WorldWideScience

Sample records for polymerase iii promoters

  1. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    DEFF Research Database (Denmark)

    Helbo, Alexandra Søgaard; Lay, Fides D; Jones, Peter A

    2017-01-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high...

  2. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    International Nuclear Information System (INIS)

    Rumi, Mohammad; Ishihara, Shunji; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-01

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor α-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use

  3. Mechanism of selective recruitment of RNA polymerases II and III to snRNA gene promoters.

    Science.gov (United States)

    Dergai, Oleksandr; Cousin, Pascal; Gouge, Jerome; Satia, Karishma; Praz, Viviane; Kuhlman, Tracy; Lhôte, Philippe; Vannini, Alessandro; Hernandez, Nouria

    2018-05-01

    RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.e., TATA-box-binding protein [TBP], TFIIB, and TFIIA for Pol II transcription and TBP and BRF2 for Pol III transcription) assemble to ensure specific Pol recruitment. TFIIB and BRF2 could each, in a mutually exclusive fashion, be recruited to SNAPc. In contrast, TBP-TFIIB and TBP-BRF2 complexes were not recruited unless a TATA box was present, which allowed selective and efficient recruitment of the TBP-BRF2 complex. Thus, TBP both prevented BRF2 recruitment to Pol II promoters and enhanced BRF2 recruitment to Pol III promoters. On Pol II promoters, TBP recruitment was separate from TFIIB recruitment and enhanced by TFIIA. Our results provide a model for specific Pol recruitment at SNAPc-dependent promoters. © 2018 Dergai et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III

    OpenAIRE

    Matsutani Sachiko

    2004-01-01

    Abstract Background In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFII...

  5. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III

    Directory of Open Access Journals (Sweden)

    Matsutani Sachiko

    2004-08-01

    Full Text Available Abstract Background In eukaryotes, RNA polymerase III (RNAP III transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs. The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Results Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Conclusion Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and α-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants

  6. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III.

    Science.gov (United States)

    Matsutani, Sachiko

    2004-08-09

    In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.

  7. Prediction of Active Site and Distal Residues in E. coli DNA Polymerase III alpha Polymerase Activity.

    Science.gov (United States)

    Parasuram, Ramya; Coulther, Timothy A; Hollander, Judith M; Keston-Smith, Elise; Ondrechen, Mary Jo; Beuning, Penny J

    2018-02-20

    The process of DNA replication is carried out with high efficiency and accuracy by DNA polymerases. The replicative polymerase in E. coli is DNA Pol III, which is a complex of 10 different subunits that coordinates simultaneous replication on the leading and lagging strands. The 1160-residue Pol III alpha subunit is responsible for the polymerase activity and copies DNA accurately, making one error per 10 5 nucleotide incorporations. The goal of this research is to determine the residues that contribute to the activity of the polymerase subunit. Homology modeling and the computational methods of THEMATICS and POOL were used to predict functionally important amino acid residues through their computed chemical properties. Site-directed mutagenesis and biochemical assays were used to validate these predictions. Primer extension, steady-state single-nucleotide incorporation kinetics, and thermal denaturation assays were performed to understand the contribution of these residues to the function of the polymerase. This work shows that the top 15 residues predicted by POOL, a set that includes the three previously known catalytic aspartate residues, seven remote residues, plus five previously unexplored first-layer residues, are important for function. Six previously unidentified residues, R362, D405, K553, Y686, E688, and H760, are each essential to Pol III activity; three additional residues, Y340, R390, and K758, play important roles in activity.

  8. File list: Pol.Neu.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Neural ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.50.RNA_Polymerase_III.AllCell.bed ...

  9. File list: Pol.Bld.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Blood h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.RNA_Polymerase_III.AllCell.bed ...

  10. File list: Pol.Plc.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Placent...a http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Plc.50.RNA_Polymerase_III.AllCell.bed ...

  11. File list: Pol.Myo.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Muscle ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.10.RNA_Polymerase_III.AllCell.bed ...

  12. File list: Pol.Lar.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.50.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Larvae... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Lar.50.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.Oth.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Others ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.20.RNA_Polymerase_III.AllCell.bed ...

  14. File list: Pol.CDV.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Cardiov...ascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.20.RNA_Polymerase_III.AllCell.bed ...

  15. File list: Pol.Adp.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Adipocy...te http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.RNA_Polymerase_III.AllCell.bed ...

  16. File list: Pol.Adl.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Adult ...SRX395531,SRX331268,SRX331270,SRX395532 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.05.RNA_polymerase_III.AllCell.bed ...

  17. File list: Pol.Oth.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Others ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.RNA_Polymerase_III.AllCell.bed ...

  18. File list: Pol.Myo.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Muscle ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.05.RNA_Polymerase_III.AllCell.bed ...

  19. File list: Pol.Pan.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.RNA_polymerase_III.AllCell.bed ...

  20. File list: Pol.CDV.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Cardiov...ascular http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.05.RNA_Polymerase_III.AllCell.bed ...

  1. File list: Pol.Utr.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Uterus... SRX018606,SRX017002,SRX017001 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.20.RNA_polymerase_III.AllCell.bed ...

  2. File list: Pol.Epd.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Epider...mis SRX016997 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.10.RNA_polymerase_III.AllCell.bed ...

  3. File list: Pol.Brs.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Breast ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.RNA_Polymerase_III.AllCell.bed ...

  4. File list: Pol.Lar.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.20.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Larvae... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Lar.20.RNA_polymerase_III.AllCell.bed ...

  5. File list: Pol.Unc.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Unclass...ified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Unc.10.RNA_Polymerase_III.AllCell.bed ...

  6. File list: Pol.ALL.20.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.20.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III All cel...l types ERX204069 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.20.RNA_Polymerase_III.AllCell.bed ...

  7. File list: Pol.Unc.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Unclass...ified http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Unc.50.RNA_Polymerase_III.AllCell.bed ...

  8. File list: Pol.Dig.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Digesti...ve tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.05.RNA_Polymerase_III.AllCell.bed ...

  9. File list: Pol.Dig.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Digesti...ve tract http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.50.RNA_Polymerase_III.AllCell.bed ...

  10. File list: Pol.Lng.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.RNA_polymerase_III.AllCell.bed ...

  11. File list: Pol.CDV.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.RNA_polymerase_III.AllCell.bed ...

  12. File list: Pol.Unc.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Unc.50.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.ALL.50.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.50.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III All cel...l types ERX204069 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.50.RNA_Polymerase_III.AllCell.bed ...

  14. File list: Pol.Plc.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.20.RNA_polymerase_III.AllCell.bed ...

  15. File list: Pol.Bon.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bon.20.RNA_polymerase_III.AllCell.bed ...

  16. File list: Pol.Emb.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Embryo ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Emb.05.RNA_Polymerase_III.AllCell.bed ...

  17. File list: Pol.Emb.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.10.RNA_polymerase_III.AllCell.bed ...

  18. File list: Pol.Pan.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Pancrea...s http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Pan.10.RNA_Polymerase_III.AllCell.bed ...

  19. File list: Pol.Bon.05.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.05.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Bone ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bon.05.RNA_Polymerase_III.AllCell.bed ...

  20. File list: Pol.Adp.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.20.RNA_polymerase_III.AllCell.bed ...

  1. File list: Pol.Spl.10.RNA_Polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Spl.10.RNA_Polymerase_III.AllCell mm9 RNA polymerase RNA Polymerase III Spleen ...http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Spl.10.RNA_Polymerase_III.AllCell.bed ...

  2. File list: Pol.Adp.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Adipoc...yte http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.10.RNA_polymerase_III.AllCell.bed ...

  3. File list: Pol.Dig.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.20.RNA_polymerase_III.AllCell.bed ...

  4. File list: Pol.Myo.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.10.RNA_polymerase_III.AllCell.bed ...

  5. File list: Pol.Epd.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Epider...mis SRX016997 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.20.RNA_polymerase_III.AllCell.bed ...

  6. File list: Pol.Plc.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.10.RNA_polymerase_III.AllCell.bed ...

  7. File list: Pol.Brs.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.20.RNA_polymerase_III.AllCell.bed ...

  8. File list: Pol.Brs.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.05.RNA_polymerase_III.AllCell.bed ...

  9. File list: Pol.PSC.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.RNA_polymerase_III.AllCell.bed ...

  10. File list: Pol.Prs.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.10.RNA_polymerase_III.AllCell.bed ...

  11. File list: Pol.Oth.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Others... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.RNA_polymerase_III.AllCell.bed ...

  12. File list: Pol.Utr.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Uterus... SRX017001,SRX018606,SRX017002 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.10.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.CDV.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.RNA_polymerase_III.AllCell.bed ...

  14. File list: Pol.Brs.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Breast... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Brs.10.RNA_polymerase_III.AllCell.bed ...

  15. File list: Pol.Kid.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Kidney... SRX016996 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.10.RNA_polymerase_III.AllCell.bed ...

  16. File list: Pol.ALL.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.20.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III All ce...ll types SRX331268,SRX331270,SRX395531,SRX395532 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.ALL.20.RNA_polymerase_III.AllCell.bed ...

  17. File list: Pol.Liv.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.05.RNA_polymerase_III.AllCell.bed ...

  18. File list: Pol.Myo.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.05.RNA_polymerase_III.AllCell.bed ...

  19. File list: Pol.Lng.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.20.RNA_polymerase_III.AllCell.bed ...

  20. File list: Pol.Kid.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Kidney... SRX016996 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.05.RNA_polymerase_III.AllCell.bed ...

  1. File list: Pol.ALL.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III All ce...,SRX150396,SRX015144,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.ALL.05.RNA_polymerase_III.AllCell.bed ...

  2. File list: Pol.Dig.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Digest...ive tract http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.50.RNA_polymerase_III.AllCell.bed ...

  3. File list: Pol.Oth.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Others... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.RNA_polymerase_III.AllCell.bed ...

  4. File list: Pol.Lar.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.10.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Larvae... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Lar.10.RNA_polymerase_III.AllCell.bed ...

  5. File list: Pol.Liv.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.50.RNA_polymerase_III.AllCell.bed ...

  6. File list: Pol.Gon.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Gonad ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Gon.10.RNA_polymerase_III.AllCell.bed ...

  7. File list: Pol.Bld.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Blood ...SRX150560,SRX018610,SRX015143,SRX017006,SRX150396,SRX015144 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.RNA_polymerase_III.AllCell.bed ...

  8. File list: Pol.ALL.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III All ce...ll types SRX395531,SRX331268,SRX331270,SRX395532 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.ALL.05.RNA_polymerase_III.AllCell.bed ...

  9. File list: Pol.Plc.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.05.RNA_polymerase_III.AllCell.bed ...

  10. File list: Pol.Lng.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Lung S...RX016555,SRX150101,SRX150102 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.RNA_polymerase_III.AllCell.bed ...

  11. File list: Pol.Emb.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.50.RNA_polymerase_III.AllCell.bed ...

  12. File list: Pol.Oth.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Others... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.05.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.Bon.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bon.05.RNA_polymerase_III.AllCell.bed ...

  14. File list: Pol.Unc.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.20.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Unclas...sified http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.20.RNA_polymerase_III.AllCell.bed ...

  15. File list: Pol.Gon.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Gonad ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Gon.20.RNA_polymerase_III.AllCell.bed ...

  16. File list: Pol.Emb.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.05.RNA_polymerase_III.AllCell.bed ...

  17. File list: Pol.PSC.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Plurip...otent stem cell http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.50.RNA_polymerase_III.AllCell.bed ...

  18. File list: Pol.Adl.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.10.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Adult ...SRX395531,SRX331268,SRX331270,SRX395532 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.10.RNA_polymerase_III.AllCell.bed ...

  19. File list: Pol.Myo.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.50.RNA_polymerase_III.AllCell.bed ...

  20. File list: Pol.Plc.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Placen...ta http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.50.RNA_polymerase_III.AllCell.bed ...

  1. File list: Pol.Lar.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.05.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Larvae... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Lar.05.RNA_polymerase_III.AllCell.bed ...

  2. File list: Pol.Bon.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Bone h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bon.50.RNA_polymerase_III.AllCell.bed ...

  3. File list: Pol.Oth.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Others... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.10.RNA_polymerase_III.AllCell.bed ...

  4. File list: Pol.Kid.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Kidney... SRX016996 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.50.RNA_polymerase_III.AllCell.bed ...

  5. File list: Pol.CDV.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Cardio...vascular http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.RNA_polymerase_III.AllCell.bed ...

  6. File list: Pol.Prs.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Prosta...te http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.05.RNA_polymerase_III.AllCell.bed ...

  7. File list: Pol.Bld.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Blood ...SRX017006,SRX015143,SRX150560,SRX018610,SRX150396,SRX015144 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.RNA_polymerase_III.AllCell.bed ...

  8. File list: Pol.Emb.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Embryo... http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.20.RNA_polymerase_III.AllCell.bed ...

  9. File list: Pol.Epd.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Epider...mis SRX016997 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.50.RNA_polymerase_III.AllCell.bed ...

  10. File list: Pol.Utr.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Uterus... SRX017001,SRX018606,SRX017002 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.05.RNA_polymerase_III.AllCell.bed ...

  11. File list: Pol.Kid.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Kidney... SRX016996 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.20.RNA_polymerase_III.AllCell.bed ...

  12. File list: Pol.Pan.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Pancre...as http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.RNA_polymerase_III.AllCell.bed ...

  13. File list: Pol.Adl.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.RNA_polymerase_III.AllCell ce10 RNA polymerase RNA polymerase III Adult ...SRX331268,SRX331270,SRX395531 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.50.RNA_polymerase_III.AllCell.bed ...

  14. File list: Pol.Neu.05.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Neural... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.RNA_polymerase_III.AllCell.bed ...

  15. File list: Pol.Myo.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Muscle... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.20.RNA_polymerase_III.AllCell.bed ...

  16. File list: Pol.Liv.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Liver ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.20.RNA_polymerase_III.AllCell.bed ...

  17. File list: Pol.Gon.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III Gonad ...http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Gon.50.RNA_polymerase_III.AllCell.bed ...

  18. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  19. New insights into the promoterless transcription of DNA coligo templates by RNA polymerase III.

    Science.gov (United States)

    Lama, Lodoe; Seidl, Christine I; Ryan, Kevin

    2014-01-01

    Chemically synthesized DNA can carry small RNA sequence information but converting that information into small RNA is generally thought to require large double-stranded promoters in the context of plasmids, viruses and genes. We previously found evidence that circularized oligodeoxynucleotides (coligos) containing certain sequences and secondary structures can template the synthesis of small RNA by RNA polymerase III in vitro and in human cells. By using immunoprecipitated RNA polymerase III we now report corroborating evidence that this enzyme is the sole polymerase responsible for coligo transcription. The immobilized polymerase enabled experiments showing that coligo transcripts can be formed through transcription termination without subsequent 3' end trimming. To better define the determinants of productive transcription, a structure-activity relationship study was performed using over 20 new coligos. The results show that unpaired nucleotides in the coligo stem facilitate circumtranscription, but also that internal loops and bulges should be kept small to avoid secondary transcription initiation sites. A polymerase termination sequence embedded in the double-stranded region of a hairpin-encoding coligo stem can antagonize transcription. Using lessons learned from new and old coligos, we demonstrate how to convert poorly transcribed coligos into productive templates. Our findings support the possibility that coligos may prove useful as chemically synthesized vectors for the ectopic expression of small RNA in human cells.

  20. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  1. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation

    Science.gov (United States)

    Varshney, Dhaval; Vavrova-Anderson, Jana; Oler, Andrew J.; Cowling, Victoria H.; Cairns, Bradley R.; White, Robert J.

    2015-01-01

    Short interspersed nuclear elements (SINEs), such as Alu, spread by retrotransposition, which requires their transcripts to be copied into DNA and then inserted into new chromosomal sites. This can lead to genetic damage through insertional mutagenesis and chromosomal rearrangements between non-allelic SINEs at distinct loci. SINE DNA is heavily methylated and this was thought to suppress its accessibility and transcription, thereby protecting against retrotransposition. Here we provide several lines of evidence that methylated SINE DNA is occupied by RNA polymerase III, including the use of high-throughput bisulphite sequencing of ChIP DNA. We find that loss of DNA methylation has little effect on accessibility of SINEs to transcription machinery or their expression in vivo. In contrast, a histone methyltransferase inhibitor selectively promotes SINE expression and occupancy by RNA polymerase III. The data suggest that methylation of histones rather than DNA plays a dominant role in suppressing SINE transcription. PMID:25798578

  2. File list: Pol.NoD.50.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.NoD.50.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III No des...cription http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.NoD.50.RNA_polymerase_III.AllCell.bed ...

  3. File list: Pol.NoD.10.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.NoD.10.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III No des...cription http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.NoD.10.RNA_polymerase_III.AllCell.bed ...

  4. File list: Pol.NoD.20.RNA_polymerase_III.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.NoD.20.RNA_polymerase_III.AllCell hg19 RNA polymerase RNA polymerase III No des...cription http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.NoD.20.RNA_polymerase_III.AllCell.bed ...

  5. Polyadenylation of RNA transcribed from mammalian SINEs by RNA polymerase III: Complex requirements for nucleotide sequences.

    Science.gov (United States)

    Borodulina, Olga R; Golubchikova, Julia S; Ustyantsev, Ilia G; Kramerov, Dmitri A

    2016-02-01

    It is generally accepted that only transcripts synthesized by RNA polymerase II (e.g., mRNA) were subject to AAUAAA-dependent polyadenylation. However, we previously showed that RNA transcribed by RNA polymerase III (pol III) from mouse B2 SINE could be polyadenylated in an AAUAAA-dependent manner. Many species of mammalian SINEs end with the pol III transcriptional terminator (TTTTT) and contain hexamers AATAAA in their A-rich tail. Such SINEs were united into Class T(+), whereas SINEs lacking the terminator and AATAAA sequences were classified as T(-). Here we studied the structural features of SINE pol III transcripts that are necessary for their polyadenylation. Eight and six SINE families from classes T(+) and T(-), respectively, were analyzed. The replacement of AATAAA with AACAAA in T(+) SINEs abolished the RNA polyadenylation. Interestingly, insertion of the polyadenylation signal (AATAAA) and pol III transcription terminator in T(-) SINEs did not result in polyadenylation. The detailed analysis of three T(+) SINEs (B2, DIP, and VES) revealed areas important for the polyadenylation of their pol III transcripts: the polyadenylation signal and terminator in A-rich tail, β region positioned immediately downstream of the box B of pol III promoter, and τ region located upstream of the tail. In DIP and VES (but not in B2), the τ region is a polypyrimidine motif which is also characteristic of many other T(+) SINEs. Most likely, SINEs of different mammals acquired these structural features independently as a result of parallel evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    Science.gov (United States)

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-11

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.

  7. Delineation of the Exact Transcription Termination Signal for Type 3 Polymerase III

    Directory of Open Access Journals (Sweden)

    Zongliang Gao

    2018-03-01

    Full Text Available Type 3 Pol III promoters such as U6 are widely used for expression of small RNAs, including short hairpin RNA for RNAi applications and guide RNA in CRISPR genome-editing platforms. RNA polymerase III uses a T-stretch as termination signal, but the exact properties have not been thoroughly investigated. Here, we systematically measured the in vivo termination efficiency and the actual site of termination for different T-stretch signals in three commonly used human Pol III promoters (U6, 7SK, and H1. Both the termination efficiency and the actual termination site depend on the T-stretch signal. The T4 signal acts as minimal terminator, but full termination efficiency is reached only with a T-stretch of ≥6. The termination site within the T-stretch is quite heterogeneous, and consequently small RNAs have a variable U-tail of 1–6 nucleotides. We further report that such variable U-tails can have a significant negative effect on the functionality of the crRNA effector of the CRISPR-AsCpf1 system. We next improved these crRNAs by insertion of the HDV ribozyme to avoid U-tails. This study provides detailed design guidelines for small RNA expression cassettes based on Pol III.

  8. Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.

    OpenAIRE

    Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R

    1984-01-01

    We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to ...

  9. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Hagensee, M.E.; Timme, T.L.; Bryan, S.K.; Moses, R.E.

    1987-06-01

    Strains of Escherichia coli possessing the pcbA1 mutation, a functional DNA polymerase I, and a temperature-sensitive mutation in DNA polymerase III can survive at the restrictive temperature (43 degrees C) for DNA polymerase III. The mutation rate of the bacterial genome of such strains after exposure to either UV light or ethyl methanesulfonate was measured by its rifampicin resistance or amino acid requirements. In addition, Weigle mutagenesis of preirradiated lambda phage was also measured. In all cases, no increase in mutagenesis was noted at the restrictive temperature for DNA polymerase III. Introduction of a cloned DNA polymerase III gene returned the mutation rate of the bacterial genome as well as the Weigle mutagenesis to normal at 43 degrees C. Using a recA-lacZ fusion, the SOS response after UV irradiation was measured and found to be normal at the restrictive and permissive temperature for DNA polymerase III, as was induction of lambda prophage. Recombination was also normal at either temperature. Our studies demonstrate that a functional DNA polymerase III is strictly required for mutagenesis at a step other than SOS induction.

  10. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... protein in a manner reminiscent of DNA in a nucleosome. This notion is further supported by the finding that the periodic bendability is caused mainly by the complementary triplet pairs CAG/CTG and GGC/GCC, which previously have been found to correlate with nucleosome positioning. We present models where......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...

  11. Reconstitution of the yeast RNA polymerase III transcription system with all recombinant factors.

    Science.gov (United States)

    Ducrot, Cécile; Lefebvre, Olivier; Landrieux, Emilie; Guirouilh-Barbat, Josée; Sentenac, André; Acker, Joel

    2006-04-28

    Transcription factor TFIIIC is a multisubunit complex required for promoter recognition and transcriptional activation of class III genes. We describe here the reconstitution of complete recombinant yeast TFIIIC and the molecular characterization of its two DNA-binding domains, tauA and tauB, using the baculovirus expression system. The B block-binding module, rtauB, was reconstituted with rtau138, rtau91, and rtau60 subunits. rtau131, rtau95, and rtau55 formed also a stable complex, rtauA, that displayed nonspecific DNA binding activity. Recombinant rTFIIIC was functionally equivalent to purified yeast TFIIIC, suggesting that the six recombinant subunits are necessary and sufficient to reconstitute a transcriptionally active TFIIIC complex. The formation and the properties of rTFIIIC-DNA complexes were affected by dephosphorylation treatments. The combination of complete recombinant rTFIIIC and rTFIIIB directed a low level of basal transcription, much weaker than with the crude B'' fraction, suggesting the existence of auxiliary factors that could modulate the yeast RNA polymerase III transcription system.

  12. A structural role for the PHP domain in E. coli DNA polymerase III.

    Science.gov (United States)

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  13. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    Science.gov (United States)

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  14. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    Science.gov (United States)

    Bonhoure, Nicolas; Byrnes, Ashlee; Moir, Robyn D; Hodroj, Wassim; Preitner, Frédéric; Praz, Viviane; Marcelin, Genevieve; Chua, Streamson C; Martinez-Lopez, Nuria; Singh, Rajat; Moullan, Norman; Auwerx, Johan; Willemin, Gilles; Shah, Hardik; Hartil, Kirsten; Vaitheesvaran, Bhavapriya; Kurland, Irwin; Hernandez, Nouria; Willis, Ian M

    2015-05-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences. © 2015 Bonhoure et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Cieśla, Małgorzata; Makała, Ewa; Płonka, Marta; Bazan, Rafał; Gewartowski, Kamil; Dziembowski, Andrzej; Boguta, Magdalena

    2015-04-01

    Little is known about the RNA polymerase III (Pol III) complex assembly and its transport to the nucleus. We demonstrate that a missense cold-sensitive mutation, rpc128-1007, in the sequence encoding the C-terminal part of the second largest Pol III subunit, C128, affects the assembly and stability of the enzyme. The cellular levels and nuclear concentration of selected Pol III subunits were decreased in rpc128-1007 cells, and the association between Pol III subunits as evaluated by coimmunoprecipitation was also reduced. To identify the proteins involved in Pol III assembly, we performed a genetic screen for suppressors of the rpc128-1007 mutation and selected the Rbs1 gene, whose overexpression enhanced de novo tRNA transcription in rpc128-1007 cells, which correlated with increased stability, nuclear concentration, and interaction of Pol III subunits. The rpc128-1007 rbs1Δ double mutant shows a synthetic growth defect, indicating that rpc128-1007 and rbs1Δ function in parallel ways to negatively regulate Pol III assembly. Rbs1 physically interacts with a subset of Pol III subunits, AC19, AC40, and ABC27/Rpb5. Additionally, Rbs1 interacts with the Crm1 exportin and shuttles between the cytoplasm and nucleus. We postulate that Rbs1 binds to the Pol III complex or subcomplex and facilitates its translocation to the nucleus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization.

    Science.gov (United States)

    Pascali, Chiara; Teichmann, Martin

    2013-01-01

    RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.

  17. Loss of the RNA polymerase III repressor MAF1 confers obesity resistance.

    OpenAIRE

    Bonhoure, N.; Byrnes, A.; Moir, R.D.; Hodroj, W.; Preitner, F.; Praz, V.; Marcelin, G.; Chua, S.C.; Martinez-Lopez, N.; Singh, R.; Moullan, N.; Auwerx, J.; Willemin, G.; Shah, H.; Hartil, K.

    2015-01-01

    MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is inc...

  18. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration.

    Science.gov (United States)

    Bridier-Nahmias, Antoine; Tchalikian-Cosson, Aurélie; Baller, Joshua A; Menouni, Rachid; Fayol, Hélène; Flores, Amando; Saïb, Ali; Werner, Michel; Voytas, Daniel F; Lesage, Pascale

    2015-05-01

    Mobile genetic elements are ubiquitous. Their integration site influences genome stability and gene expression. The Ty1 retrotransposon of the yeast Saccharomyces cerevisiae integrates upstream of RNA polymerase III (Pol III)-transcribed genes, yet the primary determinant of target specificity has remained elusive. Here we describe an interaction between Ty1 integrase and the AC40 subunit of Pol III and demonstrate that AC40 is the predominant determinant targeting Ty1 integration upstream of Pol III-transcribed genes. Lack of an integrase-AC40 interaction dramatically alters target site choice, leading to a redistribution of Ty1 insertions in the genome, mainly to chromosome ends. The mechanism of target specificity allows Ty1 to proliferate and yet minimizes genetic damage to its host. Copyright © 2015, American Association for the Advancement of Science.

  19. Mammalian RNA polymerase II core promoters: insights from genome-wide studies

    DEFF Research Database (Denmark)

    Sandelin, Albin; Carninci, Piero; Lenhard, Boris

    2007-01-01

    The identification and characterization of mammalian core promoters and transcription start sites is a prerequisite to understanding how RNA polymerase II transcription is controlled. New experimental technologies have enabled genome-wide discovery and characterization of core promoters, revealing...... in the mammalian transcriptome and proteome. Promoters can be described by their start site usage distribution, which is coupled to the occurrence of cis-regulatory elements, gene function and evolutionary constraints. A comprehensive survey of mammalian promoters is a major step towards describing...

  20. The beta subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shavitt, O.; Livneh, Z.

    1989-01-01

    The cycling time of DNA polymerase III holoenzyme during replication of UV-irradiated single-stranded (ss) DNA was longer than with unirradiated DNA (8 versus 3 min, respectively), most likely due to slow dissociation from lesion-terminated nascent DNA strands. Initiation of elongation on primed ssDNA was not significantly inhibited by the presence of UV lesions as indicated by the identical distribution of replication products synthesized at early and late reaction times and by the identical duration of the initial synthesis bursts on both unirradiated and UV-irradiated DNA templates. When replication was performed with DNA polymerase III* supplemented with increasing quantities of purified beta 2 subunit, the cycling time on UV-irradiated DNA decreased from 14.8 min at 1.7 nM beta 2 down to 6 min at 170 nM beta 2, a concentration in which beta 2 was in large excess over the polymerase. In parallel to the reduction in cycling time, also the bypass frequency of cyclobutane-photodimers decreased with increasing beta 2 concentration, and at 170 nM beta 2, bypass of photodimers was essentially eliminated. It has been shown that polymerase complexes with more than one beta 2 per polymerase molecule were formed at high beta 2 concentrations. It is plausible that polymerase complexes obtained under high beta 2 concentration dissociate from lesion-terminated primers faster than polymerase complexes formed at a low beta 2 concentration. This is expected to favor termination over bypass at pyrimidine photodimers and thus decrease their bypass frequency. These results suggest that the beta 2 subunit might act as a sensor for obstacles to replication caused by DNA damage, and that it terminates elongation at these sites by promoting dissociation. The intracellular concentration of beta 2 was estimated to be 250 nM

  1. The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter.

    Directory of Open Access Journals (Sweden)

    Sarah L Noton

    Full Text Available Respiratory syncytial virus (RSV is an RNA virus in the Family Paramyxoviridae. Here, the activities performed by the RSV polymerase when it encounters the viral antigenomic promoter were examined. RSV RNA synthesis was reconstituted in vitro using recombinant, isolated polymerase and an RNA oligonucleotide template representing nucleotides 1-25 of the trailer complement (TrC promoter. The RSV polymerase was found to have two RNA synthesis activities, initiating RNA synthesis from the +3 site on the promoter, and adding a specific sequence of nucleotides to the 3' end of the TrC RNA using a back-priming mechanism. Examination of viral RNA isolated from RSV infected cells identified RNAs initiated at the +3 site on the TrC promoter, in addition to the expected +1 site, and showed that a significant proportion of antigenome RNAs contained specific nucleotide additions at the 3' end, demonstrating that the observations made in vitro reflected events that occur during RSV infection. Analysis of the impact of the 3' terminal extension on promoter activity indicated that it can inhibit RNA synthesis initiation. These findings indicate that RSV polymerase-promoter interactions are more complex than previously thought and suggest that there might be sophisticated mechanisms for regulating promoter activity during infection.

