITO)/PANI/MEH-PPV:BT/aluminum (Al). The PLEDs with emission layer made from a blend of poly [2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and an electron transporting material, benzothiadiazole (BT), were fabricated at room conditions without using glove boxes. Our results showed an improvement in performance of our PANI-based fabricated PLEDs (PET/ITO/PANI/MEH-PPV:BT/Al) compared to the conventional devices that use poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PET/ITO/PEDOT:PSS/MEH-PPV:BT/Al) as their HIL. The hole injection barrier height (φ) of the fabricated PLEDs were then estimated using the Fowler–Nordheim (FN) field-emission tunneling theory and revealed that the barrier height decreases by increasing the BT concentration in the MEH-PPV:BT blend layer

  5. Mechanism of spontaneous hole formation in thin polymeric films

    DEFF Research Database (Denmark)

    Yu, Kaijia; Rasmussen, Henrik K.; Román Marín, José Manuel

    2012-01-01

    We show computationally that (molten) thin polymeric film containing nonequilibrium configurations originating from a solvent evaporation may develop holes spontaneously in the molten state, and that they appear delayed. Polymers above the glass transition temperature are liquids where the flow...

  6. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    Science.gov (United States)

    Wang, Qingwu [Chelmsford, MA; Li, Wenguang [Andover, MA; Jiang, Hua [Methuen, MA

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  7. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    Science.gov (United States)

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  8. Photo-Crosslinking of Pendent Uracil Units Provides Supramolecular Hole Injection/Transport Conducting Polymers for Highly Efficient Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Hsi-Kang Shih

    2015-04-01

    Full Text Available A new process for modifying a polymeric material for use as a hole injection transport layer in organic light-emitting diodes has been studied, which is through 2π + 2π photodimerization of a DNA-mimetic π-conjugated poly(triphenylamine-carbazole presenting pendent uracil groups (PTC-U under 1 h of UV irradiation. Multilayer florescence OLED (Organic light-emitting diodes device with the PTC-U-1hr as a hole injection/transport layer (ITO (Indium tin oxide/HITL (hole-injection/transport layer (15 nm/N,N'-di(1-naphthyl- N,N'-diphenyl-(1,1'-biphenyl-4,4'-diamine (NPB (15 nm/Tris-(8-hydroxyquinoline aluminum (Alq3 (60 nm/LiF (1 nm/Al (100 nm is fabricated, a remarkable improvement in performance (Qmax (external quantum efficiency = 2.65%, Bmax (maximum brightness = 56,704 cd/m2, and LE (luminance efficiencymax = 8.9 cd/A relative to the control PTC-U (Qmax = 2.40%, Bmax = 40,490 cd/m2, and LEmax = 8.0 cd/A. Multilayer phosphorescence OLED device with the PTC-U-1hr as a hole injection/transport layer (ITO/HITL (15 nm/Ir(ppy3:PVK (40 nm/BCP (10nm/Alq3 (40 nm/LiF (1 nm/Al (100 nm is fabricated by successive spin-coating processes, a remarkable improvement in performance (Qmax = 9.68%, Bmax = 41,466 cd/m2, and LEmax = 36.6 cd/A relative to the control PTC-U (Qmax = 8.35%, Bmax = 34,978 cd/m2, and LEmax = 30.8 cd/A and the commercial product (poly(3,4-ethylenedioxythiophene:polystyrenesulfonate PEDOT:PSS (Qmax = 4.29%, Bmax = 15,678 cd/m2, and LEmax = 16.2 cd/A has been achieved.

  9. Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jesuraj, P. Justin; Parameshwari, R. [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India); Kanthasamy, K.; Koch, J. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Pfnür, H. [Institut für Festkörperphysik, ATMOS, Appelstr. 2, D-30167, Hannover (Germany); Laboratorium für Nano- und Quantene$ngineering, Schneiderberg 30, D-30167, Hannover (Germany); Jeganathan, K., E-mail: kjeganathan@yahoo.com [Centre for Nanoscience and Nanotechnology, School of Physics, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu (India)

    2017-03-01

    Graphical abstract: Plasma treated Graphene oxide for hole injection enhancement in OLEDs. - Highlights: • Oxygen (O{sub 2}) and hydrogen (H{sub 2}) plasma exposed graphene oxide (GO) sheets have been demonstrated as hole buffer layers in OLEDs. • O{sub 2} plasma exposure induces assimilation of oxygen contents in GO lattice resulting in improved work function that reduced the hole injection barrier further. Whereas, H{sub 2} plasma contrastingly reduced the GO by excluding oxygen which ensuing lower work function. • X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy investigations reveal the capricious amount of oxygen in GO lattice and its corresponding work function variations. • GO and O{sub 2} plasma treated GO significantly improves the current efficiency of OLEDs more than one order with notable reduction in turn on voltage. - Abstract: The hole injection layer (HIL) with high work function (WF) is desirable to reduce the injection barrier between anode and hole transport layer in organic light emitting devices (OLED). Here, we report a novel approach to tune the WF of graphene oxide (GO) using oxygen and hydrogen plasma treatment and its hole injection properties in OLEDs. The mild exposure of oxygen plasma on GO (O{sub 2}-GO) significantly reduces the injection barrier by increasing the WF of anode (4.98 eV) through expansion of C−O bonds. In contrast, the hole injection barrier was drastically increased for hydrogen plasma treated GO (H{sub 2}-GO) layers as the WF is lowered by the contraction of C−O bond. By employing active O{sub 2}-GO as HIL in OLEDs found to exhibit superior current efficiency of 4.2 cd/A as compared to 3.3 cd/A for pristine GO. Further, the high injection efficiency of O{sub 2}-GO infused hole only device can be attributed to the improved energy level matching. Ultraviolet and X-ray photoelectron spectroscopy were used to correlate the WF of HIL infused anode towards the enhanced performance of

  10. Improved organic light-emitting device with tris-(8-hydroxyquinoline) aluminium inserted between hole-injection layer and hole-transporting layer

    Energy Technology Data Exchange (ETDEWEB)

    Divayana, Y [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Sun, X W [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Chen, B J [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore (Singapore); Sarma, K R [Aerospace Electronic Systems, Honeywell, 21111 N 19th Avenue, Phoenix, AZ 85027 (United States)

    2007-01-07

    A layer of tris-(8-hydroxyquinoline) aluminium (Alq{sub 3}), which is normally used as an electron-transporting and emissive layer, was incorporated between the hole-transporting layer and the hole-injection layer to balance the electron-hole injection. The Alq{sub 3} layer performed to block the hole current which is a majority carrier in a typical organic light-emitting device. An increase in current efficiency by almost 30%, from 3.1 to 4.0 cd A{sup -1}, with a minimum voltage shift was achieved with a 2 nm Alq{sub 3} layer as a hole-blocking layer. A reduction in HTL thickness was observed to reduce the efficiency due to electron leakage to the HIL, whereby an inefficient exciplex emission was observed.

  11. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    Science.gov (United States)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  12. Welding lines formation in holes obtained by low pressure injection molding of ceramic parts

    Directory of Open Access Journals (Sweden)

    C. A. Costa

    Full Text Available Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3 and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.

  13. Tetra-methyl substituted copper (II) phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Long; Xu, Jia-Ju; Lin, Yi-Wei; Chen, Qian; Shan, Hai-Quan; Xu, Zong-Xiang, E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Chemistry, South University of Science and Technology of China, Shenzhen, Guangdong, P. R. China, 518055 (China); Yan, Yan; Roy, V. A. L., E-mail: xu.zx@sustc.edu.cn, E-mail: val.roy@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (Hong Kong)

    2015-10-15

    We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs) by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL) exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM) studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  14. Tetra-methyl substituted copper (II phthalocyanine as a hole injection enhancer in organic light-emitting diodes

    Directory of Open Access Journals (Sweden)

    Yu-Long Wang

    2015-10-01

    Full Text Available We have enhanced hole injection and lifetime in organic light-emitting diodes (OLEDs by incorporating the isomeric metal phthalocyanine, CuMePc, as a hole injection enhancer. The OLED devices containing CuMePc as a hole injection layer (HIL exhibited higher luminous efficiency and operational lifetime than those using a CuPc layer and without a HIL. The effect of CuMePc thickness on device performance was investigated. Atomic force microscope (AFM studies revealed that the thin films were smooth and uniform because the mixture of CuMePc isomers depressed crystallization within the layer. This may have caused the observed enhanced hole injection, indicating that CuMePc is a promising HIL material for highly efficient OLEDs.

  15. Direct Observation of Ultrafast Hole Injection from Lead Halide Perovskite by Differential Transient Transmission Spectroscopy.

    Science.gov (United States)

    Ishioka, Kunie; Barker, Bobby G; Yanagida, Masatoshi; Shirai, Yasuhiro; Miyano, Kenjiro

    2017-08-17

    Efficient charge separation at the interfaces of the perovskite with the carrier transport layers is crucial for perovskite solar cells to achieve high power conversion efficiency. We present a systematic experimental study on the hole injection dynamics from MAPbI 3 perovskite to three typical hole transport materials (HTMs). We extract the carrier dynamics directly related to the hole injection by employing a pump light with short absorption depth and comparing the transient transmission signals excited on the two sides of the sample. The differential transmission signals reveal the hole injections to PTAA and PEDOT:PSS to be complete within 1 and 2 ps, respectively, and that to NiO x to exhibit an additional slow process on a 40 ps time scale. The obtained injection dynamics are discussed in comparison with the device performance of the solar cells containing the same MAPbI 3 /HTM interfaces.

  16. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  17. Electro-optical properties of a polymer light-emitting diode with an injection-limited hole contact

    NARCIS (Netherlands)

    van Woudenbergh, T; Blom, PWM; Huiberts, JN

    2003-01-01

    The electro-optical characteristics of a polymer light-emitting diode with a strongly reduced hole injection have been investigated. A silver contact on poly-dialkoxy-p-phenylene vinylene decreases the hole injection by five orders of magnitude, resulting in both a highly reduced light output and

  18. Design and development of reactive injectable and settable polymeric biomaterials.

    Science.gov (United States)

    Page, Jonathan M; Harmata, Andrew J; Guelcher, Scott A

    2013-12-01

    Injectable and settable biomaterials are a growing class of therapeutic technologies within the field of regenerative medicine. These materials offer advantages compared to prefabricated implants because of their ability to be utilized as part of noninvasive surgical procedures, fill complex defect shapes, cure in situ, and incorporate cells and other active biologics. However, there are significant technical barriers to clinical translation of injectable and settable biomaterials, such as achieving clinically relevant handling properties and benign reaction conditions. This review focuses on the engineering challenges associated with the design and development of injectable and chemically settable polymeric biomaterials. Additionally, specific examples of the diverse chemistries utilized to overcome these challenges are covered. The future translation of injectable and settable biomaterials is anticipated to improve patient outcomes for a number of clinical conditions. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  19. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  20. Efficient hole injection in organic light-emitting diodes using polyvinylidenefluoride as an interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Soon Ok; Soo Yook, Kyoung [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of); Lee, Jun Yeob, E-mail: leej17@dankook.ac.k [Department of Polymer Science and Engineering, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701 (Korea, Republic of)

    2010-10-15

    The effect of the polyvinylidenefluoride (PVDF) interlayer on the hole injection and the device performances of the green phosphorescent organic light-emitting diodes (PHOLEDs) was investigated. The hole current density of the hole only device was improved and the power efficiency of the green PHOLEDs was enhanced from 10.5 to 12.5 lm/W by the PVDF interlayer. The reduction of the interfacial energy barrier was responsible for the high hole current density in the PVDF interlayer based green PHOLEDs.

  1. [Injection Pressure Evaluation of the New Venous Catheter with Side Holes for Contrast-enhanced CT/MRI].

    Science.gov (United States)

    Fukuda, Junya; Arai, Keisuke; Miyazawa, Hitomi; Kobayashi, Kyouko; Nakamura, Junpei; Suto, Takayuki; Tsushima, Yoshito

    2018-01-01

    The simulation study was conducted for the new venous catheter with side holes of contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) to evaluate the infusion pressure on four contrast media and several injection speeds. All infusion pressure of the new venous catheter with side holes were less than 15 kg/cm 2 as limitation of extension tube and also reduced the infusion pressure by 15% at the maximum compared to the catheter with single hole. The results suggest that the new venous catheter with side holes can reduce the infusion pressure by power injection of contrast-enhanced CT and MRI.

  2. Effect of hole injection layer/hole transport layer polymer and device structure on the properties of white OLED.

    Science.gov (United States)

    Cho, Ho Young; Park, Eun Jung; Kim, Jin-Hoo; Park, Lee Soon

    2008-10-01

    Copolymers containing carbazole and aromatic amine unit were synthesized by using Pd-catalyzed polycondensation reaction. The polymers were characterized in terms of their molecular weight and thermal stability and their UV and PL properties in solution and film state. The band gap energy of the polymers was also determined by the UV absorption and HOMO energy level data. The polymers had high HOMO energy level of 5.19-5.25 eV and work function close to that of ITO. The polymers were thus tested as hole injection/transport layer in the white organic light emitting diodes (OLED) by using 4,4'-bis(2,2-diphenyl-ethen-1-yl)diphenyl (DPVBi) as blue emitting material and 5,6,11,12-tetraphenylnaphthacene (Rubrene) as orange emitting dopant. The synthesized polymer, poly bis[6-bromo-N-(2-ethylhexyl)-carbazole-3-yl] was found to be useful as hole injection layer/hole transport layer (HIL/HTL) multifunctional material with high luminance efficiency and stable white color coordinate in the wide range of applied voltage.

  3. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  4. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies.

    Science.gov (United States)

    Kotadiya, Naresh B; Lu, Hao; Mondal, Anirban; Ie, Yutaka; Andrienko, Denis; Blom, Paul W M; Wetzelaer, Gert-Jan A H

    2018-04-01

    Barrier-free (Ohmic) contacts are a key requirement for efficient organic optoelectronic devices, such as organic light-emitting diodes, solar cells, and field-effect transistors. Here, we propose a simple and robust way of forming an Ohmic hole contact on organic semiconductors with a high ionization energy (IE). The injected hole current from high-work-function metal-oxide electrodes is improved by more than an order of magnitude by using an interlayer for which the sole requirement is that it has a higher IE than the organic semiconductor. Insertion of the interlayer results in electrostatic decoupling of the electrode from the semiconductor and realignment of the Fermi level with the IE of the organic semiconductor. The Ohmic-contact formation is illustrated for a number of material combinations and solves the problem of hole injection into organic semiconductors with a high IE of up to 6 eV.

  5. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  6. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  7. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  8. Carbazole/triarylamine based polymers as a hole injection/transport layer in organic light emitting devices.

    Science.gov (United States)

    Wang, Hui; Ryu, Jeong-Tak; Kwon, Younghwan

    2012-05-01

    This study examined the influence of the charge injection barriers on the performance of organic light emitting diodes (OLEDs) using polymers with a stepwise tuned ionization potential (I(p) approximately -5.01 - -5.29 eV) between the indium tin oxide (ITO) (phi approximately -4.8 eV) anode and tris(8-hydroxyquinolinato) aluminium (Alq3) (I(p) approximately -5.7 eV) layer. The energy levels of the polymers were tuned by structural modification. Double layer devices were fabricated with a configuration of ITO/polymer/Alq3/LiF/Al, where the polymers, Alq3, and LiF/Al were used as the hole injection/transport layer, emissive electron transport layer, and electron injection/cathode, respectively. Using the current density-voltage (J-V), luminescence-voltage (L-V) and efficiencies in these double layer devices, the device performance was evaluated in terms of the energy level alignments at the interfaces, such as the hole injection barriers (phi(h)(iTO/polymer) and phi(h)(polymer/Alq3)) from ITO through the polymers into the Alq3 layer, and the electron injection barrier (phi(e)(polymer/Alq3) or electron/exciton blocking barrier) at the polymer/Alq3 interface.

  9. Polyion selective polymeric membrane-based pulstrode as a detector in flow-injection analysis.

    Science.gov (United States)

    Bell-Vlasov, Andrea K; Zajda, Joanna; Eldourghamy, Ayman; Malinowska, Elzbieta; Meyerhoff, Mark E

    2014-04-15

    A method for the detection of polyions using fully reversible polyion selective polymeric membrane type pulstrodes as detectors in a flow-injection analysis (FIA) system is examined. The detection electrode consists of a plasticized polymeric membrane doped with 10 wt % of tridodecylmethylammonium-dinonylnaphthalene sulfonate (TDMA/DNNS) ion-exchanger salt. The pulse sequence used involves a short (1 s) galvanostatic pulse, an open-circuit pulse (0.5 s) during which the EMF of the cell is measured, and a longer (15 s) potentiostatic pulse to return the membrane to its original chemical composition. It is shown that total pulse sequence times can be optimized to yield reproducible real-time detection of injected samples of protamine and heparin at up to 20 samples/h. Further, it is shown that the same membrane detector can be employed for FIA detection of both polycations at levels ≥10 μg/mL and polyanions at levels of ≥40 μg/mL by changing the direction of the galvanostatic pulse. The methodology described may also be applicable in the detection of polyionic species at low levels in other flowing configurations, such as in liquid chromatography and capillary electrophoresis.

  10. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: technical note.

    Science.gov (United States)

    Mourão, Carlos Fernando de Almeida Barros; Valiense, Helder; Melo, Elias Rodrigues; Mourão, Natália Belmock Mascarenhas Freitas; Maia, Mônica Diuana-Calasans

    2015-01-01

    The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP) is the main alternative for use in liquid form (injectable). These injectable form of platelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable) and its use with particulated bone graft materials in the polymerized form.

  11. Obtention of injectable platelets rich-fibrin (i-PRF and its polymerization with bone graft: technical note

    Directory of Open Access Journals (Sweden)

    Carlos Fernando de Almeida Barros Mourão

    Full Text Available The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP is the main alternative for use in liquid form (injectable. These injectable form ofplatelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable and its use with particulated bone graft materials in the polymerized form.

  12. Organic light-emitting diodes with F16CuPC as an efficient hole-injection layer

    International Nuclear Information System (INIS)

    Lee, H. K.; Shin, Y. C.; Kwon, D. S.; Lee, C. H.

    2006-01-01

    We report a new hole-injection material, copper hexadecafluorophthalocyanine (F 16 CuPC) for organic light-emitting diodes (OLEDs) consisting of N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (α-NPD) as a hole-transport layer and 8-tris-hydroxyquinoline aluminum (Alq 3 ) as a light-emitting and electron-transport layer. The insertion of the F 16 CuPC between indium-tin oxide (ITO) and α-NPD reduces the operating voltage significantly and thereby increases the luminous efficiency. By measuring the device characteristics for various F 16 CuPC thicknesses, we find that an optimum F 16 CuPC thickness is about 15 nm. At a luminance of 1000 cd/m 2 , the device with 15-nm-thick F 16 CuPC shows a luminous efficiency of 1.5 lm/W and a device operating voltage of 7.2 V while the device without the F 16 CuPC layer shows 1.1 lm/W and 10.4 V. The significant decrease in a driving voltage and increase in the luminous efficiency can be attributed to the high hole-injection efficiency when F 16 CuPC is inserted between ITO and α-NPD.

  13. The feasibility of using solution-processed aqueous La2O3 as effective hole injection layer in organic light-emitting diode

    Science.gov (United States)

    Zhang, Yan; Li, Wanshu; Zhang, Ting; Yang, Bo; Zheng, Qinghong; Xu, Jiwen; Wang, Hua; Wang, Lihui; Zhang, Xiaowen; Wei, Bin

    2018-01-01

    Low-cost and scalable manufacturing boosts organic electronic devices with all solution process. La2O3 powders and corresponding aqueous solutions are facilely synthesized. Atomic force microscopy and scanning electron microscopy measurements show that solution-processed La2O3 behaves superior film morphology. X-ray diffraction and X-ray photoelectron spectroscopy measurements verify crystal phase and typical La signals. In comparison with the most widely-used hole injection layers (HILs) of MoOx and poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), enhanced luminous efficiency is observed in organic light-emitting diode (OLED) using solution-processed La2O3 HIL. Current-voltage, impedance-voltage and phase angle-voltage transition curves clarify that solution-processed La2O3 behaves nearly comparable hole injection capacity to MoOx and PEDOT:PSS, and favorably tailors carrier balance. Moreover, the hole injection mechanism of solution-processed La2O3 is proven to be predominantly controlled by Fowler-Nordheim tunneling process and the hole injection barrier height between ITO and NPB via La2O3 interlayer is estimated to be 0.098 eV. Our experiments provide a feasible application of La2O3 in organic electronic devices with solution process.

  14. Improvement of combustion in a direct injection diesel engine by the use of a combustion-hole injection nozzle; Kumiawase funko nozzle ni yoru chokusetsu funshashiki diesel engine no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T. [Mitsubishi Motors Corp., Tokyo (Japan); Kamimoto, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-04-25

    Suppression of pre-mixed combustion and activation of diffusion combustion in DI diesel engines are known to be effective in reducing both NOx and fuel consumption. To achieve this concept, the authors have proposed a new type of fuel injection nozzle named combination-hole nozzle. This nozzle has very small holes with a diameter of 0.13 mm below (sub holes) for reducing ignition delay and normal holes (main holes) for keeping reasonable injection duration. The experiments conducted with a single cylinder research engine revealed that the combination-hole nozzle reduced the ignition delay and the peak value of the rate of heat release during the premixed combustion by 10% and 40% respectively compared with the experimental results of conventional nozzles and that the trade-off curve between NOx and fuel consumption sifted to the low level corner at half and full load conditions at a low engine speed. The reason for this improvement was investigated by the measurement of flame temperature distribution in the combustion chamber by means of the two colors method. The result revealed that the flame temperature in regions between sub and main hole`s flames of the nozzle was lower than that of the flames of a conventional nozzle at a full load and a low speed condition. 13 refs., 10 figs., 3 tabs.

  15. The electric field at hole injecting metal/organic interfaces as a cause for manifestation of exponential bias-dependent mobility

    International Nuclear Information System (INIS)

    Cvikl, B.

    2014-01-01

    It is shown that the well-known empirical exponential bias-dependent mobility is an approximation function of the relevant term emerging in the Mott–Gurney space charge limited current model when the constant non-zero electric field at the hole injecting metal/organic interface E int is taken into account. The term in question is the product of the bias-independent (but organic layer thickness-dependent) effective mobility coefficient and the algebraic function, f(λ), of the argument λ = E int /E a , where E a is the externally applied electric field. On account of the non-zero interfacial field, E int , the singularity of the spatial dependence of the hole current density, p(x), is removed. The resulting hole drift current density, j, is tested as a function of E a against a number of published room temperature hole current j–E a data sets, all characterized by good ohmic contact at the hole injecting interface. It is shown that the calculated current density provides a very good fit to the measurements within a high range of E a intervals. Low values of E a , are investigated analytically under the assumption of hole drift-diffusion. The extremely large internal electric fields at the anode/organic junction indicate drift-diffusion to be an improbable process for the structures investigated. However, a description of hole transport throughout the whole interval of experimental E a values may be obtained at low values of E a by an extended Mark–Helfrich drift model with traps occupying the exponentially distributed energy levels, followed by the extended Mott–Gurney model description within the remaining part of the E a interval. In both models the same (bias-independent) effective mobility coefficient is incorporated into the calculations. The results present evidence that within the framework of the extended Mott–Gurney expression the properly derived term should replace the empirical exponential bias-dependent mobility, making it redundant in the

  16. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Ommi F

    2013-04-01

    Full Text Available The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA. A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  17. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Science.gov (United States)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  18. Hole Injection at the Silicon/Aqueous Electrolyte Interface: A Possible Mechanism for Chemiluminescence from Porous Silicon

    NARCIS (Netherlands)

    Kooij, Ernst S.; Butter, K.; Kelly, J.J.

    1998-01-01

    The reduction mechanism of oxidizing agents at silicon and porous silicon electrodes has been investigated in relation to light emission from the porous semiconductor. Oxidizing agents with a positive redox potential are shown to inject holes into HF-pretreated silicon. However, as the degree of

  19. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  20. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  1. High-performance polymeric photovoltaic cells with a gold chloride-treated polyacrylonitrile hole extraction interlayer

    Science.gov (United States)

    Jeong, Ji-Ho; Noh, Yong-Jin; Kim, Seok-Soon; Kwon, Sung-Nam; Na, Seok-In

    2018-03-01

    We introduce a high efficiency polymeric photovoltaic cell (PPV) to be obtained by polyacrylonitrile (PAN) hole extraction layer (HEL) modification with gold chloride (AuCl3). The role of PAN HELs with AuCl3 and their effects on solar cell performances were studied with ultraviolet photoemission spectroscopy, atomic force microscopy, internal resistances in PPVs, and current-voltage power curves. The resultant PPVs with AuCl3-treated PAN HELs showed improved cell efficiency compared to PSCs with no interlayer and PAN without AuCl3. Furthermore, with AuCl3-treated PAN, we finally achieved a high efficiency of 6.91%, and a desirable PPV-stability in poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophe-ne-2,6-diyl][3-fluoro-2-[(2-thylhexyl)carbonyl]-thieno[3,4-b]thiophenediyl

  2. A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution.

    Science.gov (United States)

    Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre

    2016-02-01

    In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Two-step impression/ injection, an alternative putty/ wash impression technique: case report.

    Science.gov (United States)

    Caputi, S; Murmura, G; Sinjari, B; Varvara, G

    2012-01-01

    We here describe a new technique for making a definitive impression that we refer to as the two-step impression/injection technique. This technique initially follows the classical one-step putty/ light-body impression technique with the polymerization of the putty and the light-body compound. This is then followed by the second step: injection of extra-light-body compound into the preparation through a hole in the metal stock tray. The aim of this additional step is to control the wash bulk and minimize the changes that can produce unfavorable impression results. This new two-step impression/injection technique allows displacement of soft tissues, such as the tongue, during the first seating of the putty and wash materials, while in the second step, the extra-light-body compound records all of the finer details without being compressed.

  4. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    Science.gov (United States)

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  5. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  6. Effect of organic small-molecule hole injection materials on the performance of inverted organic solar cells

    Science.gov (United States)

    Li, Jie; Zheng, Yifan; Zheng, Ding; Yu, Junsheng

    2016-07-01

    In this study, the influence of small-molecule organic hole injection materials on the performance of organic solar cells (OSCs) as the hole transport layer (HTL) with an architecture of ITO/ZnO/P3HT:PC71BM/HTL/Ag has been investigated. A significant enhancement on the performance of OSCs from 1.06% to 2.63% is obtained by using N, N‧-bis(1-naphthalenyl)-N, N‧-bis-phenyl-(1, 1‧-biphenyl)-4, 4‧-diamine (NPB) HTL. Through the resistance simulation and space-charge limited current analysis, we found that NPB HTL cannot merely improve the hole mobility of the device but also form the Ohmic contact between the active layer and anode. Besides, when we apply mix HTL by depositing the NPB on the surface of molybdenum oxide, the power conversion efficiency of OSC are able to be further improved to 2.96%.

  7. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  8. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H.; Fu, Yi-Keng; Chu, Mu-Tao; Huang, Shyh-Jer; Su, Yan-Kuin; Wang, Kang L.

    2014-01-01

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL

  9. Tailoring of polarization in electron blocking layer for electron confinement and hole injection in ultraviolet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yu-Hsuan; Pilkuhn, Manfred H. [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Fu, Yi-Keng; Chu, Mu-Tao [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China); Huang, Shyh-Jer, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States); Su, Yan-Kuin, E-mail: yksu@mail.ncku.edu.tw, E-mail: totaljer48@gmail.com [Department of Electrical Engineering, Institute of Microelectronics and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Department of Electronic Engineering, Kun-Shan University, Tainan 71003, Taiwan (China); Wang, Kang L. [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)

    2014-03-21

    The influence of the AlGaN electron blocking layer (EBL) with graded aluminum composition on electron confinement and hole injection in AlGaN-based ultraviolet light-emitting diodes (LEDs) are investigated. The light output power of LED with graded AlGaN EBL was markedly improved, comparing to LED with conventional EBL. In experimental results, a high increment of 86.7% can be obtained in light output power. Simulation analysis shows that via proper modification of the barrier profile from the last barrier of the active region to EBL, not only the elimination of electron overflow to p-type layer can be achieved but also the hole injection into the active region can be enhanced, compared to a conventional LED structure. The dominant factor to the performance improvement is shown to be the modulation of polarization field by the graded Al composition in EBL.

  10. Mechanism of Film Cooling with One Inlet and Double Outlet Hole Injection at Various Turbulence Intensities

    Science.gov (United States)

    Li, Guangchao; Chen, Yukai; Kou, Zhihai; Zhang, Wei; Zhang, Guochen

    2018-03-01

    The trunk-branch hole was designed as a novel film cooling concept, which aims for improving film cooling performance by producing anti-vortex. The trunk-branch hole is easily manufactured in comparison with the expanded hole since it consists of two cylindrical holes. The effect of turbulence on the film cooling effectiveness with a trunk-branch hole injection was investigated at the blowing ratios of 0.5, 1.0, 1.5 and 2.0 by numerical simulation. The turbulence intensities from 0.4 % to 20 % were considered. The realizable graphic id="j_tjj-2016-0024_ingr_001" xlink.href="graphic/j_tjj-2016-0024_inline1.png" />k-ɛ k - ɛ turbulence model and the enhanced wall function were used. The more effective anti-vortex occurs at the low blowing ratio of 0.5 %. The high turbulence intensity causes the effectiveness evenly distributed in the spanwise direction. The increase of turbulence intensity leads to a slight decrease of the spanwise averaged effectiveness at the low blowing ratio of 0.5, but a significant increase at the high blowing ratios of 1.5 and 2.0. The optimal blowing ratio of the averaged surface effectiveness is improved from 1.0 to 1.5 when the turbulence intensity increases from 0.4 % to 20 %.

  11. Light-emitting diodes based on solution-processed nontoxic quantum dots: oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer.

