WorldWideScience

Sample records for polymer systems prepared

  1. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  2. Preparation and rheological behavior of polymer-modified asphalts

    Science.gov (United States)

    Yousefi, Ali Akbar

    1999-09-01

    Different materials and methods were used to prepare and stabilize polymer-modified asphalts. Addition of thermoplastic elastomers improved some technically important properties of asphalt. Due to inherent factors like large density difference between asphalt and polyethylene, many physical methods in which the structure of asphalt is unchanged, failed to stabilize this system. The effect of addition of copolymers and a pyrolytic oil residue derived from used tire rubber were also studied and found to be ineffective on the storage stability of the polymer-asphalt emulsions while high and moderate temperature properties of the asphalt were found to be improved. Finally, the technique of catalytic grafting of polymer on the surface of high-density particles (e.g. carbon black) was used to balance the large density difference between asphalt and polymer. The resulting polymer-asphalts were stable at high temperatures and showed enhanced properties at low and high temperatures.

  3. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  4. Polymers preparation under methane plasma environment

    International Nuclear Information System (INIS)

    Yang Wubao; Cai Zeyong; Zhao Zhen; Qi Lu

    2008-01-01

    Polymers are prepared under methane plasma environment, and appear to be white, slightly yellow, soft thread-like powders and floc under optical microscope. The polymers contain --CH 3 , -CH 2 , C-O, -C=C-,-OH etc. functional groups, but no simplex carbons. It is found that the solubility of this polymer is less than 0.1mg·ml -1 in different organic solvent. The productivity of the polymers is higher under a plasma environment with higher ionization, higher polarization of neutral gas, lower environment temperature and less permittivity. (authors)

  5. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    Science.gov (United States)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  6. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  7. Preparation of conjugated polymer suspensions by using ultrasonic atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Kazuya, E-mail: tada@eng.u-hyogo.ac.jp; Onoda, Mitsuyoshi

    2010-11-30

    The electrophoretic deposition is a method useful to prepare conjugated polymer films for electronic devices. This method provides high material recovery rate on the substrate from the suspension, in contrast to the conventional spin-coating in which most of the material placed on the substrate is blown away. Although manual reprecipitation technique successfully yields suspensions of various conjugated polymers including polyfluorene derivatives, it is favorable to control the preparation process of suspensions. In this context, this paper reports preliminary results on the preparation of suspension of conjugated polymer by using an ultrasonic atomizer. While the resultant films do not show particular difference due to the preparation methods of the suspension, the electric current profiles during the electrophoretic deposition suggests that the ultrasonic atomization of polymer solution prior to be mixed with poor solvent results in smaller and less uniform colloidal particles than the conventional manual pouring method.

  8. A Novel Preparation Method of Two Polymer Dyes with Low Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dongjun Lv

    2017-02-01

    Full Text Available A new preparation method of polymer dyes was developed to improve both the grafting degree of the azo dyes onto O-carboxymethyl chitosan (OMCS and the water solubility of prepared polymer dyes. Firstly, the coupling compound of two azo edible colorants, sunset yellow (SY and allura red (AR, was grafted onto OMCS, and then coupled with their diazonium salt. The chemical structure of prepared polymer dyes was determined by Fourier transform-infrared spectroscopy and 1H-NMR, and the results showed that the two azo dyes were successfully grafted onto OMCS. The grafting degree onto OMCS and the water solubility of polymer dyes were tested, and the results showed that they were both improved as expected. The UV-vis spectra analysis results showed that the prepared polymer dyes showed similar color performance with the original azo dyes. Eventually, the cytotoxicity of prepared polymer dyes was tested and compared with the original azo dyes by a cytotoxicity test on human liver cell lines LO2, and the results showed that their grafting onto OMCS significantly reduced the cytotoxicity.

  9. PREPARATION OF A POLYMER ARTICLE FOR SELECTIVE METALLIZATION

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention relates to the field of selective metallization, and in particular to preparing a polymer article for selective metallization by submerging the article in a first liquid, and while submergedirradiate the article by a laser beam the area of the article on which the metal...... is to be deposited. An activation step, prior to the selective metallization, comprises submerging the article in an activation liquid for depositing seedparticles in the selected area. The irradiation of the selected area is proportionate so as to cause a temporary meltingof the polymer in the surface...... of the selected area of the polymer article. The invention is advantageous in that the preparation may be performed with a relatively high scan rate across the polymer article, and in that a quite limited use of toxic chemicals....

  10. Controlled release system for ametryn using polymer microspheres: Preparation, characterization and release kinetics in water

    International Nuclear Information System (INIS)

    Grillo, Renato; Pereira, Anderson do Espirito Santo; Ferreira Silva de Melo, Nathalie; Porto, Raquel Martins; Feitosa, Leandro Oliveira; Tonello, Paulo Sergio; Dias Filho, Newton L.; Rosa, Andre Henrique; Lima, Renata; Fraceto, Leonardo Fernandes

    2011-01-01

    The purpose of this work was to develop a modified release system for the herbicide ametryn by encapsulating the active substance in biodegradable polymer microparticles produced using the polymers poly(hydroxybutyrate) (PHB) or poly(hydroxybutyrate-valerate) (PHBV), in order to both improve the herbicidal action and reduce environmental toxicity. PHB or PHBV microparticles containing ametryn were prepared and the efficiencies of herbicide association and loading were evaluated, presenting similar values of approximately 40%. The microparticles were characterized by scanning electron microscopy (SEM), which showed that the average sizes of the PHB and PHBV microparticles were 5.92 ± 0.74 μm and 5.63 ± 0.68 μm, respectively. The ametryn release profile was modified when it was encapsulated in the microparticles, with slower and more sustained release compared to the release profile of pure ametryn. When ametryn was associated with the PHB and PHBV microparticles, the amount of herbicide released in the same period of time was significantly reduced, declining to 75% and 87%, respectively. For both types of microparticle (PHB and PHBV) the release of ametryn was by diffusion processes due to anomalous transport (governed by diffusion and relaxation of the polymer chains), which did not follow Fick's laws of diffusion. The results presented in this paper are promising, in view of the successful encapsulation of ametryn in PHB or PHBV polymer microparticles, and indications that this system may help reduce the impacts caused by the herbicide, making it an environmentally safer alternative.

  11. Preparation of pinewood/polymer/composites using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ajji, Zaki [Polymer Technology Division, Department of Radiation Technology, Atomic Energy Commission, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: atomic@aec.org.sy

    2006-09-15

    Wood/polymer composites (WPC) have been prepared from pinewood with different compounds using gamma irradiation: butyl acrylate, butyl methacrylate, styrene, acrylamide, acrylonitrile, and unsaturated polyester styrene resin. The polymer loading was determined with respect to the compound concentration and the irradiation dose. The polymer loading increases generally with increase in the monomer or polymer concentration. Tensile and compression strength have been improved in the four cases, but no improvement was observed using unsaturated polyester styrene resin or acrylamide.

  12. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    International Nuclear Information System (INIS)

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  13. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    International Nuclear Information System (INIS)

    Gu Yu; Li Qiang

    2015-01-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. (paper)

  14. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengyu, E-mail: liusytyut@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Key Laboratory of In-situ Property-improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Suhong, E-mail: zhangsh04@sina.com [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Jianying; Wen, Jing; Qiao, Yan [Department of Mineral Processing, College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-01-15

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  15. Preparation and properties of the magnetic absorbent polymer via the chemical transformation process

    International Nuclear Information System (INIS)

    Liu, Shengyu; Zhang, Suhong; Guo, Jianying; Wen, Jing; Qiao, Yan

    2017-01-01

    Magnetic polyacrylic acid sodium polymer (MPAAS) was prepared by chemical transformation method. Key parameters were investigated in the synthesis process of the magnetic polymer and an optimum preparation condition was gained. The structure of the magnetic polymer was characterized by X-ray diffraction (XRD), Fourier transform infrared spectrosocopy (FTIR) and scanning electron microscope (SEM). Magnetic property of the magnetic polymer was measured by the magnet and superconducting quantum interference device (SQUID). Both the swelling ratio and kinetics and the water retention ratio and kinetics were investigated. Based on the results, it can be gained that both swelling rate and equilibrium swelling rate were lowered after magnetization while the water retention ability of the magnetic polymer is stronger than that of the polymer. - Highlights: • The preparation mechanism of the magnetic polymer was proposed. • The magnetic property of the magnetic polymer was related to reaction conditions. • Swelling ratio and kinetics of polymer and magnetic polymer were studied. • Water retention ratio and kinetics of polymer and magnetic polymer were studied.

  16. Preparation and Characterization of Nonylphenol Magnetic Molecularly Imprinted Polymer

    International Nuclear Information System (INIS)

    Chen, F. Y.; Ba, S. P.; Tang, Y. B.; Wang, X. G.

    2015-01-01

    Nonylphenol (NP) is a toxic xenobiotic compound classified as an endocrine disrupter, which can interface with the hormonal system of numerous organisms, and then cause a series of pathological changes. It is of great significance to remove nonyl phenol from the environment. In this paper, an effective method for the preparation of molecularly imprinted nanoparticles was reported. Firstly, Fe/sub 3/O/sub 4/ at the rate SiO/sub 2/ magnetic carrier material modified by trimethoxysilane was achieved through three-step reaction. After that, the selective magnetic molecularly imprinted polymer sorbent for NP (Fe/sub 3/O/sub 4/ at the rate SiO/sub 2/-MIP) was synthesized by surface molecular imprinting technique, using NP as template, 4-vinyl pyridine(4-Vpy) as functional monomers, ethylene glycol dimethacrylate (EGDMA) as cross linker and azobisisobutyronitrile (AIBN) as initiator. The morphous, composition, structure and performance of polymer adsorbent was characterized by SEM, TEM, FT-IR, XRD, EDS, VSM and nitrogen adsorption-desorption techniques. The results indicated that the polymer adsorbent was successfully prepared. The size of the polymer particle was about 50 nm, the aperture on the surface was 3.71 nm, the BET specific surface area was 61.80 m/sup 2/g and the Langmuir specific surface area was 101.24 m/sup 2/g. The selective adsorption rate for NP of 0.5 mmol/L attained value of 86.5%, and for NP with low concentration (less than 2.0 mg/L), the selective adsorption rate reached more than 90%. The synthesized magnetic molecularly imprinted polymer had higher selective recognition ability towards the template molecule nonylphenol. It has good magnetism and can be rapidly separated after being employed by using adscititious magnetic field. It has potential application value in treatment and enrichment of nonylphenol. (author)

  17. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  18. Electrocatalysts using porous polymers and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2015-04-21

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  19. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Lyutakov, O., E-mail: lyutakoo@vscht.cz; Kalachyova, Y. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Solovyev, A. [Institute of Chemical Process Fundamentals of the ASCR (Czech Republic); Vytykacova, S. [Institute of Chemical Technology, Department of Glass and Ceramics (Czech Republic); Svanda, J.; Siegel, J. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [Institute of Chemical Technology, Department of Biochemistry and Microbiology (Czech Republic); Svorcik, V. [Institute of Chemical Technology, Department of Solid State Engineering (Czech Republic)

    2015-03-15

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  20. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    International Nuclear Information System (INIS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-01-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications

  1. Polymer-Based Novel Lung Targeted Delivery Systems.

    Science.gov (United States)

    Elmowafy, Enas; Osman, Rihab; Ishak, Rania A H

    2017-01-01

    Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  3. A novel approach in preparing polymer/nano-CaCO3 composites

    Institute of Scientific and Technical Information of China (English)

    Zhengying LIU; Runze YU; Mingbo YANG; Jianmin FENG; Wei YANG; Bo YIN

    2008-01-01

    An novel compounding process using nano-CaCO3 aqueous suspension for preparing polymer/ nano-CaCO3 composites with nanoparticles dispersed at the nanoscale is reported. The process is called the mild mixing method. In this method, the pre-dispersed nano-particle suspensions are blended with melting polymers in a weak shearing field using an extruder, followed by removing the water from the vent. The four typical poly-meric nanocomposites were prepared by mild mixing method. The dispersion of nano-CaCO3 in the matrix of the polymer at the nanoscale was confirmed by scanning electron microscopy (SEM). The molecular weights of polycarbonate (PC) and its nanocomposite showed that the degradation had not occurred during the mild mixing processing. The mechanical properties of the composite with 1.5 wt-% nano-CaCO3 improve slightly. It proved that this approach is suitable for the preparation of nano-composites based on both polar and non-polar polymers.

  4. Process for the preparation of a vinylidene chloride polymer composite

    NARCIS (Netherlands)

    2013-01-01

    Process for the preparation of a vinylidene chloride polymer composite comprising a solid particulate encapsulated in the vinylidene chloride polymer. The process comprises providing a dispersion of a solid particulate material in a liquid phase, said dispersion comprising a RAFT/MADIX agent;

  5. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    Science.gov (United States)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  6. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-01-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  7. Preparation and characterization of conjugated polymers made by postpolymerization reactions of alternating polyketones.

    Science.gov (United States)

    Cheng, Chen; Guironnet, Damien; Barborak, James; Brookhart, Maurice

    2011-06-29

    Conjugated polymers possessing a poly(2,5-dimethylene-2,5-dihydrofuran) backbone were prepared through postpolymerization reaction of styrenic polyketones with bromine in one-pot reactions. The modification is proposed to proceed via condensation of two repeating units to form a fully characterized polymer with a poly(2,5-dimethylenetetrahydrofuran) backbone. Subsequent bromination and elimination of HBr yield a polymer with a fully conjugated carbon backbone. The new conjugated polymers were characterized by NMR, IR, and UV-vis spectroscopies and by CV. These polymers have strong absorption in the visible region, with the absorption peaks shifted to the NIR region upon doping with acids. The ease of the synthesis of the starting polyketone and of the modifications allows large-scale preparation of those conjugated polymers.

  8. An Integrated Laboratory Approach toward the Preparation of Conductive Poly(phenylene vinylene) Polymers

    Science.gov (United States)

    Knoerzer, Timm A.; Balaich, Gary J.; Miller, Hannah A.; Iacono, Scott T.

    2014-01-01

    Poly(phenylene vinylene) (PPV) represents an important class of conjugated, conducting polymers that have been readily exploited in the preparation of organic electronic materials. In this experiment, students prepare a PPV polymer via a facile multistep synthetic sequence with robust spectroscopic evaluation of synthetic intermediates and the…

  9. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  10. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  11. Characteristics of porous polymer composite columns prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao; Asami, Kazuhiro; Suzuki, Shuichi

    1989-01-01

    Porous polymer composite columns having porous structure were prepared by radiation cast-polymerization of hydrophilic monomers at low temperature and their characteristics were studied. The porosity of the polymer increased with decreasing monomer concentration. The elution time of water in the polymer column increased with increasing monomer concentration and with decreasing irradiation temperature. The elution time was dependent on the degree of hydration of the polymer. The polymer with a degree of hydration of 0.2 to 0.4 gave the minimum elution time. The elution time decreased with the addition of porous inorganic substances. (author)

  12. Development of technology for the large-scale preparation of 60Co polymer film source

    International Nuclear Information System (INIS)

    Udhayakumar, J.; Pardeshi, G.S.; Gandhi, Shymala S.; Chakravarty, Rubel; Kumar, Manoj; Dash, Ashutosh; Venkatesh, Meera

    2008-01-01

    60 Co sources (∼37 kBq) in the form of a thin film are widely used in position identification of perforation in offshore oil-well explorations. This paper describes the large-scale preparation of such sources using a radioactive polymer containing 60 Co. 60 Co was extracted into chloroform containing 8-hydroxyquinoline. The chloroform layer was mixed with polymethyl methacrylate (PMMA) polymer. A large film was prepared using the polymer solution containing the complex. The polymer film was then cut into circular sources, mounted on a source holder and supplied to various users

  13. The Application of Template Selectophores for the Preparation of Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Basil Danylec

    2015-09-01

    Full Text Available Molecularly imprinted polymers are versatile materials with wide application scope for the detection, capture and separation of specific compounds present in complex feed stocks. A major challenge associated with their preparation has been the need to sacrifice one mole equivalent of the template molecule to generate the complementary polymer cavities that selectively bind the target molecule. Moreover, template molecules can often be difficult to synthesise, expensive or lack stability. In this study, we describe a new approach, directed at the use of synthetic selectophores, chosen as readily prepared and low cost structural analogues with recognition groups in similar three-dimensional arrangements as found in the target molecule. To validate the approach, a comparative study of selectophores related to the polyphenolic compound (E-resveratrol has been undertaken using traditional and green chemical synthetic approaches. These molecular mimic compounds were employed as polymer templates and also as binding analytes to interrogate the recognition sites associated with the molecularly imprinted polymers. Importantly, the study confirms that the use of selectophores has the potential to confer practical advantages, including access to more efficient methods for selection and preparation of suitable template molecules with a broader range of molecular diversity, as well as delivering imprinted polymers capable of recognizing the target compound and structurally related products.

  14. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  15. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  16. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  17. Conjugated Polymers Atypically Prepared in Water

    Science.gov (United States)

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  18. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  19. Gamma radiation-induced preparation of some acrylamide polymers for treatment of waste water

    International Nuclear Information System (INIS)

    Siyam, T.; Hanna, E.

    1992-01-01

    Water-soluble acrylamide copolymers such as: poly (acrylamide-co-sodium) [P(AM-CO-AA Na)], (acrylamide-CO-diallylethylamine-hydrochloride) [P(AM-CO-DAEA-H Cl)] and poly (acrylamide-sodium acrylate-diallylethylamine-hydrochloride) [P(AM-AANa-DAEA-H Cl)] were prepared by gamma radiation-initiated polymerization of the corresponding co monomer or termonomer solutions. The prepared copolymers were used in the treatment of water (metal sulphate solutions). It was found that the polymer efficiency increases with increasing the PH-value and the polymer concentration. The efficiency of the different polymers compared in what concerns elimination of Cu++ and Mg++. The polymer dosage depends on the hydration sheath of the cation. The mechanism for interaction of each polymeric chains with the ions of waste water was also discussed. 3 figs, 1 tab

  20. Sensing of environmental pollutant by conductive composite from prepared from hyperbranched polymer-grafted carbon black and crystalline polymer

    International Nuclear Information System (INIS)

    Taniguchi, Y.; Chen, J.; Ogawa, M.; Yokoyama, K.; Shimizu, H.; Tsubokawa, N.; Maekawa, Y.; Yoshida, M.

    2002-01-01

    Complete text of publication follows. The hyperbranched (HB) polymer-grafted (PG) carbon blacks (CB) have the possibility of utilizing as a support of catalyst and enzyme, and a curing agent of epoxy resin, because they have much terminal amino or hydroxyl groups. The postgrafting of crystalline polymer onto HB PG CB and the sensing of environmental pollutant by the conductive composite prepared from the polymer-postgrafted CB was discussed. The grafting of poly(amidoamide) onto CB surface was achieved by repeating either Michael addition of methyl acrylate to amino group on the surface or the amidation of the resulting terminal methyl ester group with ethylene diamine. HB polyester onto CB surface was grafted by stepwise growth of 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) from surface carboxyl and hydroxyl groups on CB as a core in the presence of p-toluenesulfonic acid (p-TSA). The one-pot grafting of HB polyester onto CB as core was also achieved by the polycondensation of bis-MPA in the presence of p-TSA. Postgrafting of crystalline polymer onto HB polymer-grafted CB was achieved by the reaction of terminal amino or hydroxyl groups of grafted chain with COCl-terminated crystalline polymer. The electric resistance of the composite prepared from crystalline polymer-postgrafted CB was found to increase drastically in hexane, containing environmental pollutant, such as chloroform and trichloroethane, and returned immediately to the initial resistance when it was transferred into pure hexane. Based on the above results, it is concluded that the composite can be used as a novel sensor for environmental pollutant in solution

  1. Ceramic sealants prepared by polymer pyrolysis

    Science.gov (United States)

    Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung

    2011-02-01

    The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed

  2. Preparation of mixed molecularly imprinted polymer magnetic nanoparticles and its application in separation of Chinese traditional medicine

    Science.gov (United States)

    Xie, Yihui; Ma, Yajuan; Bai, Wenting; Zhu, Xiaofang; Liu, Min; Huang, Liping

    2017-08-01

    A mixed imprinted polymer which can rapidly adsorb all flavonoids from raspberry extract was prepared and recycled. The hybrid molecular surface imprinted polymers were prepared by using quercetin as the template molecule and Fe3O4 magnetic nanospheres as the carrier. The molecular imprinting polymer was prepared by using the "initial template molecule, molecularly imprinted polymer, mixed template molecule, molecularly imprint ted polymers (MIPS)". The adsorption performance and durability of the hybrid molecularly imprinted polymers were investigated by using the fingerprints of the ethyl acetate fraction of raspberry as an index. The adsorption of flavonoids from raspberry extract, lindenoside, cis-lindenin, quercetin, kaempferol and other flavonoids was completely adsorbed by mixed molecular-imprinted polymer, and the other components were basically adsorbed. When Mix-IMPs were repeatedly used 10 times, the fingerprints showed that the content and content of flavonoids were basically the same. The experimental results show that Mix-IMPs has good adsorption performance, can be recycled and used for rapid enrichment of flavonoids in raspberry.

  3. NATO Advanced Study Institute on Preparation and Properties of Stereoregular Polymers

    CERN Document Server

    Ciardelli, Francesco

    1980-01-01

    This book contains the texts of the main lectures presented at the NATO Advanced Studies Institute on "Advances in Preparation and Properties of Stereoregular Polymers" held at Tirrenia near Pisa, Italy, from October 3 to 14, 1978. A few contributed papers have also been included because they were concerned with topics not included in the main lectures. The primary objective of the Institute was to assist in the further development of stereoregular polymers because of the ever-increasing demand for new products with exceptional chemical and physical properties. This need has reawakened interest in the field. Indeed there is now a rapidly increasing activity in the study of stereoregular polymerization and the preparation of structurally-ordered polymers with the aim of achieving apprecia­ ble improvements in existing polymeric materials through new developments in synthesis and properties as well as in discovering new polymeric structures. In order to achieve these objectives, a broad interdiscipli­ nary co...

  4. Synthesis and application of magnetic molecularly imprinted polymers in sample preparation.

    Science.gov (United States)

    Huang, Shuyao; Xu, Jianqiao; Zheng, Jiating; Zhu, Fang; Xie, Lijun; Ouyang, Gangfeng

    2018-04-12

    Magnetic molecularly imprinted polymers (MMIPs) have superior advantages in sample pretreatment because of their high selectivity for target analytes and the fast and easy isolation from samples. To meet the demand of both good magnetic property and good extraction performance, MMIPs with various structures, from traditional core-shell structures to novel composite structures with a larger specific surface area and more accessible binding sites, are fabricated by different preparation technologies. Moreover, as the molecularly imprinted polymer (MIP) layers determine the affinity, selectivity, and saturated adsorption amount of MMIPs, the development and innovation of the MIP layer are attracting attention and are reviewed here. Many studies that used MMIPs as sorbents in dispersive solid-phase extraction of complex samples, including environmental, food, and biofluid samples, are summarized. Graphical abstract The application of magnetic molecularly imprinted polymers (MIPs) in the sample preparation procedure improves the analytical performances for complex samples. MITs molecular imprinting technologies.

  5. Preparation of polymer/LDH nanocomposite by UV-initiated photopolymerization of acrylate through photoinitiator-modified LDH precursor

    International Nuclear Information System (INIS)

    Hu, Lihua; Yuan, Yan; Shi, Wenfang

    2011-01-01

    Graphical abstract: This is the HR-TEM micrograph of UV cured nanocomposite at 5 wt% LDH-2959 loading for a-5 sample. The dark lines are the intersections of LDH platelets. It can be seen that samples a-5 dispersed in the polymer matrix and lost the ordered stacking-structure and show the completely exfoliation after UV curing. This can be explained by the fact that the sample a-5 only containing LDH-2959 exhibited a relative lower photopolymerization rate, which was propitious to further expand the LDH intergallery to form the exfoliated structure. Research highlights: → The UV cured polymer/LDH nanocomposites were prepared through the photopolymerization initiated by the photoinitiator-modified LDH precursor, LDH-2959. → The exfoliated UV cured nanocomposites were achieved in the presence of LDH-2959 only. However, the UV cured nanocomposites prepared using both LDH-2959 and Irgacure 2959 showed the intercalated structure. → Compared with the pure polymer, the exfoliated polymer/LDH nanocomposite showed remarkable enhanced thermal stability and mechanical properties because of their well dispersion in the polymer matrix. -- Abstract: The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate systems through an Irgacure 2959-modified LDH precursor (LDH-2959) as a photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. For comparison, the intercalated polymer/LDH nanocomposite was obtained with additive Irgacure 2959 addition. From the X-ray diffraction (XRD) measurements and HR-TEM observations, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix at 5 wt% LDH-2959 loading. The glass

  6. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  7. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  8. Preparation of alanine/ESR dosimeter using different binder of polymer blend

    International Nuclear Information System (INIS)

    Razzak, M.T.; Sudiro, Sutjipto; Sudradjat, Adjat; Waskito, Ashar; Djamili, M.F.

    1995-01-01

    Different composition of polymer blend of low density polyethylene (PE) and polystyrene (PS) have been studied to be used as a binder for the preparation of Alanine/ESR dosimeter. The polymer binder and Alanine powder were blended in Laboplastomil Mixer at 140 o C and then it was pressed into a plastic film of 0.50 mm thickness. The film was cut into sample size of 250 mm x 2.5 mm and irradiated by gamma rays from a cobalt-60 source at different dose and dose rate. It was found that a blend of Alanine, PS and PE in composition of 60:30:10 is appropriate to prepare the Alanine/ESR dosimeter. (author)

  9. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  10. Electro-Optical and Electrochemical Properties of a Conjugated Polymer Prepared by the Cyclopolymerization of Diethyl Dipropargylmalonate

    Directory of Open Access Journals (Sweden)

    Yeong-Soon Gal

    2008-01-01

    Full Text Available The electro-optical and electrochemical properties of poly(diethyl dipropargylmalonate were measured and discussed. Poly(diethyl dipropargylmalonate prepared by (NBDPdCl2 catalyst was used for study. The chemical structure of poly(diethyl dipropargylmalonate was characterized by such instrumental methods as NMR (1H-, 13C-, IR, and UV-visible spectroscopies to have the conjugated cyclopolymer backbone system. The microstructure analysis of polymer revealed that this polymer have the six-membered ring moieties majorly. The photoluminescence peak of polymer was observed at 543 nm, which is corresponded to the photon energy of 2.51 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors between the doping and undoping peaks. It was found that the kinetics of the redox process of this conjugated cyclopolymer might be controlled by the diffusion-control process from the experiment of the oxidation current density of polymer versus the scan rate.

  11. Method of preparing Ru-immobilized polymer-supported catalyst for hydrogen generation from NaBH{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Wen; Chen, Chuh-Yung; Huang, Yao-Hui [Department of Chemical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China)

    2009-03-15

    A method of preparing a polymer-supported catalyst for hydrogen generation is introduced in this article. This polymer-supported catalyst is the structure of ruthenium (Ru) nanoparticle immobilized on a monodisperse polystyrene (PSt) microsphere. The diameter of the Ru nanoparticle is around 16 nm, and the diameter of the PSt microsphere is 2.65 um. This preparation method is accomplished by two unique techniques: one is sodium lauryl sulfate/sodium formaldehyde sulfoxylate (SLS/SFS) interface-initiated system, the other is 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) chelating monomer. By taking advantage of these two techniques, Ru{sup 3+} ion will be chelated and then reduced to Ru{sup (0)} nanoparticle over PSt surface predominantly. The hydrolysis of alkaline sodium borohydride (NaBH{sub 4}) solution catalyzed by this Ru-immobilized polymer-supported catalyst is also examined in this article. It reveals that the hydrogen generation rate is 215.9 ml/min g-cat. in a diluted solution containing 1 wt.% NaBH{sub 4} and 1 wt.% NaOH, and this Ru-immobilized polymer-supported catalyst could be recycled during the reaction. (author)

  12. Inorganic-organic hybrid polymer for preparation of affiliating material using electron beam irradiation

    International Nuclear Information System (INIS)

    Chung, Jaeseung; Kim, Seongeun; Kim, Byounggak; Lee, Jongchan; Park, Jihyun; Lee, Byeongcheol

    2011-01-01

    Recently, silver nano materials have gained a lot of attentions in a variety of applications due to the unique biological, optical, and electrical properties. Especially, the antifouling property of these material is considered to be an important character for biomedical field, marine coatings industry, biosensor, and drug delivery. In this study, we design and synthesize the inorganic-organic hybrid polymer for preparation of affiliating materials. Silver nano materials having antifouling property with different shapes are prepared by control the electron beam irradiation conditions. Inorganic-organic hybrid polymer was synthesized and characterized. → Morphology and size controlled nano materials are prepared using electron beam irradiation. → Silver nano materials having various shapes can be used for antifouling material

  13. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  14. Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach

    Science.gov (United States)

    Kracalik, Milan

    2015-04-01

    Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.

  15. Radiation preparation of interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Sheikh, N.; Ahmadi, M.; Afshar Taromi, F.

    2002-01-01

    Sequential interpenetrating polymer netwoks were prepared using gamma radiation. Styrene-butadiene rubber (SBR) and polymethyl methacrylate (PMMA) were used as elastomer and plastomer components respectively. Dicumyl peroxide (DCP) and ethylene glycol dimethacrylate (EGDMA) were also used as the curing agent of SBR and crosslinker for MMA monomer. The resulting IPNs were characterized by evaluating their mechanical properties. The effect of the amount of DCP on the final properties of product was examined. It was found that amount of curing agent had an important role on the properties of obtained IPNS. The results of the mechanical properties of IPNs showed very good synergistic behavior. (Author)

  16. Design, preparation, and application of ordered porous polymer materials

    International Nuclear Information System (INIS)

    Liu, Qingquan; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua; Shen, Shaohua; Duan, Yinxiang

    2014-01-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template

  17. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  18. Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization

    International Nuclear Information System (INIS)

    Southard, Glen E.; Van Houten, Kelly A.; Ott, Edward W.; Murray, George M.

    2007-01-01

    Molecularly imprinted polymers capable of sensing organophosphorous compounds by luminescence have been prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The polymer contained a dithiobenzoate substituted tris(β-diketonate) europium(III) complex which served as a polymerization substrate and as a luminescent binding site for pinacolyl methylphosphonate (PMP), the hydrolysis product of the nerve agent Soman. The resultant polymer allowed quantitation of PMP in the low ppb range with minimal interference from similar compounds. Polymers were characterized by luminescence spectroscopy and scanning electron microscopy

  19. A simple nanostructured polymer/ZnO hybrid solar cell - preparation and operation in air

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Thomann, Yi; Thomann, Ralf

    2008-01-01

    without notable loss in efficiency. The devices do not require any form of encapsulation to gain stability, while a barrier for mechanical protection may be useful. The devices are based on soluble zinc oxide nanoparticles mixed with the thermocleavable conjugated polymer poly-(3-(2-methylhexan-2-yl......A detailed description is given of the preparation of a polymer solar cell and its characterization. The solar cell can be prepared entirely in the ambient atmosphere by solution processing without the use of vacuum coating steps, and it can be operated in the ambient atmosphere with good...

  20. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  1. Recent progress on preparation and properties of nanocomposites from recycled polymers: A review

    International Nuclear Information System (INIS)

    Zare, Yasser

    2013-01-01

    Highlights: ► The article determines the current status of nanotechnology in polymer recycling. ► The addition of nanofillers to waste polymers, composites and blends is discussed. ► The future challenges in polymer recycling using nanoparticles are explained. - Abstract: Currently, the growing consumption of polymer products creates the large quantities of waste materials resulting in public concern in the environment and people life. Nanotechnology is assumed the important technology in the current century. Recently, many researchers have tried to develop this new science for polymer recycling. In this article, the application of different nanofillers in the recycled polymers such as PET, PP, HDPE, PVC, etc. and the attributed composites and blends is studied. The morphological, mechanical, rheological and thermal properties of prepared nanocomposites as well as the future challenges are extensively discussed. The present article determines the current status of nanotechnology in the polymer recycling which guide the future studies in this attractive field

  2. Modification of inkjet printer for polymer sensitive layer preparation on silicon-based gas sensors

    Directory of Open Access Journals (Sweden)

    Tianjian Li

    2015-04-01

    Full Text Available Inkjet printing is a versatile, low cost deposition technology with the capabilities for the localized deposition of high precision, patterned deposition in a programmable way, and the parallel deposition of a variety of materials. This paper demonstrates a new method of modifying the consumer inkjet printer to prepare polymer-sensitive layers on silicon wafer for gas sensor applications. A special printing tray for the modified inkjet printer to support a 4-inch silicon wafer is designed. The positioning accuracy of the deposition system is tested, based on the newly modified printer. The experimental data show that the positioning errors in the horizontal direction are negligibly small, while the positioning errors in the vertical direction rise with the increase of the printing distance of the wafer. The method for making suitable ink to be deposited to form the polymer-sensitive layer is also discussed. In the testing, a solution of 0.1 wt% polyvinyl alcohol (PVA was used as ink to prepare a sensitive layer with certain dimensions at a specific location on the surface of the silicon wafer, and the results prove the feasibility of the methods presented in this article.

  3. Stacking layered structure of polymer light emitting diodes prepared by evaporative spray deposition using ultradilute solution for improving carrier balance

    International Nuclear Information System (INIS)

    Aoki, Youichi; Shakutsui, Masato; Fujita, Katsuhiko

    2009-01-01

    Polymer light-emitting diodes (PLEDs) with staking layered structures are prepared by the evaporative spray deposition using ultradilute solution (ESDUS) method, which has enabled forming a polymer layer onto another polymer layer even if both polymers are soluble in a solvent used for the preparation. By this method, polymers having various HOMO and LUMO levels can be stacked as a hole transport layer, an emitting layer and an electron transport layer as commonly employed in small molecule-based organic light emitting diodes. Here we demonstrated that a PLED having a tri-layer structure using three kinds of polymers showed significant improvement in quantum efficiency compared with those having a single or bi-layer structure of corresponding polymers.