  2. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  3. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    NARCIS (Netherlands)

    Nalcacioglu, R.; Marks, H.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an

  5. The Chilo iridescent virus DNA polymerase promoter contains an essential AAAAT motif

    NARCIS (Netherlands)

    Nalcacioglu, R.; Ince, I.A.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2007-01-01

    The delayed-early DNA polymerase promoter of Chilo iridescent virus (CIV), officially known as Invertebrate iridescent virus, was fine mapped by constructing a series of increasing deletions and by introducing point mutations. The effects of these mutations were examined in a luciferase reporter

  6. DnaB gene product-independence of DNA polymerase III-directed repair synthesis in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1977-01-01

    An investigation has been carried out into the role of dnaB gene product in X-ray-induced repair synthesis carried out by DNA polymerase III in toluene-treated Escherichia coli K-12. A polAl polBlOO dnaB mutant deficient in both DNA polymerase I and II activities was used, and it was shown that the level of X-ray-induced, ATP-dependent, non-conservative DNA synthesis was, unlike semi-conservative DNA synthesis, unaffected by a temperature shift from 30 0 to 42 0 C. The dnaB gene product was not therefore necessary for DNA polymerase III-directed repair synthesis, which occurred in the absence of replicative synthesis. (U.K.)

  7. Dynamics of termination during in vitro replication of ultraviolet-irradiated DNA with DNA polymerase III holoenzyme of Escherichia coli

    International Nuclear Information System (INIS)

    Shwartz, H.; Livneh, Z.

    1987-01-01

    During in vitro replication of UV-irradiated single-stranded DNA with Escherichia coli DNA polymerase III holoenzyme termination frequently occurs at pyrimidine photodimers. The termination stage is dynamic and characterized by at least three different events: repeated dissociation-reinitiation cycles of the polymerase at the blocked termini; extensive hydrolysis of ATP to ADP and inorganic phosphate; turnover of dNTPs into dNMP. The reinitiation events are nonproductive and are not followed by further elongation. The turnover of dNTPs into dNMPs is likely to result from repeated cycles of insertion of dNMP residues opposite the blocking lesions followed by their excision by the 3'----5' exonucleolytic activity of the polymerase. Although all dNTPs are turned over, there is a preference for dATP, indicating that DNA polymerase III holoenzyme has a preference for inserting a dAMP residue opposite blocking pyrimidine photodimers. We suggest that the inability of the polymerase to bypass photodimers during termination is due to the formation of defective initiation-like complexes with reduced stability at the blocked termini

  8. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  9. Genomic Analysis and Isolation of RNA Polymerase II Dependent Promoters from Spodoptera frugiperda.

    Science.gov (United States)

    Bleckmann, Maren; Fritz, Markus H-Y; Bhuju, Sabin; Jarek, Michael; Schürig, Margitta; Geffers, Robert; Benes, Vladimir; Besir, Hüseyin; van den Heuvel, Joop

    2015-01-01

    The Baculoviral Expression Vector System (BEVS) is the most commonly used method for high expression of recombinant protein in insect cells. Nevertheless, expression of some target proteins--especially those entering the secretory pathway--provides a severe challenge for the baculovirus infected insect cells, due to the reorganisation of intracellular compounds upon viral infection. Therefore, alternative strategies for recombinant protein production in insect cells like transient plasmid-based expression or stable expression cell lines are becoming more popular. However, the major bottleneck of these systems is the lack of strong endogenous polymerase II dependent promoters, as the strong baculoviral p10 and polH promoters used in BEVS are only functional in presence of the viral transcription machinery during the late phase of infection. In this work we present a draft genome and a transcriptome analysis of Sf21 cells for the identification of the first known endogenous Spodoptera frugiperda promoters. Therefore, putative promoter sequences were identified and selected because of high mRNA level or in analogy to other strong promoters in other eukaryotic organism. The chosen endogenous Sf21 promoters were compared to early viral promoters for their efficiency to trigger eGFP expression using transient plasmid based transfection in a BioLector Microfermentation system. Furthermore, promoter activity was not only shown in Sf21 cells but also in Hi5 cells. The novel endogenous Sf21 promoters were ranked according to their activity and expand the small pool of available promoters for stable insect cell line development and transient plasmid expression in insect cells. The best promoter was used to improve plasmid based transient transfection in insect cells substantially.

  10. DNA polymerase iota (Pol ι) promotes invasion and metastasis of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zou, Shitao; Shang, Zeng-Fu; Liu, Biao; Zhang, Shuyu; Wu, Jinchang; Huang, Min; Ding, Wei-Qun; Zhou, Jundong

    2016-05-31

    DNA polymerase iota (Pol ι) is an error-prone DNA polymerase involved in translesion DNA synthesis (TLS) that contributes to the accumulation of DNA mutations. We recently showed that Pol ι is overexpressed in human esophageal squamous cell cancer (ESCC) tissues which promotes ESCC' progression. The present study was aimed at investigating the molecular mechanisms by which Pol ι enhances the invasiveness and metastasis of ESCC cells. We found that the expression of Pol ι is significantly higher in ESCCs with lymph node metastasis compared to those without lymph node metastasis. Kaplan-Meier analysis revealed an inverse correlation between Pol ι expression and patient prognosis. The expression levels of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), two essential regulators of cells' invasiveness, were positively associated with Pol ι expression in ESCC tissues. Ectopic expression of Pol ι enhanced the motility and invasiveness of ESCC cells as evaluated by wound-healing and transwell assays, respectively. A xenograft nude mouse model showed that Pol ι promotes the colonization of ESCC cells in the liver, lung and kidney. Signaling pathway analysis identified the JNK-AP-1 cascade as a mediator of the Pol ι-induced increase in the expression of MMP-2/9 and enhancement of ESCC progression. These data demonstrate the underlying mechanism by which Pol ι promotes ESCC progression, suggesting that Pol ι is a potential novel prognostic biomarker and therapeutic target for ESCC.

  11. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    Science.gov (United States)

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella.

    Science.gov (United States)

    Huang, Yuping; Wang, Yajun; Zeng, Baosheng; Liu, Zhaoxia; Xu, Xuejiao; Meng, Qian; Huang, Yongping; Yang, Guang; Vasseur, Liette; Gurr, Geoff M; You, Minsheng

    2017-10-01

    RNA polymerase type III (Pol-III) promoters such as U6 are commonly used to express small RNAs, including short hairpin RNAs (shRNAs) and single guide RNAs (sgRNAs). Functional U6 promoters are widely used in CRISPR systems, and their characterization can facilitate genome editing of non-model organisms. In the present study, six U6 small nuclear RNA (snRNA) promoters containing two conserved elements of a proximal sequence element (PSEA) and a TATA box, were identified and characterized in the diamondback moth (Plutella xylostella) genome. Relative efficiency of the U6 promoters to express shRNA induced EGFP knockdown was tested in a P. xylostella cell line, revealing that the PxU6:3 promoter had the strongest expression effect. Further work with the PxU6:3 promoter showed its efficacy in EGFP knockout using CRISPR/Cas9 system in the cells. The expression plasmids with versatile Pxabd-A gene specific sgRNA driven by the PxU6:3 promoter, combined with Cas9 mRNA, could induce mutagenesis at specific genomic loci in vivo. The phenotypes induced by sgRNA expression plasmids were similar to those done in vitro transcription sgRNAs. A plasmid with two tandem arranged PxU6:3:sgRNA expression cassettes targeting Pxabd-A loci was generated, which caused a 28,856 bp fragment deletion, suggesting that the multi-sgRNA expression plasmid can be used for multi-targeting. Our work indicates that U6 snRNA promoters can be used for functional studies of genes with the approach of reverse genetics in P. xylostella. These essential promoters also provide valuable potential for CRISPR-derived gene drive as a tactic for population control in this globally significant pest. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  14. Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands

    NARCIS (Netherlands)

    Goorhuis, A.; van der Kooi, T.; Vaessen, N.; Dekker, F. W.; van den Berg, R.; Harmanus, C.; van den Hof, S.; Notermans, D. W.; Kuijper, E. J.

    2007-01-01

    After reports of emerging outbreaks in Canada and the United States, Clostridium difficile-associated disease (CDAD) due to polymerase chain reaction ribotype 027 was detected in 2 medium-to-large hospitals in The Netherlands in 2005. National surveillance was initiated to investigate the spread and

  15. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast.

    Science.gov (United States)

    Belagal, Praveen; Normand, Christophe; Shukla, Ashutosh; Wang, Renjie; Léger-Silvestre, Isabelle; Dez, Christophe; Bhargava, Purnima; Gadal, Olivier

    2016-10-15

    The association of RNA polymerase III (Pol III)-transcribed genes with nucleoli seems to be an evolutionarily conserved property of the spatial organization of eukaryotic genomes. However, recent studies of global chromosome architecture in budding yeast have challenged this view. We used live-cell imaging to determine the intranuclear positions of 13 Pol III-transcribed genes. The frequency of association with nucleolus and nuclear periphery depends on linear genomic distance from the tethering elements-centromeres or telomeres. Releasing the hold of the tethering elements by inactivating centromere attachment to the spindle pole body or changing the position of ribosomal DNA arrays resulted in the association of Pol III-transcribed genes with nucleoli. Conversely, ectopic insertion of a Pol III-transcribed gene in the vicinity of a centromere prevented its association with nucleolus. Pol III-dependent transcription was independent of the intranuclear position of the gene, but the nucleolar recruitment of Pol III-transcribed genes required active transcription. We conclude that the association of Pol III-transcribed genes with the nucleolus, when permitted by global chromosome architecture, provides nucleolar and/or nuclear peripheral anchoring points contributing locally to intranuclear chromosome organization. © 2016 Belagal et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Active Center Control of Termination by RNA Polymerase III and tRNA Gene Transcription Levels In Vivo.

    Directory of Open Access Journals (Sweden)

    Keshab Rijal

    2016-08-01

    Full Text Available The ability of RNA polymerase (RNAP III to efficiently recycle from termination to reinitiation is critical for abundant tRNA production during cellular proliferation, development and cancer. Yet understanding of the unique termination mechanisms used by RNAP III is incomplete, as is its link to high transcription output. We used two tRNA-mediated suppression systems to screen for Rpc1 mutants with gain- and loss- of termination phenotypes in S. pombe. 122 point mutation mutants were mapped to a recently solved 3.9 Å structure of yeast RNAP III elongation complex (EC; they cluster in the active center bridge helix and trigger loop, as well as the pore and funnel, the latter of which indicate involvement of the RNA cleavage domain of the C11 subunit in termination. Purified RNAP III from a readthrough (RT mutant exhibits increased elongation rate. The data strongly support a kinetic coupling model in which elongation rate is inversely related to termination efficiency. The mutants exhibit good correlations of terminator RT in vitro and in vivo, and surprisingly, amounts of transcription in vivo. Because assessing in vivo transcription can be confounded by various parameters, we used a tRNA reporter with a processing defect and a strong terminator. By ruling out differences in RNA decay rates, the data indicate that mutants with the RT phenotype synthesize more RNA than wild type cells, and than can be accounted for by their increased elongation rate. Finally, increased activity by the mutants appears unrelated to the RNAP III repressor, Maf1. The results show that the mobile elements of the RNAP III active center, including C11, are key determinants of termination, and that some of the mutations activate RNAP III for overall transcription. Similar mutations in spontaneous cancer suggest this as an unforeseen mechanism of RNAP III activation in disease.

  17. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai

    2016-04-19

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  18. Bridge helix bending promotes RNA polymerase II backtracking through a critical and conserved threonine residue

    KAUST Repository

    Da, Lin-Tai; Pardo-Avila, Fá tima; Xu, Liang; Silva, Daniel-Adriano; Zhang, Lu; Gao, Xin; Wang, Dong; Huang, Xuhui

    2016-01-01

    The dynamics of the RNA polymerase II (Pol II) backtracking process is poorly understood. We built a Markov State Model from extensive molecular dynamics simulations to identify metastable intermediate states and the dynamics of backtracking at atomistic detail. Our results reveal that Pol II backtracking occurs in a stepwise mode where two intermediate states are involved. We find that the continuous bending motion of the Bridge helix (BH) serves as a critical checkpoint, using the highly conserved BH residue T831 as a sensing probe for the 3′-terminal base paring of RNA:DNA hybrid. If the base pair is mismatched, BH bending can promote the RNA 3′-end nucleotide into a frayed state that further leads to the backtracked state. These computational observations are validated by site-directed mutagenesis and transcript cleavage assays, and provide insights into the key factors that regulate the preferences of the backward translocation.

  19. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Dayeh, Daniel M.; Fredrickson, Saul W.; Suo, Zucai

    2014-01-01

    The X-family DNA polymerases λ (Polλ) and β (Polβ) possess similar 5′-2-deoxyribose-5-phosphatelyase (dRPase) and polymerase domains. Besides these domains, Polλ also possesses a BRCA1 C-terminal (BRCT) domain and a proline-rich domain at its N terminus. However, it is unclear how these non-enzymatic domains contribute to the unique biological functions of Polλ. Here, we used primer extension assays and a newly developed high-throughput short oligonucleotide sequencing assay (HT-SOSA) to compare the efficiency of lesion bypass and fidelity of human Polβ, Polλ and two N-terminal deletion constructs of Polλ during the bypass of either an abasic site or a 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) lesion. We demonstrate that the BRCT domain of Polλ enhances the efficiency of abasic site bypass by approximately 1.6-fold. In contrast, deletion of the N-terminal domains of Polλ did not affect the efficiency of 8-oxodG bypass relative to nucleotide incorporations opposite undamaged dG. HT-SOSA analysis demonstrated that Polλ and Polβ preferentially generated −1 or −2 frameshift mutations when bypassing an abasic site and the single or double base deletion frequency was highly sequence dependent. Interestingly, the BRCT and proline-rich domains of Polλ cooperatively promoted the generation of −2 frameshift mutations when the abasic site was situated within a sequence context that was susceptible to homology-driven primer realignment. Furthermore, both N-terminal domains of Polλ increased the generation of −1 frameshift mutations during 8-oxodG bypass and influenced the frequency of substitution mutations produced by Polλ opposite the 8-oxodG lesion. Overall, our data support a model wherein the BRCT and proline-rich domains of Polλ act cooperatively to promote primer/template realignment between DNA strands of limited sequence homology. This function of the N-terminal domains may facilitate the role of Polλ as a gap-filling polymerase

  20. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tomohiro Shimada

    Full Text Available The promoter selectivity of Escherichia coli RNA polymerase is determined by the sigma subunit with promoter recognition activity. The model prokaryote Escherichia coli contains seven species of the sigma subunit, each recognizing a specific set of promoters. The major sigma subunit, sigma-70 encoded by rpoD, plays a major role in transcription of growth-related genes. Concomitant with the increase in detection of promoters functioning in vivo under various stressful conditions, the variation is expanding in the consensus sequence of RpoD promoters. In order to identify the canonical sequence of "constitutive promoters" that are recognized by the RNA polymerase holoenzyme containing RpoD sigma in the absence of supporting transcription factors, an in vitro mixed transcription assay was carried out using a whole set of variant promoters, each harboring one base replacement, within the model promoter with the conserved -35 and -10 sequences of RpoD promoters. The consensus sequences, TTGACA(-35 and TATAAT(-10, were identified to be ideal for the maximum level of open complex formation and the highest rate of promoter opening, respectively. For identification of the full range of constitutive promoters on the E. coli genome, a total of 2,701 RpoD holoenzyme-binding sites were identified by Genomic SELEX screening, and using the reconfirmed consensus promoter sequence, a total of maximum 669 constitutive promoters were identified, implying that the majority of hitherto identified promoters represents the TF-dependent "inducible promoters". One unique feature of the constitutive promoters is the high level of promoter sequence conservation, about 85% carrying five-out-of-six agreements with -35 or -10 consensus sequence. The list of constitutive promoters provides the community resource toward estimation of the inducible promoters that operate under various stressful conditions in nature.

  1. TRE5-A retrotransposition profiling reveals putative RNA polymerase III transcription complex binding sites on the Dictyostelium extrachromosomal rDNA element.

    Directory of Open Access Journals (Sweden)

    Thomas Spaller

    Full Text Available The amoeba Dictyostelium discoideum has a haploid genome in which two thirds of the DNA encodes proteins. Consequently, the space available for selfish mobile elements to expand without excess damage to the host genome is limited. The non-long terminal repeat retrotransposon TRE5-A maintains an active population in the D. discoideum genome and apparently adapted to this gene-dense environment by targeting positions ~47 bp upstream of tRNA genes that are devoid of protein-coding regions. Because only ~24% of tRNA genes are associated with a TRE5-A element in the reference genome, we evaluated whether TRE5-A retrotransposition is limited to this subset of tRNA genes. We determined that a tagged TRE5-A element (TRE5-Absr integrated at 384 of 405 tRNA genes, suggesting that expansion of the current natural TRE5-A population is not limited by the availability of targets. We further observed that TRE5-Absr targets the ribosomal 5S gene on the multicopy extrachromosomal DNA element that carries the ribosomal RNA genes, indicating that TRE5-A integration may extend to the entire RNA polymerase III (Pol III transcriptome. We determined that both natural TRE5-A and cloned TRE5-Absr retrotranspose to locations on the extrachromosomal rDNA element that contain tRNA gene-typical A/B box promoter motifs without displaying any other tRNA gene context. Based on previous data suggesting that TRE5-A targets tRNA genes by locating Pol III transcription complexes, we propose that A/B box loci reflect Pol III transcription complex assembly sites that possess a function in the biology of the extrachromosomal rDNA element.

  2. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC

    Directory of Open Access Journals (Sweden)

    Engelen Stefan

    2012-02-01

    Full Text Available Abstract Background Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase. Results Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome. Conclusion DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.

  3. RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells

    International Nuclear Information System (INIS)

    Gilmour, D.S.; Lis, J.T.

    1986-01-01

    By using a protein-DNA cross-linking method, we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation

  4. Reduction of postreplication DNA repair in two Escherichia coli mutants with temperature-sensitive polymerase III activity: implications for the postreplication repair pathway

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1978-01-01

    Daughter strand gaps are secondary lesions caused by interrupted DNA synthesis in the proximity of uv-induced pyrimidine dimers. The relative roles of DNA recombination and de novo DNA synthesis in filling such gaps have not been clarified, although both are required for complete closure. In this study, the Escherichia coli E486 and E511 dnaE(Ts) mutants, in which DNA polymerase I but not DNA polymerase III is active at 43 0 C, were examined. Both mutants demonstrated reduced gap closure in comparison with the progenitor strain at the nonpermissive temperature. These results and those of previous studies support the hypothesis that both DNA polymerase I and DNA polymerase III contribute to gap closure, suggesting a cooperative effort in the repair of each gap. Benzoylated, naphthoylated diethylaminoethyl-cellulose chromatography analysis for persistence of single-strand DNA in the absence of DNA polymerase III activity suggested that de novo DNA synthesis initiates the filling of daughter strand gaps

  5. Strand displacement by DNA polymerase III occurs through a tau-psi-chi link to single-stranded DNA-binding protein coating the lagging strand template.

    Science.gov (United States)

    Yuan, Quan; McHenry, Charles S

    2009-11-13

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of gamma-complex to support the reaction in the absence of tau. However, if gamma-complex is present to load beta(2), a truncated tau protein containing only domains III-V will suffice. This truncated protein is sufficient to bind both the alpha subunit of DNA polymerase (Pol) III and chipsi. This is reminiscent of the minimal requirements for Pol III to replicate short single-stranded DNA-binding protein (SSB)-coated templates where tau is only required to serve as a scaffold to hold Pol III and chi in the same complex (Glover, B., and McHenry, C. (1998) J. Biol. Chem. 273, 23476-23484). We propose a model in which strand displacement by DNA polymerase III holoenzyme depends upon a Pol III-tau-psi-chi-SSB binding network, where SSB is bound to the displaced strand, stabilizing the Pol III-template interaction. The same interaction network is probably important for stabilizing the leading strand polymerase interactions with authentic replication forks. The specificity constant (k(cat)/K(m)) for the strand displacement reaction is approximately 300-fold less favorable than reactions on single-stranded templates and proceeds with a slower rate (150 nucleotides/s) and only moderate processivity (approximately 300 nucleotides). PriA, the initiator of replication restart on collapsed or misassembled replication forks, blocks the strand displacement reaction, even if added to an ongoing reaction.

  6. Duplication and Loss of Function of Genes Encoding RNA Polymerase III Subunit C4 Causes Hybrid Incompatibility in Rice

    Directory of Open Access Journals (Sweden)

    Giao Ngoc Nguyen

    2017-08-01

    Full Text Available Reproductive barriers are commonly observed in both animals and plants, in which they maintain species integrity and contribute to speciation. This report shows that a combination of loss-of-function alleles at two duplicated loci, DUPLICATED GAMETOPHYTIC STERILITY 1 (DGS1 on chromosome 4 and DGS2 on chromosome 7, causes pollen sterility in hybrid progeny derived from an interspecific cross between cultivated rice, Oryza sativa, and an Asian annual wild rice, O. nivara. Male gametes carrying the DGS1 allele from O. nivara (DGS1-nivaras and the DGS2 allele from O. sativa (DGS2-T65s were sterile, but female gametes carrying the same genotype were fertile. We isolated the causal gene, which encodes a protein homologous to DNA-dependent RNA polymerase (RNAP III subunit C4 (RPC4. RPC4 facilitates the transcription of 5S rRNAs and tRNAs. The loss-of-function alleles at DGS1-nivaras and DGS2-T65s were caused by weak or nonexpression of RPC4 and an absence of RPC4, respectively. Phylogenetic analysis demonstrated that gene duplication of RPC4 at DGS1 and DGS2 was a recent event that occurred after divergence of the ancestral population of Oryza from other Poaceae or during diversification of AA-genome species.

  7. Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast*

    Science.gov (United States)

    Ansari, Suraiya A.; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z.; Rode, Kara A.; Barber, Wesley T.; Ellis, Laura C.; LaPorta, Erika; Orzechowski, Amanda M.; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H.

    2014-01-01

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. PMID:24727477

  8. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    Science.gov (United States)

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape.

  9. Strand Displacement by DNA Polymerase III Occurs through a τ-ψ-χ Link to Single-stranded DNA-binding Protein Coating the Lagging Strand Template*

    OpenAIRE

    Yuan, Quan; McHenry, Charles S.

    2009-01-01

    In addition to the well characterized processive replication reaction catalyzed by the DNA polymerase III holoenzyme on single-stranded DNA templates, the enzyme possesses an intrinsic strand displacement activity on flapped templates. The strand displacement activity is distinguished from the single-stranded DNA-templated reaction by a high dependence upon single-stranded DNA binding protein and an inability of γ-complex to support the reaction in the absence of τ. However, if γ-complex is p...

  10. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.

    Science.gov (United States)

    Ansari, Suraiya A; Paul, Emily; Sommer, Sebastian; Lieleg, Corinna; He, Qiye; Daly, Alexandre Z; Rode, Kara A; Barber, Wesley T; Ellis, Laura C; LaPorta, Erika; Orzechowski, Amanda M; Taylor, Emily; Reeb, Tanner; Wong, Jason; Korber, Philipp; Morse, Randall H

    2014-05-23

    Transcription by RNA polymerase II (Pol II) in eukaryotes requires the Mediator complex, and often involves chromatin remodeling and histone eviction at active promoters. Here we address the role of Mediator in recruitment of the Swi/Snf chromatin remodeling complex and its role, along with components of the preinitiation complex (PIC), in histone eviction at inducible and constitutively active promoters in the budding yeast Saccharomyces cerevisiae. We show that recruitment of the Swi/Snf chromatin remodeling complex to the induced CHA1 promoter, as well as its association with several constitutively active promoters, depends on the Mediator complex but is independent of Mediator at the induced MET2 and MET6 genes. Although transcriptional activation and histone eviction at CHA1 depends on Swi/Snf, Swi/Snf recruitment is not sufficient for histone eviction at the induced CHA1 promoter. Loss of Swi/Snf activity does not affect histone occupancy of several constitutively active promoters; in contrast, higher histone occupancy is seen at these promoters in Mediator and PIC component mutants. We propose that an initial activator-dependent, nucleosome remodeling step allows PIC components to outcompete histones for occupancy of promoter sequences. We also observe reduced promoter association of Mediator and TATA-binding protein in a Pol II (rpb1-1) mutant, indicating mutually cooperative binding of these components of the transcription machinery and indicating that it is the PIC as a whole whose binding results in stable histone eviction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Czech Academy of Sciences Publication Activity Database

    Loza-Muller, L.; Rodriguez-Corona, U.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2015-01-01

    Roč. 6, Nov 6 (2015) ISSN 1664-462X R&D Projects: GA ČR GAP305/11/2232; GA ČR GA15-08738S; GA MPO FR-TI3/588; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : histones * methylation * RNA polymerase I * Brassica * phosphoinositide Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.495, year: 2015

  12. Interactions between the cyclic AMP receptor protein and the alpha subunit of RNA polymerase at the Escherichia coli galactose operon P1 promoter.

    Science.gov (United States)

    Attey, A; Belyaeva, T; Savery, N; Hoggett, J; Fujita, N; Ishihama, A; Busby, S

    1994-10-25

    DNAase I footprinting has been used to study open complexes between Escherichia coli RNA polymerase and the galactose operon P1 promoter, both in the absence and the presence of CRP (the cyclic AMP receptor protein, a transcription activator). From the effects of deletion of the C-terminal part of the RNA polymerase alpha subunit, we deduce that alpha binds at the upstream end of both the binary RNA polymerase-galP1 and ternary RNA polymerase-CRP-galP1 complexes. Disruption of the alpha-upstream contact suppresses open complex formation at galP1 at lower temperatures. In ternary RNA polymerase-CRP-galP1 complexes, alpha appears to make direct contact with Activating Region 1 in CRP. DNAase I footprinting has been used to detect and quantify interactions between purified alpha and CRP bound at galP1.

  13. Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a synthetic oligonucleotide. The fraction of full-length DNA was several orders of magnitude higher than predicted if pyrimidine photodimers were to constitute absolute blocks to DNA replication. Recent models have suggested that pyrimidine photodimers are absolute blocks to DNA replication and that SOS-induced proteins are required to allow their bypass. Our results demonstrate that, under in vitro replication conditions, E. coli DNA polymerase III holoenzyme can insert nucleotides opposite pyrimidine dimers to a significant extent, even in the absence of SOS-induced proteins

  14. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

    DEFF Research Database (Denmark)

    Büchel, Gabriele; Carstensen, Anne; Mak, Ka-Yan

    2017-01-01

    MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes...

  15. An Evolutionary/Biochemical Connection Between Promoter- and Primer-Dependent Polymerases Revealed by Selective Evolution of Ligands by Exponential Enrichment (SELEX).

    Science.gov (United States)

    Fenstermacher, Katherine J; Achuthan, Vasudevan; Schneider, Thomas D; DeStefano, Jeffrey J

    2018-01-16

    DNA polymerases (DNAPs) recognize 3' recessed termini on duplex DNA and carry out nucleotide catalysis. Unlike promoter-specific RNA polymerases (RNAPs), no sequence specificity is required for binding or initiation of catalysis. Despite this, previous results indicate that viral reverse transcriptases bind much more tightly to DNA primers that mimic the polypurine tract. In the current report, primer sequences that bind with high affinity to Taq and Klenow polymerases were identified using a modified Selective Evolution of Ligands by Exponential Enrichment (SELEX) approach. Two Taq -specific primers that bound ∼10 (Taq1) and over 100 (Taq2) times more stably than controls to Taq were identified. Taq1 contained 8 nucleotides (5' -CACTAAAG-3') that matched the phage T3 RNAP "core" promoter. Both primers dramatically outcompeted primers with similar binding thermodynamics in PCR reactions. Similarly, exonuclease minus Klenow polymerase also selected a high affinity primer that contained a related core promoter sequence from phage T7 RNAP (5' -ACTATAG-3'). For both Taq and Klenow, even small modifications to the sequence resulted in large losses in binding affinity suggesting that binding was highly sequence-specific. The results are discussed in the context of possible effects on multi-primer (multiplex) PCR assays, molecular information theory, and the evolution of RNAPs and DNAPs. Importance This work further demonstrates that primer-dependent DNA polymerases can have strong sequence biases leading to dramatically tighter binding to specific sequences. These may be related to biological function, or be a consequences of the structural architecture of the enzyme. New sequence specificity for Taq and Klenow polymerases were uncovered and among them were sequences that contained the core promoter elements from T3 and T7 phage RNA polymerase promoters. This suggests the intriguing possibility that phage RNA polymerases exploited intrinsic binding affinities of

  16. The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus.

    Science.gov (United States)

    Weiss, Andy; Ibarra, J Antonio; Paoletti, Jessica; Carroll, Ronan K; Shaw, Lindsey N

    2014-04-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.

  17. Assignment of sigma factors of RNA polymerase to promoters in Corynebacterium glutamicum

    Czech Academy of Sciences Publication Activity Database

    Dostálová, Hana; Holátko, Jiří; Busche, T.; Rucká, Lenka; Rapoport, Andrey; Halada, Petr; Nešvera, Jan; Kalinowski, J.; Pátek, Miroslav

    2017-01-01

    Roč. 7, JUN 23 (2017), s. 1-13, č. článku 133. ISSN 2191-0855 R&D Projects: GA ČR(CZ) GA17-06991S Institutional support: RVO:61388971 Keywords : Corynebacterium glutamicum * Promoter * Sigma factor Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.825, year: 2016

  18. Mechanism of replication of ultraviolet-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli. Implications for SOS mutagenesis

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated oligodeoxynucleotide-primed single-stranded phi X174 DNA with Escherichia coli DNA polymerase III holoenzyme in the presence of single-stranded DNA-binding protein was investigated. The extent of initiation of replication on the primed single-stranded DNA was not altered by the presence of UV-induced lesions in the DNA. The elongation step exhibited similar kinetics when either unirradiated or UV-irradiated templates were used. Inhibition of the 3'----5' proofreading exonucleolytic activity of the polymerase by dGMP or by a mutD mutation did not increase bypass of pyrimidine photodimers, and neither did purified RecA protein influence the extent of photodimer bypass as judged by the fraction of full length DNA synthesized. Single-stranded DNA-binding protein stimulated bypass since in its absence the fraction of full length DNA decreased 5-fold. Termination of replication at putative pyrimidine dimers involved dissociation of the polymerase from the DNA, which could then reinitiate replication at other available primer templates. Based on these observations a model for SOS-induced UV mutagenesis is proposed

  19. Canonical Poly(A Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs.

    Directory of Open Access Journals (Sweden)

    Stefan M Bresson

    2015-10-01

    Full Text Available The human nuclear poly(A-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs. In addition, PABPN1 promotes hyperadenylation by stimulating poly(A-polymerases (PAPα/γ, but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD. Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts.