    Science.gov (United States)

    Bhaumik, Saikat; Pal, Amlan J

    2014-07-23

    We report fabrication and characterization of solution-processed quantum dot light-emitting diodes (QDLEDs) based on a layer of nontoxic and Earth-abundant zinc-diffused silver indium disulfide (AIZS) nanoparticles as an emitting material. In the QDLEDs fabricated on indium tin oxide (ITO)-coated glass substrates, we use layers of oxides, such as graphene oxide (GO) and zinc oxide (ZnO) nanoparticles as a hole- and electron-transport layer, respectively. In addition, we introduce a layer of MoO3 nanoparticles as a hole-inject one. We report a comparison of the characteristics of different device architectures. We show that an inverted device architecture, ITO/ZnO/AIZS/GO/MoO3/Al, yields a higher electroluminescence (EL) emission, compared to direct ones, for three reasons: (1) the GO/MoO3 layers introduce barriers for electrons to reach the Al electrode, and, similarly, the ZnO layers acts as a barrier for holes to travel to the ITO electrode; (2) the introduction of a layer of MoO3 nanoparticles as a hole-inject layer reduces the barrier height for holes and thereby balances charge injection in the inverted structure; and (3) the wide-bandgap zinc oxide next to the ITO electrode does not absorb the EL emission during its exit from the device. In the QDLEDs with oxides as carrier inject and transport layers, the EL spectrum resembles the photoluminescence emission of the emitting material (AIZS), implying that excitons are formed in the quaternary nanocrystals and decay radiatively.

  12. InGaN/GaN light-emitting diode having direct hole injection plugs and its high-current operation.

    Science.gov (United States)

    Kim, Sungjoon; Cho, Seongjae; Jeong, Jaedeok; Kim, Sungjun; Hwang, Sungmin; Kim, Garam; Yoon, Sukho; Park, Byung-Gook

    2017-03-20

    The light-emitting diode (LED) with an improved hole injection and straightforward process integration is proposed. p-type GaN direct hole injection plugs (DHIPs) are formed on locally etched multiple-quantum wells (MQWs) by epitaxial lateral overgrowth (ELO) method. We confirm that the optical output power is increased up to 23.2% at an operating current density of 100 A/cm2. Furthermore, in order to identify the origin of improvement in optical performance, the transient light decay time and light intensity distribution characteristics were analyzed on the DHIP LED devices. Through the calculation of the electroluminescence (EL) decay time, internal quantum efficiency (IQE) is extracted along with the recombination parameters, which reveals that the DHIPs have a significant effect on enhancement of radiative recombination and reduction of efficiency droop. Furthermore, the mapping PL reveals that the DHIP LED also has a potential to improve the light extraction efficiency by hexagonal pyramid shaped DHIPs.

  13. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic–organic hybrid perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-07-01

    Full Text Available The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic–organic hybrid perovskite solar cells (PSCs are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs. Designing hole-transporting materials (HTMs is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO level and higher hole mobility.

  14. 3,6-Carbazole vs 2,7-carbazole: A comparative study of hole-transporting polymeric materials for inorganic-organic hybrid perovskite solar cells.

    Science.gov (United States)

    Li, Wei; Otsuka, Munechika; Kato, Takehito; Wang, Yang; Mori, Takehiko; Michinobu, Tsuyoshi

    2016-01-01

    The ever increasing demand for clean energy has encouraged researchers to intensively investigate environmentally friendly photovoltaic devices. Inorganic-organic hybrid perovskite solar cells (PSCs) are very promising due to their potentials of easy fabrication processes and high power conversion efficiencies (PCEs). Designing hole-transporting materials (HTMs) is one of the key factors in achieving the high PCEs of PSCs. We now report the synthesis of two types of carbazole-based polymers, namely 3,6-Cbz-EDOT and 2,7-Cbz-EDOT, by Stille polycondensation. Despite the same chemical composition, 3,6-Cbz-EDOT and 2,7-Cbz-EDOT displayed different optical and electrochemical properties due to the different connectivity mode of the carbazole unit. Therefore, their performances as hole-transporting polymeric materials in the PSCs were also different. The device based on 2,7-Cbz-EDOT showed better photovoltaic properties with the PCE of 4.47% than that based on 3,6-Cbz-EDOT. This could be due to its more suitable highest occupied molecular orbital (HOMO) level and higher hole mobility.

  15. Optimum design of the injection duct system of a stenter machine

    Energy Technology Data Exchange (ETDEWEB)

    Juraeva, Makhsuda; Song, Dong Joo [Yeungnam University, Geyongsan (Korea, Republic of); Ryu, Kyung Jin [Ajou Motor College, Boryeong (Korea, Republic of)

    2017-05-15

    Stenter machines are used for drying fabrics in the textile industry and have a heater, injection duct system, and fans inside a chamber. The injection duct system has ducts and air-injecting holes. Plane-type injection duct systems were investigated to obtain uniform airflow at the air-injecting holes. The flow field of the injection duct systems was computed using ANSYS CFX with different heights of the duct end and different shapes for the air-injecting holes. There was a high mass flow rate at the air-injecting holes and high airflow circulation inside both plane-type and mountain-type ducts at the ends. The height of the duct end was varied between 40 mm and 160 mm. The injection duct systems were analyzed with four different shapes of air-injecting holes. The circular and elliptical holes had lower standard deviations of the mass flow rate than other shapes. Relatively uniform mass flow rates were obtained in the plane-type and mountain-type duct systems when the height of the duct end was 40 mm and the shape of the air-injecting holes was circular or elliptical. The developed injection duct systems were improved by obtaining a uniform mass flow rate at the air-injecting holes. A stenter prototype was fabricated with the developed injection duct system to confirm the numerical results. The developed injection duct system had better performance than the original system.

  16. Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

    Directory of Open Access Journals (Sweden)

    Amol M. Dalavi

    2016-07-01

    Full Text Available Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

  17. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Mi, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Mo Yoon, Dang; Kim, Miyoung [Korea Printed Electronics Center, Korea Electronics Technology Institute, Jeollabuk-do, 561-844 (Korea, Republic of); Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha, E-mail: jmnano00@gmail.com, E-mail: Dockha@kist.re.kr [Sensor System Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lim, Si-Hyung [School of Mechanical Systems Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of)

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  18. Effect of cross-flow direction of coolant on film cooling effectiveness with one inlet and double outlet hole injection

    Directory of Open Access Journals (Sweden)

    Guangchao Li

    2012-12-01

    Full Text Available In order to study the effect of cross-flow directions of an internal coolant on film cooling performance, the discharge coefficients and film cooling effectiveness with one inlet and double outlet hole injections were simulated. The numerical results show that two different cross-flow directions of the coolant cause the same decrease in the discharge coefficients as that in the case of supplying coolant by a plenum. The different proportion of the mass flow out of the two outlets of the film hole results in different values of the film cooling effectiveness for three different cases of coolant supplies. The film cooling effectiveness is the highest for the case of supplying coolant by the plenum. At a lower blowing ratio of 1.0, the film cooling effectiveness with coolant injection from the right entrance of the passage is higher than that from the left entrance of the passage. At a higher blowing ratio of 2.0, the opposite result is found.

  19. Transient CFD studies on multiple jets issuing from injection tube

    International Nuclear Information System (INIS)

    Kumawat, Ganesh Lal; Kansal, Anuj Kumar; Maheshwari, Naresh Kumar; Rama Rao, A.

    2016-01-01

    Shut down system 2 of Advanced Heavy Water reactor incorporates the injection of liquid poison into moderator through injection tubes. The injection tubes consist of several holes distributed axially and circumferentially. Investigation of the poison jet progression and spreading from the holes of injection tube is important aspect of determining negative reactivity injection rate. This paper presents the CFD simulation to investigate poison jet progression and its spreading from the holes of injection tube. (author)

  20. Premixed direct injection disk

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  1. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    Science.gov (United States)

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human

  2. A new electrode design for ambipolar injection in organic semiconductors.

    Science.gov (United States)

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  3. Performance of injection-limited polymer light-emitting diodes

    NARCIS (Netherlands)

    Blom, P.W.M.; Woudenberg, T.V.; Huiberts, H.; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The electro-optical characteristics of a polymer light emitting diode (PLED) with a strongly reduced hole injection have been investigated. The device consists of a poly-p-phenylene vinylene semiconductor with a Ag hole injecting contact, which has an injection barrier of about 1 eV. It is observed

  4. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  5. Cold water injection nozzles

    International Nuclear Information System (INIS)

    Kura, Masaaki; Maeda, Masamitsu; Endo, Takio.

    1979-01-01

    Purpose: To inject cold water in a reactor without applying heat cycles to a reactor container and to the inner wall of a feedwater nozzle by securing a perforated plate at the outlet of the cold water injection nozzle. Constitution: A disc-like cap is secured to the final end of a return nozzle of a control rod drive. The cap prevents the flow of a high temperature water flowing downward in the reactor from entering into the nozzle. The cap is perforated with a plurality of bore holes for injecting cold water into the reactor. The cap is made to about 100 mm in thickness so that the cold water passing through the bore holes is heated by the heat conduction in the cap. Accordingly, the flow of high temperature water flowing downwardly in the reactor is inhibited by the cap from backward flowing into the nozzle. Moreover, the flow of the cold water in the nozzle is controlled and rectified when passed through the bore holes in the cap and then injected into the reactor. (Yoshino, Y.)

  6. Understanding the role of ultra-thin polymeric interlayers in improving efficiency of polymer light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jim; Wang, Xuhua; Bradley, Donal D. C.; Kim, Ji-Seon, E-mail: ji-seon.kim@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, South Kensington Campus, Imperial College London, London SW7 2AZ (United Kingdom); Wright, Edward N.; Walker, Alison B. [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2014-05-28

    Insertion of ultra-thin polymeric interlayers (ILs) between the poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hole injection and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) light emission layers of polymer light emitting diodes (PLEDs) can significantly increase their efficiency. In this paper, we investigate experimentally a broad range of probable causes of this enhancement with an eye to determining which IL parameters have the most significant effects. The importance of hole injection and electron blocking was studied through varying the IL material (and consequently its electronic energy levels) for both PLED and hole-only diode structures. The role of IL conductivity was examined by introducing a varying level of charge-transfer doping through blending the IL materials with a strong electron-accepting small molecule in concentrations from 1% to 7% by weight. Depositing ILs with thicknesses below the exciton diffusion length of ∼15 nm allowed the role of the IL as a physical barrier to exciton quenching to be probed. IL containing PLEDs was also fabricated with Lumation Green Series 1300 (LG 1300) light emission layers. On the other hand, the PLEDs were modeled using a 3D multi-particle Kinetic Monte Carlo simulation coupled with an optical model describing how light is extracted from the PLED. The model describes charge carrier transport and interactions between electrons, holes, singlets, and triplets, with the current density, luminance, and recombination zone (RZ) locations calculated for each PLED. The model shows F8BT PLEDs have a narrow charge RZ adjacent to the anode, while LG 1300 PLEDs have a wide charge RZ that is evenly distributed across the light emitting layer. Varying the light emitting layer from F8BT to Lumation Green Series 1300, we therefore experimentally examine the dependence of the IL function, specifically in regard to anode-side exciton quenching, on the location of the RZ. We found an exponential dependence of

  7. Stroke from Delayed Embolization of Polymerized Glue Following Percutaneous Direct Injection of a Carotid Body Tumor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthy, Thamburaj; Gupta, Arun Kumar; Rajan, Jayadevan E; Thomas, Bejoy [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, (India)

    2007-06-15

    Direct percutaneous embolization of hypervascular tumors results in more effective preoperative devascularization. Migration of glue is a well known complication of direct glue injection and it may lead to stroke or cranial nerve deficits. We report here on a case of carotid body tumor in a 52-year-old man; the tumor was mainly embolized by percutaneous injection of 50% glue and this was supported with balloon protection of the internal carotid artery. Thirteen hours later, he developed hemiparesis from delayed migration of glue. The possible mechanisms of this migration are discussed and preventive measures are suggested. Preoperative embolization of hypervascular tumors of the head and neck, including carotid body tumor, is often performed to decrease the amount of blood loss during surgery. Devascularization is mainly performed with particulate agents and by employing the transarterial route. More effective embolization may be achieved by performing percutaneous direct embolization of hypervascular tumors with liquid embolic agents. Even though there are few reports available on direct embolization, complications from glue migration have been reported, and this mainly happens during the procedure when the glue is in a liquid state. We report here on a case of delayed migration of polymerized glue (n-butyl-2-cyanoacrylate [NBCA]), many hours after the procedure, into the intracranial circulation and the final result was stroke. A 52-year-old male with right carotid body tumor underwent direct percutaneous glue (n-butylcyanoacrylate [NBCA]) embolization. Several hours later, he developed left hemiparesis from embolization of the polymerized glue cast. Migration of glue during percutaneous tumor embolization is presumed to occur only in the liquid state, which may lead to stroke or cranial nerve deficits. To the best of our knowledge, this is the first report of delayed glue embolization from a treated hypervascular tumor of the head and neck.

  8. Laboratory injection molder for the fabrication of polymeric porous poly-epsilon-caprolactone scaffolds for preliminary mesenchymal stem cells tissue engineering applications

    KAUST Repository

    Limongi, Tania

    2016-12-16

    This study presents a simple and rapid fabrication technique involving injection molding and particle leaching (IM/PL) to fabricate the porous scaffold for tissue engineering applications. Sodium chloride (NaCl) and Sucrose are separately mixed with the poly-epsilon-caprolactone (PCL) granules using a screwed thermo regulated extruder, than the biocompatible scaffolds are fabricated through injection molding. The micro/nano structure of the samples and their different grade of porosity were characterized by scanning electron microscopy and mercury intrusion porosimetry. Bone marrow-derived mesenchymal stem cells are chose to cell culture and Hoechst 33342 staining was used to verify the biocompatibility of the polymeric porous surfaces. We concluded that, by using the same fast solvent free injection/leaching process, the use of Sucrose as porogen, instead of NaCl, allowed the obtainment of biocompatible scaffolds with a higher grade of porosity with suitable cell adhesion capacity for tissue engineering purpose.

  9. Slim hole drilling and testing strategies

    Science.gov (United States)

    Nielson, Dennis L.; Garg, Sabodh K.; Goranson, Colin

    2017-12-01

    The financial and geologic advantages of drilling slim holes instead of large production wells in the early stages of geothermal reservoir assessment has been understood for many years. However, the practice has not been fully embraced by geothermal developers. We believe that the reason for this is that there is a poor understanding of testing and reservoir analysis that can be conducted in slim holes. In addition to reservoir engineering information, coring through the cap rock and into the reservoir provides important data for designing subsequent production well drilling and completion. Core drilling requires significantly less mud volume than conventional rotary drilling, and it is typically not necessary to cure lost circulation zones (LCZ). LCZs should be tested by either production or injection methods as they are encountered. The testing methodologies are similar to those conducted on large-diameter wells; although produced and/or injected fluid volumes are much less. Pressure, temperature and spinner (PTS) surveys in slim holes under static conditions can used to characterize temperature and pressure distribution in the geothermal reservoir. In many cases it is possible to discharge slim holes and obtain fluid samples to delineate the geochemical properties of the reservoir fluid. Also in the latter case, drawdown and buildup data obtained using a downhole pressure tool can be employed to determine formation transmissivity and well properties. Even if it proves difficult to discharge a slim hole, an injection test can be performed to obtain formation transmissivity. Given the discharge (or injection) data from a slimhole, discharge properties of a large-diameter well can be inferred using wellbore modeling. Finally, slim hole data (pressure, temperature, transmissivity, fluid properties) together with reservoir simulation can help predict the ability of the geothermal reservoir to sustain power production.

  10. On the hole accelerator for III-nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-01-01

    In this work, we systematically conduct parametric studies revealing the sensitivity of the hole injection on the hole accelerator (a hole accelerator is made of the polarization mismatched p-electron blocking layer (EBL)/p-GaN/p-Al x Ga 1−x N heterojunction) with different designs, including the AlN composition in the p-Al x Ga 1−x N layer, and the thickness for the p-GaN layer and the p-Al x Ga 1−x N layer. According to our findings, the energy that the holes obtain does not monotonically increase as the AlN incorporation in the p-Al x Ga 1−x N layer increases. Meanwhile, with p-GaN layer or p-Al x Ga 1−x N layer thickening, the energy that the holes gain increases and then reaches a saturation level. Thus, the hole injection efficiency and the device efficiency are very sensitive to the p-EBL/p-GaN/p-Al x Ga 1−x N design, and the hole accelerator can effectively increase the hole injection if properly designed.

  11. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  12. A hole modulator for InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-02-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ˜332 meV to ˜294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  13. Preparation and in vitro characterization of SN-38-loaded, self-forming polymeric depots as an injectable drug delivery system.

    Science.gov (United States)

    Manaspon, Chawan; Hongeng, Suradej; Boongird, Atthaporn; Nasongkla, Norased

    2012-10-01

    This work describes the preparation and characterization of anticancer-loaded injectable polymeric depots that consisted of D,L-lactide (LA), ε-caprolactone (CL), and poly(ethylene glycol) (PEG) or [poly(ε-caprolactone)-random-poly(D,L-lactide)]-block-poly(ethylene glycol)-block-[poly(ε-caprolactone)-random-poly(D,L-lactide)] (PLEC) copolymers for malignant gliomas treatment. PLECs were polymerized with different percentages of LA to deliver 7-ethyl-10-hydroxycamptothecin (SN-38), a highly potent anticancer drug. SN-38-loaded depots could form directly in phosphate buffer saline with more than 98% encapsulation efficiency. The release rate of SN-38 from depots was found to depend on the amount of LA in PLECs, loading content of SN-38 in the depots, and depot weight. Encapsulation of SN-38 inside depots could enhance the stability of SN-38 where all of SN-38 released after 60 days was in an active form. Depots without SN-38 were evaluated as noncytotoxic against U-87MG, whereas SN-38-loaded depots showed cytotoxic effect as a function of concentration. Copyright © 2012 Wiley Periodicals, Inc.

  14. The effects of polymeric plutonium on erythrocyte survival in mice, (1)

    International Nuclear Information System (INIS)

    Joshima, Hisamasa; Kashima, Masatoshi; Matsuoka, Osamu

    1976-01-01

    The changes in erythrocyte counts, hematocrit, hemoglobin, reticulocyte counts and erythrocyte survival following an intravenous injection of polymeric 239 Pu at the dose level of 15 μCi/kg, 10 μCi/kg and 5 μCi/kg were studied in CF no. 1 male mice in order to investigate the possible pathogenesis of anemia produced by irradiation of polymeric plutonium. The administration of 15 μCi/kg and 10 μCi/kg of polymeric plutonium produced anemia but 5 μCi/kg had no significant effect. Studies with 51 Cr labelled erythrocyte showed a moderate reduction in survival of erythrocyte following a single intraveneous injection of polymeric plutonium. Not only the intracorpuscular effect but also extracorpuscular effect of polymeric plutonium was considered to lead to a reduction in erythrocyte survival, but no clear dose relationship could be observed between the reduction of survival and either intracorpuscular effect or extracorpuscular effect. Although the most important pathogenesis of anemia produced by polymeric plutonium is supposed to be a decreased erythropoiesis, it was believed that both qualitatively impaired erythropoiesis and abnormal erythrocyte destruction might also play some role in the occurrence of anemia. (auth.)

  15. Injection profiles with radiation induced copolymers

    International Nuclear Information System (INIS)

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    The injectivity profile of a heterogeneous formation and/or vertical conformance is improved by injecting an aqueous solution into the formation, the solution containing a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in a 10 to 60 percent aqueous solution with gamma radiation; the aqueous monomer solution preferably contains 25 to 99 percent acrylamide and 1 to 75 percent sodium acrylate. Immiscible, miscible, or miscible-like displacing processes can be used in conjunction with this invention. 20 claims

  16. Comparison of potentials for polymeric liquids

    International Nuclear Information System (INIS)

    Jung, Hae Young

    2002-01-01

    Many theories for polymeric liquids are based on the concepts of cell, hole, free volume of lattice etc. In this theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used. In this work, Mie(p,6)potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equation of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values changing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid theory, Flory's Equation of State Theory and Cho-Sanchez Theory using perturbation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p,6) potential for polymeric liquids were compared with each other

  17. A hole modulator for InGaN/GaN light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-01-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm 2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs

  18. Direct injection of high pressure gas : scaling properties of pulsed turbulent jets

    NARCIS (Netherlands)

    Baert, R.S.G.; Klaassen, A.; Doosje, E.

    2010-01-01

    Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection

  19. Hot carrier injection degradation under dynamic stress

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under V g = 0 V and V d = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under V g = −1.8 V and V d = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. A hole accelerator for InGaN/GaN light-emitting diodes

    Science.gov (United States)

    Zhang, Zi-Hui; Liu, Wei; Tan, Swee Tiam; Ji, Yun; Wang, Liancheng; Zhu, Binbin; Zhang, Yiping; Lu, Shunpeng; Zhang, Xueliang; Hasanov, Namig; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-10-01

    The quantum efficiency of InGaN/GaN light-emitting diodes (LEDs) has been significantly limited by the insufficient hole injection, and this is caused by the inefficient p-type doping and the low hole mobility. The low hole mobility makes the holes less energetic, which hinders the hole injection into the multiple quantum wells (MQWs) especially when a p-type AlGaN electron blocking layer (EBL) is adopted. In this work, we report a hole accelerator to accelerate the holes so that the holes can obtain adequate kinetic energy, travel across the p-type EBL, and then enter the MQWs more efficiently and smoothly. In addition to the numerical study, the effectiveness of the hole accelerator is experimentally shown through achieving improved optical output power and reduced efficiency droop for the proposed InGaN/GaN LED.

  1. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  2. Premixed direct injection nozzle for highly reactive fuels

    Science.gov (United States)

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  3. Efficacy of autologous platelets in macular hole surgery.

    Science.gov (United States)

    Konstantinidis, Aristeidis; Hero, Mark; Nanos, Panagiotis; Panos, Georgios D

    2013-01-01

    The introduction of optical coherence tomography has allowed accurate measurement of the size of macular holes. A retrospective consecutive review was performed of 21 patients undergoing macular hole repair with vitrectomy, gas tamponade, and autologous platelet injection and we assessed the effect of macular hole parameters on anatomic and functional outcomes. We looked at the demographic features, final visual outcome, and anatomical closure. Twenty-one patients were included in the study. They underwent routine vitrectomy with gas tamponade (C3F8) and injection of autologous platelets. All patients were advised to maintain a facedown posture for 2 weeks. Anatomical closure was confirmed in all cases and 20 out of 21 of patients had improved postoperative visual acuity by two or more lines. In our series, the macular hole dimensions did not have much effect on the final results. The use of autologous platelets and strict facedown posture seems to be the deciding factor in good anatomical and visual outcome irrespective of macular hole dimensions.

  4. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  5. Study of the effect of the doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) polymeric anode on the organic light-emitting diode performances

    Energy Technology Data Exchange (ETDEWEB)

    De Girolamo Del Mauro, Anna, E-mail: anna.degirolamo@enea.it; Nenna, Giuseppe; Villani, Fulvia; Minarini, Carla

    2012-06-01

    Bottom-emitting organic diode devices with polymeric anode were fabricated and their performances were compared to devices with different anodes. The highly transparent (transmittance Almost-Equal-To 90%) and conductive (700 S/cm) anode was poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed from aqueous solution and modified by addition of dimethyl sulfoxide (DMSO). The electro-optical characteristics of the DMSO-doped PEDOT:PSS based device and devices with architectures based on undoped PEDOT:PSS and/or indium tin oxide (ITO) were investigated and the effects of the different anodes were analyzed by means of electrical responses in static and dynamic regimes. The efficiency of the device with the proposed polymeric anode was comparable to that of ITO based device but reduced with respect to the device including PEDOT:PSS as hole-injection layer. These results were correlated to the film morphological properties and discussed in terms of interfacial state density modification. - Highlights: Black-Right-Pointing-Pointer Doped Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) is proposed as anode. Black-Right-Pointing-Pointer Transparent and conductive polymeric anode is used in organic light-emitting diodes. Black-Right-Pointing-Pointer Efficiency of polymeric anode device is comparable to device with indium tin oxide. Black-Right-Pointing-Pointer Lower optical switch-on and higher luminance are observed. Black-Right-Pointing-Pointer Interface state density is modified by addition of the dopant in polymeric electrode.

  6. Experimental assessment of film cooling performance of short cylindrical holes on a flat surface

    Science.gov (United States)

    Singh, Kuldeep; Premachandran, B.; Ravi, M. R.

    2016-12-01

    The present study is an experimental investigation of film-cooling over a flat surface from the short cylindrical holes. The film cooling holes used in the combustion chamber and the afterburner liner of an aero engine has length-to-diameter (L/D) typically in the range 1-2, while the cooling holes used in turbine blades has L/D > 3. Based on the classification given in the literature, cooling holes with L/D ≤ 3 are named as short holes and cooling holes with L/D > 3 are named as long holes. Short film cooling holes cause jetting of the secondary fluid whereas the secondary fluid emerging from long holes has characteristics similar to fully developed turbulent flow in pipe. In order to understand the difference in the film cooling performance of long and short cooling holes, experimental study is carried out for five values of L/D in the range 1-5, five injection angles, α = 15°-90° and five mainstream Reynolds number 1.25 × 105-6.25 × 105 and two blowing ratios, M = 0.5-1.0. The surface temperature of the test plate is monitored using infrared thermography. The results obtained from the present study showed that the film-cooling effectiveness is higher for the longest holes (L/D = 5) investigated in the present work in comparison to that for the shorter holes. Short holes are found to give better effectiveness at the lowest investigated injection angle i.e. α = 15° in the near cooling hole region, whereas film cooling effectiveness obtained at injection angle, α = 45° is found to be better than other injection angles for longest investigated holes, i.e. L/D = 5.

  7. Diffusive scattering of electrons by electron holes around injection fronts

    Science.gov (United States)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.; Krasnoselskikh, V. V.; Bonnell, J. W.

    2017-03-01

    Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the EH spatial distribution (latitudinal extent and spatial filling factor) and individual EH parameters (amplitude of electrostatic potential, velocity, and spatial scales). We show that EHs can drive pitch angle scattering of ≲5 keV electrons at rates 10-2-10-4 s-1 and, hence, can contribute to electron losses and conjugated diffuse aurora brightenings. The momentum and pitch angle scattering rates can be comparable, so that EHs can also provide efficient electron heating. The scattering rates driven by EHs at L shells L ˜ 5-8 are comparable to those due to chorus waves and may exceed those due to electron cyclotron harmonics.

  8. Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    Science.gov (United States)

    de Jamblinne de Meux, A.; Pourtois, G.; Genoe, J.; Heremans, P.

    2018-04-01

    The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.

  9. Hole drift mobility in poly(hexylphenylsilane)

    International Nuclear Information System (INIS)

    Kunimi, Y.; Seki, S.; Tagawa, S.

    2000-01-01

    Poly(n-alkylphenylsilane)s in which n-alkyl were changed from methyl to octyl were polymerized. Hole transport properties of poly(alkyllphenylsilane)s were systematically studied by the DC time-of-flight (TOF) technique. While the hole drift mobility of poly(methylphenylsilane) increased monotonously in entire field, those of poly(hexylphenylsilane) and poly(octylphenylsilane) decreased with increase in the field strength. Temperature dependence of hole drift mobility in those polymers was small. On the basis of Baessler's disorder formalism the mobility was analyzed quantitatively to disserve complex contributions of charge transport. The analyzed results indicated that with increase in the length of n-alkyl side-groups, the energetic disorder of hopping sites became smaller and the disorder of distance between hopping sites became larger. These results were supported by the results obtained by UV absorption measurement and positron annihilation life-time spectroscopy measurement. (author)

  10. Solid-State Polymerization of Acetylene under Pressure: {ital Ab Initio} Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, M.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr.1, D-70569 Stuttgart (Germany); Bernasconi, M. [Istituto Nazionale Fisica della Materia and Dipartimento di Fisica, Universita di Milano, Via Celoria 16, 20133 Milano (Italy); Chiarotti, G.; Focher, P.; Tosatti, E. [Istituto Nazionale Fisica della Materia and International School for Advanced Studies, Via Beirut 4, I-34014 Trieste (Italy); Tosatti, E. [International Centre for Theoretical Physics (ICTP), P.O.Box 586, I-34014 Trieste (Italy)

    1997-03-01

    We have simulated by {ital ab initio} constant pressure molecular dynamics the solid-state polymerization of acetylene recently observed experimentally in the pressure range 3.5{endash}14 GPa. We have found a massive polymerization only at much higher pressure (25 GPa). However, we have also found that a triplet exciton self-trapped on a single, {ital cis}-bent molecule in crystalline acetylene is a very effective polymerization seed at lower pressure ({lt}9GPa), much closer to the experimental threshold. Therefore, we propose that the polymerization observed experimentally is possibly catalyzed by a similar seed. We predict that injection of triplet excitons would greatly enhance the polymerization rate. {copyright} {ital 1997} {ital The American Physical Society}

  11. Performance Enhancement of Organic Light-Emitting Diodes Using Electron-Injection Materials of Metal Carbonates

    Science.gov (United States)

    Shin, Jong-Yeol; Kim, Tae Wan; Kim, Gwi-Yeol; Lee, Su-Min; Shrestha, Bhanu; Hong, Jin-Woong

    2016-05-01

    Performance of organic light-emitting diodes was investigated depending on the electron-injection materials of metal carbonates (Li2CO3 and Cs2CO3 ); and number of layers. In order to improve the device efficiency, two types of devices were manufactured by using the hole-injection material (Teflon-amorphous fluoropolymer -AF) and electron-injection materials; one is a two-layer reference device ( ITO/Teflon-AF/Alq3/Al ) and the other is a three-layer device (ITO/Teflon-AF/Alq3/metal carbonate/Al). From the results of the efficiency for the devices with hole-injection layer and electron-injection layer, it was found that the electron-injection layer affects the electrical properties of the device more than the hole-injection layer. The external-quantum efficiency for the three-layer device with Li2CO3 and Cs2CO3 layer is improved by approximately six and eight times, respectively, compared with that of the two-layer reference device. It is thought that a use of electron-injection layer increases recombination rate of charge carriers by the active injection of electrons and the blocking of holes.