  4. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    Science.gov (United States)

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  5. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system

    International Nuclear Information System (INIS)

    Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2008-01-01

    Polymer electrolyte based on PVA doped with different concentrations of NH 4 Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7x10 -4 S cm -1 ) has been obtained for 25 mol% NH 4 Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra

  6. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  7. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  8. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  9. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  10. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji

    2013-01-01

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF 3 SO 3 ) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10 −6 S cm −1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm −1 , carbonyl (-C=O) at 1750–1650 cm −1 and ether (-C-O-C-) at 1150–1000 cm −1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF 3 SO 3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF 3 SO 3

  11. Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Science.gov (United States)

    Wang, Bo; Ji, Jing; Li, Kang

    2016-09-01

    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances.

  12. Hard dental tissue minimal-invasive preparation using contemporary polymer rotating instruments and laser

    Directory of Open Access Journals (Sweden)

    Beloica Miloš

    2014-01-01

    Full Text Available Goal of contemporary dentistry is to decrease the patient’s discomfort during treatment. Dentists aim to achieve maximum with the newly developed dental materials as well as with new cavity preparation techniques in the shortest time span. Since the development of the first constructed borer (drilling machine for caries removal, the preparation techniques have considerably changed. The progress of dental materials as well as the cavity preparation techniques has led us to contemporary carbide tungsten and diamond borers that are used with obligatory water cooling. The innovation within this field represents newly developed polymer borers that can detect the difference between carious lesions and healthy tooth structure. In this way the cavity preparation may be performed without damaging dental healthy tissue. This is possible owing to their hardness which is lower than the hardness of intact dentin. Polymer borer preparation is painless with less vibration, while the increase in temperature is negligible. Lasers have been used in clinical dentistry since 1980s so it can be said that they represent a new technology. The function of lasers is based on ablation which requires water. Erbium lasers have shown the highest potential with their ability to produce effective ablation of hard dental tissues. Laser application in dentistry requires special training as well as some protective measures. Laser advantages, compared to traditional preparation techniques, involve the absence of vibration, painless preparation, possibility of preparation without anesthetic and easier patient’s adjustment to dental intervention which is of importance, especially in pediatric dentistry. [Projekat Ministarstva nauke Republike Srbije, br. 46009

  13. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  14. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  15. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering

    NARCIS (Netherlands)

    Pego, AP; Siebum, B; Van Luyn, MJA; Van Seijen, XJGY; Poot, AA; Grijpma, DW; Feijen, J

    2003-01-01

    Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a

  16. Reutilization of discarded biomass for preparing functional polymer materials.

    Science.gov (United States)

    Wang, Jianfeng; Qian, Wenzhen; He, Yufeng; Xiong, Yubing; Song, Pengfei; Wang, Rong-Min

    2017-07-01

    Biomass is abundant and recyclable on the earth, which has been assigned numerous roles to human beings. However, over the past decades, accompanying with the rapid expansion of man-made materials, such as alloy, plastic, synthetic rubber and fiber, a great number of natural materials had been neglected and abandoned, such as straw, which cause a waste of resource and environmental pollution. In this review, based on introducing sources of discarded biomass, the main composition and polymer chains in discarded biomass materials, the traditional treatment and novel approach for reutilization of discarded biomass were summarized. The discarded biomass mainly come from plant wastes generated in the process of agriculture and forestry production and manufacturing processes, animal wastes generated in the process of animal husbandry and fishery production as well as the residual wastes produced in the process of food processing and rural living garbage. Compared with the traditional treatment including burning, landfill, feeding and fertilizer, the novel approach for reutilization of discarded biomass principally allotted to energy, ecology and polymer materials. The prepared functional materials covered in composite materials, biopolymer based adsorbent and flocculant, carrier materials, energy materials, smart polymer materials for medical and other intelligent polymer materials, which can effectively serve the environmental management and human life, such as wastewater treatment, catalyst, new energy, tissue engineering, drug controlled release, and coating. To sum up, the renewable and biodegradable discarded biomass resources play a vital role in the sustainable development of human society, as well as will be put more emphases in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -Pill; Gopalan, A. I. [Department of Chemistry Education, Kyungpook National University (Korea, Republic of)

    2009-07-01

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  18. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  19. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    Science.gov (United States)

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preparation and characterization of MWCNT nanofiller incorporated polymer composite for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Raj, S. Edwin; Selvakumar, K.; Sowmya, G.; Prabhu, M. Ramesh, E-mail: mkram83@gmail.com [School of Physics, Alagappa University, Karaikudi-630 003, Tamil Nadu (India)

    2015-06-24

    Poly (ethyl methacrylate) based polymer electrolyte films were prepared by solution casting technique incorporating multi-walled carbon nanotube (MWCNT) as filler and characterized using XRD and Ac impedance analysis. The electrical conductivity is increased with increasing filler concentration (upto 6wt %), which is attributed to the formation of charge transfer complexes. The maximum ionic conductivity value is found to be 1.171×10{sup −3} Scm{sup −1} at 303K for PEMA (19wt %) -LiClO{sub 4} (8wt %) -MWCNT (6wt %) -PC (67wt %) electrolyte system. The temperature dependent ionic conductivity plot seems to obey Vogel -Tamman-Fulcher relation.

  1. Preparation of diclofenac-imprinted polymer beads for selective molecular separation in water.

    Science.gov (United States)

    Zhou, Tongchang; Kamra, Tripta; Ye, Lei

    2018-03-01

    Molecular imprinting technique is an attractive strategy to prepare materials for target recognition and rapid separation. In this work, a new type of diclofenac (DFC)-imprinted polymer beads was synthesized by Pickering emulsion polymerization using 2-(dimethylamino)ethyl methacrylate as the functional monomer. The selectivity and capacity of the molecularly imprinted polymers (MIPs) were investigated in aqueous solution. Equilibrium binding results show that the MIPs have a high selectivity to bind DFC in a wide range of pH values. Moreover, in liquid chromatography experiment, the imprinted polymer beads were packed into column to investigate the binding selectivity under nonequilibrium conditions. The retention time of DFC on the MIP column is significantly longer than its structural analogues. Also, retention of DFC on the MIP column was significantly longer than on the nonimprinted polymer column under aqueous condition. As the new MIP beads can be used to achieve direct separation of DFC from water, the synthetic method and the affinity beads developed in this work opened new possibilities for removing toxic chemicals from environmental and drinking water. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Preparation of Magnetic Iron Oxide Nanoparticles (MIONs with Improved Saturation Magnetization Using Multifunctional Polymer Ligand

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Majeed

    2016-11-01

    Full Text Available This paper describes the preparation of ultra-small magnetic iron oxide (Fe3O4 nanoparticles (MIONs coated with water-soluble thioether end-functionalized polymer ligand pentaerythritol tetrakis 3-mercaptopropionate-polymethacrylic acid (PTMP-PMAA. The MIONs were prepared by co-precipitation of aqueous iron precursor solution at a high temperature. The polymer modified MIONs were characterized by dynamic light scattering (DLS, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, thermogravimetric analysis (TGA, and vibrating sample magnetometery (VSM. It was found that these MIONs were successfully modified by this water-soluble polymer ligand with a fairly uniform size and narrow size distribution. The dried powder of MIONs could be stored for a long time and re-dispersed well in water without any significant change. Additionally, the polymer concentration showed a significant effect on size and magnetic properties of the MIONs. The saturation magnetization was increased by optimizing the polymer concentration. Furthermore, the 3-(4,5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT-assay demonstrated that these MIONs were highly biocompatible and they could be successfully coupled with fluorescent dye Rhodamine due to the formation of amide bond between carboxylic acid groups of MIONs and amine groups of dye. The obtained results indicated that these multifunctional MIONs with rich surface chemistry exhibit admirable potential in biomedical applications.

  3. Monte Carlo simulations of confined polymer systems

    NARCIS (Netherlands)

    Vliet, Johannes Henricus van

    1991-01-01

    This thesis considers confined polymer systems. These systems are of considerable interest, e.g., thin polymer films, chromotography of polymer solutions, drag reduction, enhanced oil recovery, stabilization of colloidal dispersions, lubrication and biolubrication. The method used to study these

  4. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  5. Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium-polymer batteries

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Lian, Zuo-Yu; Lin, S.J.; Shih, Jeng-Ywan; Chen, Wei-Houng

    2014-01-01

    Graphical abstract: - Highlights: • PVDF-HFP/SBA15 membrane and NCM cathode material were prepared for Li ion battery. • SBA15 fillers can trap more liquid electrolytes to enhance the ionic conductivity. • Modified fillers with functional groups play a key role in reducing impedance. • LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery showed excellent electrochemical performance. - Abstract: This study reports the preparation of a composite polymer electrolyte for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries. Poly(vinylidiene fluoride-hexafluoropropylene) (denoted as PVDF-HFP) was used as the polymer host and mesoporous modified-silica fillers (denoted as m-SBA15) used as the solid plasticizer were added into the polymer matrix. The characteristic properties of the composite polymer membranes were examined using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and an AC impedance method. The discharge capacities of LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer batteries with a PE separator, pure PVDF-HFP polymer membrane, or a PVDF-HFP/10 wt.%m-SBA15 composite at 0.1 C were determined to be 155.5, 159.5, and 198.6 mAh g −1 , respectively. The LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery containing the PVDF-HFP/10 wt.%m-SBA15 composite achieved discharge capacities of 194, 170, 161, 150, 129, 115, and 87 mAh g −1 at 0.1, 0.2, 0.5, 1, 3, 5, and 10 C, respectively. The lithium-polymer battery demonstrated a high coulomb efficiency of ca. 99%. The PVDF-HFP/m-SBA15 composite membrane is a strong candidate for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries

  6. Preparation and Property Recognition of Nimodipine Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Fei-fei CHEN

    2015-09-01

    Full Text Available Objective: To explore the application of molecular imprinting technique in the separation and detection of nimodipine. Methods: Methacrylic acid as functional monomer, pentaerythritol triacrylate as cross-linking agent were used to prepare molecularly imprinted polymer (MIP with the feature of specific recognition performance on imprinting molecule nimodipine under condition of template molecule nimodipine. The preparation conditions, recognition performance of MIP on nimodipine, different proportions of template molecule and functional monomer, the selectivity to other substrate, and the relationship between adsorption quantity (Q and time were observed. Results: MIP was prepared successfully bynimodipine as template and pentaerythritol triacrylate as cross-linking agent, with the feature of specific recognition performance on nimodipine. The static adsorption distribution coefficient (KD was 0.2264. The equation of Q and the concentration of substrate of template MIP was y = -0.21x+0.2204. Combining capacity of template molecule at the same concentration enhanced with the increasing proportion of functional monomer.Conclusion: Nimodipine MIP based on molecular imprinting technique may become a new approach to chiral separation for nimodipine.

  7. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  8. Preparation and Properties of Polyhedral Oligosilsesquioxanes/Polymers Blends

    National Research Council Canada - National Science Library

    Blanski, Rusty

    2000-01-01

    .... These materials have the advantage of combining a well defined ceramic type molecule with an organic polymer which can result in a material that may bridge the performance gap between the two systems...

  9. Preparation and evaluation of microparticles from thiolated polymers via air jet milling.

    Science.gov (United States)

    Hoyer, Herbert; Schlocker, Wolfgang; Krum, Kafedjiiski; Bernkop-Schnürch, Andreas

    2008-06-01

    Microparticles were formulated by incorporation of the model protein horseradish peroxidase in (thiolated) chitosan and (thiolated) poly(acrylic acid) via co-precipitation. Dried protein/polymer complexes were ground with an air jet mill and resulting particles were evaluated regarding size distribution, shape, zeta potential, drug load, protein activity, release pattern, swelling behaviour and cytotoxicity. The mean particle size distribution was 0.5-12 microm. Non-porous microparticles with a smooth surface were prepared. Microparticles from (thiolated) chitosan had a positive charge whereas microparticles from (thiolated) poly(acrylic acid) were negatively charged. The maximum protein load for microparticles based on chitosan, chitosan-glutathione (Ch-GSH), poly(acrylic acid) (PAA) and for poly(acrylic acid)-glutathione (PAA-GSH) was 7+/-1%, 11+/-2%, 4+/-0.2% and 7+/-2%, respectively. The release profile of all microparticles followed a first order release kinetic. Chitosan (0.5mg), Ch-GSH, PAA and PAA-GSH particles showed a 31.4-, 13.8-, 54.2- and a 42.2-fold increase in weight, respectively. No significant cytotoxicity could be found. Thiolated microparticles prepared by jet milling technique were shown to be stable and to have controlled drug release characteristics. After further optimizations the preparation method described here might be a useful tool for the production of protein loaded drug delivery systems.

  10. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Comparison of ethylcellulose matrix characteristics prepared by solid dispersion technique or physical mixing

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadeghi

    2003-07-01

    Full Text Available The characteristics of ethylcellulose matrices prepared from solid dispersion systems were compared with those prepared from physical mixture of drug and polymer. Sodium diclofenac was used as a model drug and the effect of the drug:polymer ratio and the method of matrix production on tablet crushing strength, friability, drug release profile and drug release mechanism were evaluated. The results showed that increasing the polymer content in matrices increased the crushing strengths of tablets. However the friability of tablets was independent of polymer content. Drug release rate was greatly affected by the amount of polymer in the matrices and considerable decrease in release rate was observed by increasing the polymer content. It was also found that the type of mixture used for matrix production had great influence on the tablet crushing strength and drug release rate. Matrices prepared from physical mixtures of drug and polymer was harder than those prepared from solid dispersion systems, but their release rates were considerably faster. This phenomenon was attributed to the encapsulation of drug particles by polymer in matrices prepared from solid dispersion system which caused a great delay in diffusion of the drug through polymer and made diffusion as a rate retarding process in drug release mechanism.

  12. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  13. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  14. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Suppiah, Raja Rajeswary [Chemical Engineering Program, Universiti Teknologi Petronas, Bandar Seri Iskandar, 37150 Tronoh, Perak (Malaysia); Dahlan, Khairul Zaman Mohd [Malaysian Institute for Nuclear Technology Research, Bangi, 43000 Kajang (Malaysia)

    2004-07-30

    Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF{sub 6}) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10{sup -3} S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries.

  15. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  16. Preparation, characterization, magnetic and thermal studies of some chelate polymers of first series transition metal ions

    International Nuclear Information System (INIS)

    Ukey, Vaishali V.; Juneja, H.D.; Borkar, S.D.; Ghubde, R.S.; Naz, S.

    2006-01-01

    Azelaoyl-bis-hydroxamic acid used as bis ligand for the preparation of chelate polymers of Mn(II), Co(II), Ni(II) and Zn(II). These chelate polymers have been synthesized by refluxing the metal acetate and bis ligand as 1:1 stoichiometry. In the present work, structural determination of these newly synthesized chelate polymers has been studied on the basis of elemental analyses, infrared and reflectance spectral, magnetic and thermal studies. The decomposition temperature and the order of reaction have been determined by TGA analysis. On the basis of these studies, the Zn(II) chelate polymer has tetrahedral geometry, whereas Mn(II), Co(II) and Ni(II) chelate polymers have octahedral geometry and have the thermal stability in the order Ni(II) > Mn(II) > Zn(II) > Co(II)

  17. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  18. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    Energy Technology Data Exchange (ETDEWEB)

    Biederman, H.; Holland, L. (Sussex Univ., Brighton (UK). Lab. for Plasma Materials Processing)

    1983-07-01

    Fluorocarbon films have been prepared by plasma polymerization of CF/sub 4/ using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an R.F. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF/sub 4/(25%)-argon(75%) mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF/sub 4/(87%)-argon(13%) were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF/sub 4/ as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined.

  19. Preparation and characterization of polymer-derived amorphous silicon carbide with silicon-rich stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Takashi, E-mail: mtakashi@jaist.ac.jp [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Iwasaka, Akira [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Takagishi, Hideyuki [Faculty of Symbiotic System Science, Fukushima University, 1 Kanayagawa, Fukushima-shi, Fukushima 960-1296 (Japan); Shimoda, Tatsuya [School of Material and Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2016-08-01

    Polydihydrosilane with pendant hexyl groups was synthesized to obtain silicon-rich amorphous silicon carbide (a-SiC) films via the solution route. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage. Therefore, the polymer provides sufficient purity for the fabrication of semiconducting a-SiC. Here, we investigated the correlation of Si/C stoichiometry between the polymer and the resultant a-SiC film. The structural, optical, and electrical properties of the films with various carbon contents were also explored. Experimental results suggested that the excess carbon that did not participate in Si−C configurations was decomposed and was evaporated during polymer-to-SiC conversion. Consequently, the upper limit of the carbon in resultant a-SiC film was < 50 at.%; namely, the polymer provided silicon-rich a-SiC, whereas the conventionally used polycarbosilane inevitably provides carbon-rich one. These features of this unusual polymer open up a frontier of polymer-derived SiC and solution-processed SiC electronics. - Highlights: • Polymeric precursor solution for silicon carbide (SiC) is synthesized. • Semiconducting amorphous SiC is prepared via solution route. • The excess carbon is decomposed during cross-linking resulting in Si-rich SiC films. • The grown SiC films contain substantial amount of hydrogen atoms as SiH{sub n}/CH{sub n} entities. • Presence of CH{sub n} entities induces dangling bonds, causing poor electrical properties.

  20. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers.

    Science.gov (United States)

    Griebel, Jared J; Namnabat, Soha; Kim, Eui Tae; Himmelhuber, Roland; Moronta, Dominic H; Chung, Woo Jin; Simmonds, Adam G; Kim, Kyung-Jo; van der Laan, John; Nguyen, Ngoc A; Dereniak, Eustace L; Mackay, Michael E; Char, Kookheon; Glass, Richard S; Norwood, Robert A; Pyun, Jeffrey

    2014-05-21

    Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 μm) and mid-IR (3-5 μm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title

  2. A Study of Functional Polymer Colloids Prepared Using Thiol-Ene/Yne Click Chemistry

    Science.gov (United States)

    Durham, Olivia Z.

    This project demonstrates the first instance of thiol-ene chemistry as the polymerization method for the production of polymer colloids in two-phase heterogeneous suspensions, miniemulsions, and emulsions. This work was also expanded to thiol-yne chemistry for the production of polymer particles containing increased crosslinking density. The utility of thiol-ene and thiol-yne chemistries for polymerization and polymer modification is well established in bulk systems. These reactions are considered 'click' reactions, which can be defined as processes that are both facile and simple, offering high yields with nearly 100% conversion, no side products, easy product separation, compatibility with a diverse variety of commercially available starting materials, and orthogonality with other chemistries. In addition, thiol-ene and thiol-yne chemistry follow a step-growth mechanism for the development of highly uniform polymer networks, where polymer growth is dependent on the coupling of functional groups. These step-growth polymerization systems are in stark contrast to the chain-growth mechanisms of acrylic and styrenic monomers that have dominated the field of conventional heterogeneous polymerizations. Preliminary studies evaluated the mechanism of particle production in suspension and miniemulsion systems. Monomer droplets were compared to the final polymer particles to confirm that particle growth occurred through the polymerization of monomer droplets. Additional parameters examined include homogenization energy (mechanical mixing), diluent species and concentration, and monomer content. These reactions were conducted using photoinitiation to yield particles in a matter of minutes with diameters in the size range of several microns to hundreds of microns in suspensions or submicron particles in miniemulsions. Improved control over the particle size and size distribution was examined through variation of reaction parameters. In addition, a method of seeded suspension

  3. Fluctuation-induced long-range interactions in polymer systems

    International Nuclear Information System (INIS)

    Semenov, A N; Obukhov, S P

    2005-01-01

    We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects

  4. Metal-containing radiation-sensitive polymers

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1986-01-01

    The copolymers of methyl methacrylate with alkali metal salts (Na, K, and Cs) of methacrylic acid have been prepared by saponification K, and Cs) of methylacrylic acid have been prepared by saponification of the homopolymer poly(methyl methacrylate), PMMA. Low degrees of hydrolysis have been achieved by a heterogeneous system, and from the infrared spectra it has been confirmed that the ester groups of the methyl methacrylates are directly converted to the metal salts of methacrylic acid. These ionomers exhibit pseudo high molecular weights in gel permeation chromatogram, but no appreciable increase in intrinsic viscosities is observed in comparison to PMMA. The coordinated inorganic polymers poly[(dithio-2,2'-diacetato)bis(dimethylsulfoxide)dioxouranium(VI)] and poly[{methylenebis(thio)-2,2'-bis(acetato)}bis(dimethylsulfoxide)dioxouranium(VI)]have been synthesized in dimethyl sulfoxide solution with about 90% yield. The degree of polymerization and the number of average molecular weights of these polymers have been assessed by high resolution nuclear magnetic resonance, with which the acetato end group to the bridging ligand group ratios have been determined. The polymers bridging ligand group ratios have been determined. The polymers have been characterized by employing various techniques: infrared spectra, thermal gravimetric analysis, 13 C solid state nuclear magnetic resonance, and gel permeation chromatography. The prepared polymer samples have been subjected to various doses of 137 Cs gamma radiation under which the polymers predominantly undergo chain scission. The radiation sensitivities of the polymers are assessed by G values which are obtained from gel permeation chromatograms. These uranyl polymers exhibit unusually high G values

  5. Approaches for Making High Performance Polymer Materials from Commodity Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Xi

    2004-01-01

    A brief surrey of ongoing research work done for improving and enhancing the properties of commodity polymers by the author and author's colleagues is given in this paper. A series of high performance polymers and polymer nanomaterials were successfully prepared through irradiation and stress-induced reactions of polymers and hydrogen bonding. The methods proposed are viable, easy in operation, clean and efficient.1. The effect of irradiation source (UV light, electron beam, γ -ray and microwave), irradiation dose, irradiation time and atmosphere etc. on molecular structure of polyolefine during irradiation was studied. The basic rules of dominating oxidation, degradation and cross-linking reactions were mastered. Under the controlled conditions, cross-linking reactions are prevented, some oxygen containing groups are introduced on the molecular chain of polyolefine to facilitate the interface compatibility of their blends. A series of high performance polymer materials: u-HDPE/PA6,u-HDPE/CaCO3, u-iPP/STC, γ-HDPE/STC, γ-LLDPE/ATH, e-HDPE, e-LLDPE and m-HDPEfilled system were prepared (u- ultraviolet light irradiated, γ- γ-ray irradiated, e- electron beam irradiated, m- microwave irradiated)2. The effect of ultrasonic irradiation, jet and pan-milling on structure and changes in properties of polymers were studied. Imposition of critical stress on polymer chain can cause the scission of bonds to form macroradicals. The macroradicals formed in this way may recombine or react with monomer or other radicals to form linear, branched or cross-linked polymers or copolymers. About 20 kinds of block/graft copolymers have been synthesized from polymer-polymer or polymer-monomer through ultrasonic irradiation.Through jet-milling, the molecular weight of PVC is decreased somewhat, the intensity of its crystalline absorption bonds becomes indistinct. The processability, the yield strength, strength at break and elongation at break of PVC get increased quite a lot after

  6. Helix-sense-selective co-precipitation for preparing optically active helical polymer nanoparticles/graphene oxide hybrid nanocomposites.

    Science.gov (United States)

    Huang, Huajun; Li, Weifei; Shi, Yan; Deng, Jianping

    2017-05-25

    Constructing optically active helical polymer based nanomaterials without using expensive and limited chirally helical polymers has become an extremely attractive research topic in both chemical and materials science. In this study, we prepared a series of optically active helical polymer nanoparticles/graphene oxide (OAHPNs/GO) hybrid nanocomposites through an unprecedented strategy-the co-precipitation of optically inactive helical polymers and chirally modified GO. This approach is named helix-sense-selective co-precipitation (HSSCP), in which the chirally modified GO acted as a chiral source for inducing and further stabilizing the predominantly one-handed helicity in the optically inactive helical polymers. SEM and TEM images show quite similar morphologies of all the obtained OAHPNs/GO nanocomposites; specifically, the chirally modified GO sheets were uniformly decorated with spherical polymer nanoparticles. Circular dichroism (CD) and UV-vis absorption spectra confirmed the preferentially induced helicity in the helical polymers and the optical activity of the nanocomposites. The established HSSCP strategy is thus proven to be widely applicable and is expected to produce numerous functional OAHPNs/GO nanocomposites and even the analogues.

  7. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system

    Directory of Open Access Journals (Sweden)

    Vivek Dave

    2017-12-01

    Full Text Available Poly lactic acid is a biodegradable, biocompatible, and non-toxic polymer, widely used in many pharmaceutical preparations such as controlled release formulations, parenteral preparations, surgical treatment applications, and tissue engineering. In this study, we prepared lipid-polymer hybrid nanoparticles for topical and site targeting delivery of Norfloxacin by emulsification solvent evaporation method (ESE. The design of experiment (DOE was done by using software to optimize the result, and then a surface plot was generated to compare with the practical results. The surface morphology, particle size, zeta potential and composition of the lipid-polymer hybrid nanoparticles were characterized by SEM, TEM, AFM, and FTIR. The thermal behavior of the lipid-polymer hybrid nanoparticles was characterized by DSC and TGA. The prepared lipid-polymer hybrid nanoparticles of Norfloxacin exhibited an average particle size from 178.6 ± 3.7 nm to 220.8 ± 2.3 nm, and showed very narrow distribution with polydispersity index ranging from 0.206 ± 0.36 to 0.383 ± 0.66. The surface charge on the lipid-polymer hybrid nanoparticles were confirmed by zeta potential, showed the value from +23.4 ± 1.5 mV to +41.5 ± 3.4 mV. An Antimicrobial study was done against Staphylococcus aureus and Pseudomonas aeruginosa, and the lipid-polymer hybrid nanoparticles showed potential activity against these two. Lipid-polymer hybrid nanoparticles of Norfloxacin showed the %cumulative drug release of 89.72% in 24 h. A stability study of the optimized formulation showed the suitable condition for the storage of lipid-polymer hybrid nanoparticles was at 4 ± 2 °C/60 ± 5% RH. These results illustrated high potential of lipid-polymer hybrid nanoparticles Norfloxacin for usage as a topical antibiotic drug carriers.

  8. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  9. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  10. Nanocomposite metal/plasma polymer films prepared by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, O.; Solar, P.; Kylian, O.; Drabik, M.; Artemenko, A.; Kousal, J.; Hanus, J.; Pesicka, J.; Matolinova, I. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Kolibalova, E. [Tescan, Libusina trida 21, 632 00 Brno (Czech Republic); Slavinska, D. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic); Biederman, H., E-mail: bieder@kmf.troja.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2012-04-02

    Nanocomposite metal/plasma polymer films have been prepared by simultaneous plasma polymerization using a mixture of Ar/n-hexane and metal cluster beams. A simple compact cluster gas aggregation source is described and characterized with emphasis on the determination of the amount of charged clusters and their size distribution. It is shown that the fraction of neutral, positively and negatively charged nanoclusters leaving the gas aggregation source is largely influenced by used operational conditions. In addition, it is demonstrated that a large portion of Ag clusters is positively charged, especially when higher currents are used for their production. Deposition of nanocomposite Ag/C:H plasma polymer films is described in detail by means of cluster gas aggregation source. Basic characterization of the films is performed using transmission electron microscopy, ultraviolet-visible and Fourier-transform infrared spectroscopies. It is shown that the morphology, structure and optical properties of such prepared nanocomposites differ significantly from the ones fabricated by means of magnetron sputtering of Ag target in Ar/n-hexane mixture.

  11. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  12. Preparation and optimization of CdWO_4-polymer nano-composite film as an alpha particle counter

    International Nuclear Information System (INIS)

    Ziluei, Hossein; Azimirad, Rouhollah; Mojtahedzadeh Larijani, Majid; Ziaie, Farhoud

    2017-01-01

    In this research work, CdWO_4/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO_4 powder. The CdWO_4 powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO_4 powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO_4. Also, the responses of all samples were measured using an "2"4"1Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm"2 has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a "2"3"0Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both "2"4"1Am and "2"3"0Th was nearly equal.

  13. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  14. In vitro evaluation of mucoadhesive vaginal tablets of antifungal drugs prepared with thiolated polymer and development of a new dissolution technique for vaginal formulations.

    Science.gov (United States)

    Baloglu, Esra; Ay Senyıgıt, Zeynep; Karavana, Sinem Yaprak; Vetter, Anja; Metın, Dilek Yesim; Hilmioglu Polat, Suleyha; Guneri, Tamer; Bernkop-Schnurch, Andreas

    2011-01-01

    The main objective of this work was to develop antifungal matrix tablet for vaginal applications using mucoadhesive thiolated polymer. Econazole nitrate (EN) and miconazole nitrate (MN) were used as antifungal drugs to prepare the vaginal tablet formulations. Thiolated poly(acrylic acid)-cysteine (PAA-Cys) conjugate was synthesized by the covalent attachment of L-cysteine to PAA with the formation of amide bonds between the primary amino group of L-cysteine and the carboxylic acid group of the polymer. Vaginal mucoadhesive matrix tablets were prepared by direct compression technique. The investigation focused on the influence of modified polymer on water uptake behavior, mucoadhesive property and release rate of drug. Thiolated polymer increased the water uptake ratio and mucoadhesive property of the formulations. A new simple dissolution technique was developed to simulate the vaginal environment for the evaluation of release behavior of vaginal tablets. In this technique, daily production amount and rate of the vaginal fluid was used without any rotational movement. The drug release was found to be slower from PAA-Cys compared to that from PAA formulations. The similarity study results confirmed that the difference in particle size of EN and MN did not affect their release profile. The release process was described by plotting the fraction released drug versus time and n fitting data to the simple exponential model: M(t)/M(∞)=kt(n). The release kinetics were determined as Super Case II for all the formulations prepared with PAA or PAA-Cys. According to these results the mucoadhesive vaginal tablet formulations prepared with PAA-Cys represent good example for delivery systems which prolong the residence time of drugs at the vaginal mucosal surface.

  15. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    Science.gov (United States)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  16. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  17. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni, E-mail: tannii@21cn.com

    2016-02-28

    Graphical abstract: - Highlights: • Nordihydroguaiaretic acid imprinted polymer with imprinting factor 2.12 was prepared for the first time through hydrogen bonding and hydrophobic interaction between the template molecules and the bifunctional monomers. • The obtained surface molecularly imprinting polymers exhibited high affinity and selectivity to the template molecules. • The prepared surface molecularly imprinted polymers were used in separation the natural active component nordihydroguaiaretic acid from medicinal plants. - Abstract: In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO{sub 2}) was prepared through sol–gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO{sub 2}) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO{sub 2} and NIP@SiO{sub 2} were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO{sub 2} could reach to 5.90 mg g{sup −1}, which was two times more than that of NIP@SiO{sub 2}. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results

  18. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol–gel surface imprinting technology

    International Nuclear Information System (INIS)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-01-01

    Graphical abstract: - Highlights: • Nordihydroguaiaretic acid imprinted polymer with imprinting factor 2.12 was prepared for the first time through hydrogen bonding and hydrophobic interaction between the template molecules and the bifunctional monomers. • The obtained surface molecularly imprinting polymers exhibited high affinity and selectivity to the template molecules. • The prepared surface molecularly imprinted polymers were used in separation the natural active component nordihydroguaiaretic acid from medicinal plants. - Abstract: In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO_2) was prepared through sol–gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO_2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO_2 and NIP@SiO_2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO_2 could reach to 5.90 mg g"−"1, which was two times more than that of NIP@SiO_2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO_2 had

  19. Preparation of polymer-blended quinine nanocomposite particles by spray drying and assessment of their instrumental bitterness-masking effect using a taste sensor.

    Science.gov (United States)

    Taki, Moeko; Tagami, Tatsuaki; Ozeki, Tetsuya

    2017-05-01

    The development of taste-masking technologies for foods and drugs is essential because it would enable people to consume and receive healthy and therapeutic effect without distress. In the current study, in order to develop a novel method to prepare nanocomposite particles (microparticles containing bitter nanoparticles) in only one step, by using spray drying, a two-solution mixing nozzle-equipped spray dryer that we previously reported was used. The nanocomposite particles with or without poorly water-soluble polymers prepared using our spray-drying technique were characterized. (1) The organic solution containing quinine, a model of bitter compound and poorly water-soluble polymers and (2) sugar alcohol (mannitol) aqueous solution were separately flown in tubes and two solutions were spray dried through two-solution type spray nozzle to prepare polymer-blended quinine nanocomposite particles. Mean diameters of nanoparticles, taste-masking effect and dissolution rate of quinine were evaluated. The results of taste masking by taste sensor suggested that the polymer (Eudragit EPO, Eudragit S100 or Ethyl cellulose)-blended quinine nanocomposite particles exhibited marked masking of instrumental quinine bitterness compared with the quinine nanocomposite particles alone. Quinine nanocomposite formulations altered the quinine dissolution rate, indicating that they can control intestinal absorption of quinine. These results suggest that polymer-blended quinine composite particles prepared using our spray-drying technique are useful for masking bitter tastes in the field of food and pharmaceutical industry.

  20. Perovskite/polymer solar cells prepared using solution process

    International Nuclear Information System (INIS)

    Rosa, E. S.; Shobih; Nursam, N. M.; Saputri, D. G.