  20. AMPLIFIKASI DAN IDENTIFIKASI MUTASI REGIO PROMOTER inhA PADA ISOLAT Mycobacterium tuberculosis MULTIDRUG RESISTANCE DENGAN TEKNIK POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    Devita Kusdianingrum

    2014-10-01

    Full Text Available ABSTRAK: Sekitar 8-20% isolate M. tuberculosis yang resisten terhadap isoniazid diketahui telah mengalami mutasi pada posisi regio promoter inhA [1]. Untuk memperoleh titik mutasi pada regio promoter, maka amplifikasi fragmen target perlu untuk dilakukan. Tujuan dilakukannya penelitian ini adalah untuk mengamplifikasi regio promoter inhA, mengetahui ada tidaknya mutasi dan jenis mutasi pada isolat 134 MDR-TB. Tahap isolasi DNA dilakukan menggunakan metode Boom yang telah dimodifikasi. Fragmen target diamplifikasi dengan teknik PCR menggunakan sepasang primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ dan reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’. Amplikon disekuensing secara satu arah menggunakan forward primer. Analisis homologi dilakukan menggunakan program online BLASTn, sementara identifikasi mutasi dilakukan menggunakan software MEGA4. Hasil penelitian menunjukkan bahwa analisis homologi isolate 134 terhadap M. tuberculosis H37Rv adalah sebesar 99%. Tahap analisis mutasi menemukan terjadinya perubahan sitosin menjadi timin (CàT pada posisi -15 isolat 134 MDR-TB   ABSTRACT: Approximately 8-20% M. tuberculosis isolates that are resistant to isoniazid habe been known to have a mutation in inhA promoter region [1]. To find the mutation in inhA promoter region, it is necessary to carry out the amplification of the target fragment. The purpose of this research were to amplify the inhA promoter region and to find out if there is a mutation and type of mutation at MDR-TB isolate. DNA isolation was done by a modified Boom method. Target fragment was amplified by a pair primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ and reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’ using Polymerase Chain Reaction (PCR technique. Amplicon was sequenced in one forward direction. Homology analysis was conducted by online BLASTn program, while the mutation was identified by MEGA4. The result of this research showed that homology analysis of 134 was homolog

  1. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    lloyd eLoza-Muller

    2015-11-01

    Full Text Available Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58 and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

  2. The Transcription Bubble of the RNA Polymerase-Promoter Open Complex Exhibits Conformational Heterogeneity and Millisecond-Scale Dynamics : Implications for Transcription Start-Site Selection

    NARCIS (Netherlands)

    Robb, Nicole C.; Cordes, Thorben; Hwang, Ling Chin; Gryte, Kristofer; Duchi, Diego; Craggs, Timothy D.; Santoso, Yusdi; Weiss, Shimon; Ebright, Richard H.; Kapanidis, Achillefs N.

    2013-01-01

    Bacterial transcription is initiated after RNA polymerase (RNAP) binds to promoter DNA, melts similar to 14 bp around the transcription start site and forms a single-stranded "transcription bubble" within a catalytically active RNAP-DNA open complex (RPo). There is significant flexibility in the

  3. Phylogenetic analysis of partial RNA-polymerase blocks II and III of Rabies virus isolated from the main rabies reservoirs in Brazil.

    Science.gov (United States)

    Carnieli, Pedro; de Novaes Oliveira, Rafael; de Oliveira Fahl, Willian; de Carvalho Ruthner Batista, Helena Beatriz; Scheffer, Karin Corrêa; Iamamoto, Keila; Castilho, Juliana Galera

    2012-08-01

    This study describes the results of the sequencing and analysis of segments of Blocks II and III of the RNA polymerase L gene of Rabies virus isolates from different reservoir species of Brazil. The phylogenetic relations of the virus were determined and a variety of species-specific nucleotides were found in the analyzed areas, but the majority of these mutations were found to be synonymous. However, an analysis of the putative amino acid sequences were shown to have some characteristic mutations between some reservoir species of Brazil, indicating that there was positive selection in the RNA polymerase L gene of Rabies virus. On comparing the putative viral sequences obtained from the Brazilian isolates and other Lyssavirus, it was determined that amino acid mutations occurred in low-restriction areas. This study of the L gene of Rabies virus is the first to be conducted with samples of virus isolates from Brazil, and the results obtained will help in the determination of the phylogenetic relations of the virus.

  4. Only one ATP-binding DnaX subunit is required for initiation complex formation by the Escherichia coli DNA polymerase III holoenzyme.

    Science.gov (United States)

    Wieczorek, Anna; Downey, Christopher D; Dallmann, H Garry; McHenry, Charles S

    2010-09-17

    The DnaX complex (DnaX(3)δδ'χ psi) within the Escherichia coli DNA polymerase III holoenzyme serves to load the dimeric sliding clamp processivity factor, β(2), onto DNA. The complex contains three DnaX subunits, which occur in two forms: τ and the shorter γ, produced by translational frameshifting. Ten forms of E. coli DnaX complex containing all possible combinations of wild-type or a Walker A motif K51E variant τ or γ have been reconstituted and rigorously purified. DnaX complexes containing three DnaX K51E subunits do not bind ATP. Comparison of their ability to support formation of initiation complexes, as measured by processive replication by the DNA polymerase III holoenzyme, indicates a minimal requirement for one ATP-binding DnaX subunit. DnaX complexes containing two mutant DnaX subunits support DNA synthesis at about two-thirds the level of their wild-type counterparts. β(2) binding (determined functionally) is diminished 12-30-fold for DnaX complexes containing two K51E subunits, suggesting that multiple ATPs must be bound to place the DnaX complex into a conformation with maximal affinity for β(2). DNA synthesis activity can be restored by increased concentrations of β(2). In contrast, severe defects in ATP hydrolysis are observed upon introduction of a single K51E DnaX subunit. Thus, ATP binding, hydrolysis, and the ability to form initiation complexes are not tightly coupled. These results suggest that although ATP hydrolysis likely enhances β(2) loading, it is not absolutely required in a mechanistic sense for formation of functional initiation complexes.

  5. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    Science.gov (United States)

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  6. Structural Basis for Recognition and Sequestration of UUUOH 3 ' Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

    Energy Technology Data Exchange (ETDEWEB)

    Teplova,M.; Yuan, Y.; Phan, A.; Malinina, L.; Ilin, S.; Teplov, A.; Patel, D.

    2006-01-01

    The nuclear phosphoprotein La was identified as an autoantigen in patients with systemic lupus erythematosus and Sjogren's syndrome. La binds to and protects the UUUOH 3' terminii of nascent RNA polymerase III transcripts from exonuclease digestion. We report the 1.85 Angstroms crystal structure of the N-terminal domain of human La, consisting of La and RRM1 motifs, bound to r(U1-G2-C3-U4-G5-U6-U7-U8-U9OH). The U7-U8-U9OH 3' end, in a splayed-apart orientation, is sequestered within a basic and aromatic amino acid-lined cleft between the La and RRM1 motifs. The specificity-determining U8 residue bridges both motifs, in part through unprecedented targeting of the {beta} sheet edge, rather than the anticipated face, of the RRM1 motif. Our structural observations, supported by mutation studies of both La and RNA components, illustrate the principles behind RNA sequestration by a rheumatic disease autoantigen, whereby the UUUOH 3' ends of nascent RNA transcripts are protected during downstream processing and maturation events.

  7. RecQL5 promotes genome stabilization through two parallel mechanisms--interacting with RNA polymerase II and acting as a helicase.

    Science.gov (United States)

    Islam, M Nurul; Fox, David; Guo, Rong; Enomoto, Takemi; Wang, Weidong

    2010-05-01

    The RecQL5 helicase is essential for maintaining genome stability and reducing cancer risk. To elucidate its mechanism of action, we purified a RecQL5-associated complex and identified its major component as RNA polymerase II (Pol II). Bioinformatics and structural modeling-guided mutagenesis revealed two conserved regions in RecQL5 as KIX and SRI domains, already known in transcriptional regulators for Pol II. The RecQL5-KIX domain binds both initiation (Pol IIa) and elongation (Pol IIo) forms of the polymerase, whereas the RecQL5-SRI domain interacts only with the elongation form. Fully functional RecQL5 requires both helicase activity and associations with the initiation polymerase, because mutants lacking either activity are partially defective in the suppression of sister chromatid exchange and resistance to camptothecin-induced DNA damage, and mutants lacking both activities are completely defective. We propose that RecQL5 promotes genome stabilization through two parallel mechanisms: by participation in homologous recombination-dependent DNA repair as a RecQ helicase and by regulating the initiation of Pol II to reduce transcription-associated replication impairment and recombination.

  8. A composite method based on formal grammar and DNA structural features in detecting human polymerase II promoter region.

    Directory of Open Access Journals (Sweden)

    Sutapa Datta

    Full Text Available An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques.

  9. A Composite Method Based on Formal Grammar and DNA Structural Features in Detecting Human Polymerase II Promoter Region

    Science.gov (United States)

    Datta, Sutapa; Mukhopadhyay, Subhasis

    2013-01-01

    An important step in understanding gene regulation is to identify the promoter regions where the transcription factor binding takes place. Predicting a promoter region de novo has been a theoretical goal for many researchers for a long time. There exists a number of in silico methods to predict the promoter region de novo but most of these methods are still suffering from various shortcomings, a major one being the selection of appropriate features of promoter region distinguishing them from non-promoters. In this communication, we have proposed a new composite method that predicts promoter sequences based on the interrelationship between structural profiles of DNA and primary sequence elements of the promoter regions. We have shown that a Context Free Grammar (CFG) can formalize the relationships between different primary sequence features and by utilizing the CFG, we demonstrate that an efficient parser can be constructed for extracting these relationships from DNA sequences to distinguish the true promoter sequences from non-promoter sequences. Along with CFG, we have extracted the structural features of the promoter region to improve upon the efficiency of our prediction system. Extensive experiments performed on different datasets reveals that our method is effective in predicting promoter sequences on a genome-wide scale and performs satisfactorily as compared to other promoter prediction techniques. PMID:23437045

  10. Malignancies in Patients with Anti-RNA Polymerase III Antibodies and Systemic Sclerosis: Analysis of the EULAR Scleroderma Trials and Research Cohort and Possible Recommendations for Screening.

    Science.gov (United States)

    Lazzaroni, Maria-Grazia; Cavazzana, Ilaria; Colombo, Enrico; Dobrota, Rucsandra; Hernandez, Jasmin; Hesselstrand, Roger; Varju, Cecilia; Nagy, Gabriella; Smith, Vanessa; Caramaschi, Paola; Riccieri, Valeria; Hachulla, Eric; Balbir-Gurman, Alexandra; Chatelus, Emmanuel; Romanowska-Próchnicka, Katarzyna; Araújo, Ana Carolina; Distler, Oliver; Allanore, Yannick; Airò, Paolo

    2017-05-01

    To analyze the characteristics of anti-RNA polymerase III antibodies (anti-RNAP3)- positive patients with systemic sclerosis (SSc) in the European League Against Rheumatism Scleroderma Trials and Research group (EUSTAR) registry with a focus on the risk of cancer and the characteristics of malignancies, and the aim to provide guidelines about potential cancer screening in these patients. (1) Analysis of the EUSTAR database: 4986 patients with information on their anti-RNAP3 status were included. (2) Case-control study: additional retrospective data, including malignancy history, were queried in 13 participating EUSTAR centers; 158 anti-RNAP3+ cases were compared with 199 local anti-RNAP3- controls, matched for sex, cutaneous subset, disease duration, and age at SSc onset. (3) A Delphi exercise was performed by 82 experts to reach consensus for cancer screening in anti-RNAP3+ patients. In the EUSTAR registry, anti-RNAP3 were associated in multivariable analysis with renal crisis and diffuse cutaneous involvement. In the case-control study, anti-RNAP3 were associated with gastric antral vascular ectasia, rapid progression of skin involvement, and malignancies concomitant to SSc onset (OR 7.38, 95% CI 1.61-33.8). When compared with other anti-RNAP3+ patients, those with concomitant malignancies had older age (p < 0.001) and more frequent diffuse cutaneous involvement (p = 0.008). The Delphi exercise highlighted the need for malignancy screening at the time of diagnosis for anti-RNAP3+ patients and tight followup in the following years. Anti-RNAP3+ patients with SSc have a high risk of concomitant malignancy. These results have implications for clinical practice and suggest regular screening for cancer in anti-RNAP3+ patients.

  11. Association with Aurora-A Controls N-MYC-Dependent Promoter Escape and Pause Release of RNA Polymerase II during the Cell Cycle

    Directory of Open Access Journals (Sweden)

    Gabriele Büchel

    2017-12-01

    Full Text Available MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II. To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle.

  12. Poly(ADP-ribose polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain

    Directory of Open Access Journals (Sweden)

    Prashanth Komirishetty

    2016-01-01

    Full Text Available Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose polymerase (PARP upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  13. Poly(ADP-ribose) polymerase inhibition reveals a potential mechanism to promote neuroprotection and treat neuropathic pain.

    Science.gov (United States)

    Komirishetty, Prashanth; Areti, Aparna; Gogoi, Ranadeep; Sistla, Ramakrishna; Kumar, Ashutosh

    2016-10-01

    Neuropathic pain is triggered by the lesions to peripheral nerves which alter their structure and function. Neuroprotective approaches that limit the pathological changes and improve the behavioral outcome have been well explained in different experimental models of neuropathy but translation of such strategies to clinics has been disappointing. Experimental evidences revealed the role of free radicals, especially peroxynitrite after the nerve injury. They provoke oxidative DNA damage and consequent over-activation of the poly(ADP-ribose) polymerase (PARP) upregulates pro-inflammatory pathways, causing bioenergetic crisis and neuronal death. Along with these changes, it causes mitochondrial dysfunction leading to neuronal apoptosis. In related preclinical studies agents that neutralize the free radicals and pharmacological inhibitors of PARP have shown benefits in treating experimental neuropathy. This article reviews the involvement of PARP over-activation in trauma induced neuropathy and therapeutic significance of PARP inhibitors in the experimental neuropathy and neuropathic pain.

  14. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex.

    Science.gov (United States)

    Bae, Brian; Chen, James; Davis, Elizabeth; Leon, Katherine; Darst, Seth A; Campbell, Elizabeth A

    2015-09-08

    A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD.

  16. Human RNA polymerase II associated factor 1 complex promotes tumorigenesis by activating c-MYC transcription in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Zhi, Xiuyi; Giroux-Leprieur, Etienne; Wislez, Marie; Hu, Mu; Zhang, Yi; Shi, Huaiyin; Du, Kaiqi; Wang, Lei

    2015-01-01

    Human RNA polymerase II (RNAPII)-associated factor 1 complex (hPAF1C) plays a crucial role in protein-coding gene transcription. Overexpression of hPAF1C has been implicated in the initiation and progression of various human cancers. However, the molecular pathways involved in tumorigenesis through hPAF1C remain to be elucidated. The current study suggested hPAF1C expression as a prognostic biomarker for early stage non-small cell lung cancer (NSCLC) and patients with low hPAF1C expression levels had significantly better overall survival. Furthermore, the expression of hPAF1C was found to be positively correlated with c-MYC expression in patient tumor samples and in cancer cell lines. Mechanistic studies indicated that hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription. These results demonstrated the prognostic value of hPAF1C in early-stage NSCLC and the role of hPAF1C in the transcriptional regulation of c-MYC oncogene during NSCLC tumorigenesis. - Highlights: • hPAF1C expression is a prognostic biomarker for early stage non-small cell lung cancer. • The expression of hPAF1C was positively correlated with c-MYC in tumor samples of patients and in several NSCLC cell lines. • hPAF1C could promote lung cancer cell proliferation through regulating c-MYC transcription.

  17. The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences

    Science.gov (United States)

    Hiesel, Rudolf; Schobel, Werner; Schuster, Wolfgang; Brennicke, Axel

    1987-01-01

    Two loci encoding subunit III of the cytochrome oxidase (COX) in Oenothera mitochondria have been identified from a cDNA library of mitochondrial transcripts. A 657-bp sequence block upstream from the open reading frame is also present in the two copies of the COX subunit I gene and is presumably involved in homologous sequence rearrangement. The proximal points of sequence rearrangements are located 3 bp upstream from the COX I and 1139 bp upstream from the COX III initiation codons. The 5'-termini of both COX I and COX III mRNAs have been mapped in this common sequence confining the promoter region for the Oenothera mitochondrial COX I and COX III genes to the homologous sequence block. ImagesFig. 5. PMID:15981332

  18. Probes of eukaryotic DNA-dependent RNA polymerase II-I. Binding of 9-beta-D-arabinofuranosyl-6-mercaptopurine to the elongation subsite.

    Science.gov (United States)

    Cho, J M; Kimball, A P

    1982-08-15

    9-beta-D-Arabinofuranosyl-6-mercaptopurine (ara-6-MP) was used to affinity-label wheat germ DNA-dependent RNA polymerase II (or B) (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6). This nucleoside analogue was found to be a competitive inhibitor with respect to [3H]UMP incorporation. Natural substrates protected the enzyme from inactivation by ara-6-MP when the enzyme was preincubated with excess concentrations of substrates, suggesting that the inhibitor binds at the elongation subsite. The inhibitor bound the catalytic center of the enzyme with a stoichiometry of 0.6:1. The sulfhydryl reagent, dithiothreitol, reversed the inhibition by ara-6-MP, suggesting that the 6-thiol group of the inhibitor was interacting closely with an essential cysteine residue in the catalytic center of the enzyme. Chromatographic analysis of the pronase-digestion products of the RNA polymerase II-ara-6-MP complex also showed that ara-6-MP had bound a cysteine residue. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured [6-35S]ara-6-MP-labeled RNA polymerase II revealed that over 80% of the radioactivity was associated with the IIb subunit of the enzyme.

  19. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    Science.gov (United States)

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  20. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos terminator for rapid detection of genetically modified crops.

    Science.gov (United States)

    Xu, Chao; Li, Liang; Jin, Wujun; Wan, Yusong

    2014-10-10

    Recombinase polymerase amplification (RPA) is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37-42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S) promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos) terminator, which are widely incorporated in genetically modified (GM) crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15-25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean). With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  1. Recombinase Polymerase Amplification (RPA of CaMV-35S Promoter and nos Terminator for Rapid Detection of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2014-10-01

    Full Text Available Recombinase polymerase amplification (RPA is a novel isothermal DNA amplification and detection technology that enables the amplification of DNA within 30 min at a constant temperature of 37–42 °C by simulating in vivo DNA recombination. In this study, based on the regulatory sequence of the cauliflower mosaic virus 35S (CaMV-35S promoter and the Agrobacterium tumefaciens nopaline synthase gene (nos terminator, which are widely incorporated in genetically modified (GM crops, we designed two sets of RPA primers and established a real-time RPA detection method for GM crop screening and detection. This method could reliably detect as few as 100 copies of the target molecule in a sample within 15–25 min. Furthermore, the real-time RPA detection method was successfully used to amplify and detect DNA from samples of four major GM crops (maize, rice, cotton, and soybean. With this novel amplification method, the test time was significantly shortened and the reaction process was simplified; thus, this method represents an effective approach to the rapid detection of GM crops.

  2. A Systematic Review of Health-Promotion Programs in NCAA Division III Institutions

    Science.gov (United States)

    Hanson, Matthew

    2011-01-01

    Health-promotion in the workplace has existed for numerous years. However, the availability of health-promotion programs offered in institutions of higher education has seemed to lag behind other industries such as business. The purpose of this survey research project was to identify specific components of health-promotion programs within NCAA…

  3. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    Science.gov (United States)

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  4. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  5. Studies on the promotion of nickel—alumina coprecipitated catalysts: III. Cerium oxide

    NARCIS (Netherlands)

    Lansink Rotgerink, H.G.J.; Slaa, J.C.; van Ommen, J.G.; Ross, J.R.H.

    1988-01-01

    Three series of cerium-promoted nickel—alumina catalysts with different nickel-to-aluminium ratios each containing different amounts of cerium have been prepared and characterized. The calcination and reduction behaviour were found not to be altered by the presence of cerium. Part of the promoter

  6. Role of the RNA polymerase α subunits in CII-dependent activation of the bacteriophage λ pE promoter: identification of important residues and positioning of the α C-terminal domains

    Science.gov (United States)

    Kedzierska, Barbara; Lee, David J.; Węgrzyn, Grzegorz; Busby, Stephen J. W.; Thomas, Mark S.

    2004-01-01

    The bacteriophage λ CII protein stimulates the activity of three phage promoters, pE, pI and paQ, upon binding to a site overlapping the –35 element at each promoter. Here we used preparations of RNA polymerase carrying a DNA cleavage reagent attached to specific residues in the C-terminal domain of the RNA polymerase α subunit (αCTD) to demonstrate that one αCTD binds near position –41 at pE, whilst the other αCTD binds further upstream. The αCTD bound near position –41 is oriented such that its 261 determinant is in close proximity to σ70. The location of αCTD in CII-dependent complexes at the pE promoter is very similar to that found at many activator-independent promoters, and represents an alternative configuration for αCTD at promoters where activators bind sites overlapping the –35 region. We also used an in vivo alanine scan analysis to show that the DNA-binding determinant of αCTD is involved in stimulation of the pE promoter by CII, and this was confirmed by in vitro transcription assays. We also show that whereas the K271E substitution in αCTD results in a drastic decrease in CII-dependent activation of pE, the pI and paQ promoters are less sensitive to this substitution, suggesting that the role of αCTD at the three lysogenic promoters may be different. PMID:14762211

  7. Analyses of a whole-genome inter-clade recombination map of hepatitis delta virus suggest a host polymerase-driven and viral RNA structure-promoted template-switching mechanism for viral RNA recombination

    Science.gov (United States)

    Chao, Mei; Wang, Tzu-Chi; Lin, Chia-Chi; Yung-Liang Wang, Robert; Lin, Wen-Bin; Lee, Shang-En; Cheng, Ying-Yu; Yeh, Chau-Ting; Iang, Shan-Bei

    2017-01-01

    The genome of hepatitis delta virus (HDV) is a 1.7-kb single-stranded circular RNA that folds into an unbranched rod-like structure and has ribozyme activity. HDV redirects host RNA polymerase(s) (RNAP) to perform viral RNA-directed RNA transcription. RNA recombination is known to contribute to the genetic heterogeneity of HDV, but its molecular mechanism is poorly understood. Here, we established a whole-genome HDV-1/HDV-4 recombination map using two cloned sequences coexisting in cultured cells. Our functional analyses of the resulting chimeric delta antigens (the only viral-encoded protein) and recombinant genomes provide insights into how recombination promotes the genotypic and phenotypic diversity of HDV. Our examination of crossover distribution and subsequent mutagenesis analyses demonstrated that ribozyme activity on HDV genome, which is required for viral replication, also contributes to the generation of an inter-clade junction. These data provide circumstantial evidence supporting our contention that HDV RNA recombination occurs via a replication-dependent mechanism. Furthermore, we identify an intrinsic asymmetric bulge on the HDV genome, which appears to promote recombination events in the vicinity. We therefore propose a mammalian RNAP-driven and viral-RNA-structure-promoted template-switching mechanism for HDV genetic recombination. The present findings improve our understanding of the capacities of the host RNAP beyond typical DNA-directed transcription. PMID:28977829

  8. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    Science.gov (United States)

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  9. MsDpo4—a DinB Homolog from Mycobacterium smegmatis—Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches

    Directory of Open Access Journals (Sweden)

    Amit Sharma

    2012-01-01

    Full Text Available Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4 can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.

  10. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway.

    Science.gov (United States)

    Bonavia, R; Inda, M M; Vandenberg, S; Cheng, S-Y; Nagane, M; Hadwiger, P; Tan, P; Sah, D W Y; Cavenee, W K; Furnari, F B

    2012-09-06

    Sustaining a high growth rate requires tumors to exploit resources in their microenvironment. One example of this is the extensive angiogenesis that is a typical feature of high-grade gliomas. Here, we show that expression of the constitutively active mutant epidermal growth factor receptor, ΔEGFR (EGFRvIII, EGFR*, de2-7EGFR) is associated with significantly higher expression levels of the pro-angiogenic factor interleukin (IL)-8 in human glioma specimens and glioma stem cells. Furthermore, the ectopic expression of ΔEGFR in different glioma cell lines caused up to 60-fold increases in the secretion of IL-8. Xenografts of these cells exhibit increased neovascularization, which is not elicited by cells overexpressing wild-type (wt)EGFR or ΔEGFR with an additional kinase domain mutation. Analysis of the regulation of IL-8 by site-directed mutagenesis of its promoter showed that ΔEGFR regulates its expression through the transcription factors nuclear factor (NF)-κB, activator protein 1 (AP-1) and CCAAT/enhancer binding protein (C/EBP). Glioma cells overexpressing ΔEGFR showed constitutive activation and DNA binding of NF-κB, overexpression of c-Jun and activation of its upstream kinase c-Jun N-terminal kinase (JNK) and overexpression of C/EBPβ. Selective pharmacological or genetic targeting of the NF-κB or AP-1 pathways efficiently blocked promoter activity and secretion of IL-8. Moreover, RNA interference-mediated knock-down of either IL-8 or the NF-κB subunit p65, in ΔEGFR-expressing cells attenuated their ability to form tumors and to induce angiogenesis when injected subcutaneously into nude mice. On the contrary, the overexpression of IL-8 in glioma cells lacking ΔEGFR potently enhanced their tumorigenicity and produced highly vascularized tumors, suggesting the importance of this cytokine and its transcription regulators in promoting glioma angiogenesis and tumor growth.

  11. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    Science.gov (United States)

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  12. Melibiose permease and alpha-galactosidase of Escherichia coli: Identification by selective labeling using a T7 RNA polymerase/promoter expression system

    International Nuclear Information System (INIS)

    Pourcher, T.; Bassilana, M.; Sarkar, H.K.; Kaback, H.R.; Leblanc, G.

    1990-01-01

    Identification and selective labeling of the melibiose permease and alpha-galactosidase in Escherichia coli, which are encoded by the melB and melA genes, respectively, have been accomplished by selectively labeling the two gene products with a T7 RNA polymerase expression system. Following generation of a novel EcoRI restriction site in the intergenic sequence between the two genes of the mel operon by oligonucleotide-directed, site-specific mutagenesis, melA and melB were separately inserted into plasmid pT7-6 of the T7 expression system. Expression of melB was markedly enhanced by placing a strong, synthetic ribosome binding site at an optimal distance upstream from the initiation codon of melB. Expression of cloned gene products was characterized functionally and by performing autoradiographic analysis on total cell, inner membrane, and cytoplasmic proteins from cells pulse labeled with (35S)methionine in the presence of rifampicin and resolved by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results first confirm that alpha-galactosidase is a cytoplasmic protein with an Mr of 50K; in contrast, the membrane-bound melibiose permease is identified as a protein with an apparent Mr of 39K, a value significantly higher than that of 30K previously suggested

  13. Vanadium(III)-l-cysteine enhances the sensitivity of murine breast adenocarcinoma cells to cyclophosphamide by promoting apoptosis and blocking angiogenesis.

    Science.gov (United States)

    Basu, Abhishek; Bhattacharjee, Arin; Baral, Rathindranath; Biswas, Jaydip; Samanta, Amalesh; Bhattacharya, Sudin

    2017-05-01

    Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of vanadium-based compounds. In addition to its preventive efficacy, studies have also indicated the abilities of vanadium-based compounds to induce cell death selectively toward malignant cells. Therefore, the objective of the present investigation is to improve the therapeutic efficacy and toxicity profile of an alkylating agent, cyclophosphamide, by the concurrent use of an organovanadium complex, vanadium(III)-l-cysteine. In this study, vanadium(III)-l-cysteine (1 mg/kg body weight, per os) was administered alone as well as in combination with cyclophosphamide (25 mg/kg body weight, intraperitoneal) in concomitant and pretreatment schedule in mice bearing breast adenocarcinoma cells. The results showed that the combination treatment significantly decreased the tumor burden and enhanced survivability of tumor-bearing mice through generation of reactive oxygen species in tumor cells. These ultimately led to DNA damage, depolarization of mitochondrial membrane potential, and apoptosis in tumor cells. Further insight into the molecular pathway disclosed that the combination treatment caused upregulation of p53 and Bax and suppression of Bcl-2 followed by the activation of caspase cascade and poly (ADP-ribose) polymerase cleavage. Administration of vanadium(III)-l-cysteine also resulted in significant attenuation of peritoneal vasculature and sprouting of the blood vessels by decreasing the levels of vascular endothelial growth factor A and matrix metalloproteinase 9 in the ascites fluid of tumor-bearing mice. Furthermore, vanadium(III)-l-cysteine significantly attenuated cyclophosphamide-induced hematopoietic, hepatic, and genetic damages and provided additional survival advantages. Hence, this study suggested that vanadium(III)-l-cysteine may offer potential therapeutic benefit in combination with cyclophosphamide by augmenting anticancer efficacy and

  14. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Arun, E-mail: arun.azad@bccancer.bc.ca [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Pathology, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Bukczynska, Patricia; Jackson, Susan [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Haput, Ygal; Cullinane, Carleen [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia); McArthur, Grant A.; Solomon, Benjamin [Division of Cancer Research, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Department of Medicine, St. Vincent' s Hospital, University of Melbourne, Parkville, Victoria (Australia); Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria (Australia)

    2014-02-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.

