WorldWideScience

Sample records for polymer-blend nanoparticle delivery

  1. Performance of dielectric nanocomposites: matrix-free, hairy nanoparticle assemblies and amorphous polymer-nanoparticle blends.

    Science.gov (United States)

    Grabowski, Christopher A; Koerner, Hilmar; Meth, Jeffrey S; Dang, Alei; Hui, Chin Ming; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Durstock, Michael F; Vaia, Richard A

    2014-12-10

    Demands to increase the stored energy density of electrostatic capacitors have spurred the development of materials with enhanced dielectric breakdown, improved permittivity, and reduced dielectric loss. Polymer nanocomposites (PNCs), consisting of a blend of amorphous polymer and dielectric nanofillers, have been studied intensely to satisfy these goals; however, nanoparticle aggregates, field localization due to dielectric mismatch between particle and matrix, and the poorly understood role of interface compatibilization have challenged progress. To expand the understanding of the inter-relation between these factors and, thus, enable rational optimization of low and high contrast PNC dielectrics, we compare the dielectric performance of matrix-free hairy nanoparticle assemblies (aHNPs) to blended PNCs in the regime of low dielectric contrast to establish how morphology and interface impact energy storage and breakdown across different polymer matrices (polystyrene, PS, and poly(methyl methacrylate), PMMA) and nanoparticle loadings (0-50% (v/v) silica). The findings indicate that the route (aHNP versus blending) to well-dispersed morphology has, at most, a minor impact on breakdown strength trends with nanoparticle volume fraction; the only exception being at intermediate loadings of silica in PMMA (15% (v/v)). Conversely, aHNPs show substantial improvements in reducing dielectric loss and maintaining charge/discharge efficiency. For example, low-frequency dielectric loss (1 Hz-1 kHz) of PS and PMMA aHNP films was essentially unchanged up to a silica content of 50% (v/v), whereas traditional blends showed a monotonically increasing loss with silica loading. Similar benefits are seen via high-field polarization loop measurements where energy storage for ∼15% (v/v) silica loaded PMMA and PS aHNPs were 50% and 200% greater than respective comparable PNC blends. Overall, these findings on low dielectric contrast PNCs clearly point to the performance benefits of

  2. Interfacial adhesion of nanoparticles in polymer blends by intrinsic fluorescence spectra

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available Intrinsic fluorescence was applied to quantitatively describe the interfacial adhesion of nanoparticles in polystyrene/poly(vinyl methyl ether (PS/PVME blends. Due to the aggregation of aromatic rings on PS chains, the temperature dependence of excimer fluorescence intensity (I324 showed the high sensitivity to the phase separation process. Consistent with Ginzburg thermodynamic model, it was found that the addition of spherical hydrophilic nanoparticles shifted the phase separation temperature to higher temperatures due to the aggregation of silica into PVME chains leading to the free energy reduction and slowing down the phase separation dynamics. A certain composition of polymer blend, i.e. 2/8, was focused on to shed light on the dynamic of spinodal decomposition (SD phase separation by using decomposition reaction model. It was shown that the addition of nanoparticles to polymer blends resulted in the deviation of linear relationship between the initial SD phase separation rate (Rp0 and thermodynamic driving force (ΔfSD. Besides, for PS/PVME (2/8 with 2 vol% silica nanoparticles, the apparent activation energy of phase separation (Ea was 196.61 kJ/mol, which was higher than that of neat PS/PVME (2/8 blend (Ea = 173.68 kJ/mol, which strongly confirmed the interfacial adhesion effect of silica nanoparticles as compatibilizers.

  3. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  4. Binary blend Nanoparticles with defined morphology

    International Nuclear Information System (INIS)

    Ghazy, O.A.H.

    2008-01-01

    nanoparticle approach relying on the mini emulsion process was presented, by which the length scale of phase separation of polymer blends is controllable down to few tens of nanometers [1-3, 10-12]. The method is based on forming a mini emulsion of the polymer solution in water and subsequently evaporating the solvent to obtain the polymer nanospheres dispersed in water. The process enables the control of the polymer particle size in the range of 50-500 nm [13-15]. The blending is done through two different approaches: either by mixing nanoparticles of pure polymers (nanoparticle blends), or by fabricating blend nanoparticles (composite particles) by starting with a mutual solution of the two polymers. Solar cells based on the mini emulsion approaches have been fabricated and their efficiency was studied [1-3], nevertheless the morphology of the polymer blends used for the fabrication was difficult to study. The difficulty is hidden in finding polymer pairs that have electronic contrast to enable the morphology study by electron microscopy

  5. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  6. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.

    Science.gov (United States)

    Hadinoto, Kunn; Sundaresan, Ajitha; Cheow, Wean Sin

    2013-11-01

    Lipid-polymer hybrid nanoparticles (LPNs) are core-shell nanoparticle structures comprising polymer cores and lipid/lipid-PEG shells, which exhibit complementary characteristics of both polymeric nanoparticles and liposomes, particularly in terms of their physical stability and biocompatibility. Significantly, the LPNs have recently been demonstrated to exhibit superior in vivo cellular delivery efficacy compared to that obtained from polymeric nanoparticles and liposomes. Since their inception, the LPNs have advanced significantly in terms of their preparation strategy and scope of applications. Their preparation strategy has undergone a shift from the conceptually simple two-step method, involving preformed polymeric nanoparticles and lipid vesicles, to the more principally complex, yet easier to perform, one-step method, relying on simultaneous self-assembly of the lipid and polymer, which has resulted in better products and higher production throughput. The scope of LPNs' applications has also been extended beyond single drug delivery for anticancer therapy, to include combinatorial and active targeted drug deliveries, and deliveries of genetic materials, vaccines, and diagnostic imaging agents. This review details the current state of development for the LPNs preparation and applications from which we identify future research works needed to bring the LPNs closer to its clinical realization. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  8. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  9. Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems.

    Science.gov (United States)

    Singh, Jasvinder; Pandit, Sreenivas; Bramwell, Vincent W; Alpar, H Oya

    2006-02-01

    Poly-(epsilon-caprolactone) (PCL), a poly(lactide-co-glycolide) (PLGA)-PCL blend and co-polymer nanoparticles encapsulating diphtheria toxoid (DT) were investigated for their potential as a mucosal vaccine delivery system. The nanoparticles, prepared using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method, demonstrated release profiles which were dependent on the properties of the polymers. An in vitro experiment using Caco-2 cells showed significantly higher uptake of PCL nanoparticles in comparison to polymeric PLGA, the PLGA-PCL blend and co-polymer nanoparticles. The highest uptake mediated by the most hydrophobic nanoparticles using Caco-2 cells was mirrored in the in vivo studies following nasal administration. PCL nanoparticles induced DT serum specific IgG antibody responses significantly higher than PLGA. A significant positive correlation between hydrophobicity of the nanoparticles and the immune response was observed following intramuscular administration. The positive correlation between hydrophobicity of the nanoparticles and serum DT specific IgG antibody response was also observed after intranasal administration of the nanoparticles. The cytokine assays showed that the serum IgG antibody response induced is different according to the route of administration, indicated by the differential levels of IL-6 and IFN-gamma. The nanoparticles eliciting the highest IgG antibody response did not necessarily elicit the highest levels of the cytokines IL-6 and IFN-gamma.

  10. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  11. Polymer Brush Grafted Nanoparticles and Their Impact on the Morphology Evolution of Polymer Blend Films

    Science.gov (United States)

    Chung, Hyun-Joong; Ohno, Kohji; Composto, Russell

    2013-03-01

    We present an novel pathway to control the location of nanoparticles (NPs) in phase-separating polymer blend films containing poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN). Because hydrophobic polymer phases have a small interfacial energy, ~1 mJ/m2, subtle changes in the NP surface functionality can be used to guide NPs to either the interface between immiscible polymers or into one of the phases. Based on this idea, we designed a class of NPs grafted with PMMA brushes. These PMMA brushes were grown from the NP surface by atom transfer radical polymerization (ATRP), which results in chains terminated with chlorine atoms. The chain end can be substituted with protons (H) by dehalogenation. As a result, the NPs are strongly segregated at the interface when grafted PMMA chains are short (Mn =1.8K) and the end group is Cl, whereas NPs partition into PMMA-rich phase when chains are long (Mn =160K) and/or when chains are terminated with hydrogen. The Cl end groups and shorter chain length cause an increase in surface energy for the NPs. The increase in surface energy of short-chained NPs can be attributed to (i) an extended brush conformation (entropic) and/or (ii) a high density of ``unfavorable'' end groups (enthalpic). Finally, the impact of NPs on the morphological evolution of the polymer blend films will be discussed. Ref: H.-J.Chung et al., ACS Macro Lett. 1(1), 252-256 (2012).

  12. Multifunctional pH-Responsive Folate Receptor Mediated Polymer Nanoparticles for Drug Delivery.

    Science.gov (United States)

    Cai, Xiaoqing; Yang, Xiaoye; Wang, Fang; Zhang, Chen; Sun, Deqing; Zhai, Guangxi

    2016-07-01

    Multifunctional pH-responsive folate receptor mediated targeted polymer nanoparticles (TPNps) were developed for docetaxel (DTX) delivery based on poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)poly (β-amino ester) (P123-PAE) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)-folate (P123-FA) copolymers. The DTX was loaded into the TPNps with a decent drug loading content of 15.02 ± 0.14 wt%. In vitro drug release results showed that the DTX was released from the TPNps at a pH-dependent manner. Tetrazolium dye (MTT) assay revealed that the bland polymer nanoparticles displayed almost nontoxicity at 200 μg/mL concentration. However, the DTX-loaded TPNps showed high anti-tumor activity at low IC50 (0.72 μg/mL) for MCF-7 cells following 48 h incubation. Cellular uptake experiments revealed that the TPNps had higher degree of cellular uptake than nontargeted polymer nanoparticles, indicating that the nanoparticles were internalized into the cells via FA receptor-mediated endocytosis. Moreover, the cellular uptake pathways for the FA grafted polymer were involved in energy-dependent, clathrin-mediated and caveolae-mediated endocytosis. The cell killing effect and cellular uptake of the DTX-TPNps by the MCF-7 cells were all enhanced by about two folds at pH 5.5 when compared with pH 7.4. The TPNps also significantly prolonged the in vivo retention time for the DTX. These results suggest that the biocompatible pH responsive folate-modified polymer nanoparticles present a promising safe nanosystem for intracellular targeted delivery of DTX.

  13. Flash nano-precipitation of polymer blends: a role for fluid flow?

    Science.gov (United States)

    Grundy, Lorena; Mason, Lachlan; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Lee, Victoria; Prudhomme, Robert; Priestley, Rodney; Matar, Omar K.

    2017-11-01

    Porous structures can be formed by the controlled precipitation of polymer blends; ranging from porous matrices, with applications in membrane filtration, to porous nano-particles, with applications in catalysis, targeted drug delivery and emulsion stabilisation. Under a diffusive exchange of solvent for non-solvent, prevailing conditions favour the decomposition of polymer blends into multiple phases. Interestingly, dynamic structures can be `trapped' via vitrification prior to thermodynamic equilibrium. A promising mechanism for large-scale polymer processing is flash nano-precipitation (FNP). FNP particle formation has recently been modelled using spinodal decomposition theory, however the influence of fluid flow on structure formation is yet to be clarified. In this study, we couple a Navier-Stokes equation to a Cahn-Hilliard model of spinodal decomposition. The framework is implemented using Code BLUE, a massively scalable fluid dynamics solver, and applied to flows within confined impinging jet mixers. The present method is valid for a wide range of mixing timescales spanning FNP and conventional immersion precipitation processes. Results aid in the fabrication of nano-scale polymer particles with tuneable internal porosities. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.

  14. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.R., E-mail: iglesias@ugr.es [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Delgado, A.V.; González-Caballero, F. [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Ramos-Tejada, M.M. [Department of Physics, University of Jaén, Linares 23700 (Spain)

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles. - Highlights: • Magnetite NPs coated with polymers are used for drug delivery and hyperthermia. • The SAR of polyelectrolyte-coated NPs is larger because of their improved stability. • The antitumor drug doxorubicin is adsorbed on the coated particles. • The release rate of the drug is not affected by the ac magnetic field used in hyperthermia.

  15. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  16. Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article.

    Science.gov (United States)

    Dasan, K Priya; Rekha, C

    2012-11-01

    The use of polymers and their microspheres in drug delivery is well known for they are being widely used in the field of drug delivery. The polymer entraps a drug which is to be released in a predesigned manner in the body through biodegradation. The blending of polymers is one way of modifying and enhancing the properties of polymer- based products which is also a cost effective procedure rather than developing a new product. The molecular weight of the polymer, the composition of the blend, the sphere porosity and size, and drug distribution are found to be controllable factors on which drug delivery depends. Polymer blends are obtained by allowing two polymers to combine as one material which has the advantage of two or more polymers. Polymer microspheres are small spherical particles with diameters in the micrometer range between 1μm to 1000μm which are manufactured from various natural and synthetic materials. Microspheres are used to administer medication in a rate- controlled manner and sometimes in a targeted manner. This review presents various polymer blend- combinations in different ratios, the different processing techniques adopted and the details of their characterization through examples found in a literature survey. The characterization of the different polymer blends or microspheres showed changes in structure, increase in drug loading, encapsulation efficiency, biocompatibility and low cytotoxicity.

  17. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  18. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  19. Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: Effects of blending ratios

    International Nuclear Information System (INIS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2011-01-01

    In this work, we show successful use of matrix-assisted pulsed laser evaporation (MAPLE) for obtaining thin films of PEG:PLGA blends, in the view of their use for controlled drug delivery. In particular, we investigate the influence of the blending ratios on the characteristics of the films. We show that the roughness of the polymeric films is affected by the ratio of each polymer within the blend. In addition, we perform Fourier transformed infrared spectroscopy (FTIR) measurements and we find that the intensities ratios of the infrared absorption bands of the two polymers are consistent with the blending ratios. Finally, we assess the optical constants of the polymeric films by spectroscopic ellipsometry (SE). We point out that the blending ratios exert an influence on the optical characteristics of the films and we validate the SE results by atomic force microscopy and UV-vis spectrophotometry. In all, we stress that the ratios in which the two polymers are blended have significant impact on the morphology, chemical structure and optical characteristics of the polymeric films deposited by MAPLE.

  20. Effect of silica nanoparticles on the morphology of polymer blends

    NARCIS (Netherlands)

    Li, Weizhen

    2011-01-01

    Polymeric materials are often a combination of different polymers and plasticizers, stabilizers, and organic/inorganic additives to tailor the properties. The type and fineness of the morphology is the key factor for the ultimate properties of polymer blends. Recently, the use of inorganic

  1. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  2. Lipid-Polymer Nanoparticles for Folate-Receptor Targeting Delivery of Doxorubicin.

    Science.gov (United States)

    Zheng, Mingbin; Gong, Ping; Zheng, Cuifang; Zhao, Pengfei; Luo, Zhenyu; Ma, Yifan; Cai, Lintao

    2015-07-01

    A biocompatible PLGA-lipid hybrid nanoparticles (NPs) was developed for targeted delivery of anticancer drugs with doxorubicin (DOX). The hydrodynamic diameter and zeta potential of DOX-loaded PLGA-lipid NPs (DNPs) were affected by the mass ratio of Lipid/PLGA or DSPE-PEG-COOH/Lecithin. At the 1:20 drug/polymer mass ratio, the mean hydrodynamic diameter of DNPs was the lowest (99.2 1.83 nm) and the NPs presented the encapsulation efficiency of DOX with 42.69 1.30%. Due to the folate-receptor mediated endocytosis, the PLGA-lipid NPs with folic acid (FA) targeting ligand showed significant higher uptake by folate-receptor-positive MCF-7 cells as compared to PLGA-lipid NPs without folate. Confocal microscopic observation and flow cytometry analysis also supported the enhanced cellular uptake of the FA-targeted NPs. The results indicated that the FA-targeted DNPs exhibited higher cytotoxicity in MCF-7 cells compared with non-targeted NPs. The lipid-polymer nanoparticles provide a solution of biocompatible nanocarrier for cancer targeting therapy.

  3. SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation.

    Science.gov (United States)

    Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina

    2017-03-01

    One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.

  4. Hydrogel nanoparticles in drug delivery.

    Science.gov (United States)

    Hamidi, Mehrdad; Azadi, Amir; Rafiei, Pedram

    2008-12-14

    Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.

  5. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles

    DEFF Research Database (Denmark)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien

    2015-01-01

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA) nano...... of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix.......Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(dl-lactic-co-glycolic acid) (PLGA......) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X...

  6. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes

    Science.gov (United States)

    Devulapally, Rammohan; Paulmurugan, Ramasamy

    2013-01-01

    Advances in nanotechnology have provided powerful and efficient tools in development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles (NPs) have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA’s loading and delivery to treat different types of cancer. PMID:23996830

  7. Folate-modified lipid–polymer hybrid nanoparticles for targeted paclitaxel delivery

    Directory of Open Access Journals (Sweden)

    Zhang L

    2015-03-01

    Full Text Available Linhua Zhang,1 Dunwan Zhu,1 Xia Dong,1 Hongfan Sun,1 Cunxian Song,1 Chun Wang,2 Deling Kong1 1Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China; 2Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA Abstract: The purpose of this study was to develop a novel lipid–polymer hybrid drug carrier comprised of folate (FA modified lipid-shell and polymer-core nanoparticles (FLPNPs for sustained, controlled, and targeted delivery of paclitaxel (PTX. The core-shell NPs consist of 1 a poly(ε-caprolactone hydrophobic core based on self-assembly of poly(ε-caprolactone–poly(ethylene glycol–poly(ε-caprolactone (PCL-PEG-PCL amphiphilic copolymers, 2 a lipid monolayer formed with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol-2000] (DSPE-PEG2000, 3 a targeting ligand (FA on the surface, and were prepared using a thin-film hydration and ultrasonic dispersion method. Transmission electron microscopy and dynamic light scattering analysis confirmed the coating of the lipid monolayer on the hydrophobic polymer core. Physicochemical characterizations of PTX-loaded FLPNPs, such as particle size and size distribution, zeta potential, morphology, drug loading content, encapsulation efficiency, and in vitro drug release, were also evaluated. Fluorescent microscopy proved the internalization efficiency and targeting ability of the folate conjugated on the lipid monolayer for the EMT6 cancer cells which overexpress folate receptor. In vitro cytotoxicity assay demonstrated that the cytotoxic effect of PTX-loaded FLPNPs was lower than that of Taxol®, but higher than that of PTX-loaded LPNPs (without folate conjugation. In EMT6 breast tumor model, intratumoral administration of PTX-loaded FLPNPs showed similar antitumor efficacy but low toxicity compared to Taxol®. More

  8. Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ndidi C. Ngwuluka

    2014-05-01

    Full Text Available Naturapolyceutics defines the emerging science and technology platform that blends natural polymers and pharmaceutics for the design and development of drug delivery systems. Natural polymers due to their biological properties, sustainability, chemical flexibility, human and eco-friendliness are promising in this field. As drug delivery advances, there will be need for more polymers. Given that polymers utilized in pharmaceuticals require regulatory approval, robust processes are undertaken to facilitate the production of pharmaceutical grade natural polymers. This review provides insight into the processes—extraction, purification, modifications and characterizations—involved in the eventual utilization of natural polymers for drug delivery. The versatility of natural polymers and particularly modified natural polymers in targeted drug delivery, micro-/nano-drug delivery, theranostics, BioMEMs and generally in research and development of highly efficient, safe and quality products is demonstrated. Natural polymers are polymers of today and tomorrow. Therefore, the shift to undertake training, extensive research and subsequent commercialization of more natural polymers—novel and underutilized—for drug delivery is now!

  9. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    Directory of Open Access Journals (Sweden)

    Marxa Figueiredo

    2012-01-01

    Full Text Available This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid (PLGA or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound composed either of polymers (PLGA, polystyrene or other contrast agent materials (Optison, SonoVue microbubbles. The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery.

  10. Suspensions of polymer-grafted nanoparticles with added polymers-Structure and effective pair-interactions.

    Science.gov (United States)

    Chandran, Sivasurender; Saw, Shibu; Kandar, A K; Dasgupta, C; Sprung, M; Basu, J K

    2015-08-28

    We present the results of combined experimental and theoretical (molecular dynamics simulations and integral equation theory) studies of the structure and effective interactions of suspensions of polymer grafted nanoparticles (PGNPs) in the presence of linear polymers. Due to the absence of systematic experimental and theoretical studies of PGNPs, it is widely believed that the structure and effective interactions in such binary mixtures would be very similar to those of an analogous soft colloidal material-star polymers. In our study, polystyrene-grafted gold nanoparticles with functionality f = 70 were mixed with linear polystyrene (PS) of two different molecular weights for obtaining two PGNP:PS size ratios, ξ = 0.14 and 2.76 (where, ξ = Mg/Mm, Mg and Mm being the molecular weights of grafting and matrix polymers, respectively). The experimental structure factor of PGNPs could be modeled with an effective potential (Model-X), which has been found to be widely applicable for star polymers. Similarly, the structure factor of the blends with ξ = 0.14 could be modeled reasonably well, while the structure of blends with ξ = 2.76 could not be captured, especially for high density of added polymers. A model (Model-Y) for effective interactions between PGNPs in a melt of matrix polymers also failed to provide good agreement with the experimental data for samples with ξ = 2.76 and high density of added polymers. We tentatively attribute this anomaly in modeling the structure factor of blends with ξ = 2.76 to the questionable assumption of Model-X in describing the added polymers as star polymers with functionality 2, which gets manifested in both polymer-polymer and polymer-PGNP interactions especially at higher fractions of added polymers. The failure of Model-Y may be due to the neglect of possible many-body interactions among PGNPs mediated by matrix polymers when the fraction of added polymers is high. These observations point to the need for a new framework to

  11. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  12. Synthesis of Novel (Polymer Blend-Titanium Carbide Nanocomposites and Studying their Characterizations for Piezoelectric Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Hashima

    2018-05-01

    Full Text Available Piezoelectric nanocomposites are very important for many applications as a pressure sensors. Fabrication of (polyvinyl alcohol - polyvinyl pyrrolidinone -titanium carbide nanocompos- ites and study their structural, electrical, dielectric and optical properties have been in- vestigated. The effect of adding the TiC nanoparticles on structural, electrical, dielectric and optical properties of polymeric blend has been studied. The results showed that the electrical conductivity of (PVA-PVP-TiC nanocomposites is increasing with the increase of TiC nanoparticles concentrations at room temperature. The FTIR analysis showed there is no interactions between (PVA- PVP polymer blend and TiC nanoparticles. The dielectric studies showed the dielectric constant and dielectric loss of nanocomposites increase with the increase of TiC nanoparticles concentrations and they decrease as frequency increased. The A.C electrical conductivity increases with the increase of TiC nanoparticles concentra- tions and frequency. The results of optical properties showed that the optical absorbance of (PVA- PVP polymer blend increases with the increase of TiC nanoparticles concentrations. The optical constants change with increase in TiC nanoparticles concentrations. The piezo- electric application results of (PVA-PVP-TiC nanocomposites showed that the electrical resistance of (PVA-PVP-TiC nanocomposites decreases with an increase of the pressure which make it is suitable for piezoelectric applications or pressure sensors.

  13. PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.

    Science.gov (United States)

    Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan

    2014-08-01

    The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.

  14. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  15. Miscibility Studies on Polymer Blends Modified with Phytochemicals

    Science.gov (United States)

    Chandrasekaran, Neelakandan; Kyu, Thein

    2009-03-01

    The miscibility studies related to an amorphous poly(amide)/poly(vinyl pyrrolidone) [PA/PVP] blend with a crystalline phytochemical called ``Mangiferin'' is presented. Phytochemicals are plant derived chemicals which intrinsically possess multiple salubrious properties that are associated with prevention of diseases such as cancer, diabetes, cardiovascular disease, and hypertension. Incorporation of phytochemicals into polymers has shown to have very promising applications in wound healing, drug delivery, etc. The morphology of these materials is crucial to applications like hemodialysis, which is governed by thermodynamics and kinetics of the phase separation process. Hence, miscibility studies of PA/PVP blends with and without mangiferin have been carried out using dimethyl sulfoxide as a common solvent. Differential scanning calorimetry studies revealed that the binary PA/PVP blends were completely miscible at all compositions. However, the addition of mangiferin has led to liquid-liquid phase separation and liquid-solid phase transition in a composition dependent manner. Fourier transformed infrared spectroscopy was undertaken to determine specific interaction between the polymer constituents and the role of possible hydrogen bonding among three constituents will be discussed.

  16. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification

  17. Theory of polymer blends

    International Nuclear Information System (INIS)

    Curro, J.G.; Schweizer, K.S.

    1989-01-01

    We have recently developed a new theoretical approach to the study of polymer liquids. The theory is based on the ''reference interaction site model'' (RISM theory) of Chandler and Andersen, which has been successful in describing the structure of small molecule liquids. We have recently extended our polymer RISM theory to the case of polymer blends. In the present investigation we have applied this theory to two special binary blends: (1) the athermal mixture where we isolate structural effects, and (2) the isotopic mixture in which structurally identical polymer chains interact with dissimilar attractive interactions. By studying these two special cases we are able to obtain insights into the molecular factors which control the miscibility in polymer mixtures. 18 refs., 2 figs

  18. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    Science.gov (United States)

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  19. Long circulating polymeric nanoparticles for gene/drug delivery.

    Science.gov (United States)

    Hu, Jiaming; Sheng, Yan; Shi, Junfeng; Yu, Bohao; Yu, Zhiqiang; Liao, Guochao

    2017-12-07

    The major limitation in the improving polymeric nanoparticles into an efficient gene/drug delivery carrier is the rapid opsonization, phagocytic uptake by mononuclear phagocyte system and subsequent clearance from the bloodstream. The prolonged circulation time of nanoparticles in the blood is a prerequisite to realizing a controlled and targeted (passive or active targeting) release of the encapsulated gene/drug at the desired site of action. In this review, the factors such as biological barriers and physical barriers including particle size, shape, zeta potential, and hydrophilicity will be discussed, which can cause effects on blood clearance and organ accumulation. Some natural and synthetic polymers utilized in long-circulating nanoparticles will also be discussed. The most popular method to mask or camouflage nanoparticles is the adsorbed, grafted or conjugated of poly (ethylene glycol) (PEG) or other hydrophilic polymers (e.g. polysaccharides) to the particle surface. Surface modification of nanoparticles with these polymers results in an increased blood circulation time by several orders of magnitude in comparison to the bare nanoparticles. However, the circulation half-life of nanoparticles still cannot satisfy the need for clinical use. At present, identification of novel potential coating materials is an emerging field of interest in the design of long-circulating polymer-based nanoparticulate gene/drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Crosslinked poly(vinyl alcohol hydrogels for wound dressing applications: A review of remarkably blended polymers

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2015-01-01

    Full Text Available A series of excellent poly(vinyl alcohol (PVA/polymers blend hydrogel were reviewed using different crosslinking types to obtain proper polymeric dressing materials, which have satisfied biocompatibility and sufficient mechanical properties. The importance of biodegradable–biocompatible synthetic polymers such as PVA, natural polymers such as alginate, starch, and chitosan or their derivatives has grown significantly over the last two decades due to their renewable and desirable biological properties. The properties of these polymers for pharmaceutical and biomedical application needs have attracted much attention. Thus, a considered proportion of the population need those polymeric medical applications for drug delivery, wound dressing, artificial cartilage materials, and other medical purposes, where the pressure on alternative polymeric devices in all countries became substantial. The review explores different polymers which have been blended previously in the literature with PVA as wound dressing blended with other polymeric materials, showing the feasibility, property change, and purpose which are behind the blending process with PVA.

  1. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com [Department of Physics, Mangalore University, Mangalagangothri - 574 199 (India)

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  2. Poloxamer-Decorated Polymer Nanoparticles for Lung Surfactant Compatibility

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Ruge, Christian A

    2017-01-01

    Lung-delivered polymer nanoparticles provoked dysfunction of the essential lung surfactant system. A steric shielding of the nanoparticle surface with poloxamers could minimize the unwanted interference of polymer nanoparticles with the biophysical function of lung surfactant. The extent of poly......(styrene) and poly(lactide) nanoparticle-induced lung surfactant inhibition could be related to the type and content of the applied poloxamer. Escalations of the adsorbed coating layer thickness (>3 nm) as well as concentration (brush- rather than mushroom-like conformation of poly(ethylene glycol), chain......-associated proteins. Poloxamer-modified polymer nanoparticles represent a promising nanomedicine platform intended for respiratory delivery revealing negligible effects on the biophysical functionality of the lining layer present in the deep lungs....

  3. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications.

    Science.gov (United States)

    Tahir, Nayab; Madni, Asadullah; Balasubramanian, Vimalkumar; Rehman, Mubashar; Correia, Alexandra; Kashif, Prince Muhammad; Mäkilä, Ermei; Salonen, Jarno; Santos, Hélder A

    2017-11-25

    Lipid-polymer hybrid nanoparticles (LPHNPs) are emerging platforms for drug delivery applications. In the present study, methotrexate loaded LPHNPs consisted of PLGA and Lipoid S100 were fabricated by employing a single-step modified nanoprecipitation method combined with self-assembly. A three factor, three level Box Behnken design using Design-Expert ® software was employed to access the influence of three independent variables on the particle size, drug entrapment and percent drug release. The optimized formulation was selected through numeric optimization approach. The results were supported with the ANOVA analysis, regression equations and response surface plots. Transmission electron microscope images indicated the nanosized and spherical shape of the LPHNPs with fair size distribution. The nanoparticles ranged from 176 to 308nm, which increased with increased polymer concentration. The increase in polymer and lipid concentration also increased the drug entrapment efficiency. The in vitro drug release was in range 70.34-91.95% and the release mechanism follow the Higuchi model (R 2 =0.9888) and Fickian diffusion (n<0.5). The in vitro cytotoxicity assay and confocal microscopy of the optimized formulation demonstrate the good safety and better internalization of the LPHNPs. The cell antiproliferation showed the spatial and controlled action of the nanoformulation as compared to the plain drug solution. The results suggest that LPHNPs can be a promising delivery system envisioned to safe, stable and potentially controlled delivery of methotrexate to the cancer cells to achieve better therapeutic outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.

    2013-03-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  5. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges

    KAUST Repository

    Fernandes, Nikhil J.; Koerner, Hilmar; Giannelis, Emmanuel P.; Vaia, Richard A.

    2013-01-01

    Over the past three decades, the combination of inorganic-nanoparticles and organic-polymers has led to a wide variety of advanced materials, including polymer nanocomposites (PNCs). Recently, synthetic innovations for attaching polymers to nanoparticles to create hairy nanoparticles (HNPs) has expanded opportunities in this field. In addition to nanoparticle compatibilization for traditional particle-matrix blending, neat-HNPs afford one-component hybrids, both in composition and properties, which avoids issues of mixing that plague traditional PNCs. Continuous improvements in purity, scalability, and theoretical foundations of structure-performance relationships are critical to achieving design control of neat-HNPs necessary for future applications, ranging from optical, energy, and sensor devices to lubricants, green-bodies, and structures. © 2013 Materials Research Society.

  6. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  7. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  8. Morphology development in immiscible polymer blends

    NARCIS (Netherlands)

    Cardinaels, R.M.; Moldenaers, P.; Guo, Qipeng

    This chapter discusses the morphology development of immiscible binary polymer blends. It first describes morphology development in droplet-matrix structures, the dynamics of fibrillar structures and cocontinuous structures. The chapter then considers binary immiscible polymer blends, such systems

  9. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery.

    Science.gov (United States)

    Xu, Huan; Cheng, Liang; Wang, Chao; Ma, Xinxing; Li, Yonggang; Liu, Zhuang

    2011-12-01

    Multimodal imaging and imaging-guided therapies have become a new trend in the current development of cancer theranostics. In this work, we encapsulate hydrophobic upconversion nanoparticles (UCNPs) together with iron oxide nanoparticles (IONPs) by using an amphiphilic block copolymer, poly (styrene-block-allyl alcohol) (PS(16)-b-PAA(10)), via a microemulsion method, obtaining an UC-IO@Polymer multi-functional nanocomposite system. Fluorescent dye and anti-cancer drug molecules can be further loaded inside the UC-IO@Polymer nanocomposite for additional functionalities. Utilizing the Squaraine (SQ) dye loaded nanocomposite (UC-IO@Polymer-SQ), triple-modal upconversion luminescence (UCL)/down-conversion fluorescence (FL)/magnetic resonance (MR) imaging is demonstrated in vitro and in vivo, and also applied for in vivo cancer cell tracking in mice. On the other hand, a chemotherapy drug, doxorubicin, is also loaded into the nanocomposite, forming an UC-IO@Polymer-DOX complex, which enables novel imaging-guided and magnetic targeted drug delivery. Our work provides a method to fabricate a nanocomposite system with highly integrated functionalities for multimodal biomedical imaging and cancer therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Direct Creation of Highly Conductive Laser-Induced Graphene Nanocomposites from Polymer Blends.

    Science.gov (United States)

    Yazdi, Alireza Zehtab; Navas, Ivonne Otero; Abouelmagd, Ahmed; Sundararaj, Uttandaraman

    2017-09-01

    The current state-of-the-art mixing strategies of nanoparticles with insulating polymeric components have only partially utilized the unique electrical conductivity of graphene in nanocomposite systems. Herein, this paper reports a nonmixing method of direct creation of polymer/graphene nanocomposites from polymer blends via laser irradiation. Polycarbonate-laser-induced graphene (PC-LIG) nanocomposite is produced from a PC/polyetherimide (PC/PEI) blend after exposure to commercially available laser scribing with a power of ≈6 W and a speed of ≈2 cm s -1 . Extremely high electrical conductivities are obtained for the PC-LIG nanocomposites, ranging from 26 to 400 S m -1 , depending on the vol% of the starting PEI phase in the blend. To the authors' knowledge, these conductivity values are at least one order of magnitude higher than the values that are previously reported for conductive polymer/graphene nanocomposites prepared via mixing strategies. The comprehensive microscopy and spectroscopy characterizations reveal a complete graphitization of the PEI phase with columnar microstructure embedded in the PC phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    International Nuclear Information System (INIS)

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-01-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC_5_0) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  12. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Esfandyari-Manesh, Mehdi [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Darvishi, Behrad [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ishkuh, Fatemeh Azizi [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahmoradi, Elnaz [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC{sub 50}) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  13. Folate-containing reduction-sensitive lipid-polymer hybrid nanoparticles for targeted delivery of doxorubicin.

    Science.gov (United States)

    Wu, Bo; Yu, Ping; Cui, Can; Wu, Ming; Zhang, Yang; Liu, Lei; Wang, Cai-Xia; Zhuo, Ren-Xi; Huang, Shi-Wen

    2015-04-01

    The development and evaluation of folate-targeted and reduction-triggered biodegradable nanoparticles are introduced to the research on targeted delivery of doxorubicin (DOX). This type of folate-targeted lipid-polymer hybrid nanoparticles (FLPNPs) is comprised of a poly(D,L-lactide-co-glycolide) (PLGA) core, a soybean lecithin monolayer, a monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16) reduction-sensitive shell, and a folic acid-targeted ligand. FLPNPs exhibited high size stability but fast disassembly in a simulated cancer cell reductive environment. The experiments on the release process in vitro revealed that as a reduction-sensitive drug delivery system, FLPNPs released DOX faster in the presence of 10 mM dithiothreitol (DTT). Results from flow cytometry, confocal image and in vitro cytotoxicity assays revealed that FLPNPs further enhanced cell uptake and generated higher cytotoxicity against human epidermoid carcinoma in the oral cavity than non-targeted redox-sensitive and targeted redox-insensitive controls. Furthermore, in vivo animal experiments demonstrated that systemic administration of DOX-loaded FLPNPs remarkably reduced tumor growth. Experiments on biodistribution of DOX-loaded FLPNPs showed that an increasing amount of DOX accumulated in the tumor. Therefore, FLPNPs formulations have proved to be a stable, controllable and targeted anticancer drug delivery system.

  14. Arginine-Glycine-Aspartic Acid-Modified Lipid-Polymer Hybrid Nanoparticles for Docetaxel Delivery in Glioblastoma Multiforme.

    Science.gov (United States)

    Shi, Kairong; Zhou, Jin; Zhang, Qianyu; Gao, Huile; Liu, Yayuan; Zong, Taili; He, Qin

    2015-03-01

    Hybrid nanoparticles consisting of lipids and the biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), were developed for the targeted delivery of the anticancer drug, docetaxel. Transmission electron microscopic observations confirmed the presence of a lipid coating over the polymeric core. Using coumarin-6 as a fluorescent probe, the uptake efficacy of RGD conjugated lipid coated nanoparticles (RGD-L-P) by C6 cells was increased significantly, compared with that of lipid-polymer hybrid nanoparticles (L-P; 2.5-fold higher) or PLGA-nanoparticles (PLGA-P; 1.76-fold higher). The superior tumor spheroid penetration of RGD-L-P indicated that RGD-L-P could target effectively and specifically to C6 cells overexpressing integrin α(v)β3. The anti-proliferative activity of docetaxel-loaded RGD-L-P against C6 cells was increased 2.69- and 4.13-fold compared with L-P and PLGA-P, respectively. Regarding biodistribution, the strongest brain-localized fluorescence signals were detected in glioblastoma multiforme (GBM)-bearing rats treated with 1,10-Dioctadecyl-3,3,30,30-tetramethylindotricarb-ocyanine iodide (DiR)-loaded RGD-L-P, compared to rats treated with DiR-loaded L-P or PLGA-P. The median survival time of GBM-bearing rats treated with docetaxel-loaded RGD-L-P was 57 days, a fold increase of 1.43, 1.78, 3.35, and 3.56 compared with animals given L-P (P PLGA-P (P < 0.05), Taxotere (P < 0.01) and saline (P < 0.01), respectively. Collectively, these results support RGD-L-P as a promising drug delivery system for the specific targeting and the treatment of GBM.

  15. Engineering of polymer-surfactant nanoparticles of doxycycline hydrochloride for ocular drug delivery.

    Science.gov (United States)

    Pokharkar, Varsha; Patil, Vikram; Mandpe, Leenata

    2015-01-01

    Physiologic barriers of the eye, short precorneal drug residence time and poor corneal penetration are the few reasons for reduced ocular bioavailability. This study was aimed to develop novel polymer-surfactant nanoparticles of hydrophilic drug doxycycline hydrochloride (DXY) to improve precorneal residence time and drug penetration. Nanoparticles were formulated using emulsion cross-linking method and the formulation was optimized using factorial design. The prepared formulation was characterized for particle size, ζ potential, encapsulation efficiency, in vitro drug release and ex vivo drug diffusion studies. The antibacterial activity studies were also carried out against Escherichia coli and Staphylococcus aureus using the cup-plate method. In vivo eye irritation study was carried out by a modified Draize test in rabbits. The particle size was found to be in the range of 331-850 nm. About 45-80% of the drug was found to be encapsulated in the nanoparticles. In vitro release demonstrated sustained release profile. Lower flux values in case of nanoparticles as compared to DXY pure drug solution in ex vivo diffusion studies confirmed the sustained release. The nanoparticles were found to be significantly effective (p nanoparticles in both the E. coli and S. aureus strains. The formulation was found to be stable over entire stability period. The developed formulation is safe and suitable for sustained ocular drug delivery.