  12. Applications of positron annihilation spectroscopy to polymeric and biological systems

    International Nuclear Information System (INIS)

    Jean, Y.C.; Chen, Hongmin; Liu, Guang; Chakka, Lakshmi; Gadzia, Joseph E.

    2007-01-01

    Positron annihilation spectroscopy (PAS) is a novel radio-analytical technique which uses the positron (anti-electron) and is capable of probing the atomic and molecular scale (0.2-2 nm) free-volume and hole properties in polymeric and biological materials. Recently, we developed positron annihilation lifetime and Doppler broadening of energy spectroscopies coupled with a variable mono-energetic positron beam to measure the free-volume depth profile from the surface, interfaces, and to the bulk. This paper presents applications of PAS to determine multi-layer structures, glass transition temperatures in nano-scale polymeric films and to detect cancer in the human skin. (author)

  13. Characterization of string cavitation in large-scale Diesel nozzles with tapered holes

    Science.gov (United States)

    Gavaises, M.; Andriotis, A.; Papoulias, D.; Mitroglou, N.; Theodorakakos, A.

    2009-05-01

    The cavitation structures formed inside enlarged transparent replicas of tapered Diesel valve covered orifice nozzles have been characterized using high speed imaging visualization. Cavitation images obtained at fixed needle lift and flow rate conditions have revealed that although the conical shape of the converging tapered holes suppresses the formation of geometric cavitation, forming at the entry to the cylindrical injection hole, string cavitation has been found to prevail, particularly at low needle lifts. Computational fluid dynamics simulations have shown that cavitation strings appear in areas where large-scale vortices develop. The vortical structures are mainly formed upstream of the injection holes due to the nonuniform flow distribution and persist also inside them. Cavitation strings have been frequently observed to link adjacent holes while inspection of identical real-size injectors has revealed cavitation erosion sites in the area of string cavitation development. Image postprocessing has allowed estimation of their frequency of appearance, lifetime, and size along the injection hole length, as function of cavitation and Reynolds numbers and needle lift.

  14. Scintigraphic evaluation of the pharmacokinetics of a soluble polymeric drug carrier

    International Nuclear Information System (INIS)

    Pimm, M.V.; Perkins, A.C.; Hudecz, F.

    1992-01-01

    There is a growing interest in the use of macromolecular carriers for therapeutic agents. If these carriers can be labelled with an appropriate gamma-emitter, their biodistribution could be followed by scintigraphy. We have imaged the biodistribution of a synthetic branched polypeptide, based on a poly-L-lysine backbone (average molecular mass 45 kDa). The polymer was conjugated to diethylene triamine penta-acetic acid and labelled by chelation with indium-111. Mice were injected i.v. with labelled material and imaged with a gamma-camera with a pin-hole collimator. Images showed the majority of tracer remaining in the blood pool, but about 35% appeared in the urinary bladder within 1.5 h. When the 111 In-polymer was fractionated by gel filtration chromatography on S-300, the imaging showed that the early eluting material was retained, the intermediate showed some renal clearance, and the late was rapidly excreted. These findings show the value of gamma-scintigraphy for biodistribution studies with such polymeric drug carriers and its potential for clinical pharmacokinetic studies. (orig.)

  15. Drain current enhancement induced by hole injection from gate of 600-V-class normally off gate injection transistor under high temperature conditions up to 200 °C

    Science.gov (United States)

    Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo

    2018-06-01

    In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.

  16. CFD analysis of poison injection in AHWR calandria

    International Nuclear Information System (INIS)

    Kansal, A.K.; Kamble, M.T.; Maheshwari, N.K.; Vijayan, P.K.

    2014-01-01

    The present work intends to give details of design and performance validation of SDS-2. The performance is evaluated on the basis of dispersion of poison in calandria in a given period of time. Location of injection tube and injection holes, size of jet hole and number of holes are some of the design parameters which greatly affect dispersion of poison in calandria. A Computational Fluid Dynamic (CFD) study for axial and radial injection of poison was carried out using open source CFD code OpenFOAM. CFD benchmarking was done using experiments performed by Johari (Johari et al. 1997) to identify suitable turbulence model for this problem. An experimental facility simulating poison injection in moderator in presence of calandria tubes was used to further validate the CFD model is shown in the paper. CFD analysis was carried out for axial as well as radial injection for AHWR geometry. CFD analysis using OpenFOAM has been carried out to study high pressure poison injection for single jet of Shut Down System - 2 (SDS- 2) of Advanced Heavy Water Reactor (AHWR) for various design options. CFD model used in analysis have been validated with experimental data available in literature as well as experiments performed for AHWR specific geometry. Various turbulence models are tested and their adequacy for such flow problems has been established. The CFD model is then used to simulate poison injection for two design options for AHWR and their performance is compared. (author)

  17. Computational design of mould sprue for injection moulding thermoplastics

    Directory of Open Access Journals (Sweden)

    Muralidhar Lakkanna

    2016-01-01

    Full Text Available To injection mould polymers, designing mould is a key task involving several critical decisions with direct implications to yield quality, productivity and frugality. One prominent decision among them is specifying sprue-bush conduit expansion as it significantly influences overall injection moulding; abstruseness anguish in its design criteria deceives direct determination. Intuitively designers decide it wisely and then exasperate by optimising or manipulating processing parameters. To overwhelm that anomaly this research aims at proposing an ideal design criteria holistically for all polymeric materials also tend as a functional assessment metric towards perfection i.e., criteria to specify sprue conduit size before mould development. Accordingly, a priori analytical criterion was deduced quantitatively as expansion ratio from ubiquitous empirical relationships specifically a.k.a an exclusive expansion angle imperatively configured for injectant properties. Its computational intelligence advantage was leveraged to augment functionality of perfectly injecting into an impression gap, while synchronising both injector capacity and desired moulding features. For comprehensiveness, it was continuously sensitised over infinite scale as an explicit factor dependent on in-situ spatio-temporal injectant state perplexity with discrete slope and altitude for each polymeric character. In which congregant ranges of apparent viscosity and shear thinning index were conceived to characteristically assort most thermoplastics. Thereon results accorded aggressive conduit expansion widening for viscous incrust, while a very aggressive narrowing for shear thinning encrust; among them apparent viscosity had relative dominance. This important rationale would certainly form a priori design basis as well diagnose filling issues causing several defects. Like this the proposed generic design criteria, being simple would immensely benefit mould designers besides serve

  18. Efficacy of autologous platelets in macular hole surgery

    Directory of Open Access Journals (Sweden)

    Konstantinidis A

    2013-04-01

    Full Text Available Aristeidis Konstantinidis,1,2 Mark Hero,2 Panagiotis Nanos,1 Georgios D Panos1,3 1Department of Ophthalmology, University Hospital of Alexandroupolis, Alexandroupolis, Greece; 2Opthalmology Department, University Hospital Coventry and Warwickshire, Coventry, UK; 3Department of Ophthalmology, University Hospitals of Geneva, Geneva, Switzerland Abstract: The introduction of optical coherence tomography has allowed accurate measurement of the size of macular holes. A retrospective consecutive review was performed of 21 patients undergoing macular hole repair with vitrectomy, gas tamponade, and autologous platelet injection and we assessed the effect of macular hole parameters on anatomic and functional outcomes. We looked at the demographic features, final visual outcome, and anatomical closure. Twenty-one patients were included in the study. They underwent routine vitrectomy with gas tamponade (C3F8 and injection of autologous platelets. All patients were advised to maintain a facedown posture for 2 weeks. Anatomical closure was confirmed in all cases and 20 out of 21 of patients had improved postoperative visual acuity by two or more lines. In our series, the macular hole dimensions did not have much effect on the final results. The use of autologous platelets and strict facedown posture seems to be the deciding factor in good anatomical and visual outcome irrespective of macular hole dimensions. Keywords: macular hole, platelets, vitrectomy

  19. Biomechanical comparative study of the stability of injectable pedicle screws with different lateral holes augmented with different volumes of polymethylmethacrylate in osteoporotic lumbar vertebrae.

    Science.gov (United States)

    Liu, Da; Sheng, Jun; Luo, Yang; Huang, Chen; Wu, Hong-Hua; Zhou, Jiang-Jun; Zhang, Xiao-Jun; Zheng, Wei

    2018-03-19

    Polymethylmethacrylate (PMMA) is widely used for pedicle screw augmentation in osteoporosis. Until now, there had been no studies of the relationship between screw stability and the distribution and volume of PMMA. The objective of this study was to analyze the relationship between screw stability and the distribution pattern and injected volume of PMMA. This is a biomechanical comparison of injectable pedicle screws with different lateral holes augmented with different volumes of PMMA in cadaveric osteoporotic lumbar vertebrae. Forty-eight osteoporotic lumbar vertebrae were randomly divided into Groups A, B, and C with different pedicle screws (16 vertebrae in each group), and then each group was randomly divided into Subgroups 0, 1, 2, and 3 with different volumes of PMMA (four vertebra with eight pedicles in each subgroup). A pilot hole was prepared in advance using the same method in all samples. Type A and type B pedicle screws were directly inserted into vertebrae in Groups A and B, respectively, and then different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL) were injected through the screws and into vertebrae in Subgroups 0, 1, 2, and 3. The pilot holes were filled with different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL), and then the screws were inserted in Groups C0, C1, C2, and C3. Screw position and distribution of PMMA were evaluated radiographically, and axial pullout tests were performed to measure maximum axial pullout strength (F max ). Polymethylmethacrylate surrounded the anterior one-third of screws in the vertebral body in Groups A1, A2, and A3; the middle one-third of screws in the junction area of the vertebral body and the pedicle in Groups B1, B2, and B3; and the full length of screws evenly in both the vertebral body and the pedicle in Groups C1, C2, and C3. There was no malpositioning of screws or leakage of PMMA in any sample. Two-way analysis of variance revealed that two factors-distribution and volume of PMMA-significantly influenced

  20. Ocriplasmin for treatment of stage 2 macular holes: early clinical results.

    Science.gov (United States)

    Miller, John B; Kim, Leo A; Wu, David M; Vavvas, Demetrios G; Eliott, Dean; Husain, Deeba

    2014-01-01

    To review clinical and structural outcomes of ocriplasmin for treatment of stage 2 macular holes. A retrospective review of the first patients with stage 2 macular holes to be treated with ocriplasmin at Massachusetts Eye and Ear Infirmary. All patients were imaged with spectral-domain optical coherence tomography (SD-OCT). Eight patients with stage 2 macular holes received a single injection of 125 μg of ocriplasmin. One patient (12.5%) demonstrated macular hole closure. The posterior hyaloid separated from the macula in six eyes (75%). All seven holes that remained open showed enlargement in hole diameters (narrowest, apical, and basal) at 1 week and 1 month. All seven were successfully closed with surgery. Ellipsoid zone disruptions were observed by OCT in four eyes (50%) and persisted throughout follow-up (more than 6 months on average). In early clinical results, the authors found a lower macular hole closure rate with ocriplasmin than previously reported. Enlargement was observed in all holes that failed to close with ocriplasmin. The authors found ellipsoid zone disruptions that persisted through 6 months of follow-up after ocriplasmin injection. Further work is needed to investigate the cause for these ellipsoid zone changes. Copyright 2014, SLACK Incorporated.

  1. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  2. Injection characteristics of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.

    1996-09-01

    Dimethyl ether (DME) has proved to be a new ultra-clean alternative fuel for diesel engines. Engine tests have shown considerably lower NO{sub x} emissions, no particle emissions and lower noise compared to that obtained from normal diesel engine operation. DME also has demonstrated favorable response to Exhaust Gas Recirculation (EGR). The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME. Fundamental spray behaviour was characterized by fuel spray penetration and angle, atomization and droplet size and evaporation. The influence of fuel characteristics, nozzle geometry and ambient pressure on the DME and diesel spray behavior was investigated. Fuel was injected into an unheated injection chamber with a ambient pressure of 15 bar and 25 bar, respectively, giving a simplified simulation of the environment in an operating engine. Two nozzles were studied: a single hole nozzle and a pintle nozzle. A conventional fuel injection system was used for both nozzles. Injection parameters of RPM, throttle position, fuel line length and chamber environment were held constant for both nozzles. The sprays were visualized using schlieren and high speed photography. Results show that the general appearance of the DME spray is similar to that of diesel spray. The core of the DME spray seems less dense and the spray tip less sharp compared to diesel spray, indicating smaller droplets with a lower momentum in the core of the DME spray. Schlieren film shows that with both DME and diesel fuel, the spray tip only consists of liquid and that evaporation occurs after a brief time interval. Penetration of DME is about one third that of diesel using the pintle nozzle. Also, the spray angle is considerably larger for the DME spray compared to the diesel spray. A comparatively smaller difference in penetration is observed using the hole nozzle. Differences in penetration for the hole nozzle are within the limit of the penetration

  3. Exotic energy injection with ExoCLASS: application to the Higgs portal model and evaporating black holes

    Science.gov (United States)

    Stöcker, Patrick; Krämer, Michael; Lesgourgues, Julien; Poulin, Vivian

    2018-03-01

    We devise a new user-friendly tool interfaced with the Boltzmann code CLASS to deal with any kind of exotic electromagnetic energy injection in the universe and its impact on anisotropies of the Cosmic Microwave Background. It makes use of the results from standard electromagnetic cascade calculations develop in the context of WIMP annihilation, generalized to incorporate any injection history. We first validate it on a specific WIMP scenario, the Higgs Portal model, confirming that the standard effective on-the-spot treatment is accurate enough. We then analyze the more involved example of evaporating Primordial Black Holes (PBHs) with masses in the range [3×1013,5×1016] g, for which the standard approximations break down. We derive robust CMB bounds on the relic density of evaporating PBHs, ruling out the possibility for PBHs with a monochromatic distribution of masses in the range [3×1013,2.5×1016] g to represent all of the Dark Matter in our Universe. Remarkably, we confirm with an accurate study that the CMB bounds are several orders of magnitude stronger than those from the galactic gamma-ray background in the range [3×1013,3×1014] g. A future CMB experiment like CORE+, or an experiment attempting at measuring the 21 cm signal from the Dark Ages could greatly improve the sensitivity to these models.

  4. The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-Ying [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China); Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Siboni, Hossein Zamani; Wang, Qi; Aziz, Hany, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn, E-mail: h2aziz@uwaterloo.ca [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-12-14

    Charge generation in a typical intermediate connector, composed of “n-type doped layer/transition metal oxide (TMO)/hole transporting layer (HTL),” of a tandem organic light-emitting device (OLED) has recently been found to arise from charge transfer at the TMO/HTL interfaces. In this paper, we investigate the effect of hole injection barriers from intermediate connectors on the performance of tandem OLEDs. The hole injection barriers are caused by the offset of the highest occupied molecular orbital (HOMO) energy levels between HTLs contained in the intermediate connector and the top electroluminescence (EL) unit. We also find that although charge generation can occur at the interfaces between the TMO and a wide variety of HTLs of different HOMO values, an increase in the hole injection barrier however limits the electroluminescence efficiency of the top EL units. In the case of large hole injection barriers, significant charge accumulation in the HTLs makes the intermediate connector lose its functionality gradually over operating time, and limits device stability.

  5. Selection of peripheral intravenous catheters with 24-gauge side-holes versus those with 22-gauge end-hole for MDCT: A prospective randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Akio, E-mail: a.akahane@gmail.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Kato, Kenichi, E-mail: kkato@iwate-med.ac.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Kamata, Masayoshi, E-mail: kamataaoi@yahoo.co.jp [Iwate Medical University Hospital, 19-1 Uchimaru, Morioka 020-8505 (Japan); Suzuki, Tomohiro, E-mail: suzukitomohiro123@gmail.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Suzuki, Michiko, E-mail: mamimichiko@me.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Nakayama, Manabu, E-mail: gakuymgt@yahoo.co.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Tomabechi, Makiko, E-mail: mtomabechi@mac.com [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan); Nakasato, Tatsuhiko, E-mail: nakasato77@gmail.com [Department of Radiology, Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama 963-8563 (Japan); Ehara, Shigeru, E-mail: ehara@iwate-med.ac.jp [Department of Radiology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka 020-8505 (Japan)

    2017-02-15

    Highlights: • We compared 24-gauge side-hole and conventional 22-gauge end-hole catheters in MDCT. • The 24-gauge side-hole catheter is noninferior to the 22-gauge end-hole catheter. • The 24-gauge side-hole catheter is safe and facilitates optimal enhancement quality. • The 24-gauge side-hole catheter is suitable for patients with narrow or fragile veins. - Abstract: Purpose: To compare the 24-gauge side-holes catheter and conventional 22-gauge end-hole catheter in terms of safety, injection pressure, and contrast enhancement on multi-detector computed tomography (MDCT). Materials & methods: In a randomized single-center study, 180 patients were randomized to either the 24-gauge side-holes catheter or the 22-gauge end-hole catheter groups. The primary endpoint was safety during intravenous administration of contrast material for MDCT, using a non-inferiority analysis (lower limit 95% CI greater than −10% non-inferiority margin for the group difference). The secondary endpoints were injection pressure and contrast enhancement. Results: A total of 174 patients were analyzed for safety during intravenous contrast material administration for MDCT. The overall extravasation rate was 1.1% (2/174 patients); 1 (1.2%) minor episode occurred in the 24-gauge side-holes catheter group and 1 (1.1%) in the 22-gauge end-hole catheter group (difference: 0.1%, 95% CI: −3.17% to 3.28%, non-inferiority P = 1). The mean maximum pressure was higher with the 24-gauge side-holes catheter than with the 22-gauge end-hole catheter (8.16 ± 0.95 kg/cm{sup 2} vs. 4.79 ± 0.63 kg/cm{sup 2}, P < 0.001). The mean contrast enhancement of the abdominal aorta, celiac artery, superior mesenteric artery, and pancreatic parenchyma in the two groups were not significantly different. Conclusion: In conclusion, our study showed that the 24-gauge side-holes catheter is safe and suitable for delivering iodine with a concentration of 300 mg/mL at a flow-rate of 3 mL/s, and it may contribute to

  6. RETINA EXPANSION TECHNIQUE FOR MACULAR HOLE APPOSITION REPORT 2: Efficacy, Closure Rate, and Risks of a Macular Detachment Technique to Close Large Full-Thickness Macular Holes.

    Science.gov (United States)

    Wong, Roger; Howard, Catherine; Orobona, Giancarlo Dellʼaversana

    2018-04-01

    To describe the safety and efficacy of a technique to close large thickness macular holes. A consecutive retrospective interventional case series of 16 patients with macular holes greater than 650 microns in "aperture" diameter were included. The technique involves vitrectomy, followed by internal limiting membrane peeling. The macula is detached using subretinal injection of saline. Fluid-air exchange is performed to promote detachment and stretch of the retina. After this, the standard fluid-air exchange is performed and perfluoropropane gas is injected. Face-down posturing is advised. Adverse effects, preoperative, and postoperative visual acuities were recorded. Optical coherence tomography scans were also taken. The mean hole size was 739 microns (SD: 62 microns; mean base diameter: 1,311 microns). Eighty-three percent (14 of 16) of eyes had successful hole closure after the procedure. At 12-month follow-up, no worsening in visual acuity was reported, and improvement in visual acuity was noted in 14 of 16 eyes. No patients lost vision because of the procedure. It is possible to achieve anatomical closure of large macular holes using RETMA. No patients experienced visual loss. The level of visual improvement is likely limited because of the size and chronicity of these holes.

  7. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  8. Positron Annihilation Spectroscopy as a Novel Interfacial Probe for Thin Polymeric Films and Nano-Composites

    Science.gov (United States)

    Awad, Somia; Chen, Hongmin; Maina, Grace; Lee, L. James; Gu, Xiaohong; Jean, Y. C.

    2010-03-01

    Positron annihilation spectroscopy (PAS) has been developed as a novel probe to characterize the sub-nanometer defect, free volume, profile from the surface, interfaces, and to the bulk in polymeric materials when a variable mono-energy slow positron beam is used. Free-volume hole sizes, fractions, and distributions are measurable as a function of depth at the high precision. PAS has been successfully used to study the interfacial properties of polymeric nanocomposites at different chemical bonding. In nano-scale thin polymeric films, such as in PS/SiO2, and PU/ZnO, significant variations of Tg as a function of depth and of wt% oxide are observed. Variations of Tg are dependent on strong or weak interactions between polymers and nano-scale oxides surfaces.

  9. Electron-Hole Asymmetry of Spin Injection and Transport in Single-Layer Graphene

    OpenAIRE

    Han, Wei; Wang, W. H.; Pi, K.; McCreary, K. M.; Bao, W.; Li, Yan; Miao, F.; Lau, C. N.; Kawakami, R. K.

    2009-01-01

    Spin-dependent properties of single-layer graphene (SLG) have been studied by non-local spin valve measurements at room temperature. Gate voltage dependence shows that the non-local magnetoresistance (MR) is proportional to the conductivity of the SLG, which is the predicted behavior for transparent ferromagnetic/nonmagnetic contacts. While the electron and hole bands in SLG are symmetric, gate voltage and bias dependence of the non-local MR reveal an electron-hole asymmetry in which the non-...

  10. Numerical studies of spray breakup in a gasoline direct injection (GDI engine

    Directory of Open Access Journals (Sweden)

    Jafarmadar Samad

    2011-01-01

    Full Text Available The objective of this study is to investigate Spray Breakup process of sprays injected from single and two-hole nozzles for gasoline direct Injection (GDI engines by using three dimensional CFD code. Spray characteristics were examined for spray tip penetration and other characteristics including: the vapor phase concentration distribution and droplet spatial distribution, which were acquired using the computational fluid dynamics (CFD simulation. Results showed that as the hole-axis-angle (γ of the two-hole nozzle decreased, the droplet coalescence increased and vapor mass decreased. The spray with cone angle (θ0 5 deg for single hole nozzle has the longest spray tip penetration and the spray with the γ of 30 deg and spray cone angle θ0=30 deg for two hole nozzles had the shortest one. Also, when the spray cone angle (θ0 and hole-axis-angle (γ increased from 5 to 30 deg, the Sauter mean diameter (SMD decreased for both single-hole and two-hole nozzles used in this study. For a single-hole nozzle, when spray cone angle increased from 5 to 30 deg, the vaporization rate very much because of low level of coalescence. The result of model for tip penetration is good agreement with the corresponding experimental data in the literatures.

  11. Injection of holes at indium tin oxide/dendrimer interface: An explanation with new theory of thermionic emission at metal/organic interfaces

    International Nuclear Information System (INIS)

    Peng Yingquan; Lu Feiping

    2006-01-01

    The traditional theory of thermionic emission at metal/inorganic crystalline semiconductor interfaces is no longer applicable for the interface between a metal and an organic semiconductor. Under the assumption of thermalization of hot carriers in the organic semiconductor near the interface, a theory for thermionic emission of charge carriers at metal/organic semiconductor interfaces is developed. This theory is used to explain the experimental result from Samuel group [J.P.J. Markham, D.W. Samuel, S.-C. Lo, P.L. Burn, M. Weiter, H. Baessler, J. Appl. Phys. 95 (2004) 438] for the injection of holes from indium tin oxide into the dendrimer based on fac-tris(2-phenylpyridyl) iridium(III)

  12. [Utilization of polymeric micelle magnetic resonance imaging (MRI) contrast agent for theranostic system].

    Science.gov (United States)

    Shiraishi, Kouichi

    2013-01-01

    We applied a polymeric micelle carrier system for the targeting of a magnetic resonance imaging (MRI) contrast agent. Prepared polymeric micelle MRI contrast agent exhibited a long circulation characteristic in blood, and considerable amount of the contrast agent was found to accumulate in colon 26 solid tumor by the EPR effect. The signal intensities of tumor area showed 2-folds increase in T1-weighted images at 24 h after i.v. injection. To observe enhancement of the EPR effect by Cderiv pretreatment on tumor targeting, we used the contrast agent for the evaluation by means of MRI. Cderiv pretreatment significantly enhanced tumor accumulation of the contrast agent. Interestingly, very high signal intensity in tumor region was found at 24 h after the contrast agent injection in Cderiv pretreated mice. The contrast agent visualized a microenvironmental change in tumor. These results indicate that the contrast agent exhibits potential use for tumor diagnostic agent. To combine with a polymeric micelle carrier system for therapeutic agent, the usage of the combination makes a new concept of "theranostic" for a better cancer treatment.

  13. All-solution processed composite hole transport layer for quantum dot light emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoli [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Synergetic Innovation Center of Chemical Science and Engineering, Tianjin (China); Dai, Haitao, E-mail: htdai@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Zhao, Junliang; Wang, Shuguo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072 (China); Sun, Xiaowei [Department of Electrical & Electronic Engineering, South University of Science and Technology of China, Tangchang Road 1088, Shenzhen, Guangdong 518055 (China)

    2016-03-31

    In the present work, poly-TPD and TCTA composite hole transport layer (HTL) was employed in solution processed CdSe/ZnS quantum dot light emitting diodes (QLEDs). As the doping level of TCTA can determine the carriers transport efficiency of HTL, the proper mixing ratio of TCTA and poly-TPD should be found to optimize the performance of composite HTL for QLEDs. The doping of poly-TPD by low TCTA content can make its HOMO level lower and then reduce the energy barrier height from HTL to quantum dots (QDs), whereas the doping of poly-TPD by the concentrated TCTA results in the degraded performance of QLEDs due to its decreased hole transport mobility. By using the optimized composition with poly-TPD:TCTA (3:1) as the hole transport layer, the luminescence of the device exhibits about double enhancement compared with that of poly-TPD based device. The improvement of luminescence is mainly attributed to the lower energy barrier of hole injection. The Förster resonant energy transfer (FRET) mechanism in the devices was investigated through theoretical and experimental analysis and the results indicate that the TCTA doping makes no difference on FRET. Therefore, the charge injection mechanism dominates the improved performance of the devices. - Highlights: • Quantum dot light emitting diodes (QLEDs) were fabricated by all solution method. • The performance of QLEDs was optimized by varying the composite hole transport layer. • The blend HTL could promote hole injection by optimizing HOMO levels. • The energy transfer mechanism was analyzed by studying Förster resonant energy transfer process.

  14. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Wu, Kinwah [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey, RH5 6NT (United Kingdom); Younsi, Ziri; Mizuno, Yosuke [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany); Asada, Keiichi; Nakamura, Masanori, E-mail: hpu@perimeterinstitute.ca, E-mail: asada@asiaa.sinica.edu.tw, E-mail: nakamura@asiaa.sinica.edu.tw, E-mail: kinwah.wu@ucl.ac.uk, E-mail: younsi@th.physik.uni-frankfurt.de, E-mail: mizuno@th.physik.uni-frankfurt.de [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China)

    2017-08-20

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite, and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.

  15. Hole transport in c-plane InGaN-based green laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Liu, Jianping, E-mail: jpliu2010@sinano.ac.cn; Tian, Aiqin; Zhang, Feng; Feng, Meixin; Hu, Weiwei; Zhang, Shuming; Ikeda, Masao; Li, Deyao; Zhang, Liqun; Yang, Hui [Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); School of Nano Technology and Nano Bionics, University of Science and Technology of China, Suzhou 215123 (China)

    2016-08-29

    Hole transport in c-plane InGaN-based green laser diodes (LDs) has been investigated by both simulations and experiments. It is found that holes can overflow from the green double quantum wells (DQWs) at high current density, which reduces carrier injection efficiency of c-plane InGaN-based green LDs. A heavily silicon-doped layer right below the green DQWs can effectively suppress hole overflow from the green DQWs.

  16. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  17. Direct-injection strategies for a hydrogen-fueled engine : an optical and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, S.; Salazar, V. [Sandia National Labs, Albuquerque, NM (United States); Scarcelli, R.; Wallner, T. [Argonne National Lab, Argonne, IL (United States)

    2009-07-01

    Vehicles with hydrogen-fueled engines are competitive with systems based on fuel cells. There is a lack of fundamental knowledge about in-cylinder processes in hydrogen direct injection engines. This presentation discussed a study that used a variety of injector configurations to establish a broad database. A light-load conditions that can profit from stratification was investigated. Several results were presented, including the 5-hole nozzle produced an asymmetric jet pattern which may be good for late injection. Very lean regions in the wake of the transient jets were found to be similar to those found in diesel injection. The 13-hole nozzle demonstrated complete jet collapse, consistent with Schlieren imaging by Petersen. Stratification made efficiency sensitive to the targeting of the single-hole injector. Computational fluid dynamics with a commercially available code aimed to improve the process of design optimization. The simulation predicted less fuel dispersion than was experimentally measured. Details of the fuel penetration were captured. It was concluded that for the single-hole nozzle, the pre-spark fuel distribution is consistent with results from the fired engine. tabs., figs.

  18. Investigation of compression behavior of PE/EVA foam injection molded parts

    Science.gov (United States)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  19. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  20. Potentiometric flow injection system for determination of reductants using a polymeric membrane permanganate ion-selective electrode based on current-controlled reagent delivery.

    Science.gov (United States)

    Song, Wenjing; Ding, Jiawang; Liang, Rongning; Qin, Wei

    2011-10-17

    A polymeric membrane permanganate-selective electrode has been developed as a current-controlled reagent release system for potentiometric detection of reductants in flow injection analysis. By applying an external current, diffusion of permanganate ions across the polymeric membrane can be controlled precisely. The permanganate ions released at the sample-membrane interface from the inner filling solution of the electrode are consumed by reaction with a reductant in the sample solution thus changing the measured membrane potential, by which the reductant can be sensed potentiometrically. Ascorbate, dopamine and norepinephrine have been employed as the model reductants. Under the optimized conditions, the potential peak heights are proportional to the reductant concentrations in the ranges of 1.0×10(-5) to 2.5×10(-7)M for ascorbate, of 1.0×10(-5) to 5.0×10(-7)M for dopamine, and of 1.0×10(-5) to 5.0×10(-7)M for norepinephrine, respectively with the corresponding detection limits of 7.8×10(-8), 1.0×10(-7) and 1.0×10(-7)M. The proposed system has been successfully applied to the determination of reductants in pharmaceutical preparations and vegetables, and the results agree well with those of iodimetric analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Short-Acting Gas Tamponade with Strict Face-Down Posturing for the Treatment of Idiopathic Macular Hole.