  15. Co-targeting Deoxyribonucleic Acid–Dependent Protein Kinase and Poly(Adenosine Diphosphate-Ribose) Polymerase-1 Promotes Accelerated Senescence of Irradiated Cancer Cells

    International Nuclear Information System (INIS)

    Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A.; Solomon, Benjamin

    2014-01-01

    Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination

  16. Regulation of HFE expression by poly(ADP-ribose) polymerase-1 (PARP1) through an inverted repeat DNA sequence in the distal promoter.

    Science.gov (United States)

    Pelham, Christopher; Jimenez, Tamara; Rodova, Marianna; Rudolph, Angela; Chipps, Elizabeth; Islam, M Rafiq

    2013-12-01

    Hereditary hemochromatosis (HH) is a common autosomal recessive disorder of iron overload among Caucasians of northern European descent. Over 85% of all cases with HH are due to mutations in the hemochromatosis protein (HFE) involved in iron metabolism. Although the importance in iron homeostasis is well recognized, the mechanism of sensing and regulating iron absorption by HFE, especially in the absence of iron response element in its gene, is not fully understood. In this report, we have identified an inverted repeat sequence (ATGGTcttACCTA) within 1700bp (-1675/+35) of the HFE promoter capable to form cruciform structure that binds PARP1 and strongly represses HFE promoter. Knockdown of PARP1 increases HFE mRNA and protein. Similarly, hemin or FeCl3 treatments resulted in increase in HFE expression by reducing nuclear PARP1 pool via its apoptosis induced cleavage, leading to upregulation of the iron regulatory hormone hepcidin mRNA. Thus, PARP1 binding to the inverted repeat sequence on the HFE promoter may serve as a novel iron sensing mechanism as increased iron level can trigger PARP1 cleavage and relief of HFE transcriptional repression. © 2013.

  17. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  18. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    OpenAIRE

    Leem, S H; Ropp, P A; Sugino, A

    1994-01-01

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in ...

  19. Transcription of human 7S K DNA in vitro and in vivo is exclusively controlled by an upstream promoter

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, H.; Benecke, B.J.

    1988-02-25

    The authors have analyzed the transcription of a recently isolated human 7S K RNA gene in vitro and in vivo. In contrast to hitherto characterized class III genes (genes transcribed by RNA polymerase III), the coding sequence of this gene is not required for faithful and efficient transcription by RNA polymerase III. In fact, a procaryotic vector DNA sequence was efficiently transcribed by RNA polymerase III under the control of the 7S K RNA gene upstream sequence in vitro and in vivo. S/sub 1/-nuclease protection analyses confirmed that the 7S K 5'flanking sequence was sufficient for accurate transcription initiation. These data demonstrate that 7S K DNA represents a novel class III gene, the promoter elements of which are located outside the coding sequence.

  20. The effectiveness of IDF and ATP-III in identifying metabolic syndrome and the usefulness of these tools for health-promotion in older Taiwanese.

    Science.gov (United States)

    Chen, M M; Tsai, A C

    2013-04-01

    The aim of this study was to compare the effectiveness of IDF (International Diabetes Federation) and ATP-III (National Cholesterol Education Program-Adult Treatment Panel III) for predicting metabolic syndrome, and to evaluate the usefulness of these definitions for health promotion. A cross-sectional study. A national random sample. A population representative sample of 1021 54-91 year-old Taiwanese. Subjects were measured for anthropometric and biochemical indicators and rated for the presence of metabolic syndrome using the two definitions. We evaluated the effectiveness of the two definitions in predicting MetS among those who had specific metabolic disorders. Results were analyzed with Student t-test and McNemar's test. Among the 918 subjects who had one or more MetS-item disorders, ATP-III rated greater proportions of subjects as having MetS than IDF, but both definitions predicted less than 50% (37.7% and 45.4%, respectively) as having MetS. Compared to IDF, ATP-III rated a greater proportion of subjects as having MetS, but both definitions missed more than 50% of subjects who had metabolic disorder(s). Since those who are missed have as much need for lifestyle intervention, the definitions appear not appropriate for health promotion.

  1. Role of exonucleolytic processing and polymerase-DNA association in bypass of lesions during replication in vitro. Significance for SOS-targeted mutagenesis

    International Nuclear Information System (INIS)

    Shwartz, H.; Shavitt, O.; Livneh, Z.

    1988-01-01

    The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level, inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected

  2. EGFR and EGFRvIII Promote Angiogenesis and Cell Invasion in Glioblastoma: Combination Therapies for an Effective Treatment

    Directory of Open Access Journals (Sweden)

    Stefanie Keller

    2017-06-01

    Full Text Available Epidermal growth factor receptor (EGFR and the mutant EGFRvIII are major focal points in current concepts of targeted cancer therapy for glioblastoma multiforme (GBM, the most malignant primary brain tumor. The receptors participate in the key processes of tumor cell invasion and tumor-related angiogenesis and their upregulation correlates with the poor prognosis of glioma patients. Glioma cell invasion and increased angiogenesis share mechanisms of the degradation of the extracellular matrix (ECM through upregulation of ECM-degrading proteases as well as the activation of aberrant signaling pathways. This review describes the role of EGFR and EGFRvIII in those mechanisms which might offer new combined therapeutic approaches targeting EGFR or EGFRvIII together with drug treatments against proteases of the ECM or downstream signaling to increase the inhibitory effects of mono-therapies.

  3. The expanding polymerase universe.

    Science.gov (United States)

    Goodman, M F; Tippin, B

    2000-11-01

    Over the past year, the number of known prokaryotic and eukaryotic DNA polymerases has exploded. Many of these newly discovered enzymes copy aberrant bases in the DNA template over which 'respectable' polymerases fear to tread. The next step is to unravel their functions, which are thought to range from error-prone copying of DNA lesions, somatic hypermutation and avoidance of skin cancer, to restarting stalled replication forks and repairing double-stranded DNA breaks.

  4. EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation

    Czech Academy of Sciences Publication Activity Database

    Eskilsson, E.; Rosland, G.V.; Talasila, K.M.; Knappskog, S.; Keunen, O.; Sottoriva, A.; Foerster, S.; Solecki, G.; Taxt, T.; Jiřík, Radovan; Fritah, S.; Harter, P.N.; Valk, K.; Al Hossain, J.; Joseph, J.V.; Jahedi, R.; Saed, H.S.; Piccirillo, S.G.; Spiteri, I.; Leiss, L.; Euskirchen, P.; Graziani, G.; Daubon, T.; Lund-Johansen, M.; Enger, P.O.; Winkler, F.; Ritter, C.; Niclou, Simone P.; Watts, C.; Bjerkvig, R.; Miletic, H.

    2016-01-01

    Roč. 18, č. 12 (2016), s. 1644-1655 ISSN 1522-8517 R&D Projects: GA ČR GAP102/12/2380; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : angiogenesis * EGFR * EGFRvIII * glioblastoma * invasion Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.786, year: 2016

  5. Interactive Tailored Website to Promote Sun Protection and Skin Self-Check Behaviors in Patients With Stage 0-III Melanoma

    Science.gov (United States)

    2017-11-15

    Stage 0 Skin Melanoma; Stage I Skin Melanoma; Stage IA Skin Melanoma; Stage IB Skin Melanoma; Stage II Skin Melanoma; Stage IIA Skin Melanoma; Stage IIB Skin Melanoma; Stage IIC Skin Melanoma; Stage III Skin Melanoma; Stage IIIA Skin Melanoma; Stage IIIB Skin Melanoma; Stage IIIC Skin Melanoma

  6. Changes in histoanatomical distribution of types I, III and V collagen promote adaptative remodeling in posterior tibial tendon rupture

    Directory of Open Access Journals (Sweden)

    Érika Satomi

    2008-01-01

    Full Text Available INTRODUCTION: Posterior tibial tendon dysfunction is a common cause of adult flat foot deformity, and its etiology is unknown. PURPOSE: In this study, we characterized the morphologic pattern and distribution of types I, III and V collagen in posterior tibial tendon dysfunction. METHOD: Tendon samples from patients with and without posterior tibial tendon dysfunction were stained by immunofluorescence using antibodies against types I, III and V collagen. RESULTS: Control samples showed that type V deposited near the vessels only, while surgically obtained specimens displayed type V collagen surrounding other types of collagen fibers in thicker adventitial layers. Type III collagen levels were also increased in pathological specimens. On the other hand, amounts of collagen type I, which represents 95% of the total collagen amount in normal tendon, were decreased in pathological specimens. CONCLUSION: Fibrillogenesis in posterior tibial tendon dysfunction is altered due to higher expression of types III and V collagen and a decreased amount of collagen type I, which renders the originating fibrils structurally less resistant to mechanical forces.

  7. Mycobacterium leprae specific genomic target in the promoter region of probable 4-alpha-glucanotransferase (ML1545) gene with potential sensitivity for polymerase chain reaction based diagnosis of leprosy.

    Science.gov (United States)

    Sundeep Chaitanya, V; Das, Madhusmita; Eisenbach, Tiffany L; Amoako, Angela; Rajan, Lakshmi; Horo, Ilse; Ebenezer, Mannam

    2016-06-01

    With the absence of an effective diagnostic tool for leprosy, cases with negative bacteriological index and limited clinical manifestations often pose diagnostic challenges. In this study, we investigated the utility of a novel Mycobacterium leprae specific 112-bp DNA sequence in the promoter region of probable 4-alpha-glucanotransferase (pseudogene, ML1545) for polymerase chain reaction (PCR) based diagnosis of leprosy in comparison to that of the RLEP gene. DNA was extracted from slit skin scrapings of 180 newly diagnosed untreated leprosy cases that were classified as per Ridley Jopling classifications and bacteriological index (BI). Primers were designed using Primer Blast 3.0 and PCR was performed with annealing temperatures of 61°C for ML1545 and 58°C for the RLEP gene using conventional gradient PCR. The results indicated a significant increase in PCR positivity of ML1545 when compared to RLEP across the study groups (164/180 [91.11%] were positive for ML1545 whereas 114/180 (63.33%) were positive for RLEP [pleprosy cases with negative BI, 28 (48.28%) were positive for RLEP and 48 (82.76%) were positive for ML1545 (p=.0001, z=3.8). Of the 42 borderline tuberculoid leprosy cases, 23 (54.76%) were positive for RLEP whereas 37 (88.09%) were positive for ML1545 (pleprosy and BI-positive groups. ML1545 can be a potential gene target for PCR-based diagnosis of leprosy especially in cases where clinical manifestations were minimal. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  8. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  9. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex.

    Science.gov (United States)

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-08-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats-while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. © The Author 2016. Published by Oxford University Press.

  10. Amine and Titanium (IV Chloride, Boron (III Chloride or Zirconium (IV Chloride-Promoted Baylis-Hillman Reactions

    Directory of Open Access Journals (Sweden)

    Shi-Cong Cui

    2001-10-01

    Full Text Available The Baylis-Hillman reactions of various aryl aldehydes with methyl vinyl ketone at temperatures below -20oC using Lewis acids such as titanium (IV chloride, boron (III chloride or zirconium (IV chloride in the presence of a catalytic amount of selected amines used as a Lewis bases afford the chlorinated compounds 1 as the major product in very high yields. Acrylonitrile can also undergo the same reaction to give the corresponding chlorinated product in moderate yield. A plausible reaction mechanism is proposed. However, if the reaction was carried out at room temperature (ca. 20oC, then the Z-configuration of the elimination product 3, derived from 1, was formed as the major product.

  11. Structure and function of DNA polymerase μ

    International Nuclear Information System (INIS)

    Matsumoto, Takuro; Maezawa, So

    2013-01-01

    DNA polymerases are enzymes playing the central role in DNA metabolism, including DNA replication, DNA repair and recombination. DNA polymerase μ (pol μ DNA polymerase λ (pol λ) and terminal deoxynucleotidyltransferase (TdT) in X family DNA polymerases function in non-homologous end-joining (NHEJ), which is the predonmiant repair pathway for DNA double-strand breaks (DSBs). NHEJ involves enzymes that capture both ends of the broken DNA strand, bring them together in a synaptic DNA-protein complex, and repair the DSB. Pol μ and pol λ fill in the gaps at the junction to maintain the genomic integrity. TdT synthesizes N region at the junction during V(D)J recombination and promotes diversity of immunoglobulin or T-cell receptor gene. Among these three polymerases, the regulatory mechanisms of pol μ remain rather unclear. We have approached the mechanism of pol μ from both sides of structure and cellular dynamics. Here, we propose some new insights into pol μ and the probable NHEJ model including our findings. (author)

  12. Strong and anisotropic superexchange in the single-molecule magnet (SMM) [MnIII(6)OsIII]3+: promoting SMM behavior through 3d-5d transition metal substitution.

    Science.gov (United States)

    Hoeke, Veronika; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2014-01-06

    The reaction of the in situ generated trinuclear triplesalen complex [(talent-Bu2)MnIII3(solv)n]3+ with (Ph4P)3[OsIII(CN)6] and NaClO4·H2O affords [MnIII6OsIII](ClO4)3 (= [{(talent-Bu2)MnIII3}2{OsIII(CN)6}](ClO4)3) in the presence of the oxidizing agent [(tacn)2NiIII](ClO4)3 (tacn =1,4,7-triazacyclononane), while the reaction of [(talent-Bu2)MnIII3(solv)n]3+ with K4[OsII(CN)6] and NaClO4·H2O yields [MnIII6OsII](ClO4)2 under an argon atmosphere. The molecular structure of [MnIII6OsIII]3+ as determined by single-crystal X-ray diffraction is closely related to the already published [MnIII6Mc]3+ complexes (Mc = CrIII, FeIII, CoIII, MnIII). The half-wave potential of the OsIII/OsII couple is E1/2 = 0.07 V vs Fc+/Fc. The FT-IR and electronic absorption spectra of [MnIII6OsII]2+ and [MnIII6OsIII]3+ exhibit distinct features of dicationic and tricationic [MnIII6Mc]n+ complexes, respectively. The dc magnetic data (μeff vs T, M vs B, and VTVH) of [MnIII6OsII]2+ are successfully simulated by a full-matrix diagonalization of a spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, indicating antiferromagnetic MnIII–MnIII interactions within the trinuclear triplesalen subunits (JMn–Mn(1) = −(0.53 ± 0.01) cm–1, Ĥex = −2∑iSMM [MnIII6OsIII]3+ compared to the 3d analogue [MnIII6FeIII]3+ due to the stronger and anisotropic Mc–MnIII exchange interaction.

  13. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  14. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    Science.gov (United States)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  15. CDK9-dependent RNA polymerase II pausing controls transcription initiation.

    Science.gov (United States)

    Gressel, Saskia; Schwalb, Björn; Decker, Tim Michael; Qin, Weihua; Leonhardt, Heinrich; Eick, Dirk; Cramer, Patrick

    2017-10-10

    Gene transcription can be activated by decreasing the duration of RNA polymerase II pausing in the promoter-proximal region, but how this is achieved remains unclear. Here we use a 'multi-omics' approach to demonstrate that the duration of polymerase pausing generally limits the productive frequency of transcription initiation in human cells ('pause-initiation limit'). We further engineer a human cell line to allow for specific and rapid inhibition of the P-TEFb kinase CDK9, which is implicated in polymerase pause release. CDK9 activity decreases the pause duration but also increases the productive initiation frequency. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. CDK9 activity is also associated with long-range chromatin interactions, suggesting that enhancers can influence the pause-initiation limit to regulate transcription.

  16. Role of the polymerase 3 in mutagenesis in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Zaborowska, D.; Baranowska, H.; Zuk, J.

    1994-01-01

    UV induction of cdc + revertants in thermosensitive cdc2 mutants (polymerase III) in the restrictive conditions (37 C) and after preincubation 4 h in permissive condition (23 C) has showed, that preincubation in permissive temperature, when polymerase III (CDC2 gene) is active, the frequency and mutation yield is lower. In HB75 (cdc2-1/cdc2-1) strain at the restrictive conditions the increase in the frequency of reversion in the meth his and trp mutants was observed after UV treatment. These data suggest, that cdc2 mutants lacked proofreading 3'-5' exonuclease activity besides the polymerase activity. (author). 11 refs, 3 tabs

  17. DNA polymerase I is required for premeiotic DNA replication and sporulation but not for X-ray repair in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Budd, M.E.; Wittrup, K.D.; Bailey, J.E.; Campbell, J.L.

    1989-01-01

    We have used a set of seven temperature-sensitive mutants in the DNA polymerase I gene of Saccharomyces cerevisiae to investigate the role of DNA polymerase I in various aspects of DNA synthesis in vivo. Previously, we showed that DNA polymerase I is required for mitotic DNA replication. Here we extend our studies to several stages of meiosis and repair of X-ray-induced damage. We find that sporulation is blocked in all of the DNA polymerase temperature-sensitive mutants and that premeiotic DNA replication does not occur. Commitment to meiotic recombination is only 2% of wild-type levels. Thus, DNA polymerase I is essential for these steps. However, repair of X-ray-induced single-strand breaks is not defective in the DNA polymerase temperature-sensitive mutants, and DNA polymerase I is therefore not essential for repair of such lesions. These results suggest that DNA polymerase II or III or both, the two other nuclear yeast DNA polymerases for which roles have not yet been established, carry out repair in the absence of DNA polymerase I, but that DNA polymerase II and III cannot compensate for loss of DNA polymerase I in meiotic replication and recombination. These results do not, however, rule out essential roles for DNA polymerase II or III or both in addition to that for DNA polymerase I

  18. Active RNA polymerases: mobile or immobile molecular machines?

    Directory of Open Access Journals (Sweden)

    Argyris Papantonis

    2010-07-01

    Full Text Available It is widely assumed that active RNA polymerases track along their templates to produce a transcript. We test this using chromosome conformation capture and human genes switched on rapidly and synchronously by tumour necrosis factor alpha (TNFalpha; one is 221 kbp SAMD4A, which a polymerase takes more than 1 h to transcribe. Ten minutes after stimulation, the SAMD4A promoter comes together with other TNFalpha-responsive promoters. Subsequently, these contacts are lost as new downstream ones appear; contacts are invariably between sequences being transcribed. Super-resolution microscopy confirms that nascent transcripts (detected by RNA fluorescence in situ hybridization co-localize at relevant times. Results are consistent with an alternative view of transcription: polymerases fixed in factories reel in their respective templates, so different parts of the templates transiently lie together.

  19. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  20. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.

    Science.gov (United States)

    Magill, C P; Jackson, S P; Bell, S D

    2001-12-14

    Archaea possess two general transcription factors that are required to recruit RNA polymerase (RNAP) to promoters in vitro. These are TBP, the TATA-box-binding protein and TFB, the archaeal homologue of TFIIB. Thus, the archaeal and eucaryal transcription machineries are fundamentally related. In both RNAP II and archaeal transcription systems, direct contacts between TFB/TFIIB and the RNAP have been demonstrated to mediate recruitment of the polymerase to the promoter. However the subunit(s) directly contacted by these factors has not been identified. Using systematic yeast two-hybrid and biochemical analyses we have identified an interaction between the N-terminal domain of TFB and an evolutionarily conserved subunit of the RNA polymerase, RpoK. Intriguingly, homologues of RpoK are found in all three nuclear RNA polymerases (Rpb6) and also in the bacterial RNA polymerase (omega-subunit).

  1. A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties

    Directory of Open Access Journals (Sweden)

    Aldo Pagano

    2012-09-01

    Full Text Available We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.

  2. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  4. Advancing Polymerase Ribozymes Towards Self-Replication

    Science.gov (United States)

    Tjhung, K. F.; Joyce, G. F.

    2017-07-01

    Autocatalytic replication and evolution in vitro by (i) a cross-chiral RNA polymerase catalyzing polymerization of mononucleotides of the opposite handedness; (ii) non-covalent assembly of component fragments of an existing RNA polymerase ribozyme.

  5. Epigenetic Metabolite Acetate Inhibits Class I/II Histone Deacetylases, Promotes Histone Acetylation, and Increases HIV-1 Integration in CD4+ T Cells.

    Science.gov (United States)

    Bolduc, Jean-François; Hany, Laurent; Barat, Corinne; Ouellet, Michel; Tremblay, Michel J

    2017-08-15

    In this study, we investigated the effect of acetate, the most concentrated short-chain fatty acid (SCFA) in the gut and bloodstream, on the susceptibility of primary human CD4 + T cells to HIV-1 infection. We report that HIV-1 replication is increased in CD3/CD28-costimulated CD4 + T cells upon acetate treatment. This enhancing effect correlates with increased expression of the early activation marker CD69 and impaired class I/II histone deacetylase (HDAC) activity. In addition, acetate enhances acetylation of histones H3 and H4 and augments HIV-1 integration into the genome of CD4 + T cells. Thus, we propose that upon antigen presentation, acetate influences class I/II HDAC activity that transforms condensed chromatin into a more relaxed structure. This event leads to a higher level of viral integration and enhanced HIV-1 production. In line with previous studies showing reactivation of latent HIV-1 by SCFAs, we provide evidence that acetate can also increase the susceptibility of primary human CD4 + T cells to productive HIV-1 infection. IMPORTANCE Alterations in the fecal microbiota and intestinal epithelial damage involved in the gastrointestinal disorder associated with HIV-1 infection result in microbial translocation that leads to disease progression and virus-related comorbidities. Indeed, notably via production of short-chain fatty acids, bacteria migrating from the lumen to the intestinal mucosa could influence HIV-1 replication by epigenetic regulatory mechanisms, such as histone acetylation. We demonstrate that acetate enhances virus production in primary human CD4 + T cells. Moreover, we report that acetate impairs class I/II histone deacetylase activity and increases integration of HIV-1 DNA into the host genome. Therefore, it can be postulated that bacterial metabolites such as acetate modulate HIV-1-mediated disease progression. Copyright © 2017 American Society for Microbiology.

  6. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    Science.gov (United States)

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.

    Directory of Open Access Journals (Sweden)

    Olivier Martínez

    Full Text Available (S(C5', R(P α,β-D- Constrained Nucleic Acids (CNA are dinucleotide building blocks that can feature either B-type torsional angle values or non-canonical values, depending on their 5'C and P absolute stereochemistry. These CNA are modified neither on the nucleobase nor on the sugar structure and therefore represent a new class of nucleotide with specific chemical and structural characteristics. They promote marked bending in a single stranded DNA so as to preorganize it into a loop-like structure, and they have been shown to induce rigidity within oligonucleotides. Following their synthesis, studies performed on CNA have only focused on the constraints that this family of nucleotides introduced into DNA. On the assumption that bending in a DNA template may produce a terminator structure, we investigated whether CNA could be used as a new strong terminator of polymerization in PCR. We therefore assessed the efficiency of CNA as a terminator in PCR, using triethylene glycol phosphate units as a control. Analyses were performed by denaturing gel electrophoresis and several PCR products were further analysed by sequencing. The results showed that the incorporation of only one CNA was always skipped by the polymerases tested. On the other hand, two CNA units always stopped proofreading polymerases, such as Pfu DNA polymerase, as expected for a strong replication terminator. Non-proofreading enzymes, e.g. Taq DNA polymerase, did not recognize this modification as a strong terminator although it was predominantly stopped by this structure. In conclusion, this first functional use of CNA units shows that these modified nucleotides can be used as novel polymerization terminators of proofreading polymerases. Furthermore, our results lead us to propose that CNA and their derivatives could be useful tools for investigating the behaviour of different classes of polymerases.

  8. How to switch the motor on: RNA polymerase initiation steps at the single-molecule level

    NARCIS (Netherlands)

    Marchetti, M.; Malinowska, A.; Heller, I.; Wuite, G. J. L.

    RNA polymerase (RNAP) is the central motor of gene expression since it governs the process of transcription. In prokaryotes, this holoenzyme is formed by the RNAP core and a sigma factor. After approaching and binding the specific promoter site on the DNA, the holoenzyme-promoter complex undergoes

  9. Influenza Polymerase Can Adopt an Alternative Configuration Involving a Radical Repacking of PB2 Domains.

    Science.gov (United States)

    Thierry, Eric; Guilligay, Delphine; Kosinski, Jan; Bock, Thomas; Gaudon, Stephanie; Round, Adam; Pflug, Alexander; Hengrung, Narin; El Omari, Kamel; Baudin, Florence; Hart, Darren J; Beck, Martin; Cusack, Stephen

    2016-01-07

    Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Å to bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Escherichia coli DnaE Polymerase Couples Pyrophosphatase Activity to DNA Replication.

    Directory of Open Access Journals (Sweden)

    Fabio Lapenta

    Full Text Available DNA Polymerases generate pyrophosphate every time they catalyze a step of DNA elongation. This elongation reaction is generally believed as thermodynamically favoured by the hydrolysis of pyrophosphate, catalyzed by inorganic pyrophosphatases. However, the specific action of inorganic pyrophosphatases coupled to DNA replication in vivo was never demonstrated. Here we show that the Polymerase-Histidinol-Phosphatase (PHP domain of Escherichia coli DNA Polymerase III α subunit features pyrophosphatase activity. We also show that this activity is inhibited by fluoride, as commonly observed for inorganic pyrophosphatases, and we identified 3 amino acids of the PHP active site. Remarkably, E. coli cells expressing variants of these catalytic residues of α subunit feature aberrant phenotypes, poor viability, and are subject to high mutation frequencies. Our findings indicate that DNA Polymerases can couple DNA elongation and pyrophosphate hydrolysis, providing a mechanism for the control of DNA extension rate, and suggest a promising target for novel antibiotics.

  11. Cobalt Ion Promoted Redox Cascade: A Route to Spiro Oxazine-Oxazepine Derivatives and a Dinuclear Cobalt(III) Complex of an N-(1,4-Naphthoquinone)-o-aminophenol Derivative.

    Science.gov (United States)

    Mondal, Sandip; Bera, Sachinath; Maity, Suvendu; Ghosh, Prasanta

    2017-11-06

    The study discloses that the redox activity of N-(1,4-naphthoquinone)-o-aminophenol derivatives (L R H 2 ) containing a (phenol)-NH-(1,4-naphthoquinone) fragment is notably different from that of a (phenol)-NH-(phenol) precursor. The former is a platform for a redox cascade. L R H 2 is redox noninnocent and exists in Cat-N-(1,4-naphthoquinone)(2-) (L R 2- ) and SQ-N-(1,4-naphthoquinone) (L R •- ) states in the complexes. Reactions of L R H 2 with cobalt(II) salts in MeOH in air promote a cascade affording spiro oxazine-oxazepine derivatives ( OX L R ) in good yields, when R = H, Me, t Bu. Spiro oxazine-oxazepine derivatives are bioactive, and such a molecule has so far not been isolated by a schematic route. In this context this cascade is significant. Dimerization of L R H 2 → OX L R in MeOH is a (6H + + 6e) oxidation reaction and is composed of formations of four covalent bonds and 6-exo-trig and 7-endo-trig cyclization based on C-O coupling reactions, where MeOH is the source of a proton and the ester function. It was established that the active cascade precursor is [(L Me •- )Co III Cl 2 ] (A). Notably, formation of a spiro derivative was not detected in CH 3 CN and the reaction ends up furnishing A. The route of the reaction is tunable by R, when R = NO 2 , it is a (2e + 4H + ) oxidation reaction affording a dinuclear L R 2- complex of cobalt(III) of the type [(L NO2 2- ) 2 Co III 2 (OMe) 2 (H 2 O) 2 ] (1) in good yields. No cascade occurs with zinc(II) ion even in MeOH and produces a L Me •- complex of type [(L Me •- )Zn II Cl 2 ] (2). The intermediate A and 2 exhibit strong EPR signals at g = 2.008 and 1.999, confrming the existence of L Me •- coordinated to low-spin cobalt(III) and zinc(II) ions. The intermediates of L R H 2 → OX L R conversion were analyzed by ESI mass spectrometry. The molecular geometries of OX L R and 1 were confirmed by X-ray crystallography, and the spectral features were elucidated by TD DFT calculations.

  12. Interaction of gold nanoparticles with Pfu DNA polymerase and effect on polymerase chain reaction.

    Science.gov (United States)

    Sun, L-P; Wang, S; Zhang, Z-W; Ma, Y-Y; Lai, Y-Q; Weng, J; Zhang, Q-Q

    2011-03-01

    The interaction of gold nanoparticles with Pfu DNA polymerase has been investigated by a number of biological, optical and electronic spectroscopic techniques. Polymerase chain reaction was performed to show gold nanoparticles' biological effect. Ultraviolet-visible and circular dichroism spectra analysis were applied to character the structure of Pfu DNA polymerase after conjugation with gold nanoparticles. X-ray photoelectron spectroscopy was used to investigate the bond properties of the polymerase-gold nanoparticles complex. The authors demonstrate that gold nanoparticles do not affect the amplification efficiency of polymerase chain reaction using Pfu DNA polymerase, and Pfu DNA polymerase displays no significant changes of the secondary structure upon interaction with gold nanoparticles. The adsorption of Pfu DNA polymerase to gold nanoparticles is mainly through Au-NH(2) bond and electrostatic interaction. These findings may have important implications regarding the safety issue as gold nanoparticles are widely used in biomedical applications.

  13. Richard III

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...

  14. Polymerase Gamma Disease through the Ages

    Science.gov (United States)

    Saneto, Russell P.; Naviaux, Robert K.