  16. 2011 Rita Schaffer lecture: nanoparticles for intracellular nucleic acid delivery.

    Science.gov (United States)

    Green, Jordan J

    2012-07-01

    Nanoparticles are a promising technology for delivery of new types of therapeutics. A polymer library approach has allowed engineering of polymeric particles that are particularly effective for the delivery of DNA and siRNA to human cells. Certain chemical structural motifs, degradable linkages, hydrophobicity, and biophysical properties are key for successful intracellular delivery. Small differences to biomaterial structure, and especially the type of degradable linkage in the polymers, can be critical for successful delivery of siRNA vs. DNA. Furthermore, subtle changes to biomaterial structure can facilitate cell-type gene delivery specificity between human brain cancer cells and healthy cells as well as between human retinal endothelial cells and epithelial cells. These polymeric nanoparticles are effective for nucleic acid delivery in a broad range of human cell types and have applications to regenerative medicine, ophthalmology, and cancer among many other biomedical research areas.

  17. Photonic polymer-blend structures and method for making

    Science.gov (United States)

    Barnes, Michael D.

    2004-06-29

    The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.

  18. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  19. Preparation and characterization of vinculin-targeted polymer-lipid nanoparticle as intracellular delivery vehicle.

    Science.gov (United States)

    Wang, Junping; Ornek-Ballanco, Ceren; Xu, Jiahua; Yang, Weiguo; Yu, Xiaojun

    2013-01-01

    Intracellular delivery vehicles have been extensively investigated as these can serve as an effective tool in studying the cellular mechanism, by delivering functional protein to specific locations of the cells. In the current study, a polymer-lipid nanoparticle (PLN) system was developed as an intracellular delivery vehicle specifically targeting vinculin, a focal adhesion protein associated with cellular adhesive structures, such as focal adhesions and adherens junctions. The PLNs possessed an average size of 106 nm and had a positively charged surface. With a lower encapsulation efficiency 32% compared with poly(lactic-co-glycolic) acid (PLGA) nanoparticles (46%), the PLNs showed the sustained release profile of model drug BSA, while PLGA nanoparticles demonstrated an initial burst-release property. Cell-uptake experiments using mouse embryonic fibroblasts cultured in fibrin-fibronectin gels observed, under confocal microscope, that the anti-vinculin conjugated PLNs could successfully ship the cargo to the cytoplasm of fibroblasts, adhered to fibronectin-fibrin. With the use of cationic lipid, the unconjugated PLNs were shown to have high gene transfection efficiency. Furthermore, the unconjugated PLNs had nuclear-targeting capability in the absence of nuclear-localization signals. Therefore, the PLNs could be manipulated easily via different type of targeting ligands and could potentially be used as a powerful tool for cellular mechanism study, by delivering drugs to specific cellular organelles.

  20. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  1. Modification of polymer blends by irradiation

    International Nuclear Information System (INIS)

    Zuchowska, D.; Zagorski, Z.P.

    1999-01-01

    Modification of polymers, especially of polyolefin-elastomer blends (e. g. ethylene/propylene/diene terpolymer, ethylene propylene copolymer, ethylene/vinyl acetate copolymer etc.), by irradiation with a beam of fast electrons is discussed. Irradiation of polymer blends usually results in enhanced interactions between the constituents, caused among other things, by grafting induced at the polymer interphase. As a result, mechanical properties are affected to an extent depending on the proportion and type of constituent polymers, stabilizer content and radiation dose. Breaking strength (σ) relative elongation at break (ε) and melt flow rate (MFR), were examined for a triblock styrene/butadiene/styrene (SBS) copolymer, polypropylene (PP), and a PP-SBS blend (50:50 by wt.). In PP, the content of the crystal phase was determined. Irradiation was found to make SBS crosslink, as a result, σ rose by 25% and ε remained unaffected. PP was found to become degraded upon irradiation (MFR rose as much as 16 times), thereby σ and ε decreased considerably. In pure PP, the content of the crystal phase was found to increase. The variations of σ and ε in the irradiated PP-SBS blend follow a tendency similar to that in the SBS copolymer examined. This fact suggests the SBS copolymer to have a decisive effect on the macroscopic properties of the PP-SBS blend. (author)

  2. Compatibilizing Bulk Polymer Blends by Using Organoclays

    Science.gov (United States)

    Si, Mayu; Gersappe, Dilip; Zhang, Wenhua; Ade, Harald; Rafailovich, Miriam; Sokolov, Jonathan; Rudomen, Gregory; Schwartz, Bradley; Fisher, Robert

    2004-03-01

    We investigated the compatiblizing performance of organoclays on melt mixed binary and tertiary polymer blends, such as, PS/PMMA, PC/SAN, PS/PMMA/PVC and PS/PMMA/PE. These polymer blends were characterized by TEM, STXM, DSC and DMA. TEM and STXM photographs show that the addition of organoclays into polymer blends drastically reduces the average domain size of the component phases. And the organoclay goes to the interfacial region between the different polymers and effectively slows down the domain size increasing during high temperature annealing. DMA and DSC results show the effect of organoclays on the mechanical properties and glass transitions temperature, which indicates the compatibilization on the molecular level. The generalized compatibilization induced by the nanoscale fillers for blends can be explained in terms of mean field models where the reduction of interfacial tension induced by in-situ grafting is counterbalanced by the increased bending energy due to the rigidity of the filler. This in turn can be shown to be a function of the degree of exfoliation, aspect ratio, and polymer filler interactions. Supported by NSF funded MRSEC at Stony Brook

  3. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Lenin, Nayagam; Sankarganesh, Murugesan; Dhaveethu Raja, Jeyaraj; Rajesh, Jegathalaprathaban

    2018-02-01

    Facile one-pot synthesis has been demonstrated for new biocompatible and dual responsive magnetic iron oxide nanoparticles cross-linked poly(vinyl alcohol) (PVA) blended natural polymer chitosan (CS) based hydrogel beads (mCS-PVA) as a controlled natural anticancer alkaloid Luotonin A (LuA) delivery system. The prepared magnetic hydrogel beads were characterized using powder X-ray diffraction measurement, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The magnetic hydrogel beads are exhibited significant water retention and follow the second order kinetic model in swelling study. The swelling ratio of the magnetic gel beads increased by the addition of PVA and showed a maximum swelling ratio of 40.83 ± 1.01 g/g and follows non-Fickian water transport mechanism. Stimuli responsive mCS and mCS-PVA hydrogel beads functionalized with LuA is demonstrated for controlled release at physiological pH and under magnetic field. The magnetic hydrogel beads show highest LuA releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 73.33 ± 1.44%. This efficacy may also be tuned by altering the external magnetic field as well as the weight percentage (wt %) of polyethylene glycol. It is clearly that the newly produced magnetic hydrogel beads can be served as an effective intestinal LuA delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 543-551, 2018. © 2017 Wiley Periodicals, Inc.

  4. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  5. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Deng, Kai; Yu, Hui; Cui, Can; Zhang, Yang; Wu, Ming; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP) for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX). They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo.

  6. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Warangkana Lohcharoenkal

    2014-01-01

    Full Text Available Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  7. Protein nanoparticles as drug delivery carriers for cancer therapy.

    Science.gov (United States)

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  8. Structure and transport properties of polymer grafted nanoparticles

    KAUST Repository

    Goyal, Sushmit; Escobedo, Fernando A.

    2011-01-01

    We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation between PGN design parameters (such as particle core concentration, polymer grafting density, and polymer length) and properties, such as microstructure, particle mobility, and viscous response. Constant strain-rate simulations were carried out to calculate viscosities and a constant-stress ensemble was used to calculate yield stresses. The PGN systems are found to have less structural order, lower viscosity, and faster diffusivity with increasing length of the grafted chains for a given core concentration or grafting density. Decreasing grafting density causes depletion effects associated with the chains leading to close contacts between some particle cores. All systems were found to shear thin, with the pure PGN systems shear thinning more than the blend; also, the pure systems exhibited a clear yielding behavior that was absent in the blend. Regarding the mechanism of shear thinning at the high shear rates examined, it was found that the shear-induced decrease of Brownian stresses and increase in chain alignment, both correlate with the reduction of viscosity in the system with the latter being more dominant. A coupling between Brownian stresses and chain alignment was also observed wherein the non-equilibrium particle distribution itself promotes chain alignment in the direction of shear. © 2011 American Institute of Physics.

  9. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  10. Miscibility phase diagram of ring-polymer blends: A topological effect.

    Science.gov (United States)

    Sakaue, Takahiro; Nakajima, Chihiro H

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.

  11. MRI-guided targeting delivery of doxorubicin with reduction-responsive lipid-polymer hybrid nanoparticles

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-09-01

    Full Text Available Bo Wu,1,2 Shu-Ting Lu,1 Kai Deng,2 Hui Yu,2 Can Cui,2 Yang Zhang,2 Ming Wu,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China Abstract: In recent years, there has been increasing interest in developing a multifunctional nanoscale platform for cancer monitoring and chemotherapy. However, there is still a big challenge for current clinic contrast agents to improve their poor tumor selectivity and response. Herein, we report a new kind of Gd complex and folate-coated redox-sensitive lipid-polymer hybrid nanoparticle (Gd-FLPNP for tumor-targeted magnetic resonance imaging and therapy. Gd-FLPNPs can simultaneously accomplish diagnostic imaging, and specific targeting and controlled release of doxorubicin (DOX. They exhibit good monodispersity, excellent size stability, and a well-defined core-shell structure. Paramagnetic nanoparticles based on gadolinium-diethylenetriaminepentaacetic acid-bis-cetylamine have paramagnetic properties with an approximately two-fold enhancement in the longitudinal relaxivity compared to clinical used Magnevist. For targeted and reduction-sensitive drug delivery, Gd-FLPNPs released DOX faster and enhanced cell uptake in vitro, and exhibited better antitumor effect both in vitro and in vivo. Keywords: redox-sensitive, tumor-targeted, gadolinium, contrast agents, PLGA

  12. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  13. High performance lignin-acrylonitrile polymer blend materials

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Tran, Chau D.

    2017-11-14

    A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.

  14. Phase equilibria and phase structures of polymer blends

    International Nuclear Information System (INIS)

    Chalykh, Anatolii E; Gerasimov, Vladimir K

    2004-01-01

    Experimental, methodical and theoretical studies dealing with phase equilibria and phase structures of polymer blends are generalised. The general and specific features of the change in solubility of polymers with changes in the molecular mass and copolymer composition and upon the formation of three-dimensional cross-linked networks are described. The results of the effect of the prehistory on the phase structure and the non-equilibrium state of polymer blends are considered in detail.

  15. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Position transitions of polymer-grafted nanoparticles in diblock-copolymer nanocomposites

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Self-assembly of block copolymer/nanoparticle blends has promising applications in the design and fabrication of novel functional nanomaterials. Precise control of the spatial positions of nanoparticles within block copolymer-based nanomaterials is crucial to achieve some special physical properties and functions. Here, we employ the self-consistent field method to theoretically investigate the self-assembly of polymer grafted-nanoparticles in a diblock copolymer. It is found that by varying the size and selectivity of nanoparticles, one can not only produce various self-assembled nanostructures but also modulate the spatial positions of the nanoparticles, either at the copolymer interfaces or in the center of one copolymer phase, within the nanostructures. A denser grafted polymer brush plays a role of shielding effect on nanoparticles and can position them into the center of one copolymer phase. The nanostructural transition we observed is dictated by the competition between entropy and enthalpy. On the basis of a number of simulations, two phase diagrams of self-assembled nanostructures are constructed. This study may be helpful for optimal design of advanced materials with desired nanostructures and enhanced performance.

  17. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2016-01-01

    Full Text Available Malignant spinal tumors, categorized into primary and metastatic ones, are one of the most serious diseases due to their high morbidity and mortality rates. Common primary spinal tumors include chordoma, chondrosarcoma, osteosarcoma, Ewing’s sarcoma, and multiple myeloma. Spinal malignancies are not only locally invasive and destructive to adjacent structures, such as bone, neural, and vascular structures, but also disruptive to distant organs (e.g., lung. Current treatments for spinal malignancies, including wide resection, radiotherapy, and chemotherapy, have made significant progress like improving patients’ quality of life. Among them, chemotherapy plays an important role, but its potential for clinical application is limited by severe side effects and drug resistance. To ameliorate the current situation, various polymer nanoparticles have been developed as promising excipients to facilitate the effective treatment of spinal malignancies by utilizing their potent advantages, for example, targeting, stimuli response, and synergetic effect. This review overviews the development of polymer nanoparticles for antineoplastic delivery in the treatment of spinal malignancies and discusses future prospects of polymer nanoparticle-based treatment methods.

  18. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery

    Directory of Open Access Journals (Sweden)

    Yujing Li

    2016-10-01

    Full Text Available Polyethylenimine (PEI as a cationic polymer is commonly used as a carrier for gene delivery. PEI-800 is less toxic than PEI-25K but it is also less efficient. A novel nanocarrier was developed by combining PEI-800 with a pH-sensitive lipid to form polymer-lipid hybrid nanoparticles (P/LNPs. They were synthesized by microfluidic focusing (MF. Two microfluidic devices were used to synthesize P/LNPs loaded with VEGF siRNA. A series of P/LNPs with different particle sizes and distributions were obtained by altering the flow rate and geometry of microfluidic chips, and introducing sonication. Furthermore, the P/LNPs can be loaded with VEGF siRNA efficiently and were stable in serum for 12 h. Finally, P/LNPs produced by the microfluidic chip showed greater cellular uptake as well as down-regulation of VEGF protein level in both A549 and MCF-7 with reduced cellular toxicity. All in all, the P/LNPs produced by MF method were shown to be a safe and efficient carrier for VEGF siRNA, with potential application for siRNA therapeutics.

  19. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor.

    Science.gov (United States)

    Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya

    2017-05-01

    The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.

  20. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  1. Electrosprayed core-shell polymer-lipid nanoparticles for active component delivery

    Science.gov (United States)

    Eltayeb, Megdi; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    A key challenge in the production of multicomponent nanoparticles for healthcare applications is obtaining reproducible monodisperse nanoparticles with the minimum number of preparation steps. This paper focus on the use of electrohydrodynamic (EHD) techniques to produce core-shell polymer-lipid structures with a narrow size distribution in a single step process. These nanoparticles are composed of a hydrophilic core for active component encapsulation and a lipid shell. It was found that core-shell nanoparticles with a tunable size range between 30 and 90 nm and a narrow size distribution could be reproducibly manufactured. The results indicate that the lipid component (stearic acid) stabilizes the nanoparticles against collapse and aggregation and improves entrapment of active components, in this case vanillin, ethylmaltol and maltol. The overall structure of the nanoparticles produced was examined by multiple methods, including transmission electron microscopy and differential scanning calorimetry, to confirm that they were of core-shell form.

  2. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  3. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    Science.gov (United States)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  4. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    International Nuclear Information System (INIS)

    Zhang Zubin; Song Lina; Dong Jinlai; Guo Dawei; Du Xiaolin; Cao Biyin; Zhang Yu; Gu Ning; Mao Xinliang

    2013-01-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  5. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    Science.gov (United States)

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates intradermal macromolecule and nanoparticle delivery.

    Science.gov (United States)

    Engelke, Laura; Winter, Gerhard; Engert, Julia

    2018-07-01

    The intradermal delivery of biologics has long been recognized as attractive approach for cutaneous immunotherapy, particularly vaccination. Although intradermal (i.d.) or subcutaneous (s.c.) injection provide reproducible dosing and good cost- and delivery efficiency, the major objective to avoid sharps and the need for enhanced storage stability have renewed the interest in alternative needle-free delivery strategies. This study presents a new concept for the delivery of macromolecules and nanoparticles to viable skin layers with a high density of professional antigen-presenting cells (APCs). Stable polyvinyl alcohol (PVA) polymer films as well as PVA blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared using an easily-scalable film casting technique. Fluorescein isothiocyanate (FITC) and rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model substances, or polystyrene (PS)-nano- and microparticles with diameters of 0.5 µm and 5 µm were directly incorporated into the polymer formulations at varying concentrations. The assembly of the polymer films with an occlusive backing tape created a film patch that provided a fast drug release upon dissolution of the water-soluble film and facilitated an intradermal drug delivery on laser microporated skin. The minimally-invasive P.L.E.A.S.E.® laser poration system (Pantec Biosolutions, Ruggell, Liechtenstein) provided access to viable skin layers by thermally ablating the superficial tissue with a pulsed Er:YAG laser (λ = 2.94 µm). In our in vitro study using excised pig skin, laser microporation induced a 4- to 5-fold increase of water transport (TEWL) through excised skin in a Franz diffusion cell compared to intact skin. The TEWL values detected were comparable to in vivo human skin. The increased water transport facilitated the dissolution of all topically applied dry PVA-based film formulations within 6 h. No dissolution of the films was seen on

  7. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Influence of Surface Coating of Magnetic Nanoparticles on Mechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Yarar, Ecem; Karakas, Gizem; Rende, Deniz; Ozisik, Rahmi; Malta, Seyda

    Polymer nanocomposites have emerged as promising materials due to improved properties when compared with conventional bulk polymers. Nanofillers are natural or synthetic organic/inorganic particles that are less than 100 nm in at least one dimension. Even the addition of trace amounts of nanofillers to polymers may lad to unique combinations of properties. Among variety of inorganic nanofillers, iron oxide magnetic nanoparticles are of great interest due to their unique physical and chemical properties, such as low toxicity, biocompatibility, large magnetization and conductivity, owing to their extremely small size and large specific surface area. In this study, approximately 8-10 nm magnetic nanoparticles coated with either citric acid or oleic acid are synthesized and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) (PEO). The hydrophobicity/hydrophillicity of the polymer and the surface coating on the iron oxide nanoparticles are exploited to control the dispersion state of nanoparticles, and the effect of dispersion on mechanical and thermal properties of the nanocomposite are investigated via experimental methods such as dynamic mechanical analysis and differential scanning calorimetry. This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1538730 and TUBITAK 112M666.

  9. Polymer Coated Echogenic Lipid Nanoparticles with Dual Release Triggers

    Science.gov (United States)

    Nahire, Rahul; Haldar, Manas K.; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H.; Katti, Kalpana S.; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2013-01-01

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 minutes simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging. PMID:23394107

  10. Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends

    Directory of Open Access Journals (Sweden)

    Antti Takala

    2015-08-01

    Full Text Available The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs, the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene (PAT blends with ethylenevinylacetate-elastomers (EVA and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology.

  11. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabha, G., E-mail: gprabhagovinn@gmail.com; Raj, V., E-mail: alaguraj2@rediffmail.com

    2016-06-15

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanocomposites showed pH responsive drug release.

  12. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    International Nuclear Information System (INIS)

    Prabha, G.; Raj, V.

    2016-01-01

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe 3 O 4 ) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe 3 O 4 -CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanocomposites showed pH responsive drug release.

  13. Layered double hydroxide nanoparticles in gene and drug delivery.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  14. Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery.

    Science.gov (United States)

    Papa, Anne-Laure; Korin, Netanel; Kanapathipillai, Mathumai; Mammoto, Akiko; Mammoto, Tadanori; Jiang, Amanda; Mannix, Robert; Uzun, Oktay; Johnson, Christopher; Bhatta, Deen; Cuneo, Garry; Ingber, Donald E

    2017-09-01

    Here we describe injectable, ultrasound (US)-responsive, nanoparticle aggregates (NPAs) that disintegrate into slow-release, nanoscale, drug delivery systems, which can be targeted to selective sites by applying low-energy US locally. We show that, unlike microbubble based drug carriers which may suffer from stability problems, the properties of mechanical activated NPAs, composed of polymer nanoparticles, can be tuned by properly adjusting the polymer molecular weight, the size of the nanoparticle precursors as well as the percentage of excipient utilized to hold the NPA together. We then apply this concept to practice by fabricating NPAs composed of nanoparticles loaded with Doxorubicin (Dox) and tested their ability to treat tumors via ultrasound activation. Mouse studies demonstrated significantly increased efficiency of tumor targeting of the US-activated NPAs compared to PLGA nanoparticle controls (with or without US applied) or intact NPAs. Importantly, when the Dox-loaded NPAs were injected and exposed to US energy locally, this increased ability to concentrate nanoparticles at the tumor site resulted in a significantly greater reduction in tumor volume compared to tumors treated with a 20-fold higher dose of the free drug. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis.

    Science.gov (United States)

    Liu, Tzu-Ming; Yu, Jiashing; Chang, C Allen; Chiou, Arthur; Chiang, Huihua Kenny; Chuang, Yu-Chun; Wu, Cheng-Han; Hsu, Che-Hao; Chen, Po-An; Huang, Chih-Chia

    2014-07-07

    Surface functionalized nanoparticles have found their applications in several fields including biophotonics, nanobiomedicine, biosensing, drug delivery, and catalysis. Quite often, the nanoparticle surfaces must be post-coated with organic or inorganic layers during the synthesis before use. This work reports a generally one-pot synthesis method for the preparation of various inorganic-organic core-shell nanostructures (Au@polymer, Ag@polymer, Cu@polymer, Fe3O4@polymer, and TiO2@polymer), which led to new optical, magnetic, and catalytic applications. This green synthesis involved reacting inorganic precursors and poly(styrene-alt-maleic acid). The polystyrene blocks separated from the external aqueous environment acting as a hydrophobic depot for aromatic drugs and thus illustrated the integration of functional nanoobjects for drug delivery. Among these nanocomposites, the Au@polymer nanoparticles with good biocompatibility exhibited shell-dependent signal enhancement in the surface plasmon resonance shift, nonlinear fluorescence, and surface-enhanced Raman scattering properties. These unique optical properties were used for dual-modality imaging on the delivery of the aromatic photosensitizer for photodynamic therapy to HeLa cells.

  16. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  17. Physical stability of API/polymer-blend amorphous solid dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly(vinyl alcohol) blends

    International Nuclear Information System (INIS)

    Krstić, Jelena; Spasojević, Jelena; Radosavljević, Aleksandra; Šiljegovć, Milorad; Kačarević-Popović, Zorica

    2014-01-01

    In this study, the potential of chitosan/poly(vinyl alcohol) (CS/PVA) blends as capping agent for stabilization of Ag-nanoparticles (Ag NPs) during their in situ gamma irradiation induced synthesis was investigated. The UV–vis absorption spectra show the surface plasmon absorption band around 410 nm, which confirms the formation of Ag-nanoparticles. It was found that the composition of CS/PVA blend affected the size of the obtained Ag-nanoparticles, as well as the parameters such as density, molar concentration and effective surface area, calculated from the experimentally obtained UV–vis absorption spectra and spectra obtained by simulation according to the Mie theory. SEM micrograph and XRD measurement indicated a spherical morphology and face centered cubic crystal structure of Ag-nanoparticles, with diameter around 12 nm. The values of optical band gap energy between valence and conduction bands (E g ), calculated from the UV–vis absorption spectra, also show dependence on the blend composition for Ag–CS/PVA colloids as well as for Ag–CS/PVA nanocomposites. - Highlights: • Ag NPs were synthesized by γ-irradiation and stabilized by CS/PVA blends. • Composition of CS/PVA blends has influence on the size of spherical Ag NPs. • simulation based on Mie theory was used to calculate the parameters of Ag NPs. • Ag NPs are stabilized through interactions with -OH and -NH 2 groups of polymers. • Optical band gap energy was calculated from UV–vis spectra by Tauc's expression

  19. Critical crossover phenomena in compatible polymer blends studied with SANS

    DEFF Research Database (Denmark)

    Schwahn, D.; Janssen, S.; Willner, L.

    1995-01-01

    Polymer blends show a much larger 3d-Ising regime, e.g. a much larger Ginzburg number Gi than predicted by the Ginzburg criterion. This discrepancy is supposed to be explained by the compressibility or the free volume of the blend. In this paper we present and discuss the Gi number of polymer...... on monomeric microstructure and on pressure. This clearly shows that Gi is not a universal function. The observed strong decrease of Gi with pressure is a clear experimental proof that the critical crossover behaviour in polymer blends is indeed strongly influenced by the compressibility or free volume...

  20. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  1. Modification of PE/PP Polymer Blend Nanocomposites with EPR and EVA Copolymers

    Directory of Open Access Journals (Sweden)

    Jelenčić, J.

    2010-04-01

    Full Text Available During the last decade, the use of polyolephinic polymers has been growing in a wide range of fields of applicability and the most widely used polymers are polyethylene and polypropylene. They can be processed separately to produce items with certain properties as well as in the form of blends, where special combinations of properties and price are intended. As it is known, polyethylene (PE and polypropylene (PP are incompatible and the weak interfacial bond strength between the phases directly linked to the blend morphology and results in poor mechanical properties. The properties of many polymer blends arise from the fine-scale structural arrangements or blend morphologies obtained during processing in addition to the proportion of each polymer type present. Compounding PE/PP blends with a single compatibilizer or their combination or some other additives as nanofiller, results in multi-component composites of great interest to research as they enable simultaneous improvement in the final properties of the blend. In addition, it is well known that the extrusion process has a significant effect on the dispersion of the filler in the blends. In this work, the mutual effect of the nanofiller silicium-dioxide (SiO2 and the compatibilizers ethylene-propylene copolymer (EPR and ethylene-vinyl acetate copolymer (EVA on the properties of blends based on polyethylene and polypropylene were studied. The morphology of the samples prepared with nanofiller and compatibilizers is much finer in comparison to the virgin blend. Better dispersion of nanofiller will result in better stability of the polymer blend and decrease in polymer flammability. The addition of the nanofiller and compatibilizers produced an increase in the elasticity especially for the samples prepared in the two-stage extrusion process where the nanofiller was first extruded with PE matrix and then with other polymers of the blends. SEM micrographs confirm finer morphology of samples

  2. Drug delivery and nanoparticles: Applications and hazards

    Directory of Open Access Journals (Sweden)

    Wim H De Jong

    2008-06-01

    for the preparation of nanoparticles for drug delivery, varying from biological substances like albumin, gelatine and phospholipids for liposomes, and more substances of a chemical nature like various polymers and solid metal containing nanoparticles. It is obvious that the potential interaction with tissues and cells, and the potential toxicity, greatly depends on the actual composition of the nanoparticle formulation. This paper provides an overview on some of the currently used systems for drug delivery. Besides the potential beneficial use also attention is drawn to the questions how we should proceed with the safety evaluation of the nanoparticle formulations for drug delivery. For such testing the lessons learned from particle toxicity as applied in inhalation toxicology may be of use. Although for pharmaceutical use the current requirements seem to be adequate to detect most of the adverse effects of nanoparticle formulations, it can not be expected that all aspects of nanoparticle toxicology will be detected. So, probably additional more specific testing would be needed.Keywords: drug delivery, cancer therapy, nanoparticles, toxicology, pharmaceuticals

  3. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Tran, Dai Lam; Nguyen, Xuan Phuc; Le, Mai Huong; Ha Tran, Thi Hong; Hoang, Thi My Nhung; Huong Le, Thi Thu; Duong, Tuan Quang

    2012-01-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  4. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  5. Chain confinement, phase transitions, and lamellar structure in semicrystalline polymers, polymer blends and polymer nanocomposites

    Science.gov (United States)

    Chen, Huipeng

    Recent studies suggest that there are three phase fractions in semicrystalline polymers, the crystalline, the mobile amorphous and the rigid amorphous phases. Due to the distinct properties of the rigid amorphous fraction, RAF, it has been investigated for more than twenty years. In this thesis, a general method using quasi-isothermal temperature-modulated differential scaning calorimetry, DSC, is provided for the first time to obtain the temperature dependent RAF and the other two fractions, crystalline fraction and mobile amorphous fraction, MAF. For poly(ethylene terephthalate), PET, our results show RAF was vitrified during quasi-isothermal cooling after crystallization had been completed and became totally devitrified during quasi-isothermal heating before the start of melting. Several years after people initially discovered the existence of RAF, another issue arose relating to the physical location of RAF and mobile amorphous fraction, MAF, within a lamellar stack model. Two very different models to describe the location of RAF were proposed. In the Heterogeneous Stack Model, HET, RAF is located outside the lamellar stacks. In the Homogeneous Stack Model, HSM, RAF was located inside the lamellar stacks. To determine the lamellar structure of semicrystalline polymers comprising three phase, a general method is given in this thesis by using a combination of the DSC and small angle X-ray scattering, SAXS techniques. It has been applied to Nylon 6, isotactic polystyrene, iPS, and PET. It was found for all of these materials, the HSM model is correct to describe the lamellar structure. In addition to the determination of lamellar structures, this method can also provide the exact fraction of MAF inside and outside lamellar stacks for binary polymer blends. For binary polymer blends, MAF, normally is located partially inside and partially outside the lamellar stacks. However, the quantification of the MAF inside and outside the lamellar stacks has now been provided

  6. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and Properties of Polyhedral Oligosilsesquioxanes/Polymers Blends

    National Research Council Canada - National Science Library

    Blanski, Rusty

    2000-01-01

    ... (polycarbonate, SB rubber, etc.) resulting in a clear blend. We also report that aliphatic POSS compounds are also dispersible in high density polyethylene. The synthesis of POSS/polymer blends as well as some physical properties will be discussed.

  8. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  9. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  10. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery.

    Science.gov (United States)

    Alexander, Colleen M; Hamner, Kristen L; Maye, Mathew M; Dabrowiak, James C

    2014-07-16

    In this report we describe the synthesis, characterization, and cytotoxic properties of DNA-capped gold nanoparticles having attached folic acid (FA), a thermoresponsive polymer (p), and/or poly(ethylene glycol) (PEG) oligomers that could be used to deliver the anticancer drug doxorubicin (DOX) in chemotherapy. The FA-DNA oligomer used in the construction of the delivery vehicle was synthesized through the reaction of the isolated folic acid N-hydroxysuccinimide ester with the amino-DNA and the conjugated DNA product was purified using high performance liquid chromatography (HPLC). This approach ultimately allowed control of the amount of FA attached to the surface of the delivery vehicle. Cytotoxicity studies using SK-N-SH neuroblastoma cells with drug loaded delivery vehicles were carried out using a variety of exposure times (1-48 h) and recovery times (1-72 h), and in order to access the effects of varying amounts of attached FA, in culture media deficient in FA. DOX loaded delivery vehicles having 50% of the DNA strands with attached FA were more cytotoxic than when all of the strands contained FA. Since FA stimulates cell growth, the reduced cytotoxicity of vehicles fully covered with FA suggests that the stimulatory effects of FA can more than compensate for the cytotoxic effects of the drug on the cell population. While attachment of hexa-ethylene glycol PEG(18) to the surface of the delivery vehicle had no effect on cytotoxicity, 100% FA plus the thermoresponsive polymer resulted in IC50 = 0.48 ± 0.01 for an exposure time of 24 h and a recovery time of 1 h, which is an order of magnitude more cytotoxic than free DOX. Confocal microscopic studies using fluorescence detection showed that SK-N-SH neuroblastoma cells exposed to DOX-loaded vehicles have drug accumulation inside the cell and, in the case of vehicles with attached FA and thermoresponsive polymer, the drug appears more concentrated. Since the biological target of DOX is DNA, the latter

  11. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  12. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.

    2010-06-08

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.

  13. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.

    Science.gov (United States)

    Zhang, Rui Xue; Ahmed, Taksim; Li, Lily Yi; Li, Jason; Abbasi, Azhar Z; Wu, Xiao Yu

    2017-01-26

    Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.

  14. Eudragit E100 and Polysaccharide Polymer Blends as Matrices for ...

    African Journals Online (AJOL)

    Purpose: To compare the effects of two states of polymer/polymer blending (dry and aqueous/lyophilized) on the physicomechanical properties of tablets, containing blends of locust bean gum (LB) with Eudragit® E100 (E100) and sodium carboxymethylcellulose (SCMC) as matrices. Methods: LB, SCMC and E100 were ...

  15. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  16. Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA

    Directory of Open Access Journals (Sweden)

    Malhotra M

    2013-05-01

    Full Text Available Meenakshi Malhotra,1 Catherine Tomaro-Duchesneau,1 Shyamali Saha,2 Imen Kahouli,3 Satya Prakash11Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, 2Faculty of Dentistry, 3Department of Experimental Medicine, McGill University, Montreal, QC, CanadaAbstract: Recently, cell-penetrating peptides have been proposed to translocate antibodies, proteins, and other molecules in targeted drug delivery. The proposed study presents the synthesis and characterization of a peptide-based chitosan nanoparticle for small interfering RNA (siRNA delivery, in-vitro. Specifically, the synthesis included polyethylene glycol (PEG, a hydrophilic polymer, and trans-activated transcription (TAT peptide, which were chemically conjugated on the chitosan polymer. The conjugation was achieved using N-Hydroxysuccinimide-PEG-maleimide (heterobifunctional PEG as a cross-linker, with the bifunctional PEG facilitating the amidation reaction through its N-Hydroxysuccinimide group and reacting with the amines on chitosan. At the other end of PEG, the maleimide group was chemically conjugated with the cysteine-modified TAT peptide. The degree of substitution on chitosan with PEG and on PEG with TAT was confirmed using colorimetric assays. The resultant polymer was used to form nanoparticles complexing siRNA, which were then characterized for particle size, morphology, cellular uptake, and cytotoxicity. The nanoparticles were tested in-vitro on mouse neuroblastoma cells (Neuro2a. Particle size and surface charge were characterized and an optimal pH condition and PEG molecular weight were determined to form sterically stable nanoparticles. Results indicate 7.5% of the amines in chitosan polymer were conjugated to the PEG and complete conjugation of TAT peptide was observed on the synthesized PEGylated chitosan polymer. Compared with unmodified chitosan nanoparticles, the nanoparticles formed at pH 6 were

  17. Relation between exciplex formation and photovoltaic properties of PPV polymer-based blends

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chunhong; Neher, Dieter [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Kietzke, Thomas [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Institute of Materials Research and Engineering (IMRE), Research Link 3, 117602 Singapore (Singapore); Kumke, Michael [Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Golm (Germany); Hoerhold, Hans-Heinrich [Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstr. 10, 07743 Jena (Germany)

    2007-03-06

    As a new record for pure polymer-blend solar cells, an energy conversion efficiency (ECE) of 1.7% was recently achieved for M3EH-PPV:CN-ether-PPV (Poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethylene-2,5-dioctyloxy-1,4-phenylene-1,2- (2-cyano)-ethylene-1,4-phenylene]) based devices [T. Kietzke, H.-H. Hoerhold, D. Neher, Chem. Mater. 17 (2005) 6532]. Even though that photoluminescence experiments indicated that 95% of the photogenerated excitions were dissociated in the blend, the external quantum efficiency reached only 31%. Thus more than 2/3 of the dissociated excitons were lost for the energy conversion. In order to identify the processes which limit the photovoltaic efficiency of polymer-blend solar cells, studies on the steady state and time-resolved photoluminescence of the individual polymer and polymer blend were performed. In the polymer-blend layer, we observed a considerable long-wavelength emission due to exciplex formation. The exciplex emission can be reduced by thermal annealing. At the same time the IPCE of the blend-based device increased, indicating a more efficient generation of free-charge carriers. These findings lead to the conclusion that charge-carrier recombination via exciplex formation constitutes one of the loss channels which limits the efficiency of polymer solar cells. (author)

  18. Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Locatelli, Erica; Comes Franchini, Mauro, E-mail: mauro.comesfranchini@unibo.it [University of Bologna, Dipartimento di Chimica Industriale Toso Montanari (Italy)

    2012-12-15

    During the past decades many synthetic polymers have been studied for nanomedicine applications and in particular as drug delivery systems. For this purpose, polymers must be non-toxic, biodegradable, and biocompatible. Polylactic-co-glycolic acid (PLGA) is one of the most studied polymers due to its complete biodegradability and ability to self-assemble into nanometric micelles that are able to entrap small molecules like drugs and to release them into body in a time-dependent manner. Despite fine qualities, using PLGA polymeric nanoparticles for in vivo applications still remains an open challenge due to many factors such as poor stability in water, big diameter (150-200 nm), and the removal of these nanocarriers from the blood stream by the liver and spleen thus reducing the concentration of drugs drastically in tumor tissue. Polyethylene glycol (PEG) is the most used polymers for drug delivery applications and the first PEGylated product is already on the market for over 20 years. This is due to its stealth behavior that inhibits the fast recognition by the immune system (opsonization) and generally leads to a reduced blood clearance of nanocarriers increasing blood circulation time. Furthermore, PEG is hydrophilic and able to stabilize nanoparticles by steric and not ionic effects especially in water. PLGA-PEG block copolymer is an emergent system because it can be easily synthesized and it possesses all good qualities of PLGA and also PEG capability so in the last decade it arose as one of the most promising systems for nanoparticles formation, drug loading, and in vivo drug delivery applications. This review will discuss briefly on PLGA-b-PEG synthesis and physicochemical properties, together with its improved qualities with respect to the single PLGA and PEG polymers. Moreover, we will focus on but in particular will treat nanoparticles formation and uses as new drug delivery system for nanomedical applications.

  19. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    Science.gov (United States)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  20. Recent trends on gellan gum blends with natural and synthetic polymers: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Khan, Muhammad Faris; Akram, Nadia; Akhter, Naheed; Noreen, Aqdas; Zuber, Mohammad

    2018-04-01

    Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    Science.gov (United States)

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  2. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Science.gov (United States)

    Nitta, Sachiko Kaihara; Numata, Keiji

    2013-01-01

    There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin). The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed. PMID:23344060

  3. Biopolymer-Based Nanoparticles for Drug/Gene Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Keiji Numata

    2013-01-01

    Full Text Available There has been a great interest in application of nanoparticles as biomaterials for delivery of therapeutic molecules such as drugs and genes, and for tissue engineering. In particular, biopolymers are suitable materials as nanoparticles for clinical application due to their versatile traits, including biocompatibility, biodegradability and low immunogenicity. Biopolymers are polymers that are produced from living organisms, which are classified in three groups: polysaccharides, proteins and nucleic acids. It is important to control particle size, charge, morphology of surface and release rate of loaded molecules to use biopolymer-based nanoparticles as drug/gene delivery carriers. To obtain a nano-carrier for therapeutic purposes, a variety of materials and preparation process has been attempted. This review focuses on fabrication of biocompatible nanoparticles consisting of biopolymers such as protein (silk, collagen, gelatin, β-casein, zein and albumin, protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch and heparin. The effects of the nature of the materials and the fabrication process on the characteristics of the nanoparticles are described. In addition, their application as delivery carriers of therapeutic drugs and genes and biomaterials for tissue engineering are also reviewed.