    2016-01-01

    We report a simple solution-based process to fabricate a perovskite/polymer tandem solar cell using inorganic CH 3 NH 3 PM 3 as an absorber and organic PCBM (6,6 phenyl C61- butyric acid methyl ester) as an electron transport layer. The absorber solution was prepared by mixing the CH 3 NH 3 I (methyl ammonium iodide) with PbI 2 (lead iodide) in DMF (N,N- dimethyl formamide) solvent. The absorber and electron transport layer were deposited by spin coating method. The electrical characteristics generated from the cell under 50 mW/cm 2 at 25 °C comprised of an open circuit voltage of 0. 3 1 V, a short circuit current density of 2.53 mA/cm 2 , and a power conversion efficiency of 0.42%. (paper)

  1. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  2. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  3. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives

    DEFF Research Database (Denmark)

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna

    2017-01-01

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high...... the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given....

  4. Preparation and in vitro evaluation of folate-receptor-targeted SPION-polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    Science.gov (United States)

    Mahajan, Shveta; Koul, Veena; Choudhary, Veena; Shishodia, Gauri; Bharti, Alok C.

    2013-01-01

    Polymer-SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g-1. Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l-1), indicating stability of the micellar formulation. SPION-polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T2) relaxivity of 260.4 mM-1 s-1. The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting.

  5. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  6. Observation particle morphology of colloidal system by conventional SEM with an improved specimen preparation technique.

    Science.gov (United States)

    Xu, Jing; Hou, Zhaosheng; Yuan, Xiaojiao; Guo, Hong

    2011-08-01

    On the basis of our previous report that polymer emulsion with different viscosity can be investigated by conventional scanning electron microscopy (SEM), we have developed an improved specimen preparation technique for obtaining particle morphology and size of colloidal silver, collagen, glutin, and polymer microspheres. In this study, we expect to provide a means for charactering the three-dimensional surface microstructure of colloidal particles. Dilution of the samples with appropriate volatile solvent like ethanol is effective for SEM specimen preparation. At a proper ratio between sample and ethanol, the colloidal particles are dispersed uniformly in ethanol and then deposited evenly on the substrate. Different drying methods are studied to search a proper drying condition, in which the small molecule solvent is removed without destroying the natural particle morphology. And the effects of ethanol in the specimen preparation process are described by analyzing the physicochemical properties of ethanol. The specimen preparation technique is simple and can be achieved in common laboratory for charactering the particle morphology of colloidal system. Copyright © 2010 Wiley-Liss, Inc.

  7. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  8. Facile preparation of hierarchically porous polymer microspheres for superhydrophobic coating

    Science.gov (United States)

    Gao, Jiefeng; Wong, Julia Shuk-Ping; Hu, Mingjun; Li, Wan; Li, Robert. K. Y.

    2013-12-01

    electrospraying influence the morphology of finally obtained products. In this paper, the influence of polymer concentration, the weight ratio between nonsolvent and polymer and the flowing rate on the morphology of the porous microsphere is carefully studied. The hierarchically porous microsphere significantly increases the surface roughness and thus the hydrophobicity, and the contact angle can reach as high as 152.2 +/- 1.2°. This nonsolvent assisted electrospraying opens a new way to fabricate superhydrophobic coating materials. Electronic supplementary information (ESI) available: SEM images of microspheres prepared from electrospraying PMMA solution without nonsolvent. See DOI: 10.1039/c3nr05281h

  9. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  10. Preparation and characterization of high performance Schiff-base liquid crystal diepoxide polymer

    International Nuclear Information System (INIS)

    Liu Huan; Fu Zien; Xu Kai; Cai Hualun; Liu Xin; Chen Mingcai

    2012-01-01

    Graphical abstract: The specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer were proposed first by us. From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed improved thermal stability. Highlights: ► In this work, we first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer. ► As one aim of this study, the thermal and thermal-oxidative stabilities of the thermosets were studied by TGA under nitrogen and under air. ► The second aim of this study was to further understand the thermal degradation mechanism. ► For thermal degradation mechanism of this polymer under nitrogen, TG-IR was used to investigate volatile components, and SEM/EDS was used to explore morphologies and chemical components of the residual char. ► From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed the improved thermal stability. - Abstract: A novel Schiff-base liquid crystal diepoxide polymer was prepared via a thermal copolymerization of a Schiff-base epoxy monomer (PBMBA) with a diamine co-monomer (MDA). We first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer (PBMBA/MDA). Thermal degradation behavior of the polymer was characterized using thermogravimetric analysis (TGA) under nitrogen and under air, respectively. Thermogravimetric data obtained from TGA under nitrogen and under air reveal that PBMBA/MDA exhibits higher thermal stability compared with bisphenol-A type epoxy polymer (DGEBA/MDA) and other mesogene-containing epoxy polymer. It is worth pointing out that the outstanding residual

  11. Preparation and optimization of CdWO{sub 4}-polymer nano-composite film as an alpha particle counter

    Energy Technology Data Exchange (ETDEWEB)

    Ziluei, Hossein [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of); Azimirad, Rouhollah [Malek-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Mojtahedzadeh Larijani, Majid, E-mail: mmojtahedfr@yahoo.com [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of); Ziaie, Farhoud [Nuclear Science and Technology Research Institute, AEOI, Tehran (Iran, Islamic Republic of)

    2017-04-21

    In this research work, CdWO{sub 4}/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO{sub 4} powder. The CdWO{sub 4} powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO{sub 4} powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO{sub 4}. Also, the responses of all samples were measured using an {sup 241}Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm{sup 2} has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a {sup 230}Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both {sup 241}Am and {sup 230}Th was nearly equal.

  12. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    Science.gov (United States)

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  13. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  14. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2018-01-01

    Free-standing solid polymer nanocomposite (PEO-PVC)  +  LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5  ×  10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion  =  0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a

  15. How do monomeric components of a polymer gel dosimeter respond to ionising radiation: A steady-state radiolysis towards preparation of a 3D polymer gel dosimeter

    International Nuclear Information System (INIS)

    Kozicki, Marek

    2011-01-01

    Ionising radiation-induced reactions of aqueous single monomer solutions and mixtures of poly(ethylene glycol) diacrylate (PEGDA) and N,N'-methylenebisacrylamide (Bis) in a steady-state condition are presented below and above gelation doses in order to highlight reactions in irradiated 3D polymer gel dosimeters, which are assigned for radiotherapy dosimetry. Both monomers are shown to undergo radical polymerisation and cross-linking, which result in the measured increase in molecular weight and radius of gyration of the formed polydisperse polymer coils. The formation of nanogels was also observed for Bis solutions at a low concentration. In the case of PEGDA-Bis mixtures, co-polymerisation is suggested as well. At a sufficiently high radiation dose, the formation of a polymer network was observed for both monomers and their mixture. For this reason a sol-gel analysis for PEGDA and Bis was performed gravimetrically and a proposition of an alternative to this method employing a nuclear magnetic resonance technique is made. The two monomers were used for preparation of 3D polymer gel dosimeters having the acronyms PABIG and PABIG nx . The latter is presented for the first time in this work and is a type of the formerly established PABIG polymer gel dosimeter. The elementary characteristics of the new composition are presented, underlining the ease of its preparation, low dose threshold, and slightly increased sensitivity but lower quasi-linear range of dose response in comparison to PABIG. - Highlights: → Steady-state radiolysis of Bis, PEGDA and Bis-PEGDA is examined. → High Mw products are formed at low absorbed doses. → Formation of Bis nanogels is likely; PEGDA solutions form hydrogels. → NMR technique can be used for sol-gel analysis. → Features of 3D polymer gel dosimeters made from PEGDA and Bis are shown.

  16. Preparation of molecularly imprinted polymers for strychnine by precipitation polymerization and multistep swelling and polymerization and their application for the selective extraction of strychnine from nux-vomica extract powder.

    Science.gov (United States)

    Nakamura, Yukari; Matsunaga, Hisami; Haginaka, Jun

    2016-04-01

    Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux-vomica extract powder. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Experimental Optimization In Polymer BLEND Composite Preparation Based On Mix Level of Taguchi Robust Design

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed; Jaafar Abdullah; Dahlan Mohd; Rozaidi Rasid; Megat Harun AlRashid Megat Ahmad; Mahathir Mohamad; Mohd Hamzah Harun

    2012-01-01

    L 18 orthogonal array in mix level of Taguchi robust design method was carried out to optimize experimental conditions for the preparation of polymer blend composite. Tensile strength and neutron absorption of the composite were the properties of interest. Filler size, filler loading, ball mixing time and dispersion agent concentration were selected as parameters or factors which are expected to affect the composite properties. As a result of Taguchi analysis, filler loading was the most influencing parameter on the tensile strength and neutron absorption. The least influencing was ball-mixing time. The optimal conditions were determined by using mix-level Taguchi robust design method and a polymer composite with tensile strength of 6.33 MPa was successfully prepared. The composite was found to fully absorb thermal neutron flux of 1.04 x 10 5 n/ cm 2 / s with only 2 mm in thickness. In addition, the filler was also characterized by scanning electron microscopy (SEM) and elemental analysis (EDX). (Author)

  18. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  19. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, K., E-mail: kesavanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Mathew, Chithra M. [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Ulaganathan, M. [Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637 553 (Singapore)

    2014-05-01

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for PEO(90 wt%)/PVP(10 wt%)/LiClO{sub 4}(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO{sub 4}) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for 8 wt% of LiClO{sub 4} based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO{sub 4}(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm.

  20. Design, preparation, surface recognition properties, and characteristics of icariin molecularly imprinted polymers

    Directory of Open Access Journals (Sweden)

    Xiaohe Jia

    2015-12-01

    Full Text Available Icariin molecularly imprinted polymers (MIPs were prepared by precipitation polymerization. Prior to the polymerization, computer simulation was performed to sketchily choose the suitable functional monomer and the corresponding polymerization solvent. The optimized synthesis parameters, including the functional monomer acrylamide, the mixture of methanol and acetonitrile (V:V = 3:1 as the polymerization solvent, and the reaction molar ratio (1:6:80 of template molecule, functional monomer and cross-linker, were respectively obtained by single factor analysis and orthogonal design methods. The results of the adsorption experiments showed that the resultant MIPs exhibited good adsorption and recognition abilities to icariin. Scatchard analysis illustrated that the homogeneous binding sites only for icariin molecules were formed in the prepared MIPs.

  1. Molecular Design for Preparation of Hexagonal-Ordered Porous Films Based on Side-chain Type Liquid-Crystalline Star Polymer.

    Science.gov (United States)

    Naka, Yumiko; Takayama, Hiromu; Koyama, Teruhisa; Le, Khoa V; Sasaki, Takeo

    2018-05-02

    Fabrication of regularly porous films by the breath-figure method has attracted much attention. The simple, low-cost technique uses the condensation of water droplets to produce these structures, but the phenomenon itself is complex, requiring control over many interacting parameters that change throughout the process. Developing a unified understanding for the molecular design of polymers to prepare ordered porous films is challenging, but required for further advancements. In this article, the effects of the chemical structure of polymers in the breath-figure technique were systematically explored using side-chain type liquid-crystalline (LC) star polymers. The formation of porous films was affected by the structure of the polymers. Although the entire film surface of poly(11-[4-(4-cyanobiphenyl)oxy]undecyl methacrylate) (P11CB) had a hexagonal ordered porous structure over a certain Mn value, regularly arranged holes did not easily form in poly(methyl methacrylate) (PMMA), even though the main chain of PMMA is similar to that of P11CB. Comparing P11CB and poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11B) (P11CB without cyano groups) showed that the local polar groups in hydrophobic polymers promoted the formation of ordered porous films. No holes formed in poly(4-cyanobiphenyl methacrylate) (P0CB) (P11CB without alkyl spacers) films due to its hydrophilicity. The introduction of alkyl chains in P0CB allowed the preparation of honeycomb-structured films by increasing the internal tension. However, alkyl chains in the side chain alone did not result in a porous structure, as in the case of poly(11-[(1,1'-biphenyl)-4-yloxy]undecyl methacrylate) (P11). Aromatic rings are also required to increase the Tg and improve film formability. In the present study, suitable molecular designs of polymers were found, specifically hydrophobic polymers with local polar groups, to form a regularly porous structure. Development of clear guidelines for the molecular

  2. Polymers for bimodal immunoradiotherapy - are they able to promote immune system?

    International Nuclear Information System (INIS)

    Loukotova, L.; Kucka, J.; Rabyk, M.; Hoecherl, A.; Venclikova, K.; Janouskova, O.; Konefal, R.; Stepanek, P.; Hruby, M.; Kolarova, V.; Sefc, L.

    2017-01-01

    The conceptually new bimodal treatment is demonstrated with radiolabeled thermoresponsive β-glucan-graft-poly(2- isopropyl-2-oxazoline-co-2-butyl-2-oxazoline). The thermoresponsive polymer behavior in aqueous solutions has been studied showing appropriate cloud point temperature. The in vitro studies have been performed, the polymer has been found to be non-toxic and actively uptaken by cancer cells and macrophages. Moreover, oxidative burst assay has shown the immunostimulatory properties of prepared polymer. The polymer has been radiolabeled with 90 Y 3+ and used in antitumor efficiency in vivo experiment on mice bearing EL4 lymphoma. The in vivo experiment demonstrates the synergic effect of immunoradiotherapy compared to only immunotherapy and radiotherapy. (authors)

  3. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  4. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  5. Preparation and Characterization of Conducting Polymer Latices by Chemical Polymerization of Aniline or Anisidine in Presence of Latex: Study of Their Electroactivity and Anti-Corrosion Properties

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2013-06-01

    Full Text Available Poly (vinylacetate-co-butylmethacrylate was prepared in presence of potassium persulphate as an oxidizing agent in aqueous solution of dodecylbenzene sulfonate sodium as an emulsifying agent. Then, aniline was polymerized by chemical oxidation method at three different concentrations of aniline monomer (0.1, 0.2 and 0.3 M in toluene in presence of poly(vinylacetate-co-butylmethacrylate in order to obtain polyaniline/poly(vinylacetate-co-butylmethacrylate. To prepare conducting-latex of polyanisidine/poly(vinylacetate-co-butylmethacrylate the same method was employed as above for aniline monomer in obtaining conducting polyaniline/poly(vinylacetate-co-butylmethacrylate latex. In addition, the purification of conducting-latex polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate was conducted and preparation of tin layer films of conducting-latex polymers was carried out by casting method on glassy lames. The electroactivity properties of the prepared latex-polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate were investigated by cyclic voltammetery (CV. The voltamogrames showed that the latex films were electroactive. Because of conductivity and electroactivity, the obtained films may find applications in anti-corrosion coatings. The anti-corrosion properties of conducting-latex polymers were studied on aluminum surface by impedance technique. The structure of the prepared conducting-latex polymers was confirmed by Fourier transform infrared (FTIR. Finally, the electrical conductivity of synthesized conducting-latex polymers, polyaniline/poly(vinylacetate-co-butylmethacrylate and polyanisidine/poly(vinylacetate-co-butylmethacrylate was measured by four probe technique.

  6. Selectivity of radiation-induced processes in hydrocarbons, related polymers and organized polymer systems

    International Nuclear Information System (INIS)

    Feldman, V.I.; Sukhov, F.F.; Zezin, A.A.; Orlov, A.Yu.

    1999-01-01

    Fundamental aspects of the selectivity of radiation-induced events in polymers and polymeric systems were considered: (1) The grounds of selectivity of the primary events were analyzed on the basis of the results of studies of model compounds (molecular aspect). Basic results were obtained for hydrocarbon molecules irradiated in low-temperature matrices. The effects of selective localization of the primary events on the radical formation were examined for several polymers irradiated at low and superlow temperatures (77 and 15 K). A remarkable correlation between the properties of prototype ionized molecules (radical cations) and selectivity of the primary bond rupture in the corresponding polymers were found for polyethylene, polystyrene and some other hydrocarbon polymers. The first direct indication of selective localization of primary events at conformational defects was obtained for oriented high-crystalline polyethylene irradiated at 15 K. The significance of dimeric ring association was proved for the radiation chemistry of polystyrene. Specific mechanisms of low-temperature radiation-induced degradation were also analyzed for polycarbonate and poly(alkylene terephthalates). (2) Specific features of the localization of primary radiation-induced events in microheterogeneous polymeric systems were investigated (microstructural aspect). It was found that the interphase processes played an important role in the radiation chemistry of such systems. The interphase electron migration may result in both positive and negative non-additive effects in the formation of radiolysis products. The effects of component diffusion and chemical reactions on the radiation-induced processes in microheterogeneous polymeric systems were studied with the example of polycarbonate - poly(alkylene terephthalate) blends. (3) The effects of restricted molecular motion on the development of the radiation-chemical processes in polymers were investigated (dynamic aspect). In particular, it

  7. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  8. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  9. In vitro characterization of a novel polymeric system for preparation of amorphous solid drug dispersions.

    Science.gov (United States)

    Mahmoudi, Zahra N; Upadhye, Sampada B; Ferrizzi, David; Rajabi-Siahboomi, Ali R

    2014-07-01

    Preparation of amorphous solid dispersions using polymers is a commonly used formulation strategy for enhancing the solubility of poorly water-soluble drugs. However, often a single polymer may not bring about a significant enhancement in solubility or amorphous stability of a poorly water-soluble drug. This study describes application of a unique and novel binary polymeric blend in preparation of solid dispersions. The objective of this study was to investigate amorphous solid dispersions of glipizide, a BCS class II model drug, in a binary polymeric system of polyvinyl acetate phthalate (PVAP) and hypromellose (hydroxypropyl methylcellulose, HPMC). The solid dispersions were prepared using two different solvent methods: rotary evaporation (rotavap) and fluid bed drug layering on sugar spheres. The performance and physical stability of the dispersions were evaluated with non-sink dissolution testing, powder X-ray diffraction (PXRD), and modulated differential scanning calorimetry (mDSC). PXRD analysis demonstrated an amorphous state for glipizide, and mDSC showed no evidence of phase separation. Non-sink dissolution testing in pH 7.5 phosphate buffer indicated more than twofold increase in apparent solubility of the drug with PVAP-HPMC system. The glipizide solid dispersions demonstrated a high glass transition temperature (Tg) and acceptable chemical and physical stability during the stability period irrespective of the manufacturing process. In conclusion, the polymeric blend of PVAP-HPMC offers a unique formulation approach for developing amorphous solid dispersions with the flexibility towards the use of these polymers in different ratios and combined quantities depending on drug properties.

  10. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  11. Preparation of PbS and PbO nanopowders from new Pb(II)(saccharine) coordination polymers

    International Nuclear Information System (INIS)

    Aslani, Alireza; Musevi, Seyid Javad; Şahin, Ertan; Yilmaz, Veysel T.

    2014-01-01

    Highlights: • The complex of compounds “[Pb(H 2 O)(μ-OAc)(μ-sac)] n ” are synthesized at nano and bulk size structurally diverse and show interesting three-dimensional coordination polymers. • Reduction of the particle size of the coordination polymers to a few dozen nanometers results in lower thermal stability when compared to the single crystalline samples. • This study demonstrates that the metal–organic framework may be suitable precursors for the preparation of nanoscale materials with interesting morphologies. - Abstract: Nanopowders and single crystal of new Pb(II) three-dimensional coordination polymer, [Pb(H 2 O)(μ-OAc)(μ-sac)] n “PASAC” were synthesized by a sonochemical and branched tube methods (Yılmaz et al., Z. Anorg. Allg. Chem. 629 (2003) 172). The new nano-structures of Pb(II) coordination polymer were characterized by X-ray crystallography analysis, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), surface analysis (BET), and IR spectroscopy. The crystal structure of these compounds consists of three-dimensional polymeric units. The thermal stability of compounds was studied by thermal gravimetric analysis (TGA) and differential thermal analyses (DTA). PbS and PbO nano-structures were obtained by calcinations of the nano-structures of this coordination polymer at 600 °C

  12. Formulation of gastroretentive floating drug delivery system using hydrophilic polymers and its in vitro characterization

    Directory of Open Access Journals (Sweden)

    Venkata Srikanth Meka

    2014-04-01

    Full Text Available The aim of the present research is to formulate and evaluate the gastroretentive floating drug delivery system of antihypertensive drug, propranolol HCl. Gastroretentive floating tablets (GRFT were prepared by using a synthetic hydrophilic polymer polyethylene oxide of different grades such as PEO WSR N-12 K and PEO 18 NF as release retarding polymers and calcium carbonate as gas generating agent. The GRFT were compressed by direct compression strategy and the tablets were evaluated for physico-chemical properties, in vitro buoyancy, swelling studies, in vitro dissolution studies and release mechanism studies. From the dissolution and buoyancy studies, F 9 was selected as an optimized formulation. The optimized formulation followed zero order rate kinetics with non-Fickian diffusion mechanism. The optimized formulation was characterised with FTIR studies and observed no interaction between the drug and the polymers.

  13. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  14. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  15. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  16. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  17. Physical properties of wood-polymer composites prepared by an electron beam accelerator

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Handa, T.; Fukuoka, M.; Hashizume, Y.; Nakamura, T.

    1981-01-01

    The dual characteristics in the performance of polymers in wood-polymer composites systems have been pursued with regard to the resolution of mechanical anisotropy of wood and the improvement in dimensional stability. The objective of the present study is to pursue the polymerization mechanism in wood under electron beam irradiation and the temperature dependence of polymer-wood interactions induced at various levels of higher order structure of wood in order to understand the polymer performance. Veneers used in the study were of rotary-cut beech (Fagus crenata Blume) 0.65 mm thick. All samples were oven-dried in vacuo at 80 0 C for 30 hr. The monomers used in the study were methyl methacrylate, styrene, acrylic acid, acrylonitrile, and unsaturated polyester. Experimental details are given. Results are given and discussed. (U.K.)

  18. Preparation and evaluation of molecularly imprinted polymer for selective recognition and adsorption of gossypol.

    Science.gov (United States)

    Zhi, Keke; Wang, Lulu; Zhang, Yagang; Zhang, Xuemin; Zhang, Letao; Liu, Li; Yao, Jun; Xiang, Wei

    2018-03-01

    Molecularly imprinted polymers (MIPs) were designed and prepared via bulk thermal polymerization with gossypol as the template molecule and dimethylaminoethyl methacrylate as the functional monomer. The morphology and microstructures of MIPs were characterized by scanning electron microscope and Brunauer-Emmett-Teller surface areas. Static adsorption tests were performed to evaluate adsorption behavior of gossypol by the MIPs. It was found that adsorption kinetics and adsorption isotherms data of MIPs for gossypol were fit well with the pseudo-second-order model and Freundlich model, respectively. Scatchard analysis showed that heterogeneous binding sites were formed in the MIPs, including lower-affinity binding sites with the maximum adsorption of 252 mg/g and higher-affinity binding sites with the maximum adsorption of 632 mg/g. Binding studies also revealed that MIPs had favorable selectivity towards gossypol compared with non-imprinted polymers. Furthermore, adsorption capacity of MIPs maintained above 90% after 5 regeneration cycles, indicating MIPs were recyclable and could be used multiple times. These results demonstrated that prepared MIPs could be a promising functional material for selective adsorption of gossypol. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Polymer dispersed liquid crystals. Pt.1 Concept, Preparation and Materials

    International Nuclear Information System (INIS)

    Hakemi, H. A.; Santangelo, M.

    1998-01-01

    It is more than a decade since Polymer Dispersed Liquid Crystal (PDLC) film technology became the subject of a world-wide scientific and industrial research and development for commercial applications as large-area reflective displays and electrooptical windows, for privacy, security and light transmission control. In view of current interest and intensive fundamental and industrial research on PDLC, the authors attempt to provide a review of the state-of-art of this technology, from concept to its industrial production, in a series of articles. In the present introductory part, the authors discuss the basic concept, the principle of operation, the materials and the preparation techniques of a PDLC device by phase separation method [it

  20. Polymer containing functional end groups is base for new polymers

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  1. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    International Nuclear Information System (INIS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-01-01

    Fe 3 O 4 /poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe 3 O 4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe 3 O 4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release

  2. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  3. Preparation of molecularly imprinted polymers simazine as material potentiometric sensor

    Directory of Open Access Journals (Sweden)

    Bow Yohandri

    2017-01-01

    Full Text Available Molecular imprinting technology is a promising technique for creating recognition elements for selected compounds and has been successfully applied for synthesis of environmental pollutants such as simazine. Simazine is a pesticide ingredient that is commonly used in agriculture, which has devastating effects on the environment if used excessively. Molecularly imprinted polymer (MIP provides cavities to form a particular space generated by removing the template when the polymer has formed. In this study, MIP using simazine as template had been made by the cooling-heating method and used as a material potentiometric sensor for detecting simazine. A template (simazine was incorporated into a pre-polymerization solution that contains a methacrylic acid as functional monomer, an ethylene glycol dimethacrylate as cross linker, and benzoyl peroxide as initiator. Characterization was performed by scanning electron microscope (SEM and fourier transforms infra-red (FTIR. The FTIR spectra of the MIP showed that the peaks of amine group decrease significantly, indicating that the simazine concentration decreases drastically. Characterization by SEM images showing the broadest pore size distribution with the highest number of pores in the MIP prepared under the heating time of 150 min. The MIPs therefore could be applied as a simazine sensor.

  4. Process for preparing organoclays for aqueous and polar-organic systems

    Science.gov (United States)

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  5. Synthesis and characterization of biocompatible multicomponent polymer systems as supports for cell cultures

    International Nuclear Information System (INIS)

    Porjazoska, Aleksandra; Cvetkovska, Maja; Yylmaz, Oksan Karal; Baysal, Kemal; Apohan, Nilhan Kayaman; Baysal, Bahattin M.

    2004-01-01

    Engineering living tissue for reconstructive surgery requires an appropriate cell source and optimal culture conditions, but also a suitable biodegradable scaffold as the basic elements. On the basis of the well known facts that scaffold chemistry and architecture can influence the fate and function of engrafted cells, a large number of polymers, as cell cultures supports, have been proposed. In this study, we report a synthesis, characterization and cell interactions with the following polymer systems: I. Poly[L- lactic acid / glycolic acid / poly(dimethylsiloxane)], copolymers; II. Poly(DL - lactic acid) / triblock PCL - PDMS - PCL copolymers; III. Blends of poly(DL - lactic - co - glycolic acid) and triblock PCL - PDMS - PCL copolymers. For the cell seeding experiments, Swiss 3T3 and/or L929 mouse fibroblasts were grown in RPMI 1640 and/or DMEM / F12 medium, and placed onto the bio polymer non porous or porous films, prepared using a particulate leaching technique. The amount of cells present on the surfaces of the scaffolds was quantified using a neutral red uptake assay. (Author)

  6. Microporous Organic Polymers Based on Hyper-Crosslinked Coal Tar: Preparation and Application for Gas Adsorption.

    Science.gov (United States)

    Gao, Hui; Ding, Lei; Bai, Hua; Li, Lei

    2017-02-08

    Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage, but high cost and complicated preparation limit their practical application. In this paper, a new type of HCPs (CTHPs) was synthesized through a one-step mild Friedel-Crafts reaction with low-cost coal tar as the starting material. Chloroform was utilized as both solvent and crosslinker to generate a three-dimensional crosslinked network with abundant micropores. The maximum BET surface area of the prepared CTHPs could reach up to 929 m 2  g -1 . Owing to the high affinity between the heteroatoms on the coal-tar building blocks and the CO 2 molecules, the adsorption capacity of CTHPs towards CO 2 reached up to 14.2 wt % (1.0 bar, 273 K) with a high selectivity (CO 2 /N 2 =32.3). Furthermore, the obtained CTHPs could adsorb 1.27 wt % H 2 at 1.0 bar and 77.3 K, and also showed capacity for the capture of high organic vapors at room temperature. In comparison with other reported porous organic polymers, CTHPs have the advantages of low-cost, easy preparation, and high gas-adsorption performance, making them suitable for mass production and practical use in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  8. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  9. One-component solution system to prepare nanometric anatase TiO2

    International Nuclear Information System (INIS)

    Trung, Tran; Ha, Chang-Sik

    2004-01-01

    A novel one-pot synthesis route was proposed to prepare nanometric anatase TiO 2 using trichloroethylene as reaction medium, which may have great advantage over multicomponent solution systems when TiO 2 is used as a reinforcing filler for polymers dissolved in trichloroethylene. The anatase TiO 2 nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy and small-angle X-ray scattering (SAXS). It was found that the diameters of TiO 2 nanoparticles are in the range from 5 to 13 nm

  10. Hierarchical ZnO particles grafting by fluorocarbon polymer derivative: Preparation and superhydrophobic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Dahai; Jia, Mengqiu, E-mail: jiamq@mail.buct.edu.cn

    2015-07-15

    Graphical abstract: - Highlights: • The hierarchical particles were prepared by a simple, mild hydrothermal process. • The obtained “chestnut” ZnO particles show dual-scale morphology with high roughness. • FEVE derivative was creatively imported to graft onto hierarchical particles. • Superhydrophobic surfaces were obtained, on which the contact angles surpass 150°. • A special model was proposed to explain the wetting state in this work. - Abstract: Superhydrophobic surfaces on the basis of hierarchical ZnO particles grafted by fluoroethylene-vinylether (FEVE) polymer derivative were prepared using a facile, mild and low-cost method. X-ray diffraction (XRD) and scanning electron microscope (SEM) revealed that the resulting ZnO particles via hydrothermal process exhibit micro–nano dual-scale morphology with high purity under a suitable surfactant amount and alkali concentration. The grafting of FEVE derivative was confirmed by Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectrometer (EDS), suggesting that hierarchical surface of ZnO particles was an imported monomolecular layer of fluorocarbon polymer. The obtained surface fabricated by drop-casting shows considerably high contact angle and good resistance to water immersion. The wetting behavior in this work was furthermore analyzed by theoretical wetting model. This work demonstrates that the sufficient low-wettable surface and high roughness both take a vital role in the superhydrophobic behavior.

  11. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Khan, Mohammed Yusuf (Inventor); Laurencin, Cato T. (Inventor); Lu, Helen H. (Inventor); Botchwey, Edward (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  12. Preparation of Magnetic Molecularly Imprinted Polymer for Chlorpyrifos Adsorption and Enrichment

    Science.gov (United States)

    Chen, M.; Ma, X.; Sheng, J.

    2017-11-01

    Magnetic molecularly imprinted polymer (MMIP) for chlorpyrifos was prepared and characterized. The adsorption performance of MMIP for chlorpyrifos was evaluated under various conditions. The results showed that the adsorption equilibrium was achieved within 1 h, the adsorption capacity was 16.8 mg/g, and the adsorption process could be well described by Langmuir isotherm model and pseudo-second-order kinetic model. The MMIP was used as the selective sorbent for solid-phase extraction of chlorpyrifos from environmental water and vegetable samples. Combined with gas chromatography-mass spectrometry, a LOD of 30 ng/L, spiked recovery of 89.6%-107.3% and RSD of 1.9%-3.8% for chlorpyrifos were obtained.

  13. Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers

    Directory of Open Access Journals (Sweden)

    Marcin Molenda

    2014-01-01

    Full Text Available Conductive carbon nanocoatings (conductive carbon layers—CCL were formed on α-Al2O3 model support using three different polymer precursors and deposition methods. This was done in an effort to improve electrical conductivity of the material through creating the appropriate morphology of the carbon layers. The best electrical properties were obtained with use of a precursor that consisted of poly-N-vinylformamide modified with pyromellitic acid (PMA. We demonstrate that these properties originate from a specific morphology of this layer that showed nanopores (3-4 nm capable of assuring easy pathways for ion transport in real electrode materials. The proposed, water mediated, method of carbon coating of powdered supports combines coating from solution and solid phase and is easy to scale up process. The optimal polymer carbon precursor composition was used to prepare conductive carbon nanocoatings on LiFePO4 cathode material. Charge-discharge tests clearly show that C/LiFePO4 composites obtained using poly-N-vinylformamide modified with pyromellitic acid exhibit higher rechargeable capacity and longer working time in a battery cell than standard carbon/lithium iron phosphate composites.

  14. Dynamics of a Novel Class of Polymers: Polymerized Sulfur

    Science.gov (United States)

    Masser, Kevin; Kim, Jenny; Oleshko, Vladimir; Griebel, Jared; Chung, Woo; Simmons, Adam; Pyun, Jeff; Soles, Christopher

    2013-03-01

    In this study we investigate the dynamics of a new type of polymer, consisting mainly of sulfur. Room-temperature stable polymerized sulfur samples were prepared by crosslinking the well-known living sulfur polymers formed at elevated temperatures by the addition of a crosslinking agent. This reverse vulcanization process was used to create a series of samples with different amounts of crosslinking agent. These polymers show great promise for use in advanced batteries as cathode materials. Each system exhibits a glassy-state beta relaxation, with the intensity of this relaxation proportional to the crosslinking content. A dynamic glass transition is also observed for each system, and the glass transition temperature/segmental relaxation moves to higher temperatures with increased crosslink content as is typically observed in crosslinked systems. As is typical of polymers, ion motion in these systems is closely coupled to the backbone motion of the host polymer. National Research Council Postdoctoral Fellowship

  15. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  16. Osmotic load from glucose polymers.

    Science.gov (United States)

    Koo, W W; Poh, D; Leong, M; Tam, Y K; Succop, P; Checkland, E G

    1991-01-01

    Glucose polymer is a carbohydrate source with variable chain lengths of glucose units which may result in variable osmolality. The osmolality of two commercial glucose polymers was measured in reconstituted powder infant formulas, and the change in osmolality of infant milk formulas at the same increases in energy density (67 kcal/dL to 81 and 97 kcal/dL) from the use of additional milk powder or glucose polymers was compared. All samples were prepared from powders (to nearest 0.1 mg), and osmolality was measured by freezing point depression. For both glucose polymers the within-batch variability of the measured osmolality was less than 3.5%, and between-batch variability of the measured osmolality was less than 9.6%. The measured osmolality varies linearly with energy density (p less than 0.001) and was highest in infant formula reconstituted from milk powder alone. However, there exist significant differences in the measured osmolality between different glucose polymer preparations. At high energy densities (greater than or equal to 97 kcal/dL), infant milk formulas prepared with milk powder alone or with the addition of certain glucose polymer preparation may have high osmolality (greater than or equal to 450 mosm/kg) and theoretically predispose the infant to complications of hyperosmotic feeds.