    2010-01-01

    The most common group of mitochondrial disease is due to mutations within the mitochondrial DNA polymerase, polymerase gamma 1 ("POLG"). This gene product is responsible for replication and repair of the small mitochondrial DNA genome. The structure-function relationship of this gene product produces a wide variety of diseases that at times, seems…

  15. DNA Polymerase Fidelity: Beyond Right and Wrong.

    Science.gov (United States)

    Washington, M Todd

    2016-11-01

    Accurate DNA replication depends on the ability of DNA polymerases to discriminate between correctly and incorrectly paired nucleotides. In this issue of Structure, Batra et al. (2016) show the structural basis for why DNA polymerases do not efficiently add correctly paired nucleotides immediately after incorporating incorrectly paired ones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Huang, Ying; Li, Meng-Yao; Wu, Peng; Xu, Zhi-Sheng; Que, Feng; Wang, Feng; Xiong, Ai-Sheng

    2016-10-07

    Transmitted by the whitefly Bemisia tabaci, tomato yellow leaf curly virus (TYLCV) has posed serious threats to plant growth and development. Plant innate immune systems against various threats involve WRKY Group III transcription factors (TFs). This group participates as a major component of biological processes in plants. In this study, 6 WRKY Group III TFs (SolyWRKY41, SolyWRKY42, SolyWRKY53, SolyWRKY54, SolyWRKY80, and SolyWRKY81) were identified, and these TFs responded to TYLCV infection. Subcellular localization analysis indicated that SolyWRKY41 and SolyWRKY54 were nuclear proteins in vivo. Many elements, including W-box, were found in the promoter region of Group III TFs. Interaction network analysis revealed that Group III TFs could interact with other proteins, such as mitogen-activated protein kinase 5 (MAPK) and isochorismate synthase (ICS), to respond to biotic and abiotic stresses. Positive and negative expression patterns showed that WRKY Group III genes could also respond to TYLCV infection in tomato. The DNA content of TYLCV resistant lines after SolyWRKY41 and SolyWRKY54 were subjected to virus-induced gene silencing (VIGS) was lower than that of the control lines. In the present study, 6 WRKY Group III TFs in tomato were identified to respond to TYLCV infection. Quantitative real-time-polymerase chain reaction (RT-qPCR) and VIGS analyses demonstrated that Group III genes served as positive and negative regulators in tomato-TYLCV interaction. WRKY Group III TFs could interact with other proteins by binding to cis elements existing in the promoter regions of other genes to regulate pathogen-related gene expression.

  17. PARDISEKO III

    International Nuclear Information System (INIS)

    Jordan, H.; Sack, C.

    1975-05-01

    This report gives a detailed description of the latest version of the PARDISEKO code, PARDISEKO III, with particular emphasis on the numerical and programming methods employed. The physical model and its relation to nuclear safety as well as a description and the results of confirming experiments are treated in detail in the Karlsruhe Nuclear Research Centre report KFK-1989. (orig.) [de

  18. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  19. DNA polymerase preference determines PCR priming efficiency.

    Science.gov (United States)

    Pan, Wenjing; Byrne-Steele, Miranda; Wang, Chunlin; Lu, Stanley; Clemmons, Scott; Zahorchak, Robert J; Han, Jian

    2014-01-30

    Polymerase chain reaction (PCR) is one of the most important developments in modern biotechnology. However, PCR is known to introduce biases, especially during multiplex reactions. Recent studies have implicated the DNA polymerase as the primary source of bias, particularly initiation of polymerization on the template strand. In our study, amplification from a synthetic library containing a 12 nucleotide random portion was used to provide an in-depth characterization of DNA polymerase priming bias. The synthetic library was amplified with three commercially available DNA polymerases using an anchored primer with a random 3' hexamer end. After normalization, the next generation sequencing (NGS) results of the amplified libraries were directly compared to the unamplified synthetic library. Here, high throughput sequencing was used to systematically demonstrate and characterize DNA polymerase priming bias. We demonstrate that certain sequence motifs are preferred over others as primers where the six nucleotide sequences at the 3' end of the primer, as well as the sequences four base pairs downstream of the priming site, may influence priming efficiencies. DNA polymerases in the same family from two different commercial vendors prefer similar motifs, while another commercially available enzyme from a different DNA polymerase family prefers different motifs. Furthermore, the preferred priming motifs are GC-rich. The DNA polymerase preference for certain sequence motifs was verified by amplification from single-primer templates. We incorporated the observed DNA polymerase preference into a primer-design program that guides the placement of the primer to an optimal location on the template. DNA polymerase priming bias was characterized using a synthetic library amplification system and NGS. The characterization of DNA polymerase priming bias was then utilized to guide the primer-design process and demonstrate varying amplification efficiencies among three commercially

  20. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double strand break DNA repair.

    Science.gov (United States)

    Leem, S H; Ropp, P A; Sugino, A

    1994-08-11

    We identified and purified a new DNA polymerase (DNA polymerase IV), which is similar to mammalian DNA polymerase beta, from Saccharomyces cerevisiae and suggested that it is encoded by YCR14C (POLX) on chromosome III. Here, we provided a direct evidence that the purified DNA polymerase IV is indeed encoded by POLX. Strains harboring a pol4 deletion mutation exhibit neither mitotic growth defect nor a meiosis defect, suggesting that DNA polymerase IV participates in nonessential functions in DNA metabolism. The deletion strains did not exhibit UV-sensitivity. However, they did show weak sensitivity to MMS-treatment and exhibited a hyper-recombination phenotype when intragenic recombination was measured during meiosis. Furthermore, MAT alpha pol4 delta segregants had a higher frequency of illegitimate mating with a MAT alpha tester strain than that of wild-type cells. These results suggest that DNA polymerase IV participates in a double-strand break repair pathway. A 3.2kb of the POL4 transcript was weakly expressed in mitotically growing cells. During meiosis, a 2.2 kb POL4 transcript was greatly induced, while the 3.2 kb transcript stayed at constant levels. This induction was delayed in a swi4 delta strain during meiosis, while no effect was observed in a swi6 delta strain.

  1. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  2. Fermilab III

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding.

  3. Evolving a polymerase for hydrophobic base analogues.

    Science.gov (United States)

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  4. Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms

    International Nuclear Information System (INIS)

    Liu Jinfeng; Xing Da; Shen Xingyan; Zhu Debin

    2005-01-01

    With the development of biotechnology, more and more genetically modified organisms (GMOs) have entered commercial market. Because of the safety concerns, detection and characterization of GMOs have attracted much attention recently. Electrochemiluminescence (ECL) method is a chemiluminescent (CL) reaction of species generated electrochemically on an electrode surface. It is a highly efficient and accurate detection method. In this paper, ECL polymerase chain reaction (PCR) combined with two types of nucleic acid probes hybridization was applied to detect GMOs for the first time. Whether the organisms contain GM components was discriminated by detecting the cauliflower mosaic virus 35S (CaMV35S) promoter and nopaline synthase (NOS) terminator. The experiment results show that the detection limit is 100 fmol of PCR products. The promoter and the terminator can be clearly detected in GMOs. The method may provide a new means for the detection of GMOs due to its simplicity and high efficiency

  5. Single molecule imaging of RNA polymerase II using atomic force microscopy

    International Nuclear Information System (INIS)

    Rhodin, Thor; Fu Jianhua; Umemura, Kazuo; Gad, Mohammed; Jarvis, Suzi; Ishikawa, Mitsuru

    2003-01-01

    An atomic force microscopy (AFM) study of the shape, orientation and surface topology of RNA polymerase II supported on silanized freshly cleaved mica was made. The overall aim is to define the molecular topology of RNA polymerase II in appropriate fluids to help clarify the relationship of conformational features to biofunctionality. A Nanoscope III atomic force microscope was used in the tapping mode with oxide-sharpened (8-10 nm) Si 3 N 4 probes in aqueous zinc chloride buffer. The main structural features observed by AFM were compared to those derived from electron-density plots based on X-ray crystallographic studies. The conformational features included a bilobal silhouette with an inverted umbrella-shaped crater connected to a reaction site. These studies provide a starting point for constructing a 3D-AFM profiling analysis of proteins such as RNA polymerase complexes

  6. Probing the Conformational Landscape of DNA Polymerases Using Diffusion-Based Single-Molecule FRET

    NARCIS (Netherlands)

    Hohlbein, J.; Kapanidis, A.N.

    2016-01-01

    Monitoring conformational changes in DNA polymerases using single-molecule Förster resonance energy transfer (smFRET) has provided new tools for studying fidelity-related mechanisms that promote the rejection of incorrect nucleotides before DNA synthesis. In addition to the previously known open

  7. Role of deoxyribonucleic acid polymerases and deoxyribonucleic acid ligase in x-ray-induced repair synthesis in toluene-treated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Billen, D.; Hellermann, G.R.

    1976-01-01

    Toluene-treated Escherichia coli mutants have been used to study the roles of deoxyribonucleic acid (DNA) polymerases I, II, and III, and of DNA ligase in repair synthesis and strand rejoining following X-irradiation. In cells possessing all three DNA polymerases, both a greater amount of repair synthesis (''exaggerated'' repair synthesis) and failure of ligation are observed when DNA ligase activity is inhibited. In a mutant lacking the polymerizing activity of DNA polymerase I, exaggerated repair synthesis is not observed, and strand rejoining does not occur even if DNA ligase is fully activated. In a mutant possessing the polymerizing activity of DNA polymerase I but lacking its 5' → 3' exonuclease activity, exaggerated repair synthesis is minimal. After irradiation, DNA polymerases II and III are capable of carrying out an adenosine 5'-triphosphate-dependent repair synthesis, but rejoining of strand breaks does not occur and exaggerated synthesis is not seen whether DNA ligase is active or not. These results suggest that DNA polymerase I and DNA ligase act together to limit repair synthesis after X irradiation and that both are necessary in toluene-treated cells for strand rejoining. DNA polymerases II and III apparently cannot complete chain elongation and gap filling, and therefore repair carried out by these enzymes does not respond to ligase action

  8. Towards the molecular bases of polymerase dynamics

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1991-03-01

    One aspect of the strong relationship that is known to exist between the processes of DNA replication and transcription is manifest in the coupling of the rates of movement of the replication fork (r f ) and RNA polymerase (r t ). We address two issues concerning the largely unexplored area of polymerase dynamics: (i) The validity of an approximate kinematic formula linking r f and r t suggested by experiments in which transcription is initiated in some prokaryotes with the antibiotic streptolydigin, and (ii) What are the molecular bases of the kinematic formula? An analysis of the available data suggests possible molecular bases for polymerase dynamics. In particular, we are led to a hypothesis: In active chromatin r t may depend on the length (λ t ) of the transcript of the primary messenger RNA (pre-mRNA). This new effect is subject to experimental verification. We discuss possible experiments that may be performed in order to test this prediction. (author). Refs, 6 tabs

  9. Insertion of the T3 DNA polymerase thioredoxin binding domain enhances the processivity and fidelity of Taq DNA polymerase

    OpenAIRE

    Davidson, John F.; Fox, Richard; Harris, Dawn D.; Lyons-Abbott, Sally; Loeb, Lawrence A.

    2003-01-01

    Insertion of the T3 DNA polymerase thioredoxin binding domain (TBD) into the distantly related thermostable Taq DNA polymerase at an analogous position in the thumb domain, converts the Taq DNA polymerase from a low processive to a highly processive enzyme. Processivity is dependent on the presence of thioredoxin. The enhancement in processivity is 20–50-fold when compared with the wild-type Taq DNA polymerase or to the recombinant polymerase in the absence of thioredoxin. The recombinant Taq...

  10. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition.

    Directory of Open Access Journals (Sweden)

    Emily N Kroutter

    2009-04-01

    Full Text Available Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1, an autonomous non-Long Terminal Repeat (LTR retrotransposon, and its non-autonomous partners-such as the retropseudogenes, SVA, and the SINE, Alu-are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV and the retrotransposition timing parallels that of L1. Furthermore, the "pol II Alu transcript" behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing.

  11. RNA Polymerase II–The Transcription Machine

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. RNA Polymerase II – The Transcription Machine - Nobel Prize in Chemistry 2006. Jiyoti Verma Aruna Naorem Anand Kumar Manimala Sen Parag Sadhale. General Article Volume 12 Issue 3 March 2007 pp 47-53 ...

  12. Determining Annealing Temperatures for Polymerase Chain Reaction

    Science.gov (United States)

    Porta, Angela R.; Enners, Edward

    2012-01-01

    The polymerase chain reaction (PCR) is a common technique used in high school and undergraduate science teaching. Students often do not fully comprehend the underlying principles of the technique and how optimization of the protocol affects the outcome and analysis. In this molecular biology laboratory, students learn the steps of PCR with an…

  13. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M

    2012-01-01

    Antisense noncoding transcripts, genes-within-genes, and convergent gene pairs are prevalent among eukaryotes. The existence of such transcription units raises the question of what happens when RNA polymerase II (RNAPII) molecules collide head-to-head. Here we use a combination of biochemical...

  14. Interaction of sigma 70 with Escherichia coli RNA polymerase core enzyme studied by surface plasmon resonance.

    Science.gov (United States)

    Ferguson, A L; Hughes, A D; Tufail, U; Baumann, C G; Scott, D J; Hoggett, J G

    2000-09-22

    The interaction between the core form of bacterial RNA polymerases and sigma factors is essential for specific promoter recognition, and for coordinating the expression of different sets of genes in response to varying cellular needs. The interaction between Escherichia coli core RNA polymerase and sigma 70 has been investigated by surface plasmon resonance. The His-tagged form of sigma 70 factor was immobilised on a Ni2+-NTA chip for monitoring its interaction with core polymerase. The binding constant for the interaction was found to be 1.9x10(-7) M, and the dissociation rate constant for release of sigma from core, in the absence of DNA or transcription, was 4x10(-3) s(-1), corresponding to a half-life of about 200 s.

  15. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    Science.gov (United States)

    Cline, J; Braman, J C; Hogrefe, H H

    1996-09-15

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at pH 8.5-9.1. Under these conditions, the error rate of exo- Pfu was approximately 40-fold higher (5 x 10(-5)) than the error rate of Pfu. As the reaction pH was raised from pH 8 to 9, the error rate of Pfu decreased approximately 2-fold, while the error rate of exo- Pfu increased approximately 9-fold. An increase in error rate with pH has also been noted for the exonuclease-deficient DNA polymerases Taq and exo- Klenow, suggesting that the parameters which influence replication error rates may be similar in pol l- and alpha-like polymerases. Finally, the fidelity of 'long PCR' DNA polymerase mixtures was examined. The error rates of a Taq/Pfu DNA polymerase mixture and a Klentaq/Pfu DNA polymerase mixture were found to be less than the error rate of Taq DNA polymerase, but approximately 3-4-fold higher than the error rate of Pfu DNA polymerase.

  16. Functional roles of DNA polymerases β and γ

    International Nuclear Information System (INIS)

    Huebscher, U.; Kuenzle, C.C.; Spadari, S.

    1979-01-01

    The physiological functions of DNA polymerases (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, EC2.7.7.7)β and γ were investigated by using neuronal nuclei and synaptosomes isolated from rat brain. uv irradiation of neuronal nuclei from 60-day-old rats resulted in a 7- to 10-fold stimulation of DNA repair synthesis attributable to DNA polymerase β which, at this developmental stage, is virtually the only DNA polymerase present in the nuclei. No repair synthesis could be elicited by treating the nuclei with N-methyl-N-nitrosourea, but this was probably due to the inability of brain tissue to excise alkylated bases from DNA. The role of DNA polymerase γ was studied in synaptosomes by using a system mimicking in vivo mitochondrial DNA synthesis. By showing that under these conditions, DNA replication occurs in miatochondria, and exploiting the fact that DNA polymerase γ is the only DNA polymerase present in mitochondria, evidence was obtained for a role of DNA polymerase γ in mitochondrial DNA replication. Based on these results and on the wealth of literature on DNA polymerase α, we conclude that DNA polymerase α is mainly responsible for DNA replication in nuclei, DNA polymerase β is involved in nuclear DNA repair, and DNA polymerase γ is the mitochondrial replicating enzyme. However, minor roles for DNA polymerase α in DNA repair or for DNA polymerase β in DNA replication cannot be excluded

  17. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    Science.gov (United States)

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Compilation and analysis of Escherichia coli promoter DNA sequences.

    OpenAIRE

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter ...

  19. BRF1 mutations alter RNA polymerase III–dependent transcription and cause neurodevelopmental anomalies

    Science.gov (United States)

    Hög, Friederike; Dentici, Maria Lisa; Tan, Perciliz L.; Sowada, Nadine; Medeira, Ana; Gueneau, Lucie; Thiele, Holger; Kousi, Maria; Lepri, Francesca; Wenzeck, Larissa; Blumenthal, Ian; Radicioni, Antonio; Schwarzenberg, Tito Livio; Mandriani, Barbara; Fischetto, Rita; Morris-Rosendahl, Deborah J.; Altmüller, Janine; Reymond, Alexandre; Nürnberg, Peter; Merla, Giuseppe; Dallapiccola, Bruno; Katsanis, Nicholas; Cramer, Patrick; Kubisch, Christian

    2015-01-01

    RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III–related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development. PMID:25561519

  20. Chemical fidelity of an RNA polymerase ribozyme

    DEFF Research Database (Denmark)

    Attwater, J.; Tagami, S.; Kimoto, M.

    2013-01-01

    for function. Here we have explored the chemical fidelity, i.e. substrate selectivity and specificity for both single and multiple catalytic steps of the Z RNA polymerase ribozyme-a modern day analogue of the primordial RNA replicase. Using a wide range of nucleotide analogues and ionic conditions, we observe......The emergence of catalytically active RNA enzymes (ribozymes) is widely believed to have been an important transition in the origin of life. In the context of a likely heterogeneous chemical environment, substrate specificity and selectivity of these primordial enzymes would have been critical...

  1. Bordetella pertussis diagnosed by polymerase chain reaction

    DEFF Research Database (Denmark)

    Birkebaek, N H; Heron, I; Skjødt, K

    1994-01-01

    The object of this work was to test the polymerase chain reaction (PCR) for demonstration of Bordetella pertussis (BP) in nasopharyngeal secretions. The method was applied to patients with recently diagnosed pertussis, as verified by BP culture. In order to test the sensitivity and specificity...... in 25 patients in whose nasopharyngeal secretions BP had been demonstrated after 4-7 days of culture. The detection limit of PCR in aqueous solution was 1-2 BP bacteria per reaction tube. PCR was 100% specific for BP, showing no response with other Bordetella species or other bacteria known to colonize...

  2. Thrombomodulin Is Silenced in Malignant Mesothelioma by a Poly(ADP-ribose) Polymerase-1-mediated Epigenetic Mechanism

    Czech Academy of Sciences Publication Activity Database

    Nocchi, L.; Tomasetti, M.; Amati, M.; Neužil, Jiří; Santarelli, L.; Saccucci, F.

    2011-01-01

    Roč. 286, č. 22 (2011), s. 19478-19488 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA204/08/0811 Institutional research plan: CEZ:AV0Z50520701 Keywords : Thrombomodulin gene promoter * malignant mesothelioma * poly(ADP-ribose) polymerase-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  3. RNA polymerase activity of Ustilago maydis virus

    Energy Technology Data Exchange (ETDEWEB)

    Yie, S.W.

    1986-01-01

    Ustilago maydis virus has an RNA polymerase enzyme which is associated with virion capsids. In the presence of Mg/sup 2 +/ ion and ribonucleotide triphosphate, the enzyme catalyzes the in vitro synthesis of mRNA by using dsRNA as a template. The products of the UmV RNA polymerase were both ssRNA and dsRNA. The dsRNA was determined by characteristic mobilities in gel electrophoresis, lack of sensitivity to RNase, and specific hybridization tests. The ssRNAs were identified by elution from a CF-11 column and by their RNase sensitivity. On the basis of the size of ssRNAs, it was concluded that partial transcripts were produced from H dsRNA segments, and full length transcripts were produced from M and L dsRNA segments. The following observations indicates that transcription occurs by strand displacement; (1) Only the positive strand of M2 dsRNA was labeled by the in vitro reaction. (2) The M2 dsRNA which had been labeled with /sup 32/''P-UTP in vitro could be chased from dsRNA with unlabeled UTP. The transcription products of three UmV strains were compared, and the overall pattern of transcription was very similar among them.

  4. Replicative DNA polymerase mutations in cancer☆

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-01-01

    Three DNA polymerases — Pol α, Pol δ and Pol ɛ — are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson–Crick base pairing and 3′exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to ‘polymerase proofreading associated polyposis’ (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an ‘ultramutator’ phenotype, with a dramatic increase in base substitutions. PMID:24583393

  5. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Solving the RNA polymerase I structural puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Morcillo, María [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Taylor, Nicholas M. I. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Gruene, Tim [Georg-August-University, Tammannstrasse 4, 37077 Göttingen (Germany); Legrand, Pierre [SOLEIL Synchrotron, L’Orme de Merisiers, Saint Aubin, Gif-sur-Yvette (France); Rashid, Umar J. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Ruiz, Federico M. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Steuerwald, Ulrich; Müller, Christoph W. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Fernández-Tornero, Carlos, E-mail: cftornero@cib.csic.es [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany)

    2014-10-01

    Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.

  7. Factor C*, the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process.

    OpenAIRE

    Brun, R P; Ryan, K; Sollner-Webb, B

    1994-01-01

    Factor C* is the component of the RNA polymerase I holoenzyme (factor C) that allows specific transcriptional initiation on a factor D (SL1)- and UBF-activated rRNA gene promoter. The in vitro transcriptional capacity of a preincubated rDNA promoter complex becomes exhausted very rapidly upon initiation of transcription. This is due to the rapid depletion of C* activity. In contrast, C* activity is not unstable in the absence of transcription, even in the presence of nucleoside triphosphates ...

  8. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    Science.gov (United States)

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry.

  9. Real-time observation of the initiation of RNA polymerase II transcription.

    Science.gov (United States)

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  10. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair

    Directory of Open Access Journals (Sweden)

    Elisa Mentegari

    2016-08-01

    Full Text Available DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell’s genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  11. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair.

    Science.gov (United States)

    Mentegari, Elisa; Kissova, Miroslava; Bavagnoli, Laura; Maga, Giovanni; Crespan, Emmanuele

    2016-08-31

    DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases β and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

  12. DNA extraction from coral reef sediment bacteria for the polymerase chain reaction.

    Science.gov (United States)

    Guthrie, J N; Moriarty, D J; Blackall, L L

    2000-12-15

    A rapid and effective method for the direct extraction of high molecular weight amplifiable DNA from two coral reef sediments was developed. DNA was amplified by the polymerase chain reaction (PCR) using 16S rDNA specific primers. The amplicons were digested with HaeIII, HinP1I and MspI and separated using polyacrylamide gel electrophoresis and silver staining. The resulting amplified ribosomal DNA restriction analysis (ARDRA) patterns were used as a fingerprint to discern differences between the coral reef sediment samples. Results indicated that ARDRA is an effective method for determining differences within the bacterial community amongst different environmental samples.

  13. Antithrombin III blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003661.htm Antithrombin III blood test To use the sharing features on this page, ... a protein that helps control blood clotting. A blood test can determine the amount of AT III present ...

  14. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases.

    Science.gov (United States)

    Lavysh, Daria; Sokolova, Maria; Slashcheva, Marina; Förstner, Konrad U; Severinov, Konstantin

    2017-02-14

    Bacteriophage AR9 is a recently sequenced jumbo phage that encodes two multisubunit RNA polymerases. Here we investigated the AR9 transcription strategy and the effect of AR9 infection on the transcription of its host, Bacillus subtilis Analysis of whole-genome transcription revealed early, late, and continuously expressed AR9 genes. Alignment of sequences upstream of the 5' ends of AR9 transcripts revealed consensus sequences that define early and late phage promoters. Continuously expressed AR9 genes have both early and late promoters in front of them. Early AR9 transcription is independent of protein synthesis and must be determined by virion RNA polymerase injected together with viral DNA. During infection, the overall amount of host mRNAs is significantly decreased. Analysis of relative amounts of host transcripts revealed notable differences in the levels of some mRNAs. The physiological significance of up- or downregulation of host genes for AR9 phage infection remains to be established. AR9 infection is significantly affected by rifampin, an inhibitor of host RNA polymerase transcription. The effect is likely caused by the antibiotic-induced killing of host cells, while phage genome transcription is solely performed by viral RNA polymerases. IMPORTANCE Phages regulate the timing of the expression of their own genes to coordinate processes in the infected cell and maximize the release of viral progeny. Phages also alter the levels of host transcripts. Here we present the results of a temporal analysis of the host and viral transcriptomes of Bacillus subtilis infected with a giant phage, AR9. We identify viral promoters recognized by two virus-encoded RNA polymerases that are a unique feature of the phiKZ-related group of phages to which AR9 belongs. Our results set the stage for future analyses of highly unusual RNA polymerases encoded by AR9 and other phiKZ-related phages. Copyright © 2017 Lavysh et al.

  15. Pathogen detection by the polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chitpatima, S T; Settachan, D; Pornsilpatip, J; Visawapoka, U [Pramongkutklao College of Medicine, Bangkok (Thailand). Molecular Biology Lab.; Dvorak, D R [Amersham International Ltd., Singapore (Singapore)

    1994-05-01

    In recent years, significant advances in the knowledge of DNA and its make up have led to the development of a powerful technique called polymerase chain reaction (PCR). Since the advent of PCR, laboratories around the globe have been exploiting this technology to bridge limitations or to overcome common problems encountered in molecular biology techniques. In addition, this technology has been employed successfully in diagnostic and basic scientific research and development. The true potentials of this technology is realized in early detection of pathogens and genetic abnormalities. In this paper two PCR protocols are described. The first is for detection of HIV-1 DNA in blood, the other for detection of rabies virus RNA in brain cells. 6 refs, 3 figs, 1 tab.

  16. Polymerase chain reaction methods (PCR in agrobiotechnology

    Directory of Open Access Journals (Sweden)

    Taški-Ajduković Ksenija

    2006-01-01

    Full Text Available The agricultural biotechnology applies polymerase chain reaction (PCR technology at numerous steps throughout product development. The major uses of PCR technology during product development include gene discovery and cloning, vector construction, transformant identification, screening and characterization as well as seed quality control. Commodity and food companies as well as testing laboratories rely on PCR technology to verify the presence or absence of genetically modification (GM in a product or to quantify the amount of GM material present in the product. This article describes the fundamental elements of PCR analysis and its application to the testing of grains and highlights some of areas to which attention must be paid in order to produce reliable test results. The article also discuses issues related to the analysis of different matrixes and the effect they may have on the accuracy of the PCR analytical results.

  17. Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis

    OpenAIRE

    Xu, Cuiling; Maxwell, Brian A.; Suo, Zucai

    2014-01-01

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme c...

  18. Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure.

    Science.gov (United States)

    Mirzakhanyan, Yeva; Gershon, Paul D

    2017-09-01

    The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size. Copyright © 2017 American Society for Microbiology.

  19. RNA binding and replication by the poliovirus RNA polymerase

    International Nuclear Information System (INIS)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to 32 P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K a for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 x 10 9 M -1 . The polymerase binds to a subgenomic RNAs which contain the 3' end of the genome with a K a similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3' noncoding region

  20. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    Science.gov (United States)

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Functional conservation of RNA polymerase II in fission and budding yeasts.

    Science.gov (United States)

    Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P

    2000-02-04

    The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.

  2. Cooperative DNA binding of heterologous proteins: Evidence for contact between the cyclic AMP receptor protein and RNA polymerase

    International Nuclear Information System (INIS)

    Ren, Y.L.; Garges, S.; Adhya, S.; Krakow, J.S.

    1988-01-01

    Four cAMP-independent receptor protein mutants (designated CRP* mutants) isolated previously are able to activate in vivo gene transcription in the absence of cAMP and their activity can be enhanced by cAMP or cGMP. One of the four mutant proteins, CRP*598 (Arg-142 to His, Ala-144 to Thr), has been characterized with regard to its conformational properties and ability to bind to and support abortive initiation from the lac promoter. Binding of wild-type CRP to its site on the lac promoter and activation of abortive initiation by RNA polymerase on this promoter are effected by cAMP but not by cGMP. CRP*598 can activate lacP + -directed abortive initiation in the presence of cAMP and less efficiently in the presence of cGMP or in the absence of cyclic nucleotide. DNase I protection (footprinting) indicates that cAMP-CRP* binds to its site on the lac promoter whereas unliganded CRP* and cGMP-CRP* form a stable complex with the [ 32 P]lacP + fragment only in the presence of RNA polymerase, showing cooperative binding of two heterologous proteins. This cooperative binding provides strong evidence for a contact between CRP and RNA polymerase for activation of transcription. Although cGMP binds to CRP, it cannot replace cAMP in effecting the requisite conformational transition necessary for site-specific promoter binding

  3. Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases.

    Science.gov (United States)

    Sidstedt, Maja; Romsos, Erica L; Hedell, Ronny; Ansell, Ricky; Steffen, Carolyn R; Vallone, Peter M; Rådström, Peter; Hedman, Johannes

    2017-02-07

    Digital PCR (dPCR) enables absolute quantification of nucleic acids by partitioning of the sample into hundreds or thousands of minute reactions. By assuming a Poisson distribution for the number of DNA fragments present in each chamber, the DNA concentration is determined without the need for a standard curve. However, when analyzing nucleic acids from complex matrixes such as soil and blood, the dPCR quantification can be biased due to the presence of inhibitory compounds. In this study, we evaluated the impact of varying the DNA polymerase in chamber-based dPCR for both pure and impure samples using the common PCR inhibitor humic acid (HA) as a model. We compared the TaqMan Universal PCR Master Mix with two alternative DNA polymerases: ExTaq HS and Immolase. By using Bayesian modeling, we show that there is no difference among the tested DNA polymerases in terms of accuracy of absolute quantification for pure template samples, i.e., without HA present. For samples containing HA, there were great differences in performance: the TaqMan Universal PCR Master Mix failed to correctly quantify DNA with more than 13 pg/nL HA, whereas Immolase (1 U) could handle up to 375 pg/nL HA. Furthermore, we found that BSA had a moderate positive effect for the TaqMan Universal PCR Master Mix, enabling accurate quantification for 25 pg/nL HA. Increasing the amount of DNA polymerase from 1 to 5 U had a strong effect for ExTaq HS, elevating HA-tolerance four times. We also show that the average Cq values of positive reactions may be used as a measure of inhibition effects, e.g., to determine whether or not a dPCR quantification result is reliable. The statistical models developed to objectively analyze the data may also be applied in quality control. We conclude that the choice of DNA polymerase in dPCR is crucial for the accuracy of quantification when analyzing challenging samples.