  4. Radiation curable polymer blends for magnetic media

    International Nuclear Information System (INIS)

    Santosusso, T.M.

    1985-01-01

    Binder resins in magnetic coating formulations must fulfil a diverse set of requirements. These polymers must have the ability to accept high pigment loadings while maintaining good abrasion resistance, substrate adhesion, inherent lubricity and resistance to temperature and humidity effects. In addition, they must act as grinding aids in the dispersion of the magnetic pigment. In the thermally converted coatings now in use, these requirements are usually met by combining several polymers and crosslinking agents into an optimized blend. This approach is also effective in designing radiation curable binder systems. An overview of the methods employed to achieve such optimized blends will be discussed. (author)

  5. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.

    Science.gov (United States)

    Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee

    2017-08-01

    Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery.

    Science.gov (United States)

    Merino, Sonia; Martín, Cristina; Kostarelos, Kostas; Prato, Maurizio; Vázquez, Ester

    2015-05-26

    Considerable progress in the synthesis and technology of hydrogels makes these materials attractive structures for designing controlled-release drug delivery systems. In particular, this review highlights the latest advances in nanocomposite hydrogels as drug delivery vehicles. The inclusion/incorporation of nanoparticles in three-dimensional polymeric structures is an innovative means for obtaining multicomponent systems with diverse functionality within a hybrid hydrogel network. Nanoparticle-hydrogel combinations add synergistic benefits to the new 3D structures. Nanogels as carriers for cancer therapy and injectable gels with improved self-healing properties have also been described as new nanocomposite systems.

  7. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  8. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Mallakpour, Shadpour; Mansourzadeh, Soheila

    2018-05-01

    The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B 1 (VB 1 ) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Colombo, Stefano; Cun, Dongmei; Remaut, Katrien; Bunker, Matt; Zhang, Jianxin; Martin-Bertelsen, Birte; Yaghmur, Anan; Braeckmans, Kevin; Nielsen, Hanne M; Foged, Camilla

    2015-03-10

    Understanding the delivery dynamics of nucleic acid nanocarriers is fundamental to improve their design for therapeutic applications. We investigated the carrier structure-function relationship of lipid-polymer hybrid nanoparticles (LPNs) consisting of poly(DL-lactic-co-glycolic acid) (PLGA) nanocarriers modified with the cationic lipid dioleoyltrimethyl-ammoniumpropane (DOTAP). A library of siRNA-loaded LPNs was prepared by systematically varying the nitrogen-to-phosphate (N/P) ratio. Atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM) combined with small angle X-ray scattering (SAXS) and confocal laser scanning microscopy (CLSM) studies suggested that the siRNA-loaded LPNs are characterized by a core-shell structure consisting of a PLGA matrix core coated with lamellar DOTAP structures with siRNA localized both in the core and in the shell. Release studies in buffer and serum-containing medium combined with in vitro gene silencing and quantification of intracellular siRNA suggested that this self-assembling core-shell structure influences the siRNA release kinetics and the delivery dynamics. A main delivery mechanism appears to be mediated via the release of transfection-competent siRNA-DOTAP lipoplexes from the LPNs. Based on these results, we suggest a model for the nanostructural characteristics of the LPNs, in which the siRNA is organized in lamellar superficial assemblies and/or as complexes entrapped in the polymeric matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Concentration fluctuations in miscible polymer blends: Influence of temperature and chain rigidity

    International Nuclear Information System (INIS)

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-01-01

    In contrast to binary mixtures of small molecule fluids, homogeneous polymer blends exhibit relatively large concentration fluctuations that can strongly affect the transport properties of these complex fluids over wide ranges of temperatures and compositions. The spatial scale and intensity of these compositional fluctuations are studied by applying Kirkwood-Buff theory to model blends of linear semiflexible polymer chains with upper critical solution temperatures. The requisite quantities for determining the Kirkwood-Buff integrals are generated from the lattice cluster theory for the thermodynamics of the blend and from the generalization of the random phase approximation to compressible polymer mixtures. We explore how the scale and intensity of composition fluctuations in binary blends vary with the reduced temperature τ ≡ (T − T c )/T (where T c is the critical temperature) and with the asymmetry in the rigidities of the components. Knowledge of these variations is crucial for understanding the dynamics of materials fabricated from polymer blends, and evidence supporting these expectations is briefly discussed

  11. Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA

    Directory of Open Access Journals (Sweden)

    Elzeny H

    2017-02-01

    Full Text Available Hadeel Elzeny,1,* Fuwu Zhang,2,* Esraa N Ali,1 Heba A Fathi,1 Shiyi Zhang,3 Richen Li,2 Mohamed A El-Mokhtar,4 Mostafa A Hamad,5 Karen L Wooley,2,6 Mahmoud Elsabahy1,6–8 1Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut, Egypt; 2Departments of Chemistry, Chemical Engineering and Materials Science and Engineering, Texas A&M University, College Station, TX, USA; 3School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Microbiology and Immunology, Faculty of Medicine, 5Department of Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt; 6Laboratory for Synthetic-Biologic Interactions, Department of Chemistry, Texas A&M University, College Station, TX, USA; 7Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 8Misr University for Science and Technology, 6th of October City, Egypt *These authors contributed equally to this work Abstract: Delivery of multiple therapeutics and/or diagnostic agents to diseased tissues is challenging and necessitates the development of multifunctional platforms. Among the various strategies for design of multifunctional nanocarriers, biodegradable polyphosphoester (PPE polymers have been recently synthesized via a rapid and simple synthetic strategy. In addition, the chemical structure of the polymer could be tuned to form nanoparticles with varying surface chemistries and charges, which have shown exceptional safety and biocompatibility as compared to several commercial agents. The purpose of this study was to exploit a mixture of PPE nanoparticles of cationic and neutral surface charges for multiple delivery of anticancer drugs (ie, sorafenib and paclitaxel and nucleic acids (ie, siRNA. Cationic PPE polymers could efficiently complex siRNA, and the stability of the nanoparticles could be maintained in physiological solutions and upon freeze-drying and were able to deliver si

  12. Positron annihilation lifetime study of interfaces in ternary polymer blends

    International Nuclear Information System (INIS)

    Meghala, D; Ramya, P; Pasang, T; Raj, J M; Ranganathaiah, C; Williams, J F

    2013-01-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (α ij ) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, α eff , was introduced to predict the overall miscibility of ternary blends.

  13. PEO + PVP blended polymer composite

    Indian Academy of Sciences (India)

    Blended polymer films of polyethylene oxide + polyvinyl pyrrolidone (PEO + PVP) containing transition metal (TM) ions like Fe3+, Co2+ and Ni2+ have been synthesized by a solution casting method. For these films, structural, thermal, magnetic and optical properties have been studied. X-ray diffraction results reveal the ...

  14. Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery.

    Science.gov (United States)

    Hung, Chi-Feng; Chen, Wei-Yu; Hsu, Ching-Yun; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2015-08-01

    Photoaging is recognized as the factor damaging skin-barrier function. The aim of this study was to examine the impact of ultraviolet (UV) irradiation on the cutaneous penetration of soft nanoparticles, including nanostructured lipid carriers (NLCs) and poly(lactic-co-glycolic acid) polymer nanoparticles (PNs). In vitro cutaneous permeation of retinoic acid (RA) carried by nanoparticles was evaluated. In vivo nude mouse skin distribution of topically applied nanoparticles was observed by fluorescence and confocal microscopies. The association of nanoparticles with cultured keratinocytes was measured by flow cytometry and fluorescence microscopy. The average diameter and surface charge were 236nm and -32mV for NLCs, and 207nm and -12mV for PNs. The ultrastructural images of skin demonstrated that the application of UV produced a loss of Odland bodies and desmosomes, the organelles regulating skin-barrier function. UVA exposure increased skin deposition of RA regardless of nanoparticle formulation. UVB did not alter RA deposition from nanoparticles as compared to the non-treated group. Exposure to UVA promoted RA delivery into hair follicles from NLCs and PNs by 4.2- and 4.9-fold, respectively. The in vivo skin distribution also showed a large accumulation of Nile red-loaded nanoparticles in follicles after UVA treatment. The soft nanoparticles were observed deep in the dermis. PNs with higher lipophilicity showed a greater association with keratinocytes compared to NLCs. The cell association of PNs was increased by UVA application, whereas the association between NLCs and keratinocytes was reduced two times by UVA. It was concluded that both follicles and intercellular spaces were the main pathways for nanoparticle diffusion into photodamaged skin. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Munawar A. Mohammed

    2017-11-01

    Full Text Available The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.

  16. A sight on protein-based nanoparticles as drug/gene delivery systems.

    Science.gov (United States)

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  17. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  18. Polymer brushes infiltrated by nanoparticles and applications to the nuclear pore complex

    Science.gov (United States)

    Opferman, Michael G.

    Systems of grafted polymers in the presence of additives are useful in a variety of contexts including industrial applications, solar cells, organic electronics, drug delivery, and nucleocytoplasmic transport. In this thesis, we will consider the morphologies that polymer brushes attain when exposed to a solution of additives (which we generically term "nanoparticles"), particularly when those nanparticles interact attractively with the polymers. We find that nanoparticles of this type can have a dramatic effect on the height of the polymer chains above the grafting surface, and they can induce highly non-uniform morphologies, including ones in which a dense layer of nanoparticles and monomers forms near the grafting surface. We consider especially the relevance of the system to several experiments performed on biopolymers in the nuclear pore complex when they interact attractively with transport factors that regulate nucleocytoplasmic transport. We find that, although these experiments appear to give inconsistent results, the inconsistencies can be reconciled through two simple models: the Alexander-de Gennes polymer brush, and the Milner-Witten-Cates polymer brush. Our findings should contribute to the understanding of the nuclear pore complex in that experiments can be better understood in the context of their relevant control parameters.

  19. Pulmonary delivery of antitubercular drugs using spray-dried lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Bhardwaj, Ankur; Mehta, Shuchi; Yadav, Shailendra; Singh, Sudheer K; Grobler, Anne; Goyal, Amit Kumar; Mehta, Abhinav

    2016-09-01

    The present study aimed to develop lipid-polymer hybrid nanoparticles (LPNs) for the combined pulmonary delivery of isoniazid (INH) and ciprofloxacin hydrochloride (CIP HCl). Drug-loaded LPNs were prepared by the double-emulsification solvent evaporation method using the three-factor three-level Box-Behnken design. The optimized formulation had a size of 111.81 ± 1.2 nm, PDI of 0.189 ± 1.4, and PDE of 63.64 ± 2.12% for INH-loaded LPN, and a size of 172.23 ± 2.31 nm, PDI of 0.169 ± 1.23, and PDE of 68.49 ± 2.54% for CIP HCl-loaded LPN. Drug release was found to be sustained and controlled at lower pH and followed the Peppas model. The in vitro uptake study in alveolar macrophage (AM) showed that uptake of the drugs was increased significantly if administered in the form of LPN. The stability study proved the applications of adding PLGA in LPN as the polymeric core, which leads to a much more stable product as compared to other novel drug delivery systems. Spray drying was done to produce an inhalable, dry, powdered form of drug-loaded LPN. The spray-dried (SD) powder was equally capable of producing nano-aggregates having morphology, density, flowability and reconstitutibility in the range ideal for inhaled drug delivery. The nano aggregates produced by spray drying manifested their aerosolization efficiency in terms of the higher emitted dose and fine particle fraction with lower mass median aerodynamic diameter. The in vivo study using pharmacokinetic and pharmacodynamic approaches revealed that maximum internalization efficiency was achieved by delivering LPN in SD powdered forms by pulmonary route.

  20. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  1. Chitosan-Based Polymer Blends: Current Status and applications

    International Nuclear Information System (INIS)

    Hefian, E.A.E.; Nasef, M.M.

    2014-01-01

    This paper reviews the latest developments in chitosan-based blends and their potential applications in various fields. Various blends together with other derivatives, such as composites and graft copolymers, have been developed to overcome chitosans disadvantages, including poor mechanical properties and to improve its functionality towards specific applications. The progress made in blending chitosan with synthetic and natural polymers is presented. The versatility and unique characteristics, such as hydrophilicity, film-forming ability, biodegradability, biocompatibility, antibacterial activity and non-toxicity of chitosan has contributed to the successful development of various blends for medical, pharmaceutical, agricultural and environmental applications. (author)

  2. Polymer foam comprising a polymer and nanoparticles, and nanoparticles for the manufacture of such foam.

    NARCIS (Netherlands)

    Vancso, Gyula J.; Duvigneau, Joost; Nederkoorn, P.H.J.; Wassing, T.

    2014-01-01

    A polymer foam is produced comprising a polymer and nanoparticles having a maximum dimensionof 750 nm, which foam has cells with an average cell size of at most 1 µm and a cell density of at least 1012 cells/ml, wherein polymeric grafts have been attached to the nanoparticles. The nanoparticles may

  3. Universal aspects of macromolecules in polymer blends, solutions, and supercritical mixtures

    International Nuclear Information System (INIS)

    Melnichenko, Y.B.; Wignall, G.D.; Schwahn, D.

    2002-01-01

    We demonstrate that macromolecules in miscible polymer blends may behave as good, Θ, and poor polymeric solvents for each other. We construct a conceptual phase diagram, delineating the range of validity of the random-phase approximation, outside of which polymers contract or expand beyond their unperturbed dimensions, contrary to common assumptions. Remarkably, the correlation length for polymer blends, solutions, and supercritical mixtures collapses onto a master curve, reflecting universal behavior for macromolecules in polymeric and small-molecule Θ solvents

  4. A sight on the current nanoparticle-based gene delivery vectors

    Science.gov (United States)

    Dizaj, Solmaz Maleki; Jafari, Samira; Khosroushahi, Ahmad Yari

    2014-05-01

    Nowadays, gene delivery for therapeutic objects is considered one of the most promising strategies to cure both the genetic and acquired diseases of human. The design of efficient gene delivery vectors possessing the high transfection efficiencies and low cytotoxicity is considered the major challenge for delivering a target gene to specific tissues or cells. On this base, the investigations on non-viral gene vectors with the ability to overcome physiological barriers are increasing. Among the non-viral vectors, nanoparticles showed remarkable properties regarding gene delivery such as the ability to target the specific tissue or cells, protect target gene against nuclease degradation, improve DNA stability, and increase the transformation efficiency or safety. This review attempts to represent a current nanoparticle based on its lipid, polymer, hybrid, and inorganic properties. Among them, hybrids, as efficient vectors, are utilized in gene delivery in terms of materials (synthetic or natural), design, and in vitro/ in vivo transformation efficiency.

  5. Role of salt concentration in blend polymer for energy storage conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com [Centre for Physical Sciences, Central university of Punjab, Bathinda-151001. INDIA (India); Sadiq, M. [Department of Physics, I.I.T. (BHU), Varanasi-India (India)

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO, PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.

  6. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    Science.gov (United States)

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  7. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery.

    Science.gov (United States)

    Salatin, Sara; Barar, Jaleh; Barzegar-Jalali, Mohammad; Adibkia, Khosro; Milani, Mitra Alami; Jelvehgari, Mitra

    2016-09-01

    Over the past few years, nasal drug delivery has attracted more and more attentions, and been recognized as the most promising alternative route for the systemic medication of drugs limited to intravenous administration. Many experiments in animal models have shown that nanoscale carriers have the ability to enhance the nasal delivery of peptide/protein drugs and vaccines compared to the conventional drug solution formulations. However, the rapid mucociliary clearance of the drug-loaded nanoparticles can cause a reduction in bioavailability percentage after intranasal administration. Thus, research efforts have considerably been directed towards the development of hydrogel nanosystems which have mucoadhesive properties in order to maximize the residence time, and hence increase the period of contact with the nasal mucosa and enhance the drug absorption. It is most certain that the high viscosity of hydrogel-based nanosystems can efficiently offer this mucoadhesive property. This update review discusses the possible benefits of using hydrogel polymer-based nanoparticles and hydrogel nanocomposites for drug/vaccine delivery through the intranasal administration.

  8. Shearing of particles during crack growth in polymer blends

    NARCIS (Netherlands)

    Pijnenburg, K.G.W.; Steenbrink, A.C.; Giessen, E.V.D.

    1999-01-01

    Microstructural investigations below the fracture surface have revealed that the rubber particles in a number of polymer-rubber blends were deformed into remarkable S-like shapes. These shapes seem to have been largely ignored in previous microstructural studies of blends, but in fact cannot be

  9. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    Directory of Open Access Journals (Sweden)

    Bennet D

    2012-07-01

    Full Text Available Devasier Bennet,1 Mohana Marimuthu,1 Sanghyo Kim,1 Jeongho An21Department of Bionanotechnology, Gachon University, Gyeonggi, Republic of Korea; 2Department of Polymer Science and Engineering, SunKyunKwan University, Gyeonggi, Republic of KoreaAbstract: Antioxidant (quercetin and hypoglycemic (voglibose drug-loaded poly-D,L-lactide-co-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system.Keywords: quercetin, voglibose, biocompatible materials, encapsulation, transdermal

  10. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  11. The novel albumin-chitosan core-shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Mahdi [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of); Avci, Pinar [Massachusetts General Hospital, Wellman Center for Photomedicine (United States); Mobasseri, Rezvan [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of); Hamblin, Michael R. [Massachusetts General Hospital, Wellman Center for Photomedicine (United States); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Tarbiat Modares University, Department of Nanobiotechnology, Faculty of Biological Sciences (Iran, Islamic Republic of)

    2013-05-15

    Natural polymers and proteins such as chitosan (CS) and albumin (Alb) have recently attracted much attention both in drug delivery and gene delivery. The underlying rationale is their unique properties such as biodegradability, biocompatibility and controlled release. This study aimed to prepare novel albumin-chitosan-DNA (Alb-CS-DNA) core-shell nanoparticles as a plasmid delivery system and find the best conditions for their preparation. Phase separation method and ionic interaction were used for preparation of Alb nanoparticles and Alb-CS-DNA core-shell nanoparticles, respectively. The effects of three important independent variables (1) CS/Alb mass ratio, (2) the ratios of moles of the amine groups of cationic polymers to those of the phosphate groups of DNA (N/P ratio), and (3) Alb concentration, on the nanoparticle size and loading efficiency of the plasmid were investigated and optimized through Box-Behnken design of response surface methodology (RSM). The optimum conditions were found to be CS/Alb mass ratio = 3, N/P ratio = 8.24 and Alb concentration = 0.1 mg/mL. The most critical factors for the size of nanoparticles and loading efficiency were Alb concentration and N/P ratio. The optimized nanoparticles had an average size of 176 {+-} 3.4 nm and loading efficiency of 80 {+-} 3.9 %. Cytotoxicity experiments demonstrated that the prepared nanoparticles were not toxic. The high cellular uptake of nanoparticles ({approx}85 %) was shown by flow cytometry and fluorescent microscopy.

  12. The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure.

    Science.gov (United States)

    Jesus, Sandra; Fragal, Elizangela H; Rubira, Adley F; Muniz, Edvani C; Valente, Artur J M; Borges, Olga

    2018-01-01

    This report extensively explores the benefits of including chitosan into poly-ε-caprolactone (PCL) nanoparticles (NPs) to obtain an improved protein/antigen delivery system. Blend NPs (PCL/chitosan NPs) showed improved protein adsorption efficacy (84%) in low shear stress and aqueous environment, suggesting that a synergistic effect between PCL hydrophobic nature and the positive charges of chitosan present at the particle surface was responsible for protein interaction. Additionally, thermal analysis suggested the blend NPs were more stable than the isolated polymers and cytotoxicity assays in a primary cell culture revealed chitosan inclusion in PCL NPs reduced the toxicity of the delivery system. A quantitative 6-month stability study showed that the inclusion of chitosan in PCL NPs did not induce a change in adsorbed ovalbumin (OVA) secondary structure characterized by the increase in the unordered conformation (random coil), as it was observed for OVA adsorbed to chitosan NPs. Additionally, the slight conformational changes occurred, are not expected to compromise ovalbumin secondary structure and activity, during a 6-month storage even at high temperatures (45°C). In simulated biological fluids, PCL/chitosan NPs showed an advantageous release profile for oral delivery. Overall, the combination of PCL and chitosan characteristics provide PCL/chitosan NPs valuable features particularly important to the development of vaccines for developing countries, where it is difficult to ensure cold chain transportation and non-parenteral formulations would be preferred.

  13. Chemical modification and blending of polymers in an extruder reactor

    International Nuclear Information System (INIS)

    Prut, Eduard V; Zelenetskii, Alexandr N

    2001-01-01

    Chemical modification and blending of polymers in an extruder reactor are discussed. Relationships between the parameters affecting the reaction kinetics, viz., mixing time, duration of a chemical reaction and the residence time of the system in the extruder reactor, and the structure of the materials produced are analysed. The mechanisms of (i) grafting of low-molecular-mass compounds onto polymers; (ii) reactions between terminal groups of different polymers and (iii) transesterification and interchange reactions are considered. The factors affecting the mechanism of dynamic vulcanisation and the properties of thermoplastic elastomers are identified. Solid-phase reactions of polysaccharides in an extruder are discussed. The priority aspects of studies on the chemical modification and blending of polymers are noted. The bibliography includes 90 references.

  14. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-04-01

    Lipid-polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid-polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid-polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification.

  15. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid–polymer hybrid nanoparticles

    International Nuclear Information System (INIS)

    Yang, Zhe; Luo, Xingen; Zhang, Xiaofang; Liu, Jie; Jiang, Qing

    2013-01-01

    Lipid–polymer hybrid nanoparticles (NPs) combining the positive attributes of both liposomes and polymeric NPs are increasingly being considered as promising candidates to carry therapeutic agents safely and efficiently into targeted sites. Herein, a modified emulsification technique was developed and optimized for the targeting lipid–polymer hybrid NPs fabrication; the surface properties and stability of the hybrid NPs were systematically investigated, which confirmed that the hybrid NPs consisted of a poly (lactide-co-glycolide) core with ∼90% surface coverage of the lipid monolayer and a ∼4.4 nm hydrated polyethylene glycol (PEG) shell. Optimization results showed that the lipid:polymer mass ratio and the lipid-PEG:lipid molar ratio could affect the size, lipid association efficiency and stability of hybrid NPs. Furthermore, a model chemotherapy drug, 10-hydroxycamptothecin, was encapsulated into hybrid NPs with a higher drug loading compared to PLGA NPs. Surface modification of the lipid layer and the PEG conjugated targeting ligand did not affect their drug release kinetics. Finally, the cytotoxicity and cellular uptake studies indicated that the lipid coverage and the c(RGDyk) conjugation of the hybrid NPs gained a significantly enhanced ability of cell killing and endocytosis. Our results suggested that lipid–polymer hybrid NPs prepared by the modified emulsion technique have great potential to be utilized as an engineered drug delivery system with precise control ability of surface targeting modification. (paper)

  16. Coarse-grained simulation of polymer-filler blends

    Science.gov (United States)

    Legters, Gregg; Kuppa, Vikram; Beaucage, Gregory; Univ of Dayton Collaboration; Univ of Cincinnati Collaboration

    The practical use of polymers often relies on additives that improve the property of the mixture. Examples of such complex blends include tires, pigments, blowing agents and other reactive additives in thermoplastics, and recycled polymers. Such systems usually exhibit a complex partitioning of the components. Most prior work has either focused on fine-grained details such as molecular modeling of chains at interfaces, or on coarse, heuristic, trial-and-error approaches to compounding (eg: tire industry). Thus, there is a significant gap in our understanding of how complex hierarchical structure (across several decades in length) develops in these multicomponent systems. This research employs dissipative particle thermodynamics in conjunction with a pseudo-thermodynamic parameter derived from scattering experiments to represent polymer-filler interactions. DPD simulations will probe how filler dispersion and hierarchical morphology develops in these complex blends, and are validated against experimental (scattering) data. The outcome of our approach is a practical solution to compounding issues, based on a mutually validating experimental and simulation methodology. Support from the NSF (CMMI-1636036/1635865) is gratefully acknowledged.

  17. Characterization of temperature and pH-responsive poly-N-isopropylacrylamide-co-polymer nanoparticles for the release of antimicrobials

    International Nuclear Information System (INIS)

    Hill, Laura E; Gomes, Carmen L

    2014-01-01

    Chitosan and alginate are both pH-responsive biopolymers extracted from crustacean exoskeletons and brown algae, respectively. Poly-N-isopropylacrylamide (PNIPAAM) is a hydrogel that becomes hydrophobic at a lower-critical solution temperature. This study sought to combine pH- and temperature-responsive polymers via crosslinking, in order to create a dual-stimuli responsive polymer for hydrophobic antimicrobial compounds delivery, improving their antimicrobial effects. Cinnamon bark extract (CBE) was used as a model for hydrophobic antimicrobial. Two co-polymers were synthesized to create two nanoparticles types: chitosan-co-PNIPAAM and alginate-co-PNIPAAM. Nanoparticles were formed from the resulting co-polymers using a self-assembly top-down process followed by glutaraldehyde or calcium chloride crosslinking. These nanoparticles were then used as controlled delivery vehicles for CBE, whose rapid release could be triggered by specific external stimuli. For the same pH and temperature conditions, the chitosan-co-PNIPAAM nanoparticles were significantly more potent bacterial inhibitors against both pathogens and also exhibited a faster CBE release over time as well as slightly higher entrapment efficiency. The alginate-co-PNIPAAM nanoparticles were significantly smaller and exhibited a slow, gradual release over a long time period. Although both nanoparticles were able to effectively inhibit pathogen growth at lower (P < 0.05) concentration than free CBE, the chitosan-co-PNIPAAM nanoparticles were more effective in delivering a natural antimicrobial with controlled release against foodborne pathogens. (paper)

  18. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents

    Directory of Open Access Journals (Sweden)

    Rouhani H

    2011-04-01

    Full Text Available R Dinarvand1,2, N Sepehri1, S Manoochehri1, H Rouhani1, F Atyabi1,21Department of Pharmaceutics, Faculty of Pharmacy, 2Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, IranAbstract: The effectiveness of anticancer agents may be hindered by low solubility in water, poor permeability, and high efflux from cells. Nanomaterials have been used to enable drug delivery with lower toxicity to healthy cells and enhanced drug delivery to tumor cells. Different nanoparticles have been developed using different polymers with or without surface modification to target tumor cells both passively and/or actively. Polylactide-co-glycolide (PLGA, a biodegradable polyester approved for human use, has been used extensively. Here we report on recent developments concerning PLGA nanoparticles prepared for cancer treatment. We review the methods used for the preparation and characterization of PLGA nanoparticles and their applications in the delivery of a number of active agents. Increasing experience in the field of preparation, characterization, and in vivo application of PLGA nanoparticles has provided the necessary momentum for promising future use of these agents in cancer treatment, with higher efficacy and fewer side effects.Keywords: nanotechnology, polymeric nanocarriers, targeting, anticancer agents, surface modification

  19. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  20. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul

    2015-06-05

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  1. Phase stability and dynamics of entangled polymer-nanoparticle composites.

    KAUST Repository

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A

    2015-01-01

    Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.

  2. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  3. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  4. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  5. Photochemical stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance

    DEFF Research Database (Denmark)

    Tromholt, Thomas; Vesterager Madsen, Morten; Carlé, Jon Eggert

    2012-01-01

    Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film thickness...... within each material group were found to vary for both the pure polymers and the blends. The stability ranking between the materials of the pure polymers was found to be similar to the ranking for their respective blends, implying that the photochemical stability of a pure polymer is a good measure...... of its associated blend stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT by high LUMO electron...

  6. Multifunctional Nanoparticles for Drug Delivery Applications Imaging, Targeting, and Delivery

    CERN Document Server

    Prud'homme, Robert

    2012-01-01

    This book clearly demonstrates the progression of nanoparticle therapeutics from basic research to applications. Unlike other books covering nanoparticles used in medical applications, Multifunctional Nanoparticles for Drug Delivery Applications presents the medical challenges that can be reduced or even overcome by recent advances in nanoscale drug delivery. Each chapter highlights recent progress in the design and engineering of select multifunctional nanoparticles with topics covering targeting, imaging, delivery, diagnostics, and therapy.

  7. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh

    2015-10-22

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  8. Dynamics, Miscibility, and Morphology in Polymer-Molecule Blends: The Impact of Chemical Functionality

    KAUST Repository

    Do, Khanh; Risko, Chad; Anthony, John E; Amassian, Aram; Bredas, Jean-Luc

    2015-01-01

    In the quest to improve the performance of organic bulk-heterojunction solar cells, many recent efforts have focused on developing molecular and polymer alternatives to commonly used fullerene acceptors. Here, molecular dynamics simulations are used to investigate polymer-molecule blends comprised of the polymer donor poly(3-hexylthiophene) (P3HT) with a series of acceptors based on trialkylsilylethynyl-substituted pentacene. A matrix of nine pentacene derivatives, consisting of systematic chemical variation both in the nature of the alkyl groups and electron-withdrawing moieties appended to the acene, is used to draw connections between the chemical structure of the acene acceptor and the nanoscale properties of the polymer-molecule blend. These connections include polymer and molecular diffusivity, donor-acceptor packing and interfacial (contact) area, and miscibility. The results point to the very significant role that seemingly modest changes in chemical structure play during the formation of polymer-molecule blend morphologies.

  9. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    International Nuclear Information System (INIS)

    Schmitt, T.; Guttmann, P.; Schmahl, G.; Schmidt, O.; Schoenhense, G.; Mueller-Buschbaum, P.; Stamm, M.

    2000-01-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM

  10. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    Science.gov (United States)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  11. Photopolymerization Synthesis of Magnetic Nanoparticle Embedded Nanogels for Targeted Biotherapeutic Delivery

    Science.gov (United States)

    Denmark, Daniel J.

    Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for stimulus upon alternating magnetic field heating. Although more traditional methods, such as emulsion polymerization, have been used to realize these composite devices, the synthesis is problematic. Poisonous surfactants that are necessary to prevent agglomeration must be removed from the finished polymer, increasing the time and cost of the process. This study seeks to further explore non-toxic, biocompatible, non-residual, photochemical methods of creating stimuli responsive nanogels to advance the targeted biotherapeutic delivery field. Ultraviolet photopolymerization promises to be more efficient, while ensuring safety by using only biocompatible substances. The reactants selected for nanogel fabrication were N -isopropylacrylamide as monomer, methylene bisacrylamide as cross-linker, and Irgacure 2959 as ultraviolet photo-initiator. The superparamagnetic nanoparticles for encapsulation were approximately 10 nm in diameter and composed of magnetite to enable remote delivery and enhanced triggered release properties. Early investigations into the interactions of the polymer and nanoparticles employ a pioneering experimental setup, which allows for coincident turbidimetry and alternating magnetic field heating of an aqueous solution containing both

  12. Effect of host polymer blends to phosphorescence emission | Alias ...

    African Journals Online (AJOL)

    Each polymer was blended with the same ratio composition. The influences of host polymer composition to the phosphorescence emission were observed under pulsed UV excitation source of Xenon lamp. The results shows that there were changing in the phosphorescence emission and life time with difference host ...

  13. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release

    Science.gov (United States)

    Yao, Cuiping; Wu, Ming; Zhang, Cecheng; Lin, Xinyi; Wei, Zuwu; Zheng, Youshi; Zhang, Da; Zhang, Zhenxi; Liu, Xiaolong

    2017-06-01

    Currently, photoresponsive nanomaterials are particularly attractive due to their spatial and temporal controlled drug release abilities. In this work, we report a photoresponsive lipid-polymer hybrid nanoparticle for remote controlled delivery of anticancer drugs. This hybrid nanoparticle comprises three distinct functional components: (i) a poly(D,L-lactide-co-glycolide) (PLGA) core to encapsulate doxorubicin; (ii) a soybean lecithin monolayer at the interface of the core and shell to act as a molecular fence to prevent drug leakage; (iii) a photoresponsive polymeric shell with anti-biofouling properties to enhance nanoparticle stability, which could be detached from the nanoparticle to trigger the drug release via a decrease in the nanoparticle’s stability under light irradiation. In vitro results revealed that this core-shell nanoparticle had excellent light-controlled drug release behavior (76% release with light irradiation versus 10% release without light irradiation). The confocal microscopy and flow cytometry results also further demonstrated the light-controlled drug release behavior inside the cancer cells. Furthermore, a CCK8 assay demonstrated that light irradiation could significantly improve the efficiency of killing cancer cells. Meanwhile, whole-animal fluorescence imaging of a tumor-bearing mouse also confirmed that light irradiation could trigger drug release in vivo. Taken together, our data suggested that a hybrid nanoparticle could be a novel light controlled drug delivery system for cancer therapy.

  14. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs.

    Science.gov (United States)

    Zhao, Jing; Feng, Si-Shen

    2014-03-01

    Drug formulation by ligand conjugated nanoparticles of biodegradable polymers has become one of the most important strategies in drug targeting. We have developed in our previous work nanoparticles of a mixture of two vitamin E TPGS based copolymers PLA-TPGS and TPGS-TOOH with the latter for Herceptin conjugation for targeted delivery of anticancer drugs such as docetaxel to the cancer cells of human epidermal growth factor receptor 2 (HER2) overexpression. In this research, we investigated the effects of the PEG chain length in TPGS, which is in fact a PEGylated vitamin E, on the cellular uptake and cytotoxicity of the drug formulated in the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend (NPs). Such NPs of PEG1000, PEG2000, PEG3350 and PEG5000, i.e. the PEG of molecule weight 1000, 2000, 3350 and 5000, were prepared by the nanoprecipitation method and characterized for their size and size distribution, drug loading, surface morphology, surface charge and surface chemistry as well as in vitro drug release profile, cellular uptake and cytotoxicity. We found among such nanoparticles, those of PEG1000, i.e. of the shortest PEG tethering chain length, could result in the best therapeutic effects, which are 24.1%, 37.3%, 38.1% more efficient in cellular uptake and 68.1%, 90%, 92.6% lower in IC50 (thus higher in cytotoxicity) than the Herceptin-conjugated nanoparticles of PLA-TPGS/TPGS-COOH blend of PEG2000, PEG3350 and PEG5000 respectively in treatment of SK-BR-3 cancer cells which are of high HER2 overexpression. We provided a theoretical explanation from surface mechanics and thermodynamics for endocytosis of nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of complexing salt on conductivity of PVC/PEO polymer blend ...

    Indian Academy of Sciences (India)

    Administrator

    composite polymer, a blend-based polymer electrolyte, composed of two conductive ... LiClO4 electrolytes with various methacrylic and acrylic polymers used as additives .... Z real vs Z imaginary plot for PVC : PEO : LiBF4 at room temperature.

  16. Formulation and characterization of poly(propylacrylic acid)/poly(lactic-co-glycolic acid) blend microparticles for pH-dependent membrane disruption and cytosolic delivery.

    Science.gov (United States)

    Fernando, Lawrence P; Lewis, Jamal S; Evans, Brian C; Duvall, Craig L; Keselowsky, Benjamin G

    2018-04-01

    Poly(lactic-co-glycolic acid) (PLGA) is widely used as a vehicle for delivery of pharmaceutically relevant payloads. PLGA is readily fabricated as a nano- or microparticle (MP) matrix to load both hydrophobic and hydrophilic small molecular drugs as well as biomacromolecules such as nucleic acids and proteins. However, targeting such payloads to the cell cytosol is often limited by MP entrapment and degradation within acidic endolysosomes. Poly(propylacrylic acid) (PPAA) is a polyelectrolyte polymer with the membrane disruptive capability triggered at low pH. PPAA has been previously formulated in various carrier configurations to enable cytosolic payload delivery, but requires sophisticated carrier design. Taking advantage of PPAA functionality, we have incorporated PPAA into PLGA MPs as a simple polymer mixture to enhance cytosolic delivery of PLGA-encapsulated payloads. Rhodamine loaded PLGA and PPAA/PLGA blend MPs were prepared by a modified nanoprecipitation method. Incorporation of PPAA into PLGA MPs had little to no effect on the size, shape, or loading efficiency, and evidenced no toxicity in Chinese hamster ovary epithelial cells. Notably, incorporation of PPAA into PLGA MPs enabled pH-dependent membrane disruption in a hemolysis assay, and a three-fold increased endosomal escape and cytosolic delivery in dendritic cells after 2 h of MP uptake. These results demonstrate that a simple PLGA/PPAA polymer blend is readily fabricated into composite MPs, enabling cytosolic delivery of an encapsulated payload. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1022-1033, 2018. © 2017 Wiley Periodicals, Inc.

  17. Full-color tuning in binary polymer:perovskite nanocrystals organic-inorganic hybrid blends

    Science.gov (United States)

    Perulli, A.; Balena, A.; Fernandez, M.; Nedelcu, G.; Cretí, A.; Kovalenko, M. V.; Lomascolo, M.; Anni, M.

    2018-04-01

    The excellent optical and electronic properties of metal halide perovskites recently proposed these materials as interesting active materials for optoelectronic applications. In particular, the high color purity of perovskite colloidal nanocrystals (NCs) had recently motivated their exploration as active materials for light emitting diodes with tunable emission across the visible range. In this work, we investigated the emission properties of binary blends of conjugated polymers and perovskite NCs. We demonstrate that the emission color of the blends is determined by the superposition of the component photoluminescence spectra, allowing color tuning by acting on the blend relative composition. The use of two different polymers, two different perovskite NCs, and different blend compositions is exploited to tune the blend color in the blue-green, yellow-red, and blue-red ranges, including white light generation.

  18. Improved electrical properties of free standing blend polymer for renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Anil; Sharma, Sweety; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com [Centre for Physical Sciences, Central University of Punjab, Bathinda-151001 (India)

    2016-05-23

    Blend polymer electrolytes are prepared for salt concentration (Ö/Li = 4) with the constant ratio (0.5 gm) of PEO and PAN using solution casting technique. The prepared free standing solid polymeric film is characterized by Field Emission Scanning Electron Microscopy (FESEM) which confirms the homogeneous distribution of dissociated salt in blend polymer matrix. After addition of salt the ionic conductivity value is found to be of the order of 7.13 × 10{sup −5} Scm{sup −1} which is three orders higher when compared with pure blend polymer films. The microscopic interaction among the polymer-ion, ion-ion has been confirmed by the Fourier Transform Infrared (FTIR) Spectroscopy. A very fine correlation has been built in the electrical conductivity and FTIR result. On the basis of above finding, a prepared free standing solid polymeric film appears to be appropriate for the energy storage/conversion device applications.

  19. Hyperbolic tangent variational approximation for interfacial profiles of binary polymer blends

    International Nuclear Information System (INIS)

    Lifschitz, M.; Freed, K.F.; Tang, H.