  17. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  18. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  19. Preparation of micro-porous gel polymer for lithium ion polymer battery

    International Nuclear Information System (INIS)

    Kim, Je Young; Kim, Seok Koo; Lee, Seung-Jin; Lee, Sang Young; Lee, Hyang Mok; Ahn, Soonho

    2004-01-01

    We have developed a micro-porous gelling polymer layer which is formed on both the sides of support polyolefin separator with wet or dry processing technique. Morphologies of gel-coated layer are dependent on the compositions and process conditions, such as solvent/non-solvent combination and stretching ratios. The micro-porous gelling layer is used for the assembly of the lithium ion polymer battery of LG Chemical Ltd. The structure of battery is given elsewhere and the battery has excellent discharge performance with 94% of 2C discharge performance at room temperature

  20. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions.

    Science.gov (United States)

    Zhu, Ming; Huang, Xingyi; Yang, Ke; Zhai, Xing; Zhang, Jun; He, Jinliang; Jiang, Pingkai

    2014-11-26

    The interfacial region plays a critical role in determining the electrical properties and energy storage density of dielectric polymer nanocomposites. However, we still know a little about the effects of electrical properties of the interfacial regions on the electrical properties and energy storage of dielectric polymer nanocomposites. In this work, three types of core-shell structured polymer@BaTiO3 nanoparticles with polymer shells having different electrical properties were used as fillers to prepare ferroelectric polymer nanocomposites. All the polymer@BaTiO3 nanoparticles were prepared by surface-initiated reversible-addition-fragmentation chain transfer (RAFT) polymerization, and the polymer shells were controlled to have the same thickness. The morphology, crystal structure, frequency-dependent dielectric properties, breakdown strength, leakage currents, energy storage capability, and energy storage efficiency of the polymer nanocomposites were investigated. On the other hand, the pure polymers having the same molecular structure as the shells of polymer@BaTiO3 nanoparticles were also prepared by RAFT polymerization, and their electrical properties were provided. Our results show that, to achieve nanocomposites with high discharged energy density, the core-shell nanoparticle filler should simultaneously have high dielectric constant and low electrical conductivity. On the other hand, the breakdown strength of the polymer@BaTiO3-based nanocomposites is highly affected by the electrical properties of the polymer shells. It is believed that the electrical conductivity of the polymer shells should be as low as possible to achieve nanocomposites with high breakdown strength.

  1. Partial discharge characteristics of polymer nanocomposite materials in electrical insulation: a review of sample preparation techniques, analysis methods, potential applications, and future trends.

    Science.gov (United States)

    Izzati, Wan Akmal; Arief, Yanuar Z; Adzis, Zuraimy; Shafanizam, Mohd

    2014-01-01

    Polymer nanocomposites have recently been attracting attention among researchers in electrical insulating applications from energy storage to power delivery. However, partial discharge has always been a predecessor to major faults and problems in this field. In addition, there is a lot more to explore, as neither the partial discharge characteristic in nanocomposites nor their electrical properties are clearly understood. By adding a small amount of weight percentage (wt%) of nanofillers, the physical, mechanical, and electrical properties of polymers can be greatly enhanced. For instance, nanofillers in nanocomposites such as silica (SiO2), alumina (Al2O3) and titania (TiO2) play a big role in providing a good approach to increasing the dielectric breakdown strength and partial discharge resistance of nanocomposites. Such polymer nanocomposites will be reviewed thoroughly in this paper, with the different experimental and analytical techniques used in previous studies. This paper also provides an academic review about partial discharge in polymer nanocomposites used as electrical insulating material from previous research, covering aspects of preparation, characteristics of the nanocomposite based on experimental works, application in power systems, methods and techniques of experiment and analysis, and future trends.

  2. Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems.

    Science.gov (United States)

    Dalmoro, Annalisa; Bochicchio, Sabrina; Nasibullin, Shamil F; Bertoncin, Paolo; Lamberti, Gaetano; Barba, Anna Angela; Moustafine, Rouslan I

    2018-05-17

    Non-steroidal anti-inflammatory drugs (NSAIDs), i.e. indomethacin used for rheumatoid arthritis and non-rheumatoid inflammatory diseases, are known for their injurious actions on the gastrointestinal (GI) tract. Mucosal damage can be avoided by using nanoscale systems composed by a combination of liposomes and biodegradable natural polymer, i.e. chitosan, for enhancing drug activity. Aim of this study was to prepare chitosan-lipid hybrid delivery systems for indomethacin dosage through a novel continuous method based on microfluidic principles. The drop-wise conventional method was also applied in order to investigate the effect of the two polymeric coverage processes on the nanostructures features and their interactions with indomethacin. Thermal-physical properties, mucoadhesiveness, drug entrapment efficiency, in vitro release behavior in simulated GI fluids and stability in stocking conditions were assayed and compared, respectively, for the uncoated and chitosan-coated nanoliposomes prepared by the two introduced methods. The prepared chitosan-lipid hybrid structures, with nanometric size, have shown high indomethacin loading (about 10%) and drug encapsulation efficiency up to 99%. TEM investigation has highlighted that the developed novel simil-microfluidic method is able to put a polymeric layer, surrounding indomethacin loaded nanoliposomes, thicker and smoother than that achievable by the drop-wise method, improving their storage stability. Finally, double pH tests have confirmed that the chitosan-lipid hybrid nanostructures have a gastro retentive behavior in simulated gastric and intestinal fluids thus can be used as delivery systems for the oral-controlled release of indomethacin. Based on the present results, the simil-microfluidic method, working with large volumes, in a rapid manner, without the use of drastic conditions and with a precise control over the covering process, seems to be the most promising method for the production of suitable

  3. A NEW TYPE OF HIGHLY-ACTIVE POLYMER-BOUND RHODIUM HYDROFORMYLATION CATALYST

    NARCIS (Netherlands)

    JONGSMA, T; KIMKES, P; CHALLA, G; VANLEEUWEN, PWNM

    1992-01-01

    A new route of attaching phosphites to a (co)polymer chain is described. These copolymers are used for the preparation of a rhodium phosphite hydroformylation catalyst. The catalytic activity of this polymer-bound system is identical to that of the low molecular weight analogue. The catalysts show a

  4. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    Science.gov (United States)

    Frechet, Jean M. J. [Oakland, CA; Svec, Frantisek [Alameda, CA; Rohr, Thomas [Leiden, NL

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  5. Evaluation of polyvinyl alcohols as mucoadhesive polymers for mucoadhesive buccal tablets prepared by direct compression.

    Science.gov (United States)

    Ikeuchi-Takahashi, Yuri; Ishihara, Chizuko; Onishi, Hiraku

    2017-09-01

    The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.

  6. Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization

    International Nuclear Information System (INIS)

    Sun Wei; Chen Yiwang; Deng Qilan; Chen Lie; Zhou Lang

    2006-01-01

    Films of polytetrafluoroethylene (PTFE) were exposed to sodium naphthalenide (Na/naphtha) etchant so as to defluorinate the surface for obtaining hydroxyl functionality. Surface-initiators were immobilized on the PTFE films by esterification of 4,4'-azobis(4-cyanopentanoic acid) (ACP) and the hydroxyl groups covalently linked to the surface. Grafting of polymer brushes on the PTFE films was carried out by the surface-initiated free radical polymerization. Homopolymers brushes of methyl methacrylate (MMA) were prepared by free radical polymerization from the azo-functionalized PTFE surface. The chemical composition and topography of the graft-functionalized PTFE surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance (ATR) FT-IR spectroscopy and atomic force microscopy (AFM). Water contact angles on PTFE films were reduced by surface grafting of MMA

  7. Vacuum-integrated electrospray deposition for highly reliable polymer thin film.

    Science.gov (United States)

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin

    2012-10-01

    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.

  8. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging

    International Nuclear Information System (INIS)

    Mahajan, Shveta; Choudhary, Veena; Koul, Veena; Shishodia, Gauri; Bharti, Alok C

    2013-01-01

    Polymer–SPION hybrids were investigated for receptor-mediated localization in tumour tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) prepared by high-temperature decomposition of iron acetylacetonate were monodisperse (9.27 ± 3.37 nm), with high saturation magnetization of 76.8 emu g −1 . Amphiphilic copolymers prepared from methyl methacrylate and PEG methacrylate by atom transfer radical polymerization were conjugated with folic acid (for folate-receptor specificity). The folate-conjugated polymer had a low critical micellar concentration (0.4 mg l −1 ), indicating stability of the micellar formulation. SPION–polymeric micelle clusters were prepared by desolvation of the SPION dispersion/polymer solution in water. Magnetic resonance imaging of the formulation revealed very good contrast enhancement, with transverse (T 2 ) relaxivity of 260.4 mM −1 s −1 . The biological evaluation of the SPION micelles included cellular viability assay (MTT) and uptake in HeLa cells. These studies demonstrated the potential use of these nanoplatforms for imaging and targeting. (paper)

  9. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  10. Effect of thiolated polymers to textural and mucoadhesive properties of vaginal gel formulations prepared with polycarbophil and chitosan.

    Science.gov (United States)

    Cevher, Erdal; Sensoy, Demet; Taha, Mohamed A M; Araman, Ahmet

    2008-01-01

    The aim of this study was to design and evaluate of mucoadhesive gel formulations for the vaginal application of clomiphene citrate (CLM) for local treatment of human papilloma virus (HPV) infections. Chitosan (CHI) and polycarbophil (PC) were covalently modified using the thioglycolic acid and L-cysteine, respectively. The formation of thiol conjugates of chitosan (CHI-TG) and polycarbophil (PC-CYS) were confirmed by FT-IR analysis and PC-CYS and CHI-TG were found to have 148.42 +/- 4.16 and 41.17 +/- 2.34 micromol of thiol groups per gram of polymer, respectively. One percent CLM gels were prepared by combination of various concentrations of PC and CHI with thiolated conjugates of these polymers. Hardness, compressibility, elasticity, adhesiveness and cohesiveness of the gels were measured by Texture profile analysis and the vaginal mucoadhesion was investigated by mucoadhesion test. The increasing in the amount of the thiol conjugates was found to enhance the elasticity, cohesiveness, adhesiveness and mucoadhesion of the gel formulations but not their hardness and compressibility when compared to gels prepared using their respective parent formulations. Slower release rate of CLM from gels was achieved when the polymer concentrations were increased in the gel formulations. PC and its thiol conjugate were found to prolong the release of CLM longer than 70 h unlike gel formulations prepared using CHI and its thiol conjugate which were able to release CLM up to 12 h. Stability of CLM was preserved during the 3 month stability analysis under controlled room temperature and accelerated conditions.

  11. Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery.

    Science.gov (United States)

    Xiong, Xiao-Bing; Binkhathlan, Ziyad; Molavi, Ommoleila; Lavasanifar, Afsaneh

    2012-07-01

    Self-assembly of amphiphilic block co-polymers composed of poly(ethylene oxide) (PEO) as the hydrophilic block and poly(ether)s, poly(amino acid)s, poly(ester)s and polypropyleneoxide (PPO) as the hydrophobic block can lead to the formation of nanoscopic structures of different morphologies. These structures have been the subject of extensive research in the past decade as artificial mimics of lipoproteins and viral vectors for drug and gene delivery. The aim of this review is to provide an overview of the synthesis of commonly used amphiphilic block co-polymers. It will also briefly go over some pharmaceutical applications of amphiphilic block co-polymers as "nanodelivery systems" for small molecules and gene therapeutics. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  13. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  14. Preparation and stability investigation of tamsulosin hydrochloride sustained release pellets containing acrylic resin polymers with two different techniques

    Directory of Open Access Journals (Sweden)

    Rui Fan

    2017-03-01

    Full Text Available The objective of this study was to prepare tamsulosin hydrochloride-sustained release (TSH-SR pellets which showed good release stability with frame-controlled method. TSH was added to Eudragit®NE30D and Eudragit®L30D-55 polymers to form drug-loaded inner core. Afterwards, enteric Eudragit®L30D-55 polymer was modified on the surface of it to the final product. Dissolution studies showed that TSH-SR pellets were more stable during the coating process, different curing temperatures and storage conditions compared with TSH pellets produced by film-controlled technique. Appearances and glass transition temperatures (Tgs of free films and surface morphologies observed by scanning electron microscopy (SEM of blank sustained release pellets prepared by different ratios of Eudragit®NE30D and Eudragit®L30D-55 further indicated that temperature and relative humidity (RH were the key factors when Eudragit®NE30D blended with Eudragit®L30D-55 were applied to sustained/controlled release preparations. In addition, SEM identified the surface morphologies of TSH-SR pellets before and after dissolution, which showed intact surface structure and great correlation with release curve respectively.

  15. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents.

    Science.gov (United States)

    Prasad, Kamalesh; Mondal, Dibyendu; Sharma, Mukesh; Freire, Mara G; Mukesh, Chandrakant; Bhatt, Jitkumar

    2018-01-15

    Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Plasma coatings of nitrogen polymers on metal prostheses of the circulatory system

    International Nuclear Information System (INIS)

    Gomez J, L. M.

    2016-01-01

    This work has a study about the synthesis of poly aniline, poly allylamine and poly pyrrole doped with iodine onto metallic surfaces similar to stents for the circulatory system. Ar, water and hydrogen peroxide plasmas were used for eroding, conditioning and synthesizing polymers that potentially reduce some rejection reactions when stents are implanted in the human body. Stents are small metallic meshes that applied inside collapsed arteries or veins enlarge the diameter and restore the blood flow, however the metallic surfaces usually cause rejection reactions that obstruct the veins again. To give solutions to this problem, in this work is studied the synthesis of biocompatible polymer coatings on the stents that resist the blood flow forming a biocompatible interface between metal and blood. The metallic substrates were eroded and chemically prepared with Ar, H_2O and/or H_2O_2 glow discharges on which the polymers were synthesized by plasma. The coatings were morphologically characterized by optical, scanning electron and atomic force microscopy, the chemical structure was studied by infrared and photoelectron X-ray spectroscopy. The hydrophilicity was studied measuring the advance static contact angle and the adhesion was evaluated indirectly with scanning electron microscopy after two months submerged in buffered phosphate solutions. The results indicate that the polymers grew following the superficial morphology; that the conditioning with Ar ions erode the substrates and that the conditioning with H_2O or H_2O_2 erodes and activates the surface generating oxygen bridges which help in the polymer-metal adhesion. The chemical structure of the polymeric coatings contain crosslinked structures that correspond to links between monomers with the participation of all atoms, states that suggest monomer fragmentation and oxidation and states that indicate oxygen bridges in the polymers. The coatings had contact angles close to 90 degrees where is located the line

  17. Thermal degradation of polymer systems having liquid crystalline oligoester segment

    Directory of Open Access Journals (Sweden)

    Renato Matroniani

    Full Text Available Abstract Block copolymers and blends comprised by liquid crystalline oligoester and polystyrene were prepared and their thermal stability were characterized by thermogravimetric analysis (TGA. The samples have shown three main decomposition temperatures due to (1 lost of flexible chain and decomposition of mesogenic segment, (2 decomposition of polystyrene and (3 final decomposition of oligoester rigid segment. Both copolymers and polymer blends presented lower thermal stability compared to polystyrene and oligoester. The residual mass after heating at 600 °C in copolymers and polymer blends were lower than those found in the oligoesters. A degradative process of aromatic segments of oligoester induced by decomposition of polystyrene is suggested.

  18. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    Science.gov (United States)

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optical absorption studies on biodegradable PVA/PVP blend polymer electrolyte system

    Science.gov (United States)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Biodegradable blend polymer electrolytes of PVA/PVP with different wt% ratios of MgCl2.6H2O have been prepared using solution cast technique. Optical absorption studies were carried-out on to the prepared films at room temperature using JASCO V-670 Spectrophotometer in the wavelength region 200-600 nm. Due to the clusters between the vibrations of molecules a broad peak is obtained due to п-п* transition in the wavelength region 310-340 nm.

  20. Fast and Easy Drying Method for the Preparation of Activated [{sup 18}F]Fluoride Using Polymer Cartridge

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jai Woong [Inha University, Inchon (Korea, Republic of); Lee, Byoung Se; Chi, Dae Yoon [FutureChem Co., Ltd., Seoul (Korea, Republic of); Lee, Sang Ju [Sogang University, Seoul (Korea, Republic of); Oh, Seung Jun [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2011-01-15

    An efficient nucleophilic [{sup 18}F]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of K{sub 2}CO{sub 3}-K{sub 222}, several organic solution containing inert organic salts were used to release [{sup 18}F]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix (PS-HCO{sub 3}) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [{sup 18}F]fluorination by suppressing eliminated side product. Consequent [{sup 18}F]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

  1. Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane

    International Nuclear Information System (INIS)

    Suelves, I.; Utrilla, R.; Torres, D.; Llobet, S. de; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.

    2013-01-01

    Polymer-based composites were prepared using different concentrations of nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). Four carbonaceous nanostructures were produced using different catalysts (with Ni and Fe as active phases) in a rotary bed reactor capable of producing up to 20 g of carbon per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of epoxy-based composites is studied. An increase in the thermal stability and the decrease of electrical resistivity were observed for the composites at carbon contents as low as 1 wt%. The highest reduction of the electrical resistivity was obtained using multi-walled carbon nanotubes obtained with the Fe based catalysts. This effect could be related to the high degree of structural order of these materials. The results were compared with those obtained using a commercial carbon nanofibre, showing that the use of carbon nanostructures from CDM can be a valid alternative to the commercial nanofibres. -- Highlights: ► Preparation of polymer nanocomposites with enhanced thermal and electrical properties. ► Formation of nanostructured carbon materials with different textural and structural properties at large scale. ► Catalytic decomposition of methane to simultaneously produce hydrogen and carbon materials.

  2. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  3. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  4. Preparation and evaluation of open-tubular capillary column combining a metal-organic framework and a brush-shaped polymer for liquid chromatography.

    Science.gov (United States)

    Chen, Kai; Zhang, Lingyi; Zhang, Weibing

    2018-03-30

    In this work, an open-tubular capillary liquid-phase column was prepared by modifying chain polymer on the inner surface of capillary and chemical bonding of metal organic frameworks, NH 2 -UiO-66, to the brushes of chain polymer (poly(glycidyl methacrylate)). Besides advantages of facial preparation and good permeability, the chain polymer effectively increases the modification amount of NH 2 -UiO-66 nanoparticles to increase the phase ratio of open-tubular capillary column and enhance the interactions with analytes. The results of scanning electron microscope energy-dispersive X-ray spectra indicated that NH 2 -UiO-66 nanoparticles were successfully bonded to the chain polymer. Because of the hydrophobic interaction and hydrogen bonding interaction between the analytes and the ligand of NH 2 -UiO-66, different analytes were well separated on the NH 2 -UiO-66-modified poly(glycidyl methacrylate) capillary (1.12 m × 25 μm id × 365 μm od) with the high absolute column efficiency reaching 121 477 plates, benefiting from an open-tubular column and low mass transfer resistance provided by polymer brush and metal-organic framework crystal. The relative standard deviations of the retention time for run-to-run, day-to-day, and column-to-column (n = 3) runs are below 4.28%, exhibiting good repeatability. Finally, the column was successfully applied to separation of flavonoids in licorice. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Manceau, Matthieu

    2010-01-01

    connected cells were prepared with a total module active area of 96 cm2. The devices were tested for operational stability under simulated sunlight (AM1.5G) and natural sunlight, and the photochemical stability of the polymer was examined using a combination of UV−vis and IR spectroscopy.......We present the synthesis of a low band gap copolymer based on dithienothiophene and dialkoxybenzothiadiazole (poly(dithienothiophene-co-dialkoxybenzothiadiazole), PDTTDABT). The optical properties of the polymer showed a band gap of 1.6 eV and a sky-blue color in solid films. The polymer...... around a 1:2 mixing ratio. Roll-to-roll coated polymer solar cell devices were prepared under ambient conditions employing solution processing in all steps including the metallic back electrode that was printed as a grid giving semitransparent solar cell devices. Solar cell modules comprising 16 serially...

  6. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  7. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  8. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  9. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  10. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  11. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  12. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Prabha, G., E-mail: gprabhagovinn@gmail.com; Raj, V., E-mail: alaguraj2@rediffmail.com

    2016-06-15

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe{sub 3}O{sub 4}) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe{sub 3}O{sub 4}-CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe{sub 3}O{sub 4}-CS, Fe{sub 3}O{sub 4}-CS-PEG and Fe{sub 3}O{sub 4}-CS-PEG-PVP nanocomposites showed pH responsive drug release.

  13. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    International Nuclear Information System (INIS)

    Prabha, G.; Raj, V.

    2016-01-01

    In the present research work, the anticancer drug ‘curcumin’ is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe 3 O 4 ) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183–390 nm with a zeta potential value of 26–41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix. - Highlights: • The considered drug carrier Fe 3 O 4 -CS-PEG-PVP nanoparticles were prepared and entrapping (Curcumin). • The amount of the drug had great effect on the drug LC and EE and zeta potential Nanocomposites. • The Curcumin- loaded Fe 3 O 4 -CS, Fe 3 O 4 -CS-PEG and Fe 3 O 4 -CS-PEG-PVP nanocomposites showed pH responsive drug release.

  14. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  15. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  17. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  18. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    Directory of Open Access Journals (Sweden)

    Heba M. El Naggar

    2017-02-01

    Full Text Available Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2 based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles MontanideTM adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2 viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses.

  19. Preparation and Characterization of a Small Library of Thermally-Labile End-Caps for Variable-Temperature Triggering of Self-Immolative Polymers.

    Science.gov (United States)

    Taimoory, S Maryamdokht; Sadraei, S Iraj; Fayoumi, Rose Anne; Nasri, Sarah; Revington, Matthew; Trant, John F

    2018-04-20

    The reaction between furans and maleimides has increasingly become a method of interest as its reversibility makes it a useful tool for applications ranging from self-healing materials, to self-immolative polymers, to hydrogels for cell culture and for the preparation of bone repair. However, most of these applications have relied on simple monosubstituted furans and simple maleimides and have not extensively evaluated the potential thermal variability inherent in the process that is achievable through simple substrate modification. A small library of cycloadducts suitable for the above applications was prepared, and the temperature dependence of the retro-Diels-Alder processes was determined through in situ 1 H NMR analyses complemented by computational calculations. The practical range of the reported systems ranges from 40 to >110 °C. The cycloreversion reactions are more complex than would be expected based on simple trends expected based on frontier molecular orbital analyses of the materials.

  20. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  1. Industrial Irradiation of Polymers: Systems and Concepts

    International Nuclear Information System (INIS)

    Mittendorfer, J.

    2006-01-01

    This paper provides a systematic survey of systems and concepts used in the industrial irradiation of polymers. It consists basically of three parts: in the first part, different types of applications like wires and cables, pipes and engineering plastics are discussed and the associated irradiation systems analyzed and highlighted according their basics modules. These are identified as the radiation source, the product handling system, process control and facility/shielding layout. In the second part, the irradiation process design is reviewed in detail. The discussion starts with the requirement analysis, e.g. the desired polymer parameters and effects, continues with a process development roadmap and concludes with process verification and validation. Special attention is drawn to process control, which plays an important role in industrial irradiation technology. The use of mathematical modeling to facilitate and support process and system design is discussed as well and several examples are given which demonstrate their capabilities. In the third part, the design of a electron beam facility for the irradiation of small plastic parts for the automotive industry is worked out in detail. Besides system and product handling considerations, throughput and economical estimates are provided. The paper concludes with a summary of the design and concept bullets which proved to be important in history and can facilitate new developments which will enhance the potential of industrial polymer irradiation

  2. Preparation and drug-loading properties of Fe{sub 3}O{sub 4}/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wensheng [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China); Shen, Yuhua, E-mail: s_yuhua@163.com [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Xie, Anjian [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Zhang, Weiqiang [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Coordination Chemistry Institute, School of Chemistry and Chemical Engineering and Life Science, Chaohu University, Chaohu 238000 (China)

    2013-11-15

    Fe{sub 3}O{sub 4}/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe{sub 3}O{sub 4} nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50–120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe{sub 3}O{sub 4} nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  3. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    Science.gov (United States)

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    International Nuclear Information System (INIS)

    Veres, M.; Beiler, B.; Himics, L.; Tóth, S.; Koós, M.

    2010-01-01

    Many areas of modern medicine are almost unimaginable without the use of different kinds of implants. They used as replacements, supports, auxiliary devices etc. for various parts or functions of the body. Their use has many advantages, however there could be some drawbacks too, like the possibility of rejection, inflammation and other side-effects. Many of these drawbacks are directly related to the materials used for the implant fabrication. Coatings are widely used to eliminate the unwanted effects appearing after the implantation. In addition to the protection and separation of tissues from the implant material they could also enhance the functionality and the acceptance of the artificial device and also promote the regeneration of the tissues after the intervention. Drug-eluting coatings are a good example for the latter. By delivery and controlled elution of drugs they could actively suppress inflammatory reactions, allergy and rejection of the implant, and their activity is localized to the place where these effects could mainly occur – to the region of the implant. This project is aimed to develop a drug-eluting porous polymer coating by radiation induced polymerization that can be used in different medical implants. The primary objects for this research are coronary stents however these porous layers could have perspective in other types of medical devices too. The main objectives are to develop a method for coating the surface of medical grade metallic alloy wires, plates and tubes with a porous polymer nanocomposite layer prepared by radiation induced polymerization and to characterize the obtained coatings

  5. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Veres, M.; Beiler, B.; Himics, L.; Tóth, S.; Koós, M., E-mail: vm@szfki.hu [Hungarian Academy of Sciences, Research Institute for Solid State Physics and Optics, Department of Laser Applications, Konkoly Thege Miklós ut 29-33, 1121 Budapest, P.O. Box 49, 1525 Budapest (Hungary)

    2010-07-01

    Many areas of modern medicine are almost unimaginable without the use of different kinds of implants. They used as replacements, supports, auxiliary devices etc. for various parts or functions of the body. Their use has many advantages, however there could be some drawbacks too, like the possibility of rejection, inflammation and other side-effects. Many of these drawbacks are directly related to the materials used for the implant fabrication. Coatings are widely used to eliminate the unwanted effects appearing after the implantation. In addition to the protection and separation of tissues from the implant material they could also enhance the functionality and the acceptance of the artificial device and also promote the regeneration of the tissues after the intervention. Drug-eluting coatings are a good example for the latter. By delivery and controlled elution of drugs they could actively suppress inflammatory reactions, allergy and rejection of the implant, and their activity is localized to the place where these effects could mainly occur – to the region of the implant. This project is aimed to develop a drug-eluting porous polymer coating by radiation induced polymerization that can be used in different medical implants. The primary objects for this research are coronary stents however these porous layers could have perspective in other types of medical devices too. The main objectives are to develop a method for coating the surface of medical grade metallic alloy wires, plates and tubes with a porous polymer nanocomposite layer prepared by radiation induced polymerization and to characterize the obtained coatings.

  6. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  7. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconatetitanate/Polymer Composites

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-08-01

    Full Text Available Piezoelectric lead zirconatetitanate (PZT/polymer composites were prepared by two typical polymer matrixes using the hot-press method. The micromorphology, microstructure, dielectric properties, and piezoelectric properties of the PZT/polymer composites were characterized and investigated. The results showed that when the condition of frequency is 103 Hz, the dielectric and piezoelectric properties of PZT/poly(vinylidene fluoride were both better than that of PZT/polyvinyl chloride (PVC. When the volume fraction of PZT was 50%, PZT/PVDF prepared by the hot-press method had better comprehensive electric property.

  8. Something new in the field of PLA/GA bioresorbable polymers?

    Science.gov (United States)

    Vert, M; Schwach, G; Engel, R; Coudane, J

    1998-04-30

    Polymers issued from glycolic acid and lactic acids (PLAGA) are now used worldwide as bioresorbable devices in surgery and in pharmacology. Their abiotic hydrolytic degradation has been shown to depend on diffusion-reaction phenomena and to proceed homogeneously or heterogeneously, depending on many factors. Two initiators are presently used industrially to make PLAGA polymers by ring opening polymerisation of lactide and/or glycolide in the bulk, namely Sn octanoate and zinc metal. In this contribution, attention is paid to the differences generated by the use of these two initiator systems in the case of the polymerisation of DL-lactide. Various poly(DL-lactide)s were prepared and characterised by size-exclusion chromatography (SEC), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). These polymers were allowed to age in pH=7.4 isoosmolar phosphate buffer at 37 degrees C. Under these conditions, polymers prepared by the two initiator systems showed dramatic differences when the fates of parallel sided specimens of rather large dimensions were considered. These differences were related to the esterification of some of the OH chain ends by octanoic acid and to the presence of rather hydrophobic low molecular weight by-products which were insoluble in the solvent generally used to purify the crude PLAGA polymers. These new findings should be of great interest in the case of PLAGA based matrices aimed at drug delivery.

  9. Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices

    International Nuclear Information System (INIS)

    Mustapa, Siti Rosnah; Aung, Min Min; Ahmad, Azizan; Mansor, Ahmad; TianKhoon, Lee

    2016-01-01

    Jatropha-oil based polyurethane is one of the initiative for replacing conventional petroleum based polyurethane. The vegetable oil-based polyurethane is more cost-effective and synthesize from renewable resources. Polyurethane was synthesized through prepolymerization method between jatropha oil-based polyol and diphenylmethane 4, 4’diisocyanate, (MDI) in inert condition. Then, lithium perchloride ion (LiClO 4 ) was added to the polyurethane system to form electrolyte film via solution casting technique. The polymer electrolytes were prepared by varying the amount of LiClO 4 ion 10 wt.% to 30 wt. %. The highest conductivity is achieved at 25 wt.% of LiClO 4 salt content, which is 1.29 × 10 −4 S/cm at room temperature 30 °C. The FTIR results showed the shifting of carbonyl group (C=O) (1750 cm −1 – 1730 cm −1 ), ether and ester group (C-O-C) (1300 cm −1 –1000 cm −1 ) and amine functional groups (N-H) (1650 cm −1 –1500 cm −1 ) in polyurethane electrolytes from the blank polyurethane shows that oxygen and nitrogen atom acts as electron donor in the electrolytes system. It also confirmed that the intermolecular reaction had occurred in the electrolytes system. While, the XRD analysis showed the semi-crystalline properties of polyurethane have been reduced to amorphous phase upon the increasing addition of lithium ion. SEM results revealed the morphology analysis of the polyurethane electrolytes. There is homogenous and smooth surface in polyurethane and the dissociation of salt was observed after the addition of salt indicates there was interaction between salt and the polymer host.

  10. Enzyme production in immobilized Trichoderma reesei cells with hydrophobic polymers prepared by radiation polymerization method

    International Nuclear Information System (INIS)

    Luzhao Xin; Kumakura, Minoru; Kaetsu, Isao

    1993-01-01

    Trichoderma reesei cells were immobilized on paper covered with hydrophobic monomer, trimethylpropane triacrylate by radiation polymerization. The effect of immobilization condition on enzyme productivity was studied by measuring filter paper and cellobiose activity. The cells were adhered and grew on the surface of the carrier with the polymer giving high enzyme productivity in the immobilized cells in comparison with the free cells. Optimum concentration and volume of the coating monomer for the preparation of the immobilized cells were obtained. (author)

  11. Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers.

    Science.gov (United States)

    Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi

    2015-04-01

    Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use.

  12. Supercritical transitiometry of polymers.

    Science.gov (United States)

    Randzio, S L; Grolier, J P

    1998-06-01

    Employing supercritical fluids (SCFs) during polymers processing allows the unusual properties of SCFs to be exploited for making polymer products that cannot be obtained by other means. A new supercritical transitiometer has been constructed to permit study of the interactions of SCFs with polymers during processing under well-defined conditions of temperature and pressure. The supercritical transitiometer allows pressure to be exerted by either a supercritical fluid or a neutral medium and enables simultaneous determination of four basic parameters of a transition, i.e., p, T, Δ(tr)H and Δ(tr)V. This permits determination of the SCF effect on modification of the polymer structure at a given pressure and temperature and defines conditions to allow reproducible preparation of new polymer structures. Study of a semicrystalline polyethylene by this method has defined conditions for preparation of new microfoamed phases with good mechanical properties. The low densities and microporous structures of the new materials may make them useful for applications in medicine, pharmacy, or the food industry, for example.

  13. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  14. Preparation and mechanical property of polymer-based biomaterials

    International Nuclear Information System (INIS)

    Zhang, P; Chen, G; Zheng, X F

    2010-01-01

    The porous polymer-based biomaterial has been synthesized from PLGA, dioxane and tricalcium phosphate (TCP) by low-temperature deposition process. The deformation behaviours and fracture mechanism of polymer-based biomaterials were investigated using the compression test and the finite element (FE) simulation. The results show that the stress-strain curve of compression process includes linear elastic stage I, platform stage II and densification stage III, and the fracture mechanism can be considered as brittle fracture.

  15. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Extraction of uranium by hydroxybenzamide type polymers

    International Nuclear Information System (INIS)

    Sakuragi, Masako; Ichimura, Kunihiro; Suda, Yoshio; Marumo, Tomofuyu; Iwaki, Takao; Abe, Yoshimoto; Misono, Takahisa.

    1985-01-01

    Polyethyleneimine crosslinked with N,N'-methylenebisacrylamide was treated with substituted phenyl hydroxybenzoates to give the polymers having corresponding hydroxybenzamide groups. In these polymers I-V, polymer having 2-hydroxybenzamide group (I) and that having 2,4-dihydroxybenzamide group (II) showed the adsorption abilities of 45 and 87 μg-U/g in 4 days in seawater, respectively. The polymers having 2-hydroxybenzamide group in concentration from 1 to 20 mol % were prepared and the adsorption property for uranium was examined. Three mol % is most suitable concentration for treatment for 2-4 days, while 20 mol % is suitable for treatment for 30 days. The polymer prepared from porous polyethyleneimine bead showed higher adsorption ability than usual ones. (J.P.N.)

  17. Preparation of polymer brushes grafted graphene oxide by atom transfer radical polymerization as a new support for trypsin immobilization and efficient proteome digestion.

    Science.gov (United States)

    Guo, Cong; Zhao, Xinyuan; Zhang, Wanjun; Bai, Haihong; Qin, Weijie; Song, Haifeng; Qian, Xiaohong

    2017-08-01

    Highly efficient protein digestion is one of the key issues in the "bottom-up" strategy-based proteomic studies. Compared with the time-consuming solution-based free protease digestion, immobilized protease digestion offers a promising alternative with obviously improved sample processing throughput. In this study, we proposed a new immobilized protease digestion strategy using two kinds of polymer-grafted graphene oxide (GO) conjugated trypsin. The polymer brush grafted GO was prepared using in situ polymer growth on initiator-functionalized GO using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized by AFM, TEM, TGA, and XPS. The polymer brush grafted GO supports three-dimensional trypsin immobilization, which not only increases the loading amount but also improves accessibility towards protein substrates. Both of the two types of immobilized trypsin provide 700 times shorter digestion time, while maintaining comparable protein/peptide identification scale compared with that of free trypsin digestion. More interestingly, combined application of the two types of immobilized trypsin with different surface-grafted polymers leads to at least 18.3/31.3% enhancement in protein/peptide identification compared with that obtained by digestion using a single type, indicating the potential of this digestion strategy for deeper proteome coverage using limited mass spectrometer machine hour. We expect these advantages may find valuable application in high throughput clinical proteomic studies, which often involve processing of a large number of samples. Graphical abstract Preparation of polymer brushes grafted and trypsin immobilized graphene oxide and its application in proteome digestion and mass spectrometry identification.

  18. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  19. Fluorescent molecularly imprinted polymer thin films for specific protein detection prepared with dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline.

    Science.gov (United States)

    Inoue, Yuki; Kuwahara, Atsushi; Ohmori, Kohei; Sunayama, Hirobumi; Ooya, Tooru; Takeuchi, Toshifumi

    2013-10-15

    Protein-imprinted polymers, capable of specific transduction of protein binding events into fluorescent signal change, were designed and synthesized by using dansyl ethylenediamine-conjugated O-acryloyl L-hydroxyproline (Hyp-En-Dans). Human serum albumin (HSA) was used as a model target protein and HSA-imprinted polymers (HSA-IP) were prepared on glass substrates. Specific fluorescence change was observed for HSA binding on the imprinted polymer thin film, whereas a weaker response was observed for other proteins, including bovine serum albumin, chymotrypsin, lysozyme, and avidin. The binding specificity was found to derive from the rigid structure of the hydrogen-bondable pyrrolidine moiety. Compared with SPR measurements, the non-specific binding caused by the polymer matrix and/or randomly located fluorescent monomer residues that did not compose specific binding sites did not contribute to the observed fluorescence change. These results revealed that the proposed protein-imprinting technique using Hyp-En-Dans could provide a highly selective protein-sensing platform, in which only specific binding events would be detected by fluorescent measurements. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Mechanical properties of polymer-modified porous concrete

    Science.gov (United States)

    Ariffin, N. F.; Jaafar, M. F. Md.; Shukor Lim, N. H. Abdul; Bhutta, M. A. R.; Hussin, M. W.

    2018-04-01

    In this research work, polymer-modified porous concretes (permeable concretes) using polymer latex and redispersible polymer powder with water-cement ratio of 30 %, polymer-cement ratios of 0 to 10 % and cement content of 300 kg/m3 are prepared. The porous concrete was tested for compressive strength, flexural strength, water permeability and void ratio. The cubes size of specimen is 100 mm ×100 mm × 100 mm and 150 mm × 150 mm × 150 mm while the beam size is 100 mm × 100 mm × 500 mm was prepared for particular tests. The tests results show that the addition of polymer as a binder to porous concrete gives an improvement on the strength properties and coefficient of water permeability of polymer-modified porous concrete. It is concluded from the test results that increase in compressive and flexural strengths and decrease in the coefficient of water permeability of the polymer-modified porous concrete are clearly observed with increasing of polymer-cement ratio.

  1. Polymer association in a microemulsion system

    International Nuclear Information System (INIS)

    Fountain, L.E.; Shahidan Radiman; Toprakcioglu, C.

    1997-01-01

    Using small angle neutron scattering technique with appropriate contrast we have been able to elucidate some associations structures of polystyrene (PS) and triblock co-polymers of polyethylene oxide-polystyrene- polyethylene oxide (PEO-PS-PEO) in a water-in-oil microemulsion system

  2. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    Science.gov (United States)

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  3. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  4. Development of radiation processes wood-polymer composites based on tropical hardwoods

    International Nuclear Information System (INIS)

    Iya, V.K.; Majali, A.B.

    1978-01-01

    The wood-polymer composites based on tropical hardwoods were prepared with three monomer systems. Use of chlorinated paraffin oil as an additive imparted fire resistance to the composites and also brought down the gamma dose requirement for total polymerisation. A number of tropical hardwoods can be upgraded by radiation curing, but for cost optimisation, hardwoods with high improvement per unit polymer should be selected. (author)

  5. Thin polymer films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Silva, Paulo A.F.; Mota, Rogerio P.; Schreiner, Wido H.; Cruz, Nilson C.

    2005-01-01

    This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 kV negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer

  6. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    Esnouf, Stephane

    1995-01-01

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author) [fr

  7. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  8. Possible use of ionic polymers for treatment of radioactive liquid waste

    International Nuclear Information System (INIS)

    Siyam, T.; Nofal, M.; Eldessouky, M.I.; Aly, H.F.

    1992-01-01

    Water-soluble nonionic polymers such as polyacrylamide is recently introduced for treatment of radioactive liquid waste. Eater-soluble ionic polymers such as: poly (sodium acrylate) [anionic polymer], poly (acrylamide-CO-sodium acrylate) [anionic copolymer] and poly (acrylamide-sodium acrylate-diallyldiethylammonium chloride) [amphoteric terpolymer] were prepared by gamma radiation-initiated polymerization of the corresponding monomer solutions. The prepared polymers were assessed for use in treatment of radionuclides that might be present in radioactive waste effluents. It was found that the polymer efficiency for cobalt-60 was affected by the composition of the copolymer and the degree of ionization of the polymer. The efficiency of the polymer increases with increasing the concentration of the polymer. The mechanism of sludge formation for each type of polymer was discussed. It was found that the anionic copolymer is more selective for cobalt than the prepared polymers. Amphoteric terpolymer has different selectivity for cations and anions. 3 figs, 1 tab

  9. Electro-Optical Parameters Of Hairy Rod Polymer/Dimethylformamide System

    International Nuclear Information System (INIS)

    Spasevska, Hristina

    2003-01-01

    Rigid rod polymers are materials with special features, that is the reason why they have large scientific and technological applications like isotropic-nematic and other types of transition. One of the biggest problems that happen while investigation to these polymers, at molecular level, is their poor solubility in most of the common solvents. Solubility gets better if while synthesize junctions flexible side chains, [1]. Remaining polymers belong on one new class - hairy rod polymers and have big potential for their technological applications. Because of their nonlinear optical properties and opportunity for self-organization in super molecular structures (films and fibers), can be used in electronics and telecommunications industry either at display-technologies [2]. That is the main reason why controlling the remaining polymer features and connection of their microscopic and macroscopic characteristics, like an complete characterization (in solutions and solid state) is from essential scientific interest, actually it is an imperative. The polymer POD-2/that is subject of investigation, bellows to hairy rod polymers and it is synthesized for the first time [3] by giving a support to their characterization. Measures on diluted solutions from the system POD-2/dimethylformamide are made by the method electric birefringence, at three temperatures (25, 40 and 55 o C). For different concentrations on system, from obtained electro-optical signals (EOS), dependence on electric birefringence (Δn) against applied electric field (E 2 ), is determined. By investigation of electro-optical effects, especially studding the way of their maintenance and losing, while applying electric square impulses, relaxation time τ o of polymer molecules is calculated. From these parameters, as presented data for EOS rise and decay too, deformational electro-optical effect has been determined. (Author)

  10. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    Science.gov (United States)

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  11. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  12. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    Science.gov (United States)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  13. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  14. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  15. Polymers for Pharmaceutical Packaging and Delivery Systems

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel

    materials of interest for pharmaceutical packaging and delivery systems. Confocal fluorescence microscopy studies and stability studies with insulin aspart (AspB28 insulin) were conducted to evaluate the impact of modified PP compared to unmodified PP. In contrast to PEEK, PP did not contain any functional....... In order to decrease the amount of catalyst residual in the modified materials, activator regenerated by electron transfer (ARGET) SI-ATRP was applied in the second experimental round. Two poly(ethylene glycol)methyl ether methacrylate (MPEGMA) monomers with 4 and 23 ethylene oxide units in the side chain......Selection of polymer materials which will be exposed to protein drugs in either containers or medical devices is often very challenging due to the demands on the polymers. Suitable polymer materials should comply with requirements like compatibility with proteins, sterilisability, good barrier...

  16. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  17. Preparation of a Mini-Library of Thermo-Responsive Star (NVCL/NVP-VAc Polymers with Tailored Properties Using a Hexafunctional Xanthate RAFT Agent

    Directory of Open Access Journals (Sweden)

    Norma Aidé Cortez-Lemus

    2017-12-01

    Full Text Available A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition–fragmentation chain transfer (RAFT polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam (PNVCL, copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone (PNVCL-co-PNVP and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach, wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880–153,400 g/mol to yield star polymers of different sizes and lower critical solution temperature (LCST values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5–26 mol % were prepared; the hydrophobic segment (PVAc is located at the end of the star arms. Interestingly, when the PVAc content was 5–7 mol %, the hydrodynamic diameter (Dh value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP, form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX showing their potential in the temperature controlled release of this antineoplasic drug. The importance

  18. Effect of various polymers concentrations on physicochemical properties of floating microspheres.

    Science.gov (United States)

    Jagtap, Y M; Bhujbal, R K; Ranade, A N; Ranpise, N S

    2012-11-01

    Floating microspheres have emerged as a potential candidate for gastroretentive drug delivery system. For developing a desired intragastric floatation system employing these microspheres, it is necessary to select an appropriate balance between buoyancy and drug releasing rate. These properties mainly depend on the polymers used in the formulation of the microspheres. Hence it is necessory to study the effect of these polymer concentrations on the various physicochemical properties of the microspheres. Floating microspheres were prepared by emulsion solvent evaporation technique utilising different polymers such as ethyl cellulose, Eudragit(®) RS and Eudragit(®) RL by dissolving them in a mixture of dichloromethane and methanol. Release modifiers studied were hydroxypropyl methylcellulose K4M, hydroxypropyl methylcellulose E50 LV and Eudragit(®) EPO. Prepared microspheres were analysed for particle size, surface morphology, entrapment efficiency, buoyancy, differential scanning calorimetry and in-vitro drug release. Ethyl cellulose and Eudragit(®) EPO resulted microspheres with high percentage yield, excellent spherical shape but had very less buoyancies with a high cumulative drug release. Ethyl cellulose microspheres prepared using hydroxypropyl methylcellulose K4M showed more sustained drug release and high buoyancies than that of the microspheres formulated with the hydroxypropyl methylcellulose E50 LV. Amongst these hydroxypropyl methylcellulose E50 LV showed good balance between buoyancy and the drug release.

  19. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  20. Preparation of dielectrics HR mirrors from colloidal oxide suspensions containing organic polymer binders

    International Nuclear Information System (INIS)

    Thomas, I.M.

    1994-01-01

    Colloidal suspensions of oxides have been used to prepare dielectric HR (high reflective) mirrors, specifically for high power fusion case applications, on substrates up to 38 cm square using a meniscus coater. These coatings consist of porous quarterwave layers of alternating high and low refractive index oxides. Silica was used as the low index oxide and AlOOH, ZrO 2 , or HfO 2 as the high index material. Coatings were weak because of low particle-to-particle adhesion. Use of organic polymer binders in the high index component was found to increase strength, thereby improving the laser damage threshold and also reducing the number of layers required for 99% reflection due to increased refractive index

  1. Laser patterning of transparent polymers assisted by plasmon excitation.

    Science.gov (United States)

    Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O

    2018-06-13

    Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.

  2. Interpenetrating networks of two conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; West, Keld

    2005-01-01

    Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings, and beca......Interpenetrating networks (IPNs) of two conjugated polymers are prepared by a combination of a chemical oxidation step and a vapour phase polymerisation step on non-conducting surfaces. In this work ferric tosylate was used as the oxidant as it gives very smooth and homogeneous coatings......, and because its reaction products can be removed efficiently after the formation of the composite. Several combinations of polymers are demonstrated, and the versatility of the proposed method allows extensions to a wide range of conjugated polymers. The IPNs show optical and electrochemical characteristics......, which are sums of the characteristics from the participating conducting polymers....

  3. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  4. Protein Compatible Polymer Brushes on Polymeric Substrates Prepared by Surface-Initiated Transfer Radica Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    have been made with model systems of poly(ether ether ketone) (PEEK) films as they can easily be functionalized [1]. Moreover, the inert material polypropylene has successfully beel! activated using a photochemical method [2]. Different polymers including PEG-like matenals have been investigated...... as coating materials. ATR FTIR, water contact angle measurements, Thermal Gravimetric Analysis (TGA), and X-ray Photoelectron Spectroscopy (XPS) confirmed that hydrophilic polymers have been grafted from the surface. The surface topography which was evaluated by Atomic Force Microscopy (AFM) did not change...

  5. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  6. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  7. Rational design of molecularly imprinted polymer: the choice of cross-linker.

    Science.gov (United States)

    Muhammad, Turghun; Nur, Zohre; Piletska, Elena V; Yimit, Osmanjan; Piletsky, Sergey A

    2012-06-07

    The paper describes a rational approach for the selection of cross-linkers during the development of molecularly imprinted polymers (MIPs). As a model system for this research MIPs specific for the drug zidovudine (AZT) were designed and tested. Three cross-linkers trimethylolpropane trimethacrylate (TRIM), ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB) were studied. The analogue of zidovudine (AZT) ester (AZT-ES) was used as a dummy template. The imprinting factors for all of the polymers in the static adsorption experiments were calculated. The data on the AZT adsorption by control polymers (CP), which were prepared with different cross-linkers without a functional monomer, was also analyzed. DVB was found to be more inert towards zidovudine than EGDMA and TRIM, which was confirmed by both molecular modelling and adsorption experiments. It was demonstrated that DVB-based polymers had a higher imprinting factor (I = 1.85) compared with other tested cross-linked polymers. It was suggested that the selection of the cross-linker should be based on the strength of the interaction with the template: the cross-linker which displays lower binding of the template should be preferential because it generates MIPs with lower non-specific binding and a higher imprinting factor, and therefore specificity. Which cross-linker to use for the preparation of any particular MIP can be determined by analysis of the interactions between the cross-linker and template. This could be done either virtually using computational modelling or by template adsorption using a small library of polymers prepared using different cross-linkers.

  8. Synthesis, characterization and applications of polymer-metal ...

    Indian Academy of Sciences (India)

    Abstract. 4-Acryloxy acetophenone was prepared and subjected to suspension polymerization with divinyl- benzene as a cross-linking agent. The resulting network polymer was ligated with benzoyl hydrazone. The functional polymer was treated with metal ions [Cu(II), Fe(II)]. The polymer-metal complexes obtained.

  9. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  10. Advanced polymer chemistry of organometallic anions

    International Nuclear Information System (INIS)

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes

  11. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    Science.gov (United States)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  12. Preparation and characterization of molecularly-imprinted polymers for extraction of sanshool acid amide compounds followed by their separation from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum).

    Science.gov (United States)

    Chen, Xiaolong; Jin, Xinkai; Li, Yao; Chen, Guangjing; Chen, Kewei; Kan, Jianquan

    2018-01-01

    Molecularly imprinted polymers were prepared using the molecular structure analogs of sanshool as template molecule, 2-vinylpyridine and β-cyclodextrin as double functional monomers, ethylene dimethacrylate as cross linker, and azobisisobutyronitrile as initiator. The structural characteristics of the polymers were determined by Fourier-transform infrared spectroscopy and scanning electron microscopy. Dynamic adsorption and isothermal adsorption were also investigated. The molecularly imprinted polymers were used to prepare a molecularly imprinted solid-phase extraction column in order to separate acid amide components from pepper oil resin derived from Chinese prickly ash (Zanthoxylum bungeanum). After eluting, the percentage of acid amide components was enhanced to 92.40 ± 1.41% compared with 23.34 ± 1.21% in the initial pepper oil resin, indicating good properties of purification of molecularly imprinted polymers and potential industrial application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  14. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  15. Preparation, Characterization and Efficacy Evaluation of Synthetic Biocompatible Polymers Linking Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Nevio Picci

    2012-10-01

    Full Text Available The purpose of this work was the synthesis, characterization and efficacy evaluation of new biocompatible antioxidant polymers linking trans-ferulic acid or a-lipoic acid. In particular, ferulic or lipoic acid were introduced in the preformed polymeric backbone. The new antioxidant biopolymers were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The degree of functionalization (moles of antioxidant per gram of polymer was determined by the Gaur-Gupta method for free amino group determination and by the Folin method for the phenolic groups. Their ability to inhibit lipid peroxidation were estimated in rat liver microsomal membranes induced in vitro by tert-BOOH (tert-butyl hydroperoxide, as a source of free radicals. The DPPH (1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect was also evaluated. The obtained systems, with different solubility, showed strong antioxidant and antiradical activities, suggesting potential use as packaging materials for foods, cosmetics, pharmaceuticals and personal care products. Moreover, the cytotoxicity of the synthesized polymers was also evaluated on Caco-2 cell cultures in order to verify their biocompatibility when exposed to an absorptive epithelial cell line.

  16. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  17. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  18. Adsorption characteristics, recognition properties, and preliminary application of nordihydroguaiaretic acid molecularly imprinted polymers prepared by sol-gel surface imprinting technology

    Science.gov (United States)

    Liao, Sen; Zhang, Wen; Long, Wei; Hou, Dan; Yang, Xuechun; Tan, Ni

    2016-02-01

    In this paper, a new core-shell composite of nordihydroguaiaretic acid (NDGA) molecularly imprinted polymers layer-coated silica gel (MIP@SiO2) was prepared through sol-gel technique and applied as a material for extraction of NDGA from Ephedra. It was synthesized using NDGA as the template molecule, γ-aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTEOS) as the functional monomers, tetraethyl orthosilicate (TEOS) as the cross-linker and ethanol as the porogenic solvent in the surface of silica. The non-imprinted polymers layer-coated silica gel (NIP@SiO2) were prepared with the same procedure, but with the absence of template molecule. In addition, the optimum adsorption affinity occurred when the molar ratio of NDGA:APTS:MTEOS:TEOS was 1:6:2:80. The prepared MIP@SiO2 and NIP@SiO2 were analyzed by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FT-IR). Their affinity properties to NDGA were evaluated through dynamic adsorption, static adsorption, and selective recognition experiments, and the results showed the saturated adsorption capacity of MIP@SiO2 could reach to 5.90 mg g-1, which was two times more than that of NIP@SiO2. High performance liquid chromatography (HPLC) was used to evaluate the extraction of NDGA from the medicinal plant ephedra by the above prepared materials, and the results indicated that the MIP@SiO2 had potential application in separation of the natural active component NDGA from medicinal plants.

  19. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  20. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  1. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces.

    Science.gov (United States)

    Wei, Qiangbing; Yu, Bo; Wang, Xiaolong; Zhou, Feng

    2014-06-01

    Stratified polymer brushes are fabricated using microcontact printing (μCP) of initiator integrated polydopamine (PDOPBr) on polymer brush surfaces and the following surface initiated atom transfer radical polymerization (SI-ATRP). It is found that the surface energy, chemically active groups, and the antifouling ability of the polymer brushes affect transfer efficiency and adhesive stability of the polydopamine film. The stickiness of the PDOPBr pattern on polymer brush surfaces is stable enough to perform continuous μCP and SI-ATRP to prepare stratified polymer brushes with a 3D topography, which have broad applications in cell and protein patterning, biosensors, and hybrid surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Molecularly Imprinted Polymer Synthesis Using RAFT Polymerisation

    International Nuclear Information System (INIS)

    Cormack, P.A.G.; Faizatul Shimal Mehamod; Faizatul Shimal Mehamod

    2013-01-01

    In this paper, the synthesis and characterisation of caffeine-imprinted polymers are described. The polymers were prepared in monolithic form via both reversible addition-fragmentation chain-transfer (RAFT) polymerisation and conventional free radical polymerisation, using methacrylic acid and ethylene glycol dimethacrylate as the functional monomer and crosslinking agent, respectively. The potential benefits in applying RAFT polymerisation techniques towards the synthesis of molecularly imprinted polymers (MIPs) are explored and elucidated. The pore structures of the polymers produced were characterised by nitrogen sorption porosimetry and the molecular recognition properties of representative products were evaluated in high-performance liquid chromatography (HPLC) mode. Molecular imprinting effects were confirmed by analysing the relative retentions of analytes on imprinted and non-imprinted HPLC stationary phases. It was found that a caffeine-imprinted polymer synthesised by RAFT polymerisation was superior to a polymer prepared using a conventional synthetic approach; the imprinting factor and column efficiency were found to be higher for the former material. (author)

  3. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  4. Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.

    2006-01-01

    The synthesis of a zwitterionic ruthenium dye that binds to anatase surfaces and has a built-in functionality that allows for the attachment of a conjugated polymer chain is presented. The system was found to adsorb on the surface of anatase anchored by the ruthenium dye. Two types of devices were...... prepared: standard photoelectrochemical (PEC) solar cells and polymer solar cells. The PEC solar cells employed a sandwich geometry between TiO2 nanoporous photoanodes and Pt counter electrodes using LiI/I-2 in CH3CN as an electrolyte. The polymer solar cells employed planar anatase electrodes...

  5. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  6. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  7. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  8. Influence of spin methods on the performance of polymer light-emitting devices

    International Nuclear Information System (INIS)

    Liu Chen; Zou Xuecheng; Yin Sheng; Zhang Wuxing

    2004-01-01

    Using the doped polymeric system composed of host poly(N-vinylcarbazole) and dopant coumarin 6, the morphology, phase distribution, and polymer molecular conformation of polymer films were investigated with optical and atomic force microscopy, UV-visible absorption spectra, and Fourier transform infrared reflectance spectroscopy. Results show that the film morphology and dopant distribution in the polymer films cast with the conventional method are dependent on the positions of polymer films. To avoid this negative effect, a new spin method was put forward by locating the specimen at an appropriate distance from the center of the spin plate during spin casting. It is found that polymer films prepared with the new method are more uniform and their electroluminescence performances are independent of the positions

  9. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mistretta

    2018-04-01

    Full Text Available The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties, suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

  10. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  11. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    Science.gov (United States)

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  12. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwin raj, S.; Sowmya, G.; Kalaiselvimary, J.; Ramesh Prabhu, M., E-mail: mkram83@gmail.com

    2016-03-15

    Highlights: • Polymer blends based on PVdF-HFP/PEO were prepared for Li-ion battery applications. • Structural and electrochemical studies were carried out on prepared electrolytes. • The electrolytes can be used as electrolyte in the possible device fabrications. - Abstract: Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2–10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 × 10{sup −4} S cm{sup −1} has been obtained for PEO (6.25)–PVdF-HFP (18.75)–LiClO{sub 4} (8)–PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM.

  13. Wood and concrete polymer composites

    International Nuclear Information System (INIS)

    Singer, K.

    1974-01-01

    There are several ways to prepare and use wood and concrete polymer composites. The most important improvements in the case of concrete polymer composites are obtained for compressive and tensile strengths. The progress in this field in United States and other countries is discussed in this rview. (M.S.)

  14. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  15. Capillary levelling as a probe of rheology in polymer thin films

    Science.gov (United States)

    McGraw, Joshua D.; Jago, Nick M.; Dalnoki-Veress, Kari

    2011-03-01

    While measuring the rheology of bulk polymer systems is routine, when the size of a system becomes comparable to the molecular size, flow properties are poorly understood and hard to measure. Here, we present the results of experiments that are easily performed and can probe the rheological properties of polymer films that are mere tens of nanometres in thickness. We prepare glassy bilayer polymer films with height profiles well approximated by a step function. Upon annealing above the glass transition, broadening of the height profiles due to gradients in the Laplace pressure is observed. By validating the technique as a probe of the rheology with a range of molecular weights, we will show that this robust technique can be used to investigate the effects of confinement and interfaces on the rheology of ultrathin polymer films. Financial support from NSERC of Canada is gratefully acknowledged.

  16. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

    Science.gov (United States)

    Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won

    2015-11-01

    Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

  17. Insight into the Broad Field of Polymer Nanocomposites: From Carbon Nanotubes to Clay Nanoplatelets, via Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Stefanescu

    2009-11-01

    Full Text Available Highly ordered polymer nanocomposites are complex materials that display a rich morphological behavior owing to variations in composition, structure, and properties on a nanometer length scale. Metal-polymer nanocomposite materials are becoming more popular for applications requiring low cost, high metal surface areas. Catalytic systems seem to be the most prevalent application for a wide range of metals used in polymer nanocomposites, particularly for metals like Pt, Ni, Co, and Au, with known catalytic activities. On the other hand, among the most frequently utilized techniques to prepare polymer/CNT and/or polymer/clay nanocomposites are approaches like melt mixing, solution casting, electrospinning and solid-state shear pulverization. Additionally, some of the current and potential applications of polymer/CNT and/or polymer/clay nanocomposites include photovoltaic devices, optical switches, electromagnetic interference (EMI shielding, aerospace and automotive materials, packaging, adhesives and coatings. This extensive review covers a broad range of articles, typically from high impact-factor journals, on most of the polymer-nanocomposites known to date: polymer/carbon nanotubes, polymer/metal nanospheres, and polymer/clay nanoplatelets composites. The various types of nanocomposites are described form the preparation stages to performance and applications. Comparisons of the various types of nanocomposites are conducted and conclusions are formulated.

  18. Preparation and characterization of a Polyacrylonitrile based gel polymer electrolyte for redox capacitors

    Directory of Open Access Journals (Sweden)

    C.M. Bandaranayake

    2016-06-01

    Full Text Available In this study, a gel polymer electrolyte (GPE consisting with polyacrylonitrile (PAN, ethylene carbonate (EC, propylene carbonate (PC and magnesium trifluromethane sulfonate (Mg(CF3SO32 was prepared using the hot pressed method. The starting materials were heated at 130 oC for 2 hours and the resulting hot viscous mixture was pressed in between two well cleaned glass plates. The composition was fine-tuned by varying the salt and the polymer concentration in order to obtain a mechanically stable, thin and flexible film with a high ionic conductivity. It was found that the composition, 105 PAN : 150 MgTF : 400 EC : 400 PC gives the maximum conductivity of 1.06 x 10-2 Scm-1. DC polarization test done with blocking electrodes confirmed the ionic nature of the sample while the results obtained with non-blocking electrodes proved that the anionic contribution for the conductivity is dominant. The sample was used in redox capacitors having two identical polypyrrole electrodes doped with dodecylbenzesulfonate. Cyclic Voltammetry, Galvanostatic Charge Discharge and Electrochemical Impedance Spectroscopy techniques were used to evaluate the performance of the redox capacitors. The specific capacitance was high at low scan rates. The electrolyte was quite stable when use in the redox capacitors. Further, redox capacitor was having a good cycleability which is one of the important key issues to be considered for practical applications.

  19. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    Science.gov (United States)

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fluorinated bio-acceptable polymers via an ATRP macroinitiator approach

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Haddletion, D.M.; Hvilsted, Søren

    2007-01-01

    Polymers derived from bio-acceptable poly(methyl methacrylate) (PMMA), poly(2-methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy-t...... in the advancing water contact angles of all fluoro-containing polymers....

  1. Nanocomposites from polymers and layered minerals

    NARCIS (Netherlands)

    Fischer, H.R.; Gielgens, L.H.; Koster, T.P.M.

    1999-01-01

    Composites consisting of polymer matrix materials and natural or synthetic layered minerals e.g. clays were prepared by using special compatibilizing agents betsveen these two intrinsically non-miscible components. Block or graft copolymers combining one part of the polymer that is identically

  2. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    Sun, Jian; Wang, Huihui; Cao, Hui; Ding, Hangjun; Yang, Zhou; Yang, Huai; Wang, Ling; Xie, Hui; Luo, Xueyao; Xiao, Jiumei

    2014-01-01

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  3. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  4. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  5. Preparation of irritant polymer samples for an in vitro round robin study.

    NARCIS (Netherlands)

    Coleman, Kelly P; Grailer, Thomas P; McNamara, Lori R; Rollins, Beau L; Christiano, Nicholas J; Kandárová, Helena; De Jong, Wim H

    2018-01-01

    A round robin study using reconstructed human epidermis (RhE) tissues was conducted to test medical device polymer extracts for skin irritation potential. Test samples were four irritant and three non-irritant medical device polymers. Five of these polymer samples were developed and two were

  6. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  7. Biomolecule-functionalized polymer brushes.

    Science.gov (United States)

    Jiang, Hui; Xu, Fu-Jian

    2013-04-21

    Functional polymer brushes have been utilized extensively for the immobilization of biomolecules, which is of crucial importance for the development of biosensors and biotechnology. Recent progress in polymerization methods, in particular surface-initiated atom transfer radical polymerization (ATRP), has provided a unique means for the design and synthesis of new biomolecule-functionalized polymer brushes. This current review summarizes such recent research activities. The different preparation strategies for biomolecule immobilization through polymer brush spacers are described in detail. The functional groups of the polymer brushes used for biomolecule immobilization include epoxide, carboxylic acid, hydroxyl, aldehyde, and amine groups. The recent research activities indicate that functional polymer brushes become versatile and powerful spacers for immobilization of various biomolecules to maximize their functionalities. This review also demonstrates that surface-initiated ATRP is used more frequently than other polymerization methods in the designs of new biomolecule-functionalized polymer brushes.

  8. Light-responsive polymer microcapsules as delivery systems for natural active agents

    Energy Technology Data Exchange (ETDEWEB)

    Bizzarro, Valentina; Carfagna, Cosimo; Cerruti, Pierfrancesco [Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA (Italy); Marturano, Valentina; Ambrogi, Veronica [Department of Chemical, Materials and Production Engineering (DICMAPI), University of Naples “Federico II”, P. le Tecchio, 80, 80125 Napoli (Italy); Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei, 34, 80078 Pozzuoli, NA (Italy)

    2016-05-18

    In this work we report the preparation and the release behavior of UV-responsive polymeric microcapsules containing essential oils as a core. The oil acted also as a monomer solvent during polymerization. Accordingly, the potentially toxic organic solvent traditionally used was replaced with a natural active substance, resulting in a more sustainable functional system. Polymer shell was based on a lightly cross-linked polyamide containing UV-sensitive azobenzene moieties in the main chain. The micro-sized capsules were obtained via interfacial polycondensation in o/w emulsion, and their mean size was measured via Dynamic Light Scattering. Shape and morphology were analyzed through Scanning Electron and Optical Microscopy. UV-responsive behavior was evaluated via spectrofluorimetry, by assessing the release kinetics of a fluorescent probe molecule upon UV light irradiation (λ{sub max}=360 nm). The irradiated samples showed an increase in fluorescence intensity, in accordance with the increase of the probe molecule concentration in the release medium. As for the un-irradiated sample, no changes could be detected demonstrating the effectiveness of the obtained releasing system.

  9. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  10. Immunomodulating activities of soluble synthetic polymer-bound drugs.

    Science.gov (United States)

    Ríhová, Blanka

    2002-09-13

    The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants. Copyright 2002 Elsevier Science B.V.

  11. Preparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2012-01-01

    Full Text Available This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-d-glucose 1-phosphate (G-1-P as a monomer was carried out in the presence of poly(tetrahydrofuran (PTHF of a hydrophobic polyether as a guest polymer, the supramolecule, i.e., an amylose-PTHF inclusion complex, was formed in the process of polymerization. Because the representation of propagation in the polymerization is similar to the way that vines of plants grow twining around rods, this polymerization method for the preparation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. Various hydrophobic polyethers, polyesters, poly(ester-ether, and polycarbonates were also employed as the guest polymer in the vine-twining polymerization to produce the corresponding inclusion complexes. To obtain the inclusion complex from a strongly hydrophobic guest polymer, the parallel enzymatic polymerization system was developed as an advanced extension of the vine-twining polymerization. In addition, it was found that amylose selectively includes one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest PTHF. Amylose also exhibited selective inclusion behavior toward stereoisomers of poly(lactides. Moreover, the preparation of hydrogels through the formation of inclusion complexes of amylose in vine-twining polymerization was achieved.

  12. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011

    Directory of Open Access Journals (Sweden)

    Rogošić, M.

    2012-07-01

    Full Text Available A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems,are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems.

  13. Hemocompatibility of ultrafine systems on the basis of chitosan and its derivatives polymer-colloid complexes

    Directory of Open Access Journals (Sweden)

    M.V. Bazunova

    2015-03-01

    Full Text Available This article presents the results of the development process for the preparation of micro and nano-sized polymer-colloid com-plexes (РСС on the basis of water-soluble natural polymer chitosan (СTZ and the sodium salt of chitosan succinylamid (SСTZ with silver halide sols in aqueous media. Results of research of СTZ, sodium salt of SСTZ solutions and PСС of CTZ and SСTZ with colloidal parti-cles of silver iodide influence on structurally-functional properties of erythrocytes’ membranes on model of acidic hemolisis are presented in the article. Their influence on the nature of erythrocytes distribution by degree of their stability and on kinetic parameters (the beginning, intensity and completion of process of their destruction under the influence of the damaging agent (HCl is shown. The comparative analysis of results convinces that СTZ, SСTZ solutions and disperse systems on the basis of PСС of СTZ and SСTZ with colloidal particles of the silver iodide are capable of modulating variously matrix properties of erythrocytes of blood.

  14. Preorganization of Nanostructured Inks for Roll-to-Roll-Coated Polymer Solar Cells

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Senkovskyy, Volodymyr; Kiriy, Anton

    2010-01-01

    , a preorganized ink was obtained that was used to make polymer solar cell modules in a full roll-to-roll coating and printing process operating in ambient air. The polymer solar cells were thus prepared by a mixture of slot die and flat-bed screen printing. Various polymer solar cell modules were prepared ranging...

  15. Preparation and characterization of corn reinforced polymer sheet of fibers

    International Nuclear Information System (INIS)

    Moreira, Tatiana Martinez; Seo, Emilia Satoshi Miyamaru

    2016-01-01

    There is a global trend in seeking plant fibers to replace the synthetic fibers to obtain reinforced composites aimed at the use of renewable resources. In this context, this paper aims to develop the process of preparing maize leaf fibers, characterizing them and adapting them for applications in the construction industry and develop a reinforced polymer composite with these fibers. Corn leaves were dried in environmental temperature, treated by mercerizing, then neutralized with acid solution and washed in running water. The characterization of the corn leaf fibers was carried out by X-ray diffraction, X-ray fluorescence, scanning electron microscopy, specific surface area, thermogravimetry and specific mass. The mercerizing treatment was effective, because the maize fibers have characteristics similar to synthetic fibers, leading to a possibility of new technological uses. The polymeric composite material was developed by extrusion processes and injection and tested for tensile testing, differential scanning calorimetry and scanning electron microscopy, thus reused an organic waste that would be disposed of by inserting it in a technological process, contributing to the research and development of new polymeric materials as well as to reduce waste discarded as scrap. (author)

  16. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-01

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (106 ~ 109 Ω/◻).

  17. Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization.

    Science.gov (United States)

    Zang, Limin; Qiu, Jianhui; Yang, Chao; Sakai, Eiichi

    2016-02-03

    In this work, composite nanoparticles containing polypyrrole, silver and attapulgite (PPy/Ag/ATP) were prepared via UV-induced dispersion polymerization of pyrrole using ATP clay as a templet and silver nitrate as photoinitiator. The effects of ATP concentration on morphology, structure and electrical conductivity were studied. The obtained composite nanoparticles with an interesting beads-on-a-string morphology can be obtained in a short time (10 min), which indicates the preparation method is facile and feasible. To explore the potential applications of the prepared PPy/Ag/ATP composite nanoparticles, they were served as multifunctional filler and blended with poly(butylene succinate) (PBS) matrix to prepare biodegradable composite material. The distribution of fillers in polymer matrix and the interfacial interaction between fillers and PBS were confirmed by scanning electron microscope, elemental mapping and dynamic mechanical analysis. The well dispersed fillers in PBS matrix impart outstanding antibacterial property to the biodegradable composite material as well as enhanced storage modulus due to Ag nanoparticles and ATP clay. The biodegradable composite material also possesses modest surface resistivity (10(6)~ 10(9) Ω/◻).

  18. Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite-polymer nanocomposites

    International Nuclear Information System (INIS)

    Nathani, H.; Misra, R.D.K.

    2004-01-01

    The magnetization studies on nanocrystalline nickel ferrite as powder particles, and as diluted dispersion (10 wt.%) in polymer matrix (polymer nanocomposites) are presented. The two polymer-based nanocomposites were prepared via ball-milling and in situ polymerization, respectively. The magnetization measurements provide strong evidence of surface effects to magnetization, which explains the non-saturation of magnetization at high fields. The differences in the magnetization behavior of nickel ferrite as powder particles and in the ball-milled nanocomposite and the nanocomposite prepared via in situ polymerization are attributed to the different extent of interparticle interactions between the particles and the preparation route. The magnetization versus applied field behavior of the three ferrite systems show a similar jump in the initial part of the magnetization curve in all the cases which implies the existence of a core-shell like morphology of the particles over a large temperature range and its dominance over the interparticle interaction effects between the particles

  19. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  20. Functional and Multifunctional Polymers: Materials for Smart Structures

    Science.gov (United States)

    Arnold, S.; Pratt, L. M.; Li, J.; Wuagaman, M.; Khan, I. M.

    1996-01-01

    The ultimate goal of the research in smart structures and smart materials is the development of a new generation of products/devices which will perform better than products/devices built from passive materials. There are a few examples of multilayer polymer systems which function as smart structures, e.g. a synthetic muscle which is a multilayer assembly of a poly(ethylene) layer, a gold layer, and a poly(pyrrole) layer immersed in a liquid electrolyte. Oxidation and reductions of the active pyrrole layer causes the assembly to reversibly deflect and mimic biological muscles. The drawback of such a setup is slow response times and the use of a liquid electrolyte. We have developed multifunctional polymers which will eliminate the use of a liquid electrolyte, and also because the functionalities of the polymers are within a few hundred angstroms, an improved response time to changes in the external field should be possible. Such multifunctional polymers may be classified as the futuristic 'smart materials.' These materials are composed of a number of different functionalities which work in a synergistic fashion to function as a device. The device performs on the application of an external field and such multifunctional polymers may be scientifically labeled as 'field responsive polymers.' Our group has undertaken a systematic approach to develop functional and multifunctional polymers capable of functioning as field responsive polymers. Our approach utilizes multicomponent polymer systems (block copolymers and graft copolymers), the strategy involves the preparation of block or graft copolymers where the functionalities are limited to different phases in a microphase separated system. Depending on the weight (or volume) fractions of each of the components, different microstructures are possible. And, because of the intimate contact between the functional components, an increase in the synergism between the functionalities may be observed. In this presentation, three

  1. Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives.

    Science.gov (United States)

    Ashley, Jon; Shahbazi, Mohammad-Ali; Kant, Krishna; Chidambara, Vinayaka Aaydha; Wolff, Anders; Bang, Dang Duong; Sun, Yi

    2017-05-15

    Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  3. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  4. Biofunctional polymers prepared by ionizing radiation; Polimeros biofuncionais preparados pela radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, Flavia; Rodas, Andrea C.D.; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Queiroz, Alvaro A.A. de [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1995-12-31

    Polymeric systems with biomedical and biochemical properties can be obtained by radiation induced polymerization. Those systems exhibit a pharmaceutical or biocatalytic activity if drugs or enzymes are immobilized in the polymer matrices. This work deals with the synthesis by gamma radiation of acrylic monomers and paracetamol, a drug with analgesic and anti thermic action, which can be used as medication in drug delivery systems. Besides, polyethylene and polypropylene radiation grafted with a hydrogel containing carboxylic groups (acrylic acid), showed to be a suitable substrate for the enzyme coupling, such as urease and glucose oxidase. The grafted matrices allow the immobilization of any biocomponent with protein structure. (author). 8 refs., 4 figs.

  5. Highly sensitive urea sensing with ion-irradiated polymer foils

    International Nuclear Information System (INIS)

    Fink, Dietmar; Muñoz Hernandez, Gerardo; Alfonta, Lital

    2012-01-01

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms – tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  6. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tian Zheng; He Xiangming; Pu Weihua; Wan Chunrong; Jiang Changyin

    2006-01-01

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF 6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10 -3 S cm -1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries

  7. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3} S cm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance.

  8. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    International Nuclear Information System (INIS)

    Gao Kun; Hu Xinguo; Yi Tingfeng; Dai Changsong

    2006-01-01

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF 6 -EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10 -3 S cm -1 at the DG of 42%. Compared with those containing PE separators, the LiCoO 2 -MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance

  9. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kun; Hu, Xinguo; Yi, Tingfeng; Dai, Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3}Scm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance. (author)

  10. [New research on the significance of polymers in pharmaceutical formulations].

    Science.gov (United States)

    Amighi, K

    2001-01-01

    During these last few decades, a lot of work has been made in pharmaceutical area in order to control the drug delivery from various pharmaceutical dosage forms. The use of polymers in pharmaceutical technology have led to the development of the first drug delivery systems proposed in order to prolong or to delay the drug delivery, or to enhance drug release for drugs showing bioavailability shortcomings. The wide range of polymers available for pharmaceutical use, their low reactivity towards drugs and other formulation ingredients and their safe nature, have permitted a widespread use of polymers to improve manufacturing processes or for the formulation of pharmaceutical dosage forms for various administration routes. More over, the preparation of new polymeric materials by the synthesis of new polymers with unique properties or by the modification of available natural or synthetic polymers, offer to the formulator a wide range of applications in order to optimise the drug delivery for each specific case.

  11. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon; Kim, Eugene

    2015-01-01

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method

  12. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples

    International Nuclear Information System (INIS)

    Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping

    2015-01-01

    Highlights: • BPA imprinted polymer microspheres were prepared by Pickering emulsion polymerization. • Regular spherical shape and narrow diameter distribution. • Good specific adsorption capacity for BPA. • Good class-selectivity and clean-up efficiency for bisphenols in human urine under SPE mode. • Good recoveries and sensitivity for bisphenols using the MIPMS-SPE coupled with HPLC-DAD method. - Abstract: The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (S BET ) of 281.26 m 2 g −1 and a total pore volume (V t ) of 0.459 cm 3 g −1 . Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL −1 . The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL −1 for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%

  13. Heparin release from thermosensitive polymer coatings: in vivo studies

    NARCIS (Netherlands)

    Gutowska, Anna; Bae, You Han; Jacobs, Harvey; Mohammad, Fazal; Mix, Donald; Feijen, Jan; Kim, Sung Wan

    1995-01-01

    Biomer/poly(N-isopropylacrylamide)/[poly(NiPAAm)] thermosensitive polymer blends were prepared and their application as heparin-releasing polymer coatings for the prevention of surface-induced thrombosis was examined. The advantage of using poly(NiPAAm)-based coatings as heparin-releasing polymers

  14. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  15. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  16. Synthesis and characterization of oxytetracycline imprinted magnetic polymer for application in food

    Science.gov (United States)

    Aggarwal, Sneha; Rajput, Yudhishthir Singh; Singh, Gulab; Sharma, Rajan

    2016-02-01

    Magnetic imprinted polymer was prepared by polymerization of methacrylate and ethyleneglycoldimethacrylate in the presence of oxytetracycline on the surface of iron magnetite. Selectivity of prepared polymer was calculated from ratio of partition coefficient of oxytetracycline for imprinted and non- imprinted polymer in water, acetonitrile, methanol and at different pH in aqueous buffer. pH of solvent exhibited pronounced effect on selectivity. Selectivity at pH 7.0, 6.0 and 5.0 was 36.0, 2.25 and 1.61 fold higher than at pH 4.0. Imprinted polymer was not selective for oxytetracycline in methanol. However, selectivity in water and acetonitrile was 19.42 and 2.86, respectively. Oxytetracycline did bind to imprinted polymer in water or aqueous buffer (pH 7.0) and could be eluted with methanol. Prepared polymer extracted 75-80 % oxytetracycline from water, honey and egg white.

  17. Applications of polymeric nanocapsules in field of drug delivery systems.

    Science.gov (United States)

    Rong, Xinyu; Xie, Yinghua; Hao, Xiaomei; Chen, Tao; Wang, Yingming; Liu, Yuanyuan

    2011-09-01

    Drug-loaded polymeric nanocapsules have exhibited potential applications in the field of drug delivery systems in recent years. This article entails the biodegradable polymers generally used for preparing nanocapsules, which include both natural polymers and synthetic polymers. Furthermore, the article presents a general review of the different preparation methods: nanoprecipitation method, emulsion-diffusion method, double emulsification method, emulsion-coacervation method, layer-by-layer assembly method. In addition, the analysis methods of nanocapsule characteristics, such as mean size, morphology, surface characteristics, shell thickness, encapsulation efficiency, active substance release, dispersion stability, are mentioned. Also, the applications of nanocapsules as carriers for use in drug delivery systems are reviewed, which primarily involve targeting drug delivery, controlled/sustained release drug delivery systems, transdermal drug delivery systems and improving stability and bioavailability of drugs. Nanocapsules, prepared with different biodegradable polymers, have received more and more attention and have been regarded as one of the most promising drug delivery systems.

  18. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    Science.gov (United States)

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.

  19. Development of polymer concrete radioactive waste management containers - Effect of ceramic fillers on the mechanical and physico-chemical properties of polymer concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Chun; Park, Min Jin; Shin, Hyun Ick; Choi, Yong Jin [Myongji University, Seoul (Korea)

    1999-11-01

    Particle size distribution of the ceramic filler is the primary factor to influence the composition of polymer concrete. The estimated optimum compositions of the polymer concretes prepared in the study are 62 {approx} 71wt% for fine aggregates, 6 {approx} 29wt% for ceramic fillers and 9 {approx}13wt% for polymer resin. Calcium Carbonate and silica are the ceramic fillers practically usable for manufacturing polymer concrete. Less polymer resin is required for the preparation of polymer concrete at lower relative packing volume of ceramic fillers. It has been found that depended on the type of fine aggregates, the effect of ceramic filler on the mechanical behavior of polymer concrete can be opposite. Strength and elastic modulus of polymer concrete are affected by gamma radiation. Crosslinking of unsaturated polyester resin and epoxy resin are promoted by gamma radiation up to 00 MRad and 50 MRad, respectively. However, higher dose of radiation degrades the mechanical properties of polymer concrete. Hydrothermal treatment of polymer concrete at 80 deg. C and 1bar for 30 days causes about 25% reduction of bending strength and elastic modulus. The strength reduction arises from the hydrolysis of ester groups in unsaturated polyester catalyzed by hydrothermal condition. 13 refs., 37 figs., 15 tabs. (Author)

  20. Radiation stress relieving of polymer articles

    International Nuclear Information System (INIS)

    Frisch, D.C.; Weber, W.

    1982-01-01

    A method of rapidly relieving stress in an extruded or molded polymer article is disclosed. The method can be used in the preparation of printed circuit boards. An article comprised of the polymer is exposed to electromagnetic radiation, for a time period sufficient to absorb enough energy to stress relieve the polymer against stress cracking therein. Exposure occurs at one or more ranges of frequencies which are capable of being absorbed by the polymer and which are effective for stress relieving without or substantially without causing heat induced softening or flowing of the polymer. The electromagnetic radiation is selected from the ranges of infrared, microwave or ultraviolet radiation

  1. Mechanical Properties of Renewable Polymer with Thermoplastics Endurance to Ultraviolet irradiation Exposure

    Directory of Open Access Journals (Sweden)

    Salim Nurul Syamimi M.

    2016-01-01

    Full Text Available At present the disposal of waste tyre rubber (WTR has become a major waste management problem in the world. Therefore in this study, polymer blended based on Polyethylene which is Low Density Polyethylene (LDPE or High Density Polyethylene (HDPE, with Renewable Polymer (RP and waste tyre rubber (WTR is prepared via injection molding. Blended polymer such as LDPE/RP/WTR and HDPE/RP/WTR is known as LRT and HRT respectively. The preparation of polymer blend steps start with the preparation of RP. The RP is prepared by crosslinking the renewable monomer with Polymethane Polyphenyl Isocyanate (MDI at composition ratio of 1:0.5. The second steps involved by adding 10 gm of liquid RP prepared earlier on with fixed amount of LDPE and HDPE of 100 gm. Then the blended LDPE/RP or HDPE/RP namely as LR or HR respectively is further added with WTR with different percentages ratio of 5 %, 10 % and 15 %. The manually blended polymer mixture and filler is then melt mixing using injection moulding to fabricate the tensile specimen for mechanical tensile test and physical determination such as density, distribution of WTR in polymer blend and surface fracture morphology using scanning electron microscope. The samples were then exposed to UV irradiation exposure in UV Accelerated Weathering for 500, 1000, 1500, 2000, 2500 and 3000 hours to evaluate the photostability of the polymer blends. The optimum amount of WTR ratio composition is at 5 % for both LRT and HRT blends which indicate the stability of polymer blends towards UV irradiation exposure at 1000 hours.

  2. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery.

    Science.gov (United States)

    Jones, Marie-Christine

    2015-01-01

    With a number of formulations currently in clinical trials, the interest in polymer micelles as drug carriers in unlikely to subside. Historically, linear diblock copolymers have been used as the building blocks for micelle preparation. Yet, recent advances in polymer chemistry have meant that a wider variety of polymer architectures and compositions have become available and been trialed for pharmaceutical applications. This mini-review aims to provide an overview of recent, exciting developments in triblock, graft and hyperbranched polymer chemistries that may change the way polymeric micelles drug formulations are prepared.

  3. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    Science.gov (United States)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  4. Development of buccal drug delivery systems based on a thiolated polymer.

    Science.gov (United States)

    Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas

    2003-02-18

    The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.

  5. Studies on the Properties of Plasticizer and Lithium Salt on PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    Chew, K. W.; Tan, C. G.; Osman, Z.

    2010-01-01

    The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF 3 SO 3 salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF 3 SO 3 ) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10 -10 Scm -1 is obtained. This may be due to the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF 3 SO 3 ) system is 1.36x10 -5 Scm -1 . Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.

  6. Handbook of polymer nanocomposites processing, performance and application

    CERN Document Server

    Mohanty, Amar; Misra, Manjusri; Kar, Kamal K; Pandey, Jitendra; Rana, Sravendra; Takagi, Hitoshi; Nakagaito, Antonio; Kim, Hyun-Joong

    Volume A forms one volume of a Handbook about Polymer Nanocomposites. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields.

  7. Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties.

    Science.gov (United States)

    Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2012-08-07

    Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.

  8. Preparation and Properties of Polyhedral Oligosilsesquioxanes/Polymers Blends

    National Research Council Canada - National Science Library

    Blanski, Rusty

    2000-01-01

    ... (polycarbonate, SB rubber, etc.) resulting in a clear blend. We also report that aliphatic POSS compounds are also dispersible in high density polyethylene. The synthesis of POSS/polymer blends as well as some physical properties will be discussed.

  9. Fundamentals of Polymer Gel Dosimeters

    Science.gov (United States)

    McAuley, Kim B.

    2006-12-01

    The recent literature on polymer gel dosimetry contains application papers and basic experimental studies involving polymethacrylic-acid-based and polyacrylamide-based gel dosimeters. The basic studies assess the relative merits of these two most commonly used dosimeters, and explore the effects of tetrakis hydroxymethyl phosphonium chloride (THPC) antioxidant on dosimeter performance. Polymer gel dosimeters that contain THPC or other oxygen scavengers are called normoxic dosimeters, because they can be prepared under normal atmospheric conditions, rather than in a glove box that excludes oxygen. In this review, an effort is made to explain some of the underlying chemical phenomena that affect dosimeter performance using THPC, and that lead to differences in behaviour between dosimeters made using the two types of monomer systems. Progress on the development of new more effective and less toxic dosimeters is also reported.

  10. Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems

    International Nuclear Information System (INIS)

    Sedláček, Ondřej; Kučka, Jan; Hrubý, Martin

    2015-01-01

    Hydrazone conjugates of polymers with doxorubicin represent a very promising tool for cancer chemotherapy. However, these conjugates are very difficult to radiolabel with iodine radionuclides, which possess otherwise very advantageous nuclear properties to, e.g., follow biodistribution. In this study, we developed a robust protocol for the high-yield radioiodination of hydrazone-type drug delivery systems with doxorubicin. In particular, it is crucial that the polymer radioiodination step be performed before the deprotection of the hydrazide and doxorubicin binding. - Highlights: • Hydrazone-type drug delivery systems with doxorubicin were radioiodinated. • Radioiodination was performed via polymer-bound phenolic moiety. • Radioiodination step must be performed before deprotection and drug binding

  11. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review

    KAUST Repository

    Guillen, Gregory R.

    2011-04-06

    The methods and mechanisms of nonsolvent induced phase separation have been studied for more than fifty years. Today, phase inversion membranes are widely used in numerous chemical industries, biotechnology, and environmental separation processes. The body of knowledge has grown exponentially in the past fifty years, which suggests the need for a critical review of the literature. Here we present a review of nonsolvent induced phase separation membrane preparation and characterization for many commonly used membrane polymers. The key factors in membrane preparation discussed include the solvent type, polymer type and concentration, nonsolvent system type and composition, additives to the polymer solution, and film casting conditions. A brief introduction to membrane characterization is also given, which includes membrane porosity and pore size distribution characterization, membrane physical and chemical properties characterization, and thermodynamic and kinetic evaluation of the phase inversion process. One aim of this review is to lay out the basics for selecting polymer solvent nonsolvent systems with appropriate film casting conditions to produce membranes with the desired performance, morphology, and stability, and to choose the proper way to characterize these properties of nonsolvent induced phase inversion membranes. © 2011 American Chemical Society.

  12. Preparation of poly(acrylonitrile-butyl acrylate) gel electrolyte for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian Zheng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); He Xiangming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)]. E-mail: hexm@tsinghua.edu.cn; Pu Weihua [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wan Chunrong [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Jiang Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2006-10-25

    Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF{sub 6} in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 x 10{sup -3} S cm{sup -1} at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.

  13. Synthesis of biocidal polymers containing metal NPs using an electron beam

    International Nuclear Information System (INIS)

    Choi, Kwonyong; Kim, Seong-Eun; Kim, Hee-Yeon; Yoon, Jeyong; Lee, Jong-Chan

    2012-01-01

    Metal containing antibacterial polymers were prepared by the polymerization of methylmethacrylate and methacrylic acid with copper or zinc. When the thin film of the polymers coated on a glass was irradiated with an electron beam, nanoparticles were obtained. It was found that these polymers exhibited a potent antibacterial activity against the Gram-negative bacteria, Escherichia coli. The metal containing polymers showed a 99.999% (5.0 logs) reduction in E. coli at a contact time of 12 h. In addition, polymers had a good antifouling effect against marine organisms. - Graphical abstract: Biocidal activity of Cu nanoparticle/polymer composite film against Gram-negative bacteria. Highlights: ► Metal containing antibacterial polymers were prepared with copper. ► Using the electron beam, nanoparticles were obtained. ► It was found that these polymers exhibited potent biocidal activity against E. coli. ► The metal containing polymers showed a 99.999% reduction of E. coli.

  14. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

    Science.gov (United States)

    Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu

    2016-02-10

    Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.

  15. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  16. New method for preparing a liquid crystal polymer that exhibits linearly polarized white fluorescence

    International Nuclear Information System (INIS)

    Zheng Shijun; Kun, Wang; Kobayashi, Takaomi

    2011-01-01

    With the aim of developing a single-chain white-light-emitting polymer, liquid crystal (LC) polymers with a shish-kebab-type moiety on their cross-conjugated (p-phenylene)s-poly(p-phenylenevinylene)s main chain were synthesized by Gilch polymerization. They were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and polarizing optical microscopy (POM). 1 H-NMR indicated that the polymers had a shish-kebab structure, which strongly suppressed the formation of structural defects in the polymers. DSC revealed that the polymers had thermotropic LC properties, indicating that the LC polymers were enantiotropic. XRD showed that the polymers had a mesophase, which implies that they were in a smectic LC phase. A polymer with 'kebabs' of 2,5-bis(4'-alkoxyphenyl)benzene was combined with an aligned polyimide film with orientated microgrooves. The polymer main chain was aligned due to the orientation of the 'kebabs' of the uniform cross-conjugated structure. It lay between the kebabs and the 'shish' of the polymer main chains. The aligned polymer main chain emitted yellow light while and the oriented LC side chains emitted blue light emission. These two emissions resulted in linearly polarized white fluorescence.

  17. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  18. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers.

    Science.gov (United States)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas; Knop, Klaus; Kleinebudde, Peter

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying in a larger scale. In this study, the feasibility of hot melt extrusion for continuous manufacturing of co-amorphous drug-amino acid formulations was examined, challenging the fact that amino acids melt with degradation at high temperatures. Furthermore, the need for an addition of a polymer in this process was evaluated. After a polymer screening via the solvent evaporation method, co-amorphous indomethacin-arginine was prepared by a melting-solvent extrusion process without and with copovidone. The obtained products were characterized with respect to their solid-state properties, non-sink dissolution behavior, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  20. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers

    Czech Academy of Sciences Publication Activity Database

    Sedláček, J.; Balcar, Hynek

    2017-01-01

    Roč. 57, č. 1 (2017), s. 31-51 ISSN 1558-3724 Institutional support: RVO:61388955 Keywords : conjugated polymers * polyacetylenes * conjugated polymer networks Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Polymer science Impact factor: 6.459, year: 2016

  2. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  3. Immobilization of cellulase using porous polymer matrix

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1984-01-01

    A new method is discussed for the immobilization of cellulase using porous polymer matrices, which were obtained by radiation polymerization of hydrophilic monomers. In this method, the immobilized enzyme matrix was prepared by enzyme absorbtion in the porous polymer matrix and drying treatment. The enzyme activity of the immobilized enzyme matrix varied with monomer concentration, cooling rate of the monomer solution, and hydrophilicity of the polymer matrix, takinn the change of the nature of the porous structure in the polymer matrix. The leakage of the enzymes from the polymer matrix was not observed in the repeated batch enzyme reactions

  4. Multifunctional Polymer Nanocomposites

    Science.gov (United States)

    Galaska, Alexandra Maria; Song, Haixiang; Guo, Zhanhu

    With more awareness of energy conversion/storage and saving, different strategies have been developed to utilize the sustainable and renewable energy. Introducing nanoscale fillers can make inert polymer matrix possess unique properties to satisfy certain functions. For example, alumina nanoparticles have strengthened the weak thermosetting polymers. A combined mixture of carbon nanofibers and magnetite nanoparticles have made the inert epoxy sensitive for magnetic field for sensing applications. Introducing silica nanoparticles into conductive polymers such as polyaniline has enhanced the giant magnetoresistance behaviors. The introduced nanoparticles have made the transparent polymer have the electromagnetic interference (EMI) shielding function while reduce the density significantly. With the desired miniaturization, the materials combining different functionalities have become importantly interesting. In this talk, methodologies to prepare nanocomposites and their effects on the produced nanocomposites will be discussed. A variety of advanced polymer nanocomposites will be introduced. Unique properties including mechanical, electrical, magnetoresistance etc. and the applications for environmental remediation, energy storage/saving, fire retardancy, electromagnetic interference shielding, and electronic devices will be presented.

  5. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    Science.gov (United States)

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64.

  6. Investigation of nanocarriers and excipients for preparation of nanoembedded microparticles

    DEFF Research Database (Denmark)

    Wang, Yingya; Beck-broichsitter, Moritz; Yang, Mingshi

    2017-01-01

    polymer nanocarriers (poly(lactide-co-glycolide), poly(styrene), chitosan and dendrimers) were used for preparing NEMs by spray-drying. Further, distinct matrix excipients were investigated including sugars (i.e., trehalose, sucrose, mannitol) and polymers (poly(vinyl pyrrolidone) and poly(ethylene glycol...... (trehalose, sucrose, poly(vinyl pyrrolidone)) are superior to spray-dried crystalline excipients (mannitol, poly(ethylene glycol)) for stabilizing NEMs. It is therefore important to select an appropriate excipient for stabilization of a given nanoparticle system and identify a suitable level...

  7. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  8. Mussel inspired preparation of MoS{sub 2} based polymer nanocomposites: The case of polyPEGMA

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Liu, Xinhua; Huang, Qiang; Xu, Dazhuang; Mao, Liucheng; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-30

    Graphical abstract: A facile and universal strategy has been developed for surface modification of MoS{sub 2} nanosheets via combination of mussel inspired chemistry and chain transfer free radical polymerization. - Highlights: • Fabrication of MoS{sub 2}-PDA-PPEGMA polymer nanocomposites through mussel inspired chemistry. • MoS{sub 2}-PDA- PPEGMA polymer nanocomposites showed enhanced stability in water. • The experimental conditions are rather mild. • The strategy described in this work is also useful for fabrication of many other MoS{sub 2} based polymer nanocomposites. - Abstract: In this work, we report a facile strategy to prepare PEGylated MoS{sub 2} nanosheets through the combination of mussel inspired chemistry and Michael addition reaction. The MoS{sub 2} nanosheets were obtained from lithium intercalation and exfoliation method. Meanwhile, the amino-contained poly((polyethylene glycol) methyl ether methacrylate) (PPEGMA) were obtained via chain transfer free radical polymerization using cysteamine hydrochloride as the chain transfer agents and PEGMA as the monomer. To introduce PPEGMA on MoS{sub 2} nanosheets, polydopamine (PDA) thin films were first coated on the surface of MoS{sub 2} nanosheets through self polymerization of dopamine as the ad-layers, which can react with amino-terminated PPEGMA through Michael addition reaction. The structure, morphology and chemical compositions of MoS{sub 2} nanosheets and MoS{sub 2}-PDA-PPEGMA have been characterized by various characterization techniques. The results demonstrated that the amino-terminated PPEGMA can be successfully immobilized on MoS{sub 2} nanosheets via PDA thin films as the ad-layers. More importantly, the strategy described in this work could also be utilized for surface immobilization of various polymers on many other materials and surfaces because of the universal adhesion of PDA and the good monomer applicability of chain transfer free radical polymerization. Taken together, we

  9. Direct Photopatterning of Electrochromic Polymers

    DEFF Research Database (Denmark)

    Jensen, Jacob; Dyer, Aubrey L.; Shen, D. Eric

    2013-01-01

    Propylenedioxythiophene (ProDOT) polymers are synthesized using an oxidative polymerization route that results in methacrylate substituted poly(ProDOTs) having a Mn of 10–20 kDa wherein the methacrylate functionality constitutes from 6 to 60% of the total monomer units. Solutions of these polymers...... show excellent film forming abilities, with thin films prepared using both spray‐casting and spin‐coating. These polymers are demonstrated to crosslink upon UV irradiation at 350 nm, in the presence of an appropriate photoinitiator, to render the films insoluble to common organic solvents....... Electrochemical, spectroelectrochemical, and colorimetric analyses of the crosslinked polymer films are performed to establish that they retain the same electrochromic qualities as the parent polymers with no detriment to the observed properties. To demonstrate applicability for multi‐film processing...

  10. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik

    Conductive polymers have been studied extensively during recent years. In order to broaden the application field of conductive polymers different methods have been tested and recently an azide functional poly(3,4-ethylenedioxythiophene) (PEDOT-N3) was developed(1, 2). The azide functional...... conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... polymer can be prepared with a subsurface layer of highly conductive polymer where only the upper surface has been grafted with functional groups to ensure selectivity of the surface layer for e.g. interaction with specific biospecies. The conductive polymer can be patterned using selective etching, which...

  11. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films......An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction – also denoted “click...

  12. Claisen thermally rearranged (CTR) polymers

    Science.gov (United States)

    Tena, Alberto; Rangou, Sofia; Shishatskiy, Sergey; Filiz, Volkan; Abetz, Volker

    2016-01-01

    Thermally rearranged (TR) polymers, which are considered the next-generation of membrane materials because of their excellent transport properties and high thermal and chemical stability, are proven to have significant drawbacks because of the high temperature required for the rearrangement and low degree of conversion during this process. We demonstrate that using a [3,3]-sigmatropic rearrangement, the temperature required for the rearrangement of a solid glassy polymer was reduced by 200°C. Conversions of functionalized polyimide to polybenzoxazole of more than 97% were achieved. These highly mechanically stable polymers were almost five times more permeable and had more than two times higher degrees of conversion than the reference polymer treated under the same conditions. Properties of these second-generation TR polymers provide the possibility of preparing efficient polymer membranes in a form of, for example, thin-film composite membranes for various gas and liquid membrane separation applications. PMID:27482538

  13. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  14. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  15. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  16. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    Science.gov (United States)

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  17. Magnetic Nanoparticles Coated with a Thermosensitive Polymer with Hyperthermia Properties

    Directory of Open Access Journals (Sweden)

    Felisa Reyes-Ortega

    2017-12-01

    Full Text Available Magnetic nanoparticles (MNPs have been widely used to increase the efficacy of chemotherapeutics, largely through passive accumulation provided by the enhanced permeability and retention effect. Their incorporation into biopolymer coatings enables the preparation of magnetic field-responsive, biocompatible nanoparticles that are well dispersed in aqueous media. Here we describe a synthetic route to prepare functionalized, stable magnetite nanoparticles (MNPs coated with a temperature-responsive polymer, by means of the hydrothermal method combined with an oil/water (o/w emulsion process. The effects of both pH and temperature on the electrophoretic mobility and surface charge of these MNPs are investigated. The magnetite/polymer composition of these systems is detected by Fourier Transform Infrared Spectroscopy (FTIR and quantified by thermogravimetric analysis. The therapeutic possibilities of the designed nanostructures as effective heating agents for magnetic hyperthermia are demonstrated, and specific absorption rates as high as 150 W/g, with 20 mT magnetic field and 205 kHz frequency, are obtained. This magnetic heating response could provide a promising nanoparticle system for combined diagnostics and cancer therapy.