  4. Polymerase chain reaction to search for Herpes viruses in uveitic ...

    African Journals Online (AJOL)

    Objective: To analyse aqueous polymerase chain reaction (PCR) results in patients diagnosed with undifferentiated uveitis ... Cite as: Laaks D, Smit DP, Harvey J. Polymerase chain reaction to search for Herpes viruses in uveitic and healthy eyes: a South African ... may be mild and patients do not seek medical attention.

  5. A Double Polymerase Chain Reaction Method for Detecting African ...

    African Journals Online (AJOL)

    Keywords: African swine fever, Swine vesicular disease, Polymerase chain reaction, Recombinant plasmids ... included 5 μL of 10×Pfu DNA polymerase buffer,. 1 μL of Pfu DNA .... Garcia-Barreno B, Sanz A, Nogal ML, Vinuela E,. Enjuanes L.

  6. Polymerase chain reaction for the detection of Mycobacterium leprae

    NARCIS (Netherlands)

    Hartskeerl, R. A.; de Wit, M. Y.; Klatser, P. R.

    1989-01-01

    A polymerase chain reaction (PCR) using heat-stable Taq polymerase is described for the specific detection of Mycobacterium leprae, the causative agent of leprosy. A set of primers was selected on the basis of the nucleotide sequence of a gene encoding the 36 kDa antigen of M. leprae. With this set

  7. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    The reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is a highly specific polymerase chain reaction (PCR) method that allows one to detect very low transcription levels of functional gene(s) in soil. RT-qPCR helps us to know the active members of the microbial community, and their activities can be ...

  8. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Nimrat; Pabla, Ritu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Siede, Wolfram, E-mail: wolfram.siede@unthsc.edu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States)

    2013-02-08

    Highlights: ► DNA polymerase η is detectable in mitochondria of budding yeast. ► Pol η reduces UV-induced mitochondrial base pair substitutions and frameshifts. ► For UV-induced base pair substitutions, Pol η and Pol ζ interact epistatically. -- Abstract: DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.

  9. Kinetic mechanism of DNA polymerase I (Klenow)

    International Nuclear Information System (INIS)

    Kuchta, R.D.; Mizrahi, V.; Benkovic, P.A.; Johnson, K.A.; Benkovic, S.J.

    1987-01-01

    The minimal kinetic scheme for DNA polymerization catalyzed by the Klenow fragment of DNA polymerase I (KF) from Escherichia coli has been determined with short DNA oligomers of defined sequence, labeled with [ 32 P]-nucleotides. A key feature of this scheme is a minimal two-step sequence that interconverts the ternary KF-DNA/sub n/-dNTP and KF-DNA/sub n+1/-PP/sub i/ complexes. The rate is not limited by the actual polymerization but by a separate step, possibly important in ensuring fidelity. Evidence for this sequence is supplied by the observation of biphasic kinetics in single-turnover pyrophosphorolysis experiments (the microscopic reverse of polymerization). Data analysis then provides an estimate of the internal equilibrium constant. The dissociations of DNA, dNTP, and PP/sub i/ from the various binary and ternary complexes were measured by partitioning (isotope-trapping) experiments. The rate constant for DNA dissociation from KF is sequence dependent and is rate limiting during nonprocessive DNA synthesis. The combination of single-turnover (both directions) and isotope-trapping experiments provides sufficient information to permit a quantitative evaluation of the kinetic scheme for specific DNA sequences

  10. Metallothionein (MT)-III

    DEFF Research Database (Denmark)

    Carrasco, J; Giralt, M; Molinero, A

    1999-01-01

    Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family...... injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize...... the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated...

  11. Discovery of cyanophage genomes which contain mitochondrial DNA polymerase.

    Science.gov (United States)

    Chan, Yi-Wah; Mohr, Remus; Millard, Andrew D; Holmes, Antony B; Larkum, Anthony W; Whitworth, Anna L; Mann, Nicholas H; Scanlan, David J; Hess, Wolfgang R; Clokie, Martha R J

    2011-08-01

    DNA polymerase γ is a family A DNA polymerase responsible for the replication of mitochondrial DNA in eukaryotes. The origins of DNA polymerase γ have remained elusive because it is not present in any known bacterium, though it has been hypothesized that mitochondria may have inherited the enzyme by phage-mediated nonorthologous displacement. Here, we present an analysis of two full-length homologues of this gene, which were found in the genomes of two bacteriophages, which infect the chlorophyll-d containing cyanobacterium Acaryochloris marina. Phylogenetic analyses of these phage DNA polymerase γ proteins show that they branch deeply within the DNA polymerase γ clade and therefore share a common origin with their eukaryotic homologues. We also found homologues of these phage polymerases in the environmental Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA) database, which fell in the same clade. An analysis of the CAMERA assemblies containing the environmental homologues together with the filter fraction metadata indicated some of these assemblies may be of bacterial origin. We also show that the phage-encoded DNA polymerase γ is highly transcribed as the phage genomes are replicated. These findings provide data that may assist in reconstructing the evolution of mitochondria.

  12. Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Plotch, S.J.; Palant, O.; Gluzman, Y.

    1989-01-01

    A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer, RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, [α- 32 P]UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro

  13. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J. (Pharmasset); (Emerald)

    2012-08-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.

  14. DNA polymerase η mutational signatures are found in a variety of different types of cancer.

    Science.gov (United States)

    Rogozin, Igor B; Goncearenco, Alexander; Lada, Artem G; De, Subhajyoti; Yurchenko, Vyacheslav; Nudelman, German; Panchenko, Anna R; Cooper, David N; Pavlov, Youri I

    2018-01-01

    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide.

  15. Translesion DNA polymerases Pol ζ, Pol η, Pol ι, Pol κ and Rev1 are ...

    Indian Academy of Sciences (India)

    MADU

    Specialized DNA polymerases called translesion polymerases are among the major determinants of spontaneous and DNA damage-induced mutation in both prokaryotes and eukaryotes. (Livneh 2001). The classical replicative DNA polymerases can synthesize DNA with remarkable efficiency and fidelity.

  16. Engineered Promoters for Potent Transient Overexpression.

    Directory of Open Access Journals (Sweden)

    Dan Y Even

    Full Text Available The core promoter, which is generally defined as the region to which RNA Polymerase II is recruited to initiate transcription, plays a pivotal role in the regulation of gene expression. The core promoter consists of different combinations of several short DNA sequences, termed core promoter elements or motifs, which confer specific functional properties to each promoter. Earlier studies that examined the ability to modulate gene expression levels via the core promoter, led to the design of strong synthetic core promoters, which combine different core elements into a single core promoter. Here, we designed a new core promoter, termed super core promoter 3 (SCP3, which combines four core promoter elements (the TATA box, Inr, MTE and DPE into a single promoter that drives prolonged and potent gene expression. We analyzed the effect of core promoter architecture on the temporal dynamics of reporter gene expression by engineering EGFP expression vectors that are driven by distinct core promoters. We used live cell imaging and flow cytometric analyses in different human cell lines to demonstrate that SCPs, particularly the novel SCP3, drive unusually strong long-term EGFP expression. Importantly, this is the first demonstration of long-term expression in transiently transfected mammalian cells, indicating that engineered core promoters can provide a novel non-viral strategy for biotechnological as well as gene-therapy-related applications that require potent expression for extended time periods.

  17. Reverse transcriptase-quantitative polymerase chain reaction (RT ...

    African Journals Online (AJOL)

    zino

    2014-02-05

    Feb 5, 2014 ... ecological studies - A review ... The objective of this review is to assess the importance of RT-qPCR in soil related ... phenol extraction step with heat inactivation of the added .... Real time polymerase chain reaction (PCR).

  18. The application of polymerase chain reaction-denaturing gradient ...

    African Journals Online (AJOL)

    Jane

    2011-05-23

    May 23, 2011 ... dominance in microbial ecology if the corresponding environment samples had been provided. This ... yeast peptone dextrose; PCR, polymerase chain reaction. method, DGGE method ..... Two nuclear mutations that block.

  19. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  20. Hepatitis B virus DNA polymerase gene polymorphism based ...

    African Journals Online (AJOL)

    Hepatitis B virus DNA polymerase gene polymorphism based prediction of genotypes in chronic HBV patients from Western India. Yashwant G. Chavan, Sharad R. Pawar, Minal Wani, Amol D. Raut, Rabindra N. Misra ...

  1. [Three regions of Rpb10 mini-subunit of nuclear RNA polymerases are strictly conserved in all eukaryotes].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N

    1996-12-01

    The rpb10+ cDNA from the fission yeast Schizosaccharomyces pombe was cloned using two independent approaches (PCR and genetic suppression). The cloned cDNA encoded the Rpb10 subunit common for all three RNA polymerases. Comparison of the deduced amino acid sequence of the Sz. pombe Rbp10 subunit (71 amino acid residues) with those of the homologous subunits of RNA polymerases I, II, and III from Saccharomyces cerevisiae and Home sapiens revealed that heptapeptides RCFT/SCGK (residues 6-12), RYCCRRM (residues 43-49), and HVDLIEK (residues 53-59) were evolutionarily the most conserved structural motifs of these subunits. It is shown that the Rbp10 subunit from Sz. pombe can substitute its homolog (ABC10 beta) in the baker's yeast S. cerevisiae.

  2. Public Policy and Protection from Exclusion - Phase III | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Public Policy and Protection from Exclusion - Phase III ... and decision-makers active in the promotion of equitable health policies, with a view to promoting the emergence of an observatory of health systems in the ... Policy in Focus publishes a special issue profiling evidence to empower women in the labour market.

  3. Ubiquitylation and degradation of elongating RNA polymerase II

    DEFF Research Database (Denmark)

    Wilson, Marcus D; Harreman, Michelle; Svejstrup, Jesper Q

    2013-01-01

    During its journey across a gene, RNA polymerase II has to contend with a number of obstacles to its progression, including nucleosomes, DNA-binding proteins, DNA damage, and sequences that are intrinsically difficult to transcribe. Not surprisingly, a large number of elongation factors have....... In this review, we describe the mechanisms and factors responsible for the last resort mechanism of transcriptional elongation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation....

  4. Head and Neck Squamous Cell Carcinomas Do Not Express EGFRvIII

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, Lieuwe J., E-mail: l.j.melchers@umcg.nl [Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Clausen, Martijn J.A.M. [Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Mastik, Mirjam F. [Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Slagter-Menkema, Lorian [Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Langendijk, Johannes A. [Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Laan, Bernard F.A.M. van der [Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Wal, Jacqueline E. van der; Vegt, Bert van der [Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Roodenburg, Jan L.N. [Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Groningen (Netherlands); Schuuring, Ed [Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen (Netherlands)

    2014-10-01

    Purpose: To assess the prevalence of EGFRvIII, a specific variant of EGFR (epidermal growth factor receptor), in 3 well-defined cohorts of head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Immunohistochemistry for the specific detection of EGFRvIII using the L8A4 antibody was optimized on formalin-fixed, paraffin-embedded tissue using glioblastoma tissue. It was compared with EGFR and EGFRvIII RNA expression using a specific reverse transcription–polymerase chain reaction also optimized for formalin-fixed, paraffin-embedded tissue. Tissue microarrays including 531 HNSCCs of various stages with complete clinicopathologic and follow-up data were tested for the presence of EGFRvIII. Results: None of the 531 cases showed EGFRvIII protein expression. Using an immunohistochemistry protocol reported by others revealed cytoplasmic staining in 8% of cases. Reverse transcription–polymerase chain reaction for the EGFRvIII transcript of the 28 highest cytoplasmic staining cases, as well as 69 negative cases, did not show expression in any of the tested cases, suggesting aspecific staining by a nonoptimal protocol. Conclusions: The EGFRvIII mutation is not present in HNSCC. Therefore, EGFRvIII does not influence treatment response in HNSCC and is not a usable clinical prognostic marker.

  5. Head and Neck Squamous Cell Carcinomas Do Not Express EGFRvIII

    International Nuclear Information System (INIS)

    Melchers, Lieuwe J.; Clausen, Martijn J.A.M.; Mastik, Mirjam F.; Slagter-Menkema, Lorian; Langendijk, Johannes A.; Laan, Bernard F.A.M. van der; Wal, Jacqueline E. van der; Vegt, Bert van der; Roodenburg, Jan L.N.; Schuuring, Ed

    2014-01-01

    Purpose: To assess the prevalence of EGFRvIII, a specific variant of EGFR (epidermal growth factor receptor), in 3 well-defined cohorts of head and neck squamous cell carcinoma (HNSCC). Methods and Materials: Immunohistochemistry for the specific detection of EGFRvIII using the L8A4 antibody was optimized on formalin-fixed, paraffin-embedded tissue using glioblastoma tissue. It was compared with EGFR and EGFRvIII RNA expression using a specific reverse transcription–polymerase chain reaction also optimized for formalin-fixed, paraffin-embedded tissue. Tissue microarrays including 531 HNSCCs of various stages with complete clinicopathologic and follow-up data were tested for the presence of EGFRvIII. Results: None of the 531 cases showed EGFRvIII protein expression. Using an immunohistochemistry protocol reported by others revealed cytoplasmic staining in 8% of cases. Reverse transcription–polymerase chain reaction for the EGFRvIII transcript of the 28 highest cytoplasmic staining cases, as well as 69 negative cases, did not show expression in any of the tested cases, suggesting aspecific staining by a nonoptimal protocol. Conclusions: The EGFRvIII mutation is not present in HNSCC. Therefore, EGFRvIII does not influence treatment response in HNSCC and is not a usable clinical prognostic marker

  6. Twitter as a Potential Disaster Risk Reduction Tool. Part III: Evaluating Variables that Promoted Regional Twitter Use for At-risk Populations During the 2013 Hattiesburg F4 Tornado.

    Science.gov (United States)

    Cooper, Guy Paul; Yeager, Violet; Burkle, Frederick M; Subbarao, Italo

    2015-06-29

    Study goals attempt to identify the variables most commonly associated with successful tweeted messages and determine which variables have the most influence in promoting exponential dissemination of information (viral spreading of the message) and trending (becoming popular) in the given disaster affected region. Part II describes the detailed extraction and triangulation filtration methodological approach to acquiring twitter data for the 2013 Hattiesburg Tornado. The data was then divided into two 48 hour windows before and after the tornado impact with a 2 hour pre-tornado buffer to capture tweets just prior to impact. Criteria-based analysis was completed for Tweets and users. The top 100 pre-Tornado and post-Tornado retweeted users were compared to establish the variability among the top retweeted users during the 4 day span.  Pre-Tornado variables that were correlated to higher retweeted rates include total user tweets (0.324), and total times message retweeted (0.530).  Post-Tornado variables that were correlated to higher retweeted rates include total hashtags in a retweet (0.538) and hashtags #Tornado (0.378) and #Hattiesburg (0.254). Overall hashtags usage significantly increased during the storm. Pre-storm there were 5,763 tweets with a hashtag and post-storm there was 13,598 using hashtags. Twitter's unique features allow it to be considered a unique social media tool applicable for emergency managers and public health officials for rapid and accurate two way communication.  Additionally, understanding how variables can be properly manipulated plays a key role in understanding how to use this social media platform for effective, accurate, and rapid mass information communication.

  7. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2018.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  8. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2017.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  9. Workshop 96. Part III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Part III of the proceedings contain 155 contributions in various fields of science and technology including nuclear engineering, environmental science, and biomedical engineering. Out of these, 10 were selected to be inputted in INIS. (P.A.).

  10. Workshop 96. Part III

    International Nuclear Information System (INIS)

    1995-12-01

    Part III of the proceedings contain 155 contributions in various fields of science and technology including nuclear engineering, environmental science, and biomedical engineering. Out of these, 10 were selected to be inputted in INIS. (P.A.)

  11. Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA.

    Science.gov (United States)

    Finster, Sabrina; Eggert, Erik; Zoschke, Reimo; Weihe, Andreas; Schmitz-Linneweber, Christian

    2013-12-01

    Plastid genes are transcribed by two types of RNA polymerases: a plastid-encoded eubacterial-type RNA polymerase (PEP) and nuclear-encoded phage-type RNA polymerases (NEPs). To investigate the spatio-temporal expression of PEP, we tagged its α-subunit with a hemagglutinin epitope (HA). Transplastomic tobacco plants were generated and analyzed for the distribution of the tagged polymerase in plastid sub-fractions, and associated genes were identified under various light conditions. RpoA:HA was detected as early as the 3rd day after imbibition, and was constitutively expressed in green tissue over 60 days of plant development. We found that the tagged polymerase subunit preferentially associated with the plastid membranes, and was less abundant in the soluble stroma fraction. Attachment of RpoA:HA to the membrane fraction during early seedling development was independent of DNA, but at later stages of development, DNA appears to facilitate attachment of the polymerase to membranes. To survey PEP-dependent transcription units, we probed for nucleic acids enriched in RpoA:HA precipitates using a tobacco chloroplast whole-genome tiling array. The most strongly co-enriched DNA fragments represent photosynthesis genes (e.g. psbA, psbC, psbD and rbcL), whose expression is known to be driven by PEP promoters, while NEP-dependent genes were less abundant in RpoA:HA precipitates. Additionally, we demonstrate that the association of PEP with photosynthesis-related genes was reduced during the dark period, indicating that plastome-wide PEP-DNA association is a light-dependent process. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  12. Enhancement of DNA polymerase activity in potato tuber slices

    International Nuclear Information System (INIS)

    Watanabe, Akira; Imaseki, Hidemasa

    1977-01-01

    DNA polymerase was extracted from potato (Soleum tuberosum L.) tuber discs and the temporal correlation of its activity change to DNA synthesis in vivo was examined during aging of the discs. Most of the DNA polymerase was recovered as a bound form in the 18,000 x g precipitate. Reaction with the bound-form enzyme was dependent on the presence of four deoxynucleoside triphosphates, Mg 2+ , and a template. ''Activated'' DNA and heat-denatured DNA, but not native DNA, were utilized as templates. The polymerase activity was sensitive to SH reagents. Fresh discs, which do not synthesize DNA in vivo, contained a significant amount of DNA polymerase and its activity increased linearly with time until 48 hr after slicing and became four times that of fresh discs after 72 hr, whereas the activity of DNA synthesis in vivo increased with time and decreased after reaching a maximum at 30 hr. Cycloheximide inhibited the enhancement of polymerase activity. DNA polymerase from aged and fresh discs had identical requirements for deoxynucleotides and a template in their reactions, sensitivity to SH reagent, and affinity to thymidine triphosphate. (auth.)

  13. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases.

    OpenAIRE

    Cline, J; Braman, J C; Hogrefe, H H

    1996-01-01

    The replication fidelities of Pfu, Taq, Vent, Deep Vent and UlTma DNA polymerases were compared using a PCR-based forward mutation assay. Average error rates (mutation frequency/bp/duplication) increased as follows: Pfu (1.3 x 10(-6)) < Deep Vent (2.7 x 10(-6)) < Vent (2.8 x 10(-6)) < Taq (8.0 x 10(-6)) < < exo- Pfu and UlTma (approximately 5 x 10(-5)). Buffer optimization experiments indicated that Pfu fidelity was highest in the presence of 2-3 mM MgSO4 and 100-300 microM each dNTP and at p...

  14. Structural relationships among the multiple forms of DNA-dependent RNA polymerase II from cultured parsley cells

    International Nuclear Information System (INIS)

    Link, G.; Bogorad, L.; Kidd, G.H.; Richter, G.

    1978-01-01

    DNA-dependent RNA polymerase II (or B) was purified from cultured parsley cells, and its molecular structure was examined in detail. Upon centrifugation through glycerol gradients, RNA polymerase II sediments as a single band with an apparent sedimentation constant of 15S. No contamination with RNA polymerases I or III could be detected when the activity of purified RNA polymerase II was assayed in the presence of high concentrations of α-amanitin. Analysis of purified RNA polymerase II be nondenaturing and denaturing polyacrylamide gel electrophoresis revealed that this enzyme exists in multiple forms. They were designated II(O), II(A), and II(B). It is suggested that each form has a subunit of Mr = 140000 as well as smaller polypeptides in common. They differ, however, in the molecular weights of their largest subunits which is 220000 in form II(O), 200000 in form II(A), and 180000 in form II(B). These large subunits were labelled with 125 I, digested with trypsin, and tryptic digests were compared by two-dimensional analysis on thin-layer plates (Elder et al. (1977) J. Biol. Chem. 252, 6510-6515). Fingerprints of tryptic digests from the polypeptides with Mr = 220000, Mr = 200000, and Mr = 180000 were similar. It is, therefore, suggested that these subunits are stucturally related. A tryptic digest was also produced from the subunit with Mr = 140000. Its fingerprint was found to yield a considerably different distribution of peptides as compared to those from the three large subunits. (orig.) [de

  15. Looking for inhibitors of the dengue virus NS5 RNA-dependent RNA-polymerase using a molecular docking approach

    Directory of Open Access Journals (Sweden)

    Galiano V

    2016-10-01

    Full Text Available Vicente Galiano,1 Pablo Garcia-Valtanen,2 Vicente Micol,3,4 José Antonio Encinar3 1Physics and Computer Architecture Department, Miguel Hernández University (UMH, Elche, Spain; 2Experimental Therapeutics Laboratory, Hanson and Sansom Institute for Health Research, School of Pharmacy and Medical Science, University of South Australia, Adelaide, Australia; 3Molecular and Cell Biology Institute, Miguel Hernández University (UMH, Elche, Spain; 4CIBER: CB12/03/30038, Physiopathology of the Obesity and Nutrition, CIBERobn, Instituto de Salud Carlos III, Palma de Mallorca, Spain Abstract: The dengue virus (DENV nonstructural protein 5 (NS5 contains both an N-terminal methyltransferase domain and a C-terminal RNA-dependent RNA polymerase domain. Polymerase activity is responsible for viral RNA synthesis by a de novo initiation mechanism and represents an attractive target for antiviral therapy. The incidence of DENV has grown rapidly and it is now estimated that half of the human population is at risk of becoming infected with this virus. Despite this, there are no effective drugs to treat DENV infections. The present in silico study aimed at finding new inhibitors of the NS5 RNA-dependent RNA polymerase of the four serotypes of DENV. We used a chemical library comprising 372,792 nonnucleotide compounds (around 325,319 natural compounds to perform molecular docking experiments against a binding site of the RNA template tunnel of the virus polymerase. Compounds with high negative free energy variation (ΔG <-10.5 kcal/mol were selected as putative inhibitors. Additional filters for favorable druggability and good absorption, distribution, metabolism, excretion, and toxicity were applied. Finally, after the screening process was completed, we identified 39 compounds as lead DENV polymerase inhibitor candidates. Potentially, these compounds could act as efficient DENV polymerase inhibitors in vitro and in vivo. Keywords: virtual screening, molecular

  16. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  17. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Science.gov (United States)

    Killelea, Tom; Ralec, Céline; Bossé, Audrey; Henneke, Ghislaine

    2014-01-01

    DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR), cDNA cloning, genome sequencing, and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3' primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications. PMID:24847315

  18. Repair of Clustered Damage and DNA Polymerase Iota.

    Science.gov (United States)

    Belousova, E A; Lavrik, O I

    2015-08-01

    Multiple DNA lesions occurring within one or two turns of the DNA helix known as clustered damage are a source of double-stranded DNA breaks, which represent a serious threat to the cells. Repair of clustered lesions is accomplished in several steps. If a clustered lesion contains oxidized bases, an individual DNA lesion is repaired by the base excision repair (BER) mechanism involving a specialized DNA polymerase after excising DNA damage. Here, we investigated DNA synthesis catalyzed by DNA polymerase iota using damaged DNA templates. Two types of DNA substrates were used as model DNAs: partial DNA duplexes containing breaks of different length, and DNA duplexes containing 5-formyluracil (5-foU) and uracil as a precursor of apurinic/apyrimidinic sites (AP) in opposite DNA strands. For the first time, we showed that DNA polymerase iota is able to catalyze DNA synthesis using partial DNA duplexes having breaks of different length as substrates. In addition, we found that DNA polymerase iota could catalyze DNA synthesis during repair of clustered damage via the BER system by using both undamaged and 5-foU-containing templates. We found that hPCNA (human proliferating cell nuclear antigen) increased efficacy of DNA synthesis catalyzed by DNA polymerase iota.

  19. PCR performance of a thermostable heterodimeric archaeal DNA polymerase

    Directory of Open Access Journals (Sweden)

    Tom eKillelea

    2014-05-01

    Full Text Available DNA polymerases are versatile tools used in numerous important molecular biological core technologies like the ubiquitous polymerase chain reaction (PCR, cDNA cloning, genome sequencing and nucleic acid based diagnostics. Taking into account the multiple DNA amplification techniques in use, different DNA polymerases must be optimized for each type of application. One of the current tendencies is to reengineer or to discover new DNA polymerases with increased performance and broadened substrate spectra. At present, there is a great demand for such enzymes in applications, e.g., forensics or paleogenomics. Current major limitations hinge on the inability of conventional PCR enzymes, such as Taq, to amplify degraded or low amounts of template DNA. Besides, a wide range of PCR inhibitors can also impede reactions of nucleic acid amplification. Here we looked at the PCR performances of the proof-reading D-type DNA polymerase from P. abyssi, Pab-polD. Fragments, 3 kilobases in length, were specifically PCR-amplified in its optimized reaction buffer. Pab-polD showed not only a greater resistance to high denaturation temperatures than Taq during cycling, but also a superior tolerance to the presence of potential inhibitors. Proficient proof-reading Pab-polD enzyme could also extend a primer containing up to two mismatches at the 3’ primer termini. Overall, we found valuable biochemical properties in Pab-polD compared to the conventional Taq, which makes the enzyme ideally suited for cutting-edge PCR-applications.

  20. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.

    Science.gov (United States)

    Angers, M; Cloutier, J F; Castonguay, A; Drouin, R

    2001-08-15

    Ligation-Mediated Polymerase Chain Reaction (LMPCR) is the most sensitive sequencing technique available to map single-stranded DNA breaks at the nucleotide level of resolution using genomic DNA. LMPCR has been adapted to map DNA damage and reveal DNA-protein interactions inside living cells. However, the sequence context (GC content), the global break frequency and the current combination of DNA polymerases used in LMPCR affect the quality of the results. In this study, we developed and optimized an LMPCR protocol adapted for Pyrococcus furiosus exo(-) DNA polymerase (Pfu exo(-)). The relative efficiency of Pfu exo(-) was compared to T7-modified DNA polymerase (Sequenase 2.0) at the primer extension step and to Thermus aquaticus DNA polymerase (Taq) at the PCR amplification step of LMPCR. At all break frequencies tested, Pfu exo(-) proved to be more efficient than Sequenase 2.0. During both primer extension and PCR amplification steps, the ratio of DNA molecules per unit of DNA polymerase was the main determinant of the efficiency of Pfu exo(-), while the efficiency of Taq was less affected by this ratio. Substitution of NaCl for KCl in the PCR reaction buffer of Taq strikingly improved the efficiency of the DNA polymerase. Pfu exo(-) was clearly more efficient than Taq to specifically amplify extremely GC-rich genomic DNA sequences. Our results show that a combination of Pfu exo(-) at the primer extension step and Taq at the PCR amplification step is ideal for in vivo DNA analysis and DNA damage mapping using LMPCR.

  1. III-V microelectronics

    CERN Document Server

    Nougier, JP

    1991-01-01

    As is well known, Silicon widely dominates the market of semiconductor devices and circuits, and in particular is well suited for Ultra Large Scale Integration processes. However, a number of III-V compound semiconductor devices and circuits have recently been built, and the contributions in this volume are devoted to those types of materials, which offer a number of interesting properties. Taking into account the great variety of problems encountered and of their mutual correlations when fabricating a circuit or even a device, most of the aspects of III-V microelectronics, from fundamental p

  2. File list: Pol.Oth.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Others S...RX1027436,SRX1027435,SRX1027434,SRX1027433,SRX668218,SRX099880,SRX099879 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.20.RNA_polymerase_II.AllCell.bed ...

  3. File list: Pol.Myo.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Muscle SR.../dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Myo.05.RNA_Polymerase_II.AllCell.bed ...

  4. File list: Pol.YSt.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.YSt.10.RNA_Polymerase_II.AllCell sacCer3 RNA polymerase RNA Polymerase II Yeast... strain SRX092435,SRX360917,SRX360914,SRX497380,SRX497382,SRX497381,SRX360915 http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.YSt.10.RNA_Polymerase_II.AllCell.bed ...

  5. File list: Pol.Lar.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.05.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Larvae SR...SRX151962,SRX182775,SRX661503,SRX013070,SRX013072,SRX013113,SRX013082,SRX151961 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.05.RNA_polymerase_II.AllCell.bed ...

  6. File list: Pol.CDV.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Cardiova...,SRX080152,SRX080153,SRX367018,SRX367016 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.RNA_polymerase_II.AllCell.bed ...

  7. File list: Pol.Lar.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.05.RNA_Polymerase_II.AllCell ce10 RNA polymerase RNA Polymerase II Larvae h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Lar.05.RNA_Polymerase_II.AllCell.bed ...

  8. File list: Pol.Bld.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Blood SRX...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.RNA_Polymerase_II.AllCell.bed ...

  9. File list: Pol.Epd.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Epidermi...247,SRX080162,SRX807622 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.50.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.Lng.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX1...43816,SRX062976,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.10.RNA_Polymerase_II.AllCell.bed ...

  11. File list: Pol.Emb.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Embryo S...,SRX043867 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.10.RNA_polymerase_II.AllCell.bed ...

  12. File list: Pol.Utr.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Uterus S...SRX573070,SRX027921,SRX1048949,SRX1136641,SRX1136638,SRX099217 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.05.RNA_polymerase_II.AllCell.bed ...

  13. File list: Pol.Neu.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Neural S...6,SRX743838,SRX743832,SRX743834,SRX743840 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.RNA_polymerase_II.AllCell.bed ...

  14. File list: Pol.Plc.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Placenta... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.50.RNA_polymerase_II.AllCell.bed ...

  15. File list: Pol.Oth.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Others SR...X143827,SRX112963,SRX736456,SRX736457,SRX112981,SRX143834,SRX335666,SRX957689 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Oth.05.RNA_Polymerase_II.AllCell.bed ...

  16. File list: Pol.Emb.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.20.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Embryo S...,SRX043869 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.20.RNA_polymerase_II.AllCell.bed ...

  17. File list: Pol.Gon.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Gonad ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Gon.20.RNA_polymerase_II.AllCell.bed ...

  18. File list: Pol.Unc.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.05.RNA_Polymerase_II.AllCell ce10 RNA polymerase RNA Polymerase II Unclassi...fied http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.05.RNA_Polymerase_II.AllCell.bed ...

  19. File list: Pol.Adp.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Adipocyte... SRX800011,SRX800010,SRX341031,SRX341032,SRX341029,SRX800016,SRX800017,SRX341030 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.RNA_Polymerase_II.AllCell.bed ...

  20. File list: Pol.ALL.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II All cell...,SRX1013886,SRX1013900 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.ALL.05.RNA_polymerase_II.AllCell.bed ...

  1. File list: Pol.CDV.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Cardiovas...X320034,SRX346170,SRX346169,SRX373605,SRX680476 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.20.RNA_Polymerase_II.AllCell.bed ...

  2. File list: Pol.Unc.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Unclassi...fied http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Unc.05.RNA_polymerase_II.AllCell.bed ...

  3. File list: Pol.Spl.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Spl.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Spleen SR...X062981,SRX143838,SRX020253 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Spl.10.RNA_Polymerase_II.AllCell.bed ...

  4. File list: Pol.Unc.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Unclassif...ied SRX254629 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Unc.05.RNA_Polymerase_II.AllCell.bed ...

  5. File list: Pol.ALL.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II All cell ...//dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.ALL.20.RNA_Polymerase_II.AllCell.bed ...

  6. File list: Pol.Unc.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.10.RNA_Polymerase_II.AllCell ce10 RNA polymerase RNA Polymerase II Unclassi...fied http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.10.RNA_Polymerase_II.AllCell.bed ...

  7. File list: Pol.Neu.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Neural SR...,SRX685285,SRX217736 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.RNA_Polymerase_II.AllCell.bed ...

  8. File list: Pol.Bld.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Blood SRX...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.RNA_Polymerase_II.AllCell.bed ...

  9. File list: Pol.Pup.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pup.10.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Pupae SRX...013069 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Pup.10.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.Emb.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.RNA_Polymerase_II.AllCell ce10 RNA polymerase RNA Polymerase II Embryo h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.50.RNA_Polymerase_II.AllCell.bed ...

  11. File list: Pol.Unc.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Unclassif...ied SRX254629 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Unc.20.RNA_Polymerase_II.AllCell.bed ...

  12. File list: Pol.Lng.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX0...62976,SRX143816,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.05.RNA_Polymerase_II.AllCell.bed ...

  13. File list: Pol.Lng.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Lung SRX0...62976,SRX143816,SRX020252 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Lng.20.RNA_Polymerase_II.AllCell.bed ...

  14. File list: Pol.Gon.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Gonad ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Gon.50.RNA_polymerase_II.AllCell.bed ...

  15. File list: Pol.Kid.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Kidney S...SRX1206072,SRX1206066,SRX326423,SRX1206067,SRX003883,SRX003882,SRX367323 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.20.RNA_polymerase_II.AllCell.bed ...

  16. File list: Pol.Adl.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.05.RNA_Polymerase_II.AllCell ce10 RNA polymerase RNA Polymerase II Adult SR...SRX1388757,SRX1388756 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.05.RNA_Polymerase_II.AllCell.bed ...

  17. File list: Pol.PSC.50.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Pluripote...SRX213760,SRX213764 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.50.RNA_Polymerase_II.AllCell.bed ...

  18. File list: Pol.Epd.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Epidermi...246,SRX663247,SRX807622 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.10.RNA_polymerase_II.AllCell.bed ...

  19. File list: Pol.Epd.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Epidermis... http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Epd.10.RNA_Polymerase_II.AllCell.bed ...

  20. File list: Pol.Brs.10.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Breast SR...078990 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.RNA_Polymerase_II.AllCell.bed ...

  1. File list: Pol.Dig.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Digestive... tract SRX112957,SRX143802 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Dig.20.RNA_Polymerase_II.AllCell.bed ...

  2. File list: Pol.Spl.05.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Spl.05.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Spleen SR...X062981,SRX143838,SRX020253 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Spl.05.RNA_Polymerase_II.AllCell.bed ...

  3. File list: Pol.PSC.20.RNA_Polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.RNA_Polymerase_II.AllCell mm9 RNA polymerase RNA Polymerase II Pluripote...SRX213760,SRX213764 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.20.RNA_Polymerase_II.AllCell.bed ...

  4. File list: Pol.Pup.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pup.05.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Pupae SRX...013069 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Pup.05.RNA_polymerase_II.AllCell.bed ...

  5. File list: Pol.Unc.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.50.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Unclassi...p://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.50.RNA_polymerase_II.AllCell.bed ...

  6. File list: Pol.Plc.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Placenta... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.10.RNA_polymerase_II.AllCell.bed ...

  7. File list: Pol.Unc.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.05.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Unclassif...ied SRX110774 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Unc.05.RNA_polymerase_II.AllCell.bed ...

  8. File list: Pol.ALL.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II All cell ...013077,SRX050604,SRX050605 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.ALL.05.RNA_polymerase_II.AllCell.bed ...

  9. File list: Pol.Adp.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Adipocyt...e SRX682084,SRX682086,SRX682085,SRX682083 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Adp.50.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.ALL.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.10.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II All cell...3965,SRX043869,SRX043867,SRX043875,SRX043967,SRX043881,SRX043879 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.ALL.10.RNA_polymerase_II.AllCell.bed ...

  11. File list: Pol.ALL.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.05.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II All c...ell types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.ALL.05.RNA_polymerase_II.AllCell.bed ...

  12. File list: Pol.Emb.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Embryo SR...7582,SRX050604,SRX050605,SRX013073 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.50.RNA_polymerase_II.AllCell.bed ...

  13. File list: Pol.Epd.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Epidermi...248,SRX663247,SRX807622 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.20.RNA_polymerase_II.AllCell.bed ...

  14. File list: Pol.Plc.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Placenta... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.05.RNA_polymerase_II.AllCell.bed ...

  15. File list: Pol.Unc.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.20.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Unclassi...p://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.20.RNA_polymerase_II.AllCell.bed ...

  16. File list: Pol.Kid.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Kidney S...X1206068,SRX1206073,SRX1206074,SRX1206072,SRX1206071,SRX003882,SRX367323 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.10.RNA_polymerase_II.AllCell.bed ...

  17. File list: Pol.Adl.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.50.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Adult SR...SRX043965,SRX005629,SRX043964,SRX554718 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.50.RNA_polymerase_II.AllCell.bed ...

  18. File list: Pol.Prs.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Prostate...932,SRX020922,SRX022582 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.50.RNA_polymerase_II.AllCell.bed ...

  19. File list: Pol.PSC.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pluripot...670820,SRX702057,SRX702061 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.20.RNA_polymerase_II.AllCell.bed ...

  20. File list: Pol.Utr.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Utr.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Uterus S...RX099218,SRX1136641,SRX1048949,SRX1136639,SRX665233,SRX1136638 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Utr.50.RNA_polymerase_II.AllCell.bed ...

  1. File list: Pol.Adl.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adl.20.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Adult SR...SRX554718,SRX043965,SRX043963,SRX043964 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Adl.20.RNA_polymerase_II.AllCell.bed ...

  2. File list: Pol.Emb.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Embryo S...,SRX043867 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.05.RNA_polymerase_II.AllCell.bed ...

  3. File list: Pol.Dig.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Digestiv...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.05.RNA_polymerase_II.AllCell.bed ...

  4. File list: Pol.Neu.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Neural S...6,SRX743834,SRX743838,SRX743840,SRX743832 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.RNA_polymerase_II.AllCell.bed ...

  5. File list: Pol.Emb.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.05.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Embryo SR...7582,SRX013077,SRX050604,SRX050605 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.05.RNA_polymerase_II.AllCell.bed ...

  6. File list: Pol.Liv.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Liver SR...1013886 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.20.RNA_polymerase_II.AllCell.bed ...

  7. File list: Pol.Prs.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Prostate...866,SRX173198,SRX173197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.10.RNA_polymerase_II.AllCell.bed ...

  8. File list: Pol.Pan.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.10.RNA_polymerase_II.AllCell.bed ...

  9. File list: Pol.Neu.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Neural S...1,SRX099887,SRX099886,SRX743834,SRX743832 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.Lng.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.10.RNA_polymerase_II.AllCell.bed ...

  11. File list: Pol.Unc.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Unclassi...fied http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Unc.20.RNA_polymerase_II.AllCell.bed ...

  12. File list: Pol.Unc.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.10.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.Unc.10.RNA_polymerase_II.AllCell.bed ...

  13. File list: Pol.Lar.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lar.20.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Larvae SR...SRX661503,SRX026742,SRX013070,SRX013072,SRX182775,SRX151961,SRX013082,SRX013113 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Lar.20.RNA_polymerase_II.AllCell.bed ...

  14. File list: Pol.Prs.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Prostate...363,SRX173198,SRX173197 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.05.RNA_polymerase_II.AllCell.bed ...

  15. File list: Pol.Bon.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Bone SRX...,SRX351408 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bon.20.RNA_polymerase_II.AllCell.bed ...

  16. File list: Pol.Myo.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Muscle h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.50.RNA_polymerase_II.AllCell.bed ...

  17. File list: Pol.ALL.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.20.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II All c...ell types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.ALL.20.RNA_polymerase_II.AllCell.bed ...

  18. File list: Pol.Oth.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Others S...RX1027436,SRX1027435,SRX1027434,SRX1027433,SRX668218,SRX099880,SRX099879 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.50.RNA_polymerase_II.AllCell.bed ...

  19. File list: Pol.Bld.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Blood SR...,SRX153079,SRX017717,SRX103447,SRX386121,SRX038919,SRX038920,SRX080132 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.RNA_polymerase_II.AllCell.bed ...

  20. File list: Pol.Myo.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Muscle h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.10.RNA_polymerase_II.AllCell.bed ...

  1. File list: Pol.Myo.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Muscle h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.05.RNA_polymerase_II.AllCell.bed ...

  2. File list: Pol.Emb.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.50.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Embryo S...,SRX043866 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Emb.50.RNA_polymerase_II.AllCell.bed ...

  3. File list: Pol.ALL.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II All cell...,SRX1013886,SRX1013900 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.ALL.10.RNA_polymerase_II.AllCell.bed ...

  4. File list: Pol.Liv.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Liver SR...1013886 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.50.RNA_polymerase_II.AllCell.bed ...

  5. File list: Pol.Kid.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Kidney S...SRX128201,SRX128200,SRX003882,SRX1206065,SRX1206066,SRX1206067,SRX367323 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.05.RNA_polymerase_II.AllCell.bed ...

  6. File list: Pol.Plc.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Plc.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Placenta... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Plc.20.RNA_polymerase_II.AllCell.bed ...

  7. File list: Pol.Pan.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.50.RNA_polymerase_II.AllCell.bed ...

  8. File list: Pol.Bon.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bon.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Bone SRX...,SRX351408 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bon.10.RNA_polymerase_II.AllCell.bed ...

  9. File list: Pol.Bld.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Blood SR...,SRX017986,SRX017985,SRX728781,SRX017717,SRX005163,SRX024360,SRX017718 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.Epd.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Epd.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Epidermi...245,SRX663247,SRX807622 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Epd.05.RNA_polymerase_II.AllCell.bed ...

  11. File list: Pol.Emb.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Emb.10.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II Embryo SR...7582,SRX050604,SRX050605,SRX013077 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.Emb.10.RNA_polymerase_II.AllCell.bed ...

  12. File list: Pol.Myo.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Myo.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Muscle h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Myo.20.RNA_polymerase_II.AllCell.bed ...

  13. File list: Pol.ALL.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.50.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II All cell ...050605,SRX013073 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.ALL.50.RNA_polymerase_II.AllCell.bed ...

  14. File list: Pol.Unc.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.10.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Unclassi...p://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.10.RNA_polymerase_II.AllCell.bed ...

  15. File list: Pol.Unc.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Unclassi...fied http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Unc.10.RNA_polymerase_II.AllCell.bed ...

  16. File list: Pol.PSC.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pluripot...833412,SRX149642,SRX702059 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.PSC.05.RNA_polymerase_II.AllCell.bed ...

  17. File list: Pol.Kid.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Kid.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Kidney S...SRX1206066,SRX1206067,SRX003882,SRX003883,SRX1206065,SRX367323,SRX326416 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Kid.50.RNA_polymerase_II.AllCell.bed ...

  18. File list: Pol.Unc.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.05.RNA_polymerase_II.AllCell ce10 RNA polymerase RNA polymerase II Unclassi...p://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Pol.Unc.05.RNA_polymerase_II.AllCell.bed ...

  19. File list: Pol.Dig.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Digestiv...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.50.RNA_polymerase_II.AllCell.bed ...

  20. File list: Pol.Prs.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Prs.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Prostate...557,SRX173197,SRX173198 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Prs.20.RNA_polymerase_II.AllCell.bed ...

  1. File list: Pol.YSt.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.YSt.20.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II Yeast... strain http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.YSt.20.RNA_polymerase_II.AllCell.bed ...

  2. File list: Pol.ALL.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.50.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II All c...ell types http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.ALL.50.RNA_polymerase_II.AllCell.bed ...

  3. File list: Pol.Lng.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.RNA_polymerase_II.AllCell.bed ...

  4. File list: Pol.Oth.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Oth.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Others S...RX1027435,SRX668218,SRX1027436,SRX1027434,SRX1027433,SRX099879,SRX099880 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Oth.05.RNA_polymerase_II.AllCell.bed ...

  5. File list: Pol.Pan.05.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Pan.05.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Pancreas... SRX190244 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Pan.05.RNA_polymerase_II.AllCell.bed ...

  6. File list: Pol.Unc.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Unc.50.RNA_polymerase_II.AllCell sacCer3 RNA polymerase RNA polymerase II Uncla...ssified http://dbarchive.biosciencedbc.jp/kyushu-u/sacCer3/assembled/Pol.Unc.50.RNA_polymerase_II.AllCell.bed ...

  7. File list: Pol.Lng.50.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Lung SRX... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.RNA_polymerase_II.AllCell.bed ...

  8. File list: Pol.Dig.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Dig.10.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Digestiv...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Dig.10.RNA_polymerase_II.AllCell.bed ...

  9. File list: Pol.ALL.10.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.ALL.10.RNA_polymerase_II.AllCell dm3 RNA polymerase RNA polymerase II All cell ...050604,SRX050605,SRX013077 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/Pol.ALL.10.RNA_polymerase_II.AllCell.bed ...

  10. File list: Pol.CDV.20.RNA_polymerase_II.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.RNA_polymerase_II.AllCell hg19 RNA polymerase RNA polymerase II Cardiova...,SRX346933,SRX346936,SRX367018,SRX367016 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.RNA_polymerase_II.AllCell.bed ...

  11. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}.

    Science.gov (United States)

    Suzuki, Motoshi; Niimi, Atsuko; Limsirichaikul, Siripan; Tomida, Shuta; Miao Huang, Qin; Izuta, Shunji; Usukura, Jiro; Itoh, Yasutomo; Hishida, Takashi; Akashi, Tomohiro; Nakagawa, Yoshiyuki; Kikuchi, Akihiko; Pavlov, Youri; Murate, Takashi; Takahashi, Takashi

    2009-07-01

    Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol alpha, PCNA was spontaneously mono-ubiquitinated. Pol alpha L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol alpha errors, pol zeta participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol delta mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol eta) suppressed this defect. These data suggest that nucleotide misincorporation by pol alpha induces exposure of single-stranded DNA, PCNA mono-ubiquitination and activates TLS pols.

  12. Backtracking dynamics of RNA polymerase: pausing and error correction

    Science.gov (United States)

    Sahoo, Mamata; Klumpp, Stefan

    2013-09-01

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield-Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates.

  13. Polymerase Chain Reaction (PCR) Analysis of Microbial Consortia on Wastewater Treatment Processes for High Explosives

    Science.gov (United States)

    2009-09-01

    DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not...other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CERL TR-09-34 iii Table of Contents ...Bacteroidetes/unclassified 90%, uncultured rumen bacterium; SR24; DQ394627 10 14.1 UI-15 Bacteroidales/unclassified 99%, uncultured bacterium; B103

  14. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    and Adolescent Health Promotion', Salutogenesis - from theory to practice' and Health, Stress and Coping'. More than half of all doctoral theses undertaken at NHV during these years had health promotion as their theme. As a derivative, the Nordic Health Promotion Research Network (NHPRN) was established in 2007......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...

  15. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    Science.gov (United States)

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  16. Summary of Session III

    International Nuclear Information System (INIS)

    Furman, M.A.

    2002-01-01

    This is a summary of the talks presented in Session III ''Simulations of Electron-Cloud Build Up'' of the Mini-Workshop on Electron-Cloud Simulations for Proton and Positron Beams ECLOUD-02, held at CERN, 15-18 April 2002

  17. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    OpenAIRE

    Maxwell, Brian A.; Suo, Zucai

    2014-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and all...

  18. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    Science.gov (United States)

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70

    Directory of Open Access Journals (Sweden)

    Noireaux Vincent

    2010-06-01

    Full Text Available Abstract Background Escherichia coli cell-free expression systems use bacteriophage RNA polymerases, such as T7, to synthesize large amounts of recombinant proteins. These systems are used for many applications in biotechnology, such as proteomics. Recently, informational processes have been reconstituted in vitro with cell-free systems. These synthetic approaches, however, have been seriously limited by a lack of transcription modularity. The current available cell-free systems have been optimized to work with bacteriophage RNA polymerases, which put significant restrictions to engineer processes related to biological information. The development of efficient cell-free systems with broader transcription capabilities is required to study complex informational processes in vitro. Results In this work, an efficient cell-free expression system that uses the endogenous E. coli RNA polymerase only and sigma factor 70 for transcription was prepared. Approximately 0.75 mg/ml of Firefly luciferase and enhanced green fluorescent protein were produced in batch mode. A plasmid was optimized with different regulatory parts to increase the expression. In addition, a new eGFP was engineered that is more translatable in cell-free systems than the original eGFP. The protein production was characterized with three different adenosine triphosphate (ATP regeneration systems: creatine phosphate (CP, phosphoenolpyruvate (PEP, and 3-phosphoglyceric acid (3-PGA. The maximum protein production was obtained with 3-PGA. Preparation of the crude extract was streamlined to a simple routine procedure that takes 12 hours including cell culture. Conclusions Although it uses the endogenous E. coli transcription machinery, this cell-free system can produce active proteins in quantities comparable to bacteriophage systems. The E. coli transcription provides much more possibilities to engineer informational processes in vitro. Many E. coli promoters/operators specific to sigma

  20. Comparison of polymerase chain reaction (PCR) and loop-mediated ...

    African Journals Online (AJOL)

    Comparison of polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) for diagnosis of Fusarium solani in human immunodeficiency virus (HIV) positive patients. ... The test was carried out in 1 h reaction at 65°C in a heater block. The specificity of the test was 100% and its sensitivity was a ...

  1. Rapid establishment of polymerase chain reaction-restriction ...

    African Journals Online (AJOL)

    2012-03-30

    Mar 30, 2012 ... genome using polymerase chain reaction (PCR) has made it possible to explore organelle DNA diversity for taxonomic and phylogenetic purposes. Because of its uniparental mode of inheritance and its low mutation rate related to the nuclear genome, chloroplast DNA (cpDNA) is considered to be an ideal ...

  2. Use of polymerase chain reaction for detection of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Østergaard, Lars; Birkelund, Svend; Christiansen, Gunna

    1990-01-01

    A polymerase chain reaction (PCR) assay was developed for detection of Chlamydia trachomatis DNA. From the published sequence of the common C. trachomatis plasmid, two primer sets were selected. Detection of amplified sequences was done by agarose gel electrophoresis of cleaved or uncleaved...

  3. Role of Polymerase Chain Reaction (PCR) in the detection of ...

    African Journals Online (AJOL)

    Background: Staphylococcus aureus is mainly acquired from hospital infections and demonstrated the ability of developing resistance to many antibiotics. Polymerase Chain Reaction (PCR) was used to identify antibiotic-resistant isolates. This study was conducted in Al-Mujtahed, Al-Mouwasat and the Children Hospitals in ...

  4. Polymerase Chain Reaction (PCR) provides a superior tool for the ...

    African Journals Online (AJOL)

    Polymerase Chain Reaction (PCR) provides a superior tool for the diagnosis of Pneumococcal Infection in Burkina Faso. Y Chaibou, M Congo/Ouedraogo, I Sanou, H Somlare, K Ouattara, CM Kienou, H Belem, E Sampo, SA Traore, R Traore/Ouedraogo, C Hatcher, L Mayer, X Wang, L Sangare ...

  5. EBV DNA polymerase inhibition of tannins from Eugenia uniflora.

    Science.gov (United States)

    Lee, M H; Chiou, J F; Yen, K Y; Yang, L L

    2000-06-30

    Nasopharyngeal carcinoma (NPC) is one of the high population malignant tumors among Chinese in southern China and southeast Asia. Epstein-Barr virus (EBV) is a human B lymphotropic herpes virus which is known to be closely associated with NPC. EBV DNA polymerase is a key enzyme during EBV replication and is measured by its radioactivity. The addition of phorbol 12-myristate 13-acetate to Raji cell cultures led to a large increase in EBV DNA polymerase, which was purified by sequential DEAE-cellulose, phosphocellulose and DNA-cellulose column chromatography. Four tannins were isolated from the active fractions of Eugenia uniflora L., which were tested for the inhibition of EBV DNA polymerase. The results showed the 50% inhibitory concentration (IC(50)) values of gallocatechin, oenothein B, eugeniflorins D(1) and D(2) were 26.5 62.3, 3.0 and 3.5 microM, respectively. Furthermore, when compared with the positive control (phosphonoacetic acid), an inhibitor of EBV replication, the IC(50) value was 16.4 microM. In view of the results, eugeniflorins D(1) and D(2) are the potency principles in the inhibition of EBV DNA polymerase from E. uniflora.

  6. Niacin, poly(ADP-ribose) polymerase-1 and genomic stability

    NARCIS (Netherlands)

    Hageman, G.J.; Stierum, R.H.

    2001-01-01

    Nicotinic acid (NA) and nicotinamide (NAM), commonly called niacin, are the dietary precursors for NAD+ (nicotinamide adenine dinucleotide), which is required for DNA synthesis, as well as for the activity of the enzyme poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) for which NAD+ is the sole

  7. Estimation of the reaction efficiency in polymerase chain reaction

    NARCIS (Netherlands)

    Lalam, N.

    2006-01-01

    Polymerase chain reaction (PCR) is largely used in molecular biology for increasing the copy number of a specific DNA fragment. The succession of 20 replication cycles makes it possible to multiply the quantity of the fragment of interest by a factor of 1 million. The PCR technique has

  8. Conformational Dynamics of Thermus aquaticus DNA Polymerase I during Catalysis

    Science.gov (United States)

    Suo, Zucai

    2014-01-01

    Despite the fact that DNA polymerases have been investigated for many years and are commonly used as tools in a number of molecular biology assays, many details of the kinetic mechanism they use to catalyze DNA synthesis remain unclear. Structural and kinetic studies have characterized a rapid, pre-catalytic open-to-close conformational change of the Finger domain during nucleotide binding for many DNA polymerases including Thermus aquaticus DNA polymerase I (Taq Pol), a thermostable enzyme commonly used for DNA amplification in PCR. However, little has been done to characterize the motions of other structural domains of Taq Pol or any other DNA polymerase during catalysis. Here, we used stopped-flow Förster resonance energy transfer (FRET) to investigate the conformational dynamics of all five structural domains of the full-length Taq Pol relative to the DNA substrate during nucleotide binding and incorporation. Our study provides evidence for a rapid conformational change step induced by dNTP binding and a subsequent global conformational transition involving all domains of Taq Pol during catalysis. Additionally, our study shows that the rate of the global transition was greatly increased with the truncated form of Taq Pol lacking the N-terminal domain. Finally, we utilized a mutant of Taq Pol containing a de novo disulfide bond to demonstrate that limiting protein conformational flexibility greatly reduced the polymerization activity of Taq Pol. PMID:24931550

  9. Polymerase chain reaction versus enzyme-linked immunosorbent ...

    African Journals Online (AJOL)

    Polymerase chain reaction versus enzyme-linked immunosorbent assay in detection of Chlamydia trachomatis infection among gynaecological patients in southwestern Nigeria. ... Socio-demographic bio-data and gynaecological history were obtained with questionnaire; data was analyzed using SPSS version 20.0.

  10. Promoters of Escherichia coli versus promoter islands: function and structure comparison.

    Directory of Open Access Journals (Sweden)

    Valeriy V Panyukov

    Full Text Available Expression of bacterial genes takes place under the control of RNA polymerase with exchangeable σ-subunits and multiple transcription factors. A typical promoter region contains one or several overlapping promoters. In the latter case promoters have the same or different σ-specificity and are often subjected to different regulatory stimuli. Genes, transcribed from multiple promoters, have on average higher expression levels. However, recently in the genome of Escherichia coli we found 78 regions with an extremely large number of potential transcription start points (promoter islands, PIs. It was shown that all PIs interact with RNA polymerase in vivo and are able to form transcriptionally competent open complexes both in vitro and in vivo but their transcriptional activity measured by oligonucleotide microarrays was very low, if any. Here we confirmed transcriptional defectiveness of PIs by analyzing the 5'-end specific RNA-seq data, but showed their ability to produce short oligos (9-14 bases. This combination of functional properties indicated a deliberate suppression of transcriptional activity within PIs. According to our data this suppression may be due to a specific conformation of the DNA double helix, which provides an ideal platform for interaction with both RNA polymerase and the histone-like nucleoid protein H-NS. The genomic DNA of E.coli contains therefore several dozen sites optimized by evolution for staying in a heterochromatin-like state. Since almost all promoter islands are associated with horizontally acquired genes, we offer them as specific components of bacterial evolution involved in acquisition of foreign genetic material by turning off the expression of toxic or useless aliens or by providing optimal promoter for beneficial genes. The putative molecular mechanism underlying the appearance of promoter islands within recipient genomes is discussed.

  11. Cobalt(III) complex

    Indian Academy of Sciences (India)

    Administrator

    e, 40 µM complex, 10 hrs after dissolution, f, 40 µM complex, after irradiation dose 15 Gy. and H-atoms result in reduction of Co(III) to Co. (II). 6. It is interesting to see in complex containing multiple ligands what is the fate of electron adduct species formed by electron addition. Reduction to. Co(II) and intramolecular transfer ...

  12. Calculus III essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.

  13. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    Science.gov (United States)

    Nasarabadi, Shanavaz [Livermore, CA

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  14. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniel P Kane

    Full Text Available In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosophila melanogaster. Using a gap repair assay, we found that homologous recombination is impaired in Drosophila lacking DNA polymerase zeta and, to a lesser extent, polymerase eta. In addition, the Pol32 protein, part of the polymerase delta complex, is needed for repair requiring extensive synthesis. Loss of Rev1, which interacts with multiple translesion polymerases, results in increased synthesis during gap repair. Together, our findings support a model in which translesion polymerases and the polymerase delta complex compete during homologous recombination repair. In addition, they establish Rev1 as a crucial factor that regulates the extent of repair synthesis.

  15. An In Vitro RNA Synthesis Assay for Rabies Virus Defines Ribonucleoprotein Interactions Critical for Polymerase Activity.

    Science.gov (United States)

    Morin, Benjamin; Liang, Bo; Gardner, Erica; Ross, Robin A; Whelan, Sean P J

    2017-01-01

    We report an in vitro RNA synthesis assay for the RNA-dependent RNA polymerase (RdRP) of rabies virus (RABV). We expressed RABV large polymerase protein (L) in insect cells from a recombinant baculovirus vector and the phosphoprotein cofactor (P) in Escherichia coli and purified the resulting proteins by affinity and size exclusion chromatography. Using chemically synthesized short RNA corresponding to the first 19 nucleotides (nt) of the rabies virus genome, we demonstrate that L alone initiates synthesis on naked RNA and that P serves to enhance the initiation and processivity of the RdRP. The L-P complex lacks full processivity, which we interpret to reflect the lack of the viral nucleocapsid protein (N) on the template. Using this assay, we define the requirements in P for stimulation of RdRP activity as residues 11 to 50 of P and formally demonstrate that ribavirin triphosphate (RTP) inhibits the RdRP. By comparing the properties of RABV RdRP with those of the related rhabdovirus, vesicular stomatitis virus (VSV), we demonstrate that both polymerases can copy the heterologous promoter sequence. The requirements for engagement of the N-RNA template of VSV by its polymerase are provided by the C-terminal domain (CTD) of P. A chimeric RABV P protein in which the oligomerization domain (OD) and the CTD were replaced by those of VSV P stimulated RABV RdRP activity on naked RNA but was insufficient to permit initiation on the VSV N-RNA template. This result implies that interactions between L and the template N are also required for initiation of RNA synthesis, extending our knowledge of ribonucleoprotein interactions that are critical for gene expression. The current understanding of the structural and functional significance of the components of the rabies virus replication machinery is incomplete. Although structures are available for the nucleocapsid protein in complex with RNA, and also for portions of P, information on both the structure and function of the L

  16. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur P

    2004-01-01

    Full Text Available The diagnosis of Duchenna Muscular Dystrophy (DMD and Becker Muscular Dystorphy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hot spot′ regions allowing determinations of deletion end points. Intragenic deletions were detected in 74 patients indicating that the use of PCR- based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  17. Deletion Analysis Of The Duchenne/Becker Muscular Dystrophy Gene Using Multiplex Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Dastur R

    2003-01-01

    Full Text Available The diagnosis of Duchenne Muscular Dystrophy (DMD and Becker Muscular Dystrophy (BMD is mainly based on clinical profile, serum CPK values, muscle biopsy and immunostaining for dystrophin. Most recent and accurate method for diagnosing DMD/BMD is by detection of mutations in the DMD gene. This was done in 100 unrelated patients using 19 exons including the promoter region in two sets of multiplex polymerase chain reaction (PCR. These primers amplify most of the exons in the deletion prone ′hotspot′ regions allowing determination of deletion end point. Intragenic deletions were detected in 74 patients indicating that the use of PCR-based assays will allow deletion detection help in prenatal diagnosis for most of the DMD/BMD patients. The frequency of deletions observed in the present study was 74%.

  18. The Mediator Complex: At the Nexus of RNA Polymerase II Transcription.

    Science.gov (United States)

    Jeronimo, Célia; Robert, François

    2017-10-01

    Mediator is an essential, large, multisubunit, transcriptional co-activator highly conserved across eukaryotes. Mediator interacts with gene-specific transcription factors at enhancers as well as with the RNA polymerase II (RNAPII) transcription machinery bound at promoters. It also interacts with several other factors involved in various aspects of transcription, chromatin regulation, and mRNA processing. Hence, Mediator is at the nexus of RNAPII transcription, regulating its many steps and connecting transcription with co-transcriptional events. To achieve this flexible role, Mediator, which is divided into several functional modules, reorganizes its conformation and composition while making transient contacts with other components. Here, we review the mechanisms of action of Mediator and propose a unifying model for its function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantum dots for a high-throughput Pfu polymerase based multi-round polymerase chain reaction (PCR).

    Science.gov (United States)

    Sang, Fuming; Zhang, Zhizhou; Yuan, Lin; Liu, Deli

    2018-02-26

    Multi-round PCR is an important technique for obtaining enough target DNA from rare DNA resources, and is commonly used in many fields including forensic science, ancient DNA analysis and cancer research. However, multi-round PCR is often aborted, largely due to the accumulation of non-specific amplification during repeated amplifications. Here, we developed a Pfu polymerase based multi-round PCR technique assisted by quantum dots (QDs). Different PCR assays, DNA polymerases (Pfu and Taq), DNA sizes and GC amounts were compared in this study. In the presence of QDs, PCR specificity could be retained even in the ninth-round amplification. Moreover, the longer and more complex the targets were, the earlier the abortion happened in multi-round PCR. However, no obvious enhancement of specificity was found in multi-round PCR using Taq DNA polymerase. Significantly, the fidelity of Pfu polymerase based multi-round PCR was not sacrificed in the presence of QDs. Besides, pre-incubation at 50 °C for an hour had no impact on multi-round PCR performance, which further authenticated the hot start effect of QDs modulated in multi-round PCR. The findings of this study demonstrated that a cost-effective and promising multi-round PCR technique for large-scale and high-throughput sample analysis could be established with high specificity, sensibility and accuracy.

  20. A single-copy galK promoter cloning vector suitable for cloning strong promoters

    DEFF Research Database (Denmark)

    Dandanell, Gert; Court, Donald L.; Hammer, Karin

    1986-01-01

    We report the construction of lambda galK promoter cloning vectors for cloning and characterization of strong promoters. This phage, which contains a unique HindIII cloning site, was applied to the cloning and analysis of transcription initiations of the regulatory region of the deo-operon of...

  1. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction...

  2. Accuracy of real-time polymerase chain reaction for Toxoplasma gondii in amniotic fluid.

    Science.gov (United States)

    Wallon, Martine; Franck, Jacqueline; Thulliez, Philippe; Huissoud, Cyril; Peyron, François; Garcia-Meric, Patricia; Kieffer, François

    2010-04-01

    To provide clinicians with information about the accuracy of real-time polymerase chain reaction (PCR) analysis of amniotic fluid for the prenatal diagnosis of congenital Toxoplasma infection. This was a prospective cohort study of women with Toxoplasma infection identified by prenatal screening in three centers routinely carrying out real-time PCR for the detection of Toxoplasma gondii in amniotic fluid. The data available were gestational age at maternal infection, types and dates of maternal treatment, results of amniocentesis and neonatal work-up and definitive infectious status of the child. We estimated sensitivity, specificity and positive and negative predictive values both overall and per trimester of pregnancy at the time of maternal infection. Polymerase chain reaction analysis was carried out on amniotic fluid for 261 of the 377 patients included (69%). It was accurate with the exception of four negative results in children who were infected. Overall sensitivity and negative predictive value were 92.2% (95% confidence interval [CI] 81-98%) and 98.1% (95% CI 95-99.5%), respectively. There was no significant association with the trimester of pregnancy during which maternal infection occurred. Specificity and positive predictive values of 100% were obtained for all trimesters. Real-time PCR analysis significantly improves the detection of T. gondii on amniotic fluid. It provides an accurate tool to predict fetal infection and to decide on appropriate treatment and surveillance. However, postnatal follow-up remains necessary in the first year of life to fully exclude infection in children for whom PCR results were negative. III.

  3. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  4. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  5. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  6. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W; Sidow, Arend

    2013-01-01

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF's direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF's motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  7. Separation of DNA-dependent polymerase activities in Micrococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, S; Matsuyama, A [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1977-03-02

    DNA polymerase activities in Micrococcus radiodurans were separated into two fractions after purification more than 2000 fold. They differ in pH optimum and residual activities in the absence of a full deoxyribonucleoside triphosphates complement. NAD partly inhibited one of the activities. Both activities were eluted as a single peak on gel filtration and sedimented at the same rate on glycerol gradient centrifugation. Molecular weight 140000 was calculated from Stokes radius and sedimentation constant. Deoxyribonuclease activity was detected on one of the polymerase activities which preferentially degraded double-stranded DNA. Priming activity of nicked DNA was reduced by ..gamma.. radiation. These results have been related to the possible roles in repair synthesis in vivo or DNA synthesis in permeable cells of M. radiodurans.

  8. Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ

    DEFF Research Database (Denmark)

    Euro, Liliya; Haapanen, Outi; Róg, Tomasz

    2017-01-01

    of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...

  9. Polymerase chain reaction: Theory, practice and application: A review

    Directory of Open Access Journals (Sweden)

    S E Atawodi

    2010-01-01

    Full Text Available Polymerase Chain Reaction (PCR is a rapid procedure for in vitro enzymatic amplification of specific DNA sequences using two oligonucleotide primers that hybridize to opposite strands and flank the region of interest in the target DNA. Repetitive cycles involving template denaturation, primer annealing and the extension of the annealed primers by DNA polymerase, result in the exponential accumulation of a specific fragment whose termini are defined by 5′ end of the primers. The primer extension products synthesized in one cycle can serve as a template in the next. Hence the number of target DNA copies approximately doubles at every cycle. Since its inception, PCR has had an enormous impact in both basic and diagnostic aspects of molecular biology. Like the PCR itself, the number of applications has been accumulating exponentially. It is therefore recommended that relevant scientists and laboratories in developing countries like Nigeria should acquire this simple and relatively inexpensive, but rather robust technology.

  10. UVB DNA dosimeters analyzed by polymerase chain reactors

    International Nuclear Information System (INIS)

    Yoshida, Hiroko; Regan, J.D.; Florida Inst. of Tech., Melbourne, FL

    1997-01-01

    Purified bacteriophage λ DNA was dried on a UV-transparent polymer film and served as a UVB dosimeter for personal and ecological applications. Bacteriophage λ DNA was chosen because it is commercially available and inexpensive, and its entire sequence is known. Each dosimeter contained two sets of DNA sandwiched between UV-transparent polymer films, one exposed to solar radiation (experimental) and another protected from UV radiation by black paper (control). The DNA dosimeter was then analyzed by a polymerase chain reaction (PCR) that amplifies a 500 base pair specific region of λ DNA. Photoinduced damage in DNA blocks polymerase from synthesizing a new strand; therefore, the amount of amplified product in UV-exposed DNA was reduced from that found in control DNA. The dried λ DNA dosimeter is compact, robust, safe and transportable, stable over long storage times and provides the total UVB dose integrated over the exposure time. (author)

  11. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  12. Backtracking dynamics of RNA polymerase: pausing and error correction

    International Nuclear Information System (INIS)

    Sahoo, Mamata; Klumpp, Stefan

    2013-01-01

    Transcription by RNA polymerases is frequently interrupted by pauses. One mechanism of such pauses is backtracking, where the RNA polymerase translocates backward with respect to both the DNA template and the RNA transcript, without shortening the transcript. Backtracked RNA polymerases move in a diffusive fashion and can return to active transcription either by diffusive return to the position where backtracking was initiated or by cleaving the transcript. The latter process also provides a mechanism for proofreading. Here we present some exact results for a kinetic model of backtracking and analyse its impact on the speed and the accuracy of transcription. We show that proofreading through backtracking is different from the classical (Hopfield–Ninio) scheme of kinetic proofreading. Our analysis also suggests that, in addition to contributing to the accuracy of transcription, backtracking may have a second effect: it attenuates the slow down of transcription that arises as a side effect of discriminating between correct and incorrect nucleotides based on the stepping rates. (paper)

  13. Effects of Superparamagnetic Nanoparticle Clusters on the Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Toshiaki Higashi

    2012-04-01

    Full Text Available The polymerase chain reaction (PCR method is widely used for the reproduction and amplification of specific DNA segments, and a novel PCR method using nanomaterials such as gold nanoparticles has recently been reported. This paper reports on the effects of superparamagnetic nanoparticles on PCR amplification without an external magnetic field, and clarifies the mechanism behind the effects of superparamagnetic particle clusters on PCR efficiency by estimating the structures of such clusters in PCR. It was found that superparamagnetic nanoparticles tend to inhibit PCR amplification depending on the structure of the magnetic nanoparticle clusters. The paper also clarifies that Taq polymerase is captured in the spaces formed among magnetic nanoparticle clusters, and that it is captured more efficiently as a result of their motion from heat treatment in PCR thermal cycles. Consequently, Taq polymerase that should be used in PCR is reduced in the PCR solution. These outcomes will be applied to novel PCR techniques using magnetic particles in an external magnetic field.

  14. Allosteric inhibitors of Coxsackie virus A24 RNA polymerase.

    Science.gov (United States)

    Schein, Catherine H; Rowold, Diane; Choi, Kyung H

    2016-02-15

    Coxsackie virus A24 (CVA24), a causative agent of acute hemorrhagic conjunctivitis, is a prototype of enterovirus (EV) species C. The RNA polymerase (3D(pol)) of CVA24 can uridylylate the viral peptide linked to the genome (VPg) from distantly related EV and is thus, a good model for studying this reaction. Once UMP is bound, VPgpU primes RNA elongation. Structural and mutation data have identified a conserved binding surface for VPg on the RNA polymerase (3D(pol)), located about 20Å from the active site. Here, computational docking of over 60,000 small compounds was used to select those with the lowest (best) specific binding energies (BE) for this allosteric site. Compounds with varying structures and low BE were assayed for their effect on formation of VPgU by CVA24-3D(pol). Two compounds with the lowest specific BE for the site inhibited both uridylylation and formation of VPgpolyU at 10-20μM. These small molecules can be used to probe the role of this allosteric site in polymerase function, and may be the basis for novel antiviral compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  16. Promoter Melting Plays Critical Role in Lymphocyte Activation | Center for Cancer Research

    Science.gov (United States)

    Transcription in eukaryotic cells is a precisely timed ballet that consists of RNA polymerase II (pol II) recruitment to gene promoters, assembly of the multiprotein preinitiation complex, opening of the DNA, escape of pol II from the promoter, pol II pausing downstream, mRNA elongation, and, eventually, termination. The two main points of regulation are thought to be

  17. Thioredoxin suppresses microscopic hopping of T7 DNA polymerase on duplex DNA

    NARCIS (Netherlands)

    Etson, Candice M.; Hamdan, Samir M.; Richardson, Charles C.; Oijen, Antoine M. van; Richardson, Charles C.

    2010-01-01

    The DNA polymerases involved in DNA replication achieve high processivity of nucleotide incorporation by forming a complex with processivity factors. A model system for replicative DNA polymerases, the bacteriophage T7 DNA polymerase (gp5), encoded by gene 5, forms a tight, 1:1 complex with

  18. COMPARISON OF SIX COMMERCIALLY-AVAILABLE DNA POLYMERASES FOR DIRECT PCR

    Directory of Open Access Journals (Sweden)

    Masashi Miura

    2013-12-01

    Full Text Available SUMMARY The use of a “direct PCR” DNA polymerase enables PCR amplification without any prior DNA purification from blood samples due to the enzyme's resistance to inhibitors present in blood components. Such DNA polymerases are now commercially available. We compared the PCR performance of six direct PCR-type DNA polymerases (KOD FX, Mighty Amp, Hemo KlenTaq, Phusion Blood II, KAPA Blood, and BIOTAQ in dried blood eluted from a filter paper with TE buffer. GoTaq Flexi was used as a standard DNA polymerase. PCR performance was evaluated by a nested PCR technique for detecting Plasmodium falciparum genomic DNA in the presence of the blood components. Although all six DNA polymerases showed resistance to blood components compared to the standard Taq polymerase, the KOD FX and BIOTAQ DNA polymerases were resistant to inhibitory blood components at concentrations of 40%, and their PCR performance was superior to that of other DNA polymerases. When the reaction mixture contained a mild detergent, only KOD FX DNA polymerase retained the original amount of amplified product. These results indicate that KOD FX DNA polymerase is the most resistant to inhibitory blood components and/or detergents. Thus, KOD FX DNA polymerase could be useful in serological studies to simultaneously detect antibodies and DNA in eluents for antibodies. KOD FX DNA polymerase is thus not limited to use in detecting malaria parasites, but could also be employed to detect other blood-borne pathogens.

  19. Production of DNA polymerase by recombinant pET-17b/Pfu-Pol ...

    African Journals Online (AJOL)

    Although this enzyme has been produced worldwide, there is no reported cloning or production of polymerases in Egypt. In the current work, plasmid coding Pfu polymerase enzyme (pET-17b/Pfu-Pol) was transformed into E. coli Top10. The plasmid coding Pfu- polymerase was confirmed by restriction analysis using HindIII ...

  20. The role of DNA polymerase {iota} in UV mutational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Hyuk [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Besaratinia, Ahmad [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Lee, Dong-Hyun [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States); Lee, Chong-Soon [Department of Biochemistry, College of Natural Sciences, Yeungnam University, Gyongsan 712-749 (Korea, Republic of); Pfeifer, Gerd P. [Division of Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010 (United States)]. E-mail: gpfeifer@coh.org

    2006-07-25

    UVB (280-320 nm) and UVC (200-280 nm) irradiation generate predominantly cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts in DNA. CPDs are thought to be responsible for most of the UV-induced mutations. Thymine-thymine CPDs, and probably also CPDs containing cytosine, are replicated in vivo in a largely accurate manner by a DNA polymerase {eta} (Pol {eta}) dependent process. Pol {eta} is a DNA damage-tolerant and error-prone DNA polymerase encoded by the POLH (XPV) gene in humans. Another member of the Y family of error-prone DNA polymerases is POLI encoding DNA polymerase iota (Pol {iota}). In order to clarify the specific role of Pol {iota} in UV mutagenesis, we have used an siRNA knockdown approach in combination with a supF shuttle vector which replicates in mammalian cells, similar as we have previously done for Pol {eta}. Synthetic RNA duplexes were used to efficiently inhibit Pol {iota} expression in 293T cells. The supF shuttle vector was irradiated with 254 nm UVC and replicated in 293T cells in presence of anti-Pol {iota} siRNA. Surprisingly, there was a consistent reduction of recovered plasmid from cells with Pol {iota} knockdown and this was independent of UV irradiation of the plasmid. The supF mutant frequency was unchanged in the siRNA knockdown cells relative to control cells confirming that Pol {iota} does not play an important role in UV mutagenesis. UV-induced supF mutants were sequenced from siRNA-treated cells and controls. Neither the type of mutations nor their distribution along the supF gene were significantly different between controls and siRNA knockdown cells and were predominantly C to T and CC to TT transitions at dipyrimidine sites. These results show that Pol {iota} has no significant role in UV lesion bypass and mutagenesis in vivo and provides some initial data suggesting that this polymerase may be involved in replication of extrachromosomal DNA.

  1. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    Science.gov (United States)

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  2. Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Polymerase activity and mechanisms of action of nucleotide analogs

    Czech Academy of Sciences Publication Activity Database

    Barauskas, O.; Xing, W.; Aguayo, E.; Willkom, M.; Sapre, A.; Clarke, M.; Birkuš, Gabriel; Schultz, B. E.; Sakowicz, R.; Kwon, H. J.; Feng, J. Y.

    2017-01-01

    Roč. 12, č. 10 (2017), č. článku e0185998. E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : virus RNA polymerase * T-705 Favipiravir * structural basis Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 2.806, year: 2016 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185998

  3. Health promotion.

    Science.gov (United States)

    Miyake, S; Lucas-Miyake, M

    1989-01-01

    This article will describe a marketing model for the development of a role for occupational therapy in the industrial market. Health promotion activities are used as a means to diversify existing revenue bases by establishing new referral sources in industry. The technique of need satisfaction -selling or marketing one's services to a customer based on needs expressed by the customer - is reviewed, and implementation of this approach is described from two settings, one in psychiatry and the other in rehabilitation.

  4. Pseudo Class III malocclusion

    Directory of Open Access Journals (Sweden)

    Fadia M. Al-Hummayani

    2016-04-01

    Full Text Available The treatment of deep anterior crossbite is technically challenging due to the difficulty of placing traditional brackets with fixed appliances. This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors. Treatment was carried out in 2 phases. Phase I treatment was performed by removable appliance “modified Hawley appliance with inverted labial bow,” some modifications were carried out to it to suit the presented case. Positive overbite and overjet was accomplished in one month, in this phase with minimal forces exerted on the lower incisors. Whereas, phase II treatment was performed with fixed appliances (braces to align teeth and have proper over bite and overjet and to close posterior open bite, this phase was accomplished within 11 month.

  5. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui

    2013-04-01

    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  6. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  7. Inference of RNA polymerase II transcription dynamics from chromatin immunoprecipitation time course data.

    Directory of Open Access Journals (Sweden)

    Ciira wa Maina

    2014-05-01

    Full Text Available Gene transcription mediated by RNA polymerase II (pol-II is a key step in gene expression. The dynamics of pol-II moving along the transcribed region influence the rate and timing of gene expression. In this work, we present a probabilistic model of transcription dynamics which is fitted to pol-II occupancy time course data measured using ChIP-Seq. The model can be used to estimate transcription speed and to infer the temporal pol-II activity profile at the gene promoter. Model parameters are estimated using either maximum likelihood estimation or via Bayesian inference using Markov chain Monte Carlo sampling. The Bayesian approach provides confidence intervals for parameter estimates and allows the use of priors that capture domain knowledge, e.g. the expected range of transcription speeds, based on previous experiments. The model describes the movement of pol-II down the gene body and can be used to identify the time of induction for transcriptionally engaged genes. By clustering the inferred promoter activity time profiles, we are able to determine which genes respond quickly to stimuli and group genes that share activity profiles and may therefore be co-regulated. We apply our methodology to biological data obtained using ChIP-seq to measure pol-II occupancy genome-wide when MCF-7 human breast cancer cells are treated with estradiol (E2. The transcription speeds we obtain agree with those obtained previously for smaller numbers of genes with the advantage that our approach can be applied genome-wide. We validate the biological significance of the pol-II promoter activity clusters by investigating cluster-specific transcription factor binding patterns and determining canonical pathway enrichment. We find that rapidly induced genes are enriched for both estrogen receptor alpha (ERα and FOXA1 binding in their proximal promoter regions.

  8. Linking Core Promoter Classes to Circadian Transcription.

    Directory of Open Access Journals (Sweden)

    Pål O Westermark

    2016-08-01

    Full Text Available Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs, is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.

  9. Luminescent amine sensor based on europium(III) chelate.

    Science.gov (United States)

    Petrochenkova, Nataliya V; Mirochnik, Anatolii G; Emelina, Tatyana B; Sergeev, Alexander A; Leonov, Andrei A; Voznesenskii, Sergey S

    2018-07-05

    The effect of methylamine vapor on luminescence of Eu(III) tris-benzoylacetonate (I) immobilized in thin-layer chromatography plates has been investigated. It has been revealed that interaction of I with analyte vapor results in increase of the intensity of Eu(III) luminescence. The mechanism of the effect of methylamine vapors on intensification of the Eu(III) luminescence has been suggested using the data of IR spectroscopy and quantum chemistry calculations. The mechanism of luminescence sensitization consists in bonding of an analyte molecule with a water molecule into the coordination sphere of Eu(III). As a result, the bond of a water molecule with the luminescence centre weakens, rigid structural fragment including europium ion, water and methylamine molecules forms. The presence of such fragment must naturally promote decrease of influence of OH-vibrations on luminescence of the complex I. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. [Molecular cloning and characterization of cDNA of the rpc10+ gene encoding the smallest subunit of nuclear RNA polymerases of Schizosaccharomyces pombe].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N

    1997-05-01

    The full-length cDNA of the rpc10+ gene encoding mini-subunit Rpc10, which is common for all three nuclear RNA polymerases of the fission yeast Schizosaccharomyces pombe, was cloned and sequenced. The Rpc10 subunit of Sz. pombe and its homologs from S. cerevisiae and H. sapiens are positively charged proteins with a highly conserved C-terminal region and an invariant zinc-binding domain (Zn-finger) of a typical amino acid composition: YxCx2Cx12RCx2CGxR. Functional tests of heterospecific complementation, using tetrad analysis or plasmid shuffling, showed that the Rpc10 subunit of Sz. pombe can successfully replace the homologous ABC10 alpha subunit in nuclear RNA polymerases I-III of S. cerevisiae.

  11. Characterization of vitellogenin gene expression in round goby (Neogobius melanostomus) using a quantitative polymerase chain reaction assay.

    Science.gov (United States)

    Bowley, Lucas A; Alam, Farhana; Marentette, Julie R; Balshine, Sigal; Wilson, Joanna Y

    2010-12-01

    A growing concern over endocrine disruption in aquatic species has prompted the development of molecular assays to monitor environmental impacts. This study describes the development of quantitative polymerase chain reaction (qPCR) assays to characterize the expression of two vitellogenin (Vtg) genes in the invasive round goby (Neogobius melanostomus). Fragments from the 18SrRNA (housekeeping gene), Vtg II, and Vtg III genes were cloned and sequenced. The qPCR assays were developed to detect hepatic Vtg expression in goby. The assays detected induction of both Vtg genes in nonreproductive males following a two-week laboratory exposure to 17β-estradiol (≥1 mg/kg i.p. injection). The assays were applied to goby from Hamilton Harbour, Lake Ontario (Canada), including those from sites where feminization and intersex of goby has been documented. Both Vtg genes had significantly higher expression in females compared to males. Male reproductive goby adopt either parental or sneaker tactics; Vtg II expression was higher in sneaker than in parental males but parental and nonreproductive males did not differ from each other. The Vtg III expression was significantly higher in sneaker males followed by parental males and nonreproductive males, respectively. The Vtg II and III expression in nonreproductive males was elevated in the contaminated site with documented intersex. This assay provides an important tool for the use of an invasive species in monitoring endocrine disruption in the Great Lakes region. Copyright © 2010 SETAC.

  12. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  13. Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants.

    Science.gov (United States)

    Shis, David L; Bennett, Matthew R

    2013-03-26

    The construction of synthetic gene circuits relies on our ability to engineer regulatory architectures that are orthogonal to the host's native regulatory pathways. However, as synthetic gene circuits become larger and more complicated, we are limited by the small number of parts, especially transcription factors, that work well in the context of the circuit. The current repertoire of transcription factors consists of a limited selection of activators and repressors, making the implementation of transcriptional logic a complicated and component-intensive process. To address this, we modified bacteriophage T7 RNA polymerase (T7 RNAP) to create a library of transcriptional AND gates for use in Escherichia coli by first splitting the protein and then mutating the DNA recognition domain of the C-terminal fragment to alter its promoter specificity. We first demonstrate that split T7 RNAP is active in vivo and compare it with full-length enzyme. We then create a library of mutant split T7 RNAPs that have a range of activities when used in combination with a complimentary set of altered T7-specific promoters. Finally, we assay the two-input function of both wild-type and mutant split T7 RNAPs and find that regulated expression of the N- and C-terminal fragments of the split T7 RNAPs creates AND logic in each case. This work demonstrates that mutant split T7 RNAP can be used as a transcriptional AND gate and introduces a unique library of components for use in synthetic gene circuits.

  14. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.

    Science.gov (United States)

    NandyMazumdar, Monali; Nedialkov, Yuri; Svetlov, Dmitri; Sevostyanova, Anastasia; Belogurov, Georgiy A; Artsimovitch, Irina

    2016-12-27

    Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.

  15. Identification of proteins similar to AvrE type III effector proteins from ...

    African Journals Online (AJOL)

    Type III effector proteins are injected into host cells through type III secretion systems. Some effectors are similar to host proteins to promote pathogenicity, while others lead to the activation of disease resistance. We used partial least squares alignment-free bioinformatics methods to identify proteins similar to AvrE proteins ...

  16. Promoting industrialisation

    International Nuclear Information System (INIS)

    Hayfield, F.

    1986-04-01

    When the first nuclear power programme is decided upon, automatically the country has to initiate in parallel a programme to modify or add to its current industrial structure and resources. The extent of this new industrialisation depends upon many factors which both, the Government and the Industries have to consider. The Government has a vital role which includes the setting up of the background against which the industrial promotion should take place and in many cases may have also to play an active role all along this programme. Equally, the existing industries have an important role so as to achieve the most efficient participation in the nuclear programme. Invariably the industrial promotional programme will incur a certain degree of transfer of technology, the extent depending on the policies adopted. For this technology transfer to take place efficiently, both the donor and the receiver have to recognise each other's legitimate ambitions and fears. The transfer of technology is a process having a high human content and both donor and receiver have to take this into account. This can be further complicated when there is a difference in culture between them. Technology transfer is carried out within a contractual and organisational framework which will identify the donor (licensor) and the receiver (licensee). This framework may take various forms from a simple cooperative agreement, through a joint-venture organisation right to a standard contract between two separate entities. Each arrangement has its advantages and drawbacks and requires investment of different degrees. One of the keys to a successful industrial promotion is having it carried out in a timely fashion which will be parallel with the nuclear power programme. Experience in some countries has shown the problems when the industrialisation is out of phase with the programme whilst in other cases this industrialisation was at a level and scale unjustified. (author)

  17. Study of the activity of DNA polymerases β and λ using 5-formyluridine containing DNA substrates

    Directory of Open Access Journals (Sweden)

    Lavrik O. I.

    2012-06-01

    Full Text Available Aim. To investigate the TLS-activity of human DNA polymerases β and λ (pols β and λ using 5-formyluridine (5-foU containing DNA duplexes which are imitating the intermediates during replication of the leading DNA strand, and to study the influence of replication factors hRPA and hPCNA on this activity. Methods. The EMSA and the methods of enzyme’s kinetics were used. Results. The capability of pols β and λ to catalyze DNA synthesis across 5-foU was investigated and the kinetic characteristics of this process in the presence and in the absence of protein factors hRPA and hPCNA were evaluated. Conclusions. It was shown that: (i both proteins are able to catalyze TLS on used DNA substrates regardless of the reaction conditions, however, pol λ was more accurate enzyme; (ii hRPA can stimulate the efficacy of the nonmutagenic TLS catalyzed by pol at the nucleotide incorporation directly opposite of 5-foU, at the same time it doesn’t influence the incorporation efficacy if the damage displaced into the duplex; (iii hPCNA doesn’t influence the efficacy of TLS catalyzed by both enzymes.

  18. DNA-based identification of spices: DNA isolation, whole genome amplification, and polymerase chain reaction.

    Science.gov (United States)

    Focke, Felix; Haase, Ilka; Fischer, Markus

    2011-01-26

    Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.

  19. Identification of aflatoxigenic fungi using polymerase chain reaction-based assay

    Directory of Open Access Journals (Sweden)

    Šošo Vladislava M.

    2014-01-01

    Full Text Available As the aflatoxins represent a health-risk for humans because of their proven carcinogenicity, food-borne fungi that produce them as secondary metabolites, mainly Aspergillus flavus and Aspergillus parasiticus, have to be isolated and identified. The best argument for identifying problem fungi is that it indicates control points within the food system as part of a hazard analysis critical control point (HACCP approach. This assumes there is a close link between fungus and toxin. Conventional methods for isolation and identification of fungi are time consuming and require admirably dedicated taxonomists. Hence, it is imperative to develop methodologies that are relatively rapid, highly specific and as an alternative to the existing methods. The polymerase chain reaction (PCR facilitates the in vitro amplification of the target sequence. The main advantages of PCR is that organisms need not be cultured, at least not for a long time, prior to their detection, target DNA can be detected even in a complex mixture, no radioactive probes are required, it is rapid, sensitive and highly versatile. The gene afl-2 has been isolated and shown to regulate aflatoxin biosynthesis in A. flavus. Also, the PCR reaction was targeted against aflatoxin synthesis regulatory gene (aflR1 since these genes are nearly identical in A. flavus and A. parasiticus in order to indicate the possibility of detection of both the species with the same PCR system (primers/reaction. [Projekat Ministarstva nauke Republike Srbije, br. III46009

  20. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay.

    Science.gov (United States)

    Sun, Daekyu; Hurley, Laurence H

    2010-01-01

    The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.