    Science.gov (United States)

    Gotzaridis, Stratos; Liazos, Efstathios; Petrou, Petros; Georgalas, Ilias

    2017-01-01

    A retrospective consecutive case series to evaluate the safety and efficacy of 25 gauge pars plana vitrectomy, ILM peeling, 20% SF 6 gas tamponade and strict posturing for the treatment of idiopathic full-thickness macular holes. We report the results of 106 consecutive eyes that underwent standard 25-gauge pars plana vitrectomy, brilliant peel-assisted internal limiting membrane peel, fluid:gas exchange with 20% SF 6 and strict posturing for one week. All patients were followed up at one week, one month, three months, and nine months postoperatively. Biomicroscopy at day 1 and biomicroscopy and OCT at week 1, months 1, 3, and 9 were used to assess macular hole status postoperatively. Pre- and postoperative logMAR visual acuity was compared. The macular hole was closed in 102/106 eyes postoperatively (96.2%). Four eyes showed unclosed macular holes and underwent additional SF 6 intravitreal injection and strict posturing for 10 days. All macular holes were eventually closed without the need of a second surgical procedure. Mean visual acuity improved from 0.63 logMAR preoperatively to 0.39 logMAR postoperatively. One case of retinal toxicity was reported due to accidental intravitreal injection of antibiotic. 25-gauge vitrectomy, ILM peel, and short-acting gas tamponade are highly effective for the treatment of macular holes. Additional intravitreal gas injection followed by strict posturing seems to be a simple and effective treatment for unclosed holes.

  2. Enhancement of hole-injection and power efficiency of organic light emitting devices using an ultra-thin ZnO buffer layer

    International Nuclear Information System (INIS)

    Huang, H.-H.; Chu, S.-Y.; Kao, P.-C.; Chen, Y.-C.; Yang, M.-R.; Tseng, Z.-L.

    2009-01-01

    The advantages of using an anode buffer layer of ZnO on the electro-optical properties of organic light emitting devices (OLEDs) are reported. ZnO powders were thermal-evaporated and then treated with ultra-violet (UV) ozone exposure to make the ZnO layers. The turn-on voltage of OLEDs decreased from 4 V (4.2 cd/m 2 ) to 3 V (3.4 cd/m 2 ) and the power efficiency increased from 2.7 lm/W to 4.7 lm/W when a 1-nm-thick ZnO layer was inserted between indium tin oxide (ITO) anodes and α-naphthylphenylbiphenyl diamine (NPB) hole-transporting layers. X-ray and ultra-violet photoelectron spectroscopy (XPS and UPS) results revealed the formation of the ZnO layer and showed that the work function increased by 0.59 eV when the ZnO/ITO layer was treated by UV-ozone for 20 min. The surface of the ZnO/ITO film became smoother than that of bare ITO film after the UV-ozone treatment. Thus, the hole-injection energy barrier was lowered by inserting an ZnO buffer layer, resulting in a decrease of the turn-on voltage and an increase of the power efficiency of OLEDs.

  3. Porous silicon formation by hole injection from a back side p+/n junction for electrical insulation applications

    International Nuclear Information System (INIS)

    Fèvre, A; Menard, S; Defforge, T; Gautier, G

    2016-01-01

    In this paper, we propose to study the formation of porous silicon (PS) in low doped (1 × 10 14 cm −3 ) n-type silicon through hole injection from a back side p + /n junction in the dark. This technique is investigated within the framework of electrical insulation. Three different types of junctions are investigated. The first one is an epitaxial n-type layer grown on p + doped silicon wafer. The two other junctions are carried out by boron diffusion leading to p + regions with junction depths of 20 and 115 μm. The resulting PS morphology is a double layer with a nucleation layer (NL) and macropores fully filled with mesoporous material. This result is unusual for low doped n-type silicon. Morphology variations are described depending on the junction formation process, the electrolyte composition, the anodization current density and duration. In order to validate the more interesting industrial potentialities of the p + /n injection technique, a comparison is achieved with back side illumination in terms of resulting morphology and experiments confirm comparable results. Electrical characterizations of the double layer, including NL and fully filled macropores, are then performed. To our knowledge, this is the first electrical investigation in low doped n type silicon with this morphology. Compared to the bulk silicon, the measured electrical resistivities are 6–7 orders of magnitude higher at 373 K. (paper)

  4. Effects of glass fibres on the filling of polymeric thin ribs

    DEFF Research Database (Denmark)

    Ollgaard, Claus; Sundberg, Oliver; Vesth, Kirstine

    the effects of the glass fibers on the replication of polymeric ribs. - Investigate fibers orientations based on the injection parameters - Geometrical size effect on the amount of glass fibers in the post moulded plastic parts. Several tests were carried and analyzed in order to investigate the three project...

  5. The Intravitreal Autologous Platelet Concentrate Injection as an Adjunct of Vitrectomy for the Treatment of Refractory Macular Holes

    Science.gov (United States)

    2014-03-06

    Macular Hole With High Myopia (Spherical Equivalent ≤ -6.0 Diopters) or,; Large Size Macular Hole (Diameter > 600 Microns) or; Recurred or Failed Macular Hole From Previous Surgery; or Chronic Macular Hole (Symptom Duration > 6 Months)

  6. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    Directory of Open Access Journals (Sweden)

    Marco Matteucci

    2016-10-01

    Full Text Available We compare ultrasonic welding (UW and thermal bonding (TB for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW, as well as pressure and temperature (for TB, were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

  7. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  8. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  9. Research regarding biodegradable properties of food polymeric products under microorganism activity

    Science.gov (United States)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  10. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    Science.gov (United States)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  11. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes.

    Science.gov (United States)

    DuChene, Joseph S; Tagliabue, Giulia; Welch, Alex J; Cheng, Wen-Hui; Atwater, Harry A

    2018-04-11

    Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO 2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H 2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.

  12. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  13. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    DEFF Research Database (Denmark)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.

    2016-01-01

    -thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells......Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D...... showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting....

  14. Massless charged particles: Cosmic censorship, and the third law of black hole mechanics

    Science.gov (United States)

    Fairoos, C.; Ghosh, Avirup; Sarkar, Sudipta

    2017-10-01

    The formulation of the laws of Black hole mechanics assumes the stability of black holes under perturbations in accordance with the "cosmic censorship hypothesis" (CCH). CCH prohibits the formation of a naked singularity by a physical process from a regular black hole solution with an event horizon. Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-extremal black hole is injected with massive charged particles and the backreaction effects are neglected. We investigate the validity of CCH by considering the infall of charged massless particles as well as a charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null charged particles by considering various possibilities.

  15. Laterally injected light-emitting diode and laser diode

    Science.gov (United States)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  16. Filter construction technology in mining drilling hole for in-situ leaching of multilayer deposit

    International Nuclear Information System (INIS)

    Jiang Yan; Hu Baishi; Tan Yahui; Yang Lizhi; Li Xiaojian; Wang Xiaodong; Chang Jingtao; Qin Hao

    2014-01-01

    Taking a typical multilayer sandstone uranium deposit as example, study was carried out on filter construction technology in mining drilling hole for in-situ leaching of multilayer deposit. According to the character of multilayer sandstone, four injecting holes and one drawning hole were designed between the P13-P15 exploration lines, five different methods were used to construct filter. Construction technology by different methods was introduced and the advantages and disadvantages of the construction filter with five methods were analysed. As far as five experimental drilling holes, layered gravel-filling hole construction technology is a suitable method for construction multilayer filter with continuous construction, simple operation and good effect of well completion. (authors)

  17. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  18. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  19. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  20. Large scale injection test (LASGIT) modelling

    International Nuclear Information System (INIS)

    Arnedo, D.; Olivella, S.; Alonso, E.E.

    2010-01-01

    Document available in extended abstract form only. With the objective of understanding the gas flow processes through clay barriers in schemes of radioactive waste disposal, the Lasgit in situ experiment was planned and is currently in progress. The modelling of the experiment will permit to better understand of the responses, to confirm hypothesis of mechanisms and processes and to learn in order to design future experiments. The experiment and modelling activities are included in the project FORGE (FP7). The in situ large scale injection test Lasgit is currently being performed at the Aespoe Hard Rock Laboratory by SKB and BGS. An schematic layout of the test is shown. The deposition hole follows the KBS3 scheme. A copper canister is installed in the axe of the deposition hole, surrounded by blocks of highly compacted MX-80 bentonite. A concrete plug is placed at the top of the buffer. A metallic lid anchored to the surrounding host rock is included in order to prevent vertical movements of the whole system during gas injection stages (high gas injection pressures are expected to be reached). Hydration of the buffer material is achieved by injecting water through filter mats, two placed at the rock walls and two at the interfaces between bentonite blocks. Water is also injected through the 12 canister filters. Gas injection stages are performed injecting gas to some of the canister injection filters. Since the water pressure and the stresses (swelling pressure development) will be high during gas injection, it is necessary to inject at high gas pressures. This implies mechanical couplings as gas penetrates after the gas entry pressure is achieved and may produce deformations which in turn lead to permeability increments. A 3D hydro-mechanical numerical model of the test using CODE-BRIGHT is presented. The domain considered for the modelling is shown. The materials considered in the simulation are the MX-80 bentonite blocks (cylinders and rings), the concrete plug

  1. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... applications, strength and stiffness are crucial factors to a successful implementation of cured photopolymer thermosets. Hence, fiber-reinforced polymers have recently been introduced. The behavior and especially orientation of fibers during the vat photopolymerization process has yet not been fully...

  2. Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Rahul; Vogelsberger, Mark [Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge 02139, MA (United States); Pfrommer, Christoph; Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Puchwein, Ewald, E-mail: kannanr@mit.edu [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-03-10

    Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne out by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.

  3. Flow Characteristics of a Thermoset Fiber Composite Photopolymer Resin in a Vat Polymerization Additive Manufacturing Process

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Spangenberg, Jon; Pedersen, David B.

    Additive manufacturing vat polymerization has become a leading technology and gained a massive amount of attention in industrial applications such as injection molding inserts. By the use of the thermoset polymerization process inserts have increased their market share. For most industrial...... understood. Research indicates an orientation within the manufacturing layer and efforts have been made to achieve a more uniform orientation within the part. A vat polymerization machine consisting of a resin vat and a moving build plate has been simulated using the fluid flow module of Comsol Multiphysics...... photopolymer resin. The prediction can be used to identify potential clusters or misalignment of fibers and in the future allow for optimization of the machine design and manufacturing process....

  4. Study of modification of fibers from pineapple crown for the formation of polymeric composites

    International Nuclear Information System (INIS)

    Marcon, Juliana S.; Mulinari, Daniella R.; Cioffi, Maria Odila H.; Voorwald, Herman J.C.

    2009-01-01

    Study of modification of fibers from pineapple crown for the formation of polymeric composites An important aspect to make fiber and matrix work together in a given application is the interface between them. For an efficient adherence fiber/matrix an appropriate interfacial contact is required. For this purpose, it was made a modification in the fiber surface using sodium hydroxide solution. And the effect of fibers modification was analyzed by X-Ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicated that occurred an effective increase in the crystallinity of modified fibers compared to natural fibers and that was occurred the formation of pores or holes across the rough surface of the fiber showing that will can occur an increase in effective superficial area for contact with polymeric matrix. (author)

  5. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    Science.gov (United States)

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  6. The enhanced electron injection by fluorinated tris-(8-hydroxy-quinolinato) aluminum derivatives in high efficient Si-anode OLEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, N. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Shi, M.M., E-mail: minminshi@zju.edu.c [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Y.Z. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Shi, Y.W. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ran, G.Z.; Qin, G.G. [School of Physics, State Key Laboratory for Mesoscopic Physics, Peking University, Beijing 100871 (China); Wang, M.; Chen, H.Z. [State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Fabrication of organic light-emitting diodes (OLEDs) and lasers on silicon substrates is a feasible route to integrate microelectronic chips with optical devices for telecommunications. However, the efficiency of Si-anode based OLEDs is restricted by the imbalance of hole-electron injection because a p-type Si anode owns better hole injection ability than ITO. We have used fluorinated tris-(8-hydroxy-quinolinato) aluminum (FAlq{sub 3}) derivatives to prepare Si-anode based OLEDs. We observed that, when tris-(5-fuloro-8-hydroxyquinolinato) aluminum (5FAlq{sub 3}) is used as the electron-transporting material instead of Alq{sub 3}, the cathode electron injection is enhanced due to its lower lowest unoccupied molecular orbital (LUMO) compared to the Alq{sub 3}. The device can keep the relative carrier balance even when a Si anode capable of stronger hole injection was used. Further optimization of the device structure by introducing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as a hole blocking layer showed significant increase in the device power efficiency from 0.029 to 0.462 lm/W. This indicates that use of fluorinated Alq{sub 3} derivatives is an effective way to improve the performance of Si-anode based OLEDs.

  7. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.

    Science.gov (United States)

    Seok, Joon; Oh, Chang Taek; Kwon, Hyun Jung; Kwon, Tae Rin; Choi, Eun Ja; Choi, Sun Young; Mun, Seog Kyun; Han, Seung-Ho; Kim, Beom Joon; Kim, Myeung Nam

    2016-08-01

    The effectiveness of needle-free injection devices in neocollagenesis for treating extended skin planes is an area of active research. It is anticipated that needle-free injection systems will not only be used to inject vaccines or insulin, but will also greatly aid skin rejuvenation when used to inject aesthetic materials such as hyaluronic acid, botulinum toxin, and placental extracts. There has not been any specific research to date examining how materials penetrate the skin when a needle-free injection device is used. In this study, we investigated how material infiltrates the skin when it is injected into a cadaver using a needle-free device. Using a needle-free injector (INNOJECTOR™; Amore Pacific, Seoul, Korea), 0.2 ml of 5% methylene blue (MB) or latex was injected into cheeks of human cadavers. The device has a nozzle diameter of 100 µm and produces a jet with velocity of 180 m/s. This jet penetrates the skin and delivers medicine intradermally via liquid propelled by compressed gasses. Materials were injected at pressures of 6 or 8.5 bars, and the injection areas were excised after the procedure. The excised areas were observed visually and with a phototrichogram to investigate the size, infiltration depth, and shape of the hole created on the skin. A small part of the area that was excised was magnified and stained with H&E (×40) for histological examination. We characterized the shape, size, and depth of skin infiltration following injection of 5% MB or latex into cadaver cheeks using a needle-free injection device at various pressure settings. Under visual inspection, the injection at 6 bars created semi-circle-shaped hole that penetrated half the depth of the excised tissue, while injection at 8.5 bars created a cylinder-shaped hole that spanned the entire depth of the excised tissue. More specific measurements were collected using phototrichogram imaging. The shape of the injection entry point was consistently spherical regardless of the

  8. Macular Hole Progression after Intravitreal Bevacizumab for Hemicentral Retinal Vein Occlusion

    Directory of Open Access Journals (Sweden)

    Manish Nagpal

    2011-01-01

    Full Text Available Macular edema secondary to retinal vein occlusion is commonly being treated with off-label intravitreal bevacizumab with good outcomes. A significant reduction in macular edema and improvement in visual acuity is seen following such a treatment with no serious adverse effects. In the reported case, a full-thickness macular hole was noticed one month after intravitreal bevacizumab for macular edema secondary to hemicentral retinal vein occlusion. On a detailed review of the pre- and postoptical coherence tomography scans, it was realized that there was a preexisting stage 2-3 macular hole which was masked by the hemorrhages and edema at the fovea and the macular hole had progressed following the injection.

  9. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  10. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  11. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  12. Evolution of Additively Manufactured Injection Molding Inserts Investigated by Thermal Simulations

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David B.; Tosello, Guido

    Injection molding using inserts from vat polymerization, an additive manufacturing technology, has been investigated for pilot production and rapid prototyping purposes throughout the past years. A standard mold is equipped with additively manufactured inserts in a rectangular shape of (20 x 20 x 2...

  13. Simultaneous injection of polymer and surfactant for improving oil recovery; Injecao simultanea de polimero e surfactante para aumento da recuperacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Ana C.R.; Valentim, Adriano C.M.; Marcelino, Cleuton P.; Fagundes, Fabio P.; Girao, Joaquim H.S.; Garcia, Rosangela B. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo (LAPET)

    2004-07-01

    The injection of polymeric solutions in petroleum reservoirs is a supplemental method of petroleum recovery, that seeks to increase the volumetric efficiency of swept of the oil with the decrease of the mobility of the injection water. In the contact between two non miscible fluids, superficial tensions are established, that can influence the relations between the rock and the fluids, depending on the nature of both. Therefore, the combined injection of a surfactant and a polymer can promote improvements in the injectivity and in the global recovery efficiency. In this work it was used samples of commercial polyacrylamide, which were characterized through hydrolysis degree, molecular weight and rheological behavior. From these results it was chosen one sample to be used associated to a polymeric surfactant. Through a core flood system, the following tests were done: injection of polymer solution; injection of surfactant solution followed by polymer solution and injection of surfactant / polymer mixture. The results showed that the injection of surfactant / polymer mixture promoted a significant increase in the residual resistance factor, in relation to the other situations. (author)

  14. Characteristics of organic light emitting diodes with copper iodide as injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Stakhira, P., E-mail: stakhira@polynet.lviv.u [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Cherpak, V.; Volynyuk, D.; Ivastchyshyn, F. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Hotra, Z. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Rzeszow University of Technology, W. Pola 2, Rzeszow, 35-959 (Poland); Tataryn, V. [Lviv Polytechnic National University, S. Bandera, 12, Lviv, 79013 (Ukraine); Luka, G. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2010-09-30

    We have studied the use of a thin copper iodide (CuI) film as an efficient injection layer of holes from indium tin oxide (ITO) anode in a light-emitting diode structure based on tris-8-hydroxyquinoline aluminium (Alq3). The results of impedance analysis of two types of diode structures, ITO/CuI/Alq3/poly(ethylene glycol) dimethyl ether/Al and ITO/Alq3/poly(ethylene glycol) dimethyl ether/Al, are presented. Comparative analysis of their current density-voltage, luminance-voltage and impedance characteristics shows that presence of CuI layer facilitates injection of holes from ITO anode into the light-emitting layer Alq3 and increases electroluminescence efficiency of the organic light emitting diodes.

  15. An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering

    Science.gov (United States)

    Zhao, Liang; Weir, Michael D.; Xu, Hockin H. K.

    2010-01-01

    The need for bone repair has increased as the population ages. Stem cell-scaffold approaches hold immense promise for bone tissue engineering. However, currently, preformed scaffolds for cell delivery have drawbacks including the difficulty to seed cells deep into the scaffold, and inability for injection in minimally invasive surgeries. Current injectable polymeric carriers and hydrogels are too weak for load-bearing orthopedic application. The objective of this study was to develop an injectable and mechanically-strong stem cell construct for bone tissue engineering. Calcium phosphate cement (CPC) paste was combined with hydrogel microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs). The hUCMSC-encapsulating composite paste was fully injectable under small injection forces. Cell viability after injection matched that in hydrogel without CPC and without injection. Mechanical properties of the construct matched the reported values of cancellous bone, and were much higher than previous injectable polymeric and hydrogel carriers. hUCMSCs in the injectable constructs osteodifferentiated, yielding high alkaline phosphatase, osteocalcin, collagen type I, and osterix gene expressions at 7 d, which were 50–70 fold higher than those at 1 d. Mineralization by the hUCMSCs at 14 d was 100-fold that at 1 d. In conclusion, a fully-injectable, mechanically-strong, stem cell-CPC scaffold construct was developed. The encapsulated hUCMSCs remained viable, osteodifferentiated, and synthesized bone minerals. The new injectable stem cell construct with load-bearing capability may enhance bone regeneration in minimally-invasive and other orthopedic surgeries. PMID:20570346

  16. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct

  17. Transient optical and electrical effects in polymeric semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bange, Sebastian

    2009-05-28

    Classical semiconductor physics has been continuously improving electronic components such as diodes, light-emitting diodes, solar cells and transistors based on highly purified inorganic crystals over the past decades. Organic semiconductors, notably polymeric, are a comparatively young field of research, the first light-emitting diode based on conjugated polymers having been demonstrated in 1990. Polymeric semiconductors are of tremendous interest for high-volume, low-cost manufacturing (''printed electronics''). Due to their rather simple device structure mostly comprising only one or two functional layers, polymeric diodes are much more difficult to optimize compared to small-molecular organic devices. Usually, functions such as charge injection and transport are handled by the same material which thus needs to be highly optimized. The present work contributes to expanding the knowledge on the physical mechanisms determining device performance by analyzing the role of charge injection and transport on device efficiency for blue and white-emitting devices, based on commercially relevant spiro-linked polyfluorene derivatives. It is shown that such polymers can act as very efficient electron conductors and that interface effects such as charge trapping play the key role in determining the overall device efficiency. This work contributes to the knowledge of how charges drift through the polymer layer to finally find neutral emissive trap states and thus allows a quantitative prediction of the emission color of multichromophoric systems, compatible with the observed color shifts upon driving voltage and temperature variation as well as with electrical conditioning effects. In a more methodically oriented part, it is demonstrated that the transient device emission observed upon terminating the driving voltage can be used to monitor the decay of geminately-bound species as well as to determine trapped charge densities. This enables direct comparisons with numerical

  18. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  19. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Yaacobi-Gross, Nir; Zhao, Kui; Ndjawa, Guy Olivier Ngongang; Li, Jinhua; Yan, Feng; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2012-01-01

    ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY

  20. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    International Nuclear Information System (INIS)

    Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo; Zhong, Lanlan

    2015-01-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3–4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented. (paper)

  1. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    Science.gov (United States)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  2. Evolution of Additively Manufactured Injection Molding Inserts Investigated by Thermal Simulations

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Pedersen, David B.; Tosello, Guido

    .7) mm3 and (60 x 80 x 10) mm3 produced with vat photo polymerization. This contribution discusses the heat transportation within the inserts made from a thermoset material, brass, steel, and ceramic material. It therefore elaborates on the possibilities of injection molding as well as the thermal...

  3. A comprehensive study on the effect of cavitation on injection velocity in diesel nozzles

    International Nuclear Information System (INIS)

    Javier López, J.; Salvador, F.J.; Garza, Oscar A. de la; Arrègle, Jean

    2012-01-01

    Highlights: ► Cavitation has an indirect effect on the effective injection velocity. ► Cavitation in the injector hole reduces locally the fluid viscosity. ► A lower viscosity leads to a more turbulent velocity profile. ► The more turbulent velocity profile justifies the increase in effective velocity. - Abstract: Results when testing cavitating injection nozzles show a strong reduction in mass flow rate when cavitation appears (the flow is choked), while the momentum flux is reduced to a lesser extent, resulting in an increase in effective injection velocity. So as to better understand the origin of this increase in effective injection velocity, the basic equations for mass and momentum conservation were applied to an injection nozzle in simplified conditions. The study demonstrated that the increase in injection velocity provoked by cavitation is not a direct effect of the latter, but an indirect effect. In fact, the vapor appearance inside the injection hole produces a decrease in the viscosity of the fluid near the wall. This leads to lower momentum flux losses and to a change in the velocity profile, transforming it into a more “top hat” profile type. This change in the profile shape allows explaining why the momentum flux reduction is not so important compared to that of the mass flow rate, thus explaining why the effective injection velocity increases.

  4. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  5. Long Hole Film Cooling Dataset for CFD Development . Part 1; Infrared Thermography and Thermocouple Surveys

    Science.gov (United States)

    Shyam, Vikram; Thurman, Douglas; Poinsatte, Phillip; Ameri, Ali; Eichele, Peter; Knight, James

    2013-01-01

    An experiment investigating flow and heat transfer of long (length to diameter ratio of 18) cylindrical film cooling holes has been completed. In this paper, the thermal field in the flow and on the surface of the film cooled flat plate is presented for nominal freestream turbulence intensities of 1.5 and 8 percent. The holes are inclined at 30deg above the downstream direction, injecting chilled air of density ratio 1.0 onto the surface of a flat plate. The diameter of the hole is 0.75 in. (0.01905 m) with center to center spacing (pitch) of 3 hole diameters. Coolant was injected into the mainstream flow at nominal blowing ratios of 0.5, 1.0, 1.5, and 2.0. The Reynolds number of the freestream was approximately 11,000 based on hole diameter. Thermocouple surveys were used to characterize the thermal field. Infrared thermography was used to determine the adiabatic film effectiveness on the plate. Hotwire anemometry was used to provide flowfield physics and turbulence measurements. The results are compared to existing data in the literature. The aim of this work is to produce a benchmark dataset for Computational Fluid Dynamics (CFD) development to eliminate the effects of hole length to diameter ratio and to improve resolution in the near-hole region. In this report, a Time-Filtered Navier Stokes (TFNS), also known as Partially Resolved Navier Stokes (PRNS), method that was implemented in the Glenn-HT code is used to model coolant-mainstream interaction. This method is a high fidelity unsteady method that aims to represent large scale flow features and mixing more accurately.

  6. Injection molding of micro pillars on vertical side walls using polyether-ether-ketone (PEEK)

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2016-01-01

    This paper investigates the replication of microstructures on a vertical wall by PEEK injection molding. A 4-cavity insert was used in the injection molding. Pre-fabricated nickel plates with ø 4 μm micro holes on the surface were glued on vertical walls in the cavities. 3 cavities were coated by...

  7. Injection and spray characteristics of a variable orifice nozzle applied the jerk type fuel injection pump for DI diesel engine; Jerk shiki nenryo funsha pump wo mochiita kahen funko nozzle no funsha funmu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T; Matsui, K; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan); Matsumoto, Y [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    A Variable Orifice Nozzle (VON) by changing a cross-sectional area of the nozzle injection hole, for improving a rate of injection and injection duration, has been developed to study its injection and spray characteristics. The nozzle geometry was optimized to analyze a nozzle internal flow by computational method. Results show that, injection and spray pattern responded to the nozzle orifice cross-sectional area which is changing larger to smaller in the part load range. This results suggest to contribute a combustion improvement which decreasing NOx and soot. 14 refs., 10 figs.

  8. Electrode quenching control for highly efficient CsPbBr3 perovskite light-emitting diodes via surface plasmon resonance and enhanced hole injection by Au nanoparticles

    Science.gov (United States)

    Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping

    2018-04-01

    Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.

  9. Small-scale bentonite injection test on rock

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    When radiactive waste is disposed a sealing of the rock is very valuable since it reduces the rate of water percolation and diffusion. In an earlier report injection of bentonite gels by means of over-pressure and subsequent electrophoresis has been suggested. The present report describes a rock test series where bentonite injection was applied. For the test an approximately cubical block of about 1 m 3 was selected. The rock type was diorite with a fairly high frequency of quartz denses. The block was kept in a basin during the test in order to maintain the water saturation. Holes were bored in the block. A bentonite slurry with 1000 percent water content was injected. It was shown that the bentonite had a sealing effect but the depth of extrusion into rock joints was not large because of gelation. Electro-Kinetic injection of montmorillonite was found to be a more promising technique for rock lightening

  10. Laparoscopic inguinal preperitoneal injection--novel technique for inguinal hernia repair: preliminary results of experimental study.

    Science.gov (United States)

    Kozlov, Yury; Novogilov, Vladimir; Rasputin, Andrey; Podkamenev, Alexey; Krasnov, Pavel; Weber, Irina; Solovjev, Alexey

    2012-04-01

    Inguinal hernia repair is the most common procedure in pediatric surgery. Suture techniques for laparoscopic inguinal hernia repair in children are easy to perform and popular with a low recurrence rate. The aim of this study was to evaluate the effect of laparoscopic preperitoneal injection of three-dimensional gel on closing of the inguinal hernia sac (IHS) in laboratory animals. With the animals under general anesthesia, we performed peritoneoscopy in 12 male Chinchilla rabbits weighing 1200-1400 g. The endoscope was introduced into the abdominal cavity, and bilateral deep inguinal rings were identified. A Tuohy needle with the injectable polymeric bulking agent DAM+™ (three-dimensional polyacrylamide gel with silver ions [Argiform(®) from Bioform(®)]) was introduced preperitoneally. The implant was then injected across the entire orifice of the deep inguinal rings and draped over the cord structures. After completion of bilateral repairs, the rabbits were extubated and observed in the animal laboratory. Then the second laparoscopy was performed 6 months later, and the deep inguinal rings were inspected. The postoperative course was uneventful in all the animals. At the second laparoscopy no reopening of the entire orifice of the deep inguinal rings was noted. Accurate placement of the polymeric agent and adequate coverage of the vas deferens were accomplished in all the animals. This study demonstrates that the biopolymeric implant gives good postoperative results and a stable trend of closing the IHS in long-term follow-up. In conclusion, we hope that injectable polymeric bulking agents can be used for treatment of inguinal hernias of pediatric patients after additional animal and human research.