    1995-01-01

    Contemporary theories of binary polymer blend interfaces incorporate such features of real polymer blends as compressibility, local correlations, monomer structure, etc. However, these theories require complicated numerical schemes, and their solutions often cannot be interpreted in a physically clear fashion. We develop a variational formalism for computing interfacial properties of binary polymer blends based on a hyperbolic tangent representation for the interfaces. While such an analysis is straightforward in the incompressible limit, the extension to compressible binary blends requires two distinct width parameters and nontrivial analysis. When the profile width parameters are chosen to minimize the excess free energy of a phase separated binary blend, then the interfacial properties computed from our simplified interfacial theory closely match those computed with the much more sophisticated (and computationally intensive) treatments. Significant attention is devoted to describing the interfacial properties of blends in the regime intermediate between the strong and the weak segregation limits as well as to extrapolating between these limits. The extension of the square gradient theory to the Tang--Freed quartic approximation provides a more precise definition of the weak segregation limit, but the treatment is found to overestimate both the interfacial tension and width in the strong segregation limit. The width parameters for the different components of a strongly asymmetric compressible blend vary to a lesser extent than an asymptotic analysis in the bulk suggests. This finding indicates that the central portion of the profile contributes the most in the minimization of the excess free energy with respect to the variational width parameters. copyright 1995 American Institute of Physics

  20. Tuning the dielectric properties of polystyrene/poly(vinylidene fluoride) blends by selectively localizing carbon black nanoparticles.

    Science.gov (United States)

    Zhao, Xiaodong; Zhao, Jun; Cao, Jian-Ping; Wang, Xiaoyan; Chen, Min; Dang, Zhi-Min

    2013-02-28

    In this work, the dielectric properties of immiscible polystyrene (PS)/poly(vinylidene fluoride) (PVDF) blends are tuned by selectively localizing carbon black (CB) nanoparticles in different phases. The PS/PVDF blends have a wide window of cocontinuity (ca. 30-80 vol % in terms of the volume fraction of PS component (v(PS))). The selective localization of CB nanoparticles is achieved by using the masterbatch process during melt mixing. For the volume ratio PS/PVDF 1/1 and the volume fraction of CB nanoparticles (v(CB)) below but close to the percolation threshold (v(c)(CB)), the selective localization of CB nanoparticles in PVDF phase produces higher dielectric constant (ε) than that in PS phase, whereas the ε of the ternary mixtures without selective localization of fillers is in the middle. For the volume ratios PS/PVDF 1/2 and 2/1, the selective location of CB nanoparticles in different phases can be used to easily tune the system from conductive to insulating or inverse, which might have potential applications in industry. The fillers are found to be "fixed" in the masterbatch of PS or PVDF component and there is no migration of the fillers to another phase occurring during the further mixing process for the mixing time up to 30 min. Furthermore, the addition of CB nanoparticles to the polymer matrix is found to induce the brittle-ductile transition in the system and increase the compatibility between the immiscible PS and PVDF components, which should benefit the mechanical properties.

  1. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  2. Eudragit E100 and Polysaccharide Polymer Blends as Matrices for ...

    African Journals Online (AJOL)

    Methods: LB, SCMC and E100 were blended in their dry (as purchased) state or modified by aqueous blending and subsequent lyophilization, prior to use as matrices in tablets. ... pullulan from Aureobasidium pullulans, 3-(3,4- .... the frozen polymer before sublimation and drying). Subsequently, milling generated a more.

  3. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    Science.gov (United States)

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SMART POLYMERS: INNOVATIONS IN NOVEL DRUG DELIVERY

    OpenAIRE

    Apoorva Mahajan; Geeta Aggarwal

    2011-01-01

    Smart polymers are attracting the researchers for development of novel drug delivery systems. Importance of smart polymers is rising day by day as these polymers undergo large reversible, physical or chemical changes in response to small changes in the environmental conditions such as pH, temperature, dual- stimuli, light and phase transition. Smart polymers are representing promising means for targeted drug delivery, enhanced drug delivery, gene therapy, actuator stimuli and protein folders....

  5. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Directory of Open Access Journals (Sweden)

    Talaei F

    2011-09-01

    Full Text Available Fatemeh Talaei1, Ebrahim Azizi2, Rassoul Dinarvand3, Fatemeh Atyabi31Novel Drug Delivery Systems Lab, 2Molecular Research Lab, Department of Pharmacology and Toxicology, 3Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IranAbstract: Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan and NAP-C (N-acetyl penicillamine-chitosan in anticancer drug delivery targeting epidermal growth factor receptor (EGFR. Doxorubicin (DOX and antisense oligonucleotide (ASOND-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

  6. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Nasif, Muhammad; Sultan, Neelam; Aslam, Nosheen; Noreen, Aqdas; Zuber, Mohammad

    2017-03-01

    Carrageenan is a natural polysaccharide extracted from edible red seaweeds of Rhodophycea class. It has been used as a viscosity increasing or gelling agent for prolonged and controlled drug release, food, pharmaceuticals and other industries. However, in spite of wide range of applications, carrageenan has some drawbacks and adverse effects on the biological systems, so its modifications with natural and synthetic polymers are carried out. This review article presents different sources and properties of carrageenans with special emphasis on natural polymer based carrageenan blends and composites and their applications in controlled drug delivery system, wound dressing and tissue engineering because of their biodegradability and biocompatibility, food industry as thickening/gelling materials, cosmeceuticals and making polyelectrolyte complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi; Piwonski, Hubert Marek; Michinobu, Tsuyoshi

    2017-01-01

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  8. Conjugated polymer nanoparticles, methods of using, and methods of making

    KAUST Repository

    Habuchi, Satoshi

    2017-03-16

    Embodiments of the present disclosure provide for conjugated polymer nanoparticle, method of making conjugated polymer nanoparticles, method of using conjugated polymer nanoparticle, polymers, and the like.

  9. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  10. Preparation of alanine/ESR dosimeter using different binder of polymer blend

    International Nuclear Information System (INIS)

    Razzak, M.T.; Sudiro, Sutjipto; Sudradjat, Adjat; Waskito, Ashar; Djamili, M.F.

    1995-01-01

    Different composition of polymer blend of low density polyethylene (PE) and polystyrene (PS) have been studied to be used as a binder for the preparation of Alanine/ESR dosimeter. The polymer binder and Alanine powder were blended in Laboplastomil Mixer at 140 o C and then it was pressed into a plastic film of 0.50 mm thickness. The film was cut into sample size of 250 mm x 2.5 mm and irradiated by gamma rays from a cobalt-60 source at different dose and dose rate. It was found that a blend of Alanine, PS and PE in composition of 60:30:10 is appropriate to prepare the Alanine/ESR dosimeter. (author)

  11. Nanoparticle Encapsulation in Diblock Copolymer/Homopolymer Blend Thin Film Mixtures

    Science.gov (United States)

    Zhao, Junnan; Chen, Xi; Green, Peter

    2014-03-01

    We investigated the organization of low concentrations of poly (2-vinylpyridine) (P2VP) grafted gold nanoparticles within a diblock copolymer polystyrene-b-poly (2-vinylpyridine) (PS-b-P2VP)/homopolymer polystyrene (PS) blend thin film. The PS-b-P2VP copolymers formed micelles, composed of inner cores of P2VP block and outer coronae of PS blocks, throughout the homopolymer PS. All nanoparticles were encapsulated within micelle cores and each micelle contained one or no nanoparticle, on average. When the host PS chains are much longer than corona chains, micelles tended to self-organize at the interfaces. Otherwise, they were dispersed throughout the PS host. In comparison to the neat PS-b-P2VP/PS blend, the nanoparticles/PS-b-P2VP/PS system had a higher density of smaller micelles, influenced largely by the number of nanoparticles in the system. The behavior of this system is understood in terms of the maximization of the nanoparticle/micelle core interactions and of the translational entropies of the micelles and the nanoparticles.

  12. Efficient polymer white-light-emitting diodes with a single-emission layer of fluorescent polymer blend

    International Nuclear Information System (INIS)

    Niu Qiaoli; Xu Yunhua; Jiang Jiaxing; Peng Junbiao; Cao Yong

    2007-01-01

    Efficient polymer white-light-emitting diodes (WPLEDs) have been fabricated with a single layer of fluorescent polymer blend. The device structure consists of ITO/PEDOT/PVK/emissive layer/Ba/Al. The emissive layer is a blend of poly(9,9-dioctylfluorene) (PFO), phenyl-substituted PPV derivative (P-PPV) and a copolymer of 9,9-dioctylfluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole (PFO-DHTBT), which, respectively, emits blue, green and red light. The emission of pure and efficient white light was implemented by tuning the blend weight ratio of PFO: P-PPV: PFO-DHTBT to 96:4:0.4. The maximum current efficiency and luminance are, respectively, 7.6 cd/A at 6.7 V and 11930 cd/m 2 at 11.2 V. The CIE coordinates of white-light emission were stable with the drive voltages

  13. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes

    Science.gov (United States)

    Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat

    2018-03-01

    We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.

  14. Enhancement of the optical, thermal and electrical properties of PEO/PAM:Li polymer electrolyte films doped with Ag nanoparticles

    Science.gov (United States)

    Morsi, M. A.; El-Khodary, Sherif A.; Rajeh, A.

    2018-06-01

    Both lithium bromide (LiBr) and biosynthesized silver nanoparticles (Ag NPs) with average size 2-30 nm have been incorporated into the polymeric matrix of polyethylene oxide and polyacrylamide (PEO/PAM) blend by the casting method. FT-IR analysis indicates the formation of hydrogen bond between the blend components. Also, LiBr and Ag NPs interact with the functional groups of PEO/PAM matrix. The results of XRD analysis depict the semi-crystalline nature of these polymer samples and the degree of crystallinity is decreased due to the addition process. The values of optical energy gap from UV-Vis. data are decreased from 3.55 eV for blend to 3.26 for the nanocomposite sample in the indirect transition. LiBr/Ag NPs assist the improvement of the thermal stability of the PEO/PAM blend, as evidenced by TGA and DTA techniques. Upon the addition of LiBr and Ag NPs, an improvement for the conductivity, dielectric permittivity (έ) and dielectric loss (ἕ) of PEO/PAM solid polymer electrolytes are observed. It's clear that the improvement of the electrical conductivity and dielectric parameters for PEO/PAM: Li+/Ag NPs polymer electrolyte system makes it as a promising candidate for solid-state Li battery applications.

  15. Field effect measurements on charge carrier mobilities in various polymer-fullerene blend compositions

    International Nuclear Information System (INIS)

    Hauff, Elizabeth von; Parisi, Juergen; Dyakonov, Vladimir

    2006-01-01

    In this study we investigated materials typically used in polymer photovoltaics. Field effect measurements were performed in order to determine the hole mobilities in the conjugated polymer poly(3-hexylthiophene) (P3HT) and the electron mobilities in the methanofullerene[6,6]-phenyl C 61 -butyric acid methyl ester (PCBM), and, particularly, in the polymer-fullerene composite blends. Regarding the pure films, electron mobilities in PCBM were found to be in the 10 -2 cm 2 /Vs range, and hole mobilities in P3HT were found to be in the 10 -3 cm2/Vs range. In the PCBM:P3HT blends, it was found that varying the PCBM content in PCBM:P3HT blends led to a steep increase in electron mobility with increasing PCBM content, while the hole mobility was found to slightly decrease with the increasing PCBM concentration. In 2:1 PCBM:P3HT tempered blends, the charge carrier mobilities were found to be roughly balanced, at 10 -3 cm 2 /Vs. For improved electron transport in the blends, tempering was found to be crucial

  16. Study on dissolution behavior of polymer-bound and polymer-blended photo-acid generator (PAG) resists

    Science.gov (United States)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi

    2013-03-01

    The requirements for the next generation resist materials are so challenging that it is indispensable for feasibility of EUV lithography to grasp basic chemistry of resist matrices in all stage of resist processes. Under such circumstances, it is very important to know dissolution characteristics of the resist film into alkaline developer though the dissolution of exposed area of resist films in alkaline developer to form a pattern is a complex reactive process. In this study, the influence of EUV and KrF exposure on the dissolution behavior of polymer bound PAG and polymer blended PAG was studied in detail using quartz crystal microbalance (QCM) methods. The difference in swelling formation between KrF and EUV exposure was observed. It is likely that difference of reaction mechanism induces the difference of these swelling. Also, it is observed that the swelling of polymer-bound PAG is less than that of polymer blended PAG in both KrF and EUV exposure. This result indicates that polymer-bound PAG suppresses swelling very well and showed an excellent performance. Actually, the developed polymer bound-PAG resist showed an excellent performance (half pitch 50 nm line and space pattern). Thus, polymer bound PAG is one of the promising candidate for 16 nm EUV resist.

  17. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  18. Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends

    Science.gov (United States)

    Skotheim, T.

    A polymer blend is disclosed of a highly conductive polymer and a solid polymer electrolyte that is designed to achieve better charge transfer across the conductive film/polymer electrolyte interface of the electrochemical photovoltaic cell. The highly conductive polymer is preferably polypyrrole or poly-N-p-nitrophenylpyrrole and the solid polymer electrolyte is preferably polyethylene oxide or polypropylene oxide.

  19. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    Science.gov (United States)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for

  20. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    Science.gov (United States)

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  1. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2016-01-01

    Full Text Available In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics. Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.

  2. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  3. Ultrasound mediated nanoparticle drug delivery

    Science.gov (United States)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  4. Synthetic surfactant- and cross-linker-free preparation of highly stable lipid-polymer hybrid nanoparticles as potential oral delivery vehicles.

    Science.gov (United States)

    Wang, Taoran; Xue, Jingyi; Hu, Qiaobin; Zhou, Mingyong; Chang, Chao; Luo, Yangchao

    2017-06-05

    The toxicity associated with concentrated synthetic surfactants and the poor stability at gastrointestinal condition are two major constraints for practical applications of solid lipid nanoparticles (SLN) as oral delivery vehicles. In this study, a synthetic surfactant-free and cross-linker-free method was developed to fabricate effective, safe, and ultra-stable lipid-polymer hybrid nanoparticles (LPN). Bovine serum albumin (BSA) and dextran varying in molecular weights were first conjugated through Maillard reaction and the conjugates were exploited to emulsify solid lipid by a solvent diffusion and sonication method. The multilayer structure was formed by self-assembly of BSA-dextran micelles to envelope solid lipid via a pH- and heating-induced facile process with simultaneous surface deposition of pectin. The efficiency of different BSA-dextran conjugates was systematically studied to prepare LPN with the smallest size, the most homogeneous distribution and the greatest stability. The molecular interactions were characterized by Fourier transform infrared and fluorescence spectroscopies. Both nano spray drying and freeze-drying methods were tested to produce spherical and uniform pectin-coated LPN powders that were able to re-assemble nanoscale structure when redispersed in water. The results demonstrated the promise of a synthetic surfactant- and cross-linker-free technique to prepare highly stable pectin-coated LPN from all natural biomaterials as potential oral delivery vehicles.

  5. Miscibility of polymer blends with engineering models

    DEFF Research Database (Denmark)

    Vassilis, Harismiadis; van Bergen, A. R. D.; Goncalves, Ana Saraiva

    1996-01-01

    compared. The van der Waals equation of state was recently shown to accurately correlate and predict vapor-liquid and liquid-liquid equilibria for binary polymer/solvent solutions. In this work, it is demonstrated that it correlates the upper critical solution behavior of polymer blends with excellent...... accuracy using the usual mixing and combining rules and a single temperature- and composition-independent binary interaction parameter. This interaction parameter can be predicted via a generalized expression that uses only the pure component equation-of-state parameters. Using this generalized expression...

  6. An empirical model for the melt viscosity of polymer blends

    International Nuclear Information System (INIS)

    Dobrescu, V.

    1981-01-01

    On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)

  7. Engineering Polymer Blends for Impact Damage Mitigation

    Science.gov (United States)

    Gordon, Keith L.; Smith, Russell W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Structures containing polymers such as DuPont's Surlyn® 8940, demonstrate puncture healing when impacted by a 9 millimeter projectile traveling from speeds near 300 meters per second (1,100 feet per second) to hypervelocity impacts in the micrometeoroid velocity range of 5 kilometers per second (16,000 feet per second). Surlyn® 8940 puncture heals over a temperature range of minus 30 degrees Centigrade to plus 70 degrees Centigrade and shows potential for use in pressurized vessels subject to impact damage. However, such polymers are difficult to process and limited in applicability due to their low thermal stability, poor chemical resistance and overall poor mechanical properties. In this work, several puncture healing engineered melt formulations were developed. Moldings of melt blend formulations were impacted with a 5.56 millimeter projectile with a nominal velocity of 945 meters per second (3,100 feet per second) at about 25 degrees Centigrade, 50 degrees Centigrade and 100 degrees Centigrade, depending upon the specific blend being investigated. Self-healing tendencies were determined using surface vacuum pressure tests and tensile tests after penetration using tensile dog-bone specimens (ASTM D 638-10). For the characterization of tensile properties both pristine and impacted specimens were tested to obtain tensile modulus, yield stress and tensile strength, where possible. Experimental results demonstrate a range of new puncture healing blends which mitigate damage in the ballistic velocity regime.

  8. Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells.

    Science.gov (United States)

    Talaei, Fatemeh; Azizi, Ebrahim; Dinarvand, Rassoul; Atyabi, Fatemeh

    2011-01-01

    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo.

  9. PEO + PVP blended polymer composite films for multifunctional

    Indian Academy of Sciences (India)

    has been noticed from PEO + PVP : Ni2+ polymer film at 373 K. Emission analysis of Co2+: ... suggested that these TM ions doped PEO + PVP polymer films are found to be potential ... by undertaking some nanoparticles for obtaining the sev-.

  10. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.

    Science.gov (United States)

    Hor, Jyo Lyn; Wang, Haonan; Fakhraai, Zahra; Lee, Daeyeon

    2018-03-28

    We explore the effect of confinement and polymer-nanoparticle interactions on the viscosity of unentangled polymers undergoing capillary rise infiltration (CaRI) in dense packings of nanoparticles. In CaRI, a polymer is thermally induced to wick into the dense packings of nanoparticles, leading to the formation of polymer-infiltrated nanoparticle films, a new class of thin film nanocomposites with extremely high concentrations of nanoparticles. To understand the effect of this extreme nanoconfinement, as well as polymer-nanoparticle interactions on the polymer viscosity in CaRI films, we use two polymers that are known to have very different interactions with SiO2 nanoparticles. Using in situ spectroscopic ellipsometry, we monitor the polymer infiltration process, from which we infer the polymer viscosity based on the Lucas-Washburn model. Our results suggest that physical confinement increases the viscosity by approximately two orders of magnitude. Furthermore, confinement also increases the glass transition temperature of both polymers. Thus, under extreme nanoconfinement, the physical confinement has a more significant impact than the polymer-nanoparticle interactions on the viscosity of unentangled polymers, measured through infiltration dynamics, as well as the glass transition temperature. These findings will provide fundamental frameworks for designing processes to enable the fabrication of CaRI nanocomposite films with a wide range of nanoparticles and polymers.

  11. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles.

    Science.gov (United States)

    Cheow, Wean Sin; Hadinoto, Kunn

    2011-07-01

    Lipid-polymer hybrid nanoparticles are polymeric nanoparticles enveloped by lipid layers that combine the highly biocompatible nature of lipids with the structural integrity afforded by polymeric nanoparticles. Recognizing them as attractive drug delivery vehicles, antibiotics are encapsulated in the present work into hybrid nanoparticles intended for lung biofilm infection therapy. Modified emulsification-solvent-evaporation methods using lipid as surfactant are employed to prepare the hybrid nanoparticles. Biodegradable poly (lactic-co-glycolic acid) and phosphatidylcholine are used as the polymer and lipid models, respectively. Three fluoroquinolone antibiotics (i.e. levofloxacin, ciprofloxacin, and ofloxacin), which vary in their ionicity, lipophilicity, and aqueous solubility, are used. The hybrid nanoparticles are examined in terms of their drug encapsulation efficiency, drug loading, stability, and in vitro drug release profile. Compared to polymeric nanoparticles prepared using non-lipid surfactants, hybrid nanoparticles in general are larger and exhibit higher drug loading, except for the ciprofloxacin-encapsulated nanoparticles. Hybrid nanoparticles, however, are unstable in salt solutions, but the stability can be conferred by adding TPGS into the formulation. Drug-lipid ionic interactions and drug lipophilicity play important roles in the hybrid nanoparticle preparation. First, interactions between oppositely charged lipid and antibiotic (i.e. ciprofloxacin) during preparation cause failed nanoparticle formation. Charge reversal of the lipid facilitated by adding counterionic surfactants (e.g. stearylamine) must be performed before drug encapsulation can take place. Second, drug loading and the release profile are strongly influenced by drug lipophilicity, where more lipophilic drug (i.e. levofloxacin) exhibit a higher drug loading and a sustained release profile attributed to the interaction with the lipid coat. Copyright © 2011 Elsevier B.V. All

  12. Flexible Photonics: Polymer LEDs Made from Monochromatic Red Emitting Lanthanide/Polymer Blends. Phase 1

    National Research Council Canada - National Science Library

    O'Regan, Marie

    1999-01-01

    .... Spectrally pure, red emitting flexible LEDs have been fabricated. Close to a four-fold increase in device efficiency is obtained when a suitable lanthanide complex is blended with the semi-conducting host polymer...

  13. Characterization of interfaces in Binary and Ternary Polymer Blends by Positron Lifetime Spectroscopy

    Science.gov (United States)

    Ranganathaiah, C.

    2015-06-01

    A miscible blend is a single-phase system with compact packing of the polymeric chains/segments due configuration/conformational changes upon blending. Differential Scanning Calorimetry (DSC) is the most employed method to ascertain whether the blend is miscible or immiscible. Positron Lifetime Spectroscopy (PLS) has been employed in recent times to study miscibility properties of polymer blends by monitoring the ortho-Positronium annihilation lifetimes as function of composition. However, just free volume monitoring and the DSC methods fail to provide the composition dependent miscibility of blends. To overcome this limitation, an alternative approach based on hydrodynamic interactions has been developed to derive this information using the same o-Ps lifetime measurements. This has led to the development of a new method of measuring composition dependent miscibility level in binary and ternary polymer blends. Further, the new method also provides interface characteristics for immiscible blends. The interactions between the blend components has a direct bearing on the strength of adhesion at the interface and hence the hydrodynamic interaction. Understanding the characteristic of interfaces which decides the miscibility level of the blend and their end applications is made easy by the present method. The efficacy of the present method is demonstrated for few binary and ternary blends.

  14. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  15. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  16. Exciplex dynamics in a conjugated polymer blend of MDMO-PPV and PCNEPV

    NARCIS (Netherlands)

    Offermans, T.; Hal, van P.A.; Koetse, M.M.; Meskers, S.C.J.; Janssen, R.A.J.; Kafafi, Z.H.

    2005-01-01

    The photophysical properties of a solution processed blend of two semiconducting polymers with electron donating and electron accepting properties, respectively, as used in polymer photovoltaic devices have been investigated. In the binary mixture of

  17. Nanoparticle amount, and not size, determines chain alignment and nonlinear hardening in polymer nanocomposites

    Science.gov (United States)

    Varol, H. Samet; Meng, Fanlong; Hosseinkhani, Babak; Malm, Christian; Bonn, Daniel; Bonn, Mischa; Zaccone, Alessio

    2017-01-01

    Polymer nanocomposites—materials in which a polymer matrix is blended with nanoparticles (or fillers)—strengthen under sufficiently large strains. Such strain hardening is critical to their function, especially for materials that bear large cyclic loads such as car tires or bearing sealants. Although the reinforcement (i.e., the increase in the linear elasticity) by the addition of filler particles is phenomenologically understood, considerably less is known about strain hardening (the nonlinear elasticity). Here, we elucidate the molecular origin of strain hardening using uniaxial tensile loading, microspectroscopy of polymer chain alignment, and theory. The strain-hardening behavior and chain alignment are found to depend on the volume fraction, but not on the size of nanofillers. This contrasts with reinforcement, which depends on both volume fraction and size of nanofillers, potentially allowing linear and nonlinear elasticity of nanocomposites to be tuned independently. PMID:28377517

  18. Development of Polymer Blends in order to Toughening of Polymers: A review

    Directory of Open Access Journals (Sweden)

    Carlos Bruno Barreto Luna

    2015-05-01

    Full Text Available Polymers are materials of large use in the various sectors of the world economy. The use of polymeric materials in daily life, instead of the classic materials has increased in recent decades. However, for certain structural applications polymers need to get tougher. One of the principal toughening techniques based on physical mixture of two or more components, forming the so-called polymer blends. The addition of rubber or not vulcanized in polymer compositions is reported in the literature as a means of generating mixtures of easy processing, and economically advantageous to increase the toughness of the thermoplastic matrix of interest. Moreover, it can be an alternative for the recycling of waste tires and footwear coming from industries, as well reduce harmful effects on the environment. Therefore, the present study aims to present a review of the definitions, benefits, thermodynamic fundamentals and toughening polymers.

  19. On the role of specific interactions in the diffusion of nanoparticles in aqueous polymer solutions.

    Science.gov (United States)

    Mun, Ellina A; Hannell, Claire; Rogers, Sarah E; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2014-01-14

    Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

  20. Structure, entanglements and dynamics of polymer nanocomposites containing spherical nanoparticles

    International Nuclear Information System (INIS)

    Karatrantos, A; Clarke, N; Composto, R J; Winey, K I

    2014-01-01

    We investigate the effect of nanoparticles on polymer structure, nanoparticle dynamics and topological constraints (entanglements) in polymer melts for nanoparticle loading above percolation threshold as high as 40.9% using stochastic molecular dynamics (MD) simulations. An increase in the number of entanglements (decrease of N e with 40.9% volume fraction of nanoparticles dispersed in the polymer matrix) in the nanocomposites is observed as evidenced by larger contour lengths of the primitive paths. Attraction between polymers and nanoparticles affects the entanglements in the nanocomposites and alters the primitive path. The diffusivity of small sized nanoparticles deviates significantly from the Stokes- Einstein relation

  1. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    International Nuclear Information System (INIS)

    Rosario, F.; Casarin, S.A.; Agnelli, J.A.M.; Souza Junior, O.F. de

    2010-01-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  2. Reconciliation of Cahn-Hilliard predictions for spinodal decomposition lengthscales in polymer blends

    Science.gov (United States)

    Cabral, Joao

    Spinodal decomposition (SD) of partially miscible polymer blends can yield well-defined nanostructures with prescribed lengthscales and connectivity, and applications ranging from membranes and scaffolds to photovoltaics. Cahn-Hilliard-Cook (CHC) theory estimates the initial, dominant SD wavenumber to be qm =√{G''/4 k } , where G'' is the second derivative of the free energy of mixing with respect to concentration and k is a structural parameter which can be computed from the segment lengths and volumes of monomer units. Tuning G'', with quench depth into the two phase region, for instance, should thus provide a facile and precise means for designing polymeric bicontinuous structures. The fulfillment of this potential rests on the thermodynamics of available polymer systems, coarsening kinetics, as well as engineering constraints. We extensively review experimental measurements of G'' in both one- and two-phase blend systems, and critically examine the accuracy of this fundamental prediction against achievements over the past 4 decades of polymer blend demixing. Despite widespread misconceptions in detecting and describing SD, we find the CHC relation to be remarkably accurate and conclude with design considerations and limitations for polymer nanostructures via SD, reflecting on John Cahn's contributions to the field.

  3. Imaging the intracellular degradation of biodegradable polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Barthel

    2014-10-01

    Full Text Available In recent years, the development of smart drug delivery systems based on biodegradable polymeric nanoparticles has become of great interest. Drug-loaded nanoparticles can be introduced into the cell interior via endocytotic processes followed by the slow release of the drug due to degradation of the nanoparticle. In this work, poly(L-lactic acid (PLLA was chosen as the biodegradable polymer. Although common degradation of PLLA has been studied in various biological environments, intracellular degradation processes have been examined only to a very limited extent. PLLA nanoparticles with an average diameter of approximately 120 nm were decorated with magnetite nanocrystals and introduced into mesenchymal stem cells (MSCs. The release of the magnetite particles from the surface of the PLLA nanoparticles during the intracellular residence was monitored by transmission electron microscopy (TEM over a period of 14 days. It was demonstrated by the release of the magnetite nanocrystals from the PLLA surface that the PLLA nanoparticles do in fact undergo degradation within the cell. Furthermore, even after 14 days of residence, the PLLA nanoparticles were found in the MSCs. Additionally, the ultrastructural TEM examinations yield insight into the long term intercellular fate of these nanoparticles. From the statistical analysis of ultrastructural details (e.g., number of detached magnetite crystals, and the number of nanoparticles in one endosome, we demonstrate the importance of TEM studies for such applications in addition to fluorescence studies (flow cytometry and confocal laser scanning microscopy.

  4. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  5. 3D-morphology reconstruction of nanoscale phase-separation in polymer memory blends

    NARCIS (Netherlands)

    Khikhlovskyi, S.; Breemen, van A.J.J.M.; Michels, J.J.; Janssen, R.A.J.; Gelinck, G.; Kemerink, M.

    2015-01-01

    In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple

  6. Polymer-Nanoparticle Composites: From Synthesis to Modern Applications

    Directory of Open Access Journals (Sweden)

    Thomas Hanemann

    2010-05-01

    Full Text Available The addition of inorganic spherical nanoparticles to polymers allows the modification of the polymers physical properties as well as the implementation of new features in the polymer matrix. This review article covers considerations on special features of inorganic nanoparticles, the most important synthesis methods for ceramic nanoparticles and nanocomposites, nanoparticle surface modification, and composite formation, including drawbacks. Classical nanocomposite properties, as thermomechanical, dielectric, conductive, magnetic, as well as optical properties, will be summarized. Finally, typical existing and potential applications will be shown with the focus on new and innovative applications, like in energy storage systems.

  7. Nanoparticle-enabled delivery of surfactants in porous media.

    Science.gov (United States)

    Nourafkan, Ehsan; Hu, Zhongliang; Wen, Dongsheng

    2018-06-01

    The adsorption of surfactants on the reservoir rocks surface is a serious issue in many energy and environment related areas. Learning from the concept of drug delivery in the nano-medicine field, this work proposes and validates the concept of using nanoparticles to deliver a mixture of surfactants into a porous medium. TiO 2 nanoparticles (NPs) are used as carriers for a blend of surfactants mixtures including anionic alkyl aryl sulfonic acid (AAS) and nonionic alcohol ethoxylated (EA) at the optimum salinity and composition conditions. The transport of NPs through a core sample of crushed sandstone grains and the adsorption of surfactants are evaluated. By using TiO 2 NPs, the adsorption of surfactant molecules can be significantly reduced, i.e. half of the initial adsorption value. The level of surfactant adsorption reduction is related to the NPs transport capability through the porous medium. An application study shows that comparing to surfactant flooding alone, the total oil recovery can be increased by 7.81% of original oil in place (OOIP) by using nanoparticle bonded surfactants. Such work shows the promise of NP as an effective surfactant carrier for sandstone reservoirs, which could have many potential applications in enhanced oil recovery (EOR) and environmental remediation. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Gas Separation Membranes Derived from High-Performance Immiscible Polymer Blends Compatibilized with Small Molecules.

    Science.gov (United States)

    Panapitiya, Nimanka P; Wijenayake, Sumudu N; Nguyen, Do D; Huang, Yu; Musselman, Inga H; Balkus, Kenneth J; Ferraris, John P

    2015-08-26

    An immiscible polymer blend comprised of high-performance copolyimide 6FDA-DAM:DABA(3:2) (6FDD) and polybenzimidazole (PBI) was compatibilized using 2-methylimidazole (2-MI), a commercially available small molecule. Membranes were fabricated from blends of 6FDD:PBI (50:50) with and without 2-MI for H2/CO2 separations. The membranes demonstrated a matrix-droplet type microstructure as evident with scanning electron microscopy (SEM) imaging where 6FDD is the dispersed phase and PBI is the continuous phase. In addition, membranes with 2-MI demonstrated a uniform microstructure as observed by smaller and more uniformly dispersed 6FDD domains in contrast to 6FDD:PBI (50:50) blend membranes without 2-MI. This compatibilization effect of 2-MI was attributed to interfacial localization of 2-MI that lowers the interfacial energy similar to a surfactant. Upon the incorporation of 2-MI, the H2/CO2 selectivity improved remarkably, compared to the pure blend, and surpassed the Robeson's upper bound. To our knowledge, this is the first report of the use of a small molecule to compatibilize a high-performance immiscible polymer blend. This approach could afford a novel class of membranes in which immiscible polymer blends can be compatibilized in an economical and convenient fashion.

  9. Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes

    Science.gov (United States)

    Remanan, Sanjay; Sharma, Maya; Jayashree, Priyadarshini; Parameswaranpillai, Jyotishkumar; Fabian, Thomas; Shih, Julie; Shankarappa, Prasad; Nuggehalli, Bharath; Bose, Suryasarathi

    2017-06-01

    This study demonstrates flame retardant materials designed using bi-phasic polymer blends of acrylonitrile butadiene styrene (ABS) and polyvinylidene fluoride (PVDF) containing halloysite nanotubes (HNTs) and Cloisite 30B nanoclay. The prepared blends with and without nanoparticles were extensively characterized. The nanoparticles were added in different weight concentrations to improve the flame retardancy. It was observed that prepared ABS/PVDF blends showed better flame retardancy than ABS based composites. The flame resistance was further improved by the addition of nanoparticles in the blends. The microscale combustion calorimetry (MCC) test showed better flame resistance in ABS/PVDF blends filled with 5 wt% HNTs than other composites. The total heat release of ABS/PVDF blend filled with 5 wt% HNTs decreased by 31% and also the heat of combustion decreased by 26% as compared to neat ABS. When compared with nanoparticles, the addition of PVDF reduced the peak heat release rate (PHRR) and increased the char residue more effectively. A synergistic improvement was observed from both PVDF and HNTs on the flame resistance properties.

  10. Biotin-Conjugated Multilayer Poly [D,L-lactide-co-glycolide]-Lecithin-Polyethylene Glycol Nanoparticles for Targeted Delivery of Doxorubicin.

    Science.gov (United States)

    Dai, Yu; Xing, Han; Song, Fuling; Yang, Yue; Qiu, Zhixia; Lu, Xiaoyu; Liu, Qi; Ren, Shuangxia; Chen, Xijing; Li, Ning

    2016-09-01

    Multilayer nanoparticle combining the merits of liposome and polymer nanoparticle has been designed for the targeted delivery of doxorubicin (DOX) in cancer treatment. In this study, DOX-PLGA-lecithin-PEG-biotin nanoparticles (DOX-PLPB-NPs) were fabricated and functionalized with biotin for specific tumor targeting. Under the transmission electron microscopy observation, the lipid layer was found to be coated on the polymer core. The physical characteristics of PLPB-NPs were also evaluated. The confocal laser scanning microscopy confirmed the cellular uptake of nanoparticles and targeted delivery PLPB-NPs. The in vitro release experiment demonstrated a pH-depending release of DOX from drug-loaded PLPB-NPs. Cytotoxicity studies in HepG2 cells and in vivo antitumor experiment in tumor-bearing mice both proved DOX-PLPB-NPs showed the best inhibition effect of tumor proliferation. In biodistribution studies, DOX-PLPB-NPs showed a higher DOX concentration than free DOX and DOX-PLGA-lecithin-PEG nanoparticles (DOX-PLP-NPs) in tumor site, especially in 24 h, and the lowest DOX level in normal organs. The results were coincident with the strongest antitumor ability showed among in vivo antitumor experiment. Histopathology analysis demonstrated that DOX-PLPB-NPs exhibited the strongest antitumor ability and lowest cardiotoxicity. In brief, the PLPB-NPs were proved to be an efficient delivery system for tumor-targeting treatment. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Component dynamics in polymer blends a combined QENS and dielectric spectroscopy investigation

    CERN Document Server

    Hofmann, S; Arbe, A; Colmenero, J; Faragó, B

    2002-01-01

    The individual dynamics of the two constituents of a binary polymer blend was studied by means of quasielastic neutron scattering and dielectric spectroscopy (DS). The combination of neutron spin-echo and backscattering techniques allowed us to cover the complete crossover from entropy-driven chain dynamics on mesoscopic scales to the alpha relaxation on local length scales. The observed blending effects on the respective relaxation times suggest a purely dynamic origin of the dynamic heterogeneity in polymer blends at temperatures well above the glass-transition temperature without the need to assume local phase separation. In contrast, the results from DS experiments towards much lower temperatures indicate systematic deviations of the segmental dynamics in the blend from its mean-field-like behavior at high temperatures. This additionally increases the dynamic heterogeneity in the segmental dynamics of the two components in the mixture. In the case of the chain dynamics, no similar effect could be observed...

  12. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-01

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  13. Computational approach to the study of morphological properties of polymer/fullerene blends in photovoltaics

    Science.gov (United States)

    Gaitho, Francis M.; Mola, Genene T.; Pellicane, Giuseppe

    2018-02-01

    Organic solar cells have the ability to transform solar energy efficiently and have a promising energy balance. Producing these cells is economical and makes use of methods of printing using inks built on solvents that are well-matched with a variety of cheap materials like flexible plastic or paper. The primary materials used to manufacture organic solar cells include carbon-based semiconductors, which are good light absorbers and efficient charge generators. In this article, we review previous research of interest based on morphology of polymer blends used in bulk heterojunction (BHJ) solar cells and introduce their basic principles. We further review computational models used in the analysis of surface behavior of polymer blends in BHJ as well as the trends in the field of polymer surface science as applied to BHJ photovoltaics. We also give in brief, the opportunities and challenges in the area of polymer blends on BHJ organic solar cells.

  14. Droplet size in flow: Theoretical model and application to polymer blends

    Science.gov (United States)

    Fortelný, Ivan; Jůza, Josef

    2017-05-01

    The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.

  15. Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends

    KAUST Repository

    Jahnke, Ashlee A.

    2015-02-27

    Polymer blends are broadly important in chemical science and chemical engineering and have led to a wide range of commercial products, however their precise structure and phase morphology is often not well understood. Here we show for the first time that π-conjugated polytellurophenes and high-density polyethylene form blends that can serve as active layers in field-effect transistor devices and can be characterized by a variety of element-specific imaging techniques such as STEM and EDX. Changing the hydrocarbon content and degree of branching on the polytellurophene side-chain leads to a variety of blend structures, and these variations can be readily visualized. Characterization by electron microscopy is complemented by topographic and X-ray methods to establish a nano- to micro-scale picture of these systems. We find that blends that possess microscale networks function best as electronic devices; however, contrary to previous notions a strong correlation between nanofiber formation and electrical performance is not observed. Our work demonstrates that use of organometallic polymers assists in clarifying relevant structure–property–function relationships in multicomponent systems such as semiconductor:insulator blends and sheds light on the structure development in polymer:polymer blends including crystallization, phase separation, and formation of supramolecular arrangements.

  16. Polytellurophenes provide imaging contrast towards unravelling the structure–property–function relationships in semiconductor:insulator polymer blends

    KAUST Repository

    Jahnke, Ashlee A.; Yu, Liyang; Coombs, Neil; Scaccabarozzi, Alberto D.; Tilley, Andrew J.; DiCarmine, Paul M.; Amassian, Aram; Stingelin, Natalie; Seferos, Dwight S.