  18. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  19. Preparation of anatase TiO{sub 2} thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hongche [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Oh, Seong-Geun, E-mail: seongoh@hanyang.ac.kr [Department of Chemical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Im, Seung Soon, E-mail: imss007@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-04-01

    Highlights: • Anatase thin film of TiO{sub 2} was prepared by low temperature annealing. • Anatase TiO{sub 2} colloidal solution was obtained from amorphous form through solvothermal process. • Anatase TiO{sub 2} colloidal solution was used to prepare thin film on ITO glass. • Polymer solar cell fabricated on anatase TiO{sub 2} thin film showed 2.6% of PCE. - Abstract: To prepare the anatase TiO{sub 2} thin films on ITO glass, amorphous TiO{sub 2} colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO{sub 2} colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO{sub 2} film (for device A). For other TiO{sub 2} films, amorphous TiO{sub 2} colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO{sub 2} colloidal solution. This anatase TiO{sub 2} colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO{sub 2} colloidal solution was about 1.0 nm and that of anatase TiO{sub 2} colloidal solution was 10 nm. The thickness of TiO{sub 2} films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO{sub 2} films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO{sub 2} films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO{sub 2} films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  20. Editorial of the Special Issue Antimicrobial Polymers

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-09-01

    Full Text Available The special issue “Antimicrobial Polymers” includes research and review papers concerning the recent advances on preparation of antimicrobial polymers and their relevance to industrial settings and biomedical field. Antimicrobial polymers have recently emerged as promising candidates to fight microbial contamination onto surfaces thanks to their interesting properties. In this special issue, the main strategies pursued for developing antimicrobial polymers, including polymer impregnation with antimicrobial agents or synthesis of polymers bearing antimicrobial moieties, were discussed. The future application of these polymers either in industrial or healthcare settings could result in an extremely positive impact not only at the economic level but also for the improvement of quality of life.

  1. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  2. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  3. Preparation and characterization of PAN–KI complexed gel polymer ...

    Indian Academy of Sciences (India)

    The conductivity-temperature dependence of these polymer electrolyte films obeys Arrhenius behaviour with activa- ... oxide (PEO), polyvinyl alcohol, polyvinyl pyrrolidone (PVP) ... chemical, flame resistance and electrochemical stability.

  4. Thermoresponsive AuNPs Stabilized by Pillararene-Containing Polymers.

    Science.gov (United States)

    Liao, Xiaojuan; Guo, Lei; Chang, Junxia; Liu, Sha; Xie, Meiran; Chen, Guosong

    2015-08-01

    Pillararene-containing thermoresponsive polymers are synthesized via reversible addition-fragmentation chain transfer polymerization using pillararene derivatives as the effective chain transfer agents for the first time. These polymers can self-assemble into micelles and form vesicles after guest molecules are added. Furthermore, such functional polymers can be further applied to prepare hybrid gold nanoparticles, which integrate the thermoresponsivity of polymers and molecular recognition of pillararenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conjugated and fluorescent polymer based on dansyl-substituted pyrrole prepared by electrochemical polymerization in acetonitrile containing boron trifluoride diethyl etherate

    International Nuclear Information System (INIS)

    Almeida, Andresa K.A.; Dias, Jéssica M.M.; Silva, Ana Julia C.; Santos, Diego P.; Navarro, Marcelo; Tonholo, Josealdo; Goulart, Marília O.F.; Ribeiro, Adriana S.

    2014-01-01

    Graphical abstract: - Highlights: • A fluorescent pyrrole derivative bearing a dansyl substituent (PyPDG) was synthesized. • PyPDG was electropolymerized onto ITO in (C 4 H 9 ) 4 NBF 4 /CH 3 CN/BFEE mixed electrolyte. • The resulting polymer (PPyPDG) films displayed electrochromic behavior. • PPyPDG is a good green light emitter material. - Abstract: A fluorescent pyrrole derivative bearing a dansyl substituent was prepared by a simple synthetic route and electropolymerized onto Indium Tin Oxide (ITO) electrodes. The presence of the dansyl group in the monomer precursor prevents the electropolymerization in usual systems, such as (C 4 H 9 ) 4 NBF 4 in acetonitrile (CH 3 CN). For this reason, it was added 20% boron trifluoride diethyl etherate (BFEE) to this system, to achieve electropolymerization. The resulting poly[3-(N-pyrrolyl)propyl dansylglycinate] (PPyPDG) films displayed electrochromic behavior. Their color varied from greenish-yellow, in the neutral state, to greyish-green, in the oxidized state; moreover PPyPDG is a good green light emitter material. Therefore, PPyPDG films might be potentially applicable in displays and optoelectronic devices

  6. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  7. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  8. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  9. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  10. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    Science.gov (United States)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  11. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  12. Conductive polymer/superconductor bilayer structures

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, R.K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole-coated YBa 2 Cu 3 O 7-∂ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-∂ film, the oxidized (conductive) polymer depresses Tc by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, conact resistance, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  13. Spatially Selective Functionalization of Conducting Polymers by "Electroclick" Chemistry

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Daugaard, Anders Egede; Hvilsted, Søren

    2009-01-01

    Conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by "click chemistry" with high spatial resolution. Interdigitated microelectrodes prepared from an azide-containing conducting polymer are selectively functionalized in sequence...

  14. Conductive polymer composition

    NARCIS (Netherlands)

    2010-01-01

    The present invention relates to a process for the preparation of a conductive polymer composition comprising graphene and the articles obtained by this process. The process comprises the following steps: A) contacting graphite oxide in an aqueous medium with a water-soluble or dispersible

  15. Preparation, Single-Molecule Manipulation, and Energy Transfer Investigation of a Polyfluorene-graft-DNA polymer.

    Science.gov (United States)

    Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V

    2017-08-04

    Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Webster, Mark Ian

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) 10 and LiClO 4 .P(EO) 10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO) 8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  17. Design of molecular imprinted polymers compatible with aqueous environment.

    Science.gov (United States)

    Piletska, Elena V; Guerreiro, Antonio R; Romero-Guerra, Maria; Chianella, Iva; Turner, Anthony P F; Piletsky, Sergey A

    2008-01-21

    The main problem of poor water compatibility of molecularly imprinted polymers (MIPs) was addressed in examples describing design of synthetic receptors with high affinity for drugs of abuse. An extensive potentiometric titration of 10 popular functional monomers and corresponding imprinted and blank polymers was conducted in order to evaluate the subtleties of functional groups ionisation under aqueous conditions. It was found that polymers prepared using 2-trifluoromethacrylic acid (TFMAA) in combination with toluene as porogen possess superior properties which make them suitable for effective template recognition in water. The potential impact of phase separation during polymerisation on formation of high quality imprints has been discussed. Three drugs of abuse such as cocaine, deoxyephedrine and methadone were used as template models in polymer preparation for the practical validation of obtained results. The polymer testing showed that synthesized molecularly imprinted polymers have high affinity and selectivity for corresponding templates in aqueous environment, with imprinting factors of 2.6 for cocaine and 1.4 for methadone and deoxyephedrine. Corresponding blank polymers were unable to differentiate between analytes, suggesting that imprinting phenomenon was responsible for the recognition properties.

  18. Utilization of polymer enclosed intermediate class arresters to improve the performance of modern power systems

    International Nuclear Information System (INIS)

    Sakich, J.D.; Lenk, D.W.; Koepfinger, J.L.

    1992-01-01

    This paper introduces the first commercially available polymer enclosed intermediate class metal oxide surge arrester. It describes the unique construction of the design, including reduced size, increased flexibility, a collared seal on the polymer housing and an open webbed fiberglass-epoxy module which houses the metal oxide disc elements. Performance advantages are discussed. These include improved short term contamination performance of the insulator-like polymer design when compared to multi-unit porcelain housed designs. Data will show that polymer housed open-webbed fiberglass module construction extends the pressure relief capability beyond that of typical porcelain enclosed designs. The capability of the polymer enclosed design to withstand repeated pressure relief tests, simulating system reclose on a failed arrester, is also discussed. This paper discusses the circumstances at one utility which has considered utilizing polymer enclosed intermediate class arresters to effectively upgrade their system protection capabilities

  19. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiajia [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yun; Wang, Jincheng [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Sun, Xiaoli; Cao, Rong [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Hao [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Department of Chemistry, Liaoning University, Shenyang 110000 (China); Huang, Chaonan [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jiping, E-mail: chenjp@dicp.ac.cn [Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2015-05-04

    Highlights: • BPA imprinted polymer microspheres were prepared by Pickering emulsion polymerization. • Regular spherical shape and narrow diameter distribution. • Good specific adsorption capacity for BPA. • Good class-selectivity and clean-up efficiency for bisphenols in human urine under SPE mode. • Good recoveries and sensitivity for bisphenols using the MIPMS-SPE coupled with HPLC-DAD method. - Abstract: The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption–desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30–60 μm), a specific surface area (S{sub BET}) of 281.26 m{sup 2} g{sup −1} and a total pore volume (V{sub t}) of 0.459 cm{sup 3} g{sup −1}. Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2–2.2 ng mL{sup −1}. The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL{sup −1} for each BP) were in the range of 81.3–106.7% with RSD values below 8.3%.

  20. Temperature and magnetism bi-responsive molecularly imprinted polymers: Preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil.

    Science.gov (United States)

    Li, Longfei; Chen, Lin; Zhang, Huan; Yang, Yongzhen; Liu, Xuguang; Chen, Yongkang

    2016-04-01

    Temperature and magnetism bi-responsive molecularly imprinted polymers (TMMIPs) based on Fe3O4-encapsulating carbon nanospheres were prepared by free radical polymerization, and applied to selective adsorption and controlled release of 5-fluorouracil (5-FU) from an aqueous solution. Characterization results show that the as-synthesized TMMIPs have an average diameter of about 150 nm with a typical core-shell structure, and the thickness of the coating layer is approximately 50 nm. TMMIPs also displayed obvious magnetic properties and thermo-sensitivity. The adsorption results show that the prepared TMMIPs exhibit good adsorption capacity (up to 96.53 mg/g at 25 °C) and recognition towards 5-FU. The studies on 5-FU loading and release in vitro suggest that the release rate increases with increasing temperature. Meanwhile, adsorption mechanisms were explored by using a computational analysis to simulate the imprinted site towards 5-FU. The interaction energy between the imprinted site and 5-FU is -112.24 kJ/mol, originating from a hydrogen bond, Van der Waals forces and a hydrophobic interaction between functional groups located on 5-FU and a NIPAM monomer. The electrostatic potential charges and population analysis results suggest that the imprinted site of 5-FU can be introduced on the surface of TMMIPs, confirming their selective adsorption behavior for 5-FU. Copyright © 2015. Published by Elsevier B.V.

  1. Increasing sodium pantoprazole photostability by microencapsulation: effect of the polymer and the preparation technique.

    Science.gov (United States)

    Raffin, R P; Colomé, L M; Schapoval, E E S; Pohlmann, A R; Guterres, S S

    2008-08-01

    Pantoprazole sodium is a proton pump inhibitor, used in acid-related disorders, like peptic ulcers and gastroesophageal reflux. This drug is unstable in acid solution and in the presence of salts. The aim of this work was to study the photostability under UVC radiation of pantoprazole and to determine its kinetics. A methanol solution and the solid pantoprazole were evaluated by HPLC within 120 min and 10 days, respectively. The work was also dedicated to evaluate and compare the ability of microencapsulation in stabilizing pantoprazole after UVC radiation. Pantoprazole-loaded microparticles prepared by emulsification/solvent evaporation or spray drying were compared. Pantoprazole was encapsulated using Eudragit S100 or its blend with poly(epsilon-caprolactone) or HPMC. In methanol solution, pantoprazole was completely degraded after 120 min and presented zero-order kinetics with t1/2 of 6.48 min. In the solid form, after 10 days, pantoprazole concentration was reduced to 27% following zero-order kinetic. The microparticles prepared only with Eudragit S100 demonstrated an increase of the drug photostability. After 10 days of irradiation, 56 and 44% of the drug was stable when encapsulated by emulsification/solvent evaporation and spray drying, respectively. The use of polymer blends did not improve the pantoprazole photostability.

  2. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  3. Halloysite-based dopamine-imprinted polymer for selective protein capture.

    Science.gov (United States)

    Zhu, Xiaohong; Li, Hui; Liu, Hui; Peng, Wei; Zhong, Shian; Wang, Yan

    2016-06-01

    We describe a facile, general, and highly efficient approach to obtain polydopamine-coated molecularly imprinted polymer based on halloysite nanotubes for bovine serum albumin. The method combined surface molecular imprinting and one-step immobilized template technique. Hierarchically structured polymer was prepared in physiological conditions adopting dopamine as functional monomer. A thin layer of polydopamine can be coated on the surface of amino-modified halloysite nanotubes by self-polymerization, and the thickness of the imprinted shells can be controlled by the mass ratio of matrix and dopamine. The polymer was characterized by Fourier transform infrared spectrometry, transmission electron microscopy, and thermogravimetric analysis. The prepared material showed high binding capacity (45.4 mg/g) and specific recognition behavior toward the template protein. In addition, stability and regeneration analyses indicated that the imprinted polymer exhibited excellent reusability (relative standard deviation < 9% for batch-to-batch evaluation). Therefore, the developed polymer is effective for protein recognition and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polymer systems testing: Final report

    International Nuclear Information System (INIS)

    1993-01-01

    Los Alamos National Laboratory (LANL) is in the process of decontaminating lead shielding material. The procedure involves abrasive surface etching of the shielding to remove the outer layer of lead that contains the majority of the radioactive contaminants. This procedure generates a small volume of mixed waste in the form of a wet residue containing lead, abrasive grit (Al 2 O 3 ), uranium and water. IC Technologies, Inc. (ICT) has developed several processes for the treatment of mixed wastes involving stabilizing/encapsulating the waste in a polymer monolith. The objective of the test program was to verify the applicability of ICT's technology to this specific waste stream and provide LANL baseline data on the performance of polymer encapsulation techniques. Polymer microencapsulation of lead shielding/blasting grit (surrogate) mixed waste was evaluated. Two polymers, melamine formaldehyde and polyester xylene, were used to examine the effect of waste loading on Toxicity Characteristic Leaching Procedure (TCLP) extract Pb concentration. Six levels of waste loading were evaluated by eleven tests. Significant reduction in Pb solubility during TCLP was achieved. Additional optimization to the single-stage microencapsulation technique utilized will be necessary to mitigate the toxic (RCRA) characteristic of the waste

  5. Easily Processed Host-Guest Polymer Systems with High-Tg Characteristics (First-year Report)

    Science.gov (United States)

    2012-05-01

    manner such that the effective electro- optical coefficient is maximized. Unfortunately, relaxation of the chromophore in the host polymer leads to...polished stainless steel facing plates (0.25 in thickness, McMaster ) and window molds cut from aluminum stock (1 mm thickness, McMaster ). Both facing...plasticization from the chromophore. Both chromophores resulted in substantial red-shifted absorption compared to a sample prepared in virgin PMMA. We expect

  6. A novel piezoresistive polymer nanocomposite MEMS accelerometer

    International Nuclear Information System (INIS)

    Seena, V; Hari, K; Prajakta, S; Ramgopal Rao, V; Pratap, Rudra

    2017-01-01

    A novel polymer MEMS (micro electro mechanical systems) accelerometer with photo-patternable polymer nanocomposite as a piezoresistor is presented in this work. Polymer MEMS Accelerometer with beam thicknesses of 3.3 µ m and embedded nanocomposite piezoresistive layer having a gauge factor of 90 were fabricated. The photosensitive nanocomposite samples were prepared and characterized for analyzing the mechanical and electrical properties and thereby ensuring proper process parameters for incorporating the piezoresistive layer into the polymer MEMS accelerometer. The microfabrication process flow and unit processes followed are extremely low cost with process temperatures below 100 °C. This also opens up a new possibility for easy integration of such polymer MEMS with CMOS (complementary metal oxide semiconductor) devices and circuits. The fabricated devices were characterized using laser Doppler vibrometer (LDV) and the devices exhibited a resonant frequency of 10.8 kHz and a response sensitivity of 280 nm g −1 at resonance. The main focus of this paper is on the SU-8/CB nanocomposite piezoresistive MEMS accelerometer technology development which covers the material and the fabrication aspects of these devices. CoventorWare FEA analysis performed using the extracted material properties from the experimental characterization which are in close agreement to performance parameters of the fabricated devices is also discussed. The simulated piezoresistive polymer MEMS devices showed an acceleration sensitivity of 126 nm g −1 and 82 ppm of Δ R / R per 1 g of acceleration. (paper)

  7. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Beatrice Ch. D. Salert

    2012-01-01

    Full Text Available This paper describes the synthesis of new electron-transporting styrene monomers and their corresponding polystyrenes all with a 2,4,6-triphenyl-1,3,5-triazine basic structure in the side group. The monomers differ in the alkyl substitution and in the meta-/paralinkage of the triazine to the polymer backbone. The thermal and spectroscopic properties of the new electron-transporting polymers are discussed in regard to their chemical structures. Phosphorescent OLEDs were prepared using the obtained electron-transporting polymers as the emissive layer material in blend systems together with a green iridium-based emitter 13 and a small molecule as an additional cohost with wideband gap characteristics (CoH-001. The performance of the OLEDs was characterized and discussed in regard to the chemical structure of the new electron-transporting polymers.

  8. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  9. Synthesis of a Molecularly Imprinted Polymer for Dioxin

    Directory of Open Access Journals (Sweden)

    Magda Brattoli

    2006-08-01

    Full Text Available A molecularly imprinted polymer for recognising selectively 2,3,7,8-tetrachlorodibenzodioxin (TCDD was made by a new non-covalent method employing a“dummy” template. The proposed way represents a simplification of a synthetic schemeproposed by Lübke et al.[1] for covalent imprinting. Comparison of extraction yields of thenovel polymer, a non imprinted polymer and an imprinting polymer, prepared by theoriginal procedure demonstrates the binding capacity of the proposed polymer, which is inprinciple applicable to solid phase extraction (SPE of dioxin.

  10. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell [Journal of Physics. Conference Series (Online), v. 795(1)

    International Nuclear Information System (INIS)

    Mulijani, S.

    2017-01-01

    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC. (paper)

  11. Synthesis of electro-optically active polymer composite of poly[2,2'-bis(3,4-ethylenedioxythiophene-alt-fluorene]/hydroxypropyl cellulose showing liquid crystal structure

    Directory of Open Access Journals (Sweden)

    N. Eguchi

    2017-10-01

    Full Text Available Electrochemical preparation of a composite consisting of poly[2,2′-bis(3,4-ethylenedioxythiophene-alt-fluorene] and hydroxypropyl cellulose (PEFE/HPC was carried out. We conducted electrochemical polymerization of poly[2,2′-bis(3,4-ethylenedioxythiophene-alt-fluorene] (EFE as a monomer in a lyotropic liquid crystal of HPC. We used an organic solvent instead of water for lyotropic liquid crystal medium to expand the possibility of the range of monomers, although water is usually employed as a solvent for HPC for showing liquid crystallinity. Here, we employed N,N-dimethylformamide (DMF as a solvent for HPC. Electrochemical polymerization in the polymer liquid crystal was carried out to obtain a polymer film with liquid crystal order. The polymer film thus prepared exhibited optical activity. Fourier transfer infrared (FT-IR absorption spectroscopy reveals that the film is a composite consisting of HPC and polymer. The composite PEFE/HPC thus prepared in HPC/DMF system showed electrochromism.

  12. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  13. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying.

    Science.gov (United States)

    Paudel, Amrit; Van den Mooter, Guy

    2012-01-01

    To investigate the influence of solvent properties on the phase behavior and physical stability of spray-dried solid dispersions containing naproxen and PVP K 25 prepared from binary cosolvent systems containing methanol, acetone and dichloromethane. The viscosity, polymer globular size and evaporation rate of the spray-drying feed solutions were characterized. The solid dispersions were prepared by spray-drying drug-polymer solutions in binary solvent blends containing different proportions of each solvent. The phase behavior was investigated with mDSC, pXRD, FT-IR and TGA. Further, physical stability of solid dispersions was assessed by analyzing after storage at 75% RH. The solid dispersions prepared from solvent/anti-solvent mixture showed better miscibility and physical stability over those prepared from the mixtures of good solvents. Thus, solid dispersions prepared from dichloromethane-acetone exhibited the best physicochemical attributes followed by those prepared from methanol-acetone. FT-IR analysis revealed differential drug-polymer interaction in solid dispersions prepared from various solvent blends, upon the exposure to elevated humidity. Spray-drying from a cocktail of good solvent and anti-solvent with narrower volatility difference produces solid dispersions with better miscibility and physical stability resulting from the simultaneous effect on the polymer conformation and better dispersivity of drug.

  14. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    Science.gov (United States)

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  15. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  16. FTIR Drug-Polymer Interactions Studies of Perindopril Erbumine

    International Nuclear Information System (INIS)

    Modni, A.; Ahmad, S.; Din, I.; Hussain, Z.

    2014-01-01

    The present study was carried out to prepare different combinations of Perindopril Erbumine with different polymers like Hydroxy propyl methyl cellulose, Hydroxy propyl methyl cellulose K4M, Hydroxy propyl methyl cellulose K15M, Xanthan gum and Ethyl cellulose, thereby to determine any possible interactions between Perindopril erbumine and polymers. The analytical technique Fourier Transform Infrared (FTIR) spectroscopy was used to take spectra of individual drug, polymers and combination of drug with polymers. The results were analyzed to find out any interactions of Perindopril erbumine and polymers. From this study it was concluded that there were no any significant changes in characteristic peaks of drug after combinations with polymers which indicated no interaction between Perindopril erbumine and polymers. (author)

  17. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.

    2006-01-01

    of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer...

  18. Development and characterization of rosin-based polymer and its application as a cream base.

    Science.gov (United States)

    Dhanorkar, V T; Gawande, R S; Gogte, B B; Dorle, A K

    2002-01-01

    The literature contains many references to the wide range of uses of rosin-based polymers, but little has appeared in the area of rosin-based polymers used as cream bases. Various rosin polymers based on glycerol, sorbitol, and pentaerythritol were prepared and screened for efficacy as cream bases. Among these polymers, polymer 2 (glycerol-based) is reported in the present study as it produced creams with a better stability and release profile as compared to other creams. The creams were formulated employing polymer 2 (P2) and Tween 60 as surfactants. The stability of the prepared creams, as well as the diclofenac diethylammonium release pattern, was investigated using particle size analysis, conductivity, relative dielectric constant, spreadability, and irritation potential measurement, and was compared with that of creams containing Tween 60 (RT) prepared in the laboratory. The release of the drug, diclofenac diethylammonium, was measured after eight hours and compared with a standard cream (RT) and a marketed cream (RM).

  19. Conductive polymer switch for controlling superconductivity

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole coated YBa 2 Cu 3 O 7-σ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layout. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-σ film, the oxidized (conductive) polymer depresses T c by up to 50K. In a similar fashion, the oxidation state of the polymer is found to reversibly modulate the magnitude of J c , the superconducting critical current. Thus, a new type of molecule switch for controlling superconductivity is demonstrated

  20. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients

    NARCIS (Netherlands)

    Li, Y.; Vries, R. de; Slaghek, T.; Timmermans, J.; Cohen Stuart, M.A.; Norde, W.

    2009-01-01

    A novel biocompatible and biodegradable microgel system has been developed for controlled uptake and release of especially proteins. It contains TEMPO-oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). Physical chemical properties have been

  1. Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof

    Science.gov (United States)

    Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy

    2004-11-16

    A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.

  2. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  3. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  4. Preparation and application of epitope magnetic molecularly imprinted polymers for enrichment of sulfonamide antibiotics in water.

    Science.gov (United States)

    Hu, Yufeng; Wang, Cheng; Li, Xiangdao; Liu, Lifen

    2017-10-01

    Sulfonamides, which are widely used synthetic antibiotics, are hydrophilic and stable. They can easily migrate into the environment and aquatic animals, and increase the risk of cancer, drug resistance, and allergic symptoms if consumed by humans. Here, we developed an epitope magnetic imprinting approach to enrich multiple sulfonamide antibiotics from a water sample. Epitope magnetic molecularly imprinted polymers (EMMIPs) were prepared by free-radical polymerization using vinyl-functioned Fe 3 O 4 as a core, sulfanilamide (SA) as a dummy template, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker. The performance of the EMMIPs was first evaluated by rebinding SA, and then an adsorption experiment was conducted to assess the extraction of multiple sulfonamide antibiotics containing the SA group. The binding experiments showed that the EMMIPs reached adsorption equilibrium in only 5 min with adsorption of SA at 2040 μg/g, compared with just 462 μg/g for the epitope magnetic non-imprinted polymers. EMMIPs were combined with HPLC for the detection of six sulfonamide antibiotics in surface water samples. The recoveries ranged from 79.3 to 92.4% and the relative standard deviations from 0.9 to 7.3%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation of psoralen polymer-lipid hybrid nanoparticles and their reversal of multidrug resistance in MCF-7/ADR cells.

    Science.gov (United States)

    Huang, Qingqing; Cai, Tiange; Li, Qianwen; Huang, Yinghong; Liu, Qian; Wang, Bingyue; Xia, Xi; Wang, Qi; Whitney, John C C; Cole, Susan P C; Cai, Yu

    2018-11-01

    Multidrug resistance (MDR) is the leading cause of failure for breast cancer in the clinic. Thus far, polymer-lipid hybrid nanoparticles (PLN) loaded chemotherapeutic agents has been used to overcome MDR in breast cancer. In this study, we prepared psoralen polymer-lipid hybrid nanoparticles (PSO-PLN) to reverse drug resistant MCF-7/ADR cells in vitro and in vivo. PSO-PLN was prepared by the emulsification evaporation-low temperature solidification method. The formulation, water solubility and bioavailability, particle size, zeta potential and entrapment efficiency, and in vitro release experiments were optimized in order to improve the activity of PSO to reverse MDR. Optimal formulation: soybean phospholipids 50 mg, poly(lactic-co-glycolic) acid (PLGA) 15 mg, PSO 3 mg, and Tween-80 1%. The PSO-PLN possessed a round appearance, uniform size, exhibited no adhesion. The average particle size was 93.59 ± 2.87 nm, the dispersion co-efficient was 0.249 ± 0.06, the zeta potential was 25.47 ± 2.84 mV. In vitro analyses revealed that PSO resistance index was 3.2, and PSO-PLN resistance index was 5.6, indicating that PSO-PLN versus MCF-7/ADR reversal effect was significant. Moreover, PSO-PLN is somewhat targeted to the liver, and has an antitumor effect in the xenograft model of drug-resistant MCF-7/ADR cells. In conclusion, PSO-PLN not only reverses MDR but also improves therapeutic efficiency by enhancing sustained release of PSO.

  6. Study of Preparation and Properties on Polymer-modified Magnetite ...

    African Journals Online (AJOL)

    NICOLAAS

    encapsulated before and during the synthesis of the polymer.27. The particle size ... Ferric chloride (FeCl3) was purchased from Sinopharm Chemical. Reagent ..... propyl-b-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles ...

  7. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  8. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen

    2008-01-01

    attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  9. Physical stability of API/polymer-blend amorphous solid dispersions.

    Science.gov (United States)

    Lehmkemper, Kristin; Kyeremateng, Samuel O; Bartels, Mareike; Degenhardt, Matthias; Sadowski, Gabriele

    2018-03-01

    The preparation of amorphous solid dispersions (ASDs) is a well-established strategy for formulating active pharmaceutical ingredients by embedding them in excipients, usually amorphous polymers. Different polymers can be combined for designing ASDs with desired properties like an optimized dissolution behavior. One important criterion for the development of ASD compositions is the physical stability. In this work, the physical stability of API/polymer-blend ASDs was investigated by thermodynamic modeling and stability studies. Amorphous naproxen (NAP) and acetaminophen (APAP) were embedded in blends of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and either poly(vinylpyrrolidone) (PVP) or poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64). Parameters for modeling the API solubility in the blends and the glass-transition temperature curves of the water-free systems with Perturbed-Chain Statistical Associating Fluid Theory and Kwei equation, respectively, were correlated to experimental data. The phase behavior for standardized storage conditions (0%, 60% and 75% relative humidity (RH)) was predicted and compared to six months-long stability studies. According to modeling and experimental results, the physical stability was reduced with increasing HPMCAS content and increasing RH. This trend was observed for all investigated systems, with both APIs (NAP and APAP) and both polymer blends (PVP/HPMCAS and PVPVA64/HPMCAS). PC-SAFT and the Kwei equation turned out to be suitable tools for modeling and predicting the physical stability of the investigated API/polymer-blends ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.

    Science.gov (United States)

    Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina

    2016-03-01

    A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.

  11. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  12. Ferritin nanocontainers that self-direct in synthetic polymer systems

    Science.gov (United States)

    Sengonul, Merih C.

    Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the

  13. Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Yang Shao

    2015-02-01

    Full Text Available The objective of this study is to develop chitosan–anionic polymers based extended-release tablets and test the feasibility of using this system for the sustained release of highly water-soluble drugs with high drug loading. Here, the combination of sodium valproate (VPS and valproic acid (VPA were chosen as the model drugs. Anionic polymers studied include xanthan gum (XG, carrageenan (CG, sodium carboxymethyl cellulose (CMC-Na and sodium alginate (SA. The tablets were prepared by wet granulation method. In vitro drug release was carried out under simulated gastrointestinal condition. Drug release mechanism was studied. Compared with single polymers, chitosan–anionic polymers based system caused a further slowdown of drug release rate. Among them, CS–xanthan gum matrix system exhibited the best extended-release behavior and could extend drug release for up to 24 h. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR studies demonstrated that polyelectrolyte complexes (PECs were formed on the tablet surface, which played an important role on retarding erosion and swelling of the matrix in the later stage. In conclusion, this study demonstrated that it is possible to develop highly water-soluble drugs loaded extended-release tablets using chitosan–anionic polymers based system.

  14. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  15. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  16. Formulation, characterization and in vitro evaluation of theophylline-loaded Eudragit RS 100 microspheres prepared by an emulsion-solvent diffusion/evaporation technique.

    Science.gov (United States)

    Jelvehgari, Mitra; Barar, Jaleh; Valizadeh, Hadi; Shadrou, Sanam; Nokhodchi, Ali

    2011-01-01

    The aim was to prepare theophylline-loaded Eudragit RS 100 microsphere to achieve sustained release pattern with relatively high production yield. To this end, microspheres were prepared by oil/oil solvent evaporation method using an acetone-methanol mixture and liquid paraffin system containing aluminum tristearate. Drug release profiles were determined at pH 1.2 and 7.4. Morphology and solid state of microspheres were examined using SEM, DSC, X-ray powder diffraction (XRPD), and FT-IR. As the ratio of acetone/methanol increased during the preparation of microspheres the size of microsphere was reduced. The highest drug loading efficiency (87.21%) was obtained for the microsphere containing a high ratio of polymer to drug (6:1) and high volume of acetone. SEM studies showed that the microspheres are almost spherical with a few pores and cracks at surfaces. The FT-IR, XRPD and DSC results ruled out any chemical interaction between theophylline and Eudragit. The microspheres prepared with low ratio of polymer to drug (1:2) showed faster dissolution rate than those with high polymer to drug ratio. The ratio of polymer to drug and the volume of polymer solvent were found to be the key factors affecting the release profile which could lead to microspheres with desired release behavior.

  17. Polymer Electrolyte Prepared from Highly Deproteinized Natural Rubber Having Epoxy Group

    Science.gov (United States)

    Klinklai, W.; Kawahara, S.; Isono, Y.; Mizumo, T.; Yoshizawa, M.; Ohno, H.

    Deproteinized natural rubber having epoxy group (EDPNR) was applied to transport Li+ as a solid polymer electrolyte. The deproteinized natural rubber, incubated with proteolytic enzyme and surfactant, was subjected to epoxidation followed by oxidative depolymerization in latex stage. The resulting rubber was proved to be a liquid deproteinized natural rubber (LEDPNR) having polar epoxy groups, low Tg, low Mn and well-defined terminal units. Ionic conductivity of LEDPNR mixed with alkali metal salts was investigated through impedance analysis to clarify an effect of proteins present in the rubber. The ionic conductivity of the resulting LEDPNR depended on the kind of salts, their concentrations and temperature. The ionic conductivity of LEDPNR/lithium bis(trifluoromethan sulfonyl)imide (LiTFSI) was higher than that of LEDPNR/ lithium perchlorate (LiClO4). The difference in the ionic conductivity was attributed to the solubility of the salts as results of both high-resolution solid-state 13C-NMR spectroscopy and measurements of spin-lattice relaxation time. The conductivity of LEDPNR/LiTFSI was also dependent upon concentrations of LiTFSI and it reached the highest value at 20 wt%, which was different from the monotonic increase in the Li+ conductivity of liquid epoxidized natural rubber prepared from untreated natural rubber.

  18. Polímeros usados como sistemas de transporte de princípios ativos Polymers for drug delivery systems formulations

    Directory of Open Access Journals (Sweden)

    Patrícia Severino

    2011-01-01

    Full Text Available Os diferentes sistemas de transporte têm evidenciado potencial terapêutico para uma grande variedade de princípios ativos, satisfazendo vários requisitos, como a prevenção da sua eliminação rápida do organismo, a redução da sua toxicidade sistêmica, a estabilização e a otimização do seu metabolismo, e o direcionamento específico ao local alvo e os mecanismos de defesa. No entanto, têm sido reconhecidos vários outros desafios associados à liberação específica do princípio ativo ao local alvo, pelo que, para ultrapassar os obstáculos químicos e biológicos, a seleção do polímero utilizado para a preparação do sistema de transporte é de importância crucial. O presente trabalho apresenta um relato sobre os principais polímeros naturais e sintéticos utilizados para a preparação de sistemas de transporte de princípios ativos in vivo.The different carrier systems have shown therapeutic potential for a wide variety of drugs, satisfying multiple requirements, such as prevention of rapid elimination, reducing toxicity, promoting stabilization, optimization of metabolism, drug delivery and defense mechanisms. However, it has been recognized several other challenges associated with the specific release of actives in drug delivery. Therefore, to overcome chemical and biological obstacles, the selection of the polymer used to prepare the transport system is crucial. This paper presents a report on the main natural and synthetic polymers used in the preparation of drug carrier systems in vivo.