  11. Analysis and evaluation of data to accompany the development of geothermal water use power plant, etc. Analysis and evaluation of polymeric materials exposed to geothermal heat at depths; Nessui riyo hatsuden plant nado kaiahtsu ni tomonau data no kaiseki hyoka. Shinbu chinetsuyo kobunshi zairyo no kaiseki hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmochi, K.; Takahashi, J.; Takayanagi, H.; Tsuda, H.; Nagai, H.; Takeuchi, K. [Agency of Industrial Science and Technology, Tokyo (Japan); Nagasawa, C. [Kumamoto Prefectural Industrial Technology Center, Kumamoto (Japan); Hamada, T. [Science University of Tokyo, Tokyo (Japan). Faculty of Industrial Science and Technology

    1998-11-20

    Remaining life assessment technologies for polymeric materials for geothermal power generation and methods for improving their heat resistance are reviewed, and concepts of scale-free technologies for FRP (fiber-reinforced plastic)-sandwiched pipelines for hot water transportation are described. Materials based on PTFE (polytetrafluoroethylene) and NBR (acrylonitrile-butadiene rubber) are chosen for use as DHM (down-hole motor) sealing material and for application to the stator. With PTFE as the matrix, four candidates are prepared, which are additive-free PTFE, and GF/PTFE, GF/CF/PTFE, CF/PTFE, each containing 20w% GF (glass fiber) and/or 20w% CF (carbon fiber). With NBR serving as the matrix, two candidates are prepared, which are NBR-A containing 20w% aramid fiber and NBR-W which is a vulcanized NBR-A. External force, heat, light, and mud are named as the degradation factors, and each factor and some combinations of external force, heat, and light are repeatedly imposed on the materials. During the effort to develop an apparatus for simulating geothermal circumstances in which the factors will affect the materials in complicated ways, a life assessment technique is developed for such polymeric materials. A technology is developed for providing polymeric rubber elastomer with a heat resistant feature. A study is made to replace transportation pipelines for injection wells with FRP sandwiched pipelines. (NEDO)

  12. Increasing energy efficiency of a gasoline direct injection engine through optimal synchronization of single or double injection strategies

    International Nuclear Information System (INIS)

    Costa, Michela; Sorge, Ugo; Allocca, Luigi

    2012-01-01

    Highlights: ► Advantages of split injection in a GDI engine are studied through numerical simulation. ► At high load and speed, rich conditions, split injection does not improve engine performance. ► At moderate load and speed, lean conditions, double injection improves charge stratification. ► Optimal double injection increases work, reduces HC and increases NO. - Abstract: The greatest fuel efficiency advantages of gasoline direct injection (GDI) engines are achieved under the so-called mixed mode boosting, where mixture characteristics are properly adapted to the specific working condition. In particular, in the medium range of load and speed, overall lean mixtures are suitable of being used in the so-called direct injection stratified charge operation. Present paper reports the results of numerical optimization analyses aimed at increasing the energetic efficiency of a GDI engine equipped with a high pressure multi-hole injector under both single and double injection events. In moderate-load moderate-speed lean conditions, the single or double injection synchronization in the working cycle is effected through a procedure that couples a 3D numerical model of the in-cylinder processes with an optimization tool. The choice of both the start of the injection events and the time of spark advance is realized to maximize the engine work. The optimal double injection solution is shown to increase the engine energy efficiency with respect to the case injection is realized in one shot, thus confirming that split injections improve the quality of the charge stratification under lean operation. The effect on the major pollutants is also discussed.

  13. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  14. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......- and microstructured silicon is electroplated with nickel and the resulting nickel shim with inverse polarity is used in an injection molding process. A versatile injection molding process capable of producing different nano- and microstructures on areas larger than 10 cm2 is developed. Variotherm mold heating is used...... hierarchical structures with nanograss and holes. Water wetting tests are carried out using a pressure cell to control the water pressure. Microscopic wetting behavior of the structures is studied by optical transmission microscopy. Interestingly, it is found that the surface chemistry of the polymer changes...

  15. Mixture distribution in a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors

    International Nuclear Information System (INIS)

    Mitroglou, N; Arcoumanis, C; Mori, K; Motoyama, Y

    2006-01-01

    Laser-induced fluorescence has been mainly used to characterise the two-dimensional fuel vapour concentration inside the cylinder of a multi-valve twin-spark ignition engine equipped with high-pressure multi-hole injectors. The effects of injection timing, in-cylinder charge motion and injector tip layout have been quantified. The flexibility in nozzle design of the multi-hole injectors has proven to be a powerful tool in terms of matching overall spray cone angle and number of holes to specific engine configurations. Injection timing was found to control spray impingement on the piston and cylinder wall, thus contributing to quick and efficient fuel evaporation. It was confirmed that in-cylinder charge motion plays a major role in engine's stable operation by assisting in the transportation of the air-fuel mixture towards the ignition locations (i.e. spark-plugs) in the way of a uniformly distributed charge or by preserving stratification of the charge depending on operating mode of the engine

  16. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current-voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer.

  17. Jet flow analysis of liquid poison injection in a CANDU reactor using source term

    International Nuclear Information System (INIS)

    Chae, Kyung Myung; Choi, Hang Bok; Rhee, Bo Wook

    2001-01-01

    For the performance analysis of Canadian deuterium uranium (CANDU) reactor shutdown system number 2 (SDS2), a computational fluid dynamics model of poison jet flow has been developed to estimate the flow field and poison concentration formed inside the CANDU reactor calandria. As the ratio of calandria shell radius over injection nozzle hole diameter is so large (1055), it is impractical to develop a full-size model encompassing the whole calandria shell. In order to reduce the model to a manageable size, a quarter of one-pitch length segment of the shell was modeled using symmetric nature of the jet; and the injected jet was treated as a source term to avoid the modeling difficulty caused by the big difference of the hole sizes. For the analysis of an actual CANDU-6 SDS2 poison injection, the grid structure was determined based on the results of two-dimensional real- and source-jet simulations. The maximum injection velocity of the liquid poison is 27.8 m/s and the mass fraction of the poison is 8000 ppm (mg/kg). The simulation results have shown well-established jet flow field. In general, the jet develops narrowly at first but stretches rapidly. Then, the flow recirculates a little in r-x plane, while it recirculates largely in r-θ plane. As the time goes on, the adjacent jets contact each other and form a wavy front such that the whole jet develops in a plate form. his study has shown that the source term model can be effectively used for the analysis of the poison injection and the simulation result of the CANDU reactor is consistent with the model currently being used for the safety analysis. In the future, it is strongly recommended to analyze the transient (from helium tank to injection nozzle hole) of the poison injection by applying Bernoulli equation with real boundary conditions

  18. Hole-induced d"0 ferromagnetism enhanced by Na-doping in GaN

    International Nuclear Information System (INIS)

    Zhang, Yong; Li, Feng

    2017-01-01

    The d"0 ferromagnetism in wurtzite GaN is investigated by the first-principle calculations. It is found that spontaneous magnetization occurs if sufficient holes are injected in GaN. Both Ga vacancy and Na doping can introduce holes into GaN. However, Ga vacancy has a high formation energy, and is thus unlikely to occur in a significant concentration. In contrast, Na doping has relatively low formation energy. Under N-rich growth condition, Na doping with a sufficient concentration can be achieved, which can induce half-metallic ferromagnetism in GaN. Moreover, the estimated Curie temperature of Na-doped GaN is well above the room temperature. - Highlights: • Hole-induced ferromagnetism in GaN is confirmed. • Both Ga Vacancy and Na-doping can introduce hole into GaN. • The concentration of Ga vacancy is too low to induce detectable ferromagnetism. • Na-doped GaN is a possible ferromagnet with a high curie-temperature.

  19. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  20. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    International Nuclear Information System (INIS)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N; Wu Fang; Zhao Weiwei

    2011-01-01

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l -1 . Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α v β 3 integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  1. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers

    Energy Technology Data Exchange (ETDEWEB)

    Ding Hong; Yong, Ken-Tye; Roy, Indrajit; Hu Rui; Zhao Lingling; Law, Wing-Cheung; Ji Wei; Liu Liwei; Bergey, Earl J; Prasad, Paras N [Department of Chemistry, Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Wu Fang [Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260 (United States); Zhao Weiwei, E-mail: bergeye@buffalo.edu, E-mail: pnprasad@buffalo.edu [Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY 14215 (United States)

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l{sup -1}. Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the {alpha}{sub v{beta}3} integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  2. Influence of injection temperatures and fiberglass compositions on mechanical properties of polypropylene

    Science.gov (United States)

    Keey, Tony Tiew Chun; Azuddin, M.

    2017-06-01

    Injection molding process appears to be one of the most suitable mass and cost efficiency manufacturing processes for polymeric parts nowadays due to its high efficiency of large scale production. When down-scaling the products and components, the limits of conventional injection molding process are reached. These constraints had initiated the development of conventional injection molding process into a new era of micro injection molding technology. In this study, fiberglass reinforced polypropylenes (PP) with various glass fiber percentage materials were used. The study start with fabrication of micro tensile specimens at three different injection temperature, 260°C, 270°C and 280°C for different percentage by weight of fiberglass reinforced PP. Then evaluate the effects of various injection temperatures on the tensile properties of micro tensile specimens. Different percentage by weight of fiberglass reinforced PP were tested as well and it was found that 20% fiberglass reinforced PP possessed the greatest percentage increase of tensile strength with increasing temperatures.

  3. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  4. Report for fiscal 1998 on results of research and development of silicon-based polymeric material; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development of 'silicon-based polymeric materials' has been implemented under ten year plan since 1991 by the research and development system for industrial science and technology, with the following subjects conducted in the general accounting section of fiscal 1998. In the research and development of the synthetic technology of electrically conductive silicon-based polymeric materials, a synthetic method was established for unsaturated side-chain group polysilanes as a basic structural unit for structuring multidimensions. In the research and development of the synthetic technology of new silicon-based polymeric materials capable of plotting circuits, network-shaped polysilanes with various amino groups introduced were synthesized, for which electrical conductivity and temperature dependency were measured. In the research and development of new silicon-based polymeric materials with an electro-luminous function and the like, polymeric synthesis began developing smoothly that has hole-transporting and electron transporting properties concerning the electro-luminous function. In the research and development of silicon-based photoelectric conversion materials, examination was made on the improvement of photoelectric conversion performance by materialization technology including lamination and mixture. The general investigation and research committee contrived further advancement of the research and development. (NEDO)

  5. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  6. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  7. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  8. σ-holes and π-holes: Similarities and differences.

    Science.gov (United States)

    Politzer, Peter; Murray, Jane S

    2018-04-05

    σ-Holes and π-holes are regions of molecules with electronic densities lower than their surroundings. There are often positive electrostatic potentials associated with them. Through these potentials, the molecule can interact attractively with negative sites, such as lone pairs, π electrons, and anions. Such noncovalent interactions, "σ-hole bonding" and "π-hole bonding," are increasingly recognized as being important in a number of different areas. In this article, we discuss and compare the natures and characteristics of σ-holes and π-holes, and factors that influence the strengths and locations of the resulting electrostatic potentials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  10. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  11. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  12. Controlling charge injection in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-12-01

    We demonstrate control and improvement of charge injection in organic electronic devices by utilizing self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier between a metal electrode and the organic electronic material. Hole injection from Cu electrodes into the electroluminescent conjugated polymer poly[2-methoxy,5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] was varied by using two conjugated-thiol based SAMs. The chemically modified electrodes were incorporated in organic diode structures and changes in the metal/polymer Schottky energy barriers and current{endash}voltage characteristics were measured. Decreasing (increasing) the Schottky energy barrier improves (degrades) charge injection into the polymer. {copyright} {ital 1997 American Institute of Physics.}

  13. Electroluminescence from single nanowires by tunnel injection: an experimental study

    International Nuclear Information System (INIS)

    Zimmler, Mariano A; Bao Jiming; Shalish, Ilan; Yi, Wei; Yoon, Joonah; Narayanamurti, Venkatesh; Capasso, Federico

    2007-01-01

    We present a hybrid light-emitting diode structure composed of an n-type gallium nitride nanowire on a p-type silicon substrate in which current is injected along the length of the nanowire. The device emits ultraviolet light under both bias polarities. Tunnel injection of holes from the p-type substrate (under forward bias) and from the metal (under reverse bias) through thin native oxide barriers consistently explains the observed electroluminescence behaviour. This work shows that the standard p-n junction model is generally not applicable to this kind of device structure

  14. Peripheral Hole Acceptor Moieties on an Organic Dye Improve Dye‐Sensitized Solar Cell Performance

    Science.gov (United States)

    Hao, Yan; Gabrielsson, Erik; Lohse, Peter William; Yang, Wenxing; Johansson, Erik M. J.; Hagfeldt, Anders

    2015-01-01

    Investigation of charge transfer dynamics in dye‐sensitized solar cells is of fundamental interest and the control of these dynamics is a key factor for developing more efficient solar cell devices. One possibility for attenuating losses through recombination between injected electrons and oxidized dye molecules is to move the positive charge further away from the metal oxide surface. For this purpose, a metal‐free dye named E6 is developed, in which the chromophore core is tethered to two external triphenylamine (TPA) units. After photoinduced electron injection into TiO2, the remaining hole is rapidly transferred to a peripheral TPA unit. Electron–hole recombination is slowed down by 30% compared to a reference dye without peripheral TPA units. Furthermore, it is found that the added TPA moieties improve the electron blocking effect of the dye, retarding recombination of electrons from TiO2 to the cobalt‐based electrolyte. PMID:27722076

  15. Ram-pressure feeding of supermassive black holes.

    Science.gov (United States)

    Poggianti, Bianca M; Jaffé, Yara L; Moretti, Alessia; Gullieuszik, Marco; Radovich, Mario; Tonnesen, Stephanie; Fritz, Jacopo; Bettoni, Daniela; Vulcani, Benedetta; Fasano, Giovanni; Bellhouse, Callum; Hau, George; Omizzolo, Alessandro

    2017-08-16

    When a supermassive black hole at the centre of a galaxy accretes matter, it gives rise to a highly energetic phenomenon: an active galactic nucleus. Numerous physical processes have been proposed to account for the funnelling of gas towards the galactic centre to feed the black hole. There are also several physical processes that can remove gas from a galaxy, one of which is ram-pressure stripping by the hot gas that fills the space between galaxies in galaxy clusters. Here we report that six out of a sample of seven 'jellyfish' galaxies-galaxies with long 'tentacles' of material that extend for dozens of kiloparsecs beyond the galactic disks-host an active nucleus, and two of them also have galactic-scale ionization cones. The high incidence of nuclear activity among heavily stripped jellyfish galaxies may be due to ram pressure causing gas to flow towards the centre and triggering the activity, or to an enhancement of the stripping caused by energy injection from the active nucleus, or both. Our analysis of the galactic position and velocity relative to the cluster strongly supports the first hypothesis, and puts forward ram pressure as another possible mechanism for feeding the central supermassive black hole with gas.

  16. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  17. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  18. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    It is now an established fact that a significant amount of dust is produced in magnetic fusion devices due to plasma-wall interactions. Dust inventory must be controlled, in particular for the next-generation steady-state fusion machines like ITER, as it can pose significant safety hazards and degrade performance. Safety concerns are due to tritium retention, dust radioactivity, toxicity, and flammability. Performance concerns include high-Z impurities carried by dust to the fusion core that can reduce plasma temperature and may even induce sudden termination of the plasma. We have recognized that dust transport, dust-plasma interactions in magnetic fusion devices can be effectively studied experimentally by injection of dust with known properties into fusion plasmas. Other applications of injected dust include diagnosis of fusion plasmas and edge localized mode (ELM)'s pacing. In diagnostic applications, dust can be regarded as a source of transient neutrals before complete ionization. ELM's pacing is a promising scheme to prevent disruptions and type I ELM's that can cause catastrophic damage to fusion machines. Different implementation schemes are available depending on applications of dust injection. One of the simplest dust injection schemes is through gravitational acceleration of dust in vacuum. Experiments at Los Alamos and Princeton will be described, both of which use piezoelectric shakers to deliver dust to plasma. In Princeton experiments, spherical particles (40 micron) have been dropped in a systematic and reproducible manner using a computer-controlled piezoelectric bending actuator operating at an acoustic (0,2) resonance. The circular actuator was constructed with a 2.5 mm diameter central hole. At resonance (∼ 2 kHz) an applied sinusoidal voltage has been used to control the flux of particles exiting the hole. A simple screw throttle located ∼1mm above the hole has been used to set the magnitude of the flux achieved for a given voltage

  19. Retinal detachment and retinal holes in retinitis pigmentosa sine pigmento.

    Science.gov (United States)

    Csaky, K; Olk, R J; Mahl, C F; Bloom, S M

    1991-01-01

    Retinal detachment and retinal holes in two family members with retinitis pigmentosa sine pigmento are reported. We believe these are the first such cases reported in the literature. We describe the presenting symptoms and management, including cryotherapy, scleral buckling procedure, and sulfur hexafluoride injection (SF6), resulting in stable visual acuity in one case and retinal reattachment and improved visual acuity in the other case.

  20. Propellant Feed System for Swirl-Coaxial Injection

    Science.gov (United States)

    Reynolds, David Christopher (Inventor)

    2015-01-01

    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least 90.degree., and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  1. Imaging diagnostics of ethanol port fuel injection sprays for automobile engine applications

    International Nuclear Information System (INIS)

    Padala, Srinivas; Le, Minh Khoi; Kook, Sanghoon; Hawkes, Evatt R.

    2013-01-01

    This paper presents characteristics of ethanol sprays at port fuel injection (PFI) conditions with variations in injection and ambient parameters. Details of temporal and spatial development of ethanol PFI sprays are studied using Mie-scattering and high-speed shadowgraph imaging techniques. Momentum flux-based injection rate measurement is also performed. The influences of fuel flow-rate, injection duration, and ambient air cross-flow are of particular interest in an effort to understand ethanol PFI spray characteristics that are relevant to automobile engines. For comparison purposes, the results from gasoline fuel are also presented. Ethanol flow-rate effects are studied using two injectors with different nozzle-hole sizes at a fixed injection pressure. From the experiments, it was found that the actual injection duration was longer for the higher flow-rate injector although an electronic pulse width was fixed. This was due to an extended delay in the injector needle closing as the flow resistance against the needle was increased for the high flow-rate injector. For liquid droplets, the larger hole size of the higher flow-rate injector caused a higher mean droplet diameter and higher number of droplets. Injection duration was also varied to study transient spray behaviour: short-injection sprays with the end-of-injection transient dominating the overall spray development were compared to long, steady-injection sprays. From Mie-scattering images, the number of droplets and mean droplet diameter were found to be less for the short injection sprays. Detailed analysis using an axial profile of the number of droplets and mean droplet diameter suggested that the observed trends were a result of increased evaporation rate near the nozzle after the end of injection. This was consistent with shadowgraph images showing no liquid regions but only the vapour-phase fuel near the nozzle. Under the influence of ambient air cross-flow, both mean droplet diameter and number of

  2. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  3. Development of devices for self-injection: using tribological analysis to optimize injection force

    Directory of Open Access Journals (Sweden)

    Lange J

    2016-05-01

    Full Text Available Jakob Lange, Leos Urbanek, Stefan BurrenYpsomed Delivery Systems, Ypsomed AG, Burgdorf, Switzerland Abstract: This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in

  4. Replication of microstructures on three-dimensional geometries by injection moulding of liquid silicone rubber

    DEFF Research Database (Denmark)

    Zhang, Yang; Mischkot, Michael; Hansen, Hans Nørgaard

    2015-01-01

    In this paper, liquid silicon rubber (LSR) parts with micro pillars are studied. The LSR parts were produced by injection moulding and are used as anchoring device for electrode implants inside humans. Micro-structures with specific dimension on implant surfaces can reduce encapsulation...... by the human body, thereby improving implant performance. This paper presents a method of applying micro structure on 3D parts. A Ni-plate with micro holes on the surface was cut into inserts and stuck in a cavity for injection moulding. 1000 injection moulding cycles were performed. Key dimensions...

  5. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  6. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    Science.gov (United States)

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  7. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  8. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  9. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  10. Recent advances in protein and Peptide drug delivery: a special emphasis on polymeric nanoparticles.

    Science.gov (United States)

    Patel, Ashaben; Patel, Mitesh; Yang, Xiaoyan; Mitra, Ashim K

    2014-01-01

    Proteins and peptides are widely indicated in many diseased states. Parenteral route is the most commonly em- ployed method of administration for therapeutic proteins and peptides. However, requirement of frequent injections due to short in vivo half-life results in poor patient compliance. Non-invasive drug delivery routes such as nasal, transdermal, pulmonary, and oral offer several advantages over parenteral administration. Intrinsic physicochemical properties and low permeability across biological membrane limit protein delivery via non-invasive routes. One of the strategies to improve protein and peptide absorption is by delivering through nanostructured delivery carriers. Among nanocarriers, polymeric nanoparticles (NPs) have demonstrated significant advantages over other delivery systems. This article summarizes the application of polymeric NPs for protein and peptide drug delivery following oral, nasal, pulmonary, parenteral, transder mal, and ocular administrations.

  11. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  12. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  13. Injection sealing of the TASS tunnel. Progress report

    International Nuclear Information System (INIS)

    Funehag, Johan

    2008-12-01

    SKB's disposal facility is planned to be located approx. 400-500 m deep and the demands of its water tightness will be very high. The plant will be located in relatively fault-free rock with limited discharge and sealing will be carried out by injection. Given the very fine cracks that need to be sealed and the strong desire to use an injection material which generate a leachate with a pH lower than 11, SKB performs studies of silica sol and cement-based mortar with low pH in order to be able to use these in the sealing works. In the sealing project a 100 m long tunnel is constructed, the TASS tunnel at a depth of 450 min at SKB's rock laboratory on Aespoe. This report includes the results obtained until September 2008. At this date the injection stages 1, 2, and half of stage 3 have been done and preparation for Stage 3 is ongoing. The tunnel has reached a length of 55.5 m and the results from leaching measurements exist for stage 2 (Section 10-34 m). Both cement-based mortar with low pH and silica sol has been used, but cement-based mortar has been used only in relatively small scale. The cement-based mortar is developed especially for the repository. Silica sol used a particle size of about 25 nm and accelerator in the form of sodium chloride. The limit for inward leakage in the tunnel is 1 l/min and 60 m tunnel. Groundwater pressure was found to be 3.0-3.5 MPa. Past results obtained from Stage 2 indicate that injection shields fulfil the rate requirement over a 23 meter distance. The control holes drilled in the screens have been used to gradually steer the injection and to demonstrate a direct sealing effect of the screens. A controllable gelation time is necessary for efficient and controllable injection. Used mixing procedure has been proven to work and intended gelation times have been achieved. The two cement-based mortar mixtures for crack injection used in the project are robust and have desirable properties. Design methodology linking borehole distance

  14. Replication of micro structured surface by injection moulding of PEEK

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    A micro-structured Ni insert was investigated for PEEK injection moulding. The micro features are circular holes 4 μm in diameter and 2 μm deep, with a 2 μm edge-to-edge distance. 6000 moulding cycles was operated. Half of the insert was coated by 200nm CrN. PEEK parts produced by the coated side...

  15. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  16. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  17. Experimental and computational studies of film cooling with compound angle injection

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, R.J.; Eckert, E.R.G.; Patankar, S.V. [Univ. of Minnesota, Minneapolis, MN (United States)] [and others

    1995-10-01

    The thermal efficiency of gas turbine systems depends largely on the turbine inlet temperature. Recent decades have seen a steady rise in the inlet temperature and a resulting reduction in fuel consumption. At the same time, it has been necessary to employ intensive cooling of the hot components. Among various cooling methods, film cooling has become a standard method for cooling of the turbine airfoils and combustion chamber walls. The University of Minnesota program is a combined experimental and computational study of various film-cooling configurations. Whereas a large number of parameters influence film cooling processes, this research focuses on compound angle injection through a single row and through two rows of holes. Later work will investigate the values of contoured hole designs. An appreciation of the advantages of compound angle injection has risen recently with the demand for more effective cooling and with improved understanding of the flow; this project should continue to further this understanding. Approaches being applied include: (1) a new measurement system that extends the mass/heat transfer analogy to obtain both local film cooling and local mass (heat) transfer results in a single system, (2) direct measurement of three-dimensional turbulent transport in a highly-disturbed flow, (3) the use of compound angle and shaped holes to optimize film cooling performance, and (4) an exploration of anisotropy corrections to turbulence modeling of film cooling jets.

  18. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    Science.gov (United States)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  19. A gas production system from methane hydrate layers by hot water injection and BHP control with radial horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, T.; Ono, S.; Iwamoto, A.; Sugai, Y.; Sasaki, K. [Kyushu Univ., Fukuoka, Fukuoka (Japan)

    2010-07-01

    Reservoir characterization of methane hydrate (MH) bearing turbidite channel in the eastern Nankai Trough, in Japan has been performed to develop a gas production strategy. This paper proposed a gas production system from methane hydrate (MH) sediment layers by combining the hot water injection method and bottom hole pressure control at the production well using radial horizontal wells. Numerical simulations of the cylindrical homogeneous MH layer model were performed in order to evaluate gas production characteristics by the depressurization method with bottom hole pressure control. In addition, the effects of numerical block modeling and averaging physical properties of MH layers were presented. According to numerical simulations, combining the existing production system with hot water injection and bottom hole pressure control results in an outward expansion of the hot water chamber from the center of the MH layer with continuous gas production. 10 refs., 15 figs.

  20. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  1. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  2. Sustained Release of Antibiotics from Injectable and Thermally Responsive Polypeptide Depots

    OpenAIRE

    Adams, Samuel B.; Shamji, Mohammed F.; Nettles, Dana L.; Hwang, Priscilla; Setton, Lori A.

    2009-01-01

    Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to u...

  3. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  4. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  5. Efficient photocarrier injection in a transition metal oxide heterostructure

    CERN Document Server

    Muraoka, Y; Ueda, Y; Hiroi, Z

    2002-01-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO sub 2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO sub 2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO sub 2 /TiO sub 2 :Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO sub 2 :Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO sub 2. (letter to the editor)

  6. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  7. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hang; Kuang, Longyu; Jiang, Shaoen, E-mail: jiangshn@vip.sina.com; Ding, Yongkun, E-mail: ding-yk@vip.sina.com [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Song, Tianming; Yang, Jiamin, E-mail: yjm70018@sina.cn; Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China); Hu, Guangyue; Zhao, Bin; Zheng, Jian [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  8. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  9. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Brondijk, J.J.; Li, X.; Akkerman, H.B.; Blom, P.W.M.; Boer, B. de [University of Groningen, Molecular Electronics, Zernike Institute for Advanced Materials, Groningen (Netherlands)

    2009-04-15

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only {proportional_to}1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly(p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays. (orig.)

  10. Microcontact printing of self-assembled monolayers to pattern the light-emission of polymeric light-emitting diodes

    Science.gov (United States)

    Brondijk, J. J.; Li, X.; Akkerman, H. B.; Blom, P. W. M.; de Boer, B.

    2009-04-01

    By patterning a self-assembled monolayer (SAM) of thiolated molecules with opposing dipole moments on a gold anode of a polymer light-emitting diode (PLED), the charge injection and, therefore, the light-emission of the device can be controlled with a micrometer-scale resolution. Gold surfaces were modified with SAMs based on alkanethiols and perfluorinated alkanethiols, applied by microcontact printing, and their work functions have been measured. The molecules form a chemisorbed monolayer of only ˜1.5 nm on the gold surface, thereby locally changing the work function of the metal. Kelvin probe measurements show that the local work function can be tuned from 4.3 to 5.5 eV, which implies that this anode can be used as a hole blocking electrode or as a hole injecting electrode, respectively, in PLEDs based on poly( p-phenylene vinylene) (PPV) derivatives. By microcontact printing of SAMs with opposing dipole moments, the work function was locally modified and the charge injection in the PLED could be controlled down to the micrometer length scale. Consequently, the local light-emission exhibits a high contrast. Microcontact printing of SAMs is a simple and inexpensive method to pattern, with micrometer resolution, the light-emission for low-end applications like static displays.

  11. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  12. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  13. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  14. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  15. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  16. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  17. Influence of stability islands in the recurrence of particles in a static oval billiard with holes

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Matheus, E-mail: mathehansen@gmail.com [Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R 187, Cidade Universitária, 05314-970 São Paulo, SP (Brazil); Egydio de Carvalho, R., E-mail: regydio@rc.unesp.br [Universidade Estadual Paulista – UNESP, Rio Claro, SP (Brazil); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Física, UNESP – Univ Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-10-23

    Statistical properties for the recurrence of particles in an oval billiard with a hole in the boundary are discussed. The hole is allowed to move in the boundary under two different types of motion: (i) counterclockwise periodic circulation with a fixed step length and; (ii) random movement around the boundary. After injecting an ensemble of particles through the hole we show that the surviving probability of the particles without recurring – without escaping – from the billiard is described by an exponential law and that the slope of the decay is proportional to the relative size of the hole. Since the phase space of the system exhibits islands of stability we show there are preferred regions of escaping in the polar angle, hence given a partial answer to an open problem: Where to place a hole in order to maximize or minimize a suitable defined measure of escaping. - Highlights: • Statistical properties in an oval billiard is studied. • Where to place a hole in order to maximize or minimize the escape. • We found a partial answer to an open problem of escape of particles.

  18. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  19. Factors affecting the development of sprays produced by multihole injectors for direct-injection engine applications

    OpenAIRE

    Van Romunde, R. Z.

    2011-01-01

    The spray form development from a state of the art multi-hole injector for gasoline direct injection internal combustion engines is examined to attempt to determine the thermo-fluid dynamics affecting the spray development. The current state of knowledge regarding spray break-up and the interactivity of the factors on spray form are detailed. The spray under investigation was injected into purposely designed quiescent chambers to decouple the effects of the fluid mechanics on s...

  20. INDUCTION OF MACULAR DETACHMENT FOR THE TREATMENT OF PERSISTENT OR RECURRENT IDIOPATHIC MACULAR HOLES.

    Science.gov (United States)

    Szigiato, Andrei-Alexandru; Gilani, Fatimah; Walsh, Mark K; Mandelcorn, Efrem D; Muni, Rajeev H

    2016-09-01

    To analyze the efficacy of induced macular detachment for the treatment of persistent or recurrent idiopathic macular holes after treatment with one or more standard pars plana vitrectomies (PPVs) with internal limiting membrane peeling. This study is a retrospective consecutive case series of 10 patients who underwent a PPV with subretinal balanced salt solution injection from 2011 to 2014 to treat persistent or recurrent idiopathic macular holes. All patients had previously undergone PPV with internal limiting membrane peeling. Visual acuity, ocular examination findings, and optical coherence tomographic images were reviewed preoperatively and postoperatively to assess the anatomical and visual outcomes of this procedure. Nine of the 10 patients who underwent the procedure had closure of their macular holes postoperatively (90%) and remained closed 6 months postoperatively. Most patients reported a subjective visual improvement. A mean objective visual improvement of 16 letters (Early Treatment Diabetic Retinopathy Study, 0.324 logMAR) was seen between preoperative and 6-month postoperative assessments of all patients (pre = 1.490, post = 1.166; P = 0.022). Subgroup analysis of patients with successful closure revealed 20 letters of improvement (0.398 logMAR) in visual acuity (pre = 1.491, post = 1.093; P = 0.004). There were no intraoperative or postoperative complications. In eyes with persistent or recurrent idiopathic macular holes after standard PPV with internal limiting membrane peeling, repeat PPV with subretinal balanced salt solution injection to create a macular detachment may be a viable surgical treatment option. Our results show improved anatomical and visual outcomes postoperatively that compare favorably to other case series describing various surgical treatments for these challenging cases.