    2015-01-01

    Polymer blends are broadly important in chemical science and chemical engineering and have led to a wide range of commercial products, however their precise structure and phase morphology is often not well understood. Here we show for the first time that π-conjugated polytellurophenes and high-density polyethylene form blends that can serve as active layers in field-effect transistor devices and can be characterized by a variety of element-specific imaging techniques such as STEM and EDX. Changing the hydrocarbon content and degree of branching on the polytellurophene side-chain leads to a variety of blend structures, and these variations can be readily visualized. Characterization by electron microscopy is complemented by topographic and X-ray methods to establish a nano- to micro-scale picture of these systems. We find that blends that possess microscale networks function best as electronic devices; however, contrary to previous notions a strong correlation between nanofiber formation and electrical performance is not observed. Our work demonstrates that use of organometallic polymers assists in clarifying relevant structure–property–function relationships in multicomponent systems such as semiconductor:insulator blends and sheds light on the structure development in polymer:polymer blends including crystallization, phase separation, and formation of supramolecular arrangements.

  17. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes

    Science.gov (United States)

    Saadiah, M. A.; Samsudin, A. S.

    2018-04-01

    The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.

  18. Crystallinity evaluation of polyhydroxybutyrate and polycaprolactone blends

    International Nuclear Information System (INIS)

    Cavalcante, Maxwell P.; Rodrigues, Elton Jorge R.; Tavares, Maria Ines B.

    2015-01-01

    Polyhydroxybutyrate, PHB, is a polymer obtained through bacterial or synthetic pathways. It has been used in the biomedical field as a matrix for drug delivery, medical implants and as scaffold material for tissue engineering. PHB has high structural organization, which makes it highly crystalline and brittle, making biodegradation difficult, reducing its employability. In order to enhance the mechanical and biological properties of PHB, blends with other polymers, biocompatible or not, are researched and produced. In this regard, blends of PHB and polycaprolactone, PCL, another biopolymer widely used in the biomedical industry, were obtained via solution casting and were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR). Results have shown a dependence between PHB's crystallinity index and PCL quantity employed to obtain the blends.(author)

  19. Blended polymer materials extractable with supercritical carbon dioxide

    Science.gov (United States)

    Cai, Mei

    Supercritical carbon dioxide is drawing more and more attention because of its unique solvent properties along with being environmentally friendly. Historically most of the commercial interests of supercritical carbon dioxide extraction are in the food industry, pharmaceutical industry, environmental preservation and polymer processing. Recently attention has shifted from the extraction of relatively simple molecules to more complex systems with a much broader range of physical and chemical transformations. However the available data show that a lot of commercially valuable substances are not soluble in supercritical carbon dioxide due to their polar structures. This fact really limits the application of SCF extraction technology to much broader industrial applications. Therefore, the study of a polymer's solubility in a given supercritical fluid and its thermodynamic behavior becomes one of the most important research topics. The major objective of this dissertation is to develop a convenient and economic way to enhance the polymer's solubility in supercritical carbon dioxide. Further objective is to innovate a new process of making metal casting parts with blended polymer materials developed in this study. The key technique developed in this study to change a polymer's solubility in SCF CO2 is to thermally blend a commercially available and CO2 non-soluble polymer material with a low molecular weight CO2 soluble organic chemical that acts as a co-solute. The mixture yields a plastic material that can be completely solubilized in SCF CO2 over a range of temperatures and pressures. It also exhibits a variety of physical properties (strength, hardness, viscosity, etc.) depending on variations in the mixture ratio. The three organic chemicals investigated as CO2 soluble materials are diphenyl carbonate, naphthalene, and benzophenone. Two commercial polymers, polyethylene glycol and polystyrene, have been investigated as CO2 non-soluble materials. The chemical

  20. Morphology control in polymer blend fibers—a high throughput computing approach

    Science.gov (United States)

    Sesha Sarath Pokuri, Balaji; Ganapathysubramanian, Baskar

    2016-08-01

    Fibers made from polymer blends have conventionally enjoyed wide use, particularly in textiles. This wide applicability is primarily aided by the ease of manufacturing such fibers. More recently, the ability to tailor the internal morphology of polymer blend fibers by carefully designing processing conditions has enabled such fibers to be used in technologically relevant applications. Some examples include anisotropic insulating properties for heat and anisotropic wicking of moisture, coaxial morphologies for optical applications as well as fibers with high internal surface area for filtration and catalysis applications. However, identifying the appropriate processing conditions from the large space of possibilities using conventional trial-and-error approaches is a tedious and resource-intensive process. Here, we illustrate a high throughput computational approach to rapidly explore and characterize how processing conditions (specifically blend ratio and evaporation rates) affect the internal morphology of polymer blends during solvent based fabrication. We focus on a PS: PMMA system and identify two distinct classes of morphologies formed due to variations in the processing conditions. We subsequently map the processing conditions to the morphology class, thus constructing a ‘phase diagram’ that enables rapid identification of processing parameters for specific morphology class. We finally demonstrate the potential for time dependent processing conditions to get desired features of the morphology. This opens up the possibility of rational stage-wise design of processing pathways for tailored fiber morphology using high throughput computing.

  1. Advances and challenges in the field of plasma polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Andrei Choukourov

    2017-09-01

    Full Text Available This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  2. Equilibrating high-molecular-weight symmetric and miscible polymer blends with hierarchical back-mapping

    Science.gov (United States)

    Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas

    2018-05-01

    Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b. First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing

  3. Interaction of Green Polymer Blend of Modified Sodium Alginate and Carboxylmethyl Cellulose Encapsulation of Turmeric Extract

    Directory of Open Access Journals (Sweden)

    Sa-Ad Riyajan

    2013-01-01

    Full Text Available Turmeric extract (tmr loaded nanoparticles were prepared by crosslinking modified carboxylmethyl cellulose (CMC and modified sodium alginate (SA with calcium ions, in a high pressure homogenizer. The FTIR spectra of CMC and SA were affected by blending due to hydrogen bonding. The negative zeta potential increased in magnitude with CMC content. The smallest nanoparticles were produced with a 10 : 5 SA/CMC blend. Also the release rates of the extract loading were measured, with model fits indicating that the loading level affected the release rate through nanoparticle structure. The 10 : 5 SA/CMC blend loading with tmr and pure tmr showed a good % growth inhibition of colon cancer cells which indicate that tmr in the presence of curcumin in tmr retains its anticancer activity even after being loaded into SA/CMC blend matrix.

  4. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Cheng Huang

    2012-09-01

    Full Text Available A rapid and cost-effective lithographic method, polymer blend lithography (PBL, is reported to produce patterned self-assembled monolayers (SAM on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity, the molar mass of the polystyrene (PS and poly(methyl methacrylate (PMMA, and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix can be reproducibly induced. Either of the formed phases (PS or PMMA can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This “monolayer copy” of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS and (3-aminopropyltriethoxysilane (APTES, and at the same time featuring regions of bare SiOx. The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures.

  5. Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers.

    Science.gov (United States)

    Huang, Cheng; Moosmann, Markus; Jin, Jiehong; Heiler, Tobias; Walheim, Stefan; Schimmel, Thomas

    2012-01-01

    A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to produce patterned self-assembled monolayers (SAM) on solid substrates featuring two or three different chemical functionalities. For the pattern generation we use the phase separation of two immiscible polymers in a blend solution during a spin-coating process. By controlling the spin-coating parameters and conditions, including the ambient atmosphere (humidity), the molar mass of the polystyrene (PS) and poly(methyl methacrylate) (PMMA), and the mass ratio between the two polymers in the blend solution, the formation of a purely lateral morphology (PS islands standing on the substrate while isolated in the PMMA matrix) can be reproducibly induced. Either of the formed phases (PS or PMMA) can be selectively dissolved afterwards, and the remaining phase can be used as a lift-off mask for the formation of a nanopatterned functional silane monolayer. This "monolayer copy" of the polymer phase morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by inducing breath figures (evaporated condensed entity) at higher humidity during the spin-coating process. Here we demonstrate the formation of a lateral pattern consisting of regions covered with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) and (3-aminopropyl)triethoxysilane (APTES), and at the same time featuring regions of bare SiO(x). The patterning process could be applied even on meter-sized substrates with various functional SAM molecules, making this process suitable for the rapid preparation of quasi two-dimensional nanopatterned functional substrates, e.g., for the template-controlled growth of ZnO nanostructures [1].

  6. Antimicrobial Polymers with Metal Nanoparticles

    Science.gov (United States)

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  7. Polymer Nanocomposites with Prescribed Morphology: Going Beyond Nanoparticle-Filled Polymers (Preprint)

    National Research Council Canada - National Science Library

    Vaia, Richard A; Maguire, John F

    2006-01-01

    Polymer nanocomposites (PNCs), i.e., nanoparticles (spheres, rods, and plates) dispersed in a polymer matrix, have garnered substantial academic and industrial interest since their inception, ca. 1990...

  8. Structural and optical band gap of PEO/PVP polymer blend

    Science.gov (United States)

    Basappa, M.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vandana, M.; Vijeth, H.; Devendrappa, H.

    2018-05-01

    The PEO/PVP polymers blend film at different wt % of PVP is prepared by solution casting method using methanol as a solvent. The blend was characterized by FT-IR to confirm the blend and the peak observed in the region 1230-980 cm-1 corresponds to C-O-C symmetric and asymmetric stretching. The UV-visible absorption shows red shift from 190 to 220 nm in the ultra violet region is attributed to π→π* transition. The direct and indirect optical band gaps were determined and found decreases from 4.99 to 4.62 eV with increased PVP wt % to 50:50.

  9. Synthesis of polymer-lipid nanoparticles for image-guided delivery of dual modality therapy.

    Science.gov (United States)

    Mieszawska, Aneta J; Kim, YongTae; Gianella, Anita; van Rooy, Inge; Priem, Bram; Labarre, Matthew P; Ozcan, Canturk; Cormode, David P; Petrov, Artiom; Langer, Robert; Farokhzad, Omid C; Fayad, Zahi A; Mulder, Willem J M

    2013-09-18

    For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

  10. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Anupama Shrivastav

    2013-01-01

    Full Text Available Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system.

  11. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    Science.gov (United States)

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  12. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  13. Design and Synthesis of Self-Assembled Polymeric Nanoparticles for Cancer Drug Delivery

    Science.gov (United States)

    Logie, Jennifer

    Current chemotherapeutics are plagued by poor solubility and selectivity, requiring toxic excipients in formulations and causing a number of dose limiting side effects. Nanoparticle delivery has emerged as a strategy to more effectively deliver chemotherapeutics to the tumour site. Specifically, polymeric micelles enable the solubilization of hydrophobic small molecule drugs within the core and mitigate the necessity of excipients. Notwithstanding the significant progress made in polymeric micelle delivery, translation is limited by poor stability and low drug loading. In this work, a rational design approach is used to chemically modify poly(D,L-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-graft-poly(ethylene glycol) (P(LA-co-TMCC)-g-PEG) in order to overcome these limitations and effectively deliver drug to tumours. The PEG density of the polymer system was optimized to enhance the stability of our polymeric micelles. Higher PEG densities permitted the lyophilization of micelles and enhanced the serum stability of the system. To increase the drug loading of our system, we facilitated specific intermolecular interactions within the micelle core. For drugs that form colloidal aggregates, such as pentyl-PABC doxazolidine, polymers were used to stabilize the colloidal core against aggregation and protein adsorption. For more challenging molecules, where self-assembly cannot be controlled, such as docetaxel, we modified the polymeric backbone with a peptide from the binding site of the drug to achieve loadings five times higher than those achieved in conventional micelle systems. This novel docetaxel nanoparticle was assessed in vivo in an orthotopic mouse model of breast cancer, where it showed a wider therapeutic index than the conventional ethanolic polysorbate 80 formulation. The improved tolerability of this formulation enabled higher dosing regimens and led to heightened efficacy and survival in this mouse model. Combined, these studies validated P

  14. Carbon nanotubes with silver nanoparticle decoration and conductive polymer coating for improving the electrical conductivity of polycarbonate composites

    KAUST Repository

    Patole, Archana S.

    2015-01-01

    We proposed a strategy to enhance the conductivity of polycarbonate by using three-phase hybrid metallic/non-metallic fillers. Ethylene diamine (EDA) functionalized multiwalled carbon nanotubes (MWCNT-EDA) are first decorated with silver nanoparticles. These Ag/ MWCNT-EDA fillers are then coated with a conductive layer of ethylene glycol treated PEDOT: PSS (poly [3,4-ethylenedioxythiophene]: poly [styrenesulfonate]) (EP). In such an approach, the MWCNT backbone is covered by a highly conductive coating made of Ag nanoparticles surrounded by EP. To understand how Ag and EP form a highly conductive coating, the effect of different wt% of Ag nanoparticles on EP was studied. Ag nanoparticles around the size of 128 ± 28 nmeffectively lowered the volume resistivity of bulk EP, resulting in a highly conducting Ag/EP blend. We found that in the final Ag/MWCNT-EDA/EP assembly, the EP coating enhances the electrical conductivity in two ways: (1) it is an efficient dispersing agent that helps in achieving a uniform dispersion of the Ag/MWCNT-EDA and (2) it acts as a conductive bridge between particles (Ag and MWCNT-EDA), reducing the particle to particle resistivity. When inserted into polycarbonate, this three-phase blend successfully reduced the volume resistivity of the polymer by two orders of magnitude compared with previous approaches.

  15. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Delivery of cyclodextrin polymers to bacterial biofilms - An exploratory study using rhodamine labelled cyclodextrins and multiphoton microscopy.

    Science.gov (United States)

    Thomsen, Hanna; Benkovics, Gábor; Fenyvesi, Éva; Farewell, Anne; Malanga, Milo; Ericson, Marica B

    2017-10-15

    Cyclodextrin (CD) polymers are interesting nanoparticulate systems for pharmaceutical delivery; however, knowledge regarding their applications towards delivery into complex microbial biofilm structures is so far limited. The challenge is to demonstrate penetration and transport through the biofilm and its exopolysaccharide matrix. The ideal functionalization for penetration into mature biofilms is unexplored. In this paper, we present a novel set of rhodamine labelled βCD-polymers, with different charge moieties, i.e., neutral, anionic, and cationic, and explore their potential delivery into mature Staphylococcus epidermidis biofilms using multiphoton laser scanning microscopy (MPM). The S. epidermidis biofilms, being a medically relevant model organism, were stained with SYTO9. By using MPM, three-dimensional imaging and spectral investigation of the distribution of the βCD-polymers could be obtained. It was found that the cationic βCD-polymers showed significantly higher integration into the biofilms, compared to neutral and anionic functionalized βCDs. None of the carriers presented any inherent toxicity to the biofilms, meaning that the addition of rhodamine moiety does not affect the inertness of the delivery system. Taken together, this study demonstrates a novel approach by which delivery of fluorescently labelled CD nanoparticles to bacterial biofilms can be explored using MPM. Future studies should be undertaken investigating the potential in using cationic functionalization of CD based delivery systems for targeting anti-microbial effects in biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gó mez, André s; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Mü ller, Christian

    2016-01-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  18. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David

    2016-09-01

    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  19. Magnetic core-shell nanoparticles for drug delivery by nebulization

    LENUS (Irish Health Repository)

    Verma, Navin Kumar

    2013-01-23

    AbstractBackgroundAerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.ResultsAverage particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 mug\\/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.ConclusionWe have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has

  20. Investigation of a thiolated polymer in gene delivery

    Science.gov (United States)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  1. Polymer-Based Novel Lung Targeted Delivery Systems.

    Science.gov (United States)

    Elmowafy, Enas; Osman, Rihab; Ishak, Rania A H

    2017-01-01

    Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  3. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    International Nuclear Information System (INIS)

    Mandal, Biman B; Kundu, S C

    2009-01-01

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  4. Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Biman B; Kundu, S C, E-mail: kundu@hijli.iitkgp.ernet.i [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2009-09-02

    In recent times self-assembled micellar nanoparticles have been successfully employed in tissue engineering for targeted drug delivery applications. In this review, silk sericin protein from non-mulberry Antheraea mylitta tropical tasar silk cocoons was blended with pluronic F-127 and F-87 in the presence of solvents to achieve self-assembled micellar nanostructures capable of carrying both hydrophilic (FITC-inulin) and hydrophobic (anticancer drug paclitaxel) drugs. The fabricated nanoparticles were subsequently characterized for their size distribution, drug loading capability, cellular uptake and cytotoxicity. Nanoparticle sizes ranged between 100 and 110 nm in diameter as confirmed by dynamic light scattering. Rapid uptake of these particles into cells was observed in in vitro cellular uptake studies using breast cancer MCF-7 cells. In vitro cytotoxicity assay using paclitaxel-loaded nanoparticles against breast cancer cells showed promising results comparable to free paclitaxel drugs. Drug-encapsulated nanoparticle-induced apoptosis in MCF-7 cells was confirmed by FACS and confocal microscopic studies using Annexin V staining. Up-regulation of pro-apoptotic protein Bax, down-regulation of anti-apoptotic protein Bcl-2 and cleavage of regulatory protein PARP through Western blot analysis suggested further drug-induced apoptosis in cells. This study projects silk sericin protein as an alternative natural biomaterial for fabrication of self-assembled nanoparticles in the presence of poloxamer for successful delivery of both hydrophobic and hydrophilic drugs to target sites.

  5. Structuring polymer blends with bicontinuous phase morphology. Part II. Tailoring blends with ultralow critical volume fraction

    DEFF Research Database (Denmark)

    Lyngaae-Jørgensen, Jørgen; Utracki, Leszek

    2003-01-01

    A hypothesis providing a guideline for the development of immiscible polymer blends with co-continuous phase structure at very low critical volume fraction of one component is. postulated and experimentally verified. Based on a number of simplifying assumptions the following relation was derived......: phi(cr) = k(lambdagamma)(1-z)/(theta(b)(*))(z) where lambdagamma is a Deborah number and theta(b)(*) is a dimensionless break-up time. The equation parameters, k and z are constant that depend on the flow field hence on the blending equipment. For the studies an internal mixer with Walzenkneter...

  6. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Putri, Zufira; Arcana, I Made

    2014-01-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO 2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO 2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO 2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  7. Drug loading and release on tumor cells using silk fibroin–albumin nanoparticles as carriers

    International Nuclear Information System (INIS)

    Subia, B; Kundu, S C

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin–albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin–albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules. (paper)

  8. Oral sustained release tablets of zidovudine using binary blends of natural and synthetic polymers.

    Science.gov (United States)

    Emeje, Martins; Olaleye, Olajide; Isimi, Christiana; Fortunak, Joseph; Byrn, Stephen; Kunle, Olobayo; Ofoefule, Sabinus

    2010-01-01

    Oral sustained release matrix tablets of zidovudine (ZDV) were prepared using different types, proportions and blends of carbopol 71G (C71) and a plant gum obtained from Abelmoschus esculentus (AEG). The effect of various formulation factors like polymer proportion, polymer type and pH of the dissolution medium on the in vitro release of the drug was studied, using the half change technique, in 900 ml of dissolution medium, at 100 rpm. Release kinetics were analyzed using Zero-order, Higuchi's square-root and Ritger-Peppas' empirical equations. In vitro release performance as revealed by the time taken for 70% of the drug to be released (t70%), showed that the release rate decreased with increase in polymer proportion. Matrix tablets containing 10 and 20% AEG were found to exhibit immediate-release characteristics. Matrix tablets containing 30% AEG showed t70% value of 204 min and extended the release up to 5 h, while matrix tablets containing 30% carbopol showed t70% value of 234 min and extended the release up to 6 h. Three blends of AEG and C71 at the ratio of 1:2, 2:1 and 1:3 showed t70% values of 132, 312 and 102 min respectively and extended the release up to 8 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed Fickian and anomalous release. Drug release from matrix tablets of zidovudine containing blends of AEG and C71 demonstrates the advantage of blending a natural and synthetic polymer over single polymer use.

  9. Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles.

    Science.gov (United States)

    Shahbazi, Mohammad-Ali; Almeida, Patrick Vingadas; Correia, Alexandra; Herranz-Blanco, Barbara; Shrestha, Neha; Mäkilä, Ermei; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2017-03-10

    Bioresponsive cytosolic nanobased multidelivery has been emerging as an enormously challenging novel concept due to the intrinsic protective barriers of the cells and hardly controllable performances of nanomaterials. Here, we present a new paradigm to advance nano-in-nano integration technology amenable to create multifunctional nanovehicles showing considerable promise to overcome restrictions of intracellular delivery, solve impediments of endosomal localization and aid effectual tracking of nanoparticles. A redox responsive intercalator chemistry comprised of cystine and 9-aminoacridine is designed as a cross-linker to cap carboxylated porous silicon nanoparticles with DNA. These intelligent nanocarriers are then encapsulated within novel one-pot electrostatically complexed nano-networks made of a zwitterionic amino acid (cysteine), an anionic bioadhesive polymer (poly(methyl vinyl ether-alt-maleic acid)) and a cationic endosomolytic polymer (polyethyleneimine). This combined nanocomposite is successfully tested for the co-delivery of hydrophobic (sorafenib) or hydrophilic (calcein) molecules loaded within the porous core, and an imaging agent covalently integrated into the polyplex shell by click chemistry. High loading capacity, low cyto- and hemo-toxicity, glutathione responsive on-command drug release, and superior cytosolic delivery are shown as achievable key features of the proposed formulation. Overall, formulating drug molecules, DNA and imaging agents, without any interference, in a physico-chemically optimized carrier may open a path towards broad applicability of these cost-effective multivalent nanocomposites for treating different diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Exploring the role of peptides in polymer-based gene delivery.

    Science.gov (United States)

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  12. Smart Polymers in Nasal Drug Delivery.

    Science.gov (United States)

    Chonkar, Ankita; Nayak, Usha; Udupa, N

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones.

  13. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    Science.gov (United States)

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  14. Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends

    Directory of Open Access Journals (Sweden)

    Ilze ELKSNITE

    2011-07-01

    Full Text Available Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-polyester modifier on the properties of polyethylene is investigated. Various compositions of laboratory synthesized hydroxybenzoic acid /polyethylene terephtalate copolymer containing polyethylene composites have been manufactured by thermoplastic blending. It has been observed that 1 modulus of elasticity, yield strength and ultimate strength increase with raising the content of liquid crystalline modifier; 2 void content in the investigated polyethylene/liquid crystal copolymer composites is not greater that 1 %; 3 addition of liquid crystalline co-polyester modifier improves arrangement of PE crystalline phase.http://dx.doi.org/10.5755/j01.ms.17.2.483

  15. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells.

    Science.gov (United States)

    Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2015-08-01

    In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.

  16. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    Science.gov (United States)

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  17. Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hałupka-Bryl, Magdalena, E-mail: magdalenahalupka@op.pl [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Bednarowicz, Magdalena [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Dobosz, Bernadeta; Krzyminiewski, Ryszard [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Division of Medical Physics, Faculty of Physics, Adam Mickiewicz University, Poznań (Poland); Zalewski, Tomasz [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Wereszczyńska, Beata [Department of Macromolecular Physics, Adam Mickiewicz University, Poznań (Poland); Nowaczyk, Grzegorz; Jarek, Marcin [The NanoBioMedical Centre, Adam Mickiewicz University, Poznań (Poland); Nagasaki, Yukio [Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Master’s School of Medicinal Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba (Japan); International Centre for Materials Nanoarchitectonics Satellite (WPI-MANA), National Institute For Materials Sciences (NIMS) and University of Tsukuba (Japan)

    2015-06-15

    Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles with chemiotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer. The aim of this work is to characterize physical and magnetic properties of synthesized nanoparicles. Characterization was carried out using EPR, HRTEM, X-ray diffraction, SQUID and NMR methods. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery. - Highlights: • Synthesized PEG-PIONs/DOX have excellent physical properties. • PEG-PIONs/DOX have a potential to in vivo application. • PEG-PIONs/DOX could be used as drug delivery system as well as contrast agents.

  18. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  19. Thiolated chitosan nanoparticles as an oral delivery system for Amikacin: in vitro and ex vivo evaluations.

    Science.gov (United States)

    Atyabi, F; Talaie, F; Dinarvand, R

    2009-08-01

    The purpose of this study was the synthesis of two thiol conjugated Chitosan polymers, and evaluation of the potential of Thiomer nanoparticle formulation as a carrier for oral delivery system. Mediated by EDAC (Ethylene-3-(3-di-methylaminopropyl)-carbodiimide), either N-acetyl Cysteine (NAC) or N-acetyl D-penicillamine (NAP) were covalently attached to Chitosan. The success of the synthesis was demonstrated by comparing FTIR spectra. Iodometric titration demonstrated that depending on the pH value of the synthesis medium, the Thiomers display 250 +/- 30 microMol and 300 +/- 20 microMol thiol groups per gram of polymer respectively. The interaction between mucin and Thiomers, compared to mucin and Chitosan was studied for assessment of mucoadhesion properties of synthesized polymers. This interaction was determined by the measurement of the amount of mucin adsorbed on Chitosan and the conjugated polymers. Rotating cylinder method demonstrated an average of 20 times improvement in mucoadhesion of Thiomers compared to the unmodified polymer. Chitosan and Thiomer nanoparticles were formulated by two methods; TPP and Sodium Sulfate gelation. SEM micrographs and data achieved by a Malvern nano/zetasizer show nanoparticles formed by TPP gelation have a mean size of 150 +/- 15 nm compared to 300 +/- 25 nm sized nanoparticles obtained by Sodium sulfate gelation. TPP gelation yields smaller, more spherical shaped nanoparticles with a smaller range of size distribution. Amikacin loaded nanoparticles with an average size of 280 nm were prepared by TPP gelation in which disulfide bond formation was achieved by a time dependent oxidation process. In vitro studies were carried out; a recovery rate of 33% and a drug entrapment of 25% were achieved. The amount of release was determined during 18 hr in a carefully prepared media. The permeation time across a biological membrane was observed to be about 150 minutes. Microbiological tests were carried out on two microorganisms

  20. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  1. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    Science.gov (United States)

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  2. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  3. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymerizations and main-chain supramolecular polymers . Macromolecules. 2009;42:6823–6835. 17. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond...ARL-TR-7687 ● MAY 2016 US Army Research Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by...Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by Alice M Savage Oak Ridge Institute of Science and Education

  4. Polymeric nanoparticles for the intracellular delivery of paclitaxel in lung and breast cancer

    Science.gov (United States)

    Zubris, Kimberly Ann Veronica

    Nanoparticles are useful for addressing many of the difficulties encountered when administering therapeutic compounds. Nanoparticles are able to increase the solubility of hydrophobic drugs, improve pharmacokinetics through sustained release, alter biodistribution, protect sensitive drugs from low pH environments or enzymatic alteration, and, in some cases, provide targeting of the drug to the desired tissues. The use of functional nanocarriers can also provide controlled intracellular delivery of a drug. To this end, we have developed functional pH-responsive expansile nanoparticles for the intracellular delivery of paclitaxel. The pH-responsiveness of these nanoparticles occurs due to a hydrophobic to hydrophilic transition of the polymer occurring under mildly acidic conditions. These polymeric nanoparticles were systematically evaluated for the delivery of paclitaxel in vitro and in vivo to improve local therapy for lung and breast cancers. Nanoparticles were synthesized using a miniemulsion polymerization process and were subsequently characterized and found to swell when exposed to acidic environments. Paclitaxel was successfully encapsulated within the nanoparticles, and the particles exhibited drug release at pH 5 but not at pH 7.4. In addition, the uptake of nanoparticles was observed using flow cytometry, and the anticancer efficacy of the paclitaxel-loaded nanoparticles was measured using cancer cell lines in vitro. The potency of the paclitaxel-loaded nanoparticles was close to that of free drug, demonstrating that the drug was effectively delivered by the particles and that the particles could act as an intracellular drug depot. Following in vitro characterization, murine in vivo studies demonstrated the ability of the paclitaxel-loaded responsive nanoparticles to delay recurrence of lung cancer and to prevent establishment of breast cancer in the mammary fat pads with higher efficacy than paclitaxel alone. In addition, the ability of nanoparticles to

  5. Non-uniformity of phase structure in immiscible polymer blends

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Lapčíková, Monika; Lednický, František; Starý, Zdeněk; Kruliš, Zdeněk

    2008-01-01

    Roč. 48, č. 3 (2008), s. 564-571 ISSN 0032-3888 R&D Projects: GA ČR GA106/06/0729; GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * melt mixing * non-uniform morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2008

  6. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  7. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  8. Theory of interfacial charge-transfer complex photophysics in π-conjugated polymer-fullerene blends

    Science.gov (United States)

    Aryanpour, K.; Psiachos, D.; Mazumdar, S.

    2010-03-01

    We present a theory of the electronic structure and photophysics of 1:1 blends of derivatives of polyparaphenylenevinylene and fullerenes [1]. Within the same Coulomb-correlated Hamiltonian applied previously to interacting chains of single-component π-conjugated polymers [2], we find an exciplex state that occurs below the polymer's optical exciton. Weak absorption from the ground state occurs to the exciplex. We explain transient photoinduced absorptions in the blend [3], observed for both above-gap and below-gap photoexcitations, within our theory. Photoinduced absorptions for above-gap photoexcitation are from the optical exciton as well as the exciplex, while for below-gap photoexcitation induced absorptions are from the exciplex alone. In neither case are free polarons generated in the time scale of the experiment. Importantly, the photophysics of films of single-component π-conjugated polymers and blends can both be understood by extending Mulliken's theory of ground state charge-transfer to the case of excited state charge-transfer. [1] K. Aryanpour, D. Psiachos, and S. Mazumdar, arXiv:0908.0366 [2] D. Psiachos and S. Mazumdar, Phys. Rev. B. 79 155106 (2009) [3] T. Drori et al., Phys. Rev. Lett. 101, 037402 (2008)

  9. Copper nanoparticles synthesized in polymers by ion implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Nuzhdin, Vladimir; Valeev, Valerij

    2015-01-01

    nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV-visible range due...... as optical transmission spectroscopy. It is found that copper nanoparticles nucleation and growth are strongly fluence dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized...

  10. Development of degradable renewable polymers and stimuli-responsive nanocomposites

    Science.gov (United States)

    Eyiler, Ersan

    The overall goal of this research was to explore new living radical polymerization methods and the blending of renewable polymers. Towards this latter goal, polylactic acid (PLA) was blended with a new renewable polymer, poly(trimethylene-malonate) (PTM), with the aim of improving mechanical properties, imparting faster degradation, and examining the relationship between degradation and mechanical properties. Blend films of PLA and PTM with various ratios (5, 10, and 20 wt %) were cast from chloroform. Partially miscible blends exhibited Young's modulus and elongation-to-break values that significantly extend PLA's usefulness. Atomic force microscopy (AFM) data showed that incorporation of 10 wt% PTM into PLA matrix exhibited a Young's modulus of 4.61 GPa, which is significantly higher than that of neat PLA (1.69 GPa). The second part of the bioplastics study involved a one-week hydrolytic degradation study of PTM and another new bioplastic, poly(trimethylene itaconate) (PTI) using DI water (pH 5.4) at room temperature, and the effects of degradation on crystallinity and mechanical properties of these films were examined by differential scanning calorimetry (DSC) and AFM. PTI showed an increase in crystallinity with degradation, which was attributed to predominately degradation of free amorphous regions. Depending on the crystallinity, the elastic modulus increased at first, and decreased slightly. Both bulk and surface-tethered stimuli-responsive polymers were studied on amine functionalized magnetite (Fe3O4) nanoparticles. Stimuli-responsive polymers studied, including poly(N-isopropylacrylamide) (PNIPAM), poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA), and poly(itaconic acid) (PIA), were grafted via surface-initiated aqueous atom transfer radical polymerization (SI-ATRP). Both Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS) spectroscopies showed the progression of the grafting. The change in particle size as a

  11. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  12. Nanoparticles in Polymers: Assembly, Rheology and Properties

    Science.gov (United States)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  13. Evolution of Immiscibly Blended Functionalized Polymers with Respect to Cure Parameters and Formulation

    Science.gov (United States)

    Heller, Nicholas Walter Medicus

    Powder coatings are becoming ubiquitous in the coating marketplace due to the absence of solvents in their formulation, but they have yet to see implementation in low-reflectance outdoor applications. This demand could be met by utilizing polymer blends formulated with low loadings of matting agents and pigments. The goal of this research is a thorough characterization of prototype low-reflectance coatings through several analytical techniques. Prototypical thermoset blends consist of functionalized polyurethanes rendered immiscible by differences in polar and hydrogen bonding characteristics, resulting in a surface roughened by droplet domains. Analysis of both pigmented and control clear films was performed. This research project had three primary aims: (1) determine the composition of the resin components of the polymer blend; (2) to monitor the evolution of domains before and during curing of clear polymer blends; (3) to monitor the evolution of these domains when pigments are added to these blends. The clear films enabled unhindered analysis by Fourier transform infrared (FTIR) and Raman spectroscopy on the binder. However, these domains provided no spectroscopic signatures despite their observation by optical microscopy. This necessitated the development of a new procedure for cross-section preparation that leaves no contamination from polishing media, which enabled Raman mapping of the morphology via an introduced marker peak from styrene monomer. The clears were analyzed as a powder and as films that were quenched at various cure-times using FTIR, Raman, transmission electron microscopy (TEM), and thermomechanical methods to construct a model of coating evolution based on cure parameters and polymer dynamics. Domains were observed in the powder, and underwent varying rates of coarsening as the cure progressed. TEM, scanning electron microscopy and thermomechanical methods were also used on pigmented systems at different states of the cure, including in

  14. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  15. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  16. Experimental investigations on a CRDI system assisted diesel engine fuelled with aluminium oxide nanoparticles blended biodiesel

    Directory of Open Access Journals (Sweden)

    C. Syed Aalam

    2015-09-01

    Full Text Available Experiments were conducted to determine engine performance, exhaust emissions and combustion characteristics of a single cylinder, common rail direct injection (CRDI system assisted diesel engine using diesel with 25 percentage of zizipus jujube methyl ester blended fuel (ZJME25. Along with this ZJME25 aluminium oxide nanoparticles were added as additive in mass fractions of 25 ppm (AONP 25 and 50 ppm (AONP 50 with the help of a mechanical Homogenizer and an ultrasonicator. It was observed that aluminium oxide nanoparticles blended fuel exhibits a significant reduction in specific fuel consumption and exhaust emissions at all operating loads. At the full load, the magnitude of HC and smoke emission for the ZJME25 before the addition of aluminium oxide nanoparticles was 13.459 g/kW h and 79 HSU, whereas it was 8.599 g/kW h and 49 HSU for the AONP 50 blended ZJME25 fuel respectively. The results also showed a considerable enhancement in brake thermal efficiency and heat release rate due to the influence of aluminium oxide nanoparticles addition in biodiesel–diesel blend.

  17. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  18. Current directions in core-shell nanoparticle design

    Science.gov (United States)

    Schärtl, Wolfgang

    2010-06-01

    Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems.Ten years ago I wrote a review about the important field of core-shell nanoparticles, focussing mainly on our own work about tracer systems, and briefly addressing polymer-coated nanoparticles as fillers for homogeneous polymer-colloid composites. Since then, the potential use of core-shell nanoparticles as multifunctional sensors or potential smart drug-delivery vehicles in biology and medicine has gained more and more importance, affording special types of multi-functionalized and bio-compatible nanoparticles. In this new review article, I try to address the most important developments during the last ten years. This overview is mainly based on frequently cited and more specialized recent review articles from leaders in their respective field. We will consider a variety of nanoscopic core-shell architectures from highly fluorescent nanoparticles (NPs), protected magnetic NPs, multifunctional NPs, thermoresponsive NPs and biocompatible systems to, finally, smart drug-delivery systems

  19. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  20. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  1. [Phase transition in polymer blends and structure of ionomers and copolymers

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The main thrust of the program in the past 3 years are summarized: SAXS instrumentation development; structure and dynamics of macro- and supra-molecules, phase transitions in polymer blends and solutions, structure of ionomers, and fractals and anisotropic systems.

  2. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Liew, Chiam-Wen; Morris, Ezra; Durairaj, R.

    2010-01-01

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T g ) and melting temperature (T m ) decreased, whereas the decomposition temperature (T d ) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  3. Morphology and properties of nanocomposites based on polymer blend and organoclay

    CSIR Research Space (South Africa)

    Gcwabaza, T

    2008-10-01

    Full Text Available improved properties.1-4 such a compatibilizer may be a homopolymer, a block, graft or star copolymer. However, there are few reports on clay containing nanocomposites based on polymer blends, whether miscible or immiscible. Such composite materials offer...

  4. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    Science.gov (United States)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  5. Diatomite silica nanoparticles for drug delivery

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  6. Diatomite silica nanoparticles for drug delivery.

    Science.gov (United States)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  7. Comparison of different cationized proteins as biomaterials for nanoparticle-based ocular gene delivery.

    Science.gov (United States)

    Zorzi, Giovanni K; Párraga, Jenny E; Seijo, Begoña; Sanchez, Alejandro

    2015-11-01

    Cationized polymers have been proposed as transfection agents for gene therapy. The present work aims to improve the understanding of the potential use of different cationized proteins (atelocollagen, albumin and gelatin) as nanoparticle components and to investigate the possibility of modulating the physicochemical properties of the resulting nanoparticle carriers by selecting specific protein characteristics in an attempt to improve current ocular gene-delivery approaches. The toxicity profiles, as well as internalization and transfection efficiency, of the developed nanoparticles can be modulated by modifying the molecular weight of the selected protein and the amine used for cationization. The most promising systems are nanoparticles based on intermediate molecular weight gelatin cationized with the endogenous amine spermine, which exhibit an adequate toxicological profile, as well as effective association and protection of pDNA or siRNA molecules, thereby resulting in higher transfection efficiency and gene silencing than the other studied formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Targeted therapy of hepatocellular carcinoma with aptamer-functionalized biodegradable nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weigum, Shannon, E-mail: sweigum@txstate.edu [Texas State University, Department of Biology (United States); McIvor, Elizabeth; Munoz, Christopher; Feng, Richard [Texas State University, Department of Chemistry and Biochemistry (United States); Cantu, Travis [Texas State University, Materials Science, Engineering, and Commercialization Program (United States); Walsh, Kyle [Texas State University, Department of Chemistry and Biochemistry (United States); Betancourt, Tania, E-mail: tania.betancourt@txstate.edu [Texas State University, Materials Science, Engineering, and Commercialization Program (United States)

    2016-11-15

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer, occurring primarily in regions where viral hepatitis infections are common. Unfortunately, most HCC cases remain undiagnosed until late stages of the disease when patient outcome is poor, typically limiting survival from a few months to a year after initial diagnosis. In order to better care for HCC patients, new target-specific approaches are needed to improve early detection and therapeutic intervention. In this work, polymeric nanoparticles functionalized with a HCC-specific aptamer were examined as potential targeted drug delivery vehicles. Specifically, doxorubicin-loaded nanoparticles were prepared via nanoprecipitation of blends of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol). These particles were further functionalized with the HCC-specific TLS11a aptamer. The in vitro interaction and therapeutic efficacy of the aptamer and aptamer-functionalized nanoparticles were characterized in a hepatoma cell line. Nanoparticles were found to be spherical in shape, roughly 100–125 nm in diameter, with a low polydispersity (≤0.2) and slightly negative surface potential. Doxorubicin was encapsulated within the particles at ~40 % efficiency. Drug release was found to occur through anomalous transport influenced by diffusion and polymer relaxation, releasing ~50 % doxorubicin in the first 10 h and full release occurring within 36 h. Confocal microscopy confirmed binding and attachment of aptamer-targeted nanoparticles to the cell surface of cultured HCC cells. Efficacy studies demonstrated a significant improvement in doxorubicin delivery and cell-killing capacity using the aptamer-functionalized, drug-loaded nanoparticles versus controls further supporting use of aptamer nanoparticles as a targeted drug delivery system for HCC tumors.