  19. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Science.gov (United States)

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Oriented thin films of mixture of a low-bandgap polymer and a fullerene derivative prepared by friction-transfer method

    Science.gov (United States)

    Tanigaki, Nobutaka; Mizokuro, Toshiko; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki

    2018-02-01

    We have been studying oriented thin films of polymers fabricated by the friction-transfer method, which allows the alignment of a variety of conjugated polymers into highly oriented films. In this study, we prepared oriented blend films of a mixture of a low-bandgap polymer, poly{4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7), and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), which is a promising combination for application in organic solar cells. We obtained oriented blend films of PTB7 and PC71BM by the friction-transfer method from a solid block. Polarized UV-visible spectra show that the PTB7 chains were aligned parallel to the friction direction in the blend films. Grazing-incidence X-ray diffraction (GIXD) studies with synchrotron radiation suggested that the preferred orientation of PTB7 crystallites was face-on in the blend films. The GIXD results also showed the high uniaxial orientation of PTB7 chains in blend films. Photovoltaic devices were fabricated using the friction-transferred blend films of the PTB7 and PC71BM. These bulk heterojunction devices showed better performance than planar heterojunction devices fabricated using pure friction-transferred PTB7 films.

  1. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  2. Improved electrical properties of free standing blend polymer for renewable energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Anil; Sharma, Sweety; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com [Centre for Physical Sciences, Central University of Punjab, Bathinda-151001 (India)

    2016-05-23

    Blend polymer electrolytes are prepared for salt concentration (Ö/Li = 4) with the constant ratio (0.5 gm) of PEO and PAN using solution casting technique. The prepared free standing solid polymeric film is characterized by Field Emission Scanning Electron Microscopy (FESEM) which confirms the homogeneous distribution of dissociated salt in blend polymer matrix. After addition of salt the ionic conductivity value is found to be of the order of 7.13 × 10{sup −5} Scm{sup −1} which is three orders higher when compared with pure blend polymer films. The microscopic interaction among the polymer-ion, ion-ion has been confirmed by the Fourier Transform Infrared (FTIR) Spectroscopy. A very fine correlation has been built in the electrical conductivity and FTIR result. On the basis of above finding, a prepared free standing solid polymeric film appears to be appropriate for the energy storage/conversion device applications.

  3. Thermal Protective Coating for High Temperature Polymer Composites

    Science.gov (United States)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  4. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Strippable core-shell polymer emulsion for decontamination of radioactive surface contamination

    International Nuclear Information System (INIS)

    Hwang, Ho-Sang; Seo, Bum-Kyoung; Lee, Kune-Woo

    2011-01-01

    In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the poly(St-EA) composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors of the strippable polymeric emulsion were evaluated with the polymer blend contents. (author)

  6. "Chameleon" Macromolecules: Synthesis, Structures and Applications of Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Sui, Xiaofeng

    2012-01-01

    This thesis describes the preparation and characterization of addressable responsive polymer structures and their versatile applications. Stimuli responsive polymer chains including temperature responsive poly(N-isopropylacrylamide), PNIPAM, pH responsive poly(methacrylic acid), PMAA and redox

  7. Synthesis and characterization of telechelic polymers prepared by RAFT

    NARCIS (Netherlands)

    Lima, V.G.R.; Brokken-Zijp, J.C.M.; Klumperman, B.; Benthem - van Duuren, van A.M.G.; Linde, van der R.

    2003-01-01

    The reversible addn.-fragmentation chain transfer (RAFT) polymn. technique was employed to synthesize telechelic polymers. Me methacrylate, Bu methacrylate were polymd. using RAFT polymn. The polymns. exhibit the usual characteristics of living processes, and were followed by a two-step chain-end

  8. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation.

    Science.gov (United States)

    Devrim, Burcu; Kara, Aslı; Vural, İmran; Bozkır, Asuman

    2016-11-01

    Lipid-polymer hybrid nanoparticles (LPNPs) are polymeric nanoparticles enveloped by lipid layers, which have emerged as a potent therapeutic nanocarrier alternative to liposomes and polymeric nanoparticles. The aim of this work was to develop, characterize and evaluate LPNPs to deliver a model protein, lysozyme. Lysozyme-loaded LPNPs were prepared by using the modified w/o/w double-emulsion-solvent-evaporation method. Poly-ɛ-caprolactone (PCL) was used as polymeric core material and tripalmitin:lechitin mixture was used to form a lipid shell around the LPNPs. LPNPs were evaluated for particle size distribution, zeta potential, morphology, encapsulation efficiency, in vitro drug release, stability and cytotoxicity. The DLS measurement results showed that the particle size of LPNPs ranged from 58.04 ± 1.95 nm to 2009.00 ± 0.52 nm. The AFM and TEM images of LPNPs demonstrate that LPNPs are spherical in shape. The protein-loading capacity of LPNPs ranged from 5.81% to 60.32%, depending on the formulation parameters. LPNPs displayed a biphasic drug release pattern with a burst release within 1 h, followed by sustained release afterward. Colloidal stability results of LPNPs in different media showed that particle size and zeta potential values of particles did not change significantly in all media except of FBS 100% for 120 h. Finally, the results of a cellular uptake study showed that LPNPs were significantly taken up by 83.3% in L929 cells. We concluded that the LPNPs prepared with PCL as polymeric core material and tripalmitin:lechitin mixture as lipid shell should be a promising choice for protein delivery.

  9. Preparation and characterization of lamivudine microcapsules using ...

    African Journals Online (AJOL)

    Purpose: The objective of the present study was to prepare and evaluate microcapsules for the controlled release of lamivudine using various cellulose polymers. Methods: The microcapsules were prepared by the solvent evaporation method. The prepared microcapsules were characterized for the percent drug content, ...

  10. Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.

    Science.gov (United States)

    Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H

    2017-11-28

    Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.

  11. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    Science.gov (United States)

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  12. Lanthanum Containing Polymer's Modification to PP

    Institute of Scientific and Technical Information of China (English)

    Dai Shaojun; Zhang Ming

    2004-01-01

    Polypropylene (PP)'s low impact strength limits its usages. Adding some a rare earth polymer can enhance PP's tensile strength and impact strength. Acrylic lanthanum was prepared by the reaction between lanthanum oxide and acrylic acid. The IR spectrum prove that and optimum reacting conditions are that the bulk ratio of La(AA) 3 and MMA is not less than one and temperature is about 80 ℃. Lanthanum containing Polymer were added into PP. When percent of addition only was 3%, strength were enhanced 10% , and impact strength 40%. SEM shows the compatibility of rare earth polymer and PP; lanthanum containing polymer can form physical crosslinking between PP's molecules, then every particle's surface connect with several PP molecules and the PP mechanical property were enhanced.

  13. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  14. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  15. Parallelized event chain algorithm for dense hard sphere and polymer systems

    International Nuclear Information System (INIS)

    Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-01

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers

  16. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preparation and characterization of perovskite structure lanthanum gallate and lanthanum aluminate based oxides

    OpenAIRE

    Li, Shuai

    2009-01-01

    The present work was initiated to study the synthesis and properties of lanthanum gallate based oxides as intermediate temperature electrolyte for solid oxide fuel cells. The wet chemical method, polymer complexing route, was used to prepare the precursor powders. To further investigate the polymer complexing method, it was also applied to the preparation of lanthanum aluminate based oxides.   Single perovskite phase La0.8Sr0.2Ga0.83Mg0.17O2.815 can be prepared by the polymer complexing meth...

  18. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component

  19. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  20. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Song, Guolin; Chu, Xiaodong; Li, Xuezhu; Tang, Guoyi

    2013-01-01

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  1. Interaction effects in magnetic oxide nanoparticle systems

    Indian Academy of Sciences (India)

    The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by ...

  2. Theoretical and Experimental Studies of New Polymer-Metal High-Dielectric Constant Nanocomposites

    Science.gov (United States)

    Ginzburg, Valeriy; Elwell, Michael; Myers, Kyle; Cieslinski, Robert; Malowinski, Sarah; Bernius, Mark

    2006-03-01

    High-dielectric-constant (high-K) gate materials are important for the needs of electronics industry. Most polymers have dielectric constant in the range 2 materials with K > 10 it is necessary to combine polymers with ceramic or metal nanoparticles. Several formulations based on functionalized Au-nanoparticles (R ˜ 5 -— 10 nm) and PMMA matrix polymer are prepared. Nanocomposite films are subsequently cast from solution. We study the morphology of those nanocomposites using theoretical (Self-Consistent Mean-Field Theory [SCMFT]) and experimental (Transmission Electron Microscopy [TEM]) techniques. Good qualitative agreement between theory and experiment is found. The study validates the utility of SCMFT as screening tool for the preparation of stable (or at least metastable) polymer/nanoparticle mixtures.

  3. Polymer-Supported Raney Nickel Catalysts for Sustainable Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Haibin Jiang

    2016-06-01

    Full Text Available Green is the future of chemistry. Catalysts with high selectivity are the key to green chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and methyl-iso-butylcarbinol in the hydrogenation of acetone to isopropanol. Meanwhile, a model for how the polymer support brought about the elimination of byproducts is proposed and confirmed. In this account the preparation and applications of polymer-supported Raney catalysts along with the corresponding models will be reviewed.

  4. SANS from interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Markotsis, M.G.; Burford, R.P.; Knott, R.B.; Australian Nuclear Science and Technology Organisation, Menai, NSW; Hanley, T.L.; CRC for Polymers,; Australian Nuclear Science and Technology Organisation, Menai, NSW; Papamanuel, N.

    2003-01-01

    Full text: Interpenetrating polymer networks (IPNs) have been formed by combining two polymeric systems in order to gain enhanced material properties. IPNs are a combination of two or more polymers in network form with one network polymerised and/or crosslinked in the immediate presence of the other(s).1 IPNs allow better blending of two or more crosslinked networks. In this study two sets of IPNs were produced and their microstructure studied using a variety of techniques including small angle neutron scattering (SANS). The first system combined a glassy polymer (polystyrene) with an elastomeric polymer (SBS) with the glassy polymer predominating, to give a high impact plastic. The second set of IPNs contained epichlorohydrin (CO) and nitrile rubber (NBR), and was formed in order to produce novel materials with enhanced chemical and gas barrier properties. In both cases if the phase mixing is optimised the probability of controlled morphologies and synergistic behaviour is increased. The PS/SBS IPNs were prepared using sequential polymerisation. The primary SBS network was thermally crosslinked, then the polystyrene network was polymerised and crosslinked using gamma irradiation to avoid possible thermal degradation of the butadiene segment of the SBS. Tough transparent systems were produced with no apparent thermal degradation of the polybutadiene segments. The epichlorohydrin/nitrile rubber IPNs were formed by simultaneous thermal crosslinking reactions. The epichlorohydrin network was formed using lead based crosslinker, while the nitrile rubber was crosslinked by peroxide methods. The use of two different crosslinking systems was employed in order to achieve independent crosslinking thus resulting in an IPN with minimal grafting between the component networks. SANS, Transmission electron microscopy (TEM), and atomic force microscopy (AFM) were used to examine the size and shape of the phase domains and investigate any variation with crosslinking level and

  5. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    International Nuclear Information System (INIS)

    Ha, Phuong Thu; Tran, Dai Lam; Nguyen, Xuan Phuc; Le, Mai Huong; Ha Tran, Thi Hong; Hoang, Thi My Nhung; Huong Le, Thi Thu; Duong, Tuan Quang

    2012-01-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50–100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa). (paper)

  6. Preparation and anti-cancer activity of polymer-encapsulated curcumin nanoparticles

    Science.gov (United States)

    Thu Ha, Phuong; Huong Le, Mai; Nhung Hoang, Thi My; Thu Huong Le, Thi; Quang Duong, Tuan; Tran, Thi Hong Ha; Tran, Dai Lam; Phuc Nguyen, Xuan

    2012-09-01

    Curcumin (Cur) is a yellow compound isolated from rhizome of the herb curcuma longa. Curcumin possesses antioxidant, anti-inflammatory, anti-carcinogenic and antimicrobial properties, and suppresses proliferation of many tumor cells. However, the clinical application of curcumin in cancer treatment is considerably limited due to its serious poor delivery characteristics. In order to increase the hydrophilicity and drug delivery capability, we encapsulated curcumin into copolymer PLA-TPGS, 1,3-beta-glucan (Glu), O-carboxymethyl chitosan (OCMCs) and folate-conjugated OCMCs (OCMCs-Fol). These polymer-encapsulated curcumin nanoparticles (Cur-PLA-TPGS, Cur-Glu, Cur-OCMCs and Cur-OCMCs-Fol) were characterized by infrared (IR), fluorescence (FL), photoluminescence (PL) spectra, field emission scanning electron microscopy (FE-SEM), and found to be spherical particles with an average size of 50-100 nm, being suitable for drug delivery applications. They were much more soluble in water than not only free curcumin but also other biodegradable polymer-encapsulated curcumin nanoparticles. The anti-tumor promoting assay was carried out, showing the positive effects of Cur-Glu and Cur-PLA-TPGS on tumor promotion of Hep-G2 cell line in vitro. Confocal microscopy revealed that the nano-sized curcumin encapsulated by polymers OCMCs and OCMCs-Fol significantly enhanced the cellular uptake (cancer cell HT29 and HeLa).

  7. Multiple encapsulation of LANL waste using polymers. Final report

    International Nuclear Information System (INIS)

    Schwartz, R.L.

    1994-01-01

    Polymer encapsulation of lead shielding/blasting grit (surrogate) mixed waste was optimized at bench scale using melamine formaldehyde, polyurethane, and butadiene thermosetting polymers. Three pellet-based intermediate waste forms, and a final waste form, were prepared, each providing an additional level of integrity. Encapsulated waste integrity was measured by chemical and physical techniques. Compliance was established using the Toxicity Characteristic Leaching Procedure. Equipment appropriate to pilot-scale demonstration of program techniques was investigated. A preliminary equipment list and layout, and process block flow diagram were prepared

  8. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  9. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  10. Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization.

    Science.gov (United States)

    Hang, Hui; Li, Chunxiang; Pan, Jianming; Li, Linzi; Dai, Jiangdong; Dai, Xiaohui; Yu, Ping; Feng, Yonghai

    2013-10-01

    Porous/magnetic molecularly imprinted polymers (PM-MIPs) were prepared by Pickering emulsion polymerization. The reaction was carried out in an oil/water emulsion using magnetic halloysite nanotubes as the stabilizer instead of a toxic surfactant. In the oil phase, the imprinting process was conducted by radical polymerization of functional and cross-linked monomers, and porogen chloroform generated steam under the high reaction temperature, which resulted in some pores decorated with easily accessible molecular binding sites within the as-made PM-MIPs. The characterization demonstrated that the PM-MIPs were porous and magnetic inorganic-polymer composite microparticles with magnetic sensitivity (M(s) = 0.7448 emu/g), thermal stability (below 473 K) and magnetic stability (over the pH range of 2.0-8.0). The PM-MIPs were used as a sorbent for the selective binding of lambdacyhalothrin (LC) and rapidly separated under an external magnetic field. The Freundlich isotherm model gave a good fit to the experimental data. The adsorption kinetics of the PM-MIPs was well described by pseudo-second-order kinetics, indicating that the chemical process could be the rate-limiting step in the adsorption of LC. The selective recognition experiments exhibited the outstanding selective adsorption effect of the PM-MIPs for target LC. Moreover, the PM-MIPs regeneration without significant loss in adsorption capacity was demonstrated by at least four repeated cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids.

    Science.gov (United States)

    Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J

    2017-08-01

    The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. From precision polymers to complex materials and systems

    Science.gov (United States)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  13. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan; Honmou, Yoshihiro; Komiyama, Hideaki; Furumaki, Shu; Iyoda, Tomokazu; Vacha, Martin

    2013-01-01

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Conjugated Polymer Chains Confined in Vertical Nanocylinders of a Block-Copolymer Film: Preparation, Characterization, and Optoelectronic Function

    KAUST Repository

    Dong, Ban Xuan

    2013-01-15

    Hybrid materials composed of phase-separated block copolymer films and conjugated polymers of the phenylenevinylene family (PPV) are prepared. The PPV chains are embedded in vertical cylinders of nanometer diameter in the block-copolymer films. The cylinders span continuously the whole film thickness of 70 nm. Incorporation of the PPV chains into the one-dimensional cylinders leads to modified photoluminescence spectra and to large absorption anisotropy. The hybrid films show electroluminescence from the PPV chains in a simple light-emitting device at minute doping concentrations, and also exhibit a factor of 19 increase in electron transport efficiency along the single PPV chains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparative Investigation on the Performance of Modified System Poles and Traditional System Poles Obtained from PDC Data for Diagnosing the Ageing Condition of Transformer Polymer Insulation Materials

    Directory of Open Access Journals (Sweden)

    Jiefeng Liu

    2018-02-01

    Full Text Available The life expectancy of a transformer is largely depended on the service life of transformer polymer insulation materials. Nowadays, several papers have reported that the traditional system poles obtained from polarization and depolarization current (PDC data can be used to assess the condition of transformer insulation systems. However, the traditional system poles technique only provides limited ageing information for transformer polymer insulation. In this paper, the modified system poles obtained from PDC data are proposed to assess the ageing condition of transformer polymer insulation. The aim of the work is to focus on reporting a comparative investigation on the performance of modified system poles and traditional system poles for assessing the ageing condition of a transformer polymer insulation system. In the present work, a series of experiments have been performed under controlled laboratory conditions. The PDC measurement data, degree of polymerization (DP and moisture content of the oil-immersed polymer pressboard specimens were carefully monitored. It is observed that, compared to the relationships between traditional system poles and DP values, there are better correlations between the modified system poles and DP values, because the modified system poles can obtain much more ageing information on transformer polymer insulation. Therefore, the modified system poles proposed in the paper are more suitable for the diagnosis of the ageing condition of transformer polymer insulation.

  16. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan.

    Science.gov (United States)

    Lee, Jae-Young; Kang, Wie-Soo; Piao, Jingpei; Yoon, In-Soo; Kim, Dae-Duk; Cho, Hyun-Jong

    2015-01-01

    Soluplus(®) (SP) and D-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS)-based solid dispersion (SD) formulations were developed by hot-melt extrusion (HME) to improve oral bioavailability of valsartan (VST). HME process with twin-screw configuration for generating a high shear stress was used to prepare VST SD formulations. The thermodynamic state of the drug and its dispersion in the polymers were evaluated by solid-state studies, including Fourier-transform infrared, X-ray diffraction, and differential scanning calorimetry. Drug release from the SD formulations was assessed at pH values of 1.2, 4.0, and 6.8. Pharmacokinetic study was performed in rats to estimate the oral absorption of VST. HME with a high shear rate produced by the twin-screw system was successfully applied to prepare VST-loaded SD formulations. Drug amorphization and its molecular dispersion in the polymer matrix were verified by several solid-state studies. Drug release from SD formulations was improved, compared to the pure drug, particularly at pH 6.8. Oral absorption of drug in rats was also enhanced in SP and TPGS-based SD groups compared to that in the pure drug group. SP and TPGS-based SDs, prepared by the HME process, could be used to improve aqueous solubility, dissolution, and oral absorption of poorly water-soluble drugs.

  17. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  18. Preparation of polymer-rare earth complex using salicylic acid-containing polystyrene and its fluorescence emission property

    Energy Technology Data Exchange (ETDEWEB)

    Gao Baojiao, E-mail: gaobaojiao@126.com [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China); Zhang Wei; Zhang Zhengguo; Lei Qingjuan [Department of Chemical Engineering, North University of China, Taiyuan 030051 (China)

    2012-08-15

    Salicylic acid (SA) was first bonded onto the side chains of polystyrene (PS), obtaining functional macromolecule SAPS. Using the salicylic acid-containing polystyrene as a macromolecular ligand, a polymer-rare earth complex, SAPS-Eu(III), was prepared. The structure of SAPS-Eu(III) was characterized, and the fluorescence properties of SAPS-Eu(III) were mainly investigated. The experimental results show that the complex SAPS-Eu(III) has fine chemical stability because of the bidentate chelating effect of salicylic acid ligand. More important, the ligand SA on the side chains of PS can strongly sensitize the fluorescence emission of the center ion, Eu{sup 3+} ion, and it enables the complex SAPS-Eu(III) to produce the apparent 'Antenna Effect'. In the diluted solution of the functional macromolecule SAPS, the formed complex SAPS-Eu(III) belongs to an intramolecular complex, or an intrachain complex. For the binary intramolecular complex SAPS-Eu(III), the apparent saturated coordination number of SA of SAPS towards Eu{sup 3+} ion is equal to 10, and here the binary intrachain complex SAPS-Eu(III) has the strongest fluorescence emission. On this basis, small-molecule 1,10-phenanthroline (Phen) acting as a co-ligand is added and the ternary complex SAPS-Eu(III)-Phen will be formed. As long as a small amount of Phen is added (in the molar ratio 1:1 (n(Phen):n(Eu))), the coordination of the two kinds of ligands, SA of SAPS and Phen, to Eu{sup 3+} ion will reach complete saturation, and here the fluorescence emission of the ternary complex will be further enhanced via the complementary coordination effect in comparison with that of the binary complex SAPS-Eu(III). - Highlights: Black-Right-Pointing-Pointer We prepared the functional polystyrene, SAPS, on whose side chain salicylic acid ligand was bonded. Black-Right-Pointing-Pointer The polymer-rare earth complex, SAPS-Eu(III), was prepared and a stronger 'antenna effect' was produced. Black

  19. Molecularly Imprinted Polymers: Present and Future Prospective

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-09-01

    Full Text Available Molecular Imprinting Technology (MIT is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs, the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.

  20. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  1. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  2. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  3. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  4. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  5. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram; Ghahramanifard, Fazel [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2016-03-24

    In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L{sup −1} in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L{sup −1}, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L{sup −1}. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples. - Graphical abstract: An automated on

  6. Polymer sulfonation- a versatile route to prepare proton-conducting membrane material for advanced technologies

    International Nuclear Information System (INIS)

    Zaidi, S.M.J.

    2003-01-01

    Sulfonation of polymers is a viable method for making proton exchange membranes used in electrochemical devices. Polyether-ether ketone was modified by using concentrated sulfuric acid (97.4%) to produce ion-containing polymers bearing HSO3 groups. The sulfonated polymer was characterized for IEC, HNMR, DSC and water uptake etc. The degree of sulfonation of sulfonated PEEK was found to vary from 40 to 80 mol%. The PEEK became amorphous after sufonation (as evidenced from DSC and WXRD), which enhanced its solubility in organic solvents such as DMF. The glass transition temperature, Tg increased from 151C for pure PEEK to 217C upon sulfonation. The water uptake was also increased with sulfonation level, which provides formation of water-mediated pathways for protons involving SO3H groups. The membranes from these polymers have a high potential for use in electrochemical devices such as polymer fuel cell and electrodialysis. (author)

  7. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001 (Israel); Kumagai, Akiko; Miyawaki, Atsushi [Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198 (Japan); Khashirova, Svetlana Yu; Zhansitov, Azamat [Kabardino-Balkar State University, 173 Chernyshevskogo St., Nal' chik, 360004, Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation)

    2016-11-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  8. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    International Nuclear Information System (INIS)

    Timin, Alexander S.; Solomonov, Alexey V.; Kumagai, Akiko; Miyawaki, Atsushi; Khashirova, Svetlana Yu; Zhansitov, Azamat; Rumyantsev, Evgeniy V.

    2016-01-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  9. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  10. Influence of graphene quantum dots on electrical properties of polymer composites

    Science.gov (United States)

    Arthisree, D.; Joshi, Girish M.

    2017-07-01

    We successfully prepared synthetic nanocomposite (SNC) by dispersing graphene quantum dots (GQD) in cellulose acetate (CA) polymer system. The dispersion and occupied network of GQD were foreseen by microscopic techniques. The variation of plane to crossed linked array network was observed by the polarizing optical microscopic (POM) technique. The scanning electron microscopy (SEM) revealed the leaves like impressions of GQD in host polymer system. The series network of GQD occupied in CA at higher resolution was confirmed by transmission electron microscopy (TEM). The two dimensional (2D) topographic images demonstrated an entangled polymer network to plane morphology. The variation in surface roughness was evaluated from the dimensional (3D) topography. The influence of temperature on AC conductivity with highest value (4  ×  10-5 S cm-1), contributes to the decrease in activation energy. The DC conductivity obeys the percolation criteria co-related to the GQD loading by weight fraction. Furthermore, this synthetic nanocomposite is feasible for the development of sensing and electrical applications.

  11. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability.

    Science.gov (United States)

    Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M

    2018-01-01

    The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Polymer blend microspheres for controlled drug release: the techniques for preparation and characterization: a review article.

    Science.gov (United States)

    Dasan, K Priya; Rekha, C

    2012-11-01

    The use of polymers and their microspheres in drug delivery is well known for they are being widely used in the field of drug delivery. The polymer entraps a drug which is to be released in a predesigned manner in the body through biodegradation. The blending of polymers is one way of modifying and enhancing the properties of polymer- based products which is also a cost effective procedure rather than developing a new product. The molecular weight of the polymer, the composition of the blend, the sphere porosity and size, and drug distribution are found to be controllable factors on which drug delivery depends. Polymer blends are obtained by allowing two polymers to combine as one material which has the advantage of two or more polymers. Polymer microspheres are small spherical particles with diameters in the micrometer range between 1μm to 1000μm which are manufactured from various natural and synthetic materials. Microspheres are used to administer medication in a rate- controlled manner and sometimes in a targeted manner. This review presents various polymer blend- combinations in different ratios, the different processing techniques adopted and the details of their characterization through examples found in a literature survey. The characterization of the different polymer blends or microspheres showed changes in structure, increase in drug loading, encapsulation efficiency, biocompatibility and low cytotoxicity.

  13. Study of the polymer permanent magnets properties - rare earths

    International Nuclear Information System (INIS)

    Takiishi, H.; Benini, H.R.; Lima, L.F.C.P.; Faria, R.N.

    1996-01-01

    An alternative method for permanent magnet production without the sintering step is polymer bonded magnets. In this work magnets were prepared from magnetic Sm Co 5 or Nd 15 Fe 77 B 8 alloys bonded with 10% wt of resin. For the Nd 15 Fe 77 B 8 alloy the hydrogenation - decomposition - desorption - recombination (HDDR) process have been employed in the preparation of the magnets. Results from the magnetic properties showed that no milling is necessary for the production of polymer bonded Nd-Fe-B magnets. The magnets showed good magnetic properties. (author)

  14. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release.

    Science.gov (United States)

    Bittner, B; Witt, C; Mäder, K; Kissel, T

    1999-08-05

    The aim of the present study was to investigate the influence of the chemical insertion of poly(ethylene oxide), PEO, into a poly(lactide-co-glycolide), PLG, backbone on the mechanisms of in vitro degradation and erosion of the polymer. For this purpose microspheres prepared by a modified W/O/W double emulsion technique using ABA triblock copolymers, consisting of PLG A-blocks attached to central PEO B-blocks were compared with microspheres prepared from PLG. Due to their molecular architecture the ABA triblock copolymers differed in their erosion and degradation behavior from PLG. Degradation occurred faster in the ABA polymers by cleavage of ester bonds inside the polymer backbone. Even erosion was shown to start immediately after incubation in different buffer media. By varying pH and ionic strength of the buffer it was found that both mass loss and molecular weight decay were accelerated in alkaline and acidic pH in the case of the ABA triblock copolymers. Although the pH of the medium had a moderate influence on the degradation of PLG, the molecular weight decay was not accompanied by a mass loss during the observation time. In a second set of experiments we prepared bovine serum albumin, BSA, loaded microspheres from both polymers. The release of BSA from ABA microspheres under in vitro conditions parallels the faster swelling and erosion rates. This could be confirmed by electron paramagnetic resonance, EPR, measurements with spin labeled albumin where an influx of buffer medium into the ABA microspheres was already observed within a few minutes. In contrast, PLG microspheres revealed a burst release without any erosion. The current study shows that the environmental conditions affected the degradation and erosion of the pure polymer microspheres in the same way as the release of the model protein. This leads to the conclusion that the more favorable degradation profile of the ABA triblock copolymers was responsible for the improvement of the release profile.

  15. Synthesis and Characterization of Super absorbent Hydrogels Based on Natural Polymers Using Ionizing Radiations

    International Nuclear Information System (INIS)

    Deghiedy, N.M.A.

    2010-01-01

    Radiation processing technology is a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, novel super absorbent hydrogels was prepared with biodegradable and eco-friendly properties by graft copolymerization of chitosan and different synthetic monomers (AAc, DEAEMA, HEMA, HPMA and HEA) using gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The different chitosan hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy and thermal analysis techniques. The effects of the preparation conditions on the gelation process of the synthesized copolymer were investigated. The influence of variables such as feed concentration, irradiation dose, composition ratio, ph and temperature on the swelling of the prepared hydrogels was also examined. The water absorbency of these hydrogels in various ph and salt solutions was studied. The swelling kinetics of the prepared hydrogels and in vitro release dynamics of model drug (Chlortetracycline hydrochloride) from these hydrogels has been studied for the evaluation of swelling mechanism and drug release mechanism from the hydrogels. The adsorption and in vitro release profiles of Chlortetracycline HCl from the prepared gels were also estimated in different ph buffers. The amount of drug released from CS/ (AAc-DEAEMA) hydrogels was higher than that released from other modified CS/AAc hydrogels. This preliminary investigation of chitosan based hydrogels showed that they may be exploited to expand the utilization of these systems in drug delivery applications

  16. The effect of water-swelling polymer composition on radiocesium transfer in 'water - soil - plant' system

    Energy Technology Data Exchange (ETDEWEB)

    Tavakalyan, N.; Sergeeva, S.; Voskanyan, P. [Yerevan Institute ' Plastpolymer' Yerevan, 0007, 127 Arshacunats (Armenia); Tadevosyan, A.; Pyuskyulyan, K. [Institute of Hydroponics Problems NAS RA, Yerevan, 0082, 108 Noragyugh (Armenia); Mihranyan, A. [Division of Materials Science, Luleaa University of Technology, LuleAa SE-971 87 (Sweden); Tsuruoka, S. [Research Center for Exotic Nanocarbons, Shinshu University, Nagano,380-8553,4-17-1 Wakasato (Japan)

    2014-07-01

    Due to the relatively long half-life (T{sub 1/2} = 30 years) and high solubility {sup 137}Cs presents a serious threat to the environment. The study on radioactive cesium transfer into plants and its distribution in different parts of plants (roots, stems and leaves) is among the tasks of agricultural radioecology. The problem has become especially urgent in connection with the accident at Fukushima nuclear power plant. The present work describes potential countermeasures to regulate radiocesium transfer from soil to agricultural plants. As countermeasure the use polymer hydrogels is offered. Water-swelling polymers are of great interest for their practical application as effective absorbents of humidity at growth of agricultural plants. Composite polymer hydrogels containing an inorganic phase are of special interest, as numerous inorganic fillers exhibit the ability to absorb radionuclides. Optimal samples of hydrogels based on ammonium acrylate with good water-swelling and water-retention were obtained. Samples with the same polymer matrix - ammonium acrylate - and such fillers as silica gel, synthetic aluminosilicate, bentonite and zeolite from Armenian deposits were used. Developed gels with and without fillers are applicable for multiple uses in the processes of water sorption and desorption. For preliminary assessment of radiocesium migration in 'water - soil- plant' system we studied sorption of {sup 137}Cs and {sup 134}Cs from water. In the experiments, water with the specific radioactivity (1.86-4.38)x10{sup 4} Bq/L was used for {sup 137}Cs, while for {sup 134}Cs we used (2.175- 3.41)x10{sup 4} Bq/L water. Low-background gamma spectrometer with pure Ge detector and supporting 'GENIE' software were used for measurements. Non-filled gels of ammonium acrylate actually did not absorb radiocesium from water. Cesium sorption by filled gels of ammonium acrylate depended on the filler type and quantity. The optimal quantity of filler was

  17. Germanium films by polymer-assisted deposition

    Science.gov (United States)

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  18. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  19. Poly(ethylene oxide) surfactant polymers.

    Science.gov (United States)

    Vacheethasanee, Katanchalee; Wang, Shuwu; Qiu, Yongxing; Marchant, Roger E

    2004-01-01

    We report on a series of structurally well-defined surfactant polymers that undergo surface-induced self-assembly on hydrophobic biomaterial surfaces. The surfactant polymers consist of a poly(vinyl amine) backbone with poly(ethylene oxide) and hexanal pendant groups. The poly(vinyl amine) (PVAm) was synthesized by hydrolysis of poly(N-vinyl formamide) following free radical polymerization of N-vinyl formamide. Hexanal and aldehyde-terminated poly(ethylene oxide) (PEO) were simultaneously attached to PVAm via reductive amination. Surfactant polymers with different PEO:hexanal ratios and hydrophilic/hydrophobic balances were prepared, and characterized by FT-IR, 1H-NMR and XPS spectroscopies. Surface active properties at the air/water interface were determined by surface tension measurements. Surface activity at a solid surface/water interface was demonstrated by atomic force microscopy, showing epitaxially molecular alignment for surfactant polymers adsorbed on highly oriented pyrolytic graphite. The surfactant polymers described in this report can be adapted for simple non-covalent surface modification of biomaterials and hydrophobic surfaces to provide highly hydrated interfaces.