  1. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    Science.gov (United States)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  2. Prediction of the extent of formation damage caused by water injection

    Energy Technology Data Exchange (ETDEWEB)

    Al-Homadhi, Emad S. [King Saud Univ., Riyadh (Saudi Arabia). Petroleum Engineering Dept.

    2013-06-15

    As a general practice water is injected along the O/W contact to maintain reservoir pressure during production. Down hole analysis of the injected water shows that, even after surface treatment, it still can contain a considerable amount of solid particles. These particles can bridge formation pores and cause a considerable reduction in the injectivity. To ensure good injectivity over a longer term, the concentration and size of these solids should not exceed certain limits. In this article core flood tests were carried out to simulate high rate injectors. The injected brine contained solid particles in different concentrations and sizes. Particle concentration was between 5 and 20 ppm and the particle mean size was between 2 and 9 {mu}m. The results were presented as damaging ratio versus pore volume injected. Contrarily to previous studies instead of using experimental results in calibrating or evaluating certain theoretical models, the results in this study were directly fitted to produce equations which can predict the extent of damage caused by injected water by knowing the mean size and concentration of the solid particles contained in that water. (orig.)

  3. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  4. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2012-06-01

    Full Text Available In this paper, we investigate the carrier injection and transport characteristics in iridium(IIIbis[4,6-(di-fluorophenyl-pyridinato-N,C2']picolinate (FIrpic doped phosphorescent organic light-emitting devices (OLEDs with oxadiazole (OXD as the bipolar host material of the emitting layer (EML. When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD.

  5. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  6. Three-dimensional modeling of charge transport, injection and recombination in organic light-emitting diodes

    NARCIS (Netherlands)

    Holst, van der J.J.M.

    2010-01-01

    Organic light-emitting diodes (OLEDs) are ideally suited for lighting and display applications. Commercial OLED displays as well as OLED white-light sources are presently being introduced to the market. Essential electronic processes in OLEDs are the injection of electrons and holes into an organic

  7. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  8. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  9. Bifurcation from stable holes to replicating holes in vibrated dense suspensions.

    Science.gov (United States)

    Ebata, H; Sano, M

    2013-11-01

    In vertically vibrated starch suspensions, we observe bifurcations from stable holes to replicating holes. Above a certain acceleration, finite-amplitude deformations of the vibrated surface continue to grow until void penetrates fluid layers, and a hole forms. We studied experimentally and theoretically the parameter dependence of the holes and their stabilities. In suspensions of small dispersed particles, the circular shapes of the holes are stable. However, we find that larger particles or lower surface tension of water destabilize the circular shapes; this indicates the importance of capillary forces acting on the dispersed particles. Around the critical acceleration for bifurcation, holes show intermittent large deformations as a precursor to hole replication. We applied a phenomenological model for deformable domains, which is used in reaction-diffusion systems. The model can explain the basic dynamics of the holes, such as intermittent behavior, probability distribution functions of deformation, and time intervals of replication. Results from the phenomenological model match the linear growth rate below criticality that was estimated from experimental data.

  10. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  11. All-polymeric sensing platform based on packaged self-assembled bottle microresonator (Conference Presentation)

    Science.gov (United States)

    Bernini, Romeo; Grimaldi, Immacolata A.; Persichetti, Gianluca; Testa, Genni

    2017-02-01

    In recent years, microbottle resonators that support non-degenerate whispering gallery modes (WGMs), propagating by successive total internal reflections close to the resonator surface and all along its axis, have been widely investigated due to their potential applications in optical sensing, microlasers and nonlinear optics. To overcome some drawbacks of the standard silica microbottle resonators, we focused our attention on polymers such as SU-8 resist and NOA resins. A drop of polymeric material is dispensed onto a fiber stem, providing a mechanical support for the bottle resonator, and is photo-polymerized by an UV lamp. The interrogation system, usually constituted by a tapered silica fiber evanescently coupled with the microresonator, is substituted by a more stable planar waveguide realized in SU-8 by means of standard photolithography technique. Moreover, for guarantying the stability to surrounding disturbance of the coupling between the microbottle resonator and the planar waveguide, the fiber stem is glued to substrate. Two drilled holes in the substrate allow the rise of the glue at the ends of the fiber stem and the fixing of sensor on PMMA substrate. In the present work, we presented an integrated full polymeric platform with self-assembled bottle microresonators packaged in a stable structure. SU-8 and NOA based microbottles are realized and morphologically characterized. The low autofluorescence emission and long term stability make the NOA based bottles suitable to be employed in a great variety of conditions. Bulk sensing measurements are performed by using water:ethanol solutions and a bulk sensitivity of 120 nm/RIU is estimated.

  12. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  13. Enhancing Carrier Injection Using Graded Superlattice Electron Blocking Layer for UVB Light-Emitting Diodes

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    is changed from 0.8 to 0.56 in steps of 0.06. Graded SL was found to be effective in reducing electron leakage and enhancing hole injection into the active region. Due to our band engineering scheme for EBL, four orders-of-magnitude enhancement were observed

  14. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  15. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  16. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  17. Particle Dispersibility Improvement of Polyester Fibers with a New Line Injection

    International Nuclear Information System (INIS)

    Park, Seong Yoon; Kim, Hak Yong; Jin, Fan Long; Park, Soo Jin

    2010-01-01

    In order to develop a new line injection system for spin draw yarn (FD SDY) fibers, the effect of various parameters in extrusion and melt line conditions on the dispersion and distribution of TiO 2 particles within FD PET fibers was investigated. As a result, the dispersibility of TiO 2 particles in a PET matrix is found to depend on the particle size and its surface characteristics. Surface modification of TiO 2 by dimethyl polysiloxane resulted in the improved dispersibility and affinity of TiO 2 particles in the PET matrix. Especially, residence time, mixing temperature, and mixing shear rate in the new line injection system under the SDY spinning process were very important parameters to minimize the agglomeration of TiO 2 particles. The FD SDY prepared by the new line injection system was superior to those using the polymerization process and the conventional masterbatch chip dosing process in the color-L and color-b values of the fibers

  18. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  19. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  20. Disposal of oil cuttings by downhole fracturing injections : slurry product specifications issues

    International Nuclear Information System (INIS)

    Radzuan Junin

    1994-01-01

    The technique of using on-site injection of oil contaminated drill cuttings is attracting considerable attention as a cost effective means of complying with environmental legislation concerning discharges of drilling wastes. The slurrification and injection of oil based cuttings into a casing annulus, a process developed in 1989 by a major oil and gas producer/ operator, has proven to be a significant step toward reduction of such environmental waste. This paper discusses the development of the cuttings reinjection, slurrification, slurry properties and benefits of quality slurry, and behaviour of solid laden slurries in a fracture in conjunction with down-hole disposal operations

  1. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  2. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  3. Common Rail Direct Injection Mode of CI Engine Operation with Different Injection Strategies - A Method to Reduce Smoke and NOx Emissions Simultaneously

    Directory of Open Access Journals (Sweden)

    S. V. Khandal

    2018-03-01

    Full Text Available Compression ignition (CI engines are most efficient and robust prime movers used in transportation, power generation applications but suffer from the problems of higher level of exhaust smoke and NOx tailpipe emissions with increased use of fossil fuels. Alternative fuel that replaces diesel and at the same time that result in lower smoke and NOx emissions is presently needed. Therefore the main aim of this experimental study is to lower the smoke and NOx emissions and to use non edible oils that replace the diesel. For this locally available honge biodiesel (BHO and cotton seed biodiesel (BCO were selected as alternative fuels to power CI engine operated in common rail direct injection (CRDI mode. In the first part, optimum fuel injection timing (IT and injection pressure (IP for maximum engine brake thermal efficiency (BTE was obtained. In the second part, performance, combustion and emission characteristics of the CRDI engine was studied with two different fuel injectors having 6 and 7 holes each having 0.2 mm orifice diameter. The CRDI engine results obtained were compared with the baseline date reported. The combustion chamber (CC used for the study was toroidal re-entrant (TRCC. The experimental tests showed that BHO and BCO fuelled CRDI engine showed overall improved performance with 7 hole injector when engine was operated at optimized fuel IT of 10° before top dead centre (bTDC and IP of 900 bar. The smoke emission reduced by 20% to 26% and NOx reduced by 16% to 20% in diesel and biodiesel powered CRDI engine as compared to conventional CI mode besides replacing diesel by biodiesel fuel (BDF.

  4. Injectable biodegradable carriers for the delivery of therapeutic agents and tissue engineering

    OpenAIRE

    Levato, Riccardo

    2015-01-01

    Premi Extraordinari de Doctorat, promoció 2014-2015. Àmbit d'Enginyeria Industrial The design of smart biomaterial devices plays a key role to improve the way conventional therapies are being delivered, and to promote the development of new approaches for advanced therapies, such as regenerative medicine and targeted drug release. Injectable biodegradable materials, such as those consisting of suspensions of polymeric particles, are highly versatile devices that can be delivered through mi...

  5. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  6. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  7. Development of liquid poison injection system (SDS-2) for 500 MWe PHWRs

    International Nuclear Information System (INIS)

    Nawathe, Shirish; Umashankari, P.; Balakrishnan, Kamala; Mahajan, S.C.; Kakodkar, A.

    1991-01-01

    A secondary shut-down system (SDS-2) in the form of a mecahnism for introducing poison into the moderator of the PHWR is under development in Reactor Engineering Division of BARC. The system, as conceived, consists of a tank containing pressurised helium connected to poison tanks through quick opening solenoid valves. The tanks are connected to horizontal injection tubes in the calandria. On system actuation, gadolinium nitrate solution from the tanks passes to the injection tubes which have a number of holes through which the poison enters the moderator. This report details the development work being done on this poison injection system. An experimental facility was set up to measure the poison jet growth rate and the jet spread after injection, and mathematical models were developed to convert the observed jets into reactivity worth values. A description of the work and the computed results are presented. (author). 21 graphs. , 15 tabs

  8. Photoreceptor Outer Segment on Internal Limiting Membrane after Macular Hole Surgery: Implications for Pathogenesis.

    Science.gov (United States)

    Grinton, Michael E; Sandinha, Maria T; Steel, David H W

    2015-01-01

    This report presents a case, which highlights key principles in the pathophysiology of macular holes. It has been hypothesized that anteroposterior (AP) and tangential vitreous traction on the fovea are the primary underlying factors causing macular holes [Nischal and Pearson; in Kanski and Bowling: Clinical Ophthalmology: A Systemic Approach, 2011, pp 629-631]. Spectral domain optical coherence tomography (OCT) has subsequently corroborated this theory in part but shown that AP vitreofoveal traction is the more common scenario [Steel and Lotery: Eye 2013;27:1-21]. This study was conducted as a single case report. A 63-year old female presented to her optician with blurred and distorted vision in her left eye. OCT showed a macular hole with a minimum linear diameter of 370 µm, with persistent broad vitreofoveal attachment on both sides of the hole edges. The patient underwent combined left phacoemulsification and pars plana vitrectomy, internal limiting membrane (ILM) peel and gas injection. The ILM was examined by electron microscopy and showed the presence of a cone outer segment on the retinal side. Post-operative OCT at 11 weeks showed a closed hole with recovery of the foveal contour and good vision. Our case shows the presence of a photoreceptor outer segment on the retinal side of the ILM and reinforces the importance of tangential traction in the development of some macula holes. The case highlights the theory of transmission of inner retinal forces to the photoreceptors via Müller cells and how a full thickness macular hole defect can occur in the absence of AP vitreomacular traction.

  9. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  10. XFEM Modelling of Multi-holes Plate with Single-row and Staggered Holes Configurations

    Directory of Open Access Journals (Sweden)

    Supar Khairi

    2017-01-01

    Full Text Available Joint efficiency is the key to composite structures assembly design, good structures response is dependent upon multi-holes behavior as subjected to remote loading. Current benchmarking work were following experimental testing series taken from literature on multi-holes problem. Eleven multi-hole configurations were investigated with various pitch and gage distance of staggered holes and non-staggered holes (single-row holes. Various failure modes were exhibited, most staggered holes demonstrates staggered crack path but non-staggered holes series displayed crack path along net-section plane. Stress distribution were carried out and good agreement were exhibited in experimental observation as reported in the respective literature. Consequently, strength prediction work were carried out under quasi-static loading, most showed discrepancy between 8% -31%, better prediction were exhibited in thicker and non-staggered holes plate combinations.

  11. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  12. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  13. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  14. Replication of Micro pillars by PEEK injection moulding with CrN coated Ni tool

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2015-01-01

    A micro-structured nickel insert was investigatedfor polyether ether ketone (PEEK) injection moulding. Themicro-features were circular holes 4 μm in diameter and2 μm deep, with a 2-μm edge-to-edge distance. Six thousand moulding cycles were operated. Half of the insert was coatedby approximately...

  15. Black holes will break up solitons and white holes may destroy them

    International Nuclear Information System (INIS)

    Akbar, Fiki T.; Gunara, Bobby E.; Susanto, Hadi

    2017-01-01

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  16. Black holes will break up solitons and white holes may destroy them

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Fiki T., E-mail: ftakbar@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Gunara, Bobby E., E-mail: bobby@fi.itb.ac.id [Theoretical Physics Laboratory, Theoretical High Energy Physics and Instrumentation Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung, 40132 (Indonesia); Susanto, Hadi, E-mail: hsusanto@essex.ac.uk [Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ (United Kingdom)

    2017-06-15

    Highlights: • What happens if a soliton collides with a black or white hole? • Solitons can pass through black hole horizons, but they will break up into several solitons after the collision. • In the interaction with a white hole horizon, solitons either pass through the horizon or will be destroyed by it. - Abstract: We consider a quantum analogue of black holes and white holes using Bose–Einstein condensates. The model is described by the nonlinear Schrödinger equation with a ‘stream flow’ potential, that induces a spatial translation to standing waves. We then mainly consider the dynamics of dark solitons in a black hole or white hole flow analogue and their interactions with the event horizon. A reduced equation describing the position of the dark solitons was obtained using variational method. Through numerical computations and comparisons with the analytical approximation we show that solitons can pass through black hole horizons even though they will break up into several solitons after the collision. In the interaction with a white hole horizon, we show that solitons either pass through the horizon or will be destroyed by it.

  17. Effects of Interfacial Charge Depletion in Organic Thin-Film Transistors with Polymeric Dielectrics on Electrical Stability

    Directory of Open Access Journals (Sweden)

    Jaehoon Park

    2010-06-01

    Full Text Available We investigated the electrical stabilities of two types of pentacene-based organic thin-film transistors (OTFTs with two different polymeric dielectrics: polystyrene (PS and poly(4-vinyl phenol (PVP, in terms of the interfacial charge depletion. Under a short-term bias stress condition, the OTFT with the PVP layer showed a substantial increase in the drain current and a positive shift of the threshold voltage, while the PS layer case exhibited no change. Furthermore, a significant increase in the off-state current was observed in the OTFT with the PVP layer which has a hydroxyl group. In the presence of the interfacial hydroxyl group in PVP, the holes are not fully depleted during repetitive operation of the OTFT with the PVP layer and a large positive gate voltage in the off-state regime is needed to effectively refresh the electrical characteristics. It is suggested that the depletion-limited holes at the interface, i.e., interfacial charge depletion, between the PVP layer and the pentacene layer play a critical role on the electrical stability during operation of the OTFT.

  18. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    Directory of Open Access Journals (Sweden)

    L. I. Kоbylinska

    2016-02-01

    Full Text Available The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833 and doxorubicin (positive control in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals. Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  19. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  20. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Min, Kyoung Doug

    2006-01-01

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  1. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  2. Study of charge transport in composite blend of P3HT and PCBM

    Science.gov (United States)

    Kumar, Manoj; Kumar, Sunil; Upadhyaya, Aditi; Yadav, Anjali; Gupta, Saral K.; Singh, Amarjeet

    2018-05-01

    Poly (3-hexylthiophene-2,5diyl) (P3HT) as donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as acceptor are mostly used as active medium in polymeric electronic device. In this paper we have prepare the P3HT - PCBM based bulk hetero junction thin films by spin coating technique. The charge transport properties of P3HT:PCBM blends are investigated by the current-voltage measurements using Ag as an electron injecting electrode and ITO as a hole injecting contact. The current density v/s voltage relationships are analyzed in the backdrop of Schottky and Space charge limited current model.

  3. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  4. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  5. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  6. Removal of choroidal neovascular membrane in a case of macular hole after anti-VEGF therapy for age-related macular degeneration.

    Science.gov (United States)

    Hirata, Akira; Hayashi, Ken; Murata, Kazuhisa; Nakamura, Kei-Ichiro

    2018-03-01

    The formation of macular hole after receiving anti-vascular endothelial growth factor (anti-VEGF) therapy is rare. We report a case of macular hole that occurred after intravitreal injection of an anti-VEGF agent for age-related macular degeneration (AMD) in a patient, who underwent vitrectomy combined with choroidal neovascularization (CNV) removal. A 64-year-old female with AMD affecting her right eye received an intravitreal injection of an anti-VEGF agent. After treatment, we identified a full thickness macular hole (MH) that was associated with the rapid resolution of the macular edema and contraction of the CNV. After performing vitrectomy combined with CNV removal, the MH closed and her visual acuity improved. Examination of the removed CNV revealed a network of microvessels devoid of pericytes. and Importance: The present findings suggest that rapid resolution of macular edema and contraction of the CNV and/or mild increase in the vitreous traction after anti-VEGF therapy could potentially cause MH. CNV removal via the MH may be an acceptable procedure, if the MH remains open, the CNV is of the classic type, and it spares a central portion of the fovea.

  7. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  8. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  9. Tail state-assisted charge injection and recombination at the electron-collecting interface of P3HT:PCBM bulk-heterojunction polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, He [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Shah, Manas [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ganesan, Venkat [Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Chabinyc, Michael L. [Materials Department, University of California Santa Barbara, CA 93106 (United States); Loo, Yueh-Lin [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2012-12-15

    The systematic insertion of thin films of P3HT and PCBM at the electron- and hole-collecting interfaces, respectively, in bulk-heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron-collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole-collecting interface. This asymmetry is attributed to differences in the tail state-assisted charge injection and recombination at the active layer-electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron-collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk-heterojunction solar cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.

  11. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  12. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  13. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  14. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  15. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  16. Examining the influence of injection speed and mould temperature on the tensile strength of polypropylene and ABS

    DEFF Research Database (Denmark)

    Aarøe, Esben Raahede; Blaimschein, Karl Stephan; Deker, Lasse

    This report is the final task of course “41738 Experimental Plastics Technology” in the three weeks period of June 2009 at DTU, IPL. The aim of this project has been to investigate the ultimate tensile strength behaviour of two different polymers, with different structural composition, by varying...... the injection speed and the mold temperature independently while keeping all other process parameters fixed. In addition the scaling from production of large to small geometries has been investigated by doing two parallel productions and test setups of respectively injection moulded and micro injection moulded...... specimens. After production and tensile testing the specimens were examined with a microscope to underpin conclusions from the tensile test data. It was experienced that the injection speed in general increased the the tensile strength by orienting the polymeric-chains lengthwise in the specimens and thus...

  17. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  18. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  19. An Injectable Composite Gelatin Hydrogel with pH Response Properties

    Directory of Open Access Journals (Sweden)

    Baoguo Chen

    2017-01-01

    Full Text Available On account of minimally invasive procedure and of filling irregular defects of tissues, injectable hydrogels are increasingly attractive in biomedical fields. However, traditional hydrogel formed by simple physical interaction or in situ crosslinking had inevitably some drawbacks such as low mechanical strength and lack of multifunctional properties. Though many investigations had successfully modified traditional injectable hydrogel to obtain both mechanical and functional properties, an acetalated β-cyclodextrin (Ac-β-CD nanoparticle composite injectable hydrogel designed in the research was another effective and efficient choice to solve the drawbacks. First of all, gelatin derivative (G-AA and Ac-β-CD were synthesized to prepare hydrogel and nanoparticle, respectively. In order to ensure good compatibility between nanoparticle and macromonomer and provide crosslink points between nanoparticle and macromonomer, G-AA was simultaneously functionalized onto the surface of Ac-β-CD nanoparticle during the fabrication of Ac-β-CD nanoparticle using one-step method. Finally, injectable composite hydrogel was obtained by photoinitiated polymerization in situ. Hydrogel properties like gelation time and swelling ratio were investigated. The viscoelastic behavior of hydrogels confirmed that typical characteristics of crosslinked elastomer for all hydrogel and nanoparticle in hydrogel could improve the mechanical property of hydrogel. Moreover, the transparency with time had verified obvious acid-response properties of hydrogels.

  20. Micro Engineering: Experiments conducted on the use of polymeric materials in micro injection moulding

    DEFF Research Database (Denmark)

    Griffiths, Christian; Tosello, Guido; Nestler, Joerg

    2008-01-01

    To advance micro injection moulding it is necessary to study systematically the factors affecting process and tooling reliability. This paper reviews the main findings of Cardiff Universities 4M and SEMOFS research in this field. In particular, the factors affecting the manufacturability of micro...

  1. TiO2@C Core-Shell Nanoparticles Formed by Polymeric Nano-Encapsulation

    Directory of Open Access Journals (Sweden)

    Mitra eVasei

    2014-07-01

    Full Text Available TiO2 semiconducting nanoparticles are known to be photocatalysts of moderate activity due to their high band-gap and high rate of electron-hole recombination. The formation of a shell of carbon around the core of TiO2, i.e. the formation of TiO2@C nanoparticles, is believed to partly alleviate these problems. It is usually achieved by a hydrothermal treatment in a presence of a sugar derivative. We present here a novel method for the formation of highly uniform C shell around TiO2 nanoparticles. For this purpose, TiO2 nanoparticles were dispersed in water using an oligomeric dispersant prepared by Reversible Addition-Fragmentation chain Transfer (RAFT polymerization. Then the nanoparticles were engaged into an emulsion polymerization of acrylonitrile, resulting in the formation of a shell of polyacrylonitrile (PAN around each TiO2 nanoparticles. Upon pyrolisis, the PAN was transformed into carbon, resulting in the formation of TiO2@C nanoparticles. The structure of the resulting particles was elucidated by X-Ray diffraction, FTIR, UV-VIS and Raman spectroscopy as well as TEM microscopy. Preliminary results about the use of the TiO2@C particles as photocatalysts for the splitting of water are presented. They indicate that the presence of the C shell is responsible for a significant enhancement of the photocurrent.

  2. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  3. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  4. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    Science.gov (United States)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  5. Optimization of air injection parameters toward optimum fuel saving effect for ships

    Science.gov (United States)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  6. Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors.

    Science.gov (United States)

    Wadee, Ameena; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Penny, Clement; Ndesendo, Valence M K; Kumar, Pradeep; Murphy, Caragh S

    2011-10-01

    The effective treatment of solid tumors continues to be a great challenge to clinicians, despite the development of novel drugs. In order to improve the clinical efficacy of existing chemotherapeutic agents, researchers have considered the possibility of site-specific solid tumor treatment. The greatest advantage of localized delivery is the significantly fewer side effects experienced by patients. Recently, in situ forming implants have attracted considerable interest. These polymeric systems are injected as solutions into tumor sites and the injected solution forms an implant as a result of local environmental stimuli and hence removes the need for surgical implantation. This review summarizes the attempts that have been made to date in the development of polymeric implants for the treatment of solid tumors. Both in situ forming implants and preformed implants, fabricated using natural and synthetic polymers, are described. In addition, the peri- or intra-tumoral delivery of chemotherapeutic agents based on implants inserted surgically into the affected region is also discussed along with a short coverage of implants having an undesirable initial burst release effect. Although these implants have been shown to improve the treatment of various solid tumors, the ideal implant that is able to deliver high doses of chemotherapeutics to the tumor site, over prolonged periods with relatively few side effects on normal tissue, is yet to be formulated.

  7. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  8. Fines stabilizing agent reduces production decline rates in steam injected wells

    Energy Technology Data Exchange (ETDEWEB)

    Castillo de Castillo, Milagros; Fernandez Andrades, Jarvi [PDVSA - Petroleos de Venezuela S.A., Caracas (Venezuela); Navarro Cornejo, Willian; Curtis, James [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    The Bachaquero Lago heavy oil field, located in Lake Maracaibo, Venezuela, with an area of 9800 ha, in which more than 1800 wells have been drilled. The Lagunillas formation in this field is a mature, clastic, unconsolidated sandstone of Miocene age with good permeability. Clays are present, in laminated form or dispersed within the productive sandstones. Heavy oil, less than 12 deg API, is produced by cyclic steam injection. Wells are completed with cased-hole gravel packs to prevent sand and fines production. Rapid production decline rates are typically observed after the steam injection cycles, due to fines migration and plugging of the reservoir and gravel pack. This paper describes the methodology used to treat the wells with a fines stabilizing agent during the steam injection cycles in order to successfully reduce the subsequent production decline rate. Results from a multi-well pilot project are presented and analyzed. (author)

  9. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  10. Brane holes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Mukohyama, Shinji

    2011-01-01

    The aim of this paper is to demonstrate that in models with large extra dimensions under special conditions one can extract information from the interior of 4D black holes. For this purpose we study an induced geometry on a test brane in the background of a higher-dimensional static black string or a black brane. We show that, at the intersection surface of the test brane and the bulk black string or brane, the induced metric has an event horizon, so that the test brane contains a black hole. We call it a brane hole. When the test brane moves with a constant velocity V with respect to the bulk black object, it also has a brane hole, but its gravitational radius r e is greater than the size of the bulk black string or brane r 0 by the factor (1-V 2 ) -1 . We show that bulk ''photon'' emitted in the region between r 0 and r e can meet the test brane again at a point outside r e . From the point of view of observers on the test brane, the events of emission and capture of the bulk photon are connected by a spacelike curve in the induced geometry. This shows an example in which extra dimensions can be used to extract information from the interior of a lower-dimensional black object. Instead of the bulk black string or brane, one can also consider a bulk geometry without a horizon. We show that nevertheless the induced geometry on the moving test brane can include a brane hole. In such a case the extra dimensions can be used to extract information from the complete region of the brane-hole interior. We discuss thermodynamic properties of brane holes and interesting questions which arise when such an extra-dimensional channel for the information mining exists.

  11. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  12. High Performance Ambipolar Diketopyrrolopyrrole-Thieno[3,2-b]thiophene Copolymer Field-Effect Transistors with Balanced Hole and Electron Mobilities

    DEFF Research Database (Denmark)

    Chen, Zhuoying; Lee, Mi Jung; Ashraf, Raja Shahid

    2012-01-01

    Ambipolar OFETs with balanced hole and electron field-effect mobilities both exceeding 1 cm2 V−1 s−1 are achieved based on a single-solution-processed conjugated polymer, DPPT-TT, upon careful optimization of the device architecture, charge injection, and polymer processing. Such high-performance...

  13. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  14. Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore

    Science.gov (United States)

    Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua

    2018-06-01

    It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.

  15. Particle Dispersibility Improvement of Polyester Fibers with a New Line Injection

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong Yoon; Kim, Hak Yong [Chonbuk National University, Jeonju (Korea, Republic of); Jin, Fan Long [Jilin Institute of Chemical Technology, Jilin (China); Park, Soo Jin [Inha University, Incheon (Korea, Republic of)

    2010-09-15

    In order to develop a new line injection system for spin draw yarn (FD SDY) fibers, the effect of various parameters in extrusion and melt line conditions on the dispersion and distribution of TiO{sub 2} particles within FD PET fibers was investigated. As a result, the dispersibility of TiO{sub 2} particles in a PET matrix is found to depend on the particle size and its surface characteristics. Surface modification of TiO{sub 2} by dimethyl polysiloxane resulted in the improved dispersibility and affinity of TiO{sub 2} particles in the PET matrix. Especially, residence time, mixing temperature, and mixing shear rate in the new line injection system under the SDY spinning process were very important parameters to minimize the agglomeration of TiO{sub 2} particles. The FD SDY prepared by the new line injection system was superior to those using the polymerization process and the conventional masterbatch chip dosing process in the color-L and color-b values of the fibers.

  16. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  17. Hole history, rotary hole DC-3

    International Nuclear Information System (INIS)

    1977-10-01

    Purpose of hole DC-3 was to drill into the Umtanum basalt flow using both conventional rotary and core drilling methods. The borehole is to be utilized for geophysical logging, future hydrological testing, and the future installation of a borehole laboratory for long-term pressure, seismic, and moisture migration or accumulation recording in the Umtanum basalt flow in support of the Basalt Waste Isolation Program. Hole DC-3 is located east of the 200 West barricaded area on the Hanford reservation

  18. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  19. Numerical investigations of cooling holes system role in the protection of the walls of a gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Ben Sik Ali, Ahlem; Kriaa, Wassim; Mhiri, Hatem [Ecole Nationale D' Ingenieurs de Monastir, Unite de Thermique et Thermodynamique des Procedes industriels, Monastir (Tunisia); Bournot, Philippe [IUSTI, UMR CNRS 6595, Marseille (France)

    2012-05-15

    Numerical simulations in a gas turbine Swirl stabilized combustor were conducted to investigate the effectiveness of a cooling system in the protection of combustor walls. The studied combustion chamber has a high degree of geometrical complexity related to the injection system as well as the cooling system based on a big distribution of small holes (about 3,390 holes) bored on the flame tube walls. Two cases were considered respectively the flame tube without and with its cooling system. The calculations were carried out using the industrial CFD code FLUENT 6.2. The various simulations made it possible to highlight the role of cooling holes in the protection of the flame tube walls against the high temperatures of the combustion products. In fact, the comparison between the results of the two studied cases demonstrated that the walls temperature can be reduced by about 800 C by the mean of cooling holes technique. (orig.)

  20. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

    Science.gov (United States)

    Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young

    2011-08-01

    Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.

  1. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  2. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  3. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  4. Premature drug release of polymeric micelles and its effects on tumor targeting.

    Science.gov (United States)

    Miller, Tobias; Breyer, Sandra; van Colen, Gwenaelle; Mier, Walter; Haberkorn, Uwe; Geissler, Simon; Voss, Senta; Weigandt, Markus; Goepferich, Achim

    2013-03-10

    Based on the enhanced permeability and retention (EPR) effect, nanoparticles are believed to accumulate in tumors. In this conjunction, the stability of drug encapsulation is assumed to be sufficient. For clarification purposes, PEGylated poly-(D,L-lactic acid) (PEG-PDLLA) micelles which incorporated the hydrophobic model drug dechloro-4-iodo-fenofibrate (IFF) were investigated. H2N-PEG-PDLLA was synthesized, coupled to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and labeled with 111-indium. From this polymeric species, mixed micelles with H3CO-PEG-PDLLA were prepared which encapsulated the 125-iodine or 131-iodine labeled drug IFF. Bioimaging and biodistribution experiments in healthy and AR42J-tumor bearing mice were carried out to quantify the uptake of the drug and its carrier in single organs. As a result, upon injection of this system, a rapid dissociation of the polymeric carrier and the incorporated drug (system allowed for successful solubilization of the hydrophobic drug by physical incorporation into micelles whereas the tumor targeting properties of the drug delivery system could not be sufficiently shown. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Electron and Hole Transport Layers: Their Use in Inverted Bulk Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Sandro Lattante

    2014-03-01

    Full Text Available Bulk heterojunction polymer solar cells (BHJ PSCs are very promising organic-based devices for low-cost solar energy conversion, compatible with roll-to-roll or general printing methods for mass production. Nevertheless, to date, many issues should still be addressed, one of these being the poor stability in ambient conditions. One elegant way to overcome such an issue is the so-called “inverted” BHJ PSC, a device geometry in which the charge collection is reverted in comparison with the standard geometry device, i.e., the electrons are collected by the bottom electrode and the holes by the top electrode (in contact with air. This reverted geometry allows one to use a high work function top metal electrode, like silver or gold (thus avoiding its fast oxidation and degradation, and eliminates the need of a polymeric hole transport layer, typically of an acidic nature, on top of the transparent metal oxide bottom electrode. Moreover, this geometry is fully compatible with standard roll-to-roll manufacturing in air and is less demanding for a good post-production encapsulation process. To date, the external power conversion efficiencies of the inverted devices are generally comparable to their standard analogues, once both the electron transport layer and the hole transport layer are fully optimized for the particular device. Here, the most recent results on this particular optimization process will be reviewed, and a general outlook regarding the inverted BHJ PSC will be depicted.

  6. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  7. Development and validation of a model for high pressure liquid poison injection for CANDU-6 shutdown system no.2

    International Nuclear Information System (INIS)

    Rhee, B.-W.; Jeong, C.J.; Choi, J.H.; Yoo, S.-Y.

    2002-01-01

    In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzing the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the calandria tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, an AEA Technology CFD code, to simulate the formation and growth of the poison jet curtain inside the moderator tank. For validation, the current model is validated against a poison injection experiment performed at BARC, India and another poison jet experiment for Generic CANDU-6 performed at AECL, Canada. In conclusion this set of models is considered to predict the experimental results in a physically reasonable and consistent manner. (author)

  8. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  9. Investigation of Spiral and Sweeping Holes

    Science.gov (United States)

    Thurman, Douglas; Poinsatte, Philip; Ameri, Ali; Culley, Dennis; Raghu, Surya; Shyam, Vikram

    2015-01-01

    Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing rations of 1.0, 1.5, 2.0, and 2.5 at a density ration of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.

  10. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  11. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  12. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  13. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  14. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  15. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  16. Sensitivity of gravitational wave searches to the full signal of intermediate-mass black hole binaries during the first observing run of Advanced LIGO

    Science.gov (United States)

    Calderón Bustillo, Juan; Salemi, Francesco; Dal Canton, Tito; Jani, Karan P.

    2018-01-01

    The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensitivity is then used to place upper limits on the coalescence rate of the target source. In order to obtain correct sensitivity and rate estimates, the injected waveforms must be faithful representations of the real signals. Up to date, however, injected waveforms have neglected radiation modes of order higher than the quadrupole, potentially biasing sensitivity and coalescence rate estimates. In particular, higher-order modes are known to have a large impact in the gravitational waves emitted by intermediate-mass black holes binaries. In this work, we evaluate the impact of this approximation in the context of two search algorithms run by the LIGO Scientific Collaboration in their search for intermediate-mass black hole binaries in the O1 LIGO Science Run data: a matched filter-based pipeline and a coherent unmodeled one. To this end, we estimate the sensitivity of both searches to simulated signals for nonspinning binaries including and omitting higher-order modes. We find that omission of higher-order modes leads to biases in the sensitivity estimates which depend on the masses of the binary, the search algorithm, and the required level of significance for detection. In addition, we compare the sensitivity of the two search algorithms across the studied parameter space. We conclude that the most recent LIGO-Virgo upper limits on the rate of coalescence of intermediate-mass black hole binaries are conservative for the case of highly asymmetric binaries. However, the tightest upper limits, placed for nearly equal-mass sources, remain unchanged due to the small contribution of higher modes to the corresponding sources.

  17. Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gußmann, Alexander, E-mail: alexander.gussmann@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany)

    2016-12-15

    We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.

  18. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  19. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  20. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  1. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  2. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  3. Antibiotic polymeric nanoparticles for biofilm-associated infection therapy.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2014-01-01

    Polymeric nanoparticles are highly attractive as drug delivery vehicles due to their high structural integrity, stability during storage, ease of preparation and functionalization, and controlled release capability. Similarly, lipid-polymer hybrid nanoparticles, which retain the benefits of polymeric nanoparticles plus the enhanced biocompatibility and prolonged circulation time owed to the lipids, have recently emerged as a superior alternative to polymeric nanoparticles. Drug nanoparticle complex prepared by electrostatic interaction of oppositely charged drug and polyelectrolytes represents another type of polymeric nanoparticle. This chapter details the preparation, characterization, and antibiofilm efficacy testing of antibiotic-loaded polymeric and hybrid nanoparticles and antibiotic nanoparticle complex.

  4. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  5. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  6. Measurement and Analysis of in vitro Actin Polymerization

    Science.gov (United States)

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  7. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  8. Stability of fault submitted to fluid injections

    Science.gov (United States)

    Brantut, N.; Passelegue, F. X.; Mitchell, T. M.

    2017-12-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). However, this theory is valid only when the entire fault is affected by fluid pressure, which is not the case in nature, and during human induced-seismicity. In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Wave velocity surveys across the fault highlighted that decreasing the injection-rate leads to an increase of size of the fluid pressure perturbation. Our result demonstrate that the stability of the fault is not only a function of the fluid pressure requires to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by local high fluid overpressures. These results could explain the "large" magnitude human-induced earthquakes

  9. Method for reducing heat loss during injection of hot water into an oil stratum

    Energy Technology Data Exchange (ETDEWEB)

    Evgenev, A E; Kalashnikov, V N; Raiskii, Yu D

    1968-07-01

    A method is described for reduction of heat loss during the injection of hot water into an oil stratum. During the transportation of the hot water to the face of the bore holes, it has high-molecular polymers added to it. The high-molecular polymer may be guanidine or polyoxyethylene in the quantity of 0.01 to 0.03% by wt.

  10. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  11. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  12. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  13. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  14. Influence of the thickness of electrochemically deposited polyaniline used as hole transporting layer on the behaviour of polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, J.L. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain)], E-mail: j.l.alonso@umh.es; Ferrer, J.C. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain); Cotarelo, M.A.; Montilla, F. [Dpto. de Quimica Fisica e Instituto Universitario de Materiales de Alicante, Apdo. de Correos 99, E-03080, Alicante (Spain); Fernandez de Avila, S. [Dpto. de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, Av. de la Universidad s/n, Ed. Torrepinet, 03202, Elche, Alicante (Spain)

    2009-02-27

    An experimental study about the influence of the thickness of electrochemically deposited polyaniline (PANI), used as hole-transporting layer, on the behaviour of polymer light emitting diodes is presented. Two sets of devices with a different conjugated polymer used as active layer were prepared. Poly(9-vinylcarbazole) was used for the first type of devices, whereas Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] was used for the second type. Each set consists of five polymeric diodes in which the hole-transporting layer has been varied. In one case of each set no layer was deposited, in other one a Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) layer was deposited, and in the rest of the diodes a different thickness of electrochemically deposited PANI was employed. The optic and electronic characterization of the devices show that controlling the thickness of the PANI hole transporting layer, both the maximum emission peak of the electroluminescence curves and the driving voltage could be tuned. Furthermore, an exponential behaviour has been demonstrated for the maximum intensity of the electroluminescence curves as a function of the applied excitation voltage between anode and cathode.

  15. Influence of the thickness of electrochemically deposited polyaniline used as hole transporting layer on the behaviour of polymer light-emitting diodes

    International Nuclear Information System (INIS)

    Alonso, J.L.; Ferrer, J.C.; Cotarelo, M.A.; Montilla, F.; Fernandez de Avila, S.

    2009-01-01

    An experimental study about the influence of the thickness of electrochemically deposited polyaniline (PANI), used as hole-transporting layer, on the behaviour of polymer light emitting diodes is presented. Two sets of devices with a different conjugated polymer used as active layer were prepared. Poly(9-vinylcarbazole) was used for the first type of devices, whereas Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] was used for the second type. Each set consists of five polymeric diodes in which the hole-transporting layer has been varied. In one case of each set no layer was deposited, in other one a Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) layer was deposited, and in the rest of the diodes a different thickness of electrochemically deposited PANI was employed. The optic and electronic characterization of the devices show that controlling the thickness of the PANI hole transporting layer, both the maximum emission peak of the electroluminescence curves and the driving voltage could be tuned. Furthermore, an exponential behaviour has been demonstrated for the maximum intensity of the electroluminescence curves as a function of the applied excitation voltage between anode and cathode

  16. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  17. Studies on Rate Enhancement of Polymerization in NMRP

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ying; XU Miao-qing; YAN Ming-fa; CHEN Yi-hong; CHU Jia-yan; ZHUANG Jia-ming; DAI Li-zong; ZOU You-si

    2005-01-01

    In NMRP, the polymerization of MMA, the polymerization of St and the copolymerization of MMA with St were distinctly accelerated by the addition of a small amount of MN. The polymerization proceeds in a living fashion as indicated by the increase in molecular weight with the increase of time and conversion and a relatively low polydispersity. It has been found that the addition of MN results in a nearly one hundred times higher rate of the polymerization of MMA, a nearly twenty times higher rate of the polymerization of St and a nearly fifteen times higher rate of the copolymerization of St and MMA.

  18. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  19. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  20. Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector

    International Nuclear Information System (INIS)

    Payri, Raúl; Salvador, F.J.; Manin, Julien; Viera, Alberto

    2016-01-01

    Highlights: • Lift-off length and ignition delay are measured through different methodologies. • Oxygen concentration, temperature and injection pressure sweeps are performed. • A multi hole injector is compared with an equivalent single hole injector. • Multi hole injector has shorter ignition delay and lift-off length than single hole. • Empirical correlations were calculated for an analytical description of the results. - Abstract: In this paper, lift-off length has been measured via both broadband luminosity and OH chemiluminescence. In addition, ignition delay has also been measured via broadband chemiluminescence and Schlieren imaging. A 3 orifice injector from the Engine Combustion Network (ECN) set, referred to as Spray B, and a single component fuel (n-dodecane) was used. Experiments were carried out in a constant flow and pressure facility, that allowed to reproduce engine-like thermodynamic conditions, and enabled the study to be performed over a wide range of test conditions with a very high repetition rate. Data obtained was also compared with results from a single orifice injector also from the Engine Combustion Network, with analog orifice characteristics (90 μm outlet diameter and convergent shape) and technology as the injector used. Results showed that there is good correlation between the ignition delay measured through both methodologies, that oxygen concentration and injection pressure plays a minor role in the ignition delay, being ambient temperature and density the parameters with the highest influence. Lift-off length measurements showed significant differences between methodologies. Minor deviation was observed between injectors with different nozzle geometry (seat inclination angle), due to temperature variations along the chamber, highlighting the importance of temperature distribution along combustion vessels. Empirical correlations for lift-off and ignition delay were calculated, underlining the effect of the conditions on

  1. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  2. Black hole multiplicity at particle colliders (Do black holes radiate mainly on the brane?)

    International Nuclear Information System (INIS)

    Cavaglia, Marco

    2003-01-01

    If gravity becomes strong at the TeV scale, we may have the chance to produce black holes at particle colliders. In this Letter we revisit some phenomenological signatures of black hole production in TeV-gravity theories. We show that the bulk-to-brane ratio of black hole energy loss during the Hawking evaporation phase depends crucially on the black hole greybody factors and on the particle degrees of freedom. Since the greybody factors have not yet been calculated in the literature, and the particle content at trans-Planckian energies is not known, it is premature to claim that the black hole emits mainly on the brane. We also revisit the decay time and the multiplicity of the decay products of black hole evaporation. We give general formulae for black hole decay time and multiplicity. We find that the number of particles produced during the evaporation phase may be significantly lower than the average multiplicity which has been used in the past literature

  3. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  4. Video studies of passage by Anopheles gambiae mosquitoes through holes in a simulated bed net: effects of hole size, hole orientation and net environment.

    Science.gov (United States)

    Sutcliffe, James; Colborn, Kathryn L

    2015-05-13

    Holes in netting provide potential routes for mosquitoes to enter ITNs. Despite this, there is little information on how mosquitoes respond to holes in bed nets and how their responses are affected by hole size, shape and orientation or by ambient conditions around the net. Female Anopheles gambiae (G3) were recorded in a simulated bed net consisting of two sizes of untreated netting-covered behavioural arenas placed above and beside (to simulate the bed net roof and sides respectively) the experimenter who was a source of host cues from 'inside' the net. A round hole of 9 mm or 13 mm diameter was cut into the centre of the netting of each arena. Videos of unfed female mosquitoes in arenas were analysed for time spent flying, walking and standing still and for exit through the hole. The effects of the experimenter on temperature and relative humidity around the simulated net were also measured. Mosquitoes were significantly more active in overhead arenas than in arenas to the side. Hole passage was significantly more likely in smaller arenas than larger ones and for larger holes than smaller ones. In arenas to the side, hole passage rate through small holes was about 50% less likely than what could be explained by area alone. Passage rate through holes in overhead arenas was consistent with hole area. Temperature in arenas did not strongly reflect the experimenter's presence in the simulated net. Relative humidity and absolute humidity in overhead arenas, but not in arenas to the side, were immediately affected by experimenter presence. Higher levels of activity in overhead arenas than in arenas to the side were likely due to the rising heat and humidity plume from the experimenter. Lower than expected passage rates through smaller vertically oriented holes may have been be due to an edge effect that does not apply to horizontally oriented holes. Results suggest that current methods of assessing the importance of physical damage to ITNs may not accurately reflect

  5. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    Science.gov (United States)

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  7. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    Science.gov (United States)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  8. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  9. Bubble-induced mixing of two horizontal liquid layers with non-uniform gas injection at the bottom

    International Nuclear Information System (INIS)

    Cheung, F.B.; Pedersen, D.R.; Leinweber, G.

    1986-01-01

    During a postulated severe core meltdown accident in an LMFBR, a large amount of sodium coolant may spill into the reactor concrete cavity. A layer of liquid products may form as a result of the sodium-concrete reactions. The liquid product layer, which is highly viscous and much heavier than sodium, separates the concrete from the sodium pool. In general, the downward transport of sodium through the liquid product layer to the unreacted concrete surface, which controls the rate of chemical erosion of the concrete, depends strongly on the agitation induced by gas evolution from the heated concrete. In this study, experiments were conducted to explore the effect of non-uniform gas injection on mixing of two horizontal mutually soluble liquid layers. The liquid in the lower layer was chosen to be more viscous and heavier than the liquid in the upper layer. To simulate the reactor accident situation, gas was injected at the bottom of the liquid-liquid system through a circular hole that covered only the center portion of the bottom surface of the lower liquid layer. The bubble-induced mixing motions were observed and the rate of mixing was measured for different hole sizes and various gas flow rates. The results of this study clearly show that the rate of gas injection is not the only parameter controlling the mixing of the liquid-liquid system. The effect of non-uniform gas injection is important at high gas flow rates. Within the present experimental conditions, the reduction in the overall mixing rate can be as large as a factor of three

  10. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  11. A new lithography of functional plasma polymerized thin films

    International Nuclear Information System (INIS)

    Kim, Sung-O

    2001-01-01

    The preparation of the resist for the vacuum lithography was carried out by plasma polymerization. The resist manufactured by plasma polymerization is a monomer produced by MMA (Methyl methacrylate). The functional groups of MMA appeared in the PPMMA (Plasma Polymerized Methyl methacrylate) as well, and this was confirmed through an analysis using FT-IR. The polymerization rate increased as a function of the plasma power and decreased as a function of the system pressure. The sensitivity and contrast of the plasma polymerized thin films were 15 μC/cm2 and 4.3 respectively. The size of the pattern manufactured by Vacuum Lithography using the plasma polymerized thin films was 100 nm

  12. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2012-12-27

    The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm2 V-1 s-1. By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  14. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  15. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  16. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  17. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    Science.gov (United States)

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  18. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  19. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  20. Study of modification of fibers from pineapple crown for the formation of polymeric composites;Estudo da modificacao da fibra proveniente da coroa de abacaxi para a formacao de compositos polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Juliana S.; Mulinari, Daniella R.; Cioffi, Maria Odila H.; Voorwald, Herman J.C., E-mail: mat07103@feg.unesp.b [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil)

    2009-07-01

    Study of modification of fibers from pineapple crown for the formation of polymeric composites An important aspect to make fiber and matrix work together in a given application is the interface between them. For an efficient adherence fiber/matrix an appropriate interfacial contact is required. For this purpose, it was made a modification in the fiber surface using sodium hydroxide solution. And the effect of fibers modification was analyzed by X-Ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicated that occurred an effective increase in the crystallinity of modified fibers compared to natural fibers and that was occurred the formation of pores or holes across the rough surface of the fiber showing that will can occur an increase in effective superficial area for contact with polymeric matrix. (author)

  1. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  2. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  3. Evidence for an RNA polymerization activity in axolotl and Xenopus egg extracts.

    Directory of Open Access Journals (Sweden)

    Hélène Pelczar

    2010-12-01

    Full Text Available We have previously reported a post-transcriptional RNA amplification observed in vivo following injection of in vitro synthesized transcripts into axolotl oocytes, unfertilized (UFE or fertilized eggs. To further characterize this phenomenon, low speed extracts (LSE from axolotl and Xenopus UFE were prepared and tested in an RNA polymerization assay. The major conclusions are: i the amphibian extracts catalyze the incorporation of radioactive ribonucleotide in RNase but not DNase sensitive products showing that these products correspond to RNA; ii the phenomenon is resistant to α-amanitin, an inhibitor of RNA polymerases II and III and to cordycepin (3'dAMP, but sensitive to cordycepin 5'-triphosphate, an RNA elongation inhibitor, which supports the existence of an RNA polymerase activity different from polymerases II and III; the detection of radiolabelled RNA comigrating at the same length as the exogenous transcript added to the extracts allowed us to show that iii the RNA polymerization is not a 3' end labelling and that iv the radiolabelled RNA is single rather than double stranded. In vitro cell-free systems derived from amphibian UFE therefore validate our previous in vivo results hypothesizing the existence of an evolutionary conserved enzymatic activity with the properties of an RNA dependent RNA polymerase (RdRp.

  4. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  5. Fabrication and imaging study of ultrasound/fluorescence bi-modal contrast agent based on polymeric microbubbles

    International Nuclear Information System (INIS)

    Xing Zhanwen; Ke Hengte; Wang Jinrui; Zhao Bo; Qu Enze; Yue Xiuli; Dai Zhifei

    2013-01-01

    Objective: To fabricate an ultrasound/fluorescence bi-modal contrast agent by encapsulating fluorescent quantum dots into polymeric ultrasound contrast agent microbubbles. Methods: Polylactic acid (PLA, 500 mg), (1R)-(+)-camphor (50 mg) and CdSe/ZnS quantum dots (0.5 ml, 2.3 μmol/L)were dissolved or dispersed in dichloromethane (10 ml) to form in an organic phase. Ammonium carbonate solution and poly (vinyl alcohol) solution were employed as the internal and external water phase, respectively. The fluorescent microbubbles were generated using double emulsion solvent evaporation and lyophilization methods. The morphology and illumination were characterized by scanning electron microscopy (SEM) and fluorescence spectrophotometry. Synchronized contrast-enhanced ultrasound and fluorescence imaging was acquired by injecting fluorescent microbubbles into the silicone tube coupled to a self-made ultrasound/fluorescence imaging device. Ultrasound/fluorescence bi-modal in vivo imaging was acquired on the kidney of New Zealand rabbits and suckling mice. Results: The fluorescent microbubbles were hollow spheres with an averaged diameter of (1.62 ± 1.47) μm. More than 99% of these microbubbles were less than 8 μm in diameter, which met the size criteria for ultrasound contrast agents. The fluorescence emission peak of the microbubbles appeared at 632 nm, indicating that good luminescence properties of quantum dots were maintained. In vitro ultrasound/fluorescence imaging showed no echoic signal when the silicone tube was filled with saline, but there was a strong echo when filled with fluorescent microbubbles. The liquid column with fluorescent microbubbles emitted red luminescence under ultraviolet irradiation. The kidney of the rabbit was remarkably enhanced after the administration of fluorescent microbubbles. Bright fluorescence could be observed at the injection site of the suckling mice via subcutaneous injection. Conclusions: A bi-modal but single contrast agent

  6. Efficient charge injection in p-type polymer field-effect transistors with low-cost molybdenum electrodes through V2O5 interlayer.

    Science.gov (United States)

    Baeg, Kang-Jun; Bae, Gwang-Tae; Noh, Yong-Young

    2013-06-26

    Here we report high-performance polymer OFETs with a low-cost Mo source/drain electrode by efficient charge injection through the formation of a thermally deposited V2O5 thin film interlayer. A thermally deposited V2O5 interlayer is formed between a regioregular poly(3-hexylthiophene) (rr-P3HT) or a p-type polymer semiconductor containing dodecyl-substituted thienylenevinylene (TV) and dodecylthiophene (PC12TV12T) and the Mo source/drain electrode. The P3HT or PC12TV12T OFETs with the bare Mo electrode exhibited lower charge carrier mobility than those with Au owing to a large barrier height for hole injection (0.5-1.0 eV). By forming the V2O5 layer, the P3HT or PC12TV12T OFETs with V2O5 on the Mo electrode exhibited charge carrier mobility comparable to that of a pristine Au electrode. Best P3HT or PC12TV12T OFETs with 5 nm thick V2O5 on Mo electrode show the charge carrier mobility of 0.12 and 0.38 cm(2)/(V s), respectively. Ultraviolet photoelectron spectroscopy results exhibited the work-function of the Mo electrode progressively changed from 4.3 to 4.9 eV with an increase in V2O5 thickness from 0 to 5 nm, respectively. Interestingly, the V2O5-deposited Mo exhibits comparable Rc to Au, which mainly results from the decreased barrier height for hole carrier injection from the low-cost metal electrode to the frontier molecular orbital of the p-type polymer semiconductor after the incorporation of the transition metal oxide hole injection layer, such as V2O5. This enables the development of large-area, low-cost electronics with the Mo electrodes and V2O5 interlayer.

  7. Effect of CoFe magnetic nanoparticles on the hole transport in poly(2-methoxy, 5-(2-ethylhexiloxy) 1,4-phenylenevinylene)

    International Nuclear Information System (INIS)

    Kumar, Pankaj; Kumar, Hemant; Chand, Suresh; Jain, S C; Kumar, Vikram; Kumar, Vinod; Pant, R P; Tandon, R P

    2008-01-01

    The effect of doping of CoFe magnetic nanoparticles (MNPs) on the hole transport in poly(2-methoxy,5-(2-ethylhexyloxy)-1,4-phenylenevinylene)(MEH-PPV) thin films has been investigated in the temperature range 280-120 K. Hole transport in MEH-PPV is found to be governed by space-charge-limited-conduction (SCLC) with exponential distribution of traps in energy space. Doping of CoFe MNPs in MEH-PPV reduces the hole mobility from 1 x 10 -5 to 6 x 10 -6 cm 2 V -1 s -1 by introducing new trap sites causing their net density increase from 1 x 10 18 to 2.1 x 10 18 cm -3 , which is likely to result in balanced injection and efficient recombination of charge carriers to improve the performance of polymer light emitting diodes

  8. 30 CFR 57.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 57.7055 Section 57.7055... Jet Piercing Drilling-Surface and Underground § 57.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives, blasting agents...

  9. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  10. Laser-Based Spatio-Temporal Characterisation of Port Fuel Injection (PFI Sprays

    Directory of Open Access Journals (Sweden)

    C. T. N. Anand

    2010-06-01

    Full Text Available In the present work, detailed laser-based diagnostic experiments were conducted to characterise the spray from low pressure 2-hole and 4-hole Port Fuel Injection (PFI injectors. The main objective of the work included obtaining quantitative information of the spatio-temporal spray structure of such low-pressure gasoline sprays. A novel approach involving a combination of techniques such as Mie scattering, Granulometry, and Laser Sheet Dropsizing (LSD was used to study the spray structure. The droplet sizes, distributions with time, Sauter Mean Diameters (SMD, droplet velocities, cone angles and spray tip penetrations of the sprays from the injectors were determined. The spray from these injectors is found to be ‘pencil like’ and not dispersed as in high pressure sprays. The application of the above mentioned techniques provides two-dimensional SMD contours of the entire spray at different instants of time, with reasonable accuracy.

  11. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization

    NARCIS (Netherlands)

    Peeters, J.W.; Palmans, A.R.A.; Veld, M.A.J.; Scheijen, F.J.E.; Heise, A.; Meijer, E.W.

    2004-01-01

    The enantioselective polymerization of methyl-substituted -caprolactones using Novozym 435 as the catalyst was investigated. All substituted monomers could be polymerized except 6-methyl--caprolactone (6-MeCL), which failed to propagate after ring opening. Interestingly, an odd-even effect in the

  12. FtsZ Polymerization Assays : Simple Protocols and Considerations

    NARCIS (Netherlands)

    Król, Ewa; Scheffers, Dirk-Jan

    2013-01-01

    During bacterial cell division, the essential protein FtsZ assembles in the middle of the cell to form the so-called Z-ring. FtsZ polymerizes into long filaments in the presence of GTP in vitro, and polymerization is regulated by several accessory proteins. FtsZ polymerization has been extensively

  13. 30 CFR 56.7055 - Intersecting holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Intersecting holes. 56.7055 Section 56.7055... Piercing Drilling § 56.7055 Intersecting holes. Holes shall not be drilled where there is a danger of intersecting a misfired hole or a hole containing explosives blasting agents, or detonators. [56 FR 46508, Sept...

  14. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  15. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  16. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  17. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  18. Drilling miniature holes, Part III

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, L.K.

    1978-07-01

    Miniature components for precision electromechanical mechanisms such as switches, timers, and actuators typically require a number of small holes. Because of the precision required, the workpiece materials, and the geometry of the parts, most of these holes must be produced by conventional drilling techniques. The use of such techniques is tedious and often requires considerable trial and error to prevent drill breakage, minimize hole mislocation and variations in hole diameter. This study of eight commercial drill designs revealed that printed circuit board drills produced better locational and size repeatability than did other drills when centerdrilling was not used. Boring holes 1 mm in dia, or less, as a general rule did not improve hole location in brass or stainless steel. Hole locations of patterns of 0.66-mm holes can be maintained within 25.4-..mu..m diametral positional tolerance if setup misalignments can be eliminated. Size tolerances of +- 3.8 ..mu..m can be maintained under some conditions when drilling flat plates. While these levels of precision are possible with existing off-the-shelf drills, they may not be practical in many cases.

  19. Fabrication, Physicochemical Characterization, and Performance Evaluation of Biodegradable Polymeric Microneedle Patch System for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics.

    Science.gov (United States)

    Shah, Viral; Choudhury, Bijaya Krushna

    2017-11-01

    A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.

  20. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  1. Super-horizon primordial black holes

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Carr, B.J.

    2005-01-01

    We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems

  2. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  3. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  4. Radiation sterilization of polymeric implant materials

    International Nuclear Information System (INIS)

    Bruck, S.D.; Mueller, E.P.

    1988-01-01

    High-energy irradiation sterilization of medical devices and implants composed of polymeric biomaterials that are in contact with tissue and/or blood, may adversely affect their long-term mechanical and/or biological performance (tissue and/or blood compatibility). Since many polymeric implants may contain trace quantities of catalysts and/or other additives, the effect of high-energy radiation on these additives, and possible synergistic effects with the polymer chains under the influence of high-energy radiation, must be considered. It is essential to indicate whether polymeric implants are used in short-term (acute) or long-term (chronic) applications. Relatively small changes in their physicochemical, mechanical, and biological properties may be tolerable in the short term, whereas similar changes may lead to catastrophic failures in long-term applications. Therefore, polymeric implants which are to be sterilized by high-energy irradiation should be carefully evaluated for long-term property changes which may be induced by the radiation

  5. Green's tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films

    International Nuclear Information System (INIS)

    Alegret, Joan; Kaell, Mikael; Johansson, Peter

    2008-01-01

    We present numerical calculations of the plasmon properties of single-hole and hole-pair structures in optically thin gold films obtained with the Green's tensor formalism for stratified media. The method can be used to obtain the optical properties of a given hole system, without problems associated with the truncation of the infinite metal film. The calculations are compared with previously published experimental data and an excellent agreement is found. In particular, the calculations are shown to reproduce the evolution of the hole plasmon resonance spectrum as a function of hole diameter, film thickness and hole separation.

  6. Curvature invariant characterization of event horizons of four-dimensional black holes conformal to stationary black holes

    Science.gov (United States)

    McNutt, David D.

    2017-11-01

    We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.

  7. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  8. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    Milani, Marceo A.; Galland, Giselda B.; Quijada, Raul

    2011-01-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind) 2 ZrCl 2 or rac-Me 2 Si(Ind) 2 ZrCl 2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  9. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  10. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  11. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    Science.gov (United States)

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  12. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  13. Is there life inside black holes?

    International Nuclear Information System (INIS)

    Dokuchaev, V I

    2011-01-01

    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third-kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts. (paper)

  14. Constraining Primordial Black Holes with the EDGES 21-cm Absorption Signal arXiv

    CERN Document Server

    Hektor, Andi; Marzola, Luca; Raidal, Martti; Vaskonen, Ville; Veermäe, Hardi

    The EDGES experiment has recently measured an anomalous global 21-cm spectrum due to hydrogen absorptions at redshifts of about $z\\sim 17$. Model independently, the unusually low temperature of baryons probed by this observable sets strong constraints on any physical process that transfers energy into the baryonic environment at such redshifts. Here we make use of the 21-cm spectrum to derive bounds on the energy injection due to a possible population of ${\\cal O}(1-100) M_\\odot$ primordial black holes, which induce a wide spectrum of radiation during the accretion of the surrounding gas. After calculating the total radiative intensity of a primordial black hole population, we estimate the amount of heat and ionisations produced in the baryonic gas and compute the resulting thermal history of the Universe with a modified version of RECFAST code. Finally, by imposing that the temperature of the gas at $z\\sim 17$ does not exceed the indications of EDGES, we constrain the possible abundance of primordial black h...

  15. Polymeric micelles as a drug carrier for tumor targeting

    Directory of Open Access Journals (Sweden)

    Neha M Dand

    2013-01-01

    Full Text Available Polymeric micelle can be targeted to tumor site by passive and active mechanism. Some inherent properties of polymeric micelle such as size in nanorange, stability in plasma, longevity in vivo, and pathological characteristics of tumor make polymeric micelles to be targeted at the tumor site by passive mechanism called enhanced permeability and retention effect. Polymeric micelle formed from the amphiphilic block copolymer is suitable for encapsulation of poorly water soluble, hydrophobic anticancer drugs. Other characteristics of polymeric micelles such as separated functionality at the outer shell are useful for targeting the anticancer drug to tumor by active mechanisms. Polymeric micelles can be conjugated with many ligands such as antibodies fragments, epidermal growth factors, α2 -glycoprotein, transferrine, and folate to target micelles to cancer cells. Application of heat and ultrasound are the alternative methods to enhance drug accumulation in tumoral cells. Targeting using micelles can also be done to tumor angiogenesis which is the potentially promising target for anticancer drugs. This review summarizes about recently available information regarding targeting the anticancer drug to the tumor site using polymeric micelles.

  16. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  17. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  18. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  19. Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    . In the reported work, process simulations using Autodesk Moldflow Insight 2015® are applied to a micro mechanical part to be fabricated by micro injection molding and with over-all dimensions of 12.0 × 3.0 × 0.8 mm³ and micro features (micro hole, diameter of 580 μm, and sharp radii down to 100 μm). Three...

  20. PIMS (Positioning In Macular hole Surgery) trial - a multicentre interventional comparative randomised controlled clinical trial comparing face-down positioning, with an inactive face-forward position on the outcome of surgery for large macular holes: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Pasu, Saruban; Bunce, Catey; Hooper, Richard; Thomson, Ann; Bainbridge, James

    2015-11-17

    Idiopathic macular holes are an important cause of blindness. They have an annual incidence of 8 per 100,000 individuals, and prevalence of 0.2 to 3.3 per 1000 individuals with visual impairment. The condition occurs more frequently in adults aged 75 years or older. Macular holes can be repaired by surgery in which the causative tractional forces in the eye are released and a temporary bubble of gas is injected. To promote successful hole closure individuals may be advised to maintain a face-down position for up to 10 days following surgery. The aim of this study is to determine whether advice to position face-down improves the surgical success rate of closure of large (>400 μm) macular holes, and thereby reduces the need for further surgery. This will be a multicentre interventional, comparative randomised controlled clinical trial comparing face-down positioning with face-forward positioning. At the conclusion of standardised surgery across all sites, participants still eligible for inclusion will be allocated randomly 1:1 to 1 of the 2 treatment arms stratified by site, using random permuted blocks of size 4 or 6 in equal proportions. We will recruit 192 participants having surgery for large macular holes (>400 μm); 96 in each of the 2 arms of the study. The primary objective is to determine the impact of face-down positioning on the likelihood of closure of large (≥400 μm) full-thickness macular holes following surgery. This will be the first multicentre randomised control trial to investigate the value of face-down positioning following macular hole standardised surgery. UK CRN: 17966 (date of registration 26 November 2014).

  1. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  2. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  3. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  4. A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole

    Science.gov (United States)

    Li, Guozhan; Yu, Jianyang; Liu, Huaping; Chen, Fu; Song, Yanping

    2017-08-01

    This paper reports the large eddy simulations of the effects of a saw-tooth plasma actuator and the laidback fan-shaped hole on the film cooling flow characteristics, and the numerical results are compared with a corresponding standard configuration (cylindrical hole without the saw-tooth plasma actuator). For this numerical research, the saw-tooth plasma actuator is installed just downstream of the cooling hole and a phenomenological plasma model is employed to provide the 3D plasma force vectors. The results show that thanks to the downward force and the momentum injection effect of the saw-tooth plasma actuator, the cold jet comes closer to the wall surface and extends further downstream. The saw-tooth plasma actuator also induces a new pair of vortex which weakens the strength of the counter-rotating vortex pair (CRVP) and entrains the coolant towards the wall, and thus the diffusion of the cold jet in the crossflow is suppressed. Furthermore, the laidback fan-shaped hole reduces the vertical jet velocity causing the disappearance of downstream spiral separation node vortices, this compensates for the deficiency of the saw-tooth plasma actuator. Both effects of the laidback fan-shaped hole and the saw-tooth plasma actuator effectively control the development of the CRVP whose size and strength are smaller than those of the anti-counter rotating vortex pair in the far field, thus the centerline and the spanwise-averaged film cooling efficiency are enhanced. The average film cooling efficiency is the biggest in the Fan-Dc = 1 case, which is 80% bigger than that in the Fan-Dc = 0 case and 288% bigger than that in the Cyl-Dc = 0 case.

  5. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    International Nuclear Information System (INIS)

    1993-07-01

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state's regulations and Federal regulations, and any closure guidelines for Class IV and V wells

  6. Histopathological, Histomorphometrical, and Radiographical Evaluation of Injectable Glass-Ceramic-Chitosan Nanocomposite in Bone Reconstruction of Rat

    Directory of Open Access Journals (Sweden)

    Maryam Seyedmajidi

    2015-01-01

    Full Text Available Background. Bone defects following tumor resection and osteolysis due to bone lesions, periodontal tissue disorders, and bone reconstruction are challenges that surgeons face. Gass-ceramic-chitosan nanocomposite contains chitosan, a derivative of crustaceans’ exoskeleton. Methods. Thirty-two 6–8-week-old male Wistar rats were chosen. One hole on each right and left tibia was made. The right tibia holes were filled with injectable glass-ceramic-chitosan nanocomposite, and the left tibia holes were left empty. After 7, 14, 28, and 60 days, histopathological, histomorphometrical, and radiographical assessments were performed. Results. Radiographic density on days 7 and 14 was significantly higher in the right tibias than in the left tibias. Trabecular bone thickness, which was higher in the right tibias, increased from day 7 to day 60 in both right and left tibias, although not significantly. Conclusions. Glass-ceramic-chitosan nanocomposite is suggested for use in bone repair in cases of bone loss. More histopathological, histomorphometrical, and radiographical assessments are also recommended.

  7. Radiation-induced in-source polymerization of acrylonitrile in urea canal complex

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Abe, Toshihiko; Kobayashi, Yasushi.

    1975-01-01

    Effect of reaction conditions on the radiation-induced in-source polymerization of acrylonitrile in urea canal complex and the properties of obtained polyacrylonitriles were investigated. The results were discussed in comparison with previously reported of the post-polymerization experiments. 1) Rate of polymerization and viscosity (eta sub(sp)/C) were the highest when the molar ratio of acrylonitrile to urea in canal complex was unity. Similar results were also obtained in the post-polymerization. However, eta sub(sp)/C exhibited different behavior on polymerization time in comparison with post-polymerization. 2) The initial rate (Rsub(p)) of polymerization is proportional to the dose rate (I) at low dose rate, but at high dose rates (above 2x10 5 r/hr) makes Rsub(p) proportional to Isup(0.5). 3) Molecular weight distribution become broader with increasing polymerization time and is broad as compared with those obtained by the post-polymerization. G-value of initiation of polymerization decreased with increasing polymerization time. These value was larger than the that obtained in the post-polymerization. 4) The stereoregularity of the polyacrylonitriles was independent of the molar ratio of acrylonitrile to urea in the canal complex and conversion. 5) The appearance of the polyacrylonitriles observed by the scanning electron microscope changed from curled string to extended one as the polymerization proceed. 6) Infrared spectrum revealed the ketenimine and cyclization structure in the polyacrylonitriles obtained below -100 0 C. The content of these abnormal structures increased with increasing conversion. (auth.)

  8. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  9. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  10. Research and development of basic technologies for next generation industries, 'high crystalline polymeric material'. Evaluation on second term research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo (dainiki kenkyu kaihatsu kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This research and development is intended to establish a basic technology related to high crystalline polymeric material that has dynamic properties comparable to metallic materials by single polymeric material as a structural material. Thick and large high-elasticity molded forms were obtained by searching poly-arylate material, and by developing such processing technologies as high-pressure injection molding, composite injection molding, and elongation fluidity molding. High-elasticity molded forms with uniform internal orientation were obtained by heating and molding liquid crystal polymers under high magnetic field. Solution molding was performed on a molecular composite consisting of rigid chains and soft chains, which was laminated and bonded to have obtained an isotropic form with as high elasticity as 54 GPa. In addition, high pressure powder formation of cross-linked polymers of di-acetylene system provided an isotropic form with sound wave elasticity of 23 GPa.

  11. Axion-dilation black holes

    International Nuclear Information System (INIS)

    Kallosh, R.

    1993-01-01

    In this talk some essential features of stringy black holes are described. The author considers charged U(1) and U(1) x U(1) four-dimensional axion-dilaton black holes. The Hawking temperature and the entropy of all solutions are shown to be simple functions of the squares of supercharges, defining the positivity bounds. Spherically symmetric and multi black hole solutions are presented. The extreme solutions with zero entropy (holons) represent a ground state of the theory and are characterized by elementary dilaton, axion, electric, and magnetic charges. The attractive gravitational and axion-dilaton force is balanced by the repulsive electromagnetic force. The author discusses the possibility of splitting of nearly extreme black holes. 11 refs

  12. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    NARCIS (Netherlands)

    Nelemans, G.A.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the

  13. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  14. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  15. Black holes and the multiverse

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse

  16. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  17. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  18. Studies on the polymerization of acrolein oxime, 6

    International Nuclear Information System (INIS)

    Masuda, Seizo; Tamai, Harumi; Ota, Tadatoshi; Torii, Munetomo; Tanaka, Masami.

    1979-01-01

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -23 0 C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -5 0 C. The reaction rate is proportional to the square root of dose rate at room temperature and -23 0 C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  19. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  20. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Laura Pastor

    2006-01-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to

  1. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  2. Vinyl acetate polymerization by ionizing radiation

    International Nuclear Information System (INIS)

    Mesquita, Andrea Cercan

    2002-01-01

    The aim of this work is the synthesis and characterization of the poly(vinyl acetate) using the ionizing radiation. Six polymerizations of vinyl acetate were carried out using three techniques of polymerization: in bulk, emulsion and solution. In the technique of solution polymerization were used two solvents, the alcohol ethyl and the methylethylketone, in two proportions 1:0.5 and 1:1 related to the monomer. The solutions were irradiated with gamma rays from a 60 Co source, with dose rate between 5.25 kGy/h and 6.26 kGy/h. The polymers obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR). The glass transition temperature (Tg) was investigated by Differential Scanning Calorimeter (DSC). The molecular weight was analyzed by the technique of Gel Permeation Chromatography (GPC). Tests of density, hardness and Vicat softening temperature were carried out. The infrared spectroscopy and others results confirmed that the polymers obtained by polymerization of vinyl acetate in bulk, emulsion and solution, using ionizing radiation, really correspond at poly(vinyl acetate). (author)

  3. Unmodeled search for black hole binary systems in the NINJA project

    International Nuclear Information System (INIS)

    Cadonati, Laura; Fischetti, Sebastian; Mohapatra, Satyanarayan R P; Chatterji, Shourov; Guidi, Gianluca; Sturani, Riccardo; Vicere, Andrea

    2009-01-01

    The gravitational-wave signature from binary black hole coalescences is an important target for ground-based interferometric detectors such as LIGO and Virgo. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and Virgo. We analyzed the NINJA simulated data set with the Q-pipeline algorithm, designed for the all-sky detection of gravitational-wave bursts with minimal assumptions on the shape of the waveform. The algorithm filters the data with a bank of sine-Gaussians, sinusoids with Gaussian envelope, to identify significant excess power in the time-frequency domain. We compared the performance of this burst search algorithm with lalapps r ing, which match-filters data with a bank of ring-down templates to specifically target the final stage of a coalescence of black holes. A comparison of the output of the two algorithms on NINJA data in a single detector analysis yielded qualitatively consistent results; however, due to the low simulation statistics in the first NINJA project, it is premature to draw quantitative conclusions at this stage, and further studies with higher statistics and real detector noise will be needed.

  4. Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars

    Science.gov (United States)

    Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.

    2013-12-01

    Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence

  5. Influence of injection pressures till to 1,000 bar on the carburetion in a spark ignition engine with direct injection; Einfluss von Einspritzdruecken bis 1000 bar auf die Gemischbildung in einem Ottomotor mit Direkteinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Buri, Stefan; Schumann, Florian; Kubach, Heiko; Spicher, Ulrich [Karlsruher Institut fuer Technologie (KIT) (DE). Inst. fuer Kolbenmaschinen (IFKM); Kneifel, Alexander [MTU Friedrichshafen GmbH (Germany)

    2011-07-01

    This paper presents the results of optical investigations of the impact of injection pressures of up to 1000 bar on mixture formation in a spray-guided direct injection engine. The maximum load in stratified operation of an engine with such a spray-guided combustion system is limited by the achievable quality of the mixture. In particular, when using multi hole injectors, the limit of stratified operation is reached rather early, due to comparatively low flow rates and thus insufficient stratification. One measure to increase the flow rate is to increase the injection pressure. The goal of this measure is to generate a more compact stratification, leading to combustion at richer air fuel ratios. This enables reductions of burning duration, hydrocarbon- and particulate emissions. The fundamental impact of increasing the injection pressure from 200 up to 1000 bar on mixture formation was investigated by using LIF- and Mie-scattering in a pressure chamber. Following that, the mixture formation was investigated under real conditions in a single cylinder engine by visualizing the injection process using Mie-scattering. Finally the results of engine operation are compared with those from the pressure chamber. (orig.)

  6. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  7. When Supermassive Black Holes Wander

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  8. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  9. Stationary black holes: large D analysis

    International Nuclear Information System (INIS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-01-01

    We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1/D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.

  10. Drilling history core hole DC-8

    International Nuclear Information System (INIS)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored

  11. Drilling history core hole DC-8

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    Core hole DC-8 was completed in August, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-8. Core hole DC-8 is located on the Hanford Site near the Wye Barricade and 50 feet northwest of rotary hole DC-7. The Hanford Site vation coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 coordinates for DC-8 are North 14,955.94 feet and West 14,861.92 mean sea level. The purpose of core hole DC-8 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing and cross-hole seismic shear and pressure wave velocity studies with rotary hole DC-7. The total depth of core hole DC-8 was 4100.5 feet. Core recovery exceeded 97 percent of the total footage cored.

  12. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  13. The 2002 Antarctic Ozone Hole

    Science.gov (United States)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  14. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  15. Black holes a very short introduction

    CERN Document Server

    Blundell, Katherine

    2015-01-01

    Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.

  16. "Iron-Clad" Evidence For Spinning Black Hole

    Science.gov (United States)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  17. Self-catalyzed photo-initiated RAFT polymerization for fabrication of fluorescent polymeric nanoparticles with aggregation-induced emission feature.

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Jiang, Ruming; Huang, Qiang; Huang, Long; Wan, Qing; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-02-01

    In recent years, the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) feature have been extensively exploited in various biomedical fields owing to their advantages, such as low toxicity, biodegradation, excellent biocompatibility, good designability and optical properties. Therefore, development of a facile, efficient and well designable strategy should be of great importance for the biomedical applications of these AIE-active FPNs. In this work, a novel method for the fabrication of AIE-active FPNs has been developed through the self-catalyzed photo-initiated reversible addition fragmentation chain transfer (RAFT) polymerization using an AIE dye containing chain transfer agent (CTA), which could initiate the RAFT polymerization under light irradiation. The results suggested that the final AIE-active FPNs (named as TPE-poly(St-PEGMA)) showed great potential for biomedical applications owing to their optical and biological properties. More importantly, the method described in the work is rather simple and effective and can be further extended to prepare many other different AIE-active FPNs owing to the good monomer adoptability of RAFT polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Epiretinal proliferation in lamellar macular holes and full-thickness macular holes: clinical and surgical findings.

    Science.gov (United States)

    Lai, Tso-Ting; Chen, San-Ni; Yang, Chung-May

    2016-04-01

    To report the clinical findings and surgical outcomes of lamellar macular holes (LMH) with or without lamellar hole-associated epiretinal proliferation (LHEP), and those of full-thickness macular holes (FTMH) presenting with LHEP. From 2009 to 2013, consecutive cases of surgically treated LMH, and all FTMH cases with LHEP were reviewed, given a follow-up time over 1 year. In the LMH group (43 cases), those with LHEP (19 cases) had significantly thinner bases and larger openings than those without (24 cases). The rate of disrupted IS/OS line was higher in the LHEP subgroup preoperatively (68.4 % vs 37.5 %), but similar between subgroups postoperatively (36.8 % and 33.3 %). The preoperative and postoperative visual acuity showed no significant difference between two subgroups. In the FTMH group (13 cases), the average hole size was 219.2 ± 92.1 μm. Permanent or transient spontaneous hole closure was noted in 69.2 % of cases. An intact IS-OS line was found in only 23 % of cases at the final follow-up. In the LMH group, LHEP was associated with a more severe defect but didn't affect surgical outcomes. In the FTMH group, spontaneous hole closure was frequently noted. Despite small holes, disruption of IS-OS line was common after hole closure.

  19. A Computer Program for Flow-Log Analysis of Single Holes (FLASH)

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Paillet, Frederick L.; Halford, K.J.

    2011-01-01

    A new computer program, FLASH (Flow-Log Analysis of Single Holes), is presented for the analysis of borehole vertical flow logs. The code is based on an analytical solution for steady-state multilayer radial flow to a borehole. The code includes options for (1) discrete fractures and (2) multilayer aquifers. Given vertical flow profiles collected under both ambient and stressed (pumping or injection) conditions, the user can estimate fracture (or layer) transmissivities and far-field hydraulic heads. FLASH is coded in Microsoft Excel with Visual Basic for Applications routines. The code supports manual and automated model calibration. ?? 2011, The Author(s). Ground Water ?? 2011, National Ground Water Association.

  20. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  1. A comparison of three dimensional change in maxillary complete dentures between conventional heat polymerizing and microwave polymerizing techniques

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2007-03-01

    Full Text Available The purpose of this study was to measure and compare two different polymerizing processes, heat polymerizing (HP and microwave polymerizing (MP, on the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures. A threedimensional coordinate measurement system was used to record distortion of the specimens. The distortion of the fitting surface was measured from the reference plane on the fitting side from which a coordinate system was set, and the movement of the artificial teeth and the distortion of the polished surface was measured from the reference plane of the artificial tooth side, from which a coordinate system was set. It was clearly showed that various distortions of denture specimens after polymerization process can be measured with this three-coordinate measuring machine. The study showed that the overall distortion of the fitting surface in HP specimens was shown to be larger than in MP ones.

  2. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  3. Stability of squashed Kaluza-Klein black holes

    International Nuclear Information System (INIS)

    Kimura, Masashi; Ishihara, Hideki; Murata, Keiju; Soda, Jiro

    2008-01-01

    The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like a five-dimensional black hole in the vicinity of horizon and looks like a four-dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, SU(2)xU(1)≅U(2), we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.

  4. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  5. Factors affecting toxicity and efficacy of polymeric nanomedicines

    International Nuclear Information System (INIS)

    Igarashi, Eiki

    2008-01-01

    Nanomedicine is the application of nanotechnology to medicine. The purpose of this article is to review common characteristics of polymeric nanomedicines with respect to passive targeting. We consider several biodegradable polymeric nanomedicines that are between 1 and 100 nm in size, and discuss the impact of this technology on efficacy, pharmacokinetics, toxicity and targeting. The degree of toxicity of polymeric nanomedicines is strongly influenced by the biological conditions of the local environment, which influence the rate of degradation or release of polymeric nanomedicines. The dissemination of polymeric nanomedicines in vivo depends on the capillary network, which can provide differential access to normal and tumor cells. The accumulation of nanomedicines in the microlymphatics depends upon retention time in the blood and extracellular compartments, as well as the type of capillary endothelium surrounding specific tissues. Finally, the toxicity or efficacy of intact nanomedicines is also dependent upon tissue type, i.e., non-endocrine or endocrine tissue, spleen, or lymphatics, as well as tumor type

  6. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany)

    2016-06-27

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  7. Black-hole bomb and superradiant instabilities

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun

    2004-01-01

    A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable

  8. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  9. 30 CFR 57.9360 - Shelter holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Shelter holes. 57.9360 Section 57.9360 Mineral....9360 Shelter holes. (a) Shelter holes shall be— (1) Provided at intervals adequate to assure the safety... farthest projection of moving equipment. (b) Shelter holes shall not be used for storage unless a 40-inch...

  10. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  11. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  12. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    Science.gov (United States)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  13. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  14. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  15. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  16. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  17. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  18. 30 CFR 77.1010 - Collaring holes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Collaring holes. 77.1010 Section 77.1010... Control § 77.1010 Collaring holes. (a) Starter steels shall be used when collaring holes with hand-held drills. (b) Men shall not hold the drill steel while collaring holes, or rest their hands on the chuck or...

  19. Statistical clustering of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, B J [Cambridge Univ. (UK). Inst. of Astronomy

    1977-04-01

    It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10/sup 5/ M(sun). If the mass spectrum of primordial black holes falls off more slowly than m/sup -3/ (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10/sup -4/ s or if something prevented black hole formation before 1 s.

  20. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    OpenAIRE

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abernathy, M. R.; Adhikari, Rana X.; Anderson, R.; Anderson, S. B.; Arai, K.; Araya, M. C.; Austin, L.; Barayoga, J. C.; Barish, B. C.; Billingsley, G.; Black, E.; Blackburn, J. K.

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...

  1. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  2. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  3. High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 um Tunnel Injection Laser

    KAUST Repository

    Bhowmick, Sishir; Baten, Md Zunaid; Bhattacharya, Pallab K.; Frost, Thomas; Ooi, Boon S.

    2014-01-01

    The characteristics of 1.55 ? InAs self-organized quantum-dot lasers, grown on (001) InP substrates by molecular beam epitaxy, have been investigated. Modulation doping of the dots with holes and tunnel injection of electrons have been incorporated

  4. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  5. Black hole final state conspiracies

    International Nuclear Information System (INIS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of 'conspiracies' between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required 'conspiracies' if real black holes are described by some kind of sum over all AdS black holes having the same entropy

  6. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  7. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  8. Biomaterials Used in Injectable Implants (Liquid Embolics) for Percutaneous Filling of Vascular Spaces

    International Nuclear Information System (INIS)

    Jordan, Olivier; Doelker, Eric; Ruefenacht, Daniel A.

    2005-01-01

    The biomaterials currently used in injectable implants (liquid embolics) for minimally invasive image-guided treatment of vascular lesions undergo, once injected in situ, a phase transition based on a variety of physicochemical principles. The mechanisms leading to the formation of a solid implant include polymerization, precipitation and cross-linking through ionic or thermal process. The biomaterial characteristics have to meet the requirements of a variety of treatment conditions. The viscosity of the liquid is adapted to the access instrument, which can range from 0.2 mm to 3 mm in diameter and from a few centimeters up to 200 cm in length. Once such liquid embolics reach the vascular space, they are designed to become occlusive by inducing thrombosis or directly blocking the lesion when hardening of the embolics occurs. The safe delivery of such implants critically depends on their visibility and their hardening mechanism. Once delivered, the safety and effectiveness issues are related to implant functions such as biocompatibility, biodegradability or biomechanical properties. We review here the available and the experimental products with respect to the nature of the polymer, the mechanism of gel cast formation and the key characteristics that govern the choice of effective injectable implants

  9. Black hole shadow in an asymptotically flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes

    Science.gov (United States)

    Tsukamoto, Naoki

    2018-03-01

    The shadow of a black hole can be one of the strong observational evidences for stationary black holes. If we see shadows at the center of galaxies, we would say whether the observed compact objects are black holes. In this paper, we consider a formula for the contour of a shadow in an asymptotically-flat, stationary, and axisymmetric black hole spacetime. We show that the formula is useful for obtaining the contour of the shadow of several black holes such as the Kerr-Newman black hole and rotating regular black holes. Using the formula, we can obtain new examples of the contour of the shadow of rotating black holes if assumptions are satisfied.

  10. K-shell-hole production, multiple-hole production, charge transfer, and antisymmetry

    International Nuclear Information System (INIS)

    Reading, J.F.; Ford, A.L.

    1980-01-01

    In calculating K-shell-hole production when an ion collides with an atom, account must be taken of the fact that processes involving electrons other than the K-shell electron can occur. For example, after making a K-shell hole an L-shell electron may be knocked into it, or an L-shell vacancy may be produced and the K-shell electron promoted to that vacancy in the ''Fermi sea'' of the target-atom orbitals. In 1973 a theorem was proved by one of the present authors demonstrating that all these multielectron processes cancel in an independent-particle model for the target atom. In this paper it is shown that the same thing occurs for hole production by charge transfer to the ion. The authors demonstrate that multihole production does not obey this simple rule and that the probability for multihole production is not the product of independent single-electron probabilities. The correct expressions that should be used for these processes are given, together with new results for charge-transfer processes accompanied by hole production

  11. Drilling history core hole DC-4

    International Nuclear Information System (INIS)

    1978-12-01

    Core hole DC-4 was completed at a depth of 3998 feet in December, 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scission, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Sicsson, Inc. furnished the engineering, daily supervision of the cable tool and core drilling activities, and geological core logging for DC-4. Core hole DC-4 is located on the Hanford Site about 3 miles east of the Yakima Barricade and approximately 103 feet southwest of rotary hole DC-5, which was completed to 3990 feet in February, 1978. Hanford Site coordinates reported for hole DC-4 are north 49,385.62 feet and west 85,207.63 feet, and Washington State coordinates are north 454,468.73 feet and east 2,209,990.87 feet. No elevation survey is available for hole DC-4, but it is approximately 745 feet above mean sea level based upon the survey of hole DC-5, which has a reported elevation of 745.16 feet on the top of the 3-inch flange. The purpose of core hole DC-4 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection, and to provide a borehole for hydrologic testing, cross-hole seismic shear, and pressure wave velocity studies with rotary hole DC-5. Hole DC-4 was drilled through the overburden into basalt bedrock by cable tool methods (0-623 feet) and continuously cored through the final interval (623 to 3998 feet).Core recovery was 95.8 percent of the total footage cored

  12. Optical Fiber Sensors Based on Polymeric Sensitive Coatings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rivero

    2018-03-01

    Full Text Available Polymer technology is one of the fastest growing fields of contemporary research due to the possibility of using a wide variety of synthetic chemical routes for obtaining a polymeric network with a well-defined structure, resulting in materials with outstanding macroscopic properties. Surface engineering techniques based on the implementation of polymeric structures can be used as an interesting tool for the design of materials with functional properties. In this sense, the use of fabrication techniques for the design of nanostructured polymeric coatings is showing an important growth due to the intrinsic advantages of controlling the structure at a nanoscale level because physical, chemical, or optical properties can be considerably improved in comparison with the bulk materials. In addition, the presence of these sensitive polymeric coatings on optical fiber is a hot topic in the scientific community for its implementation in different market niches because a wide variety of parameters can be perfectly measured with a high selectivity, sensitivity, and fast response time. In this work, the two main roles that a polymeric sensitive matrix can play on an optical fiber for sensing applications are evaluated. In a first section, the polymers are used as a solid support for the immobilization of specific sensitive element, whereas in the second section the polymeric matrix is used as the chemical transducer itself. Additionally, potential applications of the optical fiber sensors in fields as diverse as biology, chemistry, engineering, environmental, industry or medicine will be presented in concordance with these two main roles of the polymeric sensitive matrices.

  13. Polymeric implant of methylprednisolone for spinal injury ...

    African Journals Online (AJOL)

    Polymeric implant of methylprednisolone for spinal injury: preparation and characterization. Bo Yin, Jian-Jun Ji, Ming Yang. Abstract. Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium ...

  14. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  15. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  16. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  17. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  18. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles.

    Science.gov (United States)

    Mousavikhamene, Zeynab; Abdekhodaie, Mohammad J; Ahmadieh, Hamid

    2017-10-01

    A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye. Copyright © 2017. Published by Elsevier B.V.

  19. Simulations of nearly extremal binary black holes

    Science.gov (United States)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  20. Instability of ultra-spinning black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Myers, Robert C.

    2003-01-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)