  9. Microwave absorption properties of gold nanoparticle doped polymers

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Ouattara, Lassana; Ingrosso, Chiara

    2011-01-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5GHz to 20GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property...... of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate...... that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect....

  10. Microwave absorption properties of gold nanoparticle doped polymers

    Science.gov (United States)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  11. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages.

    Science.gov (United States)

    Trousil, Jiří; Filippov, Sergey K; Hrubý, Martin; Mazel, Tomáš; Syrová, Zdeňka; Cmarko, Dušan; Svidenská, Silvie; Matějková, Jana; Kováčik, Lubomír; Porsch, Bedřich; Konefał, Rafał; Lund, Reidar; Nyström, Bo; Raška, Ivan; Štěpánek, Petr

    2017-01-01

    We have developed a biodegradable, biocompatible system for the delivery of the antituberculotic antibiotic rifampicin with a built-in drug release and nanoparticle degradation fluorescence sensor. Polymer nanoparticles based on poly(ethylene oxide) monomethyl ether-block-poly(ε-caprolactone) were noncovalently loaded with rifampicin, a combination that, to best of our knowledge, was not previously described in the literature, which showed significant benefits. The nanoparticles contain a Förster resonance energy transfer (FRET) system that allows real-time assessment of drug release not only in vitro, but also in living macrophages where the mycobacteria typically reside as hard-to-kill intracellular parasites. The fluorophore also enables in situ monitoring of the enzymatic nanoparticle degradation in the macrophages. We show that the nanoparticles are efficiently taken up by macrophages, where they are very quickly associated with the lysosomal compartment. After drug release, the nanoparticles in the cmacrophages are enzymatically degraded, with half-life 88±11 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Polymeric blend nanocomposite membranes for ethanol dehydration-effect of morphology and membrane-solvent interactions

    Science.gov (United States)

    Nanocomposite membranes (NCMs) of sodium alginate/poly(vinyl pyrrolidone) blend polymers incorporated with varying concentrations of phosphotungstic acid (H3PW12O40) (PWA) nanoparticles have been prepared and used in ethanol dehydration by the pervaporation (PV) technique. Effe...

  13. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  15. Preparation and characterization of composites based on PBAT/Starch blend, micro and nanofillers of bio-CaCO_3

    International Nuclear Information System (INIS)

    Silva, Valquiria A.; Neto, Jose C. de M.; Moura, Esperidiana A.B.; Tiimob, Boniface; Rangari, Vijaya K.; Silva, Raimundo N.A. da

    2015-01-01

    Biodegradable polymeric materials have been used as an alternative to synthetic polymeric materials due to their reduced environmental impact. Among the biodegradable polymers is investigated poly (butylene adipate-co-terephthalate) (PBAT). This polymer has the flexibility, high strain at break and easy processing, but a high cost and low toughness that limits their applications. The development of PBAT blends with thermoplastic starch or other biodegradable polymers may lead to a balance of properties, expand its range of applications and also make it more economically viable. The mechanical properties of biodegradable PBAT blends may be further improved by incorporating micro or nanofillers from renewable sources. This study aimed to the processing and characterization of a PBAT/Starch blend reinforced with 2% (wt.) of bioCaCO_3 nanoparticles (nano-bioCaCO_3) and 5% (wt.) of bioCaCO_3-micro (particles ≤ 125 μm). For the preparations were used a co-rotating twin-screw extruder. For the characterization of the prepared materials were used X-ray diffraction (XRD) and tensile test. The XRD results showed the greatest intensity peak of CaCO_3 in the matrix for composites containing bio-CaCO_3 nanofillers suggesting a better interaction between matrix and nanofillers. The results of the tensile test confirmed the better interaction between matrix and nanofillers. These results showed that the addition of only 2 % (wt.) of bio-CaCO_3 nanoparticles in PBAT/Starch blend led to obtaining a tougher material with improved tensile strength and elastic modulus properties regarding the polymer blend. (author)

  16. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    Science.gov (United States)

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  17. Fuzzy set implementation for controlling and evaluation of factors affecting melting, crystallinity and interaction in polymer blends

    International Nuclear Information System (INIS)

    Al-Rawajfeh, Aiman Eid; Mamlook, Rustom

    2008-01-01

    In this study, the factors (i.e. weight fractions, crystallization temperatures and interaction such as hydrogen bonding) affecting melting, crystallinity, interaction parameters and miscibility of polymer blends (PB) have been studied by implementation of a fuzzy set. The interaction parameters were calculated using the Nishi-Wang equation, which is based on the Flory-Huggins theory. The values of interaction parameters χ 12 were negative for all blend compositions suggesting that χ 12 depends on the volume fraction (Φ) of the polymer. The various characteristics for the case study was synthesized and converted into relative weights w.r.t fuzzy set method. The fuzzy set analysis for the case study reveal increase as confirmed by the experimental data. The application of the fuzzy set methodology offers reasonable prediction and assessment for detecting yield in polymer blends

  18. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  19. Small interfering RNA delivery through positively charged polymer nanoparticles

    International Nuclear Information System (INIS)

    Dragoni, Luca; Cesana, Alberto; Moscatelli, Davide; Ferrari, Raffaele; Morbidelli, Massimo; Lupi, Monica; Falcetta, Francesca; Ubezio, Paolo; D’Incalci, Maurizio

    2016-01-01

    Small interfering RNA (siRNA) is receiving increasing attention with regard to the treatment of many genetic diseases, both acquired and hereditary, such as cancer and diabetes. Being a high molecular weight (MW) polyanion, siRNA is not able to cross a cell membrane, and in addition it is unstable in physiological conditions. Accordingly, a biocompatible nanocarrier able to deliver siRNA into cells is needed. In this work, we synthesized biocompatible positively charged nanoparticles (NPs) following a two-step process that involves ring opening polymerization (ROP) and emulsion free radical polymerization (EFRP). Firstly, we proved the possibility of fine tuning the NPs’ characteristics (e.g. size and surface charge) by changing the synthetic process parameters. Then the capability in loading and delivering undamaged siRNA into a cancer cell cytoplasm has been shown. This latter process occurs through the biodegradation of the polymer constituting the NPs, whose kinetics can be tuned by adjusting the polymer’s MW. Finally, the ability of NPs to carry siRNA inside the cells in order to inhibit their target gene has been demonstrated using green flourescent protein positive cells. (paper)

  20. Flexible and strong ternary blends of poly(vinyl chloride), poly(butylene adipate)and nanoparticle-plasticizers

    OpenAIRE

    Yin, Bo; Hakkarainen, Minna

    2013-01-01

    Multiple property enhancement was achieved for ternary blends of PVC, poly(butylene adipate) (PBA) plasticizer and PBA-grafted nanofillers as compared to ternary blends with untreated nanofillers. The blends with surface modified halloysite, kaolin or silicon dioxide nanofillers all exhibited higher stress at break and higher strain at break as compared to the corresponding composites with untreated nanoparticles. The strain at break was similar or improved compared to binary PVC/PBA blends. ...

  1. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    Science.gov (United States)

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  2. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S., E-mail: rameshtsubra@gmail.com [Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Liew, Chiam-Wen; Morris, Ezra; Durairaj, R. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-11-20

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T{sub g}) and melting temperature (T{sub m}) decreased, whereas the decomposition temperature (T{sub d}) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  3. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2014-08-01

    Full Text Available Harald Unterweger,1 Rainer Tietze,1 Christina Janko,1 Jan Zaloga,1 Stefan Lyer,1 Stephan Dürr,1 Nicola Taccardi,2 Ourania-Menti Goudouri,3 Alexander Hoppe,3 Dietmar Eberbeck,4 Dirk W Schubert,5 Aldo R Boccaccini,3 Christoph Alexiou1 1ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, 2Chair of Chemical Engineering I (Reaction Engineering, 3Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, 4Physikalisch-Technische Bundesanstalt, Berlin, 5Institute of Polymer Materials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 µg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta

  4. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose.

    Science.gov (United States)

    Natarajan, Janeni; Madras, Giridhar; Chatterjee, Kaushik

    2016-12-01

    Despite significant advances in recent times, the investigation of discovering a perfect biomaterial is perennial. In this backdrop, blending of natural and synthetic polymers is gaining popularity since it is the easiest way to complement the drawbacks and attain a superlative material. Based on this, the objective of this study was to synthesize a novel polyester, poly(galactitol sebacate), and subsequently blend this polymer with one of the three natural polymers such as alginate, chitosan or ethyl cellulose. FT-IR showed the presence of both the polymers in the blends. 1 H NMR confirmed the chemical structure of the synthesized poly (galactitol sebacate). Thermal characterization was performed by DSC revealing that the polymers were amorphous in nature and the glass transition temperatures increased with the increase in ratio of the natural polymers in the blends. SEM imaging showed that the blends were predominantly homogeneous. Contact angle measurements demonstrated that the blending imparted the hydrophilic nature into poly (galactitol sebacate) when blending with alginate or chitosan and hydrophobic when blending with ethyl cellulose. In vitro hydrolytic degradation studies and dye release studies indicated that the polymers became more hydrophilic in alginate and chitosan blends and thus accelerated the degradation and release process. The reverse trend was observed in the case of ethyl cellulose blends. Modeling elucidated that the degradation and dye release followed first order kinetics and Higuchi kinetics, respectively. In vitro cell studies confirmed the cytocompatible nature of the blends. It can be proposed that the chosen natural polymers for blending showed wide variations in hydrophilicity resulting in tailored degradation, release and cytocompatibility properties and thus are promising candidates for use in drug delivery and tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  6. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  7. Fourier-transform infrared spectroscopic study of a fractional-complexed polymer blend

    Czech Academy of Sciences Publication Activity Database

    Šturcová, Adriana; Kratochvíl, Jaroslav; Dybal, Jiří; Sikora, Antonín

    2014-01-01

    Roč. 59, October (2014), s. 200-207 ISSN 0014-3057 R&D Projects: GA ČR GAP108/12/0703 Institutional support: RVO:61389013 Keywords : miscible blend * inter-polymer complex * associative phase separation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.005, year: 2014

  8. Gold nanoparticles delivery in mammalian live cells: a critical review

    Directory of Open Access Journals (Sweden)

    Raphaël Lévy

    2010-02-01

    the University of Liverpool as a Post-doctoral Marie Curie Research Fellow. In 2006, he obtained a prestigious David Phillips Fellowship, to develop single particle-based imaging in living cells (photothermal microscopy. His research interests include the design and characterization of nanomaterials and their interactions with living cells. Umbreen Shaheen completed her Master in Zoology and then lectured at the University of Balochistan. She studied biotechnology at the National Institute of Biotechnology and Genetic Engineering (NIBGE, Pakistan and is currently doing her PhD at the University of Liverpool, on intracellular delivery of peptide-capped gold nanoparticles. Yann Cesbron is a PhD student at the University of Liverpool, developing photothermal microscopy for biological imaging. He graduated at the University Louis Pasteur (Strasbourg, France with a Master of Science in Condensed Matter Physics and a second Master of Science in Polymer Materials. He moved to Liverpool in 2006 to start his PhD. Violaine Sée is a BBSRC David Phillips Research Fellow at the University of Liverpool. She graduated in Chemistry and Molecular and Cellular Biology at the University Louis Pasteur in Strasbourg (France. After a Master in Pharmacology, in 2001 she obtained her PhD in Pharmacology and Neurobiology at the University Louis Pasteur. She was then assistant lecturer and subsequently moved to the University of Liverpool as a Post-doctoral Research Fellow. In 2005, she obtained a prestigious David Phillips Fellowship, to develop her work on intracellular signaling dynamics. She is focusing on the imaging of single living cells in order to understand regulation of gene transcription and cell fate. She has recently been interested in using new techniques for single molecule imaging in live cells based on the use of gold nanoparticles.

  9. Polymer Crowding in Confined Polymer-Nanoparticle Mixtures

    Science.gov (United States)

    Davis, Wyatt J.; Denton, Alan R.

    Crowding can influence the conformations and thus functionality of macromolecules in quasi-two-dimensional environments, such as DNA or proteins confined to a cell membrane. We explore such crowding within a model of polymers as penetrable ellipses, whose shapes are governed by the statistics of a 2D random walk. The principal radii of the polymers fluctuate according to probability distributions of the eigenvalues of the gyration tensor. Within this coarse-grained model, we perform Monte Carlo simulations of mixtures of polymers and hard nanodisks, including trial changes in polymer conformation (shape and orientation). Penetration of polymers by nanodisks is incorporated with a free energy cost predicted by polymer field theory. Over ranges of size ratio and nanodisk density, we analyze the influence of crowding on polymer shape by computing eigenvalue distributions, mean radius of gyration, and mean asphericity of the polymer. We compare results with predictions of free-volume theory and with corresponding results in three dimensions. Our approach may help to interpret recent (and motivate future) experimental studies of biopolymers interacting with cell membranes, with relevance for drug delivery and gene therapy. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  10. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  11. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A

    2015-09-08

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2 nanoparticles to form self-suspended suspensions facilitates detailed studies of slow global chain and fast segmental mode dynamics under surface and geometrical confinement-from experiments performed in bulk materials. We report that unentangled polymer molecules tethered to nanoparticles relax far more slowly than their tethered entangled counterparts. Specifically, at fixed grafting density we find, counterintuitively, that increasing the tethered polymer molecular weight up to values close to the entanglement molecular weight speeds up chain relaxation dynamics. Decreasing the polymer grafting density for a fixed molecular weight has the opposite effect: it dramatically slows down chain relaxation, increases interchain coupling, and leads to a transition in rheological response from simple fluid behavior to viscoelastic fluid behavior for tethered PI chains that are unentangled by conventional measures. Increasing the measurement temperature produces an even stronger elastic response and speeds up molecular relaxation at a rate that decreases with grafting density and molecular weight. These observations are discussed in terms of chain confinement driven by crowding between particles and by the existence of an entropic attractive force produced by the space-filling constraint on individual chains in a self-suspended material. Our results indicate that the entropic force between densely grafted polymer molecules couples motions of individual chains in an analogous manner to reversible cross-links in associating polymers.

  12. Sodium Alginate with PEG/PEO Blends as a Floating Drug Delivery Carrier – In vitro Evaluation

    Directory of Open Access Journals (Sweden)

    Christe Sonia Mary

    2016-09-01

    Full Text Available Purpose: Floating drug delivery system reduces the quantity of drug intake and the risk of overloading the organs with excess drug. Methods: In the present study, we prepared the blends of sodium alginate with polyethylene glycol (PEG and polyethylene oxide (PEO as a matrix, sodium hydrogen carbonate as a pore forming agent, methyl cellulose as a binder and barium chloride containing 10% acetic acid as a hardening agent. Different ratios of pore forming agent to the polymer blend was used to prepare the floating beads with different porosity and morphology. Ciprofloxacin hydrochloride was used as a model drug for the release kinetics studies. Results: The beads were characterized by optical and FESEM microscopy to study the morphology and pore dimensions. The results obtained shows decrease in beads size with increase in the concentration of the pore forming agent. The swelling properties of the beads were found to be in the range of 80% to 125%. The release kinetics of the ciprofloxacin from the beads was measured by UV-Visible spectroscopy at λmax of 278nm and the results shows for highly porous beads. Conclusion: By varying the amount of alginate and pore forming agent the release kinetics is found to get altered. As a result, ciprofloxacin hydrochloride release is found to be sustained from the blended beads.

  13. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  14. Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting

    Science.gov (United States)

    Palmer, Brian C.; DeLouise, Lisa A.

    2017-01-01

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g. patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases. PMID:27983701

  15. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting.

    Science.gov (United States)

    Palmer, Brian C; DeLouise, Lisa A

    2016-12-15

    Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  16. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation.

    Science.gov (United States)

    Cui, Fude; Shi, Kai; Zhang, Liqiang; Tao, Anjin; Kawashima, Yoshiaki

    2006-08-28

    Biodegradable nanoparticles loaded with insulin-phospholipid complex were prepared by a novel reverse micelle-solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of insulin, and biodegradable polymers as carrier materials to control drug release. Solubilization study, IR and X-ray diffraction analysis were employed to prove the complex formation. The effects of key parameters such as polymer/SPC weight ratio, organic phase and polymer type on the properties of the nanoparticles were investigated. Spherical particles of 200 nm mean diameter and a narrow size distribution were obtained under optimal conditions. The drug entrapment efficiency was up to 90%. The in vitro drug release was characterized by an initial burst and subsequent delayed release in both pH 6.8 and pH 1.2 dissolution mediums. The specific modality of drug release, i.e., free or SPC-combined, was investigated in the aid of ultracentrifugation and ultrafiltration methods. The influence of polymer type on the drug release was also discussed. The pharmacological effects of the nanoparticles made of PLGA 50/50 (Av.Mw 9500) were further evaluated to confirm their potential suitability for oral delivery. Intragastric administration of the 20 IU/kg nanoparticles reduced fasting plasma glucose levels to 57.4% within the first 8 h of administration and this continued for 12 h. PK/PD analysis indicated that 7.7% of oral bioavailability relative to subcutaneous injection was obtained.

  17. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  18. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George, E-mail: gchumak@clemson.edu

    2015-12-01

    Graphical abstract: - Highlights: • Spin-coating of polymers onto 2D assemblies of Ag NPs was used to stabilize the assemblies against aggregation. • The polymer filled the space between the particles leaving the metal surface uncoated and accessible to various chemical reactions. • Etching nanoparticles produced crater-like structures. - Abstract: Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  19. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    International Nuclear Information System (INIS)

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  20. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

    Science.gov (United States)

    Xie, Ying; Qiao, Hongzhi; Su, Zhigui; Chen, Minglei; Ping, Qineng; Sun, Minjie

    2014-09-01

    Lack of safe and effective delivery vehicle is the main obstacle for siRNA mediated cancer therapy. In this study, we synthesized a pH-sensitive polymer of PEG grafted carboxymethyl chitosan (PEG-CMCS) and developed anionic-charged hybrid nanoparticles of PEG-CMCS and calcium phosphate (CaP) for siRNA delivery through a single-step self-assembly method in aqueous condition. The formed nanoparticles with charge of around -8.25 mv and average diameter of 102.1 nm exhibited efficient siRNA encapsulation and enhanced colloidal and serum stability. The test in vitro indicated that the nanoparticles entered into HepG2 cells by endocytosis, and achieved endosomal escape of siRNA effectively due to the pH-responsive disassembly of nanoparticles and dissolution of CaP in the endosome. Reporter gene silencing assay showed that luciferase siRNA delivered by the anionic nanoparticles could achieve gene silencing efficacy comparable to that of conventional Lipofectamine 2000. Additionally, dramatic hTERT knockdown mediated by the anionic nanoparticles transfection induced significant apoptosis of HepG2 cells in vitro. After intravenous injection in tumor-bearing BALB/c nude mice, the nanoparticles specifically accumulated into tumor regions by EPR effect, leading to efficient and specific gene silencing sequentially. Most importantly, the nanoparticles carrying hTERT siRNA inhibited tumor growth significantly via silencing hTERT expression and inducing cells apoptosis in HepG2 tumor xenograft. Moreover, comprehensive safety studies of the nanoparticles confirmed their superior safety both in vitro and in vivo. We concluded that the PEG-CMCS/CaP hybrid anionic nanoparticles possessed potential as a safe and effective siRNA delivery system for anticancer therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biodegradable polymeric nanocarriers for pulmonary drug delivery.

    Science.gov (United States)

    Rytting, Erik; Nguyen, Juliane; Wang, Xiaoying; Kissel, Thomas

    2008-06-01

    Pulmonary drug delivery is attractive for both local and systemic drug delivery as a non-invasive route that provides a large surface area, thin epithelial barrier, high blood flow and the avoidance of first-pass metabolism. Nanoparticles can be designed to have several advantages for controlled and targeted drug delivery, including controlled deposition, sustained release, reduced dosing frequency, as well as an appropriate size for avoiding alveolar macrophage clearance or promoting transepithelial transport. This review focuses on the development and application of biodegradable polymers to nanocarrier-based strategies for the delivery of drugs, peptides, proteins, genes, siRNA and vaccines by the pulmonary route. The selection of natural or synthetic materials is important in designing particles or nanoparticle clusters with the desired characteristics, such as biocompatibility, size, charge, drug release and polymer degradation rate.

  2. Nanoparticle Formulation Derived from Carboxymethyl Cellulose, Polyethylene Glycol, and Cabazitaxel for Chemotherapy Delivery to the Brain.

    Science.gov (United States)

    Bteich, Joseph; Ernsting, Mark J; Mohammed, Mohammed; Kiyota, Taira; McKee, Trevor D; Trikha, Mohit; Lowman, Henry B; Sokoll, Kenneth K

    2018-05-23

    Nanoparticles provide a unique opportunity to explore the benefits of selective distribution and release of cancer therapeutics at sites of disease through varying particle sizes and compositions that exploit the enhanced permeability of tumor-associated blood vessels. Though delivery of larger as opposed to smaller and/or actively transported molecules to the brain is prima facie a challenging endeavor, we wondered whether nanoparticles could improve the therapeutic index of existing drugs for use in treating brain tumors via these vascular effects. We therefore selected a family of nanoparticles composed of cabazitaxel-carboxymethyl cellulose amphiphilic polymers to investigate the potential for delivering a brain-penetrant taxane to intracranial brain tumors in mice. Among a small set of nanoparticle formulations, we found evidence for nanoparticle accumulation in the brain, and one such formulation demonstrated activity in an orthotopic model of glioma, suggesting that such nanoparticles could be useful for the treatment of glioma and brain metastases of other tumor types.

  3. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    Science.gov (United States)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  4. Green Synthesis of Silver Nanoparticles Using Sodium Alginate and Lignosulphonic Acid Blends

    Science.gov (United States)

    Thakur, Amrita; Reddy, Giridhar

    2017-08-01

    A simple method based on the principles of green chemistry has been developed to synthesize stable silver nanoparticles (AgNP) for possible biomedical applications. Blend of sodium alginate (SA) and lignosulphonic acid (LS) prepared in the ratio of 80/20 mass percent respectively was used as reducing and stabilizing agent. This blend is biocompatible and has shown drug release ability under physiological conditions. Use of blend has an added advantage as LS has the ability to reduce silver while the blend matrix acts as a stabilizing agent. Effect of precursor concentration (AgNO3) and temperature was investigated. Progress of synthesis was monitored using UV-Vis spectroscopy. Higher temperature and lower silver nitrate concentration showed better synthesis of AgNP.

  5. Chitosan-sodium lauryl sulfate nanoparticles as a carrier system for the in vivo delivery of oral insulin.

    Science.gov (United States)

    Elsayed, Amani; Al-Remawi, Mayyas; Qinna, Nidal; Farouk, Asim; Al-Sou'od, Khaldoun A; Badwan, Adnan A

    2011-09-01

    The present work explores the possibility of formulating an oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve insulin oral bioavailability.

  6. Formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles using sulfonated polystyrene as template.

    Science.gov (United States)

    Hazarika, Mousumi; Arunbabu, Dhamodaran; Jana, Tushar

    2010-11-15

    We report formation of core (polystyrene)-shell (polybenzimidazole) nanoparticles from a new blend system consisting of an amorphous polymer polybenzimidazole (PBI) and an ionomer sodium salt of sulfonated polystyrene (SPS-Na). The ionomer used for the blending is spherical in shape with sulfonate groups on the surface of the particles. An in depth investigation of the blends at various sulfonation degrees and compositions using Fourier transform infrared (FT-IR) spectroscopy provides direct evidence of specific hydrogen bonding interactions between the N-H groups of PBI and the sulfonate groups of SPS-Na. The disruption of PBI chains self association owing to the interaction between the functional groups of these polymer pairs is the driving force for the blending. Thermodynamical studies carried out by using differential scanning calorimeter (DSC) establish partially miscible phase separated blending of these polymers in a wider composition range. The two distinguishable glass transition temperatures (T(g)) which are different from the neat components and unaltered with the blends composition attribute that the domain size of heterogeneity (d(d)) of the blends is >20 nm since one of the blend component (SPS-Na particle) diameter is ∼70 nm. The diminish of PBI chains self association upon blending with SPS-Na particles and the presence of invariant T(g)'s of the blends suggest the wrapping of PBI chains over the SPS-Na spherical particle surface and hence resulting a core-shell morphology. Transmission electron microscopy (TEM) study provides direct evidence of core-shell nanoparticle formation; where core is the polystyrene and shell is the PBI. The sulfonation degree affects the blends phase separations. The higher degree of sulfonation favors the disruption of PBI self association and thus forms partially miscible two phases blends with core-shell morphology. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Ambipolar Small-Molecule:Polymer Blend Semiconductors for Solution-Processable Organic Field-Effect Transistors.

    Science.gov (United States)

    Kang, Minji; Hwang, Hansu; Park, Won-Tae; Khim, Dongyoon; Yeo, Jun-Seok; Kim, Yunseul; Kim, Yeon-Ju; Noh, Yong-Young; Kim, Dong-Yu

    2017-01-25

    We report on the fabrication of an organic thin-film semiconductor formed using a blend solution of soluble ambipolar small molecules and an insulating polymer binder that exhibits vertical phase separation and uniform film formation. The semiconductor thin films are produced in a single step from a mixture containing a small molecular semiconductor, namely, quinoidal biselenophene (QBS), and a binder polymer, namely, poly(2-vinylnaphthalene) (PVN). Organic field-effect transistors (OFETs) based on QBS/PVN blend semiconductor are then assembled using top-gate/bottom-contact device configuration, which achieve almost four times higher mobility than the neat QBS semiconductor. Depth profile via secondary ion mass spectrometry and atomic force microscopy images indicate that the QBS domains in the films made from the blend are evenly distributed with a smooth morphology at the bottom of the PVN layer. Bias stress test and variable-temperature measurements on QBS-based OFETs reveal that the QBS/PVN blend semiconductor remarkably reduces the number of trap sites at the gate dielectric/semiconductor interface and the activation energy in the transistor channel. This work provides a one-step solution processing technique, which makes use of soluble ambipolar small molecules to form a thin-film semiconductor for application in high-performance OFETs.

  8. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  9. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  10. Phase boundary in compatible and incompatible polymer blends studied by micro indentation test and microscopic observations

    International Nuclear Information System (INIS)

    Mina, M. F.; Akhtar, F.; Haque, M.E.

    2003-10-01

    The phase boundary of incompatible polymer blends such as poly (methyl methacrylate) (PMMA)/natural rubber (NR) and polyestyrene (PS)/NR as well as compatible blends such as PMMA/NR/epoxidizer NR (compatibilizer) and PS/NR/styrene-butadiene-styrene (SBS) block copolymer (compatibilizer) was studied by means of microhardness (H) technique and microscopy. Solution grown films of neat PMMA, PS and blended films of PMMA/NR, PS/NR, PMMA/NR/ENR and PS/NR/SBS were cast using a common solvent (toluene). While the neat PMMA and PS provide constant hardness values of 178 and 173 MPa, respectively, the binary (incompatible) and the ternary (compatible) blends show a conspicuous H-decrease (PMMA/NR=140 MPa, PS/NR=167 MPa, PMMA/NR/ENR=109 MPa and PS/NR/SBS=127 MPa). Scanning electron microscopy and optical microscopy reveal clear difference of the phase boundary of compatible (smooth boundary) and incompatible (sharp boundary) blends. Besides, the compatibilizer blends are characterised by the thinnest phase boundary (30 μm), which is found about 60 μm in the incompatible blends, showing a final hardness value that demonstrates the compatibilizer to be smoothly distributed in the interface between the two blend components. Results highlight that microindentation technique, in combination with microscopic observations, is a sensitive tool for studying the breadth and quality of the interphase boundary in non- or compatibilized polymer blends and other inhomogeneous materials. (author)

  11. Spatial degradation mapping and componentwise degradation tracking in polymer-fullerene blends

    DEFF Research Database (Denmark)

    Pedersen, Emil Bøje Lind; Tromholt, Thomas; Madsen, Morten Vesterager

    2014-01-01

    Using X-ray absorption the effects of photodegradation in active layer materials for polymer solar cells are investigated. Through the observation of changes in the X-ray absorption energy spectra the degradation of the individual components is tracked in blends of poly-3-hexyl-thiophene (P3HT) a...

  12. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    International Nuclear Information System (INIS)

    Dubey, K.A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K.S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan

    2011-01-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  13. Development of Radiation Processed Nano-Composite Blends and Nano-Coatings for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, K. A.; Kumar, Virendra; Bhardwaj, Yatender; Chaudhari, Chandrasekhar; Sarma, K. S.S.; Khader, Sheikh Abdul; Acharya, Satyanarayan [Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2011-07-01

    Radiation processing of nanoparticle-filled polymer blends and coatings is expected to synergize the benefits of radiation processing and the flexibility of achieving various property combinations. High energy radiation can be utilized in a variety of ways to modify these systems. It can be used to crosslink the matrix, to compatibilize the blend components, to synthesize graft copolymer based compatibilizers, to improve interfacial bonding between the nanofiller/polymers or to freeze the morphology. Properties like flame retardency, permeability, abrasion resistance, biocompatibility and antibacterial activity can also be significantly affected by this composite approach. Due to the variety and quality of the product it promises, radiation processing of these mixed systems has been our core interest in the last few years. In the report, some of results on the radiation processing of SBR/EPDM blends and SBR/EPDM/MWNT nanocomposites are presented. (author)

  14. Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system

    Czech Academy of Sciences Publication Activity Database

    Jäger, Eliezer; Jäger, Alessandro; Etrych, Tomáš; Giacomelli, F. C.; Chytil, Petr; Jigounov, Alexander; Putaux, J.-L.; Říhová, Blanka; Ulbrich, Karel; Štěpánek, Petr

    2012-01-01

    Roč. 8, č. 37 (2012), s. 9563-9575 ISSN 1744-683X R&D Projects: GA AV ČR IAAX00500803; GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z50200510 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : biodegradable nanoparticles * light scattering from polymer nanoparticles * doxorubicin drug release Subject RIV: CF - Physical ; Theoretical Chemistry; EC - Immunology (MBU-M) Impact factor: 3.909, year: 2012

  15. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends

    International Nuclear Information System (INIS)

    Zhou Changchun; Li Wei; Ma Liang; Yao Donggang

    2011-01-01

    In scaffold-based tissue engineering, the fabrication process is important for producing suitable microstructures for seeded cells to grow and reformulate. In this paper, we present a new approach to scaffold fabrication by combining the solid-state foaming and the immiscible polymer-blending method. The proposed approach has the advantage of being versatile and able to create a wide range of pore size and porosity. The proposed method is studied with polylactic acid (PLA) and polystyrene (PS) blends. The interconnected porous structure was created by first foaming the PLA/PS blend and then extracting the PS phase. The solid-state foaming experiments were conducted under various conditions to achieve the desired pore sizes. It is shown that the PS phase of the PLA/PS blend can be extracted much faster in the foamed samples and the pore size of the scaffolds can be easily controlled with proper gas foaming parameters. The average pore size achieved in the foaming process ranged from 20 to 70 μm. After PS extraction, both pore size and porosity can be further improved. For example, the pore size and porosity increased from 48 μm and 49% to 59 μm and 67%, respectively, after the PS extraction process. The fabricated porous scaffolds were used to culture human osteoblast cells. Cells grew well and gradually formed a fibrous structure. The combined solid-state foaming and immiscible polymer blending method provides a new technique for fabricating tissue-engineering scaffolds.

  16. Protamine-based nanoparticles as new antigen delivery systems.

    Science.gov (United States)

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    Science.gov (United States)

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  18. Nanoparticle-based drug delivery systems: promising approaches against infections

    International Nuclear Information System (INIS)

    Ranghar, Shweta; Sirohi, Parul; Verma, Pritam; Agarwal, Vishnu

    2014-01-01

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  19. Nanoparticle-based drug delivery systems: promising approaches against infections

    Energy Technology Data Exchange (ETDEWEB)

    Ranghar, Shweta; Sirohi, Parul [Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad (India); Verma, Pritam; Agarwal, Vishnu [Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad (India)

    2014-03-15

    Despite the fact that many new drugs and technologies have been developed to combat the infectious diseases, these have continued to be global health challenges. The use of conventional antimicrobial agents against these infections is always associated with problems such as the development of multiple drug resistance and adverse side effects. In addition, the inefficient traditional drug delivery system results in inadequate therapeutic index, low bioavailability of drugs and many other limitations. In this regard, antimicrobial nanoparticles and nanosized drug delivery carriers have emerged as potent effective agents against the infections. Nanoparticles have unique properties owing to their ultra small and controllable size such as high surface area, enhanced reactivity, and functionalizable structure. This review focused on different classes of antimicrobial nanoparticles, including metal, metal oxide and others along with their mechanism of action and their potential use against the infections. The review also focused on the development of nanoparticle systems for antimicrobial drug delivery and use of these systems for delivery of various antimicrobial agents, giving an overview about modern nanoparticle based therapeutic strategies against the infections. (author)

  20. Effect of gamma radiation on the physical and chemical properties of some polymer blends

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    2000-01-01

    this work has been carried out to investigate the characterization of poly(vinyl alcohol) (PVA) / carboxymethyl cellulose (CMC) polymer blends exposed to various doses of gamma radiation has been investigated . the application of this blend after grafting with styrene monomer in absorbing waste dye from waste water was also studied . moreover, the effect of glycerol as a plasticizer on the structure property behavior of the same blend was reported. finally, the structure -property behavior of gamma and electron beam irradiated polyvinyl chloride (PVC) / nitrile butadiene rubber (NBR) was investigated

  1. Drug delivery's quest for polymers: Where are the frontiers?

    Science.gov (United States)

    Merkle, Hans P

    2015-11-01

    Since the legendary 1964 article of Folkman and Long entitled "The use of silicone rubber as a carrier for prolonged drug therapy" the role of polymers in controlled drug delivery has come a long way. Today it is evident that polymers play a crucial if not the prime role in this field. The latest boost owes to the interest in drug delivery for the purpose of tissue engineering in regenerative medicine. The focus of this commentary is on a selection of general and personal observations that are characteristic for the current state of polymer therapeutics and carriers. It briefly highlights selected examples for the long march of synthetic polymer-drug conjugates from bench to bedside, comments on the ambivalence of selected polymers as inert excipients versus biological response modifiers, and on the yet unsolved dilemma of cationic polymers for the delivery of nucleic acid therapeutics. Further subjects are the complex design of multifunctional polymeric carriers including recent concepts towards functional supramolecular polymers, as well as observations on stimuli-sensitive polymers and the currently ongoing trend towards natural and naturally-derived biopolymers. The final topic is the discovery and early development of a novel type of biodegradable polyesters for parenteral use. Altogether, it is not the basic and applied research in polymer therapeutics and carriers, but the translational process that is the key hurdle to proceed towards an authoritative approval of new polymer therapeutics and carriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Polylactic Acid-Based Polymer Blends for Durable Applications

    Science.gov (United States)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  3. Delivery of Fluorescent Nanoparticles to the Brain.

    Science.gov (United States)

    Shimoni, Olga; Shi, Bingyang; Adlard, Paul A; Bush, Ashley I

    2016-11-01

    Nanotechnology applications in neuroscience promises to deliver significant scientific and technological breakthroughs, providing answers to unresolved questions regarding the processes occurring in the brain. In this perspective, we provide a short background on two distinct fluorescent nanoparticles and summarize several studies focussed on achieving delivery of these into the brain and their interaction with brain tissue. Furthermore, we discuss challenges and opportunities for further development of nanoparticle-based therapies for targeting delivery of drugs across the blood-brain barrier.

  4. Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Polymer Nanocomposites

    Science.gov (United States)

    Ayandele, Ebunoluwa; Sarkar, Biswajit; Alexandridis, Paschalis

    2012-01-01

    Hybrid materials with superior structural and functional properties can be obtained by incorporating nanofillers into polymer matrices. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles have attracted much attention recently due to their nanometer size, the ease of which these particles can be incorporated into polymeric materials and the unique capability to reinforce polymers. We review here the state of POSS-containing polymer nanocomposites. We discuss the influence of the incorporation of POSS into polymer matrices via chemical cross-linking or physical blending on the structure of nanocomposites, as affected by surface functional groups, and the POSS concentration. PMID:28348318

  5. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids.

    Science.gov (United States)

    Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J

    2017-08-01

    The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  7. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  8. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  9. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  10. Epitaxially grown zinc-blende structured Mn doped ZnO nanoshell on ZnS nanoparticles

    International Nuclear Information System (INIS)

    Limaye, Mukta V.; Singh, Shashi B.; Date, Sadgopal K.; Gholap, R.S.; Kulkarni, Sulabha K.

    2009-01-01

    Zinc oxide in the bulk as well as in the nanocrystalline form is thermodynamically stable in the wurtzite structure. However, zinc oxide in the zinc-blende structure is more useful than that in the wurtzite structure due to its superior electronic properties as well as possibility of efficient doping. Therefore, zinc oxide shell is grown epitaxially on zinc sulphide core nanoparticles having zinc-blende structure. It is shown that doping of manganese could be achieved in zinc oxide nanoshell with zinc-blende structure

  11. Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions

    Science.gov (United States)

    Singh, Rina; Soni, R. K.

    2014-08-01

    Pulsed laser ablation of Aluminium (Al) in pure water rapidly forms a thin alumina (Al2O3) layer which drastically modifies surface plasmon resonance (SPR) absorption characteristics in deep-UV region. Initially, pure aluminium nanoparticles (NPs) are generated in water without any stabilizers or surfactants at low laser fluence which gradually transform to stable Al-Al2O3 core-shell nanostructure with increasing either residency time or fluence. The role of laser wavelength and fluence on the SPR properties and oxidation characteristics of Al NPs has been investigated in detail. We also present a one-step in situ synthesis of oxide-free stable Al NPs in biocompatible polymer solutions using laser ablation in liquid method. We have used nonionic polymers (PVP, PVA and PEG) and anionic surfactant (SDS) stabilizer to suppress the Al2O3 formation and studied the effect of polymer functional group, polymeric chain length, polymer concentration and anionic surfactant on the incipient embryonic aluminium particles and their sizes. The different functional groups of polymers resulted in different oxidation states of Al. PVP and PVA polymers resulted in pure Al NPs; however, PEG and SDS resulted in alumina-modified Al NPs. The Al nanoparticles capped with PVP, PVA, and PEG show a good correlation between nanoparticle stability and monomeric length of the polymer chain.

  12. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole.

    Science.gov (United States)

    Alamdarnejad, Ghazaleh; Sharif, Alireza; Taranejoo, Shahrouz; Janmaleki, Mohsen; Kalaee, Mohammad Reza; Dadgar, Mohsen; Khakpour, Mazyar

    2013-08-01

    A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.

  13. Comparison of the Photovoltaic Characteristics and Nanostructure of Fullerenes Blended with Conjugated Polymers with Siloxane-Terminated and Branched Aliphatic Side Chains

    KAUST Repository

    Kim, Do Hwan

    2013-02-12

    All-organic bulk heterojunction solar cells based on blends of conjugated polymers with fullerenes have recently surpassed the 8% efficiency mark and are well on their way to the industrially relevant ∼15% threshold. Using a low band-gap conjugated polymer, we have recently shown that polymer side chain engineering can lead to dramatic improvement in the in-plane charge carrier mobility. In this article, we investigate the effectiveness of siloxy side chain derivatization in controlling the photovoltaic performance of polymer:[6,6]-phenyl-C[71]-butyric acid methyl ester (PC71BM) blends and hence its influence on charge transport in the out-of-plane direction relevant for organic solar cells. We find that, in neat blends, the photocurrent of the polymer with siloxy side chains (PII2T-Si) is 4 times greater than that in blends using the polymer with branched aliphatic side chains (PII2T-ref). This difference is due to a larger out-of-plane hole mobility for PII2T-Si brought about by a largely face-on crystallite orientation as well as more optimal nanoscale polymer:PC71BM mixing. However, upon incorporating a common processing additive, 1,8-diiodooctane (DIO), into the spin-casting blend solution and following optimization, the PII2T-ref:PC71BM OPV device performance undergoes a large improvement and becomes the better-performing device, almost independent of DIO concentration (>1%). We find that the precise amount of DIO plays a larger role in determining the efficiency of PII2T-Si:PC71BM, and even at its maximum, the device performance lags behind optimized PII2T-ref:PC71BM blends. Using a combination of atomic force microscopy and small- and wide-angle X-ray scattering, we are able to elucidate the morphological modifications associated with the DIO-induced changes in both the nanoscale morphology and the molecular packing in blend films. © 2012 American Chemical Society.

  14. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Almadhoun, Mahmoud N.; Odeh, Ihab N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Distinct Polymer Architecture Mediates Switching of Complement Activation Pathways at the Nanosphere-Serum Interface: Implications for Stealth Nanoparticle Engineering

    DEFF Research Database (Denmark)

    Hamad, I.; Al-Hanbali, O.; Hunter, A.C.

    2010-01-01

    Nanoparticles with surface projected polyethyleneoxide (PEO) chains in 'mushroom-brush' and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site specific targeting for controlled drug delivery and release as well as diagnostic Imaging. W...... engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine....

  17. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting

    Directory of Open Access Journals (Sweden)

    Brian C. Palmer

    2016-12-01

    Full Text Available Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.

  18. Fluoride loaded polymeric nanoparticles for dental delivery.

    Science.gov (United States)

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  20. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  1. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles.

    Science.gov (United States)

    Matos, Breno Noronha; Reis, Thaiene Avila; Gratieri, Taís; Gelfuso, Guilherme Martins

    2015-04-01

    This work developed minoxidil sulphate-loaded chitosan nanoparticles (MXS-NP) for targeted delivery to hair follicles, which could sustain drug release and improve the topical treatment of alopecia. Chitosan nanoparticles were obtained using low-molecular weight chitosan and tripolyphosphate as crosslink agent. MXS-NP presented a monomodal distribution with hydrodynamic diameter of 235.5 ± 99.9 nm (PDI of 0.31 ± 0.01) and positive zeta potential (+38.6 ± 6.0 mV). SEM analysis confirmed nanoparticles average size and spherical shape. A drug loading efficiency of 73.0 ± 0.3% was obtained with polymer:drug ratio of 1:1 (w/w). Drug release through cellulose acetate membranes from MXS-NP was sustained in about 5 times in comparison to the diffusion rate of MXS from the solution (188.9 ± 6.0 μg/cm(2)/h and 35.4 ± 1.8 μg/cm(2)/h). Drug permeation studies through the skin in vitro, followed by selective recovery of MXS from the hair follicles, showed that MXS-NP application resulted in a two-fold MXS increase into hair follicles after 6h in comparison to the control solution (5.9 ± 0.6 μg/cm(2) and 2.9 ± 0.8 μg/cm(2)). MXS-loading in nanoparticles appears as a promising and easy strategy to target and sustain drug delivery to hair follicles, which may improve the topical treatment of alopecia. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Precise control of polymer coated nanopores by nanoparticle additives: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari Nasrabad, Afshin; Coalson, Rob D. [Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Jasnow, David [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Zilman, Anton [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2016-08-14

    Polymer-nanoparticle composites are a promising new class of materials for creation of controllable nano-patterned surfaces and nanopores. We use coarse-grained molecular dynamics simulations augmented with analytical theory to study the structural transitions of surface grafted polymer layers (brushes) induced by infiltration of nanoparticles that are attracted to the polymers in the layer. We systematically compare two different polymer brush geometries: one where the polymer chains are grafted to a planar surface and the other where the chains are grafted to the inside of a cylindrical nanochannel. We perform a comprehensive study of the effects of the material parameters such as the polymer chain length, chain grafting density, nanoparticle size, strength of attraction between nanoparticles and polymer monomers, and, in the case of the cylindrically grafted brush, the radius of the cylinder. We find a very general behavioral motif for all geometries and parameter values: the height of the polymer brush is non-monotonic in the nanoparticle concentration in solution. As the nanoparticle concentration increases, the brush height first decreases and after passing through a minimum value begins to increase, resulting in the swelling of the nanoparticle infused brush. These morphological features may be useful for devising tunable “smart” nano-devices whose effective dimensions can be reversibly and precisely adjusted by changing the nanoparticle concentration in solution. The results of approximate Self-Consistent Field Theory (SCFT) calculations, applicable in the regime of strong brush stretching, are compared to the simulation results. The SCFT calculations are found to be qualitatively, even semi-quantitatively, accurate when applied within their intended regime of validity, and provide a useful and efficient tool for modeling such materials.

  3. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment

    International Nuclear Information System (INIS)

    Yang, Ke-Ni; Zhang, Chun-Qiu; Wang, Wei; Wang, Paul C.; Zhou, Jian-Ping; Liang, Xing-Jie

    2014-01-01

    In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanoparticles, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail

  4. Nanoparticles and nanofibers for topical drug delivery

    Science.gov (United States)

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  5. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  6. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.; Wheeler, Scot; Niedzialek, Dorota; Schroeder, Bob C.; Utzat, Hendrik; Frost, Jarvist M.; Yao, Jizhong; Gillett, Alexander; Tuladhar, Pabitra S.; McCulloch, Iain; Nelson, Jenny; Durrant, James R.

    2015-01-01

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  7. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  8. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    International Nuclear Information System (INIS)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-01-01

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH_4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  9. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Sardar, Debasmita [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Sengupta, Manideepa; Bordoloi, Ankur [Nano Catalysis, Catalytic Conversion and Process Division, CSIR—Indian Institute of Petroleum (IIP), Mohkampur, Dehradun 248005 (India); Ahmed, Md. A.; Neogi, S.K.; Bandyopadhyay, Sudipta [Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India); Jain, Ruchi; Gopinath, Chinnakonda S. [Catalysis Division and Center of Excellence on Surface Science, CSIR—National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008 (India); Bala, Tanushree, E-mail: tanushreebala@gmail.com [Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)

    2017-05-31

    Highlights: • Ni nanoparticles were synthesized in polymer to form Ni-Polymer composite. • Ni nanoparticles retain their superparamagnetism in the composite. • Ni-Polymer composites showed catalytic activity. - Abstract: Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH{sub 4}, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV–vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  10. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    Directory of Open Access Journals (Sweden)

    Bose RJC

    2015-09-01

    Full Text Available Rajendran JC Bose,1,2 Yoshie Arai,1 Jong Chan Ahn,1 Hansoo Park,2 Soo-Hong Lee11Department of Biomedical Science, College of Life Science, CHA University, Seongnam, 2Department of Integrative Engineering, Chung-Ang University, Seoul, South Korea Abstract: Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,l-lactic-co-glycolic acid (PLGA core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV, and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. Keywords: core–shell hybrid nanospheres, lipid concentration, surface modification, low cytotoxicity, transfection efficiency

  11. Pressure-volume-temperature and excess molar volume prediction of amorphous and crystallizable polymer blends by equation of state

    Institute of Scientific and Technical Information of China (English)

    Fakhri Yousefi; Hajir Karimi; Maryam Gomar

    2015-01-01

    In this work the statistical mechanical equation of state was developed for volumetric properties of crystal ine and amorphous polymer blends. The Ihm–Song–Mason equations of state (ISMEOS) based on temperature and density at melting point (Tm andρm) as scaling constants were developed for crystalline polymers such as poly(propylene glycol)+poly(ethylene glycol)-200 (PPG+PEG-200), poly(ethylene glycol) methyl ether-300 (PEGME-350)+PEG-200 and PEGME-350+PEG-600. Furthermore, for amorphous polymer blends con-taining poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)+polystyrene (PS) and PS+poly(vinylmethylether) (PVME), the density and surface tension at glass transition (ρg andγg) were used for estimation of second Virial coefficient. The calculation of second Virial coefficients (B2), effective van der Waals co-volume (b) and correction factor (α) was required for judgment about applicability of this model. The obtained results by ISMEOS for crys-talline and amorphous polymer blends were in good agreement with the experimental data with absolute aver-age deviations of 0.84%and 1.04%, respectively.

  12. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.

    Science.gov (United States)

    Biswas, Nupur; Bhattacharya, Rupak; Saha, Arindam; Jana, Nikhil R; Basu, Jaydeep K

    2015-10-07

    Understanding of nanoparticle-membrane interactions is useful for various applications of nanoparticles like drug delivery and imaging. Here we report on the studies of interaction between hydrophilic charged polymer coated semiconductor quantum dot nanoparticles with model lipid membranes. Atomic force microscopy and X-ray reflectivity measurements suggest that cationic nanoparticles bind and penetrate bilayers of zwitterionic lipids. Penetration and binding depend on the extent of lipid packing and result in the disruption of the lipid bilayer accompanied by enhanced lipid diffusion. On the other hand, anionic nanoparticles show minimal membrane binding although, curiously, their interaction leads to reduction in lipid diffusivity. It is suggested that the enhanced binding of cationic QDs at higher lipid packing can be understood in terms of the effective surface potential of the bilayers which is tunable through membrane lipid packing. Our results bring forth the subtle interplay of membrane lipid packing and electrostatics which determine nanoparticle binding and penetration of model membranes with further implications for real cell membranes.

  13. Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug-Polymer Interactions.

    Science.gov (United States)

    Puiggalí-Jou, Anna; Micheletti, Paolo; Estrany, Francesc; Del Valle, Luis J; Alemán, Carlos

    2017-09-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles are loaded with curcumin and piperine by in situ emulsion polymerization using dodecyl benzene sulfonic acid both as a stabilizer and a doping agent. The loaded drugs affect the morphology, size, and colloidal stability of the nanoparticles. Furthermore, kinetics studies of nonstimulated drug release have evidenced that polymer···drug interactions are stronger for curcumin than for piperine. This observation suggests that drug delivery systems based on combination of the former drug with PEDOT are much appropriated to show an externally tailored release profile. This is demonstrated by comparing the release profiles obtained in presence and absence of electrical stimulus. Results indicate that controlled and time-programmed release of curcumin is achieved in a physiological medium by applying a negative voltage of -1.25 V to loaded PEDOT nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Theranostic nanoparticles for the treatment of cancer

    Science.gov (United States)

    Moore, Thomas Lee

    The main focus of this research was to evaluate the ability of a novel multifunctional nanoparticle to mediate drug delivery and enable a non-invasive approach to measure drug release kinetics in situ for the treatment of cancer. These goals were approached by developing a nanoparticle consisting of an inorganic core (i.e. gadolinium sulfoxide doped with europium ions or carbon nanotubes). This was coated with an external amphiphilic polymer shell comprised of a biodegradable polyester (i.e. poly(lactide) or poly(glycolide)), and poly(ethylene glycol) block copolymer. In this system, the inorganic core mediates the imaging aspect, the relatively hydrophobic polyester encapsulates hydrophobic anti-cancer drugs, and poly(ethylene glycol) stabilizes the nanoparticle in an aqueous environment. The synthesis of this nanoparticle drug delivery system utilized a simple one-pot room temperature ring-opening polymerization that neglected the use of potentially toxic catalysts and reduced the number of washing steps. This functionalization approach could be applied across a number of inorganic nanoparticle platforms. Coating inorganic nanoparticles with biodegradable polymer was shown to decrease in vitro and in vivo toxicity. Nanoparticles could be further coated with multiple polymer layers to better control drug release characteristics. Finally, loading polymer coated radioluminescent nanoparticles with photoactive drugs enabled a mechanism for measuring drug concentration in situ. The work presented here represents a step forward to developing theranostic nanoparticles that can improve the treatment of cancer.

  15. Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

    Science.gov (United States)

    Yu, Hsiu-Yu; Srivastava, Samanvaya; Archer, Lynden A; Koch, Donald L

    2014-12-07

    We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different grafting densities to approximate the polydispersity effects in experiments. The experimental systems studied include pure samples with different silica core volume fractions and the associated mean corona grafting densities, and blends with different mixing ratios of the pure samples, in order to introduce varying polydispersity of corona grafting density. Our scattering experiments and theory show that, compared to the hard-sphere suspension with the same core volume fraction, S(q) for pure samples exhibit both substantially smaller values at small q and stronger particle correlations corresponding to a larger effective hard core at large q, indicating that the tethered incompressible oligomers enforce a more uniform particle distribution, and the densely grafted brush gives rise to an additional exclusionary effect between the nanoparticles. According to the theory, polydispersity in the oligomer grafting density controls the deviation of S(q) from the monodisperse system at smaller q, and the interplay of the enhanced effective core size and the entropic attraction among the particles is responsible for complex variations in the particle correlations at larger q. The successful comparison between the predictions and the measurements for the blends further suggests that S(q) can be used to assess the uniformity of grafting density in polymer-grafted nanoparticle materials.

  16. Lipid nanoparticles as drug/gene delivery systems to the retina.

    Science.gov (United States)

    del Pozo-Rodríguez, Ana; Delgado, Diego; Gascón, Alicia R; Solinís, Maria Ángeles

    2013-03-01

    This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug/gene delivery systems for retinal diseases. Most drug products for ocular disease treatment are marketed as eye drop formulations but, due to ocular barriers, the drug concentration in the retina hardly ever turns out to be effective. Up to this date, several delivery systems have been designed to deliver drugs to the retina. Drug delivery strategies may be classified into 3 groups: noninvasive techniques, implants, and colloidal carriers. The best known systems for drug delivery to the posterior eye are intravitreal implants; in fact, some of them are being clinically used. However, their long-term accumulation might impact the patient's vision. On the contrary, colloidal drug delivery systems (microparticles, liposomes, or nanoparticles) can be easily administered in a liquid form. Nanoparticular systems diffuse rapidly and are better internalized in ocular tissues than microparticles. In comparison with liposomes, nanoparticles have a higher loading capacity and are more stable in biological fluids and during storage. In addition, their capacity to adhere to the ocular surface and interact with the endothelium makes these drug delivery systems interesting as new therapeutic tools in ophthalmology. Within the group of nanoparticles, those composed of lipids (Solid Lipid Nanoparticles, Nanostructred Lipid Carriers, and Lipid Drug Conjugates) are more biocompatible, easy to produce at large scale, and they may be autoclaved or sterilized. The present review summarizes scientific results that evidence the potential application of lipid nanoparticles as drug delivery systems for the retina and also as nonviral vectors in gene therapy of retina disorders, although much more effort is still needed before these lipidic systems could be available in the market.

  17. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  18. Cyclodextrin-Containing Polymers: Versatile Platforms of Drug Delivery Materials

    Directory of Open Access Journals (Sweden)

    Jeremy D. Heidel

    2012-01-01

    Full Text Available Nanoparticles are being widely explored as potential therapeutics for numerous applications in medicine and have been shown to significantly improve the circulation, biodistribution, efficacy, and safety profiles of multiple classes of drugs. One leading class of nanoparticles involves the use of linear, cyclodextrin-containing polymers (CDPs. As is discussed in this paper, CDPs can incorporate therapeutic payloads into nanoparticles via covalent attachment of prodrug/drug molecules to the polymer (the basis of the Cyclosert platform or by noncovalent inclusion of cationic CDPs to anionic, nucleic acid payloads (the basis of the RONDEL platform. For each of these two approaches, we review the relevant molecular architecture and its rationale, discuss the physicochemical and biological properties of these nanoparticles, and detail the progress of leading drug candidates for each that have achieved clinical evaluation. Finally, we look ahead to potential future directions of investigation and product candidates based upon this technology.

  19. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen; Chopra, Madhur; Archer, Lynden A.

    2011-01-01

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers

  20. Selenium nanoparticles: potential in cancer gene and drug delivery.

    Science.gov (United States)

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  1. Functionalized nanoparticles for AMF-induced gene and drug delivery

    Science.gov (United States)

    Biswas, Souvik

    non-toxic magnetoplexes (magnetic nanoparticle + pDNA complex) derived from dMLP deliver pDNA into mammalian cells even without external magnetic assistance. To date, dMLP is the only polymer-free magnetic gene delivery system that can deliver pDNA without any magnetic assistance. Chapter 3 of this thesis outlines the synthesis and characterization of other oxime ether lipids and details studies using derived-lipoplexes. These lipids were evaluated in pDNA and siRNA transfection studies in various mammalian cell lines. This work constitutes the first use of an oxime ether as the linking domain in cationic transfection lipids. These biocompatible oxime ether lipids can be readily assembled by click chemistry through ligation of hydrophobic aldehydes with quaternary ammonium aminooxy salts. Our studies showed that the oxime ether lipids transfected pDNA and siRNA efficiently in MCF-7, H 1792, and in PAR C10 cells comparable to and in some cases better than commercial transfection lipids. Chapter 4 describes the design and characterization of a nano-magnetic delivery system for AMF-induced drug (doxorubicin) release. In efforts to develop a magnetic formulation free from thermosensitive materials, such as hydrogels, we synthesized three nanoparticle-based doxorubicin formulations using charge interactions as the key associative force. To do so, we synthesized and characterized a novel cationic oxime ether conjugate at C-13 of doxorubicin. Our investigation indicated that the positive charge of the oxime ether drug conjugate tended to bind better to the negatively charged nanoparticle than did the other formulations prepared in stepwise manner. Our findings show that the nano-magnetic formulations remained essestially inactive at body temperature (37.5 °C) and released a majority of the cargo only when exposed to an external AMF. Our designed magnetic drug delivery platform is the first example of an AMF-inducible system that does not depend on the inclusion of

  2. Inhibition and quenching effect on positronium formation in metal salt doped polymer blend

    Science.gov (United States)

    Praveena, S. D.; Ravindrachary, V.; Ismayil, Bhajantri, R. F.; Harisha, A.; Guruswamy, B.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    Sodium Bromide (NaBr) doped PVA/PVP (50:50) polymer blend composites were prepared using solution casting technique. Pure PVA/PVP blend and PVA/PVP:NaBr composites were studied using XRD and Positron Annihilation Lifetime Spectroscopy (PALS). XRD study shows increase in amorphous nature of the blend due to the NaBr dopant and PALS studies reveal that the o-Ps lifetime (τ3) and intensity (I3) decreases with increase in NaBr doping level. This shows chemical quenching and inhibition process of positronium (Ps) formation in the composite. Here the electron acceptor (Br-) acts as a strong chemical quencher for positronium formation and same is understood based on the spur model.

  3. RELEASE AND MUCOADHESION PROPERTIES OF DICLOFENAC MATRIX TABLETS FROM NATURAL AND SYNTHETIC POLYMER BLENDS.

    Science.gov (United States)

    Odeniyi, Michael A; Khan, Nasir H; Peh, Kok K

    2015-01-01

    The delayed release and mucoadhesive properties of Cedrela gum and hydroxypropylmethylcellulose blend in diclofenac sodium tablet formulations were evaluated. Tablets were prepared by direct compression and the crushing strength and detachment force were found to increase from 74.49 ± 1.22 to 147.25 ± 2.57 N and 0.302 ± 0.36 to 1.141 ± 0.05 N from low to high level of polymers, respectively. The release kinetics followed Korsmeyer-Peppas release and the n varied between 0.834 and 1.273, indicating that the release mechanism shifts from Fickian to super case I (anomalous release). The drug release profile fits a pulsatile-release pattern characterized by a lag time followed by a more or less rapid and complete drug release. The Cedrela gum-hydroxypropylmethylcelluse blend tablets delayed diclofenac release for 2 h and sustained the release for 12 h. The polymer blend delayed drug release in the 0.1 M HCl simulating gastric environment and subsequent release pH 6.8 phosphate buffer.

  4. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF...

  5. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  6. Nanoparticle functionalization for brain targeting drug delivery and diagnostic

    DEFF Research Database (Denmark)

    Gomes, Maria João; Mendes, Bárbara; Martins, Susana

    2016-01-01

    carriers to cross the BBB and achieve brain, and their functionalization strategies are described; and finally the delivery of nanoparticles to the target moiety, as diagnostics or therapeutics. Therefore, this chapter is focused on how the nanoparticle surface may be functionalized for drug delivery......Nanobiotechnology has been demonstrated to be an efficient tool for targeted therapy as well as diagnosis, with particular emphasis on brain tumor and neurodegenerative diseases. On this regard, the aim of this chapter is focused on engineered nanoparticles targeted to the brain, so that they have...... and diagnostics. Furthermore, it is also mentioned that some BBB targets were already used as transport mediators to central nervous system by functionalization on nanoparticles. It summarizes the nanoparticles potential in therapeutics and molecular targeting to BBB, and also an approach of the nanoparticle...

  7. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    Science.gov (United States)

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.

    Science.gov (United States)

    Cheng, Ziyong; Lin, Jun

    2015-05-01

    Lanthanide-doped upconversion nanoparticles (UCNPs) have been an emerging and exciting research field in recent years due to their unique luminescent properties of converting near-infrared light to shorter wavelength radiation. UCNPs offer excellent prospects in luminescent labeling, displays, bioimaging, bioassays, drug delivery, sensors, and anticounterfeiting applications. Along with the abundant studies and rapid progress in this area, UCNPs are promising to be a new class of luminescent probe owing to their special advantages over the conventional organic dyes and quantum dots. Among them, polymers play an important role to improve properties or endow new function of UCNPs such as for matrix materials, water solubility, linking active targeting molecules, biocompatibility, and stimuli-responsive behavior. This article briefly reviews the compositions, optical mechanisms, architectures of upconversion nanocrystals and highlights the works on various functional UCNPs/polymer nanohybrids as well as many new interesting fruits in applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin.

    Science.gov (United States)

    He, Zhiyu; Santos, Jose Luis; Tian, Houkuan; Huang, Huahua; Hu, Yizong; Liu, Lixin; Leong, Kam W; Chen, Yongming; Mao, Hai-Quan

    2017-06-01

    Controlled delivery of protein would find diverse therapeutic applications. Formulation of protein nanoparticles by polyelectrolyte complexation between the protein and a natural polymer such as chitosan (CS) is a popular approach. However, the current method of batch-mode mixing faces significant challenges in scaling up while maintaining size control, high uniformity, and high encapsulation efficiency. Here we report a new method, termed flash nanocomplexation (FNC), to fabricate insulin nanoparticles by infusing aqueous solutions of CS, tripolyphosphate (TPP), and insulin under rapid mixing condition (Re > 1600) in a multi-inlet vortex mixer. In comparison with the bulk-mixing method, the optimized FNC process produces CS/TPP/insulin nanoparticles with a smaller size (down to 45 nm) and narrower size distribution, higher encapsulation efficiency (up to 90%), and pH-dependent nanoparticle dissolution and insulin release. The CS/TPP/insulin nanoparticles can be lyophilized and reconstituted without loss of activity, and produced at a throughput of 5.1 g h -1 when a flow rate of 50 mL min -1 is used. Evaluated in a Type I diabetes rat model, the smaller nanoparticles (45 nm and 115 nm) control the blood glucose level through oral administration more effectively than the larger particles (240 nm). This efficient, reproducible and continuous FNC technique is amenable to scale-up in order to address the critical barrier of manufacturing for the translation of protein nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fate of nanoparticles during life cycle of polymer nanocomposites

    International Nuclear Information System (INIS)

    Nguyen, T; Pellegrin, B; Bernard, C; Gu, X; Gorham, J M; Stutzman, P; Stanley, D; Shapiro, A; Byrd, E; Hettenhouser, R; Chin, J

    2011-01-01

    Nanoparticles are increasingly used in consumer and structural polymeric products to enhance a variety of properties. Under the influence of environmental factors (e.g., ultraviolet, moisture, temperature) and mechanical actions (e.g., scratching, vibrations, abrasion), nanoparticles could potentially release from the products and thus have negative effects on the environment, health and safety. The fate of nanoparticles in polymer nanocomposites during their exposure to UV environment has been investigated. Epoxy polymer containing multi-walled carbon nanotubes (MWCNTs) and silica nanoparticles were studied. Specially-designed cells containing nanocomposite specimens were irradiated with UV radiation between 295 nm and 400 nm. Chemical degradation, mass loss and surface morphology of the epoxy nanocomposites, and release of nanoparticles were measured. Epoxy containing MWCNTs exposed to UV radiation degraded at a much slower rate than the unfilled epoxy or the epoxy/nanosilica composite. Photodegradation of the matrix resulted in substantial accumulation of nanoparticles on the composite surfaces. Silica nanoparticles were found to release into the environment, but MWCNTs formed a dense network on the composite surface, with no evidence of release even after prolonged exposure. Conceptual models for silica nanoparticle release and MWCNT retention on the surface during UV exposure of nanocomposites are presented.

  11. Synthesis of Nanometer-Sized Poly (methyl methacrylate) Polymer Network by Gold Nanoparticle Template

    Science.gov (United States)

    Liu, Fu-Ken; Hsieh, Shang-Yu; Ko, Fu-Hsiang; Chu, Tieh-Chi; Dai, Bau-Tong

    2003-06-01

    Gold nanoparticle/polymer composites have been produced using a one-system polymer synthesis. The linear polymer, poly (methyl methacrylate) (PMMA, MW = 15,000 g/mol) is applied for the stabilization of gold nanoparticles. The Fourier transfer infrared (FT-IR) analysis data and transition electron microscopy (TEM) image reveal that the core shell structure of gold/PMMA nanocomposite has been synthesized. The ratio of the concentration of the capping polymer material to the concentration of the gold precursor could control the sizes of gold nanoparticles. With specific concentration of the reductant, the core-shell nanostructure could be fluctuated in order. After heating treatment, the network structure of PMMA capped gold nanoparticles could be synthesized as confirmed by the TEM image. The result indicates that PMMA not only acts as the stabilizer, but also as the bridge of the neighboring gold nanoparticles.

  12. Mucosal delivery of liposome-chitosan nanoparticles complexes

    OpenAIRE

    Carvalho, Edison Samir Mascarelhas; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can...

  13. Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization

    Directory of Open Access Journals (Sweden)

    Luana Becker Peres

    2015-02-01

    Full Text Available Miniemulsion homopolymerization reactions of methyl methacrylate (MMA and styrene (STY using poly(L-lactide as co-stabilizer were carried out in order to prepare poly(L-lactide/poly(methyl methacrylate (PLLA/PMMA and poly(L-lactide/polystyrene (PLLA/PS binary blend nanoparticles. The effect of PLLA concentration on methyl methacrylate (MMA and styrene (STY homopolymerization reactions was evaluated. It was found that the incorporation of PLLA resulted on acceleration of MMA and STY homopolymerization reactions and led to a molar mass increase of up to 70% for PS in PLLA/PS blend nanoparticles in relation to those prepared without PLLA, which can be attributed to an increase of reaction loci viscosity (gel effect. PLLA also acted as an efficient co-stabilizer, since it was able to retard diffusional degradation of droplets when no other kind of co-stabilizer was used. Two isolated Tgs were found in both PLLA/PMMA and PLLA/PS blend nanoparticles which can be associated to blend immiscibility. TEM images corroborate these results, suggesting that immiscible PLLA/PMMA and PLLA/PS blend nanoparticles could be formed with two segregated phases and core-shell morphology.

  14. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  15. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    Science.gov (United States)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  16. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    Science.gov (United States)

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  17. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    Science.gov (United States)

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    International Nuclear Information System (INIS)

    Gaspar, V M; Marques, J G; Sousa, F; Queiroz, J A; Correia, I J; Louro, R O

    2013-01-01

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan–histidine–arginine (CH–H–R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy. (paper)

  19. Effect of Anionic Polymers on Drug Loading and Release from ...

    African Journals Online (AJOL)

    Purpose: To develop and characterize solid lipid nanoparticle (SLN) systems containing dextran sulfate or sodium ... SLNs. Drug release from SLNs is also dependent on the polymer type. ..... nanoparticles for parenteral drug delivery. Adv.

  20. Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber

    International Nuclear Information System (INIS)

    Sebastian, Suneetha; Ajina, C; Vallabhan, C. P. G; Nampoori, V. P. N.; Radhakrishnan, P.; Kailasnath, M.

    2013-01-01

    We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber

  1. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    Science.gov (United States)

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  3. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  4. pH- and ion-sensitive polymers for drug delivery

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-01-01

    Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients. PMID:23930949

  5. pH- and ion-sensitive polymers for drug delivery.

    Science.gov (United States)

    Yoshida, Takayuki; Lai, Tsz Chung; Kwon, Glen S; Sako, Kazuhiro

    2013-11-01

    Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.

  6. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate.

    Science.gov (United States)

    Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei

    2016-12-06

    We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.

  7. Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66 with ethylene propylene diene (EPDM rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

  8. Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics

    International Nuclear Information System (INIS)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni; Mistretta, Maria Chiara

    2014-01-01

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour

  9. Effectiveness of organoclays as compatibilizers for multiphase polymer blends – A sustainable route for the mechanical recycling of co-mingled plastics

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Mistretta, Maria Chiara [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, ed. 6, 90128 Palermo (Italy)

    2014-05-15

    We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimize the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.

  10. In vivo studies of transdermal nanoparticle delivery with microneedles using photoacoustic microscopy

    Science.gov (United States)

    Moothanchery, Mohesh; Seeni, Razina Z.; Xu, Chenjie; Pramanik, Manojit

    2017-01-01

    Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the in vivo visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles. Specifically, we observe the in vivo transdermal delivery of gold nanoparticles using microneedles in mice ear and study the penetration, diffusion, and spatial distribution of the nanoparticles in the tissue. The promising results reveal that photoacoustic microscopy can be used as a potential imaging modality for the in vivo characterization of microneedles based drug delivery. PMID:29296482

  11. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation.

    Science.gov (United States)

    Fan, Bo; Xing, Yang; Zheng, Ying; Sun, Chuan; Liang, Guixian

    2016-01-01

    The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.

  12. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Cha, Dong Kyu; Alshareef, Husam N.

    2012-01-01

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase

  13. Spectroscopic studies of energy transfer in fluorene co-polymer blend nanoparticles

    Science.gov (United States)

    Gao, Jian; Grey, John K.

    2012-01-01

    Nanoparticles of poly(9,9-dioctylfluorene-co-bis-N,N-(4-butylphenyl)-bis-N,N-phenyl-1,4-phenylenediamine) [PFB] and poly(9,9-dioctylfluorene-co-benzothiadiazole) [F8BT] (1:1 w/w) were studied using scanned probe and single particle spectroscopy techniques. Photoluminescence (PL spectra of ∼58 and ∼100 nm PFB/F8BT nanoparticles show efficient energy transfer from the PFB (donor) component to the F8BT (acceptor) component that is independent of particle size. We propose that nanoparticles are phase segregated into discrete PFB/F8BT nanodomains on the order of ∼20-40 nm for both particle sizes. Pressure-dependent nanoparticle PL spectra support this assignment where lineshape maxima of each component red-shift in a similar manner due to increased interchain packing within the single nanodomains.

  14. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Kemerink, M.; Yang, X.N.; Janssen, R.A.J.

    2005-01-01

    Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3‘,7‘-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast

  15. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: ibuprofen.

    Science.gov (United States)

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ((1)HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and (1)HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Preparation of Emulsifying Wax/GMO Nanoparticles and Evaluation as a Delivery System for Repurposing Simvastatin in Bone Regeneration.

    Science.gov (United States)

    Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O

    2018-05-30

    Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.

  17. Polymer nanocomposite patterning by dip-pen nanolithography

    International Nuclear Information System (INIS)

    Kandemir, Ayse Cagil; Ma, Huan; Reiser, Alain; Spolenak, Ralph; Erdem, Derya

    2016-01-01

    The ultimate aim of this study is to construct polymer nanocomposite patterns by dip-pen nanolithography (DPN). Recent investigations have revealed the effect of the amount of ink (Laplace pressure) on the mechanism of liquid ink writing. In this study it is shown that not only the amount of ink, but also physisorption and surface diffusion are relevant. After a few writing steps, physisorption and surface diffusion outweigh the influence of the amount of ink, allowing consistent patterning governed by dwell times and writing speeds. Polymer matrices can be utilized as a delivery medium to deposit functional particles. DPN patterning of polymer nanocomposites allows for local tuning of the functionality and mechanical strength of the written patterns in high resolution, with the benefit of pattern flexibility. Typically polymer matrices with volatile components are used as a delivery medium for nanoparticle deposition, with subsequent removal of loosely bound matrix material by heating or oxygen plasma. In our study, nanocomposite patterns were constructed, and the differences between polymer and nanocomposite patterning were investigated. Cross-sectional SEM and TEM analysis confirmed that nanoparticles can be deposited with the liquid-polymer ink and are evenly distributed in the polymer matrix. (paper)

  18. Manufacture and Drug Delivery Applications of Silk Nanoparticles.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Johnston, Blair F; Seib, F Philipp

    2016-10-08

    Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.

  19. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  20. Modified silyl-terminated polyether polymer blends with bisphenol A diglycidyl ether epoxy for adhesive applications

    International Nuclear Information System (INIS)

    Bitenieks, J; Meri, R Merijs; Zicans, J; Berzins, R; Umbraško, J; Rekners, U

    2016-01-01

    Modified silyl-terminated polyether polymer (MS Polymer) was blended with bisphenol A diglycidyl ether (DGEBPA) epoxy at MS Polymer/epoxy ratio from 30/70 to 70/30. MS Polymer/epoxy systems were examined for two-component adhesive formulation with additional fillers. Applicability of the MS Polymer/epoxy system at the ratio of the components 60/40 is demonstrated for the development of adhesive formulation. Rheological analysis of the components A and B shows suitable viscosity values for development of two- component adhesives formulation. Curing dynamics as well as tensile stress-strain properties and Shore A hardness of the chosen adhesive formulation are reasonable for the development of MS Polymer/epoxy type adhesive. (paper)

  1. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    Directory of Open Access Journals (Sweden)

    Heba M. El Naggar

    2017-02-01

    Full Text Available Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2 based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles MontanideTM adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2 viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses.

  2. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  3. Influence of nanoparticles on the polymer-conditioned dewatering of wastewater sludges.

    Science.gov (United States)

    Boyle, N J; Evans, G M

    2013-01-01

    The effect of using small-scale, high surface area, nanoparticles to supplement polymer-conditioned wastewater sludge dewatering was investigated. Aerobically digested sludge and waste activated sludge sourced from the Hunter Valley, NSW, Australia, were tested with titanium dioxide nanoparticles. The sludge samples were dosed with the nanoparticles in an attempt to adsorb a component of the charged biopolymer surfactants present naturally in sludge. The sludge was conditioned with a cationic polymer. The dewatering characteristics were assessed by measuring the specific resistance to filtration through a modified time-to-filter testing apparatus. The solids content of the dosed samples was determined by a mass balance and compared to the original solids content in the activated sludge. Test results indicated that nanoparticle addition modified the structure of the sludge and provided benefits in terms of the dewatering rate. The samples dosed with nanoparticles exhibited faster water removal, indicating a more permeable filter cake and hence more permeable sludge. A concentration of 2-4% nanoparticles was required to achieve a noticeable benefit. As a comparison, the sludge samples were also tested with a larger particle size, powdered activated carbon (PAC). It was found that the PAC did provide some minor benefits to sludge dewatering but was outperformed by the nanoparticles. The solids content of the final sludge was increased by a maximum of up to 0.6%. The impact of the order sequence of particles and polymer was also investigated. It was found that nanoparticles added before polymer addition provided the best dewatering performance. This outcome was consistent with current theories and previous research through the literature. An economic analysis was undertaken to confirm the viability of the technology for implementation at a full-scale plant. It was found that, currently, this technology is unlikely to be favourable unless the nanoparticles can be

  4. Recent progress on preparation and properties of nanocomposites from recycled polymers: A review

    International Nuclear Information System (INIS)

    Zare, Yasser

    2013-01-01

    Highlights: ► The article determines the current status of nanotechnology in polymer recycling. ► The addition of nanofillers to waste polymers, composites and blends is discussed. ► The future challenges in polymer recycling using nanoparticles are explained. - Abstract: Currently, the growing consumption of polymer products creates the large quantities of waste materials resulting in public concern in the environment and people life. Nanotechnology is assumed the important technology in the current century. Recently, many researchers have tried to develop this new science for polymer recycling. In this article, the application of different nanofillers in the recycled polymers such as PET, PP, HDPE, PVC, etc. and the attributed composites and blends is studied. The morphological, mechanical, rheological and thermal properties of prepared nanocomposites as well as the future challenges are extensively discussed. The present article determines the current status of nanotechnology in the polymer recycling which guide the future studies in this attractive field

  5. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery

    Directory of Open Access Journals (Sweden)

    Diane Render

    2016-01-01

    Full Text Available Oral drug delivery systems provide the most convenient, noninvasive, readily acceptable alternatives to parenteral systems. In the current work, eggshell-derived calcium carbonate (CaCO3 nanoparticles were used to develop enteric drug delivery system in the form of tablets. CaCO3 nanoparticles were manufactured using top-down ball-milling method and characterized by X-ray diffractometry (XRD and transmission electron microscopy (TEM and loaded with 5-fluorouracil as a model drug. Tablets with varying CaCO3 core and binder compositions were fabricated and coated with Eudragit S100 or Eudragit L100. Suitability for enteric delivery of the tablets was tested by oral administration to rabbits and radiography. Radiograph images showed that the tablet remained in the stomach of the rabbit for up to 3 hours. Further modifications of these biomaterial-derived nanoparticles and the coatings will enable manufacturing of stable formulations for slow or controlled release of pharmaceuticals for enteric delivery.

  6. Non-viral gene delivery strategies for cancer therapy, tissue engineering and regenerative medicine

    Science.gov (United States)

    Bhise, Nupura S.

    Gene therapy involves the delivery of deoxyribonucleic acid (DNA) into cells to override or replace a malfunctioning gene for treating debilitating genetic diseases, including cancer and neurodegenerative diseases. In addition to its use as a therapeutic, it can also serve as a technology to enable regenerative medicine strategies. The central challenge of the gene therapy research arena is developing a safe and effective delivery agent. Since viral vectors have critical immunogenic and tumorogenic safety issues that limit their clinical use, recent efforts have focused on developing non-viral biomaterial based delivery vectors. Cationic polymers are an attractive class of gene delivery vectors due to their structural versatility, ease of synthesis, biodegradability, ability to self-complex into nanoparticles with negatively charged DNA, capacity to carry large cargo, cellular uptake and endosomal escape capacity. In this thesis, we hypothesized that developing a biomaterial library of poly(betaamino esters) (PBAE), a newer class of cationic polymers consisting of biodegradable ester groups, would allow investigating vector design parameters and formulating effective non-viral gene delivery strategies for cancer drug delivery, tissue engineering and stem cell engineering. Consequently, a high-throughput transfection assay was developed to screen the PBAE-based nanoparticles in hard to transfect fibroblast cell lines. To gain mechanistic insights into the nanoparticle formulation process, biophysical properties of the vectors were characterized in terms of molecular weight (MW), nanoparticle size, zeta potential and plasmid per particle count. We report a novel assay developed for quantifying the plasmid per nanoparticle count and studying its implications for co-delivery of multiple genes. The MW of the polymers ranged from 10 kDa to 100 kDa, nanoparticle size was about 150 run, zeta potential was about 30 mV in sodium acetate buffer (25 mM, pH 5) and 30 to 100

  7. Systemic delivery of blood-brain barrier-targeted polymeric nanoparticles enhances delivery to brain tissue.

    Science.gov (United States)

    Saucier-Sawyer, Jennifer K; Deng, Yang; Seo, Young-Eun; Cheng, Christopher J; Zhang, Junwei; Quijano, Elias; Saltzman, W Mark

    2015-01-01

    Delivery of therapeutic agents to the central nervous system is a significant challenge, hindering progress in the treatment of diseases such as glioblastoma. Due to the presence of the blood-brain barrier (BBB), therapeutic agents do not readily transverse the brain endothelium to enter the parenchyma. Previous reports suggest that surface modification of polymer nanoparticles (NPs) can improve their ability to cross the BBB, but it is unclear whether the observed enhancements in transport are large enough to enhance therapy. In this study, we synthesized two degradable polymer NP systems surface-modified with ligands previously suggested to improve BBB transport, and tested their ability to cross the BBB after intravenous injection in mice. All the NP preparations were able to cross the BBB, although generally in low amounts (brain uptake (∼0.8% of the injected dose): a block copolymer of polylactic acid and hyperbranched polyglycerol, surface modified with adenosine (PLA-HPG-Ad). PLA-HPG-Ad NPs provided controlled release of camptothecin, killing U87 glioma cells in culture. When administered intravenously in mice with intracranial U87 tumors, they failed to increase survival. These results suggest that enhancing NP transport across the BBB does not necessarily yield proportional pharmacological effects.

  8. Synthesis and characterization of Fe_3O_4 nanoparticles stabilized by polyvinylpyrrolidone / polyethylene glycol with variable mass ratios

    International Nuclear Information System (INIS)

    Silva, F.A.S. da; Campos, M.F. de; Rojas, E. E.G.

    2014-01-01

    Magnetic nanoparticles are devices able to optimize cancer treatments. In particular, magnetite nanoparticles are very effective in producing heat to cause lysis of tumor cells. However, in order that nanoparticles are internalized without causing damage to body they must be coated by biocompatible material. In this work, Fe_3O_4 nanoparticles were coated by a polymer blend: polyethylene glycol / polyvinylpyrrolidone. Some variations in mass ratio of polymer mixture were made. The effect of varying mass ratio in polymers was investigated. Samples were characterized by X-ray diffraction and Rietveld analysis. Moreover, hysteresis curves were analyzed. The results indicate good agreement between mass proportions used and physical and magnetic properties of nanocomposite. (author)

  9. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jun-zi [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China); Bremner, David H. [School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee DD1 1HG, Scotland (United Kingdom); Li, He-yu; Sun, Xiao-zhu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China); Zhu, Li-Min, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 (China)

    2016-12-01

    Poly N-vinylcaprolactam-co-acrylamidophenylboronic acid p(NVCL-co-AAPBA) was prepared from N-vinylcaprolactam (NVCL) and 3-acrylamidophenylboronic acid (AAPBA), using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesis and structure of the polymer were examined by Fourier Transform infrared spectroscopy (FT-IR) and {sup 1}H-NMR. Dynamic light scattering (DLS), lower critical solution temperature (LCST) and transmission electron microscopy (TEM) were utilized to characterize the nanoparticles, CD spectroscopy was used to determine if there were any changes to the conformation of the insulin, and cell and animal toxicity were also investigated. The prepared nanoparticles were found to be monodisperse submicron particles and were glucose- and temperature-sensitive. In addition, the nanoparticles have good insulin-loading characteristics, do not affect the conformation of the insulin and show low-toxicity to cells and animals. These p(NVCL-co-AAPBA) nanoparticles may have some value for insulin or other hypoglycemic protein delivery. - Highlights: • A comprehensive study of a nanoparticles may have some value for insulin or other hypoglycemic protein delivery. • p(NVCL-co-AAPBA)'s synthetic method is simple, convenient to carry out. • NVCL is low toxic and safe. • The evaluation of acute toxicity and chronic toxicity is the most highlight.

  10. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    Science.gov (United States)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  11. Dry powder inhaler formulation of lipid-polymer hybrid nanoparticles via electrostatically-driven nanoparticle assembly onto microscale carrier particles.

    Science.gov (United States)

    Yang, Yue; Cheow, Wean Sin; Hadinoto, Kunn

    2012-09-15

    Lipid-polymer hybrid nanoparticles have emerged as promising nanoscale carriers of therapeutics as they combine the attractive characteristics of liposomes and polymers. Herein we develop dry powder inhaler (DPI) formulation of hybrid nanoparticles composed of poly(lactic-co-glycolic acid) and soybean lecithin as the polymer and lipid constituents, respectively. The hybrid nanoparticles are transformed into inhalable microscale nanocomposite structures by a novel technique based on electrostatically-driven adsorption of nanoparticles onto polysaccharide carrier particles, which eliminates the drawbacks of conventional techniques based on controlled drying (e.g. nanoparticle-specific formulation, low yield). First, we engineer polysaccharide carrier particles made up of chitosan cross-linked with tripolyphosphate and dextran sulphate to exhibit the desired aerosolization characteristics and physical robustness. Second, we investigate the effects of nanoparticle to carrier mass ratio and salt inclusion on the adsorption efficiency, in terms of the nanoparticle loading and yield, from which the optimal formulation is determined. Desorption of the nanoparticles from the carrier particles in phosphate buffer saline is also examined. Lastly, we characterize aerosolization efficiency of the nanocomposite product in vitro, where the emitted dose and respirable fraction are found to be comparable to the values of conventional DPI formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Nano-Star-Shaped Polymers for Drug Delivery Applications.

    Science.gov (United States)

    Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun

    2017-11-01

    With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Evaluation of the effects of biodegradable nanoparticles on a vaccine delivery system using AFM, SEM, and TEM.

    Science.gov (United States)

    Kim, Bum-Gil; Kang, Ik-Joong

    2008-09-01

    Hepatitis B is a deadly disease, and is carried by 30% of the world's population. Antibodies are produced through a series of three manual vaccinations during infancy and childhood. However, the current needle vaccination not only induces pain in patients, but also can be inconvenient to administer. This is particularly true for the case of newborn babies. Intranasal vaccination is emerging as an alternative parenteral drug delivery method that facilitates drug delivery without causing pain. Chitosan, which is obtained through the deacetylation of chitin from crustacea, is a cationic polymer that is biodegradable, avirulent, and highly absorptive. In this study, ionic gelation between chitosan and TPP was conducted to synthesize chitosan nanoparticles with sizes of 200-400 nm and a surface potential of 55-60 mV, and which can be used as Hepatitis B vaccine carriers. Then, Hepatitis B antigen protein was impregnated to manufacture chitosan-recombinant gene vaccine protein (RGVP) nanoparticles. AFM, SEM, TEM, and STEM were used to analyze the manufactured nanoparticles, whose function as drug carriers and whose usefulness for intranasal vaccination were confirmed through in vivo tests with SD rats.

  14. Effect of Nanoparticle Core Size on Polymer-Coated Gold Nanoparticle Location in Block Copolymers

    Science.gov (United States)

    Petrie, J. D.; Fredrickson, G. H.; Kramer, E. J.

    2009-03-01

    Gold nanoparticles modified by short chain polymer thiols [Au-PS] can be designed to strongly localize either in the PS domains of a polystyrene-b-poly(2-vinylpyridine) [PS-PVP] block copolymer or at the interface. The P2VP block has a stronger attractive interaction with bare gold than the PS block. Thus, when the areal chain density σ of end-attached PS chains falls below a critical areal chain density σc the Au-PS nanoparticles adsorb to the PS-b-P2VP interface. The effect of the polymer ligand molecular weight on the σc has been shown to scale as σc˜ ((R + Rg)/(R*Rg))̂2, where R is the curvature of the Au nanoparticle core radius. To test this scaling relation for σc further we are synthesizing gold nanoparticles with different core radii and will present preliminary results on σc as a function of R.

  15. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  16. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    Science.gov (United States)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-09-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly( N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs.

  17. Spectroscopic studies of nanoparticle-sensitised photorefractive polymers

    International Nuclear Information System (INIS)

    Aslam, Farzana; Binks, David J.; Daniels, Steve; Pickett, Nigel; O'Brien, Paul

    2005-01-01

    We report on the absorbance and photoluminescence spectra of photorefractive polymer composites sensitized by three different types of nanoparticles. Each nanoparticle is passivated by 1-hexadecylamine (HDA) and the composites also consist of the charge transporting matrix poly(N-vinylcarbazole) and the dye 1-(2'-ethylhexyloxy)-2,5-dimethyl-4-(4-nitrophenylazo) benzene. A strong spectral feature is observed that is attributed to a complex formed between the dye and HDA; elemental analysis indicates that the formation of this complex is determined by the metal content of the nanoparticle surface. The photoluminescence quantum yield for the complex is greatly reduced when the HDA is attached to the nanoparticle, indicating that a charge transfer occurs

  18. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Yoncheva, K., E-mail: krassi.yoncheva@gmail.com [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Popova, M. [Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria); Szegedi, A.; Mihaly, J. [Institute of Nanochemistry and Catalysis, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri út. 59-67, 1025 Budapest (Hungary); Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V. [Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia (Bulgaria); Pessina, F.; Valoti, M. [Dipartimento di Scienze della Vita, Universita di Siena, via Aldo Moro 2, Siena (Italy)

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  19. Synthesis of PLGA-Lipid Hybrid Nanoparticles for siRNA Delivery Using the Emulsion Method PLGA-PEG-Lipid Nanoparticles for siRNA Delivery.

    Science.gov (United States)

    Wang, Lei; Griffel, Benjamin; Xu, Xiaoyang

    2017-01-01

    The effective delivery of small interfering RNA (siRNA) to tumor cells remains a challenge for applications in cancer therapy. The development of polymeric nanoparticles with high siRNA loading efficacy has shown great potential for cancer targets. Double emulsion solvent evaporation technique is a useful tool for encapsulation of hydrophilic molecules (e.g., siRNA). Here we describe a versatile platform for siRNA delivery based on PLGA-PEG-cationic lipid nanoparticles by using the double emulsion method. The resulting nanoparticles show high encapsulation efficiency for siRNA (up to 90%) and demonstrate effective downregulation of the target genes in vitro and vivo.

  20. In vivo evaluation of a conjugated poly(lactide-ethylene glycol nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model

    Directory of Open Access Journals (Sweden)

    Tomar L

    2013-02-01

    Full Text Available Lomas Tomar,1,2 Charu Tyagi,1,3 Manoj Kumar,2 Pradeep Kumar,1 Harpal Singh,2 Yahya E Choonara,1 Viness Pillay11University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, Johannesburg, Gauteng, South Africa; 2Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, India; 3VSPG College, Chaudhary Charan Singh University, Meerut, IndiaAbstract: Poly(ethylene glycol (PEG and polylactic acid (PLA-based copolymeric nanoparticles were synthesized and investigated as a carrier for prolonged delivery of insulin via the parenteral route. Insulin loading was simultaneously achieved with particle synthesis using a double emulsion solvent evaporation technique, and the effect of varied PEG chain lengths on particle size and insulin loading efficiency was determined. The synthesized copolymer and nanoparticles were analyzed by standard polymer characterization techniques of gel permeation chromatography, dynamic light scattering, nuclear magnetic resonance, and transmission electron microscopy. In vitro insulin release studies performed under simulated conditions provided a near zero-order release pattern up to 10 days. In vivo animal studies were undertaken with varied insulin loads of nanoparticles administered subcutaneously to fed diabetic rabbits and, of all doses administered, nanoparticles containing 50 IU of insulin load per kg body weight controlled the blood glucose level within the physiologically normal range of 90–140 mg/dL, and had a prolonged effect for more than 7 days. Histopathological evaluation of tissue samples from the site of injection showed no signs of inflammation or aggregation, and established the nontoxic nature of the prepared copolymeric nanoparticles. Further, the reaction profiles for PLA-COOH and NH2-PEGDA-NH2 were elucidated using molecular mechanics energy relationships in vacuum and in a solvated system by exploring the spatial disposition of various

  1. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.

    Science.gov (United States)

    Li, Qiuxia; Xia, Dengning; Tao, Jinsong; Shen, Aijun; He, Yuan; Gan, Yong; Wang, Chi

    2017-10-01

    Lipid-polymer hybrid nanoparticles (NPs) are advantageous for drug delivery. However, their intracellular trafficking mechanism and relevance for oral drug absorption are poorly understood. In this study, self-assembled core-shell lipid-polymer hybrid NPs made of poly(lactic-co-glycolic acid) (PLGA) and various lipids were developed to study their differing intracellular trafficking in intestinal epithelial cells and their relevance for oral absorption of a model drug saquinavir (SQV). Our results demonstrated that the endocytosis and exocytosis of hybrid NPs could be changed by varying the kind of lipid. A glyceride mixture (hybrid NPs-1) decreased endocytosis but increased exocytosis in Caco-2 cells, whereas the phospholipid (E200) (hybrid NPs-2) decreased endocytosis but exocytosis was unaffected as compared with PLGA nanoparticles. The transport of hybrid NPs-1 in cells involved various pathways, including caveolae/lipid raft-dependent endocytosis, and clathrin-mediated endocytosis and macropinocytosis, which was different from the other groups of NPs that involved only caveolae/lipid raft-dependent endocytosis. Compared with that of the reference formulation (nanoemulsion), the oral absorption of SQV-loaded hybrid NPs in rats was poor, probably due to the limited drug release and transcytosis of NPs across the intestinal epithelium. In conclusion, the intracellular processing of hybrid NPs in intestinal epithelia can be altered by adding lipids to the NP. However, it appears unfavorable to use PLGA-based NPs to improve oral absorption of SQV compared with nanoemulsion. Our findings will be essential in the development of polymer-based NPs for the oral delivery of drugs with the purpose of improving their oral absorption. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications

    Science.gov (United States)

    Nimith, K. M.; Satyanarayan, M. N.; Umesh, G.

    2018-06-01

    We have investigated the effect of blending electron deficient heterocycle Benzothiadiazole (BT) on the photo-physical properties of conjugated polymer Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV). Quantum yield (QY) value has been found to increase from 37% for pure MEH-PPV to 45% for an optimum MEH-PPV:BT blend ratio of 1:3. This can be attributed to the efficient energy transfer from the wide bandgap BT (host) to the small bandgap MEH-PPV (guest). The FTIR spectrum of MEH-PPV:BT blended thin film indicates suppression of aromatic C-H out-of-plane and in-plane bending, suggesting planarization of the conjugated polymer chains and, hence, leading to increase in the conjugation length. The increase in conjugation length is also evident from the red-shifted PL spectra of MEH-PPV:BT blended films. Single layer MEH-PPV:BT device shows lower turn-on voltage than single layer MEH-PPV alone device. Further, the effect of electrical conductivity of PEDOT:PSS on the current-voltage characteristics is investigated in the PLED devices with MEH-PPV:BT blend as the active layer. PEDOT:PSS with higher conductivity as HIL reduces the turn on voltage from 4.5 V to 3.9 V and enhances the current density and optical output in the device.

  3. Thermal, Mechanical and Water Resistance Properties of LDPE/Starch Bio-Based Polymer Blends for Food Packing Applications

    OpenAIRE

    Berber Yamak, Hale

    2016-01-01

    In this study, low density polyethylene, LDPE was melt blended with starch using twin screw extruder to form biodegradable polymer blends. The LDPE/starch blend films used in food packing were obtained by hot pressing of the granules produced by extrusion process. The starch content was varied from 0 to 40 wt% of LDPE. To provide fine starch dispersion, glycerol and zinc stearate were used as plasticizer and compatibilizer, respectively. The effect of starch content on the properties of LDPE ...

  4. Methotrexate nanoparticle delivery system for treatment of ...

    African Journals Online (AJOL)

    Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, .... blood count, hemoglobin, C-reactive protein ... was attributable to a decrease in electrostatic ... interactions between the polymer and drug in this.

  5. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    Science.gov (United States)

    Smith, G. B.; Deller, C. A.; Swift, P. D.; Gentle, A.; Garrett, P. D.; Fisher, W. K.

    2002-04-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior.

  6. Nanoparticle-doped Polymer Foils for Use in Solar Control Glazing

    International Nuclear Information System (INIS)

    Smith, G.B.; Deller, C.A.; Swift, P.D.; Gentle, A.; Garrett, P.D.; Fisher, W.K.

    2002-01-01

    Since nanoparticles can provide spectrally selective absorption without scattering they can be used to dope polymers for use in windows, to provide a clear view while strongly attenuating both solar heat gain and UV, at lower cost than alternative technologies. The underlying physics and how it influences the choice and concentration of nanoparticle materials is outlined. Spectral data, visible and solar transmittance, and solar heat gain coefficient are measured for clear polymers and some laminated glass, in which the polymer layer is doped with conducting oxide nanoparticles. Simple models are shown to apply making general optical design straightforward. Use with clear glass and tinted glass is considered and performance shown to match existing solar control alternatives. A potential for widespread adoption in buildings and cars is clearly demonstrated, and scopes for further improvements are identified, so that ultimately both cost and performance are superior

  7. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  8. Drug delivery into microneedle-porated nails from nanoparticle reservoirs.

    Science.gov (United States)

    Chiu, Wing Sin; Belsey, Natalie A; Garrett, Natalie L; Moger, Julian; Price, Gareth J; Delgado-Charro, M Begoña; Guy, Richard H

    2015-12-28

    This study demonstrates the potential of polymeric nanoparticles as drug reservoirs for sustained topical drug delivery into microneedle-treated human nail. Laser scanning confocal microscopy was used to image the delivery of a fluorescent model compound from nanoparticles into the nail. A label-free imaging technique, stimulated Raman scattering microscopy, was applied, in conjunction with two-photon fluorescence imaging, to probe the disposition of nanoparticles and an associated lipophilic 'active' in a microneedle-porated nail. The results provide clear evidence that the nanoparticles function as immobile reservoirs, sequestered on the nail surface and in the microneedle-generated pores, from which the active payload can be released and diffuse laterally into the nail over an extended period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites

    International Nuclear Information System (INIS)

    Korampally, Venumadhav; Yun, Minseong; Rajagopalan, Thiruvengadathan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Dasgupta, Purnendu K

    2009-01-01

    Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m 2 g -1 ) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.

  10. Low-Dimensional Nanoparticle Clustering in Polymer Micelles and Their Transverse Relaxivity Rates

    Science.gov (United States)

    Hickey, Robert J.; Meng, Xin; Zhang, Peijun; Park, So-Jung

    2015-01-01

    One- or two-dimensional arrays of iron oxide nanoparticles were formed in colloidal assemblies of amphiphilic polymers. Electron tomography imaging revealed that nanoparticles are arranged into one-dimensional strings in magneto-micelles or two-dimensional sheets in magneto-core/shell assemblies. The distinct directional assembly behavior was attributed to the interparticle interaction relative to the nanoparticle–polymer interaction, which was modulated by varying the cosolvent used for the solution phase self-assembly. Magneto-core/shell assemblies with varying structural parameters were formed with a range of different sized as-synthesized nanoparticles. The transverse magnetic relaxivity rates (r2) of a series of different assemblies were determined to examine the effect of nanoparticle arrangement on the magnetic relaxivity for their potential applications in MRI. The results indicated that the assembly structure of nanoparticles in polymer micelles significantly affects the r2 of surrounding water, providing a way to control magnetic relaxivity. PMID:23731021

  11. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-12-01

    Therapeutic peptides are conventionally administered via subcutaneous injection. Chitosan-based nanoparticles are gaining increased attention for their ability to serve as a carrier for oral delivery of peptides and vaccination. They offered superior biocompatibiltiy, controlled drug release profile and facilitated gastrointestinal (GI) absorption. The encapsulated peptides can withstand enzymatic degradation and various pH. Chitosan-based nanoparticles can also be modified by ligand conjugation to the surface of nanoparticle for transcellular absorption and specific-targeted delivery of macromolecules to the tissue of interest. Current research suggests that chitosan-based nanoparticles can deliver therapeutic peptide for the treatment of several medical conditions such as diabetes, bacterial infection and cancer. This review summarises the role of chitosan in oral nanoparticle delivery and identifies the clinical application of peptide-loaded chitosan-based nanoparticles.

  12. Recent trends in drug delivery system using protein nanoparticles.

    Science.gov (United States)

    Sripriyalakshmi, S; Jose, Pinkybel; Ravindran, Aswathy; Anjali, C H

    2014-09-01

    Engineered nanoparticles that can facilitate drug formulation and passively target tumours have been under extensive research in recent years. These successes have driven a new wave of significant innovation in the generation of advanced particles. The fate and transport of diagnostic nanoparticles would significantly depend on nonselective drug delivery, and hence the use of high drug dosage is implemented. In this perspective, nanocarrier-based drug targeting strategies can be used which improve the selective delivery of drugs to the site of action, i.e. drug targeting. Pharmaceutical industries majorly focus on reducing the toxicity and side effects of drugs but only recently it has been realised that carrier systems themselves may pose risks to the patient. Proteins are compatible with biological systems and they are biodegradable. They offer a multitude of moieties for modifications to tailor drug binding, imaging or targeting entities. Thus, protein nanoparticles provide outstanding contributions as a carrier for drug delivery systems. This review summarises recent progress in particle-based therapeutic delivery and discusses important concepts in particle design and biological barriers for developing the next generation of particles drug delivery systems.

  13. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  14. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  15. Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching

    International Nuclear Information System (INIS)

    Droval, G; Feller, J F; Salagnac, P; Glouannec, P

    2008-01-01

    In classical self-limiting heating devices where conductive polymer composites (CPC) are used, one of the main problems to solve is the stability of properties with time. Different strategies are proposed to stabilize the morphologies during the structuring of these heterogeneous materials. Some of them are well known in the use of co-continuous polymer blends or confinement but the interest of this work is to combine different structuring methods such as volume exclusion, adsorption and multiple percolations to achieve original properties. In fact the CPC developed exhibit enhanced heat dissipation and thermal stability (up to 180 °C), independent adjustability of electrical and thermal conductivity, and a sharp and large amplitude PTC effect. These original results were obtained with a co-continuous structure associating a thermally conductive polymer phase (syndiotactic poly(styrene) (sPS) filled with aluminum oxide (Al 2 O 3 ) or boron nitride (BN)) with an electrically conductive polymer phase (high-density poly(ethylene)) (hdPE) filled with carbon nanoparticles (CNP) in appropriate proportions

  16. Formulation design for target delivery of iron nanoparticles to TCE zones.

    Science.gov (United States)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  17. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles

    NARCIS (Netherlands)

    Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J.

    2006-01-01

    Blends of nanocryst. zinc oxide nanoparticles (nc-ZnO) and regioregular poly(3-hexylthiophene) (P3HT) processed from soln. have been used to construct hybrid polymer-metal oxide bulk-heterojunction solar cells. Thermal annealing of the spin-cast films significantly improves the solar-energy

  18. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    Science.gov (United States)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  19. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    Science.gov (United States)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-03-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  20. Multifunctional Polymer Nanoparticles for Dual Drug Release and Cancer Cell Targeting

    Directory of Open Access Journals (Sweden)

    Yu-Han Wen

    2017-06-01

    Full Text Available Multifunctional polymer nanoparticles have been developed for cancer treatment because they could be easily designed to target cancer cells and to enhance therapeutic efficacy according to cancer hallmarks. In this study, we synthesized a pH-sensitive polymer, poly(methacrylic acid-co-histidine/doxorubicin/biotin (HBD in which doxorubicin (DOX was conjugated by a hydrazone bond to encapsulate an immunotherapy drug, imiquimod (IMQ, to form dual cancer-targeting and dual drug-loaded nanoparticles. At low pH, polymeric nanoparticles could disrupt and simultaneously release DOX and IMQ. Our experimental results show that the nanoparticles exhibited pH-dependent drug release behavior and had an ability to target cancer cells via biotin and protonated histidine.

  1. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A; Mangal, Rahul; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2

  2. Ciprofloxacin-loaded PLGA nanoparticles against Cystic Fibrosis P. aeruginosa Lung Infections.

    OpenAIRE

    Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc

    2017-01-01

    Current pulmonary treatments against Pseudomonasaeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with c...

  3. Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV

    NARCIS (Netherlands)

    Offermans, T.; Hal, van P.A.; Meskers, S.C.J.; Koetse, M.M.; Janssen, R.A.J.

    2005-01-01

    The photophysical properties of a solution processed blend of two semiconducting polymers with electron donating and electron accepting properties, respectively, as used in polymer photovoltaic devices have been investigated. We show that in the binary mixture of

  4. Critical evaluation of biodegradable polymers used in nanodrugs

    Science.gov (United States)

    Marin, Edgar; Briceño, Maria Isabel; Caballero-George, Catherina

    2013-01-01

    Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed. PMID:23990720

  5. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric; Mondal, Rajib; Bettinger, Christopher J.; Sok, Seihout; Toney, Michael F.; Bao, Zhenan

    2010-01-01

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Hassani Najafabadi, Alireza [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Abdouss, Majid, E-mail: phdabdouss44@aut.ac.ir [Department of Chemistry, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran (Iran, Islamic Republic of); Faghihi, Shahab [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-08-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ({sup 1}HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and {sup 1}HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. - Highlights: • A facile novel method for conjugating methoxy polyethylene glycol (mPEG) to chitosan is introduced. • Fabricated PEG

  8. Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water soluble drugs: Ibuprofen

    International Nuclear Information System (INIS)

    Hassani Najafabadi, Alireza; Abdouss, Majid; Faghihi, Shahab

    2014-01-01

    Current methods for preparation of PEGylated chitosan have limitations such as harsh de protecting step and several purification cycles. In the present study, a facile new method for conjugating methoxy polyethylene glycol (mPEG) to chitosan under mild condition is introduced to improve water solubility of chitosan and control the release of poor water soluble drugs. The method consists of chitosan modification by grafting the C6 position of chitosan to mPEG which is confirmed by Fourier transformed-infrared (FT-IR) and proton nuclear magnetic resonance ( 1 HNMR) analyses. The amine groups at the C2 position of chitosan are protected using sodium dodecylsulfate (SDS) which is removed by dialyzing the precipitation against Tris solution. The chemical structure of the prepared polymer is characterized by FTIR and 1 HNMR. The synthesized polymer is then employed to prepare nanoparticles which are characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), scanning electron microscopy (SEM), and dynamic light scattering (DLS) for their size and morphology. The nanoparticles are used for encapsulation of ibuprofen followed by in vitro release investigation in gastrointestinal and simulated biological fluids. The chitosan nanoparticles are used as control. The PEGylated nanoparticles show a particle size of 80 nm with spherical morphology. The results clearly show that drug release from PEGylated chitosan nanoparticles is remarkably slower than chitosan. In addition, drug encapsulation and encapsulation efficiency in PEGylated nanoparticles are dependent on the amount of drug added to the formulation being significantly higher than chitosan nanoparticles. This study provides an efficient, novel, and facile method for preparing a nano carrier system for delivery of water insoluble drugs. - Highlights: • A facile novel method for conjugating methoxy polyethylene glycol (mPEG) to chitosan is introduced. • Fabricated PEG-grafted chitosan

  9. Structural studies of thin films of semiconducting nanoparticles in polymer matrices

    International Nuclear Information System (INIS)

    Di Luccio, Tiziana; Piscopiello, Emanuela; Laera, Anna Maria; Antisari, Marco Vittori

    2007-01-01

    Ordered films of nanoscale materials are issue of wide interest for applications in several fields, such as optics, catalysis, and bioelectronics. In particular, semiconducting nanoparticles incorporation in a processable polymer film is an easy way to manipulate such materials for their application. We deposited thin layers of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles embedded in a thermoplastic cyclo-olephin copolymer (COC) with elevated optical transparency and highly bio-compatible. The nanoparticles were obtained by thiolate precursors previously dispersed in the polymer upon thermal treatment at temperatures ranging between 200 and 300 deg. C depending on the desired size. The precursor/polymer solutions were spin-coated in order to get thin films. The spinning conditions were changed in order to optimise the layer thickness and uniformity. The samples were mainly characterised by X-ray reflectivity (XRR) and by high-resolution transmission electron microscopy (HRTEM) analyses. The thinnest layer we have deposited is 8 nm thick, as evaluated by XRR. The HRTEM measurements showed that the nanoparticles have quasi-spherical shape without evident microstructural defects. The size of the nanoparticles depends on the annealing temperature, e.g. at 232 deg. C the size of the CdS nanoparticles is about 4-5 nm

  10. Structural studies of thin films of semiconducting nanoparticles in polymer matrices

    Energy Technology Data Exchange (ETDEWEB)

    Di Luccio, Tiziana [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: tiziana.diluccio@portici.enea.it; Piscopiello, Emanuela; Laera, Anna Maria [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy); Antisari, Marco Vittori [ENEA, Centro Ricerche Casaccia, Via Anguillarese 301, I-00060 S. Maria di Galeria (Roma) (Italy)

    2007-09-15

    Ordered films of nanoscale materials are issue of wide interest for applications in several fields, such as optics, catalysis, and bioelectronics. In particular, semiconducting nanoparticles incorporation in a processable polymer film is an easy way to manipulate such materials for their application. We deposited thin layers of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles embedded in a thermoplastic cyclo-olephin copolymer (COC) with elevated optical transparency and highly bio-compatible. The nanoparticles were obtained by thiolate precursors previously dispersed in the polymer upon thermal treatment at temperatures ranging between 200 and 300 deg. C depending on the desired size. The precursor/polymer solutions were spin-coated in order to get thin films. The spinning conditions were changed in order to optimise the layer thickness and uniformity. The samples were mainly characterised by X-ray reflectivity (XRR) and by high-resolution transmission electron microscopy (HRTEM) analyses. The thinnest layer we have deposited is 8 nm thick, as evaluated by XRR. The HRTEM measurements showed that the nanoparticles have quasi-spherical shape without evident microstructural defects. The size of the nanoparticles depends on the annealing temperature, e.g. at 232 deg. C the size of the CdS nanoparticles is about 4-5 nm.

  11. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    Science.gov (United States)

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  13. Ordered mesoporous polymer-silica hybrid nanoparticles as vehicles for the intracellular controlled release of macromolecules.

    Science.gov (United States)

    Kim, Tae-Wan; Slowing, Igor I; Chung, Po-Wen; Lin, Victor Shang-Yi

    2011-01-25

    A two-dimensional hexagonal ordered mesoporous polymer-silica hybrid nanoparticle (PSN) material was synthesized by polymerization of acrylate monomers on the surface of SBA-15 mesoporous silica nanoparticles. The structure of the PSN material was analyzed using a series of different techniques, including transmission electron microscopy, powder X-ray diffraction, and N(2) sorption analysis. These structurally ordered mesoporous polymer-silica hybrid nanoparticles were used for the controlled release of membrane-impermeable macromolecules inside eukaryotic cells. The cellular uptake efficiency and biocompatibility of PSN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC(50)) of PSN is very high (>100 μg/mL per million cells), while the median effective concentration for the uptake (EC(50)) of PSN is low (EC(50) = 4.4 μg/mL), indicating that PSNs are fairly biocompatible and easily up-taken in vitro. A membrane-impermeable macromolecule, 40 kDa FITC-Dextran, was loaded into the mesopores of PSNs at low pH. We demonstrated that the PSN material could indeed serve as a transmembrane carrier for the controlled release of FITC-Dextran at the pH level inside live HeLa cells. We believe that further developments of this PSN material will lead to a new generation of nanodevices for intracellular controlled delivery applications.

  14. Formation of a ground-state charge-transfer complex in Polyfluorene//[6,6]-Phenyl-C61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Benson-Smith, J.J.; Bradley, D.D.C.; Nelson, J. [Department of Physics, Imperial College London, London SW7 2BW (United Kingdom); Goris, L.; Vandewal, K.; Haenen, K.; Manca, J.V.; Vanderzande, D. [Institute for Materials Research, Limburgs Universitair Centrum, Wetenschapspark 1, 3590 Diepenbeek (Belgium)

    2007-02-12

    Evidence is presented for the formation of a weak ground-state charge-transfer complex in the blend films of poly[9,9-dioctylfluorene-co-N-(4-methoxyphenyl)diphenylamine] polymer (TFMO) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester (PCBM), using photothermal deflection spectroscopy (PDS) and photoluminescence (PL) spectroscopy. Comparison of this polymer blend with other polyfluorene polymer/PCBM blends shows that the appearance of this ground-state charge-transfer complex is correlated to the ionization potential of the polymer, but not to the optical gap of the polymer or the surface morphology of the blend film. Moreover, the polymer/PCBM blend films in which this charge-transfer complex is observed also exhibit efficient photocurrent generation in photovoltaic devices, suggesting that the charge-transfer complex may be involved in charge separation. Possible mechanisms for this charge-transfer state formation are discussed as well as the significance of this finding to the understanding and optimization of polymer blend solar cells. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  16. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin.

    Science.gov (United States)

    Herranz-Blanco, Bárbara; Shahbazi, Mohammad-Ali; Correia, Alexandra R; Balasubramanian, Vimalkumar; Kohout, Tomáš; Hirvonen, Jouni; Santos, Hélder A

    2016-08-01

    Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ji Young Yhee

    2016-09-01

    Full Text Available Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD, cystic fibrosis (CF, idiopathic pulmonary fibrosis (IPF, and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.

  18. Porous polymer coatings on metal microneedles for enhanced drug delivery

    Science.gov (United States)

    Ullah, Asad; Kim, Chul Min; Kim, Gyu Man

    2018-04-01

    We present a simple method to coat microneedles (MNs) uniformly with a porous polymer (PLGA) that can deliver drugs at high rates. Stainless steel (SS) MNs of high mechanical strength were coated with a thin porous polymer layer to enhance their delivery rates. Additionally, to improve the interfacial adhesion between the polymer and MNs, the MN surface was modified by plasma treatment followed by dip coating with polyethyleneimine, a polymer with repeating amine units. The average failure load (the minimum force sufficient for detaching the polymer layer from the surface of SS) recorded for the modified surface coating was 25 N, whereas it was 2.2 N for the non-modified surface. Calcein dye was successfully delivered into porcine skin to a depth of 750 µm by the porous polymer-coated MNs, demonstrating that the developed MNs can pierce skin easily without deformation of MNs; additional skin penetration tests confirmed this finding. For visual comparison, rhodamine B dye was delivered using porous-coated and non-coated MNs in gelatin gel which showed that delivery with porous-coated MNs penetrate deeper when compared with non-coated MNs. Finally, lidocaine and rhodamine B dye were delivered in phosphate-buffered saline (PBS) medium by porous polymer-coated and non-coated MNs. For rhodamine B, drug delivery with the porous-coated MNs was five times higher than that with the non-coated MNs, whereas 25 times more lidocaine was delivered by the porous-coated MNs compared with the non-coated MNs.

  19. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.

    Science.gov (United States)

    Rother, Martin; Nussbaumer, Martin G; Renggli, Kasper; Bruns, Nico

    2016-11-07

    Protein cages are hollow protein nanoparticles, such as viral capsids, virus-like particles, ferritin, heat-shock proteins and chaperonins. They have well-defined capsule-like structures with a monodisperse size. Their protein subunits can be modified by genetic engineering at predetermined positions, allowing for example site-selective introduction of attachment points for functional groups, catalysts or targeting ligands on their outer surface, in their interior and between subunits. Therefore, protein cages have been extensively explored as functional entities in bionanotechnology, as drug-delivery or gene-delivery vehicles, as nanoreactors or as templates for the synthesis of organic and inorganic nanomaterials. The scope of functionalities and applications of protein cages can be significantly broadened if they are combined with synthetic polymers on their surface or within their interior. For example, PEGylation reduces the immunogenicity of protein cage-based delivery systems and active targeting ligands can be attached via polymer chains to favour their accumulation in diseased tissue. Polymers within protein cages offer the possibility of increasing the loading density of drug molecules, nucleic acids, magnetic resonance imaging contrast agents or catalysts. Moreover, the interaction of protein cages and polymers can be used to modulate the size and shape of some viral capsids to generate structures that do not occur with native viruses. Another possibility is to use the interior of polymer cages as a confined reaction space for polymerization reactions such as atom transfer radical polymerization or rhodium-catalysed polymerization of phenylacetylene. The protein nanoreactors facilitate a higher degree of control over polymer synthesis. This review will summarize the hybrid structures that have been synthesized by polymerizing from protein cage-bound initiators, by conjugating polymers to protein cages, by embedding protein cages into bulk polymeric

  20. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium

    Directory of Open Access Journals (Sweden)

    Shalil Khanal

    2016-08-01

    Full Text Available Poly(lactic-co-glycolic acid (PLGA based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS, a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS, a nonsteroidal anti-inflammatory drug (NSAID, to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM imaging and dynamic light scattering (DLS measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications.