WorldWideScience

Sample records for polymer electrolytes ppo-liclo4

  1. Synthesis and characterization of PVA blended LiClO4 as electrolyte material for battery Li-ion

    Science.gov (United States)

    Gunawan, I.; Deswita; Sugeng, B.; Sudaryanto

    2017-07-01

    It have been synthesized the materials for Li ion battery electrolytes, namely PVA with the addition of LiClO4 salt were varied 0, 5, 10, 15 and 20% by weight respectively. The objective of this study is to control the ionic conductivity in traditional polymer electrolytes, to improve ionic conductivity with the addition of lithium perchlorat (LiClO4). These electrolyte materials prepared by PVA powder was dissolved into distilled water and added LiClO4 salt were varied. After drying the solution, PVA sheet blended LiClO4 salt as electrolyte material for Li ion battery obtained. PVA blended LiClO4 salt crystallite form was confirmed using X-Ray Difraction (XRD) equipment. Observation of the morphology done by using Scanning Electron Microscope (SEM). While the electrical conductivity of the material is measured using LCR meter. The results of XRD pattern of LiClO4 shows intense peaks at angles 2θ = 23.2, 32.99, and 36.58°, which represent the crystalline nature of the salt. Particles morphology of the sample revealed by scanning electron microscopy are irregular in shape and agglomerated, with mean size 200-300 nm. It can be concluded that polycrystalline particles are composed of large number of crystallites. The study of conductivity by using LCR meter shows that all the graphs represent the DC and AC conductivity phenomena.

  2. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  3. Preparation and Characterization of PVC-Al2O3-LiClO4 Composite Polymeric Electrolyte

    International Nuclear Information System (INIS)

    Azizan Ahmad; Mohd Yusri Abdul Rahman; Siti Aminah Mohd Noor; Mohd Reduan Abu Bakar

    2009-01-01

    Ionic conductivity of composite polymer electrolyte PVC-Al 2 O 3 -LiClO 4 as a function of Al 2 O 3 concentration has been studied. The electrolyte samples were prepared by solution casting technique. Their ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with Al 2 O 3 concentration. The highest room temperature conductivity of the electrolyte of 3.43 x 10 -10 S.cm -1 was obtain at 25 % by weight of Al 2 O 3 and that without Al 2 O 3 filler was found to be 2.43 x 10 -11 S.cm -1 . The glass transition temperature decreases with the increase of Al 2 O 3 percentage due to the increasing amorphous state, meanwhile the degradation temperature increases with the increase of Al 2 O 3 percentage. Both of these thermal properties influence the enhancement of the conductivity value. The morphology of the samples shows the even distribution of the Al 2 O 3 filler in the samples. However, the filler starts to agglomerate in the sample when high percentage of Al 2 O 3 is being used. In conclusion, the addition of Al 2 O 3 filler improves the ionic conductivity of PVC- Al 2 O 3 -LiCIO 4 solid polymer electrolyte. (author)

  4. Studi Electrochemical Impedance Spectroscopy dari Lembaran Polyvinyl Alcohol dengan Penambahan Liclo4 sebagai Bahan Elektolit Baterai Li-ion

    OpenAIRE

    Gunawan, Indra; Wahyudianingsih, Wahyudianingsih; Sudaryanto, Sudaryanto

    2016-01-01

    ELECTROCHEMICALIMPEDANCE SPECTROSCOPY STUDY OF POLYVINYL ALCOHOL SHEETWITHADDITION OFLiClO4AS ELECTROLYTE MATERIAL OF Li-ION BATTERAY. Solid polymer electrolyte materials for Li ion battery have been prepared using polyvinyl alcohol (PVA) added by lithium perchlorate (LiClO4) salt with various concentration. Electrochemical Impedance Spectroscopy (EIS) study of the material was done by making a Nyquist plot of the measurement with a LCR meter. These electrolyte materials prepared by using PVA...

  5. Synthesis of polymer gel electrolyte with high molecular weight poly(methyl methacrylate)-clay nanocomposite

    International Nuclear Information System (INIS)

    Meneghetti, Paulo; Qutubuddin, Syed; Webber, Andrew

    2004-01-01

    Polymer nanocomposite gel electrolytes consisting of high molecular weight poly(methyl methacrylate) PMMA-clay nanocomposite, ethylene carbonate (EC)/propylene carbonate (PC) as plasticizer, and LiClO 4 electrolyte are reported. Montmorillonite clay was ion exchanged with a zwitterionic surfactant (octadecyl dimethyl betaine) and dispersed in methyl methacrylate, which was then polymerized to synthesize PMMA-clay nanocomposites. The nanocomposite was dissolved in a mixture of EC/PC with LiClO 4 , heated and pressed to obtain polymer gel electrolyte. X-ray diffraction (XRD) of the gels indicated intercalated clay structure with d-spacings of 2.85 and 1.40 nm. In the gel containing plasticizer, the clay galleries shrink suggesting intercalation rather than partial exfoliation observed in the PMMA-clay nanocomposite. Ionic conductivity varied slightly and exhibited a maximum value of 8 x 10 -4 S/cm at clay content of 1.5 wt.%. The activation energy was determined by modeling the conductivity with a Vogel-Tamman-Fulcher expression. The clay layers are primarily trapped inside the polymer matrix. Consequently, the polymer does not interact significantly with LiClO 4 electrolyte as shown by FTIR. The presence of the clay increased the glass transition temperature (Tg) of the gel as determined by differential scanning calorimetry. The PMMA nanocomposite gel electrolyte shows a stable lithium interfacial resistance over time, which is a key factor for use in electrochemical applications

  6. ac impedance, DSC and FT-IR investigations on (x)PVAc-(1 - x)PVdF blends with LiClO4

    International Nuclear Information System (INIS)

    Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T.

    2006-01-01

    The blended polymer electrolytes comprising poly(vinyl acetate) (PVAc)-poly(vinylidene fluoride) (PVdF) have been prepared for different blend composition with constant lithium perchlorate (LiClO 4 ) ratio by solution casting technique. The formation of the blend polymer electrolyte complex has been confirmed by FT-IR spectroscopy analysis. DSC analysis has been performed in order to observe the change in transition temperature that is caused by the blending of polymers and addition of LiClO 4 . The ac impedance and dielectric spectroscopy studies are carried out on the blended matrix to identify the optimized blend composition, which is having high ionic conductivity. The temperature dependence of conductivity of the polymer electrolytes is found to follow VTF type equation. The high ionic conductivity of 6.4 x 10 -4 S cm -1 at 343 K has been observed for blended polymer electrolyte having blend ratio 75:25 (PVAc:PVdF). The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the value is reported to be t ion is 0.95-0.98 for all the blended samples. The modulus spectra reveal the non-Debye nature and distribution of relaxation times of the samples. The dielectric spectra show the low frequency dispersion, which implies the space charge effects arising from the electrodes

  7. Electrochemistry Study on PVC-LiClO4 Polymer Electrolyte Supported by Bengkulu Natural Bentonite for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Ghufira

    2012-04-01

    Full Text Available In this research bentonite was used as filler to produce polymer electrolyte (PVCLiClO4. Some weight variation of bentonite have been made by addition, such as 0% wt/wt; 5% wt/wt ; 10% wt/wt ; 15% wt/wt ; 20% wt/wt ; and 25% wt/wt of bentonite to the mixture of 0,5 gramof PVC and 0,125 gram of LiClO4. Ionic conductivity of polymer electrolyte was tested using impedance spectroscopy. The result of the research was showed that a mixture of PVCBentonite(10% wt/wt-LiClO4 gives the highest ionic conductivity (4,86 x 10-3 S.Cm-1. This result indicated that the presence of natural bentonite can be used as a filler in the current composite polymer electrolyte and can increase the ionic conductivity of the polymer electrolyte.

  8. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Webster, Mark Ian

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) 10 and LiClO 4 .P(EO) 10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO) 8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  9. Preparation and characterization of Jatropha oil-based Polyurethane as non-aqueous solid polymer electrolyte for electrochemical devices

    International Nuclear Information System (INIS)

    Mustapa, Siti Rosnah; Aung, Min Min; Ahmad, Azizan; Mansor, Ahmad; TianKhoon, Lee

    2016-01-01

    Jatropha-oil based polyurethane is one of the initiative for replacing conventional petroleum based polyurethane. The vegetable oil-based polyurethane is more cost-effective and synthesize from renewable resources. Polyurethane was synthesized through prepolymerization method between jatropha oil-based polyol and diphenylmethane 4, 4’diisocyanate, (MDI) in inert condition. Then, lithium perchloride ion (LiClO 4 ) was added to the polyurethane system to form electrolyte film via solution casting technique. The polymer electrolytes were prepared by varying the amount of LiClO 4 ion 10 wt.% to 30 wt. %. The highest conductivity is achieved at 25 wt.% of LiClO 4 salt content, which is 1.29 × 10 −4 S/cm at room temperature 30 °C. The FTIR results showed the shifting of carbonyl group (C=O) (1750 cm −1 – 1730 cm −1 ), ether and ester group (C-O-C) (1300 cm −1 –1000 cm −1 ) and amine functional groups (N-H) (1650 cm −1 –1500 cm −1 ) in polyurethane electrolytes from the blank polyurethane shows that oxygen and nitrogen atom acts as electron donor in the electrolytes system. It also confirmed that the intermolecular reaction had occurred in the electrolytes system. While, the XRD analysis showed the semi-crystalline properties of polyurethane have been reduced to amorphous phase upon the increasing addition of lithium ion. SEM results revealed the morphology analysis of the polyurethane electrolytes. There is homogenous and smooth surface in polyurethane and the dissociation of salt was observed after the addition of salt indicates there was interaction between salt and the polymer host.

  10. Investigations on PVdF- HFP - PEMA polymer blend electrolytes doped with different lithium salts

    Science.gov (United States)

    Manojkumar Ubarhande, Radha; Bhattacharya, Shreya; Usha Rani, M.; Shanker Babu, Ravi; Krishnaveni, S.

    2017-11-01

    Plasticized polymer blend electrolytes were prepared by incorporating poly (vinylidenefluoride-co-hexafluoropropylene)(PVdF-HFP) and poly(ethylmethacrylate) (PEMA) complexed with plasticizer (PC) and different lithium salts such as LiClO4, LiBF4, LiCF3SO3 and LiN (CF3SO2)2) using solution-casting technique. X-ray diffraction and Fourier transform infra-red techniques confirms the structural characters and complex formation of the polymer electrolytes respectively. AC impedance analysis was carried out for all the samples in the range303-373K. The results suggest that among the various lithium salts, LiN (CF3SO2)2) based electrolytes exhibited the highest ionic conductivity (3.17 × 10-3 Scm-1).

  11. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  12. Effect of complexing salt on conductivity of PVC/PEO polymer blend ...

    Indian Academy of Sciences (India)

    Administrator

    composite polymer, a blend-based polymer electrolyte, composed of two conductive ... LiClO4 electrolytes with various methacrylic and acrylic polymers used as additives .... Z real vs Z imaginary plot for PVC : PEO : LiBF4 at room temperature.

  13. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  14. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    Science.gov (United States)

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  15. Morphology, optical and ionic conductivity studies of electron beam irradiated polymer electrolyte film

    Science.gov (United States)

    Devendrappa, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Ganesh, S.

    2018-04-01

    The effects of electron beam (EB) irradiation on morphology, optical properties and ionic conductivity of (PVdF-co-HFP: LiClO4=90:10, PHL10) electrolyte films. The FESEM image reveal increasing porous morphology with increasing EB dose confirms the polymer degradation as result more amorphousity. The optical absorbance was found to be increase with red shift in UV region and direct optical band gaps was found decreased upon EB dose from 3.70 eV to 2.65 eV. The ionic conductivity increases slowly in lower frequency, whereas rapidly increases at the high frequency and found about 8.28×10-4 S/cm at 120 kGy dose. The obtained results suggest that the physical properties of polymer electrolytes can be changed using EB irradiation as requirement.

  16. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  17. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  18. Measurement of concentration profile during charging of Li battery anode materials in LiClO4-PC electrolyte

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukunaka, Y.; Sakka, T.; Ogata, Y.H.; Selman, J.R.

    2007-01-01

    Li metal was galvanostatically electrodeposited on a horizontally positioned, downward-facing Li metal cathode in 0.5 M LiClO 4 -PC electrolyte. The refractive index profile corresponding to the transient Li + ion concentration profile formed in the electrolyte solution upon applying a current step was measured in-situ by holographic interferometry. The configuration of the electrolytic cell was such that mass transfer was governed only by transient diffusion and migration, in the absence of convection. Between the moment of closing the current circuit and the time at which the interference fringes started to shift, an incubation period was observed. Such an incubation period had earlier been observed in lithium electrodeposition at a vertical planar Li metal cathode. The incubation period for the horizontal Li cathode was roughly half that for a vertical one. To study the effect of the electrode material on the incubation period, interferometry measurements were also made at an electrodeposited Ni-Sn alloy electrode. The concentration profile formed near the Ni-Sn alloy electrode during lithiation (alloying or intercalation of Li + into the electrode) agrees well with predictions made by means of the one-dimensional diffusion equation. Only very short incubation period was detected, but the magnitude was negligibly smaller than that of Li metal electrodeposition. The incubation period therefore appears to be characteristic for Li metal electrode only

  19. NMR studies of Na+-anion association effects in polymer electrolytes

    International Nuclear Information System (INIS)

    Greenbaum, S.G.; Pak, Y.S.; Wintergill, M.C.; Fontanella, J.J.

    1988-01-01

    23 Na nuclear magnetic resonance (NMR) measurements on poly (propylene oxide) (PPO) and siloxane based polymer electrolytes containing various sodium salts at a single nominal concentration are reported. In addition, differential scanning calorimetry (DSC) and electrical conductivity studies were carried out on the PPO materials. The NMR-determined mobile Na + concentrations and DSC results provide evidence for ionic aggregation effects which, for some samples, result in salt precipitation at elevated temperatures. 23 Na chemical shifts observed in solid state NMR due to mobile Na + -anion interactions influence ionic transport as well as the number of available carriers. (author). 19 refs.; 7 figs

  20. PEGDA/PVdF/F127 gel type polymer electrolyte membranes for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Jie; Kim, Dukjoon [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi 440-746 (Korea)

    2007-03-30

    A novel porous gel polymer electrolyte (GPE) membrane based on poly(ethylene glycol) diacrylate (PEGDA), poly(vinylidene fluoride) (PVdF), and polyethylene oxide-co-polypropylene oxide-co-polyethylene oxide (PEO-PPO-PEO, F127) was fabricated by a phase inversion technique. The PEGDA cross-linking oligomer could be randomly mixed with unraveled PVdF polymer chains to form the interpenetrating polymer network (IPN) structure. Several experimental techniques including infrared (IR) spectra, differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiostat/galvanostat were employed to investigate the characteristics of the polymer membranes. PEGDA and F127 influenced the porous size and structure. The mechanical strength and flexibility of the membrane were controlled by its composition. The membrane with the composition of PEGDA/PVdF/F127 (0/4/4) showed the highest electrolyte uptake of 152.6% and the maximum ionic conductivity of 2.0 x 10{sup -3} S cm{sup -1} at room temperature. All GPEs prepared in this study were electrochemically stable up to 4.5 V. (author)

  1. Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte

    International Nuclear Information System (INIS)

    Su’ait, M.S.; Ahmad, A.; Hamzah, H.; Rahman, M.Y.A.

    2011-01-01

    The effect of lithium salts (lithium tetrafluoroborate, LiBF 4 and lithium perchlorate, LiClO 4 ) as doping salts in rubber-polymer blends, 49% poly(methyl methacrylate) grafted natural rubber (MG49) and poly(methyl methacrylate) (PMMA) in solid polymer electrolyte (SPE) film for electrochemical devices application was investigated. The electrolyte films were prepared via the solution casting technique using 0–25 wt.% lithium salt. The effect of the lithium salts on chemical interaction, ionic conductivity and structural and morphological studies of (70:30) MG49-PMMA films was analyzed using Fourier Transform Infrared (FT-IR) Spectroscopy, Electrochemical Impedance Spectroscopy (EIS), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Infrared analysis showed that the interactions between lithium ions and oxygen atoms occur at the ether group (C–O–C) (1500–1100 cm −1 ) on the MMA structure in both MG49 and PMMA. The oxygen atoms in the structure of the polymer host act as electron donor atoms and form a coordinate bond with the lithium ions from the doping salt to form polymer–salt complexes. The ionic conductivity was investigated at room temperature as well as at a temperature range from 303 K to 373 K. The ionic conductivity without the addition of salt was 1.1 × 10 −12 S cm −1 . The highest conductivity at room temperature for (70:30) MG49-PMMA–LiBF 4 was 8.6 × 10 −6 S cm −1 at 25 wt.% of LiBF 4 . The ionic conductivity of (70:30) MG49-PMMA–LiClO 4 was 1.5 × 10 −8 S cm −1 at 25 wt.% of LiClO 4 . However, both electrolyte systems do not exhibit Arrhenius-like behavior. Systems with LiBF 4 salt have higher ionic conductivity than those with LiClO 4 salt because of the differences in anionic size and lattice energy of the appropriate salt. The observations from structural and morphology studies showed that complexation and re-crystallization occur in the system. The XRD studies showed a reduction of the MMA peak

  2. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  3. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system

    International Nuclear Information System (INIS)

    Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2008-01-01

    Polymer electrolyte based on PVA doped with different concentrations of NH 4 Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7x10 -4 S cm -1 ) has been obtained for 25 mol% NH 4 Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra

  4. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Costa, M.M.; Terezo, A.J.; Matos, A.L.; Moura, W.A.; Giacometti, Jose A.; Sombra, A.S.B.

    2010-01-01

    Cast films of chitosan and chitosan containing LiClO 4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 o C. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO 4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO 4 films. The peak at lower frequency was attributed to Li + conduction since it appeared only for the chitosan containing LiClO 4 . The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H + and Li + conduction, respectively.

  5. A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen Junnian; Xia Jiangbin; Fan Ke; Peng Tianyou

    2011-01-01

    Highlights: → A novel CuI-based iodine-free gel electrolyte for DSSC is firstly prepared. → Such CuI-based electrolyte has relative high conductivity and stability. → Addition amount of LiClO 4 and PEO in the electrolyte is optimized. → Cell performance is improved by 116.2% compared with the cell without LiClO 4 . - Abstract: A novel CuI-based iodine-free gel electrolyte using polyethylene oxide (PEO, MW = 100,000) as plasticizer and lithium perchlorate (LiClO 4 ) as salt additive was developed for dye-sensitized solar cells (DSSCs). Such CuI-based gel electrolyte can avoid the problems caused by liquid iodine electrolyte and has relative high conductivity and stability. The effects of PEO and LiClO 4 concentrations on the viscosity and ionic conductivity of the mentioned iodine-free electrolyte, as well as the performance of the corresponding quasi solid-state DSSCs were investigated comparatively. Experimental results indicate that the performance of DSSCs can be dramatically improved by adding LiClO 4 and PEO, and there are interactions (Li + -O coordination) between LiClO 4 and PEO, these Li + -O coordination interactions have important influence on the structure, morphology and ionic conductivity of the present CuI-based electrolyte. Addition of PEO into the electrolyte can inhibit the rapid crystal growth of CuI, and enhance the ion and hole transportation property owing to its long helix chain structure. The optimal efficiency (2.81%) was obtained for the quasi solid-state DSSC fabricated with CuI-based electrolyte containing 3 wt% LiClO 4 and 20 wt% PEO under AM 1.5 G (1 sun) light illumination, with a 116.2% improvement in the efficiency compared with the cell without addition of LiClO 4 , indicating the promising application in solar cells of the present CuI-based iodine-free electrolyte.

  6. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  7. Preparation and characterization of polyindole - iron oxide nanocomposite electrolyte

    International Nuclear Information System (INIS)

    Rajasudha, G.; Stephen, A.; Narayanan, V.

    2009-01-01

    Full text: A novel polyindole-iron oxide containing LiClO 4 solid polymer electrolyte has been prepared. The diverse property of magnetic nanoparticle has elicited wide interest from the point of view of technological applications. Their properties are known to be strongly dependent on size, anisotropy and inter particle interactions. The proton conducting materials has received considerable attention as electrolyte materials in technological applications such as fuel cells, sensors and electrochromic display. In this work, polyindole-iron oxide nanocomposite containing LiClO 4 was prepared by in situ polymerization. The indole was polymerized in the presence of iron oxide, using ammonium peroxy disulphate as an oxidizing agent. The polyindole-iron oxide nanocomposite was characterized by XRD, IR, SEM, TGA and TEM. The iron oxide nano particles was incorporated into polyindole and was confirmed by XRD and Fourier transform infrared (FTIR) spectroscopy. The surface Morphology and thermal stability were studied by thermogravimetric analysis (TGA) and SEM respectively. The ionic conductivity of polyindole electrolyte was analyzed from impedance spectrum. The prepared polyindole-iron oxide nanocomposite could be used as solid electrolyte in lithium ion batteries

  8. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  9. Electrical, thermal and structural properties of plasticized waste cooking oil-based polyurethane solid polymer electrolyte

    Science.gov (United States)

    Huzaizi, Rahmatina Mohd; Tahir, Syuhada Mohd; Mahbor, Kamisah Mohamad

    2017-12-01

    Waste cooking oil-based polyol was synthesized using epoxidation and hydroxylation methods. The polyol was combined with 4,4-diphenylmethane diisocyanate to produce polyurethane (PU) to be used as polymer host in solid polymer electrolyte. 30 wt% LiClO4 was added as doping salt and two types of plasticizers were used; ethylene carbonate (PU-EC) and polyethylene glycol (PU-PEG). The SPE films were characterized using Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The highest conductivity achieved was 8.4 x 10-8 S cm-1 upon addition of 10 wt% EC. The XRD results showed a decrease of crystalline peaks in PU-EC and the increase in PU-PEG. DSC results revealed that the films; PU, PU-EC and PU-PEG had glass transition temperatures of 159.7, 106.0 and 179.7 °C, respectively. The results showed that the addition of EC increased the amorphous region and the free volume in the SPE structure, thus resulted in higher ionic conductivity.

  10. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  11. Influence of the lithium salt electrolyte on the electrochemical performance of copper/LiFePO4 composites

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Morales, Julián; Franger, Sylvain; Santos-Peña, Jesús

    2012-01-01

    In this work, we studied the influence of the electrolyte salt, LiPF 6 or LiClO 4 , on the electrochemical properties of copper/LiFePO 4 composites. We found a different stability voltage window for the two electrolytes that was remarkably wide for LiPF 6 . Also, copper addition is commonly accepted to increase electrode conductivity, which is beneficial for electrochemical purposes. However, copper is always oxidised to a variable extent depending on the particular electrolyte during the charge phase. Oxidation of the electrolyte solvent (especially with LiClO 4 ) was also observed during the first charge. In the first cycle, copper was more or less efficiently removed from the electrode surface. In subsequent cycles, however, these phenomena failed to occur (LiPF 6 ) or were weaker (LiClO 4 ). In all these configurations, iron is partially dissolved, to an extent dependent on the amount of copper present in the composite and differing with the particular electrolyte used. Electrochemical impedance spectroscopy allowed us to identify the process taking place close to 3.6 V in LiPF 6 configuration: Fe(II) from the composites are oxidised and irreversibly complexed by the joint action of HF formed from LiPF 6 and water traces and Cu(I) formed upon charging. Our hypothesis accurately explains the results observed in terms of charge/discharge profiles, capacities provided and capacities evolution upon cycling. Also, our test results testify to the importance of using low contents of copper in the composites and the good properties of LiPF 6 as electrolyte solvent.

  12. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    Science.gov (United States)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  13. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Omed Gh. Abdullah

    Full Text Available Solid polymer electrolyte films of polyvinyl alcohol (PVA doped with a different weight percent of potassium permanganate (KMnO4 were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content. Keywords: Solid polymer electrolyte, XRD analysis, FTIR study, Optical band gap, Dielectric constant, Refractive index

  14. Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors

    International Nuclear Information System (INIS)

    Hashmi, S A; Kumar, Ashok; Tripathi, S K

    2007-01-01

    Studies have been carried out on gel polymer electrolytes comprising poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-salts, LiClO 4 , NaClO 4 and (C 2 H 5 ) 4 NClO 4 (TEAClO 4 ) with a view to using them as electrolytes in electrical double layer capacitors (EDLCs) based on activated charcoal powder electrodes. The optimum composition of gel electrolytes, PMMA (20 wt%)-EC : PC (1 : 1 v/v)-1.0 M salts exhibit high ionic conductivity of the order of ∼10 -3 S cm -1 at room temperature with good mechanical/dimensional stability, suitable for their application in EDLCs. The EDLCs have been characterized using linear sweep cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy. The values of capacitance of 68-151 mF cm -2 (equivalent to single electrode specific capacitance of 38-78 Fg -1 of activated charcoal powder) have been observed. These values correspond to a specific energy of 5.3-10.8 Wh kg -1 and a power density of 0.19-0.22 kW kg -1 . The capacitance values have been observed to be stable up to 5000 voltammetric cycles or even more. A comparison of studies shows the predominant role of anions of the gel electrolytes in the capacitive behaviour of EDLCs

  15. Preparation and Properties of Poly (vinylidene fluoride)/poly(dimethylsiloxane) graft (poly(propylene oxide)-block-poly(ethylene oxide)) blend porous separators and corresponding electrolytes

    International Nuclear Information System (INIS)

    Li, Hao; Zhang, Hong; Liang, Zhi-Ying; Chen, Yue-Ming; Zhu, Bao-Ku; Zhu, Li-Ping

    2014-01-01

    Highlights: •This work aims exploring microporous PVDF separators for lithium ion batteries. •Comb structure polymer PDMS-g-(PPO-PEO) was used in PVDF blend separators. •The influence of polyether side chains on interfacial resistance was studied. -- Abstract: This work aims exploring the high performance porous separators that can be activated into gel electrolyte membranes for lithium ion batteries. A comb-like copolymer poly (dimethylsiloxane) graft poly (propylene oxide)-block-poly (ethylene oxide) (PDMS-g-(PPO-PEO)) was synthesized and blended with poly (vinylidene fluoride) (PVDF) to fabricate porous separators via a typical phase inversion process, and then the separators absorbed liquid electrolyte solution and formed into polymer electrolyte membranes. By measuring the composition, morphology and ion conductivity etc, the influence of PDMS-g-(PPO-PEO) on structure and properties of blend separators were discussed. Compared with pure PVDF separator with comparable porous structure, the adoption of PDMS-g-(PPO-PEO) decreased the crystallinity and increased the liquid electrolyte uptake and stability effectively. It was also found that the electrode/electrolyte interfacial resistance could be reduced greatly. The resulting electrolyte membrane using separator with PVDF/PDMS-g-(PPO-PEO) mass ratio in 8/2 exhibited highest ionic conductivity in 4.5 × 10 −3 S/cm at room temperature, while the electrochemical stability was up to 4.7 V (vs. Li/Li + ). Coin cells assembled with such separators also exhibited stable cycle performance and improved rate capabilities, especially when discharge rate higher than 0.5 C

  16. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  17. Synthesis and characterizations of anion exchange organic-inorganic hybrid materials based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)

    International Nuclear Information System (INIS)

    Zhang Shaoling; Wu Cuiming; Xu Tongwen; Gong Ming; Xu Xiaolong

    2005-01-01

    A series of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)-based organic-inorganic hybrid materials for anion exchange were prepared through sol-gel process of polymer precursors PPO-Si(OCH 3 ) 3 . PPO-Si(OCH 3 ) 3 were obtained from the reaction of bromomethylated PPO with 3-aminopropyl-trimethoxysilane (A1110). These polymer precursors then underwent hydrolysis and condensation with additional A1110 to generate hybrid materials. The reaction to produce polymer precursors was identified by FTIR; while FTIR, TGA, XRD, SEM, as well as conventional ion exchange capacity (IEC) measurements were conducted for the structures and properties of the prepared hybrids. TGA results show that this series of hybrid materials possess high thermal stability; XRD and SEM indicate that the prepared hybrid materials are amorphous and the inorganic and organic contents show good compatibility if the ratio between them is proper. The IEC values of the hybrid materials due to the amine groups range from 1.13 mmol/gBPPO (material i) to 4.80 mmol/gBPPO (material iv)

  18. N+ion-target interactions in PPO polymer: A structural characterization

    International Nuclear Information System (INIS)

    Das, A.; Dhara, S.; Patnaik, A.

    1999-01-01

    N + ion beam induced effects on the spin coated amorphous poly(2,6-dimethyl phenylene oxide) (PPO) films in terms of chemical structure and electronic and vibrational properties were investigated using Fourier Transform Infrared spectroscopy (FTIR) and Ultraviolet-Visible (UV-VIS) spectroscopy. Both techniques revealed that the stability of PPO was very weak towards 100 keV N + ions revealing the threshold fluence to be 10 14 ions/cm 2 for fragmentation of the polymer. FTIR analysis showed disappearance of all characteristic IR bands at a total fluence of 10 14 ions/cm 2 except for the band C=C at 1608 cm -1 which was found to shift to a lower wave number along with an enhancement in the full width half maximum (FWHM) value with increasing fluence. A new bond appeared due to oxidation as a shoulder at 1680 cm -1 in FTIR spectra indicating the presence of C=O type bond as a result of N + implantation on PPO films. The optical band gap (E g ) deduced from absorption spectra, was observed to decrease from 4.4 to 0.5 eV with fluence. The implantation induced carbonaceous clusters, determined using Robertson's formula for the optical band gap, were found to consist of ∼160 fused hexagonal aromatic rings at the maximum energy fluence. An enhanced absorption coefficient as a function of fluence indicated incorporation of either much larger concentration of charge carriers or their mobility than that of the pristine sample. Calculated band tail width from Urbach band tail region for the implanted samples pointed the band edge sharpness to be strongly dependent on fluence indicating an increased disorder with increasing fluence

  19. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  20. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  1. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  2. Functional interface of polymer modified graphite anode

    Science.gov (United States)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  3. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  4. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  5. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  6. 4.4 V lithium-ion polymer batteries with a chemical stable gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takeru; Hara, Tomitaro; Akashi, Hiroyuki [Sony Corporation, Energy Business Group, R and D Division, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan); Segawa, Ken; Honda, Kazuo [Sony Energy Device Corporation, PB Technology Center, 1-1 Aza, Shimosugishita, Takakura, Hiwada-machi, Koriyama-shi, Fukushima 963-0531 (Japan)

    2007-12-06

    We tested 4.2 V Li-ion polymer batteries (LIPB) with physical gel electrolyte, poly(vinylidene fluoride) (PVDF), 4.4 V LIPB and 4.4 V Li-ion batteries (LIB) with a liquid electrolyte. The discharge capacity of the 4.4 V LIPB reached 520 Wh l{sup -1} which was 9% higher than that of the 4.2 V LIPB. The 4.4 V LIPB had a high capacity retention ratio of 91.4% at 3 C because of the excellent ion conductivity of the PVDF gel. The capacity retention ratio of the 4.4 V LIPB was 82% after 500 cycles, which is comparable to those of some commercial LIBs. The 4.4 V LIPB retained its original thickness even after many cycles and after being stored at 90 C, whereas the 4.4 V LIB swelled by over 20%. Peaks in the FT-IR spectrum of the discolored separator in the 4.4 V LIB after storage were assigned to C=C double bonds, suggesting that the separator in direct contact with the 4.4 V cathode had been oxidized. The PVDF gel electrolyte not only had a high ionic conductivity but also completely suppressed oxidation. The 4.4 V LIPB with PVDF gel electrolyte has properties suitable for practical cells, namely, high energy density, high permanence and it is safe to use. (author)

  7. Morphology and Doping Level of Electropolymerized Biselenophene-Flanked 3,4- Ethylenedioxythiophene Polymer: Effect of Solvents and Electrolytes

    International Nuclear Information System (INIS)

    Agrawal, Vikash; Shahjad; Bhardwaj, Dinesh; Bhargav, Ranoo; Sharma, Gauri Datt; Bhardwaj, Ramil Kumar; Patra, Asit; Chand, Suresh

    2016-01-01

    Highlights: • Biselenophene-flanked 3,4-ethylenedioxythiophene polymer films were obtained by electrochemical polymerization. • Supporting electrolyte has significant effect on the doping level, whereas electropolymerized solvent has a major effect on morphology of the polymer films. • Optoelectronic properties and morphology of the electropolymerized films were studied. • Density functional theory (DFT) calculation has been made for optoelectronic properties. - Abstract: Biselenophene-flanked 3,4-ethylenedioxythiophene (EDOT) based polymer films were obtained by electrochemical polymerization. The effects of polymerization conditions such as supporting electrolytes and solvents on doping level, optical property and morphology of the polymer films were systematically studied. Interestingly, we found that polymer prepared by using different supporting electrolytes (TBAPF 6 , TBABF 4 and TBAClO 4 ) has significant effects on the doping level of the polymer films, whereas electropolymerized solvents (acetonitrile and dichloromethane) has no such effects on doping level. The polymer films show reversible dedoping and doping behavior upon treatment with hydrazine hydrate and iodine respectively. Biselenophene-flanked EDOT polymer shows a band gap of about 1.6 eV which is comparable to poly(3,4- ethylenedioxythiophene) (PEDOT) and parent polyselenophene, whereas fine-tuning of HOMO and LUMO energy levels has been found. In contrast, we observed that electropolymerized solvent has a major effect on morphology of the polymer films, while supporting electrolyte has very minor effects on the morphology. The surface morphologies of the polymer films were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM) techniques. We also present an efficient synthesis of bisthiophene-flanked bridged EDOT (ETTE), and biselenophene-flanked bridged EDOT (ESeSeE), and their electrochemical polymerization, characterizations and throughout comparison

  8. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  9. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  10. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  11. Methods of enhancing conductivity of a polymer-ceramic composite electrolyte

    Science.gov (United States)

    Kumar, Binod

    2003-12-02

    Methods for enhancing conductivity of polymer-ceramic composite electrolytes are provided which include forming a polymer-ceramic composite electrolyte film by a melt casting technique and uniaxially stretching the film from about 5 to 15% in length. The polymer-ceramic composite electrolyte is also preferably annealed after stretching such that it has a room temperature conductivity of from 10.sup.-4 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1. The polymer-ceramic composite electrolyte formed by the methods of the present invention may be used in lithium rechargeable batteries.

  12. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    International Nuclear Information System (INIS)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Satyanarayana, N.; Venkateswarlu, M.

    2014-01-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl 2 O 4 )] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF 6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl 2 O 4 exhibits high ionic conductivity of 2.80 × 10 −3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO 2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl 2 O 4 ] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator

  13. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  14. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10-3 SCm -1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  15. Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries

    International Nuclear Information System (INIS)

    Li, Mingtao; Wang, Lu; Yang, Bolun; Du, Tingting; Zhang, Ying

    2014-01-01

    Graphical abstract: (A) The main components of PIL electrolytes, (B) A PIL electrolyte sample. - Highlights: • A new polymer electrolyte incorporating a DEME-TFSI liquid is prepared. • The ionic conductivity of the electrolytes reaches 7.58 × 10 −4 S cm −1 at 60 °C. • Batteries discharge 130 mAh g −1 at 0.1 C rates with good capacity retention. - Abstract: The polymer electrolytes based on a novel poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) polymeric ionic liquid (PIL) as polymer host and containing DEME-TFSI ionic liquid, LiTFSI salt and nano silica are prepared. The polymer electrolyte is chemically stable even at a higher temperature of 60 °C in contact with lithium anode. Particularly, the electrolyte exhibits high lithium ion conductivity, wide electrochemical stability window and good lithium stripping/plating performance. When the IL content reaches 60% (the weight ratio of DEME-TFSI/PIL), the PIL electrolyte presents a higher ionic conductivity, and it is 7.58 × 10 −4 S cm −1 at 60 °C. Preliminary battery tests show that Li/LiFePO 4 cells with the PIL electrolytes are capable to deliver above 130 mAh g −1 at 60 °C with very good capacity retention

  16. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  17. Simple introduction of anion trapping site to polymer electrolytes through dehydrocoupling or hydroboration reaction using 9-borabicyclo[3.3.1]nonane

    International Nuclear Information System (INIS)

    Mizumo, Tomonobu; Sakamoto, Kenji; Matsumi, Noriyoshi; Ohno, Hiroyuki

    2005-01-01

    Organoboron-based anion trapping polymer electrolytes were synthesized through hydroboration or dehydrocoupling reaction between poly(propylene oxide) (PPO) oligomer (M n =400, 1200, 2000 and 4000) and 9-borabicyclo[3.3.1]nonane (9-BBN). Obtained oligomers were added various lithium salts (LiN(CF 3 SO 2 ) 2 , LiSO 3 CF 3 , LiCO 2 CF 3 or LiBr) to analyze the ionic conductivity and lithium ion transference number (t Li + ). The ionic conductivity of the oligomer in the presence of LiN(CF 3 SO 2 ) 2 showed higher ionic conductivity than other systems, however, the t Li + was less than 0.3. When LiSO 3 CF 3 or LiCO 2 CF 3 , was added high t Li + over 0.6 was obtained. Such difference in t Li + can be explained by HSAB principle. Since boron is a hard acid, soft (CF 3 SO 2 ) 2 N - anion can not be trapped effectively. High ionic conductivity of 1.3x10 -6 Scm -1 and high t Li + of 0.73 was obtained when PPO chain length was 2000. These values of facilely prepared polymer electrolytes are comparable to those of the PPOs having covalently bonded salt moieties on the chain ends

  18. Electrochemical investigation of electrochromic devices based on NiO and WO3 films using different lithium salts electrolytes

    International Nuclear Information System (INIS)

    Wei, Youxiu; Chen, Mu; Liu, Weiming; Li, Lei; Yan, Yue

    2017-01-01

    Highlights: •ECDs based on NiO and WO 3 films using different electrolytes were fabricated. •Effect of different electrolytes on films and ECDs was investigated. •Applied voltage distribution on NiO and WO 3 electrodes in an ECD was studied. •Voltage distribution on films was unbalanced and associated with electrolyte. •Films have different impedance behavior in different states and electrolytes. -- Abstract: Electrochromic devices (ECDs) with different liquid electrolytes were fabricated using NiO film as counter electrode, WO 3 film as working electrode. The effect of liquid electrolytes containing different lithium salts (LiClO 4 , LiPF 6 , LiTFSI) on films and ECDs was investigated, such as transmittance change, charge density, memory effect and cyclic stability. Films or ECDs using LiPF 6 electrolyte have excellent electrochromic properties but low cyclic stability, compared with LiClO 4 and LiTFSI electrolytes. In order to deeply understand the effect of electrolyte on films and devices, the voltage distribution of films based on an analog cell and electrochemical impedance spectroscopy (EIS) were measured and analyzed in different lithium salts electrolytes. Results show that voltage distribution and EIS characteristics of films have obvious difference in liquid LiClO 4 , LiPF 6 and LiTFSI electrolytes. Voltage distribution on NiO and WO 3 films is unbalanced and the impedance of films in bleached and colored states is different in the same electrolyte.

  19. Polymer Electrolyte Prepared from Highly Deproteinized Natural Rubber Having Epoxy Group

    Science.gov (United States)

    Klinklai, W.; Kawahara, S.; Isono, Y.; Mizumo, T.; Yoshizawa, M.; Ohno, H.

    Deproteinized natural rubber having epoxy group (EDPNR) was applied to transport Li+ as a solid polymer electrolyte. The deproteinized natural rubber, incubated with proteolytic enzyme and surfactant, was subjected to epoxidation followed by oxidative depolymerization in latex stage. The resulting rubber was proved to be a liquid deproteinized natural rubber (LEDPNR) having polar epoxy groups, low Tg, low Mn and well-defined terminal units. Ionic conductivity of LEDPNR mixed with alkali metal salts was investigated through impedance analysis to clarify an effect of proteins present in the rubber. The ionic conductivity of the resulting LEDPNR depended on the kind of salts, their concentrations and temperature. The ionic conductivity of LEDPNR/lithium bis(trifluoromethan sulfonyl)imide (LiTFSI) was higher than that of LEDPNR/ lithium perchlorate (LiClO4). The difference in the ionic conductivity was attributed to the solubility of the salts as results of both high-resolution solid-state 13C-NMR spectroscopy and measurements of spin-lattice relaxation time. The conductivity of LEDPNR/LiTFSI was also dependent upon concentrations of LiTFSI and it reached the highest value at 20 wt%, which was different from the monotonic increase in the Li+ conductivity of liquid epoxidized natural rubber prepared from untreated natural rubber.

  20. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  1. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  2. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  3. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  4. Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

    International Nuclear Information System (INIS)

    Kim, Jin Hee; Kim, Dong Won; Kang, Yong Ku

    2012-01-01

    We investigated the cycling behavior of Li 4 Ti 5 O 12 electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The Li 4 Ti 5 O 12 electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %

  5. Lithium ion intercalation in thin crystals of hexagonal TaSe2 gated by a polymer electrolyte

    Science.gov (United States)

    Wu, Yueshen; Lian, Hailong; He, Jiaming; Liu, Jinyu; Wang, Shun; Xing, Hui; Mao, Zhiqiang; Liu, Ying

    2018-01-01

    Ionic liquid gating has been used to modify the properties of layered transition metal dichalcogenides (TMDCs), including two-dimensional (2D) crystals of TMDCs used extensively recently in the device work, which has led to observations of properties not seen in the bulk. The main effect comes from the electrostatic gating due to the strong electric field at the interface. In addition, ionic liquid gating also leads to ion intercalation when the ion size of the gate electrolyte is small compared to the interlayer spacing of TMDCs. However, the microscopic processes of ion intercalation have rarely been explored in layered TMDCs. Here, we employed a technique combining photolithography device fabrication and electrical transport measurements on the thin crystals of hexagonal TaSe2 using multiple channel devices gated by a polymer electrolyte LiClO4/Polyethylene oxide (PEO). The gate voltage and time dependent source-drain resistances of these thin crystals were used to obtain information on the intercalation process, the effect of ion intercalation, and the correlation between the ion occupation of allowed interstitial sites and the device characteristics. We found a gate voltage controlled modulation of the charge density waves and a scattering rate of charge carriers. Our work suggests that ion intercalation can be a useful tool for layered materials engineering and 2D crystal device design.

  6. Neutron-scattering studies of a polymer electrolyte, PPO-LiClO4

    DEFF Research Database (Denmark)

    Carlsson, P.; Mattsson, B.; Swenson, J.

    1998-01-01

    changes which are induced by the dopant salt. The phenomena can be explained by local ordering of the chain segments around the solvated cations and by contraction of neighbouring chains via cationic cross links. The QENS results indicate that the segmental motions of the polymer chains, which have been...

  7. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  8. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    An Yongxin; Cheng Xinqun; Zuo Pengjian; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO) 20 LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO 4 /Li and Li 4 Ti 5 O 12 /Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  9. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  10. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  11. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  13. Facile electrochemical polymerization of 2-(thiophen-2-yl)furan and the enhanced capacitance properties of its polymer in acetonitrile electrolyte containing boron trifluoride diethyl etherate

    International Nuclear Information System (INIS)

    Mo, Daize; Zhou, Weiqiang; Ma, Xiumei; Xu, Jingkun

    2015-01-01

    Highlights: • The low-potential polymerization of 2-(thiophen-2-yl)furan into polymer (PTFu) was reported. • The electrochemical performance of PTFu was studied in three different electrolytes. • The specific capacitance of PTFu electrode reached 392.0 F g −1 at 5 A g −1 and had 67.0% retention after 500 cycles. • The addition of boron trifluoride diethyl etherate into acetonitrile electrolyte benefited to enhance the specific capacitance and stability of PTFu electrode. - ABSTRACT: In this study, a new simple hybrid poly(2-(thiophen-2-yl)furan) (PTFu) was easily electrodeposited by direct anodic oxidation of 2-(thiophen-2-yl)furan in acetonitrile solution containing 0.1 M lithium perchlorate (LiClO 4 ). The oxidation onset potential of 2-(thiophen-2-yl)furan monomer in this medium was measured to be 0.90 V, which was lower than those of thiophene (1.47 V) and furan (1.28 V). The structure and morphology of PTFu were characterized by Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The electrochemical capacitance properties of PTFu electrode in three electrolytes were also investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscope techniques. The electrochemical results showed that the specific capacitance of PTFu electrode was enhanced to 392.0 F g −1 from 249.4 F g −1 at 5 A g −1 and the cycling stability was also enhanced to 67.0% retention from 25.5% retention after 500 cycles when the equivalent boron trifluoride diethyl etherate (BFEE) was added into the acetonitrile electrolyte. Furthermore, the PTFu electrode in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF 6 ) showed a lower specific capacitance value (209.4 F g −1 at 5 A g −1 ) and an improved stability (67.6% retention after 600 cycles). These results indicated that the conducting polymers based on furan should be a promising

  14. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL; Klingler, Robert J [Westmont, IL

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  15. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  16. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  17. Study of Ion Transport Behaviour in (PVA-NH4I):SIO2 Nano Composite Polymer Electrolyte

    Science.gov (United States)

    Tripathi, Mridula; Trivedi, Shivangi; Upadhyay, Ruby; Singh, Markandey; Pandey, N. D.; Pandey, Kamlesh

    2013-07-01

    Development and characterization of Poly vinyl alcohol (PVA) based nano composite polymer electrolytes comprising of (PVA-NH4I):SiO2 is reported. Sol-gel derived silica powder of nano dimension has been used as ceramic filler for development of nano composite electrolyte. Formation of nano composites, change in the structural and microscopic properties of the system have been investigated by X-ray differaction, SEM and conductivity.

  18. Synthesis and characterization of sulfonated bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young-Gi; Seo, Dong-Wan; Lim, Young-Don; Jin, Hyun-Mi; Islam Mollah, M.S. [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of); Ur, Soon-Chul [Department of Materials Science and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk 380-702 (Korea, Republic of); Pyun, Sang-Yong [Department of Chemistry, Pukyong National University, Pusan 608-737 (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University/RIC-ReSEM Chungju, 322 Danwol-dong, Chungbuk 380-701 (Korea, Republic of)

    2010-01-25

    Novel polymer electrolyte membranes containing the sulfonic acid groups attached on polymer backbone and side group simultaneously were synthesized. The bromo-poly(2,6-dimethyl-1,4-phenylene oxide)-co-(2,6-diphenyl-1,4-phenylene oxide) copolymer (BrcoPPO) was prepared by oxidative coupling polymerization with 2,6-dimethyl phenol, 2,6-diphenyl phenol, CuCl(I) and pyridine, and followed by bromination with bromine. Copolymer was maintained in 2,6-diphenyl phenol 10 mol% and 2,6-dimethyl phenol 90 mol%. Sulfonation of BrcoPPO (S-BrcoPPO) was carried out in a chlorobenzene solvent using chlorosulfonic acid. The polymeric membranes were cast from dimethylsulfoxide solution. The membranes were studied by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. S-BrcoPPO membranes exhibited proton conductivities from 2.3 x 10{sup -3} to 1.4 x 10{sup -2} S/cm, water uptake from 7.00 to 49.43%, IEC from 0.58 to 1.38 mequiv./g, methanol permeability from 1.9 x 10{sup -7} to 3.5 x 10{sup -7} cm{sup 2}/S.

  19. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    Science.gov (United States)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  20. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  1. Recent advances in solid polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Qingqing Zhang; Kai Liu; Fei Ding; Xingjiang Liu

    2017-01-01

    Solid polymer electrolytes are light-weight,flexible,and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes.Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries.Herein,we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments.In particular,we discuss the different molecular structures of the solid polymer matrices,including polyether,polyester,polyacrylonitrile,and polysiloxane,and their interfacial compatibility with lithium,as well as the factors that govern the properties of the polymer electrolytes.The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes,and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

  2. Quantum dot doped solid polymer electrolyte for device application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pramod K.; Kim, Kang Wook; Rhee, Hee-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul 121-742 (Korea)

    2009-06-15

    ZnS capped CdSe quantum dots embedded in PEO:KI:I{sub 2} polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity ({sigma}) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve. (author)

  3. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  4. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  5. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L.; Bayoudh, S. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H. [Bollore Technologies, 29 - Quimper (France); Herlem, G. [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1996-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  6. Polymer electrolytes based on aromatic lithium sulfonyl-imide compounds; Electrolytes polymeres a base de sulfonylimidures de lithium aromatiques

    Energy Technology Data Exchange (ETDEWEB)

    Reibel, L; Bayoudh, S [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron; Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Majastre, H [Bollore Technologies, 29 - Quimper (France); Herlem, G [UFR de Sciences et Techniques, L.E.S., 25 - Besancon (France)

    1997-12-31

    This paper presents ionic conductivity results obtained with polymer electrolytes and also with propylene carbonate solutions. The domain of electrochemical activity of this salt has been determined using cycle volt-amperometry in propylene carbonate. Preliminary experiments on the stability of the polymer electrolyte with respect to the lithium electrode have been carried out for a possible subsequent use in lithium batteries. (J.S.) 4 refs.

  7. Poly(thieno[3,4–b]–1,4–oxathiane): Effect of solvent on the chemical synthesis and capacitance comparison in different electrolytes

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Mo, Daize; Ma, Xiumei; Xu, Jingkun; Zhou, Weiqiang; Jiang, Qinglin; Feng, Zilan; Xiong, Jinhua; Zhu, Danhua; Zhou, Qianjie

    2015-01-01

    Graphical abstract: The electrochemical capacitance performance of PEOTT electrode from water was comparatively investigated using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscope methods in the four solvent-electrolyte systems, i.e., H 2 O–H 2 SO 4 , H 2 O–HClO 4 , H 2 O–LiClO 4 , and ACN–LiClO 4 . The results revealed that the specific capacitance of PEOTT electrode was superior in acidic aqueous electrolytes than that in neutral pH aqueous or organic electrolyte. With these results, it is implied that PEOTT electrode employing HClO 4 aqueous electrolyte may be a promising electrode for supercapacitor applications. - Highlights: • A PEDOT sulfur analog was synthesized via chemical oxidation method firstly. • Effect of solvent on polymer structure was evaluated. • Effect of electrolyte on the capacitance performance was investigated. • PEOTT should be a promising supercapacitor material. - Abstract: Thieno[3,4-b]-1,4-oxathiane (EOTT), one asymmetrical analog of 3,4-ethylenedioxythiophene (EDOT), was synthesized and its chemical oxidative polymerization was carried out in different solvents (dichloromethane, water, and acetonitrile (CH 2 Cl 2 , H 2 O, and ACN)). The effect of the solvent on the structure, crystalline characteristic, morphology, and thermal stability of poly(thieno[3,4-b]-1,4-oxathiane) (PEOTT) were investigated by fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetry, respectively. PEOTT prepared from H 2 O exhibited higher electrical conductivity (∼10 0 S/cm) and more robust thermal stability. The electrochemical capacitance performance of PEOTT electrode in ACN–LiClO 4 was initially found dissatisfactory. Furthermore, the electrochemical properties of this electrode in another three aqueous electrolytes (H 2 SO 4 , HClO 4 , and LiClO 4 ) were also investigated comparatively by cyclic

  8. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  9. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  10. A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties

    International Nuclear Information System (INIS)

    Wang, Ailian; Xu, Hao; Zhou, Qian; Liu, Xu; Li, Zhengyao; Gao, Rui; Wu, Na; Guo, Yuguo; Li, Huayi; Zhang, Liaoyun

    2016-01-01

    Highlights: • A new hyperbranched multi-arm star polymer was successfully synthesized. • The star polymer electrolyte has good thermal stability and forming-film property. • The ion conductivity electrolyte can reach 8.3 × 10"−"5 S cm"−"1 at room temperature. • The star polymer electrolyte has wide electrochemical windows of 4.7 V. - Abstract: A new hyperbranched multi-arm star polymer with hyperbranched polystyrene (HBPS) as core and polymethyl methacrylate-block-poly(ethylene glycol) methyl ether methacrylate(PMMA-b-PPEGMA) as arms was firstly synthesized by atom transfer radical polymerization. The obtained hyperbranched multi-arm star polymer (HBPS-(PMMA-b-PPEGMA)_x) exhibited good thermal stability with a thermal decomposition temperature of 372 °C. The transparent, free-standing, flexible polymer electrolyte film of the blending of HBPS-(PMMA-b-PPEGMA)_x and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was successfully fabricated by a solution casting method. The ionic conductivity of the hyperbranched star polymer electrolyte with a molar ratio of [EO]/[Li] of 30 could reach 8.3 × 10"−"5 S cm"−"1 at 30 °C (with the content of PPEGMA of 83.7%), and 2.0 × 10"−"4 S cm"−"1 at 80 °C (with the content of PPEGMA of 51.6%). The effect of the concentration of lithium salts on ionic conductivity was also investigated. The obtained all-solid-state polymer electrolyte possessed a wide electrochemical stability window of 4.7 V (vs. Li"+/Li), and a lithium-ion transference number (t_L_i"+) up to 0.31. The interfacial impedance of the fabricated LiÔöépolymer electrolyteÔöéLi symmetric cell based on hyperbranched star multi-arm polymer electrolyte exhibited good interfacial compatibility between all-solid-state polymer electrolyte and electrodes. The excellent properties of the hyperbranched star polymer electrolyte made it attractive as solid-state polymer electrolyte for lithium-ion batteries.

  11. New Fabrication Strategies for Polymer Electrolyte Batteries

    National Research Council Canada - National Science Library

    Shriver, D

    1997-01-01

    .... The objective of this research was to fabricate lithium-polymer batteries by techniques that may produce a thin electrolyte and cathode films and with minimal contamination during fabrication. One such technique, ultrasonic spray was used. Another objective of this research was to test lithium cells that incorporate the new polymer electrolytes and polyelectrolytes.

  12. Utilization of carbon dioxide for polymer electrolytes [I]: Effect of supercritical treatment conditions on ionic conduction in amorphous polyether/salt mixtures

    International Nuclear Information System (INIS)

    Oe, Yoshiyuki; Tominaga, Yoichi

    2011-01-01

    Highlights: ► Supercritical CO 2 treatment on amorphous polyether/salt mixtures improves ionic conductivity in the dry state. ► Suitable CO 2 condition for high conductivity exists in near the critical temperature and pressure. ► Conductivity decreases only 20% after 30 days. ► Dissociation of free ClO 4 − and interactions between ether chains and Li + increase in treated electrolytes. - Abstract: Supercritical carbon dioxide (scCO 2 ) as a treatment medium has a possibility to realize excellent room temperature conductivity more than 10 −4 S/cm for polymer electrolytes in the dry state. In this study, a typical high ion-conductive polyether-based electrolyte which consists of poly-[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) and lithium perchlorate (LiClO 4 ) was used as a model sample for the scCO 2 treatment. We found the suitable scCO 2 treatment conditions (pressure, temperature and time) for high conductivity. The conductivity of sample treated at 7.5 MPa and 40 °C for 40 min was more than 100-times higher than that of original without the treatment, and the value decreased only 20% after 30 days. DSC measurement revealed that the decrease in glass transition temperature (T g ) is caused by the scCO 2 -treatment. The change of ionic association in the scCO 2 -treated samples was confirmed using FT-IR measurement. The scCO 2 treatment gave rise to increase in peak fraction of free ClO 4 − anions (620–625 cm −1 ) and peak shift of ν(C–O–C) mode to lower frequency region (1060–1070 cm −1 ) depending on ether–Li + interactions.

  13. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  14. Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes

    International Nuclear Information System (INIS)

    Guilherme, L.A.; Borges, R.S.; Moraes, E. Mara S.; Silva, G. Goulart; Pimenta, M.A.; Marletta, A.; Silva, R.A.

    2007-01-01

    The ionic conductivity and phase arrangement of solid polymeric electrolytes based on the block copolymer polyethylene-b-poly(ethylene oxide) (PE-b-PEO) and LiClO 4 have been investigated. One set of electrolytes was prepared from copolymers with 75% of PEO units and another set was based on a blend of copolymer with 50% PEO units and homopolymers. The differential scanning calorimetry (DSC) results, for electrolytes based on the copolymer with 75% of PEO units, were dominated by the PEO phase. The PEO block crystallinity dropped and the glass transition increased with salt addition due to the coordination of the cation by PEO oxygen. The conductivity for copolymers 75% PEO-based electrolyte with 15 wt% of salt was higher than 10 -5 S/cm at room temperature and reached to 10 -3 S/cm at 100 deg. C on a heating measurement. The blend of PE-b-PEO (50% PEO)/PEO/PE showed a complex thermal behavior with decoupled melting of the blocks and the homopolymers. Upon salt addition the endotherms associated with PEO domains disappeared and the PE crystals remained untouched. The conductivity results were limited at 100 deg. C to values close to 10 -4 S/cm and at room temperature values close to 3 x 10 -6 S/cm were obtained for the 15 wt% salt electrolyte. Raman study showed that the ionic association of the highly concentrated blend electrolytes at room temperature is not significant. Therefore, the lower values of conductivity in the case of the blend with 50% PEO can be assigned to the higher content of PE domains leading to a morphology with lower connectivity for ionic conduction both in the crystalline and melted state of the PE domains

  15. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  16. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  17. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  18. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  19. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  20. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  1. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  2. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  3. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  4. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  5. Composite Polymer Electrolytes: Nanoparticles Affect Structure and Properties

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-11-01

    Full Text Available Composite polymer electrolytes (CPEs can significantly improve the performance in electrochemical devices such as lithium-ion batteries. This review summarizes property/performance relationships in the case where nanoparticles are introduced to polymer electrolytes. It is the aim of this review to provide a knowledge network that elucidates the role of nano-additives in the CPEs. Central to the discussion is the impact on the CPE performance of properties such as crystalline/amorphous structure, dielectric behavior, and interactions within the CPE. The amorphous domains of semi-crystalline polymer facilitate the ion transport, while an enhanced mobility of polymer chains contributes to high ionic conductivity. Dielectric properties reflect the relaxation behavior of polymer chains as an important factor in ion conduction. Further, the dielectric constant (ε determines the capability of the polymer to dissolve salt. The atom/ion/nanoparticle interactions within CPEs suggest ways to enhance the CPE conductivity by generating more free lithium ions. Certain properties can be improved simultaneously by nanoparticle addition in order to optimize the overall performance of the electrolyte. The effects of nano-additives on thermal and mechanical properties of CPEs are also presented in order to evaluate the electrolyte competence for lithium-ion battery applications.

  6. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei

    2014-12-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene). As compared to conventional electrolytes, the redox-active electrolytes, prepared by simply adding a redox mediator to the conventional electrolyte, can significantly improve the energy storage capacity of pseudocapacitors with different conducting polymers. The results show that the specific capacitance of conducting polymer based pseudocapacitors can be increased by a factor of two by utilization of the redox-active electrolytes. In fact, this approach gives some of the highest reported specific capacitance values for electroactive conducting polymers. Moreover, our findings present a general and effective approach for the enhancement of energy storage performance of pseudocapacitors using a variety of polymeric electrode materials. © 2014 Elsevier B.V. All rights reserved.

  7. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  8. Conductivity enhancement in SiO2 doped PVA:PVDF nanocomposite polymer electrolyte by gamma ray irradiation

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.; Pandaram, P.

    2017-07-01

    Nanocomposite polymer electrolyte has been irradiated with 15 Gy Gamma rays. Exposure of gamma radiation caused scissoring and crosslinking of polymer chains thereby increasing amorphous phase of the polymer matrix because of which the ionic conductivity has been enhanced. Ionic conductivity of irradiated nanocomposite polymer electrolyte is enhanced to 9.4 × 10-4 Scm-1 at 303 K compared to un-irradiated system (σ ∼ 1.7 × 10-4 Scm-1). Temperature dependence of ionic conductivity of both un-irradiated and irradiated systems obeys VTF relation. Frequency and temperature dependence of dielectric and modulus of both systems have been analyzed. The ionic transference number of polymer electrolyte has been calculated by Wagner's polarization technique and it confirms that conducting species are predominantly due to ions in both systems.

  9. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  10. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...

  11. Application of Composite Polymer Electrolytes

    National Research Council Canada - National Science Library

    Scrosati, Bruno

    2001-01-01

    ...)PEO-based composite polymer electrolytes, by a series of specifically addressed electrochemical tests which included the determination of the conductivity and of the lithium transference number...

  12. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2005-12-01

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance. (author)

  13. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    Science.gov (United States)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  14. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  15. The effect of microwave drying on polymer electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Latham, R.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Linford, R.G. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Pynenburg, R.A.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom))

    1993-03-01

    The morphology and conductivity of polymer electrolytes based on PEO are often substantially modified by the presence of water. A number of different approaches have commonly been used to eliminate water from polymer electrolyte films. The work reported here extends our earlier investigations of the use of microwaves for the rapid drying of solvent cast polymer electrolyte films. Films of PEO[sub n]:NiBr[sub 2] and PEO[sub n]:ZnCl[sub 2] have been prepared by normal casting techniques and then studied using EXAFS, DSC and ac conductivity measurements. (orig.)

  16. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries

    Science.gov (United States)

    Chen, Shaojie; Wang, Junye; Zhang, Zhihua; Wu, Linbin; Yao, Lili; Wei, Zhenyao; Deng, Yonghong; Xie, Dongjiu; Yao, Xiayin; Xu, Xiaoxiong

    2018-05-01

    Nano-sized fillers in a polymer matrix with good distribution can play a positive role in improving polymer electrolytes in the aspects of ionic conductivity, mechanical property and electrochemical performance of Li-ion cells. Herein, polyethylene oxide (PEO)/Li3PS4 hybrid polymer electrolyte is prepared via a new in-situ approach. The ionic conductivities of the novel hybrid electrolytes with variable proportions are measured, and the optimal electrolyte of PEO-2%vol Li3PS4 presents a considerable ionic conductivity of 8.01 × 10-4 S cm-1 at 60 °C and an electrochemical window up to 5.1 V. The tests of DSC and EDXS reveal that the Li3PS4 nanoparticles with better distribution, as active fillers scattering in the PEO, exhibit a positive effect on the transference of lithium ion and electrochemical interfacial stabilities. Finally, the assembled solid-state LiFePO4/Li battery presents a decent cycling performance (80.9% retention rate after 325 cycles at 60 °C) and excellent rate capacities with 153, 143, 139 and 127 mAh g-1 at the discharging rate of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C. It is fully proved that it is an advanced strategy to preparing the new organic/inorganic hybrid electrolytes for lithium-ion batteries applications.

  17. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    Science.gov (United States)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  18. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    Science.gov (United States)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  19. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  20. Poly(vinylpyridine-co-styrene) based in situ cross-linked gel polymer electrolyte for lithium-ion polymer batteries

    International Nuclear Information System (INIS)

    Oh, Sijin; Kim, Dong Wook; Lee, Changjin; Lee, Myong-Hoon; Kang, Yongku

    2011-01-01

    A gel polymer electrolyte (GPE) was successfully prepared by means of an in situ cross-linking reaction of poly(2-vinylpyridine-co-styrene) and oligo(ethylene oxide) with epoxide functional groups at 65 °C without using a polymerization initiator. A stable gel polymer electrolyte could be obtained by adding only 1% of a polymer gelator. The ionic conductivity of the GPE containing 99 wt% of liquid electrolyte was measured to be ca. 10 −2 S/cm at the ambient temperature. The ionic conductivity of the resulting GPE was comparable to that of a pure liquid electrolyte. The electrochemical stability window of the prepared gel polymer electrolytes was measured to be 5.2 V. The test cell carried a discharge capacity of 133.2 mAh/g at 0.1 C and showed good cycling performance with negligible capacity fading after the 200th cycle, maintaining 99.5% coulombic efficiency throughout 200 cycles. The resulting gel polymer electrolyte prepared by in situ thermal cross-linking without a polymerization initiator holds promise for application to on the high power lithium-ion polymer batteries.

  1. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  2. Morphology and conductivity studies of a new solid polymer electrolyte

    Indian Academy of Sciences (India)

    Unknown

    ethylene)glycol of molecular weight 2000 and LiClO4 was prepared and characterized using XRD, IR, SEM, DSC, NMR and impedance spectroscopy techniques. XRD and IR results show the formation of the polymer–salt complex. The samples.

  3. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  4. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  5. Charge carrier dynamics in PMMA-LiClO4 based polymer electrolytes plasticized with different plasticizers

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-07-01

    We have studied the charge carrier dynamics in poly(methylmethacrylate)-LiClO4 polymer electrolytes plasticized with different plasticizers such as ethylene carbonate (EC), propylene carbonate (PC), polyethylene glycol (PEG), and dimethyl carbonate (DMC). We have measured the broadband complex conductivity spectra of these electrolytes in the frequency range of 0.01 Hz-3 GHz and in the temperature range of 203 K-363 K and analyzed the conductivity spectra in the framework of the random barrier model by taking into account the contribution of the electrode polarization observed at low frequencies and/or at high temperatures. It is observed that the temperature dependences of the ionic conductivity and relaxation time follow the Vogel-Tammann-Fulcher relation for all plasticized electrolytes. We have also performed the scaling of the conductivity spectra, which indicates that the charge carrier dynamics is almost independent of temperature and plasticizers in a limited frequency range. The existence of nearly constant loss in these electrolytes has been observed at low temperatures and/or high frequencies. We have studied the dielectric relaxation in these electrolytes using electric modulus formalism and obtained the stretched exponent and the decay function. We have observed less cooperative ion dynamics in electrolytes plasticized with DMC compared to electrolytes plasticized with EC, PC, and PEG.

  6. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao Kun [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: gaokun@hit.edu.cn; Hu Xinguo [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Yi Tingfeng [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Dai Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3} S cm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance.

  7. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    International Nuclear Information System (INIS)

    Gao Kun; Hu Xinguo; Yi Tingfeng; Dai Changsong

    2006-01-01

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF 6 -EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10 -3 S cm -1 at the DG of 42%. Compared with those containing PE separators, the LiCoO 2 -MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance

  8. PE-g-MMA polymer electrolyte membrane for lithium polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kun; Hu, Xinguo; Yi, Tingfeng; Dai, Changsong [Departments of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-10-25

    PE-g-MMA membranes with different degrees of grafting (DG) were prepared by electron beam radiation-induced graft copolymerization of methylmethacrylate (MMA) monomer onto polyethylene (PE) separator. The grafted membranes (GMs) were characterized using SEM, FTIR. The new polymer electrolytes based on GMs were prepared through immersion in a solution of LiPF{sub 6}-EC/DMC (1:1 by volume). It was found that the GMs with different DG exhibited the different uptake and retention ability of liquid electrolyte. Moreover, the ion conductivities of activated polymer electrolytes (APEs) were also found to vary with the different DG and reached a magnitude of 10{sup -3}Scm{sup -1} at the DG of 42%. Compared with those containing PE separators, the LiCoO{sub 2}-MCMB coin cells containing GMs demonstrated better cycle life and excellent rate performance. (author)

  9. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoteng Liu

    2013-12-01

    Full Text Available Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs, contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  10. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  11. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  12. Synthesis and characterizations of novel polymer electrolytes

    Science.gov (United States)

    Chanthad, Chalathorn

    end-blocks is described for the first time. The synthetic strategy involves the preparation of the telechelic fluoropolymers using a functional benzoyl peroxide initiator as the macro-chain transfer agent for subsequent RAFT polymerization of the imidazolium methacrylate monomer. As revealed in DSC, SAXS and dielectric relaxation spectroscopy (DRS) measurements, there was no microphase separation in the triblock copolymers, likely due to solubility of ionic liquid moieties in the fluoropolymer matrix. The anionic counterion has direct impact on the thermal properties, ionic conductivity and segmental dynamics of the polymers. The temperature dependence of the ionic conductivity is well described by the Vogel-Tamman-Fulcher model, suggesting that ion motion is closely coupled to segmental motion. In Chapter 4 and 5, new solid electrolytes for lithium cations have been synthesized by catalyzed hydrosilylation reaction involving hydrogen atoms of polysiloxane and polyhedral oligomeric silsesquioxane (POSS) and double bonds of vinyl tris17-bromo-3,6,9,12,15- pentaoxaheptadecan-1-ol silane. The obtained structures are based on branched or dendritic with ionic liquid-ethylene oxide oligomer. High room temperature ionic conductivities have been obtained in the range of 10-4-10-5 can be regarded as solid electrolytes. This is attributed to the high concentration of ions from ionic liquid moieties in the tripodand molecule, high segmental mobility, and high ion dissociation from ethylene oxide spacers. The influence of anion structures and lithium salts and concentration has been investigated.

  13. Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Qiujun; Song, Wei-Li; Wang, Luning; Song, Yu; Shi, Qiao; Fan, Li-Zhen

    2014-01-01

    Polymer electrolytes based on electrospun polyimide (PI) membranes are incorporated with electrolyte solution containing 1 mol L −1 LiPF 6 /ethylene carbonate/ethylmethyl carbonate/dimethyl carbonate to examine their potential application for lithium ion batteries. The as-electrospun non-woven membranes demonstrate a uniformly interconnected structure with an average fiber diameter of 800 nm. The membranes, showing superior thermal stability and flame retardant property compared to the commercial Celgard® membranes, exhibit high porosity and high uptake when activated with the liquid electrolyte. The resulting PI electrolytes (PIs) have a high ionic conductivity up to 2.0 × 10 −3 S cm −1 at 25 °C, and exhibit a high electrochemical stability potential more than 5.0 V (vs. Li/Li + ). They also possess excellent charge/discharge performance and capacity retention. The initial discharge capacities of the Li/PIs/Li 4 Ti 5 O 12 cells are 178.4, 167.4, 160.3, 148.3 and 135.9 mAh g −1 at the charge/discharge rates of 0.2 C, 1 C, 2 C, 5 C and 10 C, respectively. After 200 cycles at 5 C, a capacity around ∼146.8 mAh g −1 can be still achieved. The PI-based polymer electrolytes with strong mechanical properties and good electrochemical performance are proved to be promising electrolytes for lithium ion batteries

  14. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  15. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  16. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwin raj, S.; Sowmya, G.; Kalaiselvimary, J.; Ramesh Prabhu, M., E-mail: mkram83@gmail.com

    2016-03-15

    Highlights: • Polymer blends based on PVdF-HFP/PEO were prepared for Li-ion battery applications. • Structural and electrochemical studies were carried out on prepared electrolytes. • The electrolytes can be used as electrolyte in the possible device fabrications. - Abstract: Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2–10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 × 10{sup −4} S cm{sup −1} has been obtained for PEO (6.25)–PVdF-HFP (18.75)–LiClO{sub 4} (8)–PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM.

  17. Fuel cell electrolyte membrane with basic polymer

    Science.gov (United States)

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  18. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  19. Mechanisms of proton conductance in polymer electrolyte membranes

    DEFF Research Database (Denmark)

    Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.

    2001-01-01

    We provide a phenomenological description of proton conductance in polymer electrolyte membranes, based on contemporary views of proton transfer processes in condensed media and a model for heterogeneous polymer electrolyte membrane structure. The description combines the proton transfer events...... in a single pore with the total pore-network performance and, thereby, relates structural and kinetic characteristics of the membrane. The theory addresses specific experimentally studied issues such as the effect of the density of proton localization sites (equivalent weight) of the membrane material...

  20. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.

    Science.gov (United States)

    Baroncini, Elyse A; Stanzione, Joseph F

    2018-07-01

    Growing environmental and economic concerns as well as the uncertainty that accompanies finite petrochemical resources contributes to the increase in research and development of bio-based, renewable polymers. Concurrently, industrial and consumer demand for smaller, safer, and more flexible technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries. To incorporate the aromatic structural advantages of lignin, a highly abundant and renewable resource, into gel-polymer electrolytes, lignin-derived molecules, vanillyl alcohol and gastrodigenin are functionalized and UV-polymerized with multi-functional thiol monomers. The resulting thin, flexible, polymer films possess glass transition temperatures ranging from -42.1°C to 0.3°C and storage moduli at 25°C ranging from 1.90MPa to 10.08MPa. The crosslinked polymer films swollen with electrolyte solution impart conductivities in the range of 7.04×10 -7 to 102.73×10 -7 Scm -1 . Thiol molecular weight has the most impact on the thermo-mechanical properties of the resulting films while polymer crosslink density has the largest effect on conductivity. The conducting abilities of the bio-based gel-polymer electrolytes in this study prove the viability of lignin-derived feedstock for use in lithium-ion battery applications and reveal structurally and thermally desirable traits for future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  2. Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device

    International Nuclear Information System (INIS)

    Zhou, Rui; Pramoda, Kumari Pallathadka; Liu, Wanshuang; Zhou, Dan; Ding, Guoqiang; He, Chaobin; Leong, Yew Wei; Lu, Xuehong

    2014-01-01

    Highlights: • The well dispersed POSS-OH promotes the dissociation of both LiClO 4 and BMIM + BF 4 − . • POSS-OH significantly increases the ionic conductivity and lithium transference number. • POSS-OH containing electrolyte improves the optical contrast of electrochromic device. - Abstract: Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) and lithium salts are promising non-volatile electrolytes owing to their high ionic conductivities. However, the large cations of ILs are difficult to diffuse into solid electrodes, whereas the lithium ions in ILs tend to form anionic complexes with the IL anions, reducing the number of free lithium ions. To address these issues, octa(3-hydroxy-3-methylbutyldimethylsiloxy) polyhedral oligomeric silsesquioxane (POSS-OH), which has large specific surface area and functionality number, is incorporated into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) nanofibrous mats, and the mats are used to host LiClO 4 /1-butyl-3-methylimidazolium tetrafluoroborate (BMIM + BF 4 − ). It is found that POSS-OH can significantly increase both ionic conductivity and lithium transference number of the electrolytes owing to the Lewis acid-base interactions of POSS-OH with ClO 4 − and BF 4 − . The electrochromic device using the hybrid mat (with 5 wt% POSS-OH) loaded with LiClO 4 /BMIM + BF 4 − as the electrolyte shows significantly improved transmittance contrast and switching time, as a result of increased number of free lithium ions

  3. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  4. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    Science.gov (United States)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  5. Characterization of plasticized PMMA–LiBF4 based solid polymer ...

    Indian Academy of Sciences (India)

    Unknown

    Polymer electrolyte films prepared from poly(methyl methacrylate) and LiBF4 with different con- centrations of ... 1. Introduction. Many types of ionically conducting polymers, generally ... 2. Experimental. Thin films of PMMA–LiBF4–DBP in different mole ratios ... remains very close to that of a liquid electrolyte. It is con-.

  6. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  7. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  8. Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, Ozge; Taniguchi, Ikuo; Mayes, Anne M. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kumar, Sundeep; Shao-Horn, Yang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2007-01-01

    Conductivity hysteresis and room temperature ionic conductivities >10{sup -3}S/cm were recently reported for electrolytes prepared from blends of an amphiphilic comb copolymer, poly[2,5,8,11,14-pentaoxapentadecamethylene (5-hexadecyloxy-1,3-phenylene)] (polymer I), and a linear multiblock copolymer, poly(oligotetrahydrofuran-co-dodecamethylene) (polymer II), following thermal treatment [F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar, P.V. Wright, Electrochim. Acta 43 (2003) 1939]. To investigate the origin of these effects, polymers I and II were synthesized in this work, and the conductivity and thermal properties of the individual polymers were investigated. AC impedance measurements were conducted on I and II doped with LiBF{sub 4} or LiClO{sub 4} during gradual heating to 110{sup o}C and slow cooling to room temperature. Significant conductivity hysteresis was seen for polymer II, and was similarly observed for poly(tetrahydrofuran) (PTHF) homopolymer at equivalent doping levels. From thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and {sup 1}H NMR spectroscopy, both polymer II and PTHF were found to partially decompose to THF during heat treatment, resulting in a self-plasticizing effect on conductivity. (author)

  9. Solid polymer electrolytes based on alternating copolymers of vinyl ethers with methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate

    International Nuclear Information System (INIS)

    Itoh, Takahito; Fujita, Katsuhito; Inoue, Kentaro; Iwama, Hiroki; Kondoh, Kensaku; Uno, Takahiro; Kubo, Masataka

    2013-01-01

    Graphical abstract: - Highlights: • Synthesis of alternating copolymers of vinyl ethers and vinylene carbonate. • Preparation of polymer electrolytes based on the alternating copolymers with LiTFSI. • Structure-property relationship for alternating copolymers-based electrolytes. • Interfacial stability between polymer electrolytes with lithium metal electrode. - Abstract: Alternating copolymers (poly(1a-g-alt-VC)) of vinyl ethers with various methoxy oligo(ethyleneoxy)ethyl groups and vinylene carbonate (VC) were prepared, and the thermal and electrochemical properties of their polymer electrolytes with LiTFSI and interfacial stability between the polymer electrolyte and Li metal electrode were investigated. T g 's increased linearly with salt contents, and decreased with an increase in the chain length of methoxy oligo(ethyleneoxy)ethyl groups in the vinyl ethers at constant salt concentration. The slopes of T g vs. [Li]/[O] were identical, independent of the polymer structure. The ionic conductivities of the polymer electrolytes increased with increasing the side-chain ethyleneoxy (EO) unit length of the vinyl ether unit in the alternating copolymers, and also their temperature dependences became relatively smaller in the polymer electrolytes having longer EO units in the vinyl ethers. The highest ionic conductivity, 1.2 × 10 −4 S/cm at 30 °C, was obtained in the alternating copolymer with a side-chain EO unit length of 23.5 in the vinyl ether unit. Ion transport coupled with the segmental motion of the polymer is dominant in these polymer electrolytes. Interfacial resistance increased gradually with contact time, indicative of the formation of passivation films on the Li metal electrode. These polymer electrolytes are thermally stable and have large electrochemical windows of use

  10. Optimization of the transport and mechanical properties of polysiloxane/polyether hybrid polymer electrolytes

    International Nuclear Information System (INIS)

    Boaretto, Nicola; Horn, Theresa; Popall, Michael; Sextl, Gerhard

    2017-01-01

    In this study, the thermo-mechanical properties of networked, polysiloxane/polyether-based, hybrid polymer electrolytes are optimized with the aim of enabling room-temperature operation in lithium metal-polymer batteries. The structural parameters of the electrolytes (polyether chain length, cross-linking and salt concentration) are varied in order to get the best tradeoff between conductivity and mechanical stability. The optimized material has a conductivity close to 1.5·10 −4 S cm −1 at room temperature and a shear storage modulus of 50 kPa up to 100 °C. The effect of TiO 2 nano-particles is also studied with the results showing an overall ambiguous effect on the materials properties. Finally, one of the materials with the highest conductivity is used as electrolyte in a Li/LiFePO 4 cell. This cell has good rate capability and cyclability due to the high conductivity of the electrolyte. However, the high conductivity is reached at expense of the mechanical stability and the resulting electrolyte proves to be too weak to work as an efficient barrier against lithium dendrite growth.

  11. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  12. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J; Brack, H P; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  13. Effect of nanosized silica in poly(methyl methacrylate)-lithium bis(trifluoromethanesulfonyl)imide based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S.; Lu, Soon-Chien [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2008-12-01

    The effect of nanosized silica when incorporated in polymer electrolytes is analyzed by means of Fourier transform infrared (FTIR) spectroscopy, conductivity and thermal properties. Nanocomposite polymer electrolytes are synthesized by the dispersion of nanosized silica (SiO{sub 2}), up to 10 wt.% maximum, into a matrix formed by poly(methyl methacrylate) (PMMA) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The highest conductivity is 2.44 x 10{sup -6} S cm{sup -1} at room temperature, with 4 wt.% of silica added. The FTIR spectra show evidence of complexation between PMMA, LiTFSI and SiO{sub 2}. The addition of silica to the polymer electrolytes also improves the thermal stability and the ability to retain conductivity over time. (author)

  14. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    -off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.

  15. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    of a container that can hold a large amount of solvent and as a result possesses the ... having high value of conductivity results in polymer gel electrolytes. They are ..... the availability of free ions provided by the acid. It gene- rally reaches a ...

  16. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  17. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode

    International Nuclear Information System (INIS)

    Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Murugan, K.; Arunachalam, Prabhakarn; Arof, A.K.

    2016-01-01

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I 2 ) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C 3 N 4 /TiO 2 composite as photoanode. The g-C 3 N 4 was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C 3 N 4 /TiO 2 composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C 3 N 4 /TiO 2 composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10 −5 and 1.87×10 −4 Scm −1 respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C 3 N 4 /TiO 2 composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C 3 N 4 /TiO 2 composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C 3 N 4 /TiO 2 as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO 2 (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C 3 N 4 /TiO 2 as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs. - Graphical abstract: In this study, the g-C 3 N

  18. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  19. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  20. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  1. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  2. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  3. Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePO4 Batteries

    Directory of Open Access Journals (Sweden)

    Endah R. Dyartanti

    2018-07-01

    Full Text Available In this paper, we present the characteristics and performance of polymer electrolyte membranes (PEMs based on poly(vinylidene fluoride (PVDF. The membranes were prepared via a phase-inversion method (non-solvent-induced phase separation (NIPS. As separators for lithium battery systems, additive modified montmorillonite (MMT nano-clay served as a filler and poly(vinylpyrrolidone (PVP was used as a pore-forming agent. The membranes modified with an additive (8 wt % nano-clay and 7 wt % PVP showed an increased porosity (87% and an uptake of a large amount of electrolyte (801.69%, which generated a high level of ionic conductivity (5.61 mS cm−1 at room temperature. A graphite/PEMs/LiFePO4 coin cell CR2032 showed excellent stability in cycling performance (average discharge capacity 127 mA h g−1. Based on these results, PEMs are promising materials to be used in Polymer Electrolyte Membranes in lithium-ion batteries.

  4. Comparative study of polymer and liquid electrolytes in quantum dot sensitized solar cells

    Science.gov (United States)

    Poudyal, Uma; Wang, Wenyong

    We present the study of CdS/CdSe quantum dot sensitized solar cells (QDSSCs) in which Zn2SnO4\\ nanowires on the conductive glass are used as photoanode. The CdS/CdSe quantum dots (QDs) are deposited in the Zn2SnO4 photoanode by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. CdS is first deposited on the nanowires after which it is further coated with 5 cycles of CdSe QDs. Finally, ZnS is coated on the QDs as a passivation layer. The QD sensitized photoanode are then used to assemble a solar device with the polymer and liquid electrolytes. The Incident Photon to Current Efficiency (IPCE) spectra are obtained for the CdS/CdSe coated nanowires. Further, a stability test of these devices is performed, using the polymer and liquid electrolytes, which provides insight to determine the better working electrolyte in the CdS/CdSe QDSSCs. Department of Energy.

  5. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    Science.gov (United States)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  6. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  7. Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries

    OpenAIRE

    Sun, Bing

    2015-01-01

    Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonate...

  8. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  9. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  10. Gd2O3:Eu3+/PPO/POPOP/PS composites for digital imaging radiation detectors

    International Nuclear Information System (INIS)

    Oliveira, J.; Correia, V.; Martins, P.M.; Martins, P.; Lanceros-Mendez, S.; Rocha, J.G.

    2015-01-01

    Polymer-based scintillator composites have been produced by combining polystyrene (PS) and Gd 2 O 3 :Eu 3+ scintillator nanoparticles. Polystyrene has been used since it is a flexible and stable binder matrix, resistant to thermal and light deterioration and with suitable optical properties. Gd 2 O 3 :Eu 3+ has been selected as scintillator material due to its wide band gap, high density and visible light yield. The optical, thermal and electrical characteristics of the composites were studied as a function of filler content, together with their performance as scintillator material. Additionally 1 wt.% of 2,5-diphenyloxazole (PPO) and 0.01 wt.% of 1,4 di[2-(5phenyloxazolyl)]benzene (POPOP) were introduced in the polymer matrix in order to strongly improve light yield, i.e., the measured intensity of the output visible radiation, under X-ray irradiation. Increasing scintillator filler concentration (from 0.25 to 7.5 wt.%) increases scintillator light yield and decreases the optical transparency of the composite. The addition of PPO and POPOP strongly increased the overall transduction performance of the composite due to specific absorption and re-emission processes. It is thus shown that Gd 2 O 3 :Eu 3+ /PPO/POPOP/PS composites with 0.25 wt.% of scintillator content with fluorescence molecules are suitable for the development of innovative large-area X-ray radiation detectors with huge demand from the industries. (orig.)

  11. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  12. Polymer Gel Electrolytes Based on 49 % Methyl-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Kamisan, A.S.; Kudin, T.I.T.; Ali, A.M.M.; Yahya, M.Z.A.; Yahya, M.Z.A.

    2011-01-01

    Polymer gel electrolytes (PGEs) based on 49 % methyl-grafted natural rubber (MG49) were first prepared by dissolving ammonium triflate (NH 4 CF 3 SO 3 ) in propylene carbonate (PC) by various molar concentrations of NH 4 CF 3 SO 3 to obtain liquid electrolytes and were characterized by AC electrical impedance spectroscopy (EIS) measurements to study their conducting behaviour. The liquid electrolyte with optimum conductivity (0.7 M) was then gelled with MG49 and their conductivity was also studied. The highest conductivity of liquid electrolyte was 3.6 x 10 -3 Scm -1 and 2.9x10 -2 Scm -1 for PGEs. The molecular interactions between components of NH 4 CF 3 SO 3 , PC, and MG49 have been observed by ATR-FTIR spectroscopy study. The downshifting of C=O stretching frequency of PC from 1785 cm -1 to 1780 cm -1 and NH 4+ band from 1634 cm -1 to 1626 cm -1 that has been obtained by spectroscopic data in addition of NH 4 CF 3 SO 3 confirmed the complexation occurrence. Interaction between NH 4 CF 3 SO 3 and MG49 has also been investigated. This study is focused on the interactions between components in the PGE system and relates them with their conducting behavior. (author)

  13. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  14. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  15. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  16. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  17. Nafion and modified-Nafion membranes for polymer electrolyte fuel

    Indian Academy of Sciences (India)

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article ...

  18. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    Science.gov (United States)

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  19. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  20. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  1. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Directory of Open Access Journals (Sweden)

    Ruisi Zhang

    2015-05-01

    Full Text Available Application of gel polymer electrolytes (GPE in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol % were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  2. Synthesis and characterization of aminated perfluoro polymer electrolytes

    Science.gov (United States)

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq

  3. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  4. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  5. Influence of Polyethylene Glycol (PEG in CMC-NH4BR Based Polymer Electrolytes: Conductivity and Electrical Study

    Directory of Open Access Journals (Sweden)

    Nur Khalidah Zainuddin

    2017-04-01

    Full Text Available The present work was carried with new type and promising polymer electrolytes system by development of carboxylmethylcellulose (CMC doped NH4Br and plasticized with polyethylene glycol (PEG. The sample was successfullyprepared via solution casting with no separation phase and good mechanical properties. The electrical conductivity andthermal conductivity of CMC-NH4Br-PEG based PEs system have been measured by the electrical impedancespectroscopy method in the temperature range of 303–373 K. The highest ionic conductivity gained is 2.48 x 10-3 Scm-1at ambient temperature for sample contain with 8 wt. % PEG. It can be concluded that the plasticized is accountable forthe conductance and assist to enhancing the ionic conductivity of the CMC-NH4Br-PEG electrolyte system. The addition of PEG to the CMC-based electrolyte can enhance towards the cation mobility which is turn increases ionic conductivity. The conductivity-temperature of plasticized BdPEs system was found obeys the Arrhenius relation where the ionic conductivity increases with temperature and activation energy for the ions hopping of the highest conducting PEs system only required small value to migrate. The electrical studies show a non-Debye behaviour of BdPEs based on the analyzed data using complex permittivity, ε* and complex electrical modulus, M* of the sample at different temperature.

  6. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    Science.gov (United States)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  7. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  8. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  9. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis.

    Science.gov (United States)

    Sullivan, Michael L; Foster, Jamie L

    2013-08-15

    Studies of perennial peanut (Arachis glabrata Benth.) suggest its hay and haylage have greater levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa (Medicago sativa L.). Greater RUP can result in more efficient nitrogen utilization by ruminant animals with positive economic and environmental effects. We sought to determine whether, like red clover (Trifolium pretense L.), perennial peanut contains polyphenol oxidase (PPO) and PPO substrates that might be responsible for increased RUP. Perennial peanut extracts contain immunologically detectible PPO protein and high levels of PPO activity (>100 nkatal mg(-1) protein). Addition of caffeic acid (PPO substrate) to perennial peanut extracts depleted of endogenous substrates reduced proteolysis by 90%. Addition of phenolics prepared from perennial peanut leaves to extracts of either transgenic PPO-expressing or control (non-expressing) alfalfa showed peanut phenolics could reduce proteolysis >70% in a PPO-dependent manner. Two abundant likely PPO substrates are present in perennial peanut leaves including caftaric acid. Perennial peanut contains PPO and PPO substrates that together are capable of inhibiting post-harvest proteolysis, suggesting a possible mechanism for increased RUP in this forage. Research related to optimizing the PPO system in other forage crops will likely be applicable to perennial peanut. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  11. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium

  12. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  13. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  14. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    Science.gov (United States)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  15. Investigation of water content in electrolyte solution on electrochromic properties of WO3 thin Films

    Directory of Open Access Journals (Sweden)

    Zahra Abadi

    2017-05-01

    Full Text Available Tungsten oxide thin films were prepared by a cathodic electrodeposition method at -0.450 mV in order to investigate how water content affects their electrochromic properties. FESEM images exhibit that WO3 thin films consist of 65 nm uniform grains. Thin Films were electrochemically investigated in 0.1M LiClO4 in propylene carbonate electrolyte with and without 5vol% water content by cyclic voltammetry and chronoamperometry. The results indicate that tungsten oxide thin films exhibit faster switching time between coloration and bleaching states and also higher coloration efficiency in hydrated electrolyte.  

  16. Robust solid polymer electrolyte for conducting IPN actuators

    Science.gov (United States)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-10-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10-3 S cm-1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V.

  17. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A.; Sarrazin, C.; Fauvarque, J.F. [CNAM, 75 - Paris (France); Andrieu, X. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  18. Comparative study of polymer matrices for gelled electrolytes of lithium batteries; Etude comparative de matrices polymeres pour electrolytes gelifies de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Du Pasquier, A; Sarrazin, C; Fauvarque, J F [CNAM, 75 - Paris (France); Andrieu, X [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    A solid electrolyte for lithium batteries requires several properties: a good ionic conductivity of about 10{sup -3} S/cm at 298 deg. K, a high cationic transport number (greater than 0.5), a redox stability window higher than 4.5 V, a good stability of the interface with the lithium electrode, and a sufficient mechanical stability. The family of gelled or hybrid electrolytes seems to meet all these requirements. Thus, a systematic study of the gelling of an ethylene carbonate and lithium bistrifluorosulfonimide (LiTFSI) based electrolyte has been carried out. The polymers used for gel or pseudo-gel synthesis are POE, PMMA and PAN which represent 3 different cases of interaction with the electrolyte. All the properties mentioned above have been studied according to the nature of the polymer and to the concentration of lithium salt, showing the advantages and drawbacks of each polymer. The possibility of using some of these gels in lithium-ion batteries has been tested by lithium intercalation tests in UF2 graphite at the C/10 regime and by the cycling of LiCoO{sub 2}/UF{sub 2} batteries at the C/5 regime. Interesting performances have been obtained on Li/PPy batteries which can operate at the 7.5 C regime. (J.S.)

  19. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  20. Phthaloylchitosan-Based Gel Polymer Electrolytes for Efficient Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    S. N. F. Yusuf

    2014-01-01

    Full Text Available Phthaloylchitosan-based gel polymer electrolytes were prepared with tetrapropylammonium iodide, Pr4NI, as the salt and optimized for conductivity. The electrolyte with the composition of 15.7 wt.% phthaloylchitosan, 31.7 wt.% ethylene carbonate (EC, 3.17 wt.% propylene carbonate (PC, 19.0 wt.% of Pr4NI, and 1.9 wt.% iodine exhibits the highest room temperature ionic conductivity of 5.27 × 10−3 S cm−1. The dye-sensitized solar cell (DSSC fabricated with this electrolyte exhibits an efficiency of 3.5% with JSC of 7.38 mA cm−2, VOC of 0.72 V, and fill factor of 0.66. When various amounts of lithium iodide (LiI were added to the optimized gel electrolyte, the overall conductivity is observed to decrease. However, the efficiency of the DSSC increases to a maximum value of 3.71% when salt ratio of Pr4NI : LiI is 2 : 1. This cell has JSC, VOC and fill factor of 7.25 mA cm−2, 0.77 V and 0.67, respectively.

  1. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  2. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  3. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  4. LiFePO4/polymer/natural graphite: low cost Li-ion batteries

    International Nuclear Information System (INIS)

    Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M

    2004-01-01

    The aging and performance of natural graphite/PEO-based gel electrolyte/LiFePO 4 cells are reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite anode in gel electrolyte containing LiBF4-EC/GBL exhibited high reversible capacity (345 mAh/g) and high coulombic efficiency (91%). The LiFePO 4 cathode in the same gel-polymer exhibited a reversible capacity of 160 mAh/g and 93% coulombic efficiency. Better performance was obtained at high-rate discharge with 6% carbon additive in the cathode, however the graphite anode performance suffers at high rate. The Li-ion gel polymer battery shows a capacity fade of 13% after 180 cycles and has poor performance at low temperature due to low diffusion of the lithium to the graphite in the GBL system. The LiFePO 4 /gel/Li system has an excellent rate capacity. LiFePO 4 cathode material is suitable for HEV application

  5. A novel and high-effective redox-mediated gel polymer electrolyte for supercapacitor

    International Nuclear Information System (INIS)

    Ma, Guofu; Feng, Enke; Sun, Kanjun; Peng, Hui; Li, Jiajia; Lei, Ziqiang

    2014-01-01

    Graphical abstract: - Highlights: • Alkali and P-phenylenediamine doped polyvinyl alcohol gel electrolyte is prepared. • The PVA-KOH-PPD gel electrolyte can also be used as separator. • The introduction of PPD increases the ionic conductivity of electrolyte. • The supercapacitor exhibits flexible and high energy density. - Abstract: A supercapacitor utilize a novel redox-mediated gel polymer (PVA-KOH-PPD) as electrolyte and separator, and activated carbon as electrodes is assembled. The PVA-KOH-PPD gel polymer as potential electrolyte for supercapacitor is investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. It is found that the supercapacitor exhibits high ionic conductivity (25 mS cm −1 ), large electrode specific capacitance (611 F g −1 ) and high energy density (82.56 Wh kg −1 ). The high performance is attributed to the addition of quick redox reactions at the electrolyte|electrode interface as PPD undergoes a two-proton/two-electron reduction and oxidation during cycling. Furthermore, the supercapacitor with PVA-KOH-PPD gel polymer shows excellent charge-discharge stability, after 1000 charge-discharge cycles, the supercapacitor still retains a high electrode specific capacitance of 470 F g −1 . It is believed that the idea using redox mediator has a good prospect for improving the performances of supercapacitors

  6. A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Imperiyka, M., E-mail: imperiyka@gmail.com [Faculty of Arts and Sciences, Kufra Campus, University of Benghazi, Al Kufrah (Libya); Ahmad, A.; Hanifah, S.A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bella, F. [Center for Space Human Robotics @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Department of Applied Science and Technology – DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-10-01

    The effects of LiClO{sub 4} and LiFS{sub 3}SO{sub 3} on poly(glycidyl methacrylate)-based solid polymer electrolyte and its photoelectrochemical performance in a dye sensitized solar cell consisting of FTO/TiO{sub 2}–dye/P(GMA)–LiClO{sub 4}–EC/Pt were investigated. The electrochemical stability of films was studied by cyclic voltammetry (CV). The highest ionic conductivities obtained were 4.2×10{sup −5} and 3.7×10{sup −6} S cm{sup −1} for the film containing 30 wt% LiClO{sub 4} and 25 wt% LiCF{sub 3}SO{sub 3}, respectively. The polymer electrolytes showed electrochemical stability windows up to 3 V and 2.8 V for LiClO{sub 4} and LiCF{sub 3}SO{sub 3}, respectively. The assembled dye-sensitized solar cell showed a sunlight conversion efficiency of 0.679% (J{sub sc}=3 mA cm{sup −2}, V{sub oc}=0.48 V and FF=0.47), under light intensity of 100 mW cm{sup −2}.

  7. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  8. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Senthil, R.A.; Theerthagiri, J. [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Madhavan, J., E-mail: jagan.madhavan@gmail.com [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Murugan, K. [Department of Zoology, Bharathiar University, Coimbatore 641046 (India); Arunachalam, Prabhakarn [Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Arof, A.K. [Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-10-15

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a

  9. Robust solid polymer electrolyte for conducting IPN actuators

    International Nuclear Information System (INIS)

    Festin, Nicolas; Maziz, Ali; Plesse, Cédric; Teyssié, Dominique; Chevrot, Claude; Vidal, Frédéric

    2013-01-01

    Interpenetrating polymer networks (IPNs) based on nitrile butadiene rubber (NBR) as first component and poly(ethylene oxide) (PEO) as second component were synthesized and used as a solid polymer electrolyte film in the design of a mechanically robust conducting IPN actuator. IPN mechanical properties and morphologies were mainly investigated by dynamic mechanical analysis and transmission electron microscopy. For 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) swollen IPNs, conductivity values are close to 1 × 10 −3 S cm −1 at 25 ° C. Conducting IPN actuators have been synthesized by chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) within the PEO/NBR IPN. A pseudo-trilayer configuration has been obtained with PEO/NBR IPN sandwiched between two interpenetrated PEDOT electrodes. The robust conducting IPN actuators showed a free strain of 2.4% and a blocking force of 30 mN for a low applied potential of ±2 V. (paper)

  10. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  11. End-functional silicone coupling agent modified PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte DSSC

    International Nuclear Information System (INIS)

    Zhang Jing; Yang Ying; Wu Sujuan; Xu Sheng; Zhou Conghua; Hu Hao; Chen Bolei; Xiong Xiaodong; Sebo, Bobby; Han Hongwei; Zhao Xingzhong

    2008-01-01

    The end-functional silicone coupling agent (dodecyl-trimethoxysilane, DTMS for short) was used to modify the PEO/P(VDF-HFP)/SiO 2 nanocomposite polymer electrolyte (CPE) and the different amounts of DTMS modification effects were studied. The experiments showed the silicone coupling agent with hydrophobic alkyl chains (-C 12 H 25 ) chemically engineered on the SiO 2 nanoparticles, and formed a Si-O-Si cross-linked network in the new nanocomposite polymer electrolyte. Proper content of DTMS modified CPE exhibited improved ionic conductivity and the connection with the photoanode and counter electrode. However, much higher content of the DTMS modification changed the conformation of the polymer network and reduced the ionic movement. Compared with the performance (3.84%) of the original DSSC, the DSSC with functional silicone coupling agent modified CPE (DTMS:SiO 2 = 2:1, mol ratio) exhibited improved J sc (7.94 mA cm -2 ), V oc (0.624 V) and optimal efficiency (5.2%) (measured at AM1.5, light intensity of 58.4 mW cm -2 ). The V oc of the silicone coupling agent modified polymer electrolyte DSSC is obviously improved, which is mainly due to that the hydrophobic alkyl chain end groups formed an insulating layer that retarded the electron recombination at the TiO 2 nanoporous photoanode/polymer electrolyte interface. The DTMS:SiO 2 = 2:1 modified CPE type DSSC exhibited a performance of 6.42% at a light intensity of 32.1 mW cm -2 and 4.94% at 99.2 mW cm -2

  12. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  13. Dielectric spectroscopy of PMMA-LiClO4 based polymer electrolyte plasticized with ethylene carbonate EC

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2018-04-01

    Dielectric spectroscopy covering the frequency range 0.01 Hz - 2 MHz for PMMA-LiClO4 based polymer electrolyte embedded with different concentration of ethylene carbonate (x = 0, 20 and 40 wt%) has been analyzed using Havrilliak-Negami formalism. The reciprocal temperature dependence of inverse relaxation time obtained from the analysis of dielectric spectra follows Vogel-Tammann-Fulcher behaviour. The shape parameters obtained from this analysis change with ethylene carbonate concentrations. From the fits of the experimental result using Kohlrausch-Williams-Watts function. We have obtained stretched exponent β which indicates that the relaxation is highly non-exponential. The decay function obtained from electric modulus data is highly asymmetric.

  14. Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field

    International Nuclear Information System (INIS)

    Kovarsky, R.; Golodnitsky, D.; Peled, E.; Khatun, S.; Stallworth, P.E.; Greenbaum, S.; Greenbaum, A.

    2011-01-01

    Highlights: ► Ordering of polymer electrolytes under applied magnetic field. ► Positive effect of nanosize ferromagnetic filler. ► Structure-ion conductivity interrelationship. - Abstract: We recently presented a procedure for orienting the polyethylene-oxide (PEO) helices in a direction perpendicular to the film plane by casting the polymer electrolytes (PE) under a magnetic field (MF). Here we study the influence of magnetic fields of different strengths and configurations on the structural properties and ionic conductivity of concentrated LiCF 3 SO 3 (LiTf) and LiAsF 6 :P(EO) pristine and composite polymer electrolytes containing γ-Fe 2 O 3 nanoparticles. Some data of LiI:P(EO) system are shown for comparison. We suggest that the effect of type of salt (LiI, LiTf and LiAsF 6 ) on the structure–conductivity relationship of the polymer electrolytes cast under magnetic field is closely connected to the crystallinity of the PEO–LiX system. It was found that the higher the content of the crystalline phase and the size of spherulites in the typically cast salt-polymer system, the stronger the influence of the magnetic field on the conductivity enhancement when the electrolyte is cast and dried under MF. Casting of the PE from a high-dielectric-constant solvent results in disentanglement of the PEO chains, which facilitates even more the perpendicular orientation of helices under applied MF. The enhancement of ionic conductivity was appreciably higher in the PEs cast under strong NdFeB magnets than under SmCo. Both bulk (intrachain) and grain-boundary conductivities increase when a MF is applied, but the improvement in the grain-boundary conductivity – associated with ion-hopping between polymer chains – is more pronounced. For LiAsF 6 :(PEO) 3 at 65 °C, the interchain conductivity increased by a factor of 75, while the intrachain conductivity increased by a factor of 11–14. At room temperature, the SEI resistance of these PEs, cast under NdFeB HMF

  15. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  16. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  17. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  18. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  19. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  20. How a gel polymer electrolyte affects performance of lithium/sulfur batteries

    International Nuclear Information System (INIS)

    Zhang, Sheng S.; Tran, Dat T.

    2013-01-01

    Highlights: •Conventional separator is coated with a 50PEO-50SiO 2 (wt.%) composite layer. •Composite coating increases tensile strength and electrolyte wettability. •Coated separator offers an alternative approach for making gel polymer Li/S battery. •Li/S battery takes benefits of gel polymer electrolyte at the expense of capacity. -- Abstract: Gel polymer electrolyte (GPE) and composite gel polymer electrolyte (CGPE) have been widely employed to improve the safety and cycling performance of rechargeable lithium and lithium-ion batteries. In order to determine whether this approach is applicable to lithium/sulfur (Li/S) battery, we examine the effect of CGPE on the cycling and storage performances of Li/S cells by comparing a 50PEO-50SiO 2 (wt.%) composite coated separator (C-separator) with a pristine separator (P-separator). Results show that the composite coating significantly enhances the wettability of liquid electrolyte on the separator and that resulting CGPE can tightly glue the separator and electrode together. In comparison with the P-separator, the C-separator offers Li/S cells similar capacity retention and rate capability; however it greatly affects the specific capacity of sulfur. The analysis on the impedance spectrum of a lithium polysulfide (PS) solution reveal that the reduction of sulfur specific capacity is due to the high viscosity of the CGPE and the strong adsorption of SiO 2 filler to the PS species, which trap PS species in the separator and hence reduce the utilization of sulfur active material. Therefore, the benefits of the GPE and CGPE to the Li/S batteries can be taken only at the expense of sulfur specific capacity

  1. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  2. Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chin-Shen; Teoh, K.H.; Liew, Chiam-Wen; Ramesh, S., E-mail: rameshtsubra@gmail.com

    2014-01-15

    Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO{sub 4})-nanosized titania (TiO{sub 2}) doped polymer electrolyte have been fabricated. Incorporation of TiO{sub 2} into PVA–LiClO{sub 4} system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10{sup −4} S cm{sup −1} is achieved at ambient temperature upon inclusion of 8 wt.% of TiO{sub 2}. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO{sub 2} into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g{sup −1} compared to non-composite polymer electrolyte with capacitance value of 3.0 F g{sup −1} in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC. - Highlights: • PVA–LiClO{sub 4}–TiO{sub 2} possesses ionic conductivity value of 1.30 × 10{sup −4} S cm{sup −1}. • CV indicates the electrochemical stability window in the range of −2.3 V to 2.3 V. • The EDLC gives specific capacitance value of 12.5 F g{sup −1}.

  3. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries

    Science.gov (United States)

    Cheruvally, Gouri; Kim, Jae-Kwang; Choi, Jae-Won; Ahn, Jou-Hyeon; Shin, Yong-Jo; Manuel, James; Raghavan, Prasanth; Kim, Ki-Won; Ahn, Hyo-Jun; Choi, Doo Seong; Song, Choong Eui

    A new class of polymer electrolytes (PEs) based on an electrospun polymer membrane incorporating a room-temperature ionic liquid (RTIL) has been prepared and evaluated for suitability in lithium cells. The electrospun poly(vinylidene fluoride- co-hexafluoropropylene) P(VdF-HFP) membrane is activated with a 0.5 M solution of LiTFSI in 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) or a 0.5 M solution of LiBF 4 in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF 4). The resulting PEs have an ionic conductivity of 2.3 × 10 -3 S cm -1 at 25 °C and anodic stability at >4.5 V versus Li +/Li, making them suitable for practical applications in lithium cells. A Li/LiFePO 4 cell with a PE based on BMITFSI delivers high discharge capacities when evaluated at 25 °C at the 0.1 C rate (149 mAh g -1) and the 0.5 C rate (132 mAh g -1). A very stable cycle performance is also exhibited at these low current densities. The properties decrease at the higher, 1 C rate, when operated at 25 °C. Nevertheless, improved properties are obtained at a moderately elevated temperature of operation, i.e. 40 °C. This is attributed to enhanced conductivity of the electrolyte and faster reaction kinetics at higher temperatures. At 40 °C, a reversible capacity of 140 mAh g -1 is obtained at the 1 C rate.

  4. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  5. Preferred Provider Organization (PPO) Plans

    Science.gov (United States)

    ... Find & compare doctors, hospitals, & other providers Preferred Provider Organization (PPO) Plans How PPO Plans Work A Medicare ... extra for these benefits. Related Resources Health Maintenance Organization (HMO) Private Fee-for-Service (PFFS) Special Needs ...

  6. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  7. Hybrid capacitor with activated carbon electrode, Ni(OH) 2 electrode and polymer hydrogel electrolyte

    Science.gov (United States)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Sugoh, Nozomu; Iwasaki, Hideharu; Iwakura, Chiaki

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH) 2 positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities.

  8. Permeability and Selectivity of PPO/Graphene Composites as Mixed Matrix Membranes for CO2 Capture and Gas Separation

    Directory of Open Access Journals (Sweden)

    Riccardo Rea

    2018-01-01

    Full Text Available We fabricated novel composite (mixed matrix membranes based on a permeable glassy polymer, Poly(2,6-dimethyl-1,4-phenylene oxide (PPO, and variable loadings of few-layer graphene, to test their potential in gas separation and CO2 capture applications. The permeability, selectivity and diffusivity of different gases as a function of graphene loading, from 0.3 to 15 wt %, was measured at 35 and 65 °C. Samples with small loadings of graphene show a higher permeability and He/CO2 selectivity than pure PPO, due to a favorable effect of the nanofillers on the polymer morphology. Higher amounts of graphene lower the permeability of the polymer, due to the prevailing effect of increased tortuosity of the gas molecules in the membrane. Graphene also allows dramatically reducing the increase of permeability with temperature, acting as a “stabilizer” for the polymer matrix. Such effect reduces the temperature-induced loss of size-selectivity for He/N2 and CO2/N2, and enhances the temperature-induced increase of selectivity for He/CO2. The study confirms that, as observed in the case of other graphene-based mixed matrix glassy membranes, the optimal concentration of graphene in the polymer is below 1 wt %. Below such threshold, the morphology of the nanoscopic filler added in solution affects positively the glassy chains packing, enhancing permeability and selectivity, and improving the selectivity of the membrane at increasing temperatures. These results suggest that small additions of graphene to polymers can enhance their permselectivity and stabilize their properties.

  9. A Polymer Electrolyte for Dye-Sensitized Solar Cells Based on a Poly(Polyvinylidenefluoride-Co-Hexafluoropropylene)/Hydroxypropyl Methyl Cellulose Blend

    Science.gov (United States)

    Won, Lee Ji; Kim, Jae Hong; Thogiti, Suresh

    2018-03-01

    A novel polymer blend electrolyte for dye-sensitized solar cells (DSSCs) was synthesized by quasi-solidifying a liquid-based electrolyte containing an iodide/triiodide redox couple and supporting salts with a mixture of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and indigenous hydroxypropyl methyl cellulose (HPMC). A high ionic conductivity of 8.8 × 10-4 S cm-1 was achieved after introducing 5 wt% of HPMC with respect to the weight of PVDH-HFP. DSSCs were fabricated using gel polymer blend electrolytes, and the J-V characteristics of the fabricated devices were analyzed. Under optimal conditions, the photovoltaic conversion efficiency of cells with the novel HPMC-blended gel electrolyte (5.34%) was significantly greater than that of cells without HPMC (3.97%).

  10. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  11. Comparing Triflate and Hexafluorophosphate Anions of Ionic Liquids in Polymer Electrolytes for Supercapacitor Applications

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2014-05-01

    Full Text Available Two different ionic liquid-based biopolymer electrolyte systems were prepared using a solution casting technique. Corn starch and lithium hexafluorophosphate (LiPF6 were employed as polymer and salt, respectively. Additionally, two different counteranions of ionic liquids, viz. 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6 and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (also known as 1-butyl-3-methylimidazolium triflate (BmImTf were used and studied in this present work. The maximum ionic conductivities of (1.47 ± 0.02 × 10−4 and (3.21 ± 0.01 × 10−4 S∙cm−1 were achieved with adulteration of 50 wt% of BmImPF6 and 80 wt% of BmImTf, respectively at ambient temperature. Activated carbon-based electrodes were prepared and used in supercapacitor fabrication. Supercapacitors were then assembled using the most conducting polymer electrolyte from each system. The electrochemical properties of the supercapacitors were then analyzed. The supercapacitor containing the triflate-based biopolymer electrolyte depicted a higher specific capacitance with a wider electrochemical stability window compared to that of the hexafluorophosphate system.

  12. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  13. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    Science.gov (United States)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  14. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Chiappone, A.; Gerbaldi, C.; Ijeri, Vijaykumar S.; Zeno, E.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.

    2011-01-01

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  15. Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

    DEFF Research Database (Denmark)

    Aili, David; Wright, Andrew G.; Kraglund, Mikkel Rykær

    2017-01-01

    Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer...... stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0-50 wt% aqueous KOH for more than 6 months at 88 degrees C. In water electrolysis tests using porous 3...

  16. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    Science.gov (United States)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  17. Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Rasten, Egil

    2001-10-01

    Development and optimization of the electrodes in a water electrolysis system using a polymer membrane as electrolyte have been carried out in this work. A cell voltage of 1.59 V (energy consumption of about 3.8 kWh/Nm{sub 3} H{sub 2}) has been obtained at practical operation conditions of the electrolysis cell (10 kA . m2, 90{sup o}C) using a total noble metal loading of less than 2.4 mg.cm{sub 2} and a Nafion -115 membrane. It is further shown that a cell voltage of less than 1.5 V is possible at the same conditions by combination of the best electrodes obtained in this work. The most important limitation of the electrolysis system using polymer membrane as electrolyte has proven to be the electrical conductivity of the catalysts due to the porous backing/current collector system, which increases the length of the current path and decreases the cross section compared to the apparent one. A careful compromise must therefore be obtained between electrical conductivity and active surface area, which can be tailored by preparation and annealing conditions of the metal oxide catalysts. Anode catalysts of different properties have been developed. The mixed oxide of Ir-Ta (85 mole% Ir) was found to exhibit highest voltage efficiency at a current density of 10 kA.m{sub 2} or below, whereas the mixed oxide of Ir and Ru (60-80 mole% Ir) was found to give the highest voltage efficiency for current densities of above 10 kA.m{sub 2}. Pt on carbon particles, was found to be less suitable as cathode catalyst in water electrolysis. The large carbon particles introduced an unnecessary porosity into the catalytic layer, which resulted in a high ohmic drop. Much better voltage efficiency was obtained by using Pt-black as cathode catalyst, which showed a far better electrical conductivity. Ru-oxide as cathode catalyst in water electrolysis systems using a polymer electrolyte was not found to be of particular interest due to insufficient electrochemical activity and too low

  18. Ionic liquids in a poly ethylene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor

    Science.gov (United States)

    Chaudoy, V.; Tran Van, F.; Deschamps, M.; Ghamouss, F.

    2017-02-01

    In the present work, we developed a gel polymer electrolyte via the incorporation of a room temperature ionic liquid into a cross-linked polymer matrix. The cross-linked gel electrolyte was prepared using a free radical polymerization of methacrylate and dimethacrylate oligomers dissolved in 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide. Combining the advantages of the ionic liquids and of conventional polymers, the cross-linked gel polymer electrolyte was used both as a separator and as an electrolyte for a leakage-free and non-flammable EDLC supercapacitor. The quasi-all solid-state supercapacitors showed rather good capacitance, power and energy densities by comparison to a liquid electrolyte-based EDLC.

  19. Assimilation of NH₄Br in Polyvinyl Alcohol/Poly(N-vinyl pyrrolidone) Polymer Blend-Based Electrolyte and Its Effect on Ionic Conductivity.

    Science.gov (United States)

    Parameswaran, V; Nallamuthu, N; Devendran, P; Manikandan, A; Nagarajan, E R

    2018-06-01

    Biodegradable polymer blend electrolyte based on ammonium based salt in variation composition consisting of PVA:PVP were prepared by using solution casting technique. The obtained films have been analyzed by various technical methods like as XRD, FT-IR, TG-DSC, SEM analysis and impedance spectroscopy. The XRD and FT-IR analysis exposed the amorphous nature and structural properties of the complex formation between PVA/PVP/NH4Br. Impedance spectroscopy analysis revealed the ionic conductivity and the dielectric properties of PVA/PVP/NH4Br polymer blend electrolyte films. The maximum ionic conductivity was determined to be 6.14 × 10-5 Scm-1 for the composition of 50%PVA: 50%PVP: 10% NH4Br with low activation energy 0.3457 eV at room temperature. Solid state battery is fabricated using highest ionic conducting polymer blend as electrolyte with the configuration Zn/ZnSO4 · 7H2O (anode) ∥ 50%PVA: 50%PVP: 10% NH4Br ∥ Mn2O3 (cathode). The observed open circuit voltage is 1.2 V and its performance has been studied.

  20. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  1. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lin

    2014-01-01

    Full Text Available In this paper, a new application of an electro-active-polymer for a radio frequency (RF switch is presented. We used an ionic polymer metallic composite (IPMC switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4 was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  2. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  3. Luminescent Polymer Electrolyte Composites Using Silica Coated-Y2O3:Eu as Fillers

    Directory of Open Access Journals (Sweden)

    Mikrajuddin Abdullah

    2003-05-01

    Full Text Available Luminescent polymer electrolyte composites composed of silica coated Y2O3:Eu in polyethylene glycol (PEG matrix has been produced by initially synthesizing silica coated Y2O3:Eu and mixing with polyethylene glycol in a lithium salt solution. High luminescence intensity at round 600 nm contributed by electron transitions in Eu3+ (5D0 -> 7F0, 5D0 -> 7F1, and 5D0 -> 7F3 transitions were observed. The measured electrical conductivity was comparable to that reported for polymer electrolyte composites prepared using passive fillers (non luminescent. This approach is therefore promising for production of high intensity luminescent polymer electrolyte composites for use in development of hybrid battery/display.

  4. Studies on AC Electrical Conductivity of CdCl2 Doped PVA Polymer Electrolyte

    Directory of Open Access Journals (Sweden)

    M. B. Nanda Prakash

    2013-01-01

    Full Text Available PVA-based polymer electrolytes were prepared with various concentrations of CdCl2 using solvent casting method. Prepared polymer films were investigated using line profile analysis employing X-ray diffraction (XRD data. XRD results show that the crystallite size decreases and then increases with increase in CdCl2. AC conductivity in these polymer increases films first and then decreases. These observations are in agreement with XRD results. The highest ionic conductivity of 1.68E − 08 Scm−1 was observed in 4% of CdCl2 in PVA polymer blend. Crystallite ellipsoids for different concentrations of CdCl2 are computed here using whole pattern powder fitting (WPPF indicating that crystallite area decreases with increase in the ionic conductivity.

  5. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  6. Hybrid capacitor with activated carbon electrode, Ni(OH){sub 2} electrode and polymer hydrogel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, Shinji; Asahina, Toshihide; Wada, Hajime; Furukawa, Naoji; Inoue, Hiroshi; Iwakura, Chiaki [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan); Sugoh, Nozomu; Iwasaki, Hideharu [Kurashiki Research Laboratory, Kuraray Co., Ltd., 2045-1 Sakazu, Kurashiki, Okayama 710-8691 (Japan)

    2006-06-19

    A new hybrid capacitor (HC) cell was assembled using an activated carbon (AC) negative electrode, an Ni(OH){sub 2} positive electrode and a polymer hydrogel electrolyte prepared from crosslinked potassium poly(acrylate) (PAAK) and KOH aqueous solution. The HC cell was characterized compared with an electric double layer capacitor (EDLC) using two AC electrodes and the polymer hydrogel electrolyte. It was found that the HC cell successfully worked in the larger voltage range and exhibited ca. 2.4 times higher capacitance than the EDLC cell. High-rate dischargeability of the HC cell was also superior to that of the EDLC cell. These improved characteristics strongly suggest that the HC cell can be a promising system of capacitors with high energy and power densities. (author)

  7. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  8. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  9. Conjugated polymer energy level shifts in lithium-ion battery electrolytes.

    Science.gov (United States)

    Song, Charles Kiseok; Eckstein, Brian J; Tam, Teck Lip Dexter; Trahey, Lynn; Marks, Tobin J

    2014-11-12

    The ionization potentials (IPs) and electron affinities (EAs) of widely used conjugated polymers are evaluated by cyclic voltammetry (CV) in conventional electrochemical and lithium-ion battery media, and also by ultraviolet photoelectron spectroscopy (UPS) in vacuo. By comparing the data obtained in the different systems, it is found that the IPs of the conjugated polymer films determined by conventional CV (IPC) can be correlated with UPS-measured HOMO energy levels (EH,UPS) by the relationship EH,UPS = (1.14 ± 0.23) × qIPC + (4.62 ± 0.10) eV, where q is the electron charge. It is also found that the EAs of the conjugated polymer films measured via CV in conventional (EAC) and Li(+) battery (EAB) media can be linearly correlated by the relationship EAB = (1.07 ± 0.13) × EAC + (2.84 ± 0.22) V. The slopes and intercepts of these equations can be correlated with the dielectric constants of the polymer film environments and the redox potentials of the reference electrodes, as modified by the surrounding electrolyte, respectively.

  10. Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Suppiah, Raja Rajeswary [Chemical Engineering Program, Universiti Teknologi Petronas, Bandar Seri Iskandar, 37150 Tronoh, Perak (Malaysia); Dahlan, Khairul Zaman Mohd [Malaysian Institute for Nuclear Technology Research, Bangi, 43000 Kajang (Malaysia)

    2004-07-30

    Polymer electrolyte membranes with different degrees of grafting were prepared by radiation-induced graft copolymerization of styrene monomer onto poly(vinylidene fluoride) (PVDF) films and subsequent chemical activation with liquid electrolyte consisting of lithium hexafluorophosphate (LiPF{sub 6}) in a mixture of ethylene carbonate/diethylene carbonate (EC/DEC). The chemical changes in the PVDF films after styrene grafting and subsequent chemical activation were monitored by FTIR spectroscopic analysis and the crystallinity was evaluated using differential scanning calorimetric (DSC) analysis. The swelling in electrolyte solution (electrolyte uptake) and the ionic conductivity of the membranes were determined at various degrees of grafting. The conductivity of the membranes was found to increase with the increase in the degree of grafting and reached a magnitude of 10{sup -3} S/cm at a degree of grafting of 50%. The results of this work suggest that radiation-induced graft polymerization provides an alternative method to substitute blending in preparation of polymer electrolyte membranes for application in lithium batteries.

  11. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  12. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  13. Proton-conducting polymer electrolytes based on methacrylates

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Velická, Jana; Míka, M.

    2008-01-01

    Roč. 53, č. 26 (2008), s. 7769-7774 ISSN 0013-4686 R&D Projects: GA ČR GA106/04/1279; GA AV ČR KJB400320701; GA MŠk LC523; GA ČR(CZ) GA104/06/1471 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * proton conductivity * phosporic acid Subject RIV: CA - Inorganic Chemistry Impact factor: 3.078, year: 2008

  14. Development of the sulphonated poly(2,6-Dimethyl-1,4-Phenylene Oxide) membranes for proton exchange membranes fuel cells

    International Nuclear Information System (INIS)

    Ebrasu, Daniela; Petreanu, Irina; Iordache, Ioan; Stefanescu, Ioan; Gaspar, Costinela-Laura; Militaru, Daniela

    2008-01-01

    Full text: Fuel cells have the potential to become an important energy conversion technology. Research efforts directed toward the widespread commercialization of fuel cells have accelerated the developing of new types of Proton Exchange Membranes (also termed 'polymer electrolyte membranes') (PEM). Common issues critical to all high performance proton exchange membranes include: - high protonic conductivity; - low electronic conductivity; - low permeability to fuel and oxidant; - low water transport through diffusion and electro-osmosis; - oxidative and hydrolytic stability; - good mechanical properties in both the dry and hydrated states; - cost; and capability for fabrication into Membrane Electrode Assemblies (MEAs). In this sense we choose to use poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) as basis for development of new PEM membranes. The membranes were prepared by lamination from solution (Doctor Balde) method in controlled atmosphere (preliminary vacuum 0.003 Torr and/or nitrogen). FTIR spectra of the sulphonated polymers prove the sulphonic groups presence according the literature. Ionic exchange capacity (IEC) have the values 1.15-3.6 meq/g. TGA-DSC analysis put in evidence the thermal degradation of the sulphonated polymers at about 120 deg. C. These properties of the sulphonated PPO are in accordance of the requirements for PEM membranes and indicate that this polymer is suitable for PEM Fuel cells. (authors)

  15. Can Biochemistry Usefully Guide the Search for Better Polymer Electrolytes?

    Directory of Open Access Journals (Sweden)

    J. Woods Halley

    2013-09-01

    Full Text Available I review some considerations that suggest that the biochemical products of evolution may provide hints concerning the way forward for the development of better electrolytes for lithium polymer batteries.

  16. Ion Transport and Structure in Polymer Electrolytes with Applications in Lithium Batteries

    Science.gov (United States)

    Chintapalli, Mahati

    When mixed with lithium salts, polymers that contain more than one chemical group, such as block copolymers and endgroup-functionalized polymers, are promising electrolyte materials for next-generation lithium batteries. One chemical group can provide good ion solvation and transport properties, while the other chemical group can provide secondary properties that improve the performance characteristics of the battery. Secondary properties of interest include non-flammability for safer lithium ion batteries and high mechanical modulus for dendrite resistance in high energy density lithium metal batteries. Block copolymers and other materials with multiple chemical groups tend to exhibit nanoscale heterogeneity and can undergo microphase separation, which impacts the ion transport properties. In block copolymers that microphase separate, ordered self-assembled structures occur on longer length scales. Understanding the interplay between structure at different length scales, salt concentration, and ion transport is important for improving the performance of multifunctional polymer electrolytes. In this dissertation, two electrolyte materials are characterized: mixtures of endgroup-functionalized, short chain perfluoropolyethers (PFPEs) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, and mixtures of polystyrene-block-poly(ethylene oxide) (PS- b-PEO; SEO) and LiTFSI. The PFPE/LiTFSI electrolytes are liquids in which the PFPE backbone provides non-flammability, and the endgroups resemble small molecules that solvate ions. In these electrolytes, the ion transport properties and nanoscale heterogeneity (length scale 1 nm) are characterized as a function of endgroup using electrochemical techniques, nuclear magnetic resonance spectroscopy, and wide angle X-ray scattering. Endgroups, especially those containing PEO segments, have a large impact on ionic conductivity, in part because the salt distribution is not homogenous; we find that salt partitions

  17. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Lidan Fan

    2018-04-01

    Full Text Available Natural bamboo charcoal (BC powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA-based alkaline solid polymer electrolyte (ASPE by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC impedance method, and the highest conductivity value of 6.63 × 10−2 S·cm−1 was obtained with 16 wt % of BC content and mKOH:mPVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g−1.

  18. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal.

    Science.gov (United States)

    Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang

    2018-04-26

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .

  19. Polymer electrolytes: an investigation of some poly (N-propylaziridine)/lithium salt compositions

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K R; Golder, A J; Knight, J

    1984-04-01

    Poly (N-propylaziridine)/lithium salt compositions were synthesized and their electrical conductivities were measured to assess their suitability as electrolytes in safe, leakproof, high energy-density lithium batteries operating at ambient temperature. The effects on conductivity of temperature, and the nature and concentration of the salt were studied. The salts markedly improve conductivity of the compositions over that of the undoped polymer but they are insufficiently conducting to be considered as battery electrolytes, due possibly to ion pairing. Their creep resistance is also low. Less fluid compositions containing higher molecular weight polymers better able to promote ion separation are more suitable. (ESA)

  20. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes

    Science.gov (United States)

    Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat

    2018-03-01

    We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.

  1. Hydrogen production by steam reforming methanol for polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Amphlett, J.C.; Creber, K.A.M.; Davis, J.M.; Mann, R.F.; Peppley, B.A.; Stokes, D.M.

    1993-01-01

    Catalytic steam reforming of methanol has been studied as a means of generating hydrogen for a polymer electrolyte membrane fuel cell. A semi-empirical model of the kinetics of the catalytic steam reforming of methanol over Cu O/Zn O/Al 2 O 3 catalyst has been developed. This model is able to predict the performance of the reformer with respect to the various parameters important in developing an integrated reformer-polymer fuel cell system. A set of sample calculations of reformer temperature and CO production are given. The impact of the performance of the reformer catalyst on the design of the overall fuel cell power system is discussed. The selectivity of the catalyst to minimize CO content in the fuel gas is shown to be more critical than was previously believed. 4 figs., 4 tabs., 11 refs

  2. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  3. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  4. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  5. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    OpenAIRE

    Lidan Fan; Mengyue Wang; Zhen Zhang; Gang Qin; Xiaoyi Hu; Qiang Chen

    2018-01-01

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside a...

  6. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F N; Tsukada, A; Haas, O; Scherer, G G [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  7. Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit

    International Nuclear Information System (INIS)

    Arof, A.K.; Kufian, M.Z.; Syukur, M.F.; Aziz, M.F.; Abdelrahman, A.E.; Majid, S.R.

    2012-01-01

    Poly(methyl methacrylate), PMMA based gel polymer electrolytes (GPE) containing immobilized lithium bis(oxalato)borate, C 4 BO 8 Li or LiBOB dissolved in a propylene carbonate–ethylene carbonate binary solvent were prepared by heating the cast solution between 70 and 80 °C for 20 min. The electrolyte composition with 5 wt.% PMMA exhibited the highest conductivity of 3.27 and 7.46 mS cm −1 at 298 and 343 K respectively. Cyclic voltammetry studies on the GPE containing 15 wt.% PMMA and 85 wt.% (0.6 M LiBOB) dissolved in equal weight of ethylene and propylene carbonates showed that the electrochemical potential stability window of the electrolyte lies in the range between −1.7 to +1.7 V. Linear sweep voltammetry indicates the gel polymer electrolyte is stable up to 1.7 V. The electrical double layer capacitor (EDLC) using the highest conducting GPE and activated carbon derived from shells of the mata kucing (Dimocarpus longan) fruit has capacitance of ∼685 mF g −1 on the first cycle. The EDLC performance was also characterized using cyclic voltammetry and charge–discharge processes at constant current.

  8. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  9. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  10. A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries

    International Nuclear Information System (INIS)

    Kimura, Kento; Matsumoto, Hidetoshi; Hassoun, Jusef; Panero, Stefania; Scrosati, Bruno; Tominaga, Yoichi

    2015-01-01

    Highlights: • A quaternary PEC-LiTFSI-Pyr 14 TFSI-Silica fiber electrolyte was prepared by a solvent casting method. • Both electrochemical and mechanical properties were improved by the presence of the Silica fiber. • The electrolyte showed a t Li+ value of 0.36 with an anodic stability extended up to 4.5 V vs. Li/Li + . • A prototype Li/LiFePO 4 polymer cell delivered a discharge capacity of about 100 mAh g −1 (75 °C, C/15). - Abstract: Poly(ethylene carbonate) (PEC) is known as an alternating copolymer derived from carbon dioxide (CO 2 ) and an epoxide as monomers. Here, we describe a new quaternary PEC-based composite electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr 14 TFSI) ionic liquid, and an electrospun silica (SiO 2 ) fiber (SiF) with a submicron diameter in view of its possible applications in solid-state Li polymer batteries. A free-standing electrolyte membrane is prepared by a solvent casting method. The Pyr 14 TFSI ionic liquid enhances the ionic conductivity of the electrolyte as a result of its plasticizing effect. The electrochemical properties, such as ionic conductivity and Li transference number (t Li+ ), as well as mechanical strength of the electrolyte, are further improved by the SiF. We show that the quaternary electrolyte has a conductivity of the order of 10 −7 S cm −1 at ambient temperature and a high t Li+ value of 0.36 with an excellent flexibility. A prototype Li polymer cell using LiFePO 4 as a cathode material is assembled and tested. We demonstrate that this battery delivers a reversible charge-discharge capacity close to 100 mAh g −1 at 75 °C and C/15 rate. We believe that this work may pave the road to utilize CO 2 as a carbon source for highly-demanded, functional battery materials in future

  11. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  12. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  13. Polymer stability and function for electrolyte and mixed conductor applications

    Science.gov (United States)

    Hammond, Paula; Davis, Nicole; Liu, David; Amanchukwu, Chibueze; Lewis, Nate; Shao-Horn, Yang

    2015-03-01

    Polymers exhibit a number of attractive properties as solid state electrolytes for electrochemical energy devices, including the light weight, flexibility, low cost and adaptive transport properties that polymeric materials can exhibit. For a number of applications, mixed ionic and electronic conducting materials are of interest to achieve transport of electrons and holes or ions within an electrode or at the electrode-electrolyte interface (e.g. aqueous batteries, solar water splitting, lithium battery electrode). Using layer-by-layer assembly, a mode of alternating adsorption of charged or complementary hydrogen bonding group, we can design composite thin films that contain bicontinuous networks of electronically and ionically conducting polymers. We have found that manipulation of salt concentration and the use of divalent ions during assembly can significantly enhance the number of free acid anions available for ion hopping. Unfortunately, for certain electrochemical applications, polymer stability is a true challenge. In separate studies, we have been investigating macromolecular systems that may provide acceptable ion transport properties, but withstand the harsh oxidative environment of lithium air systems. An investigation of different polymeric materials commonly examined for electrochemical applications provides insight into polymer design for these kinds of environments. NSF Center for Chemical Innovation, NDSEG Fellowship and Samsung Corporation.

  14. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  15. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbona...

  16. A rechargeable Li-CO{sub 2} battery with a gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao; Guo, Ziyang; Yang, Bingchang; Liu, Yao; Wang, Yonggang; Xia, Yongyao [Dept. of Chemistry and Shanghai Key Lab. of Molecular Catalysis and Innovative Materials, Inst. of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan Univ. (China)

    2017-07-24

    The utilization of CO{sub 2} in Li-CO{sub 2} batteries is attracting extensive attention. However, the poor rechargeability and low applied current density have remained the Achilles' heel of this energy device. The gel polymer electrolyte (GPE), which is composed of a polymer matrix filled with tetraglyme-based liquid electrolyte, was used to fabricate a rechargeable Li-CO{sub 2} battery with a carbon nanotube-based gas electrode. The discharge product of Li{sub 2}CO{sub 3} formed in the GPE-based Li-CO{sub 2} battery exhibits a particle-shaped morphology with poor crystallinity, which is different from the contiguous polymer-like and crystalline discharge product in conventional Li-CO{sub 2} battery using a liquid electrolyte. Accordingly, the GPE-based battery shows much improved electrochemical performance. The achieved cycle life (60 cycles) and rate capability (maximum applied current density of 500 mA g{sup -1}) are much higher than most of previous reports, which points a new way to develop high-performance Li-CO{sub 2} batteries. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. In situ atomic force microscopy in the study of electrogeneration of polybithiophene on Pt electrode

    International Nuclear Information System (INIS)

    Innocenti, M.; Loglio, F.; Pigani, L.; Seeber, R.; Terzi, F.; Udisti, R.

    2005-01-01

    Electrochemical AFM technique has been used for the in situ study of the electrogeneration-deposition process of polybithiophene at varying the polymerisation conditions, such as supporting electrolyte, i.e., LiClO 4 or tetrabutylammonium hexafluorophosphate, and polymerisation procedure, i.e., either potentiostatic or potentiodynamic method. In order to better follow the evolution of the morphology of the deposit, particularly during the early stages of the polymer film growth, a suitable home-made electrochemical cell has been used

  18. Non-precious electrocatalysts for polymer electrolyte fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chung, H.T.; Zelenay, P. [Los Alamos National Laboratory, Los Alamos, NM (United States). Materials Physics and Applications

    2009-07-01

    This study investigated the feasibility of reducing the high cost of polymer electrolyte fuel cell stacks by using non-precious catalysts for the oxygen reduction reaction (ORR). Most research interest has focused on ORR catalysts based on heat-treated precursors of transition metals, nitrogen and carbon. While initial ORR activity of such catalysts has improved in recent years, it is not sufficient for automotive use. The long-term stability of these catalysts is also insufficient. The activity and durability of the catalysts must be improved significantly in order to overcome these limitations. In addition, innovative electrode structures must be developed to allow for operation with thick catalyst layers. The ORR reaction mechanism must also be well understood in terms of the active reaction site. This presentation summarized non-precious ORR catalysis research at Los Alamos, with particular focus on catalysts obtained by heat treatment of polymers (such as polyaniline) on high-surface-area carbon in the presence of transition metals, cobalt and iron. These heat-treated catalysts achieve respectable ORR activity and improved stability in both aqueous and polymer electrolytes. Electrochemical and non-electrochemical techniques such as XPS, XANES and XAFS were used to examine the source of ORR activity of these heat-treated catalysts.

  19. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  20. Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells

    OpenAIRE

    Xing, Wei; Wu, Zucheng; Tao, Shanwen

    2016-01-01

    Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or cathode catalysts. Mesoporous Pt-based metals have been synthesized as anode catalysts with improved a...

  1. Solid polymer composite electrolytes for PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, S M.J.; Mikhailenko, S D; Kaliaguine, S

    1998-07-01

    Composite electrolyte membranes for fuel cell technology were prepared from solid state proton conductors and polymer binders. The polymers were partially sulfonated and non-sulfonated polysulfone (PS), porous polyetherimide (PEI) and polymethylmethacrylate (PMMA). As proton conductors H-chabazite, tungstophosphoric acid and its Na-salt and non-stoichiometric boron phosphate were employed. All membranes prepared using sulfonated PS as a binder with sulfonation degree higher than 50% were found to be mechanically unstable. They possess however reasonably high conductivity up to 6{times}10{sup {minus}3} S/cm. Introducing the tungstophosphoric acid (TPA) into the nonsulfonated porous PS makes possible to obtain strong and flexible membranes with s=4{times}10{sup {minus}3} S/cm, while use of boron phosphate in that case results in the conductivity of about 10{sup {minus}5} S/cm. Porous PEI impregnated with aqueous solution of TPA retains its original tensile strength and exhibited the conductivity s=2{times}10{sup {minus}4} S/cm. It however fell to 3{times}10{sup {minus}5} S/cm when the binder was modified with 2% of propionic acid, which caused a decrease in polymer pore size. Incorporation of the sodium acid salt of TPA into PEI allows one to obtain a composite with reasonably good mechanical properties and a conductivity of ca 10{sup {minus}5} S/cm for membranes prepared by the cast method. Using the phase inversion technique for preparation of the membranes of the same composition makes possible to increase their conductivity up to 10{sup {minus}4} S/cm. When boron phosphate was used in lieu of TPA salt the conductivity obtained is still higher reaching 3{times}10{sup {minus}5} and 3{times}10{sup {minus}4} S/cm for membranes prepared by cast and phase inversion techniques respectively. The PMMA based membranes were mechanically stable even when a solid content reached 55wt.%. Among PMMA membranes the highest conductivity of 10{sup {minus}3} S/cm was registered for

  2. Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties

    International Nuclear Information System (INIS)

    Chilaka, Naresh; Ghosh, Sutapa

    2012-01-01

    Highlights: ► Semi IPN composite of PEG-PU/PMMA with different wt% of rutile TiO 2 is synthesized. ► Formation of nanocomposite is confirmed by SEM, XRD and IR spectroscopic analysis. ► DSC and TGA confirmed the enhanced thermal stability of the composite. ► Composite with 18 wt% rutile TiO 2 is found to be the best conducting material. - Abstract: A series of lithium electrolyte materials based on hybrid of semi Inter penetrating Polymer Network of [poly(ethylene glycol)-polyurethane-polymethylmethacrylate] [60:40] and TiO 2 nanofibers is described. TiO 2 nanofibers are made by simple solvothermal procedure. Rutile phase of TiO 2 and its fibrous morphology are confirmed by X-ray diffraction pattern and scanning electron microscopy image respectively. Semi Inter penetrating Polymer Network of polyethylene glycol-polyurethane/polymethylmethacrylate with LiClO 4 and its nanocomposite with different weight percent of TiO 2 nano fibers have been synthesized. The formation of Inter penetrating Polymer Network and its amorphous nature are confirmed by Fourier transform infrared spectra, X-ray diffraction pattern and differential scanning calorimetry results. Thermo gravimetric analysis shows enhanced thermal stability of the composite compared to the semi Inter penetrating Polymer Network system. The electrical characterizations of the nanocomposites are done by current–voltage (I–V) measurements and impedance spectroscopy. These results confirm that incorporation of TiO 2 nanofibers by 18% enhances the conductivity of the Inter penetrating Polymer Network system by ten times . The nanoscale structure of the inorganic material is found to be responsible for the bulk properties of the system, especially those that differ from the properties of similar, pure salt-in-polymer electrolytes. Further differential scanning calorimetry, scanning electron microscopy and impedance data confirm the presence of two polymeric phases in the semi Inter penetrating Polymer

  3. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  4. Enzymatically-Catalyzed Polymerization (ECP)- Derived Polymer Electrolyte for Rechargeable Li-Ion Batteries

    National Research Council Canada - National Science Library

    Chua, David

    1998-01-01

    Report developed under SBIR contract covers the syntheses and electrochemical characterizations of novel polymer electrolytes derived from compounds synthesized via enzyme-catalyzed polymerization(ECP) techniques...

  5. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  6. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  7. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  8. Effect of Structure on Physical Properties of Polymers.

    Science.gov (United States)

    1979-12-31

    PORT NUMBE . J ! 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER OSRT R’.-8 00 7 5 0 4_7_5_ Effecc of Structure on Physical Properties of -Final...Compatibility of Fluorosubstituted Styrene Polymers with PPO and PS. R. Vukovic , F.E. Karasz, W.J. MacKnight, (in press). (6) Compatibility of Ortho- and Para...fluorostyrene Copolymers with PPO and PS. R. Vukovic , F.E. Karasz, W.J. MacKnight, (in press). (7) Partial Miscibility in the System Poly (para

  9. A Review on the Fabrication of Electrospun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hazlina Junoh

    2015-01-01

    Full Text Available Proton exchange membrane (PEM is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R&D on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC. However, most of the R&Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electrospinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nanoscale. There has been a huge development on fabricating electrolyte nanocomposite membrane, regardless of the effect of electrospun nanocomposite membrane on the fuel cell’s performance. In this present paper, issues regarding the R&D on electrospun sulfonated poly (ether ether ketone (SPEEK/inorganic nanocomposite fiber are addressed.

  10. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    Directory of Open Access Journals (Sweden)

    Celik Muhammet

    2016-01-01

    Full Text Available A polybenzimidazole (PBI based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS, operate at higher temperatures (120-200°C than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  11. A general approach toward enhancement of pseudocapacitive performance of conducting polymers by redox-active electrolytes

    KAUST Repository

    Chen, Wei; Xia, Chuan; Baby, Rakhi Raghavan; Alshareef, Husam N.

    2014-01-01

    A general approach is demonstrated where the pseudocapacitive performance of different conducting polymers is enhanced in redox-active electrolytes. The concept is demonstrated using several electroactive conducting polymers, including polyaniline

  12. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Science.gov (United States)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki; Yamamoto, Osamu

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M n(CF 3SO 3) n] and their preliminary applications to primary cells. The Celgard® membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffman, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard® #3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5×10 -4 S cm -1 at 12 mol% for LiCF 3SO 3, 1.7×10 -4 S cm -1 at 1 mol% for Mg(CF 3SO 3) 2, and 2.1×10 -4 S cm -1 at 4 mol% for Zn(CF 3SO 3) 2 system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, Li|LiCF 3SO 3-SPE+Celgard® #3401|(CH 3) 4NI 5+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm 2.

  13. Compliant gel polymer electrolyte based on poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexible lithium-ion batteries

    International Nuclear Information System (INIS)

    Ma, Xianguo; Huang, Xinglan; Gao, Jiandong; Zhang, Shu; Deng, Zhenghua; Suo, Jishuan

    2014-01-01

    Highlights: •Compliant gel polymer electrolyte based on P(MA-co-AN)/PVA is facilely prepared for flexible lithium-ion batteries. •The compliant gel polymer electrolyte displays high ionic conductivity, self-standing and mechanical flexible. •The compliant gel polymer electrolyte exhibits excellent chemical and electrochemical performances. -- Abstract: In this report, mechanically compliant gel polymer electrolyte (GPE) for flexible lithium-ion batteries is facilely fabricated. The GPE that based on the poly(methyl acrylate-co-acrylonitrile)/poly(vinyl alcohol) (P(MA-co-AN)/PVA) was prepared via emulsion polymerization. Herein, the P(MA-co-AN) copolymer is anticipated to exert beneficial for the bendability of the GPE, as well as swollen with the liquid electrolyte to provide a facile pathway for ion movement. The PVA serves as a stabilizer during the emulsion polymerization and a mechanical framework for the compliant polymer membrane. Performance benefits of the mechanically compliant membrane are elucidated in terms of mechanical behavior, thermostability and ionic conductivity. The GPE is still self-standing and mechanical flexible after swollen with liquid electrolyte. The GPE displays a conductivity of 0.98 mS cm −1 with the uptake electrolyte up to 150% of its own weight at 30 °C, excellent electrochemical stability window (5.2 V vs. Li/Li + ) and favorable interfacial characteristics. When used in flexible lithium-ion batteries, such a GPE demonstrates satisfactory compatibility with LiCoO 2 and graphite electrodes

  14. Effect of salt species on electrochemical properties of gel-type polymer electrolyte based on chemically crosslinking rubber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kab Youl; Jo, Nam Ju [Pusan National Univ., Busan (Korea). Dept. of Polymer Science and Engineering; Chung, Won Sub [Pusan National Univ., Busan (Korea). School of Materials Science and Engineering

    2004-11-30

    In our study, for ion-polymer interaction in gel-type polymer electrolyte (GPE), two kinds of ions were used. GPE systems were composed of Mg or Li salt, organic solvent ({gamma}-BL), and polymer matrix prepared by chemical crosslinking of NBR with poly(ethylene glycol) methylethermethacrylate (PEGMEM) having polar group (--CH{sub 2}--CH{sub 2}--O--) in the side chain of monomer. GPE consisting of Li{sup +} ion had higher ionic conductivity than that of Mg{sup 2+} ion at below 100 wt.% of electrolyte content (1 M salt/{gamma}-BL). On the other hand, GPE consisting of Mg{sup 2+} ion had higher ionic conductivity than that consisting of Li{sup +} ion at over 120 wt.% of electrolyte content (1 M salt/{gamma}-BL). The maximum liquid electrolyte content was 200 wt.% for all GPE systems. And the highest ionic conductivity of 3.3 x 10{sup -2} S cm{sup -1} was achieved for the case of Mg{sup 2+}-GPE with 200 wt.% of liquid electrolyte contents at 20 C. The interaction between ionic species and polymer matrix in GPE was investigated by using Fourier transform infrared spectroscopy (FT-IR). Also, cyclic voltammogram of Mg{sup 2+}-GPE confirmed the electrochemical property of divalent cation with two electron-transfer reactions.

  15. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  16. Polymer Electrolyte Membranes for Water Photo-Electrolysis

    Science.gov (United States)

    Aricò, Antonino S.; Girolamo, Mariarita; Siracusano, Stefania; Sebastian, David; Baglio, Vincenzo; Schuster, Michael

    2017-01-01

    Water-fed photo-electrolysis cells equipped with perfluorosulfonic acid (Nafion® 115) and quaternary ammonium-based (Fumatech® FAA3) ion exchange membranes as separator for hydrogen and oxygen evolution reactions were investigated. Protonic or anionic ionomer dispersions were deposited on the electrodes to extend the interface with the electrolyte. The photo-anode consisted of a large band-gap Ti-oxide semiconductor. The effect of membrane characteristics on the photo-electrochemical conversion of solar energy was investigated for photo-voltage-driven electrolysis cells. Photo-electrolysis cells were also studied for operation under electrical bias-assisted mode. The pH of the membrane/ionomer had a paramount effect on the photo-electrolytic conversion. The anionic membrane showed enhanced performance compared to the Nafion®-based cell when just TiO2 anatase was used as photo-anode. This was associated with better oxygen evolution kinetics in alkaline conditions compared to acidic environment. However, oxygen evolution kinetics in acidic conditions were significantly enhanced by using a Ti sub-oxide as surface promoter in order to facilitate the adsorption of OH species as precursors of oxygen evolution. However, the same surface promoter appeared to inhibit oxygen evolution in an alkaline environment probably as a consequence of the strong adsorption of OH species on the surface under such conditions. These results show that a proper combination of photo-anode and polymer electrolyte membrane is essential to maximize photo-electrolytic conversion. PMID:28468242

  17. Novel Ceramic Materials for Polymer Electrolyte Membrane Water Electrolysers' Anodes

    DEFF Research Database (Denmark)

    Polonsky, J.; Bouzek, K.; Prag, Carsten Brorson

    2012-01-01

    Tantalum carbide was evaluated as a possible new support for the IrO2 for use in anodes of polymer electrolyte membrane water electrolysers. A series of supported electrocatalysts varying in mass content of iridium oxide was prepared. XRD, powder conductivity measurements and cyclic and linear...

  18. A combined theoretical and experimental investigation about the influence of the dopant in the anionic electropolymerization of α-tetrathiophene

    International Nuclear Information System (INIS)

    Aleman, Carlos; Oliver, Ramon; Brillas, Enric; Casanovas, Jordi; Estrany, Francesc

    2005-01-01

    This work presents an experimental and theoretical investigation about the influence of the dopant in the electropolymerization of α-tetrathiophene. Adherent, insoluble, and black polymeric films were obtained in the presence of LiClO 4 , while no evidence about the formation of polymer was detected with LiCl and LiBr electrolytes. On the other hand, quantum mechanical calculations based on the density functional theory were performed on 1:1 charge-transfer complexes formed by α-tetrathiophene and X = ClO 4 , Cl or Br. The consistency between experimental and theoretical results is discussed

  19. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  20. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  1. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, K., E-mail: kesavanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Mathew, Chithra M. [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Ulaganathan, M. [Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637 553 (Singapore)

    2014-05-01

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for PEO(90 wt%)/PVP(10 wt%)/LiClO{sub 4}(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO{sub 4}) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for 8 wt% of LiClO{sub 4} based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO{sub 4}(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm.

  2. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  3. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties

    International Nuclear Information System (INIS)

    Leones, Rita; Sentanin, Franciani; Nunes, Sílvia Cristina; Esperança, José M.S.S.; Gonçalves, Maria Cristina

    2015-01-01

    New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C 2 mim][C n SO 3 ], [C 2 mim][C n SO 4 ] and [C 2 mim][diC n PO 4 ]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes SPE membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10 −4 S cm −1 and a wide electrochemical window of ∼ 4.0 V.

  4. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Science.gov (United States)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  5. Dye-sensitized solar cells and solar module using polymer electrolytes: Stability and performance investigations

    Directory of Open Access Journals (Sweden)

    Jilian Nei de Freitas

    2006-01-01

    Full Text Available We present recent results on solid-state dye-sensitized solar cell research using a polymer electrolyte based on a poly(ethylene oxide derivative. The stability and performance of the devices have been improved by a modification in the method of assembly of the cells and by the addition of plasticizers in the electrolyte. After 30 days of solar irradiation (100 mW cm-2 no changes in the cell's efficiency were observed using this new method. The effect of the active area size on cell performance and the first results obtained for the first solar module composed of 4.5 cm2 solid-state solar cells are also presented.

  6. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    Science.gov (United States)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  7. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  8. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  9. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    Science.gov (United States)

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  10. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Liew, Chiam-Wen; Morris, Ezra; Durairaj, R.

    2010-01-01

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T g ) and melting temperature (T m ) decreased, whereas the decomposition temperature (T d ) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  11. The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3.

    Science.gov (United States)

    Jóźwiak, Tomasz; Filipkowska, Urszula; Szymczyk, Paula; Kuczajowska-Zadrożna, Małgorzata; Mielcarek, Artur

    2017-11-01

    A hydrogel chitosan sorbent ionically cross-linked with sodium citrate and covalently cross-linked with epichlorohydrin was used to remove nutrients from an equimolar mixture of P-PO 4 , N-NO 2 and N-NO 3 . The scope of the study included, among other things, determination of the influence of pH on nutrient sorption effectiveness, nutrient sorption kinetics as well as determination of the maximum sorption capacity of cross-linked chitosan sorbents regarding P-PO 4 (H 2 PO 4 - , HPO 4 2- ), N-NO 2 (HNO 2 , NO 2 - ), and N-NO 3 (NO 3 - ). The effect of the type of the cross-linking agent on the affinity of the modified chitosan to each nutrient was studied as well. The kinetics of nutrient sorption on the tested chitosan sorbents was best described with the pseudo-second order model. The model of intramolecular diffusion showed that P-PO 4 , N-NO 2 and N-NO3 sorption on cross-linked hydrogel chitosan beads proceeded in two phases. The best sorbent of nutrients turned out to be chitosan cross-linked covalently with epichlorohydrin; with P-PO 4 , N-NO 2 and N-NO 3 sorption capacity reaching: 1.23, 0.94 and 0.76mmol/g, respectively (total of 2.92mmol/g). For comparison, the sorption capacity of chitosan cross-linked ionically with sodium citrate was: 0.43, 0.39 and 0.39mmol/g for P-PO 4 , N-NO 2 and N-NO 3 , respectively (total of 1.21mmol/g). Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    Science.gov (United States)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  13. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-01-01

    ) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order...... with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect...

  14. C60 and Sc3N@C80(TMB-PPO derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Ashli R. Toles

    2016-07-01

    Full Text Available Numerous functionalization methods have been employed to increase the solubility, and therefore, the processability of fullerenes in composite structures, and of these radical addition reactions continue to be an important methodology. C60 and Sc3N@C80 derivatives were prepared via radical addition of the photodecomposition products from the commercial photoinitiator TMB-PPO, yielding C60(TMB-PPO5 and Sc3N@C80(TMB-PPO3 as preferred soluble derivatives obtained in high yields. Characterization of the mixture of isomers using standard techniques suggests an overall 1PPO:6TMB ratio of addends, reflecting the increased reactivity of the carbon radical. Although, a higher percentage of PPO is observed in the Sc3N@C80(TMB-PPO3 population, perhaps due to reverse electronic requirements of the substrate. Visually dispersed thiol-ene nanocomposites with low extractables were prepared using two monomer compositions (PETMP:TTT and TMPMP:TMPDE with increasing fullerene derivative loading to probe network structure-property relationships. Thermal stability of the derivatives and the resulting networks decreased with increased functionality and at high fullerene loadings, respectively. TMPMP:TMPDE composite networks show well-dispersed derivatives via TEM imaging, and increasing Tg’s with fullerene loading, as expected for the incorporation of a more rigid network component. PETMP:TTT composites show phase separation in TEM, which is supported by the observed Tg’s. Singlet oxygen generation of the derivatives decreases with increased functionality; however, this is compensated for by the tremendous increase in solubility in organic solvents and miscibility with monomers. Most importantly, singlet oxygen generation from the composites increased with fullerene derivative loading, with good photostability of the networks.

  15. A Review on the Fabrication of Electro spun Polymer Electrolyte Membrane for Direct Methanol Fuel Cell

    International Nuclear Information System (INIS)

    Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Junoh, H.; Jaafar, J.; Norddin, M.N.A.M.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Yusof, N.; Salleh, W.N.W.; Hamid Ilbeygi, H.

    2014-01-01

    Proton exchange membrane (PEM) is an electrolyte which behaves as important indicator for fuel cell’s performance. Research and development (R and D) on fabrication of desirable PEM have burgeoned year by year, especially for direct methanol fuel cell (DMFC). However, most of the R and Ds only focus on the parent polymer electrolyte rather than polymer inorganic composites. This might be due to the difficulties faced in producing good dispersion of inorganic filler within the polymer matrix, which would consequently reduce the DMFC’s performance. Electro spinning is a promising technique to cater for this arising problem owing to its more widespread dispersion of inorganic filler within the polymer matrix, which can reduce the size of the filler up to nano scale. There has been a huge development on fabricating electrolyte nano composite membrane, regardless of the effect of electro spun nano composite membrane on the fuel cell’s performance. In this present paper, issues regarding the R and D on electro spun sulfonated poly (ether ether ketone) (SPEEK)/inorganic nano composite fiber are addressed.

  16. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  17. Development of Gel Polymer Electrolytes Using Radiation for Lithium Secondary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Ki; Lee, Jun Young; Lee, Dong Jin [KAIST, Daejeon (Korea, Republic of)

    2010-05-15

    Recently, demands of high performance lithium battery are increased. Development of battery materials for high power, high capacity, high safety are also needed. This project deals with the new gel polymer electrolyte based on the microporous matrix with specific functions using radiation techniques.

  18. Mass transport aspects of polymer electrolyte fuel cells under two-phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D.

    2007-03-15

    This well-illustrated, comprehensive dissertation by Dr. Ing. Denis Kramer takes an in-depth look at polymer electrolyte fuel cells (PEFC) and the possibilities for their application. First of all, the operating principles of polymer electrolyte fuel cells are described and discussed, whereby thermodynamics aspects and loss mechanisms are examined. The mass transport diagnostics made with respect to the function of the cells are discussed. Field flow geometry, gas diffusion layers and, amongst other things, liquid distribution, the influence of flow direction and the low-frequency behaviour of air-fed PEFCs are discussed. Direct methanol fuel cells are examined, as are the materials chosen. The documentation includes comprehensive mathematical and graphical representations of the mechanisms involved.

  19. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy R and D field. First year report. R and D of new composite polymer electrolyte for battery; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki consortium energy kenkyu kaihatsu bun'ya. Denchiyo shinki fukugo polymer kei denkaishitsu no kenkyu kaihatsu (dai 1 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of new composite polymer electrolyte for Li secondary battery. The ultimate target of the development using this electrolyte is to get Li secondary battery markedly improved in safety/reliability which works at low temperature and controls thermal runaway. The composite polymer base electrolyte is composed of high molecular weight polyethylene oxide copolymer, ethylene oxide oligomer and Li salt, and it is finally cross-linked by heat or light. Studies were made in the following 6 fields: 1) R and D of the creation and optimization of new composite polymer electrolyte; 2) R and D of the commercialization of composite polymer electrolyte battery; 3) R and D on the safety of composite polymer electrolyte; 4) study of the synthesis of new electrolyte and catalytic activity of electrolyte-electrode interface; 5) R and D on polymer/oligomer composite electrolyte; and 6) comprehensive investigational research. (NEDO)

  20. Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, Fannie, E-mail: fannie.alloin@lepmi.grenoble-inp.f [LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); D' Aprea, Alessandra [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); LEPMI, Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, Grenoble-INP-UJF-CNRS, UMR 5631, BP 75, 38041 Grenoble Cedex 9 (France); Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Kissi, Nadia El [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France); Dufresne, Alain [Ecole Internationale du Papier, de la communication imprimee et des Biomateriaux, PAGORA- Grenoble-INP, BP 65, 38402 Saint Martin d' Heres Cedex (France); Bossard, Frederic [Laboratoire de Rheologie, Grenoble-INP-UJF, UMR 5520, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-07-15

    Nanocomposite polymer electrolytes composed of high molecular weight poly(oxyethylene) PEO as a matrix, LiTFSI as lithium salt and ramie, cotton and sisal whiskers with high aspect ratio and sisal microfibrils (MF), as reinforcing phase were prepared by casting-evaporation. The morphology of the composite electrolytes was investigated by scanning electron microscopy and their thermal behavior (characteristic temperatures, degradation temperature) were investigated by thermogravimetric analysis and differential scanning calorimetry. Nanocomposite electrolytes based on PEO reinforced by whiskers and MF sisal exhibited very high mechanical performance with a storage modulus of 160 MPa at high temperature. A weak decrease of the ionic conductivity was observed with the incorporation of 6 wt% of whiskers. The addition of microfibrils involved a larger decrease of the conductivity. This difference may be associated to the more restricted PEO mobility due to the addition of entangled nanofibers.

  1. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition

    International Nuclear Information System (INIS)

    Park, Heesung

    2014-01-01

    Highlights: • GDM played significant role in the PEFC performance under dry condition. • Hydrophobicity of GDM affect the water condensation at the surface. • Optimum water saturation in the porous layer was between 0.1 and 0.3. - Abstract: Water is a significant component of polymer electrolyte fuel cells, affecting the proton conductivity in the membrane electrolyte. Therefore, polymer electrolyte fuel cells are generally operated with a humidifier to maintain a high relative humidity of the supplied gases; however, the humidifier contributes additional weight and cost. Although many studies have attempted to develop polymer electrolyte fuel cells without a humidifier, the studies have been mainly focused on the self-humidified membrane electrolyte and catalyst layer. In this paper, the author investigates the effect of polytetrafluoroethylene coated gas diffusion medium on the water content in the membrane electrolyte. The water condensation on the surfaces of the gas diffusion medium is visualised when the polymer electrolyte fuel cell is operated under non-humidification conditions. Numerical simulation suggests that the optimum water saturation is between 0.1 and 0.3 at the gas diffusion medium to hydrate the membrane electrolyte sufficiently without significantly blocking the diffused species under non-humidification conditions

  2. PPO-ethanol system as wavelength shifter for the Cherenkov counting technique using a liquid scintillation counter

    International Nuclear Information System (INIS)

    Takiue, M.; Fujii, H.; Ishikawa, H.

    1984-01-01

    2,5-diphenyloxazole (PPO) has been proposed as a wavelength shifter for Cherenkov counting. Since PPO is not incorporated with water, we have introduced the fluor into water in the form of micelle using a PPO-ethanol system. This technique makes it possible to obtain a high Cherenkov counting efficiency under stable sample conditions, attributed to the proper spectrometric features of the PPO. The 32 P Cherenkov counting efficiency (68.4%) obtained from this technique is 1.62 times as large as that measured with a conventional Cherenkov technique. (orig.)

  3. Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, N., E-mail: niharikakul@gmail.com; Chatterjee, B.; Gupta, P.N., E-mail: guptapn07@yahoo.co.in

    2014-05-01

    Highlights: • Polyvinyl alcohol (PVA). • Ammonium thiocyanate (NH{sub 4}SCN). • Electrical conductivity. • Fractals. - Abstract: In this communication, films of polyvinyl alcohol (PVA) polymer complexed with ammonium thiocyanate (NH{sub 4}SCN) salt were studied. XRD (X-ray diffraction) was used to study the complexation of salt with the polymer matrix and amorphicity in the films. DSC (differential scanning calorimetry) studies showed that the glass transition temperatures (T{sub g}) of the PVA:NH{sub 4}SCN complexed films were less than pristine PVA. Raman analysis was analyzed in order to study the change in the vibrational bands due to the complexation of salt with PVA. Optical micrographs confirm the fractal formation in 75:25 and 70:30 PVA:NH{sub 4}SCN films. Ionic transference number was estimated by Wagner's polarization method and its large value indicates that conduction takes place mainly due to mobile ionic species. Maximum conductivity ∼10{sup −3} S/cm at room temperature was obtained for 70:30 ratio of PVA: NH{sub 4}SCN polymer electrolyte films.

  4. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    Science.gov (United States)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  5. NEW POLYMER ELECTROLYTE MEMBRANES FOR FUEL CELLS OPERATING ABOVE 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; He, Ronghuan

    2003-01-01

    The state-of-the-art of PEMFC technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80°C. The newest development in the field is alternative polymer electrolytes for operation above 100°C. This paper is devoted to a review on the development......, which is classified into three groups: modified PFSA membranes, alternative sulfonated polymer and their inorganic composite membranes and acid-base complex membranes. High temperature PEMFC has been demonstrated with advanced features such as fast electrode kinetics, high CO tolerance, simple thermal...

  6. Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA-PVC blend-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S., E-mail: rameshtsubra@gmail.com [Centre for Ionics University Malaya, Department of Physics, Faculty of Science, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur (Malaysia); Liew, Chiam-Wen; Morris, Ezra; Durairaj, R. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2010-11-20

    In this paper, temperature dependence of ionic conductivity, crystallographic structural, morphological and thermal characteristics of polymer blends of PMMA and PVC with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) as a dopant salt are investigated. The study on the temperature dependence of ionic conductivity shows that these polymer blends exhibit Arrhenius behavior. The highest ionic conductivity was achieved when 70 wt% of PMMA was blended with 30 wt% of PVC. X-ray diffraction (XRD) and scanning electron microscopy (SEM) reveal the amorphous nature and surface morphology of polymer electrolytes, respectively. In DSC analysis it was found that the glass transition temperature (T{sub g}) and melting temperature (T{sub m}) decreased, whereas the decomposition temperature (T{sub d}) increased. In contrast, the shift towards higher decomposition temperature and decrease in weight loss of polymer electrolytes, in TGA studies, indicates that the thermal stability of polymer electrolytes improved.

  7. Physical chemical radiation effects in scintillator solutions content PPO and POPOP

    International Nuclear Information System (INIS)

    Fernandes Neto, Jose Mari; Hamada, Margarida Mizue; Duarte, Celina Lopes; Mesquita, Carlos Henrique de

    2005-01-01

    Samples containing PPO (1%, g/mL), diluted in toluene, were irradiated in a 60 Co irradiator (6.46 kGy/h) at different doses. The PPO concentration decay bi-exponentially with the dose, generating the degradation products: benzoic acid, benzamide and benzilic alcohol. The liquid scintillator system was not sensitive to the radiation damage until 20 kGy. Otherwise, the pulse height analysis showed that doses between 30 and 40 kGy generated significant loss of quality of the sensor (scintillating liquid) and the light yield was reduced in half with the dose of (34.04 ± 0.80) kGy. This value was confirmed by the photopeak position analysis that resulted in D1/2 = (31.7 ± 1.4) kGy. The transmittance, at 360 nm, of the irradiated solution decreased exponentially. The compartmental model using five compartments (fast decay PPO, slow decay PPO, benzamide, benzoic acid and benzilic alcohol) was satisfactory to explain the decay of the PPO in its degradation products as a function of the dose. The explanation coefficient r2 = 0.985636 demonstrates that the model was capable to explain 98.6% of the experimental variations. The energies involved in the chemical reactions were w = (0.239 ± 0.031) eV/damage (fast decay) and w (1.834 ± 0.301) eV/damage (slow decay). (author)

  8. Efficient and Stable Photovoltaic Characteristics of Quasi-Solid State DSSC using Polymer Gel Electrolyte Based on Ionic Liquid in Organosiloxane Polymer Gels

    Science.gov (United States)

    Pujiarti, H.; Arsyad, W. S.; Shobih; Muliani, L.; Hidayat, R.

    2018-04-01

    Dye-Sensitized Solar Cell (DSSC) is still one of the promising solar cell types among the third generation of solar cells because of easiness of fabrication and variety of available materials. In this type of solar cell, the electrolyte is one of the important components for regenerating excited dyes and transporting electric charge carriers to the counter electrode. Indeed, the power conversion efficiency of DSSC can be then significantly affected by the chemical and physical properties of the electrolyte. The simplest electrolyte system of an I-/I3 - redox couple in an organic solvent, however, has some drawbacks due to corrosive properties, volatile and leakage problem. Use of solid phase or gel phase electrolyte may overcome those problems, but it is often considered to suppress the efficiency due to low ion diffusion. Here, we report the photovoltaic characteristics of DSSC using polymer gel electrolyte (PGE), which is composed of ionic liquid and an organosiloxane polymer gel. The better cell performance with power conversion efficiency of about 6% has been obtained by optimizing the mesoporous size of the TiO2 layer and the PGE viscosity.

  9. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  10. Cogeneration of electricity and organic chemicals using a polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Yuan, X.; Ma, Z.; Bueb, H.; Drillet, J.-F.; Hagen, J.; Schmidt, V.M.

    2005-01-01

    Several unsaturated organic alcohols (allyl alcohol, propargyl alcohol, 2-butin-1,4-diol, 2- buten-1,4-diol) and acids (maleic acid, acrylic acid, crotonic acid, acetylendicarboxylic acid) were used as oxidants together with hydrogen as fuel in a polymer electrolyte fuel cell (PEFC). The standard free enthalpies (Δ R G θ ) of the overall fuel cell reactions H 2 /oxidant were calculated to be negative and the equilibrium voltages of such systems are in the range of U 00 = 0.4-0.6 V. In this way, the cogeneration of electric energy and desired hydrogenated products in a fuel cell reactor is apparent. Nafion[reg] 117, as polymer electrolyte, and commercial gas diffusion electrodes (ETEK) with carbon supported Pt were used in a PEFC reactor. The aqueous solutions of unsaturated alcohols and organic acids (c = 1-2 mol dm -3 ) were pumped under ambient pressure through the cathode compartment of the cell whereas hydrogen was fed into the cell at p 0.15 MPa. The open circuit voltages were measured to be in the range of 0.1-0.25 V. Current densities up to 50 mA cm -2 and maximum power densities of around 1 mW cm -2 has been achieved in the case of allyl alcohol, 2-butene-1,4-diol and acrylic acid. HPLC analysis indicates that the double or triple bond in unsaturated alcohols and organic acids is selectively hydrogenated. In addition, the electrochemical behaviour of the alcohols and acids was studied by means of cyclic voltammetry at a smooth polycrystalline Pt electrode in H 2 SO 4 . Reduction reactions were observed at potentials of E < 200 mV versus RHE. It was found that the onset potential for electrochemical hydrogenation of the double and triple bond in the cyclic voltamogram correlates well with the fuel cell performances using these compounds as oxidants

  11. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Fatin; Chan, Chin Han; Winie, Tan [Faculty of Applied Sciences, UniversitiTeknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Sim, Lai Har; Zainal, Nurul Fatahah Asyqin [Center of Foundation Studies, PuncakAlam Campus, UniversitiTeknologi MARA, 40430 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  12. The Characteristic Thickness of Polymer Electrolyte Membrane and the

    Czech Academy of Sciences Publication Activity Database

    Němec, Tomáš; Maršík, František; Mičan, O.

    2009-01-01

    Roč. 30, č. 7 (2009), s. 574-581 ISSN 0145-7632 R&D Projects: GA AV ČR KJB400760701; GA MŠk(CZ) 1M06031; GA ČR(CZ) GA101/07/1612 Institutional research plan: CEZ:AV0Z20760514 Keywords : hydrogen fuel cell * polymer electrolyte membrane * irreversible thermodynamics Subject RIV: BJ - Thermodynamics Impact factor: 0.841, year: 2009 http://dx.doi.org/10.1080/01457630802594978

  13. Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki [Nagoya Inst. of Tech. (Japan). Dept. of Applied Chemistry; Yamamoto, Osamu [Mie Univ., Tsu (Japan). Dept. of Chemistry

    1999-09-01

    In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M{sup n}(CF{sub 3}SO{sub 3}){sub n}] and their preliminary applications to primary cells. The Celgard{sup trademark} membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffmann, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard{sup trademark} aa3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5 x 10{sup -4} S cm{sup -1} at 12 mol% for LiCF{sub 3}SO{sub 3}, 1.7 x 10{sup -4} S cm{sup -1} at 1 mol% for Mg(CF{sub 3}SO{sub 3}){sub 2}, and 2.1 x 10{sup -4} S cm{sup -1} at 4 mol% Zn(CF{sub 3}SO{sub 3}){sub 2} system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, li vertical stroke LiCF{sub 3}SO{sub 3}-SPE+Celgard{sup trademark} aa3401 vertical stroke (CH{sub 3}){sub 4}NI{sub 5}+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm{sup 2}. (orig.)

  14. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  15. Boltorn-Modified Poly(2,6-dimethyl-1,4,phenylene oxide) Gas Separation Membranes

    NARCIS (Netherlands)

    Sterescu, D.M.; Stamatialis, Dimitrios; Mendes, Eduardo; Kruse, Jan; Rätzke, Klaus; Faupel, Franz; Wessling, Matthias

    2007-01-01

    This paper describes the preparation, characterization and the permeation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) dense polymer films containing aliphatic hyperbranched polyesters, Boltorn (H20, H30, and H40). The Boltorn are dispersed in PPO at various concentrations. The gas

  16. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  17. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  18. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  19. High energy density supercapacitors using macroporous kitchen sponges

    KAUST Repository

    Chen, Wei

    2012-01-01

    Macroporous, low-cost and recyclable kitchen sponges are explored as effective electrode platforms for supercapacitor devices. A simple and scalable process has been developed to fabricate MnO 2-carbon nanotube (CNT)-sponge supercapacitor electrodes using ordinary kitchen sponges. Two organic electrolytes (1 M of tetraethylammonium tetrafluoroborate (Et 4NBF 4) in propylene carbonate (PC), 1 M of LiClO 4 in PC) are utilized with the sponge-based electrodes to improve the energy density of the symmetrical supercapacitors. Compared to aqueous electrolyte (1 M of Na 2SO 4 in H 2O), the energy density of supercapacitors tripled in Et 4NBF 4 electrolyte, and further increased by six times in LiClO 4 electrolyte. The long-term cycling performance in different electrolytes was examined and the morphology changes of the electrode materials were also studied. The good electrochemical performance in both aqueous and organic electrolytes indicates that the MnO 2-CNT-sponge is a promising low-cost electrode for energy storage systems. © 2012 The Royal Society of Chemistry.

  20. Investigation of dominant loss mechanisms in low-temperature polymer electrolyte membrane fuel cells

    OpenAIRE

    Gerteisen, D.

    2010-01-01

    This thesis deals with the analysis of dominant loss mechanisms in direct methanol fuel cells (DMFC) and hydrogen fed polymer electrolyte membrane fuel cells (PEFC) by means of experimental characterization and modeling work.

  1. Evaluation of solid polymer electrolytes for use in conducting polymer/nanotube actuators

    Science.gov (United States)

    Lewis, Trevor W.; Kim, B. C.; Spinks, Geoffrey M.; Wallace, Gordon G.

    2000-06-01

    The stringent requirements for a solid polymer electrolyte (SPE) in solid state devices such as batteries or supercapacitors are even more demanding when used in electromechanical actuators. Not only is the SPE expected to exhibit good conductivity, mechanical properties, adhesion and mechanical/electrical stability, but it must also be flexible, maintained good adhesion while flexing, be easily processible and be able to function in air. In this work polyacrylonitrile and Kynar based non-aqueous SPEs and water based polyacrylamide hydrogel ion source/sinks containing various perchlorate salts were tested for their applicability to polypyrrole and carbon nanotube actuators and supercapacitors. The results indicate that the optimum SPE for both polypyrrole and carbon nanotube actuators would be a polyacrylonitrile plasticized with propylene carbonate and ethylene carbonate containing 1.0M NaClO4. It is also apparent that the same SPE would be the most suitable for supercapacitor applications with these materials.

  2. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  3. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...... encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells...

  4. Polymer electrolytes: an investigation of some poly (n-propylaziridine)/lithium salt compositions. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, K R; Golder, A J; Knight, J

    1984-04-01

    Some poly(N-propylaziridine)/lithium salt compositions have been synthesized and their electrical conductivities have been measured in order to assess their suitability as electrolytes in safe, leakproof, high energy-density lithium batteries operating at ambient temperature. The effects on conductivity of temperature, and the nature and concentration of the salt have also been studied. The presence of the salts markedly improved the conductivity of the compositions over that of the undoped polymer but they were insufficiently conducting to be considered as battery electrolytes, due possibly to ion-pairing. Their creep resistance was also low. It was concluded that less fluid compositions containing higher molecular weight polymers better able to promote ion separation would be more suitable.

  5. Characterization and electrochemical application of carbon materials based on poly(phenylene oxide)

    Science.gov (United States)

    Gray, Hunter

    Carbon materials possess excellent electrical and surface properties for the next generation of energy storage devices. Polymers provide a carbon rich and tailorable precursor for the production of carbon materials. Therefore, activated carbons were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) via a three step process: thermal oxidation, carbonization, and activation with KOH. The activated carbons are predominately microporous with BET specific surface areas up to 2638 m2/g. Impedance spectroscopy revealed these carbons possess electrical conductivities comparable to commercial carbon blacks and consequently were employed in thin-film composite electrodes in electrochemical double-layer capacitors. Cyclic voltammetry confirmed maximum specific capacitances of 13.23 F/g and 2.848 F/g for aqueous and organic electrolyte systems, respectively. Additionally, carbon nanotubes were synthesized from PPO and other polymers with a nickel catalyst via chemical vapor deposition as revealed by transmission electron microscopy. This is the first report of carbon nanotubes produced from PPO.

  6. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  7. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    Science.gov (United States)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  9. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  10. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  11. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    Science.gov (United States)

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding

  13. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    International Nuclear Information System (INIS)

    Winie, Tan; Ramesh, S.; Arof, A.K.

    2009-01-01

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  14. Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Winie, Tan, E-mail: tanwinie@salam.uitm.edu.m [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Ramesh, S. [Faculty of Engineering and Science, University Tunku Abdul Rahman, 53300 Kuala Lumpur (Malaysia); Arof, A.K. [Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-11-15

    Polymer electrolytes composed of hexanoyl chitosan as the host polymer, lithium trifluoromethanesulfonate (LiCF{sub 3}SO{sub 3}) as the salt, diethyl carbonate (DEC)/ethylene carbonate (EC) as the plasticizers were prepared and characterized by X-ray diffraction and impedance spectroscopy. The X-ray diffraction results reveal the variation in conductivity from structural aspect. This is reflected in terms of amorphous content. Sample with higher amorphous content exhibits higher conductivity. In order to further understand the source of the conductivity variation with varying plasticizers compositions as well as temperatures, the ionic charge carrier concentration and their mobility in polymer electrolyte were determined. The Rice and Roth model was proposed to be used to estimate the ionic charge carrier concentration, n. Knowing n and combining the result with dc conductivity, the mobility of the ionic charge carrier can be calculated. It is found that the conductivity change with DEC/EC composition is due mainly to the change in ionic charge carrier concentration while the conductivity change with temperature is due primarily to the change in mobility.

  15. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, D. [Department of Physics, Amrita Viswha Vidyapeetham, Bangalore, India, E-mail: d-praveen@blr.amrita.edu (India); Damle, Ramakrishna [Department of Physics, Bangalore University, Bangalore, India. E-mail: ramkrishnadamle@bub.ernet.in (India)

    2016-05-23

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  16. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    International Nuclear Information System (INIS)

    Praveen, D.; Damle, Ramakrishna

    2016-01-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO_4)_2, NH_4I etc., have already been tried in the past with some success. Also various nanoparticles like Al_2O_3, TiO_2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  17. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  18. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji

    2013-01-01

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF 3 SO 3 ) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10 −6 S cm −1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm −1 , carbonyl (-C=O) at 1750–1650 cm −1 and ether (-C-O-C-) at 1150–1000 cm −1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF 3 SO 3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF 3 SO 3

  19. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Science.gov (United States)

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  20. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes

    International Nuclear Information System (INIS)

    Tao, Ran; Bi, Xuanxuan; The Ohio State University, Columbus, OH; Li, Shu; Yao, Ying

    2017-01-01

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this paper, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li"+ salts, LiPF_6, LiAsF_6, LiBF_4 and LiClO_4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j_0, transfer coefficient, α) of Li"+/Li redox system, the mass transfer parameters of Li"+ (transfer number of Li"+, t_L_i_+, diffusion coefficient of Li"+, D_L_i_+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j_0, t_L_i_+, D_L_i_+, and κ of the electrolyte, while the choice of Li"+ salts only slightly affect the measured parameters. Finally, the understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.

  1. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Suriani, E-mail: sue_83@um.edu.my [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ahmad, Roslina; Johan, Mohd Rafie [Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-01-15

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF{sub 6}), ethylene carbonate (EC) and amorphous carbon nanotube ({alpha}CNTs) were prepared by the solution cast technique. The conductivity increases from 10{sup -10} to 10{sup -5} Scm{sup -1} upon the addition of salt. The incorporation of EC and {alpha}CNTs to the salted polymer enhances the conductivity significantly to 10{sup -4} and 10{sup -3} Scm{sup -1}. The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: > Optical band gap values show the decreasing trend with an increasing dopant concentration. > It is also observed that the absorption edge shifted to longer wavelength on doping. > Results of the optical measurements indicate the presence of a well-defined {pi}{yields}{pi}* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  2. Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube

    International Nuclear Information System (INIS)

    Ibrahim, Suriani; Ahmad, Roslina; Johan, Mohd Rafie

    2012-01-01

    Solid polymer electrolyte films based on Poly(ethylene oxide) (PEO) complexed with lithium hexafluorophosphate (LiPF 6 ), ethylene carbonate (EC) and amorphous carbon nanotube (αCNTs) were prepared by the solution cast technique. The conductivity increases from 10 -10 to 10 -5 Scm -1 upon the addition of salt. The incorporation of EC and αCNTs to the salted polymer enhances the conductivity significantly to 10 -4 and 10 -3 Scm -1 . The complexation of doping materials with polymer were confirmed by X-ray diffraction and infrared studies. Optical properties like direct band gap and indirect band gap were investigated for pure and doped polymer films in the wavelength range 200-400 nm. It was found that the energy gaps and band edge values shifted to lower energies on doping. - Highlights: → Optical band gap values show the decreasing trend with an increasing dopant concentration. → It is also observed that the absorption edge shifted to longer wavelength on doping. → Results of the optical measurements indicate the presence of a well-defined π→π* transition associated with the formation of a conjugated C=O and/or C=O electronic structure.

  3. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  4. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  5. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2016-07-01

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  6. Dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Pal, P.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2016-07-28

    In this paper, we have studied the dynamics and relaxation of charge carriers in poly(methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. Structural and thermal properties have been examined using X-ray diffraction and differential scanning calorimetry, respectively. We have analyzed the complex conductivity spectra by using power law model coupled with the contribution of electrode polarization at low frequencies and high temperatures. The temperature dependence of the ionic conductivity and crossover frequency exhibits Vogel-Tammann-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and ethylene carbonate concentrations. The analysis of the ac conductivity also shows the existence of a nearly constant loss in these polymer electrolytes at low temperatures and high frequencies. The fraction of free anions and ion pairs in polymer electrolyte have been obtained from the analysis of Fourier transform infrared spectra. It is observed that these quantities influence the behavior of the composition dependence of the ionic conductivity.

  7. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    International Nuclear Information System (INIS)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-01-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF 3 SO 3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10 −7 Scm −1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity

  8. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Science.gov (United States)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  9. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei; Hou, Gao-Ming; Zhang, Ming-Qiu; Rong, Min-Zhi; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2012-01-01

    perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act

  10. The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi-solid dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, Minyu; Feng, Shujing; Fang, Shibi; Xiao, Xurui; Li, Xueping; Zhou, Xiaowen; Lin, Yuan

    2007-01-01

    Poly(vinylpyridine-co-acrylonitrile) (P(VP-co-AN)) was used to form polymer electrolytes for dye-sensitized solar cells (DSSCs). The effects of P(VP-co-AN) on the photovoltaic performances of DSSCs have been investigated with nonaqueous electrolytes containing alkali-iodide and iodine. It was found that the effect of P(VP-co-AN) on V oc closely related to its amount in the electrolyte. Lower amount of P(VP-co-AN) was benefit for the construction of a solar cell containing P(VP-co-AN) with higher energy conversion efficiency. Chemically crosslinking solidification with backbone polymer P(VP-co-AN) amount of 3% fabricated quasi-solid DSSCs with 10% increased conversion efficiencies with relative to that of the initial liquid DSSCs

  11. Modification of chitosan membranes with nanosilica particles as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kusumastuti, Ella, E-mail: ella.kusuma@gmail.com; Siniwi, Widasari Trisna, E-mail: wsiniwi@gmail.com; Mahatmanti, F. Widhi; Jumaeri [Department of Chemistry, Faculty of Mathematics and Natural Sciences, State University of Semarang D6 Building 2" n" d floor, Sekaran Unnes Campus, Gunungpati, Semarang (Indonesia); Atmaja, Lukman; Widiastuti, Nurul [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tenth November Institute of Technology Keputih ITS Campus, Sukolilo, Surabaya (Indonesia)

    2016-04-19

    Chitosan has been widely used as polymer matrix for Polymer Electrolyte Membrane (PEM) application replacing Nafion which has shortcomings in terms of high methanol permeability that degrades the performance of fuel cells. Chitosan membranes modification is performed by adding nanosilica to prevent methanol transport through the membrane. Nanosilica is synthesized by sol-gel method and the particle diameter is obtained by analysis using Breunner Emmet Teller (BET) that is 6.59 nm. Nanosilica is mixed with chitosan solution to obtain nanosilica-chitosan as polymer electrolyte membrane. The membranes are synthesized through phase inversion method with nanosilica composition including 0; 0.5; 1; 2; 3; 5; and 10% w/w of chitosan. Characterization of the membranes indicate that the results of water swelling, proton conductivity and methanol permeability of the membrane with 3% nanosilica respectively were 49.23%, 0.231 S/cm, and 5.43 x 10{sup −7} cm{sup 2}/s. Based on the results of membrane selectivity calculation, the optimum membrane is the composition of 3% nanosilica with value 5.91 x 105 S s cm{sup −3}. The results of functional groups analysis with FTIR showed that it was only physical interaction that occurred between chitosan and nanosilica since no significant changes found in peak around the wave number 1000-1250 cm{sup −-1}.

  12. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  13. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  14. Purificação de lacases PPO-I de Botryosphaeria rhodina - DOI: 10.4025/actascibiolsci.v27i3.1317 Purification of laccases PPO-I of fungus Botryosphaeria rhodina - DOI: 10.4025/actascibiolsci.v27i3.1317

    Directory of Open Access Journals (Sweden)

    Dalva Tomoe Miyagui

    2005-03-01

    Full Text Available Lacases são glicoproteínas polifenol oxidases envolvidas na patogenicidade de alguns fungos e úteis em processos biotecnológicos. O ascomiceto ligninolítico Botryosphaeria rhodina tem sido estudado como produtor de exopolissacarídeos e de lacases PPO-I e PPO-II induzidas pelo álcool veratrílico. Como as lacases produzidas ainda não foram isoladas, o objetivo deste trabalho foi purificar lacases PPO-I e identificar os carboidratos constituintes da porção glicosídica. O fungo foi cultivado em meio mínimo de Vogel contendo 1% de glicose e 30,4 mM de álcool veratrílico, a 28C e agitação de 180 rpm durante 4,5 dias. O extrato livre de células apresentou elevada concentração de carboidratos e de PPO-I estáveis a 4ºC e -18ºC durante 40 dias. Técnicas de ultrafiltração, cromatografia em gel Sephadex G-100 e em resina DEAE-Celulose purificaram lacases PPO-I com peso molecular de 113 kDa por eletroforese PAGE-SDS, contendo 40% de proteínas e 60% carboidratos identificados por HPAEC-PAD como fucose, galactose, manose, glucose e glucosaminaLaccases are glycoprotein polyphenol oxidases which are involved in fungal pathogenicity and they are also useful for biotechnological applications. The ligninolytic ascomycete, Botryosphaeria rhodina, has been studied as producer of exopolysaccharide and PPO-I and PPO-II laccases induced by veratryl alcohol. However, as the induced laccases have not been isolated, the aim of this study was to purify the enzyme and to identify the carbohydrates constituents of the glycosidic moiety. The fungus was cultivated on broth Vogel, 1% glucose and 30.4mM veratryl alcohol during 4.5 days at 28°C/180 rpm. The extracellular fluid showed high carbohydrate concentration and the stability of PPO-I laccase under conditions of refrigeration and freezing at 4ºC-18ºC over 40 days. The purification was developed by ultrafiltration using a NMWL 100 and 30 kDa membrane, gelfiltration on Sephadex G-100, and ion

  15. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    International Nuclear Information System (INIS)

    Winslow, R; Wang, Z; Wright, P; Wu, C H; Kim, B; Evans, J; Keif, M

    2013-01-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO 2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H 2 O, while an electrolyte produced in ambient conditions contained 12400 ppm of H 2 O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm 2 , while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm 2 . Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage

  16. Development and manufacture of printable next-generation gel polymer ionic liquid electrolyte for Zn/MnO2 batteries

    Science.gov (United States)

    Winslow, R.; Wu, C. H.; Wang, Z.; Kim, B.; Keif, M.; Evans, J.; Wright, P.

    2013-12-01

    While much energy storage research focuses on the performance of individual components, such as the electrolyte or a single electrode, few investigate the electrochemical system as a whole. This research reports on the design, composition, and performance of a Zn/MnO2 battery as affected by the manufacturing method and next-generation gel polymer electrolyte composed of the ionic liquid [BMIM][Otf], ZnOtf salt, and PVDF-HFP polymer binder. Materials and manufacturing tests are discussed with a focus on water concentration, surface features as produced by printing processes, and the effect of including a gel polymer phase. Cells produced for this research generated open circuit voltages from 1.0 to 1.3 V. A dry [BMIM][Otf] electrolyte was found to have 87.3 ppm of H2O, while an electrolyte produced in ambient conditions contained 12400 ppm of H2O. Cells produced in a dry, Ar environment had an average discharge capacity of 0.0137 mAh/cm2, while one produced in an ambient environment exhibited a discharge capacity at 0.05 mAh/cm2. Surface features varied significantly by printing method, where a doctor blade produced the most consistent features. The preliminary results herein suggest that water, surface roughness, and the gel polymer play important roles in affecting the performance of printed energy storage.

  17. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    Science.gov (United States)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  18. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  19. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Almadhoun, Mahmoud N.; Odeh, Ihab N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  2. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  3. Proton conducting polymer electrolyte based on plasticized chitosan-PEO blend and application in electrochemical devices

    Science.gov (United States)

    Shukur, M. F.; Ithnin, R.; Illias, H. A.; Kadir, M. F. Z.

    2013-08-01

    Plasticized chitosan-poly(ethylene oxide) (PEO) doped with ammonium nitrate (NH4NO3) electrolyte films are prepared by the solution cast technique. From Fourier transform infrared (FTIR) spectroscopy analysis, hydroxyl band of pure chitosan film is shifted from 3354 to 3425 cm-1 when blended with PEO. On addition of 40 wt.% NH4NO3, new peaks at 3207 cm-1 and 3104 cm-1 appear in the hydroxyl band region, indicating the polymer-salt complexation. The carboxamide and amine bands are observed to shift to 1632 and 1527 cm-1, respectively. The interaction of chitosan-PEO-NH4NO3-EC can be observed by the appearance of the doublet Cdbnd O stretching band of EC. The sample with 70 wt.% ethylene carbonate (EC) exhibits the highest room temperature conductivity of (2.06 ± 0.39) × 10-3 S cm-1. This result is further verified by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) studies. Proton battery is fabricated and shows an open circuit potential (OCP) of (1.66 ± 0.02) V and average discharge capacity at (48.0 ± 5.0) mA h. The maximum power density of the fabricated cell is (9.73 ± 0.75) mW cm-2. The polymer electrolyte is also employed as separator in electrical double layer capacitor (EDLC) and is cycled for 140 times at room temperature.

  4. Composite polymer electrolyte based on PEO/Pvdf-HFP with MWCNT for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwinraj, S.; Sowmya, G.; Kalaiselvimary, J.; Selvakumar, K.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004 (India)

    2016-05-06

    In the present study PEO and PVdF-HFP blend based composite polymer electrolytes (CPEs) has been prepared by using Multi Walled Carbon Nanotube (MWCNT), in order to examine the filler addition effect on the electrochemical properties. The complexed nanocomposite polymer electrolytes were obtained in the form of dimensionally stable and free standing films by using solution casting technique. The electrochemical properties of CPEs were measured by the AC impedance method. From the ionic conductivity results, the CPE containing MWCNT 2wt% showed the highest ionic conductivity with an excellent thermal stability at room temperature. The dielectric loss curve s for the sample 6.25wt% PEO: 18.75 wt% PVdF-HFP: 2wt% MWCNT reveal the low frequency β relaxation peak pronounced at high temperature, and it may caused by side group dipoles.

  5. Polymer anion-selective membrane for electrolytic water splitting: the impact of a liquid electrolyte composition on the process parameters and long-term stability

    Czech Academy of Sciences Publication Activity Database

    Hnát, J.; Paidar, M.; Schauer, Jan; Bouzek, K.

    2014-01-01

    Roč. 39, č. 10 (2014), s. 4779-4787 ISSN 0360-3199 Institutional support: RVO:61389013 Keywords : water electrolysis * alkaline environment * polymer electrolyte Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.313, year: 2014

  6. Electrolyte transport in neutral polymer gels embedded with charged inclusions

    Science.gov (United States)

    Hill, Reghan

    2005-11-01

    Ion permeable membranes are the basis of a variety of molecular separation technologies, including ion exchange, gel electrophoresis and dialysis. This work presents a theoretical model of electrolyte transport in membranes comprised of a continuous polymer gel embedded with charged spherical inclusions, e.g., biological cells and synthetic colloids. The microstructure mimics immobilized cell cultures, where electric fields have been used to promote nutrient transport. Because several important characteristics can, in principle, be carefully controlled, the theory provides a quantitative framework to help tailor the bulk properties for enhanced molecular transport, microfluidic pumping, and physicochemical sensing applications. This talk focuses on the electroosmotic flow driven by weak electric fields and electrolyte concentration gradients. Also of importance is the influence of charge on the effective ion diffusion coefficients, bulk electrical conductivity, and membrane diffusion potential.

  7. ZnCl{sub 2}- and NH{sub 4}Cl-hydroponics gel electrolytes for zinc-carbon batteries

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, N.H.; Ismail, Y.M. Baba; Mohamad, A.A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2008-01-21

    Absorbency testing is used to determine the percentage of ZnCl{sub 2} or NH{sub 4}Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl{sub 2} or NH{sub 4}Cl solution decreases with increasing solution concentration. The conductivity of ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm{sup -1} at 3 M ZnCl{sub 2} and 7 M NH{sub 4}Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 {omega}, a maximum power density of 12.7 and 12.2 mW cm{sup -2}, and a short-circuit current density of 29.1 and 33.9 mA cm{sup -2} for ZnCl{sub 2}- and NH{sub 4}Cl-HPG electrolytes, respectively. (author)

  8. Preparation of Water-Soluble Homo and Copolymers of Bithiophene with 3,4-Ethylene Dioxythiophene and 3-Dodecylthiophene in Presence of Polystyrene Sulfonic Acid: Structure, Morphology, Thermal Stability

    Directory of Open Access Journals (Sweden)

    Bakhshali Massoumi

    2015-04-01

    Full Text Available Conductive polymers based on water-soluble polythiophenes were prepared. In this respect, alkylation reaction was carried out to synthesize the monomer 3-dodecylthiophene using 3-bromothiophene, bromododecane and magnesium. The monomer 2,2′-bithiophene was also prepared from 2-bromothiophene. Then, poly(2,2′-bithiophene, poly(3,4-ethylenedioxythiophene and poly(3-dodecylthiophene homopolymers were prepared at room temperature by successive chemical oxidation in the presence of polystyrene sulfonic acid and ammonium persulfate and water, as dopant, oxidant and solvent, respectively, under vigorous stirring. Under similar conditions, 2,2′-bithiophene copolymers with 3-dodecylthiophene and 3,4-ethylenedioxythiophene, copolymers with 3-dodecylthiophene were prepared at different molar ratios. To purify and dry the prepared polymers, dialysis tubs and freezing dry processes were applied. Structure of homo and copolymers were investigated by Fourier transform infrared (FTIR. Conjugated and planar structures of polymers were studied by Ultravoilet (UV-vis spectroscopy. The electrical conductivity of synthesized polymers was measured by four probe technique. The morphology and thermal stability of the products were studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM and thermogravimetric analysis (TGA. Finally, solubility of homo and copolymers were tested in some organic solvents and water. Electro- activity of the prepared polymers was studied by cyclic voltammetry (CV on the glassy carbon (GC in LiClO4/CH3CN electrolyte solution and their electro-activity was confirmed. Electro-conductivity and electro-activity of homo and co polymers were low due topresence of polystyrene sulfonic acid which reduced the immobility of the polymers.

  9. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer

    International Nuclear Information System (INIS)

    Stoeva, Zlatka; Lu, Zhibao; Ingram, Malcolm D.; Imrie, Corrie T.

    2013-01-01

    A discotic liquid crystal triblock copolymer consisting of a central main chain triphenylene-based liquid crystal block capped at both ends by blocks of poly(ethylene oxide) (PEO) (M W = 2000 g mol −1 ) has been doped with lithium perchlorate in an EO:Li 6:1 ratio. The polymer electrolyte exhibits a phase separated morphology consisting of a columnar hexagonal liquid crystal phase and PEO-rich regions. The polymer electrolyte forms self-supporting, solid-like films. The ionic conductivity on initial heating of the sample is very low below ca. 60 °C but increases rapidly above this temperature. This is attributed to the melting of crystalline PEO-rich regions. Crystallisation is suppressed on cooling, and subsequent heating cycles exhibit higher conductivities but still less than those measured for the corresponding lithium perchlorate complex in poly(ethylene glycol) (M W = 2000 g mol −1 ). Instead the triblock copolymer mimics the behaviour of high molecular weight poly(ethylene oxide) (M W = 300,000 g mol −1 ). This is attributed, in part, to the anchoring of the short PEG chains to the liquid crystal block which prevents their diffusion through the sample. Temperature and pressure variations in ion mobility indicate that the ion transport mechanism in the new material is closely related to that in the conventional PEO-based electrolyte, opening up the possibility of engineering enhanced conductivities in future

  10. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    Science.gov (United States)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  11. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  12. Tri-(4-methoxythphenyl) phosphate: A new electrolyte additive with both fire-retardancy and overcharge protection for Li-ion batteries

    International Nuclear Information System (INIS)

    Feng, J.K.; Cao, Y.L.; Ai, X.P.; Yang, H.X.

    2008-01-01

    A novel compound, tri-(4-methoxythphenyl) phosphate, was synthesized and investigated as a safety electrolyte additive for lithium-ion batteries. It was found that this additive could lower the flammability of the electrolyte, and thereby enhance the thermal stability of the Li-ion battery. Moreover, this molecule can also be polymerized at 4.35 V (vs. Li/Li + ) to form a conducting polymer, which can protect the batteries from voltage runaway at overcharge by internal bypassing the overcharging current in the batteries. Thus, it is possible to use this electrolyte additive to provide both overcharge protection and flame retardancy for lithium-ion batteries without much influence on the battery performance

  13. Reinforced poly(propylene oxide)- a very soft and extensible dielectric electroactive polymer

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Galantini, F.; Mazurek, Piotr Stanislaw

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of ,!-diallyl PPO with a tetra-functional thiol. The elastomer...... was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability...... of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 103 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910...

  14. Proton Conductivity Studies on Biopolymer Electrolytes

    International Nuclear Information System (INIS)

    Harun, N. I.; Sabri, N. S.; Rosli, N. H. A.; Taib, M. F. M.; Saaid, S. I. Y.; Kudin, T. I. T.; Ali, A. M. M.; Yahya, M. Z. A.

    2010-01-01

    Proton conducting solid biopolymer electrolyte membranes consisting of methyl cellulose (MC) and different wt.% of ammonium nitrate (NH 4 NO 3 ) were prepared by solution cast technique. Impedance spectroscopy was carried out to study electrical characteristics of bulk materials. The ionic conductivity of the prepared samples was calculated using the bulk resistance (R b ) obtained from impedance spectroscopy plot. The highest ionic conductivity obtained was 1.17x10 -4 Scm -1 for the sample with composition ratio of MC(50): NH 4 NO 3 (50). To enhance the ionic conductivity, propylene carbonate (PC) and ethylene carbonate (EC) plasticizers were introduced. It was found that the ionic conductivity of polymer electrolyte membranes increased with the increase in plasticizers concentration. The ionic conductivities of solid polymer electrolytes based on MC-NH 4 NO 3 -PC was enhanced up to 4.91x10 -3 Scm -1 while for the MC-NH 4 NO 3 -EC system, the highest conductivity was 1.74x10 -2 Scm -1 . The addition of more plasticizer however decreases in mechanical stability of the membranes.

  15. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  16. Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte

    KAUST Repository

    Huang, Kuan-Chieh

    2011-08-01

    The effects of incorporation of aluminum nitride (AlN) in the gel polymer electrolyte (GPE) of a quasi-solid-state dye-sensitized solar cell (DSSC) were studied in terms of performance of the cell. The electrolyte, consisting of lithium iodide (LiI), iodine (I2), and 4-tert-butylpyridine (TBP) in 3-methoxypropionitrile (MPN), was solidified with poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP). The 0.05, 0.1, 0.3, and 0.5 wt% of AlN were added to the electrolyte for this study. XRD analysis showed a reduction of crystallinity in the polymer PVDF-HFP for all the additions of AlN. The DSSC fabricated with a GPE containing 0.1 wt% AlN showed a short-circuit current density (JSC) and power-conversion efficiency (η) of 12.92±0.54 mA/cm2 and 5.27±0.23%, respectively, at 100 mW/cm2 illumination, in contrast to the corresponding values of 11.52±0.21 mA/cm2 and 4.75±0.08% for a cell without AlN. The increases both in JSC and in η of the promoted DSSC are attributed to the higher apparent diffusion coefficient of I- in its electrolyte (3.52×10-6 cm2/s), compared to that in the electrolyte without AlN of a DSSC (2.97×10-6 cm 2/s). At-rest stability of the quasi-solid-state DSSC with 0.1 wt% of AlN was found to decrease hardly by 5% and 7% at room temperature and at 40 °C, respectively, after 1000 h duration. The DSSC with a liquid electrolyte showed a decrease of about 40% at room temperature, while it virtually lost its performance in about 150 h at 40 °C. Explanations are further substantiated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and by porosity measurements. © 2010 Elsevier B.V.

  17. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    Energy Technology Data Exchange (ETDEWEB)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan [Polymer Research Centre (PORCE), School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  18. Carboxymethyl Cellulose From Kenaf Reinforced Composite Polymer Electrolytes Based 49 % Poly (Methyl Methacrylate)-Grafted Natural Rubber

    International Nuclear Information System (INIS)

    Serawati Jafirin; Ishak Ahmad; Azizan Ahmad; Ishak Ahmad; Azizan Ahmad

    2014-01-01

    Composite polymer electrolytes based 49 % poly(methyl methacrylate)-grafted natural rubber (MG49) incorporating lithium triflate (LiCF 3 SO 3 ) were prepared. The study mainly focuses on the ionic conductivity performances and mechanical properties. Prior to that, carboxymethyl cellulose was synthesized from kenaf fiber. The films were characterized by electrochemical impedance (EIS) spectroscopy, linear sweep voltammetry (LSV), universal testing machine and scanning electron microscopy (SEM). The conductivity was found to increase with carboxymethyl cellulose loading. The highest conductivity value achieved was 6.5 x 10 -6 Scm -1 upon addition of 6 wt % carboxymethyl cellulose. LSV graph shows the stability of this film was extended to 2.7 V at room temperature. The composition with 6 wt % carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of Young's modulus. The morphology of the electrolytes showed a smooth surface of films after addition of salt and filler indicating amorphous phase in electrolytes system. Excellent mechanical properties and good ionic conductivity are obtained, enlightening that the film is suitable for future applications as thin solid polymer electrolytes in lithium batteries. (author)

  19. Conductivity and electrical properties of corn starch-chitosan blend biopolymer electrolyte incorporated with ammonium iodide

    Science.gov (United States)

    Yusof, Y. M.; Shukur, M. F.; Illias, H. A.; Kadir, M. F. Z.

    2014-03-01

    This work focuses on the characteristics of polymer blend electrolytes based on corn starch and chitosan doped with ammonium iodide (NH4I). The electrolytes were prepared using the solution cast method. A polymer blend comprising 80 wt% starch and 20 wt% chitosan was found to be the most amorphous blend and suitable to serve as the polymer host. Fourier transform infrared spectroscopy analysis proved the interaction between starch, chitosan and NH4I. The highest room temperature conductivity of (3.04 ± 0.32) × 10-4 S cm-1 was obtained when the polymer host was doped with 40 wt% NH4I. This result was further proven by field emission scanning electron microscopy study. All electrolytes were found to obey the Arrhenius rule. Dielectric studies confirm that the electrolytes obeyed non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting sample follows the quantum mechanical tunneling model.

  20. Conductivity and electrical properties of corn starch–chitosan blend biopolymer electrolyte incorporated with ammonium iodide

    International Nuclear Information System (INIS)

    Yusof, Y M; Shukur, M F; Illias, H A; Kadir, M F Z

    2014-01-01

    This work focuses on the characteristics of polymer blend electrolytes based on corn starch and chitosan doped with ammonium iodide (NH 4 I). The electrolytes were prepared using the solution cast method. A polymer blend comprising 80 wt% starch and 20 wt% chitosan was found to be the most amorphous blend and suitable to serve as the polymer host. Fourier transform infrared spectroscopy analysis proved the interaction between starch, chitosan and NH 4 I. The highest room temperature conductivity of (3.04 ± 0.32) × 10 −4  S cm −1 was obtained when the polymer host was doped with 40 wt% NH 4 I. This result was further proven by field emission scanning electron microscopy study. All electrolytes were found to obey the Arrhenius rule. Dielectric studies confirm that the electrolytes obeyed non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting sample follows the quantum mechanical tunneling model. (paper)

  1. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  2. Ionic association and interspecies interactions of 1-1 electrolytes in ethyl acetate solutions at 5-45 deg C

    International Nuclear Information System (INIS)

    Kalugin, O. N.; Panchenko, V. G.; V'yunnik, I. N.

    2005-01-01

    The data of conductometric studies of LiClO 4 , NaClO 4 , NaBPh 4 , and Bu 4 NClO 4 solutions in ethylacetate in the temperature range 5 to 45 deg C are reported. The constants of ionic association resulting in formation of ion pairs and triple ions, as well as limiting molar electric conductivities of the ions and triple ions are determined. It is found that the formation of contact triple ions having mutually interpenetrated structural elements in cavities of each others is characteristic of electrolytes with bulky organic ions. Anomalous temperature dependence of dynamic sizes of the [Na 2 BPh 4 ] + and [Na(BPh 4 ) 2 ] - ions and substantial differences in energy characteristics of inter-ion interactions are revealed during formation of ion pairs and triple ions in ethylacetate solutions of NaBPh 4 [ru

  3. Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS

    International Nuclear Information System (INIS)

    Pyschik, Marcelina; Kraft, Vadim; Passerini, Stefano; Winter, Martin; Nowak, Sascha

    2014-01-01

    Highlights: • Thermal aging investigation of TFSI- and FSI- based ionic liquids and their mixtures with Li salts. • PYR 13 FSI shows thermal decomposition when mixed with LiPF 6 and LiClO 4 . • PYR 13 TFSI does not show any decomposition products with the electrolyte salts. • LiPF 6 dissolved in ionic liquids suffers of thermal aging as in conventional Li-ion battery electrolytes. - Abstract: The stability of 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR 13 TFSI) and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (PYR 13 FSI) ionic liquids at elevated temperatures (60 °C) is investigated by ion chromatography. Additionally, the influence of the electrolyte salts, lithium hexafluorophosphate (LiPF 6 ), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium perchlorate (LiClO 4 ), on the decomposition of both the ionic liquids was analysed over a long term stability study. It has been found out that TFSI has a much higher thermal stability than FSI. The addition of LiTFSI did not show any effect on the aging of both ionic liquid anions. However, PYR 13 FSI degraded when mixed with the electrolyte salts LiPF 6 and LiClO 4 , while PYR 13 TFSI did not. Finally, LiPF 6 forms the same hydrolysis products in the investigated ionic liquids as in the commonly used electrolytes based on organic solvents in lithium-ion batteries

  4. C60 and Sc3N@C80(TMB-PPO) derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    OpenAIRE

    Ashli R. Toles; Janice Paige Buchanan; Kyle A. Guess; Emily M. Barker

    2016-01-01

    Numerous functionalization methods have been employed to increase the solubility, and therefore, the processability of fullerenes in composite structures, and of these radical addition reactions continue to be an important methodology. C60 and Sc3N@C80 derivatives were prepared via radical addition of the photodecomposition products from the commercial photoinitiator TMB-PPO, yielding C60(TMB-PPO)5 and Sc3N@C80(TMB-PPO)3 as preferred soluble derivatives obtained in high yields. Characterizati...

  5. Reinforced poly(propylene oxide): a very soft and extensible dielectric electroactive polymer

    International Nuclear Information System (INIS)

    Goswami, K; Mazurek, P; Daugaard, A E; Skov, A L; Galantini, F; Gallone, G

    2013-01-01

    Poly(propylene oxide) (PPO), a novel soft elastomeric material, and its composites were investigated as a new dielectric electroactive polymer (EAP). The PPO networks were obtained from thiol-ene chemistry by photochemical crosslinking of α,ω-diallyl PPO with a tetra-functional thiol. The elastomer was reinforced with hexamethylenedisilazane treated fumed silica to improve the mechanical properties of PPO. The mechanical properties of PPO and composites thereof were investigated by shear rheology and stress–strain measurements. It was found that incorporation of silica particles improved the stability of the otherwise mechanically weak pure PPO network. Dielectric spectroscopy revealed high relative dielectric permittivity of PPO at 10 3 Hz of 5.6. The relative permittivity was decreased slightly upon addition of fillers, but remained higher than the commonly used acrylic EAP material VHB4910. The electromechanical actuation performance of both PPO and its composites showed properties as good as VHB4910 and a lower viscous loss. (paper)

  6. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  7. New Polymer Electrolyte Membranes Based on Acid Doped PBI For Fuel Cells Operating above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    The technical achievement and challenges for the PEMFC technology based on perfluorosulfonic acid (PFSA) polymer membranes (e.g. Nafion®) are briefly discussed. The newest development for alternative polymer electrolytes for operation above 100°C. As one of the successful approaches to high...... operational temperatures, the development and evaluation of acid doped PBI membranes are reviewed, covering polymer synthesis, membrane casting, acid doping, physiochemical characterization and fuel cell tests....

  8. Development and characterisation of a novel composite electrode material consisting of poly(3,4-ethylenedioxythiophene) including Au nanoparticles

    International Nuclear Information System (INIS)

    Zanardi, C.; Terzi, F.; Pigani, L.; Heras, A.; Colina, A.; Lopez-Palacios, J.; Seeber, R.

    2008-01-01

    Composite material consisting of poly(3,4-ethylenedioxythiophene) (PEDOT), including Au nanoparticles encapsulated by N-dodecyl-N,N-dimethyl-3-ammonium-1-propanesulphonate (SB12) is synthesised by constant-current method on ITO glass, in aqueous medium, leading to an electrode coating. The synthesis process is followed by UV-vis spectroelectrochemistry, both in normal-beam and in parallel-beam configurations. Under the same experimental conditions PEDOT is also synthesised by electropolymerisation only in the presence of LiClO 4 supporting electrolyte, as well in solutions also containing SB12. The data relative to the electrosynthesis of the three materials are compared. The composite material based on the conductive polymer matrix including Au nanoparticles has been characterised by SEM, TEM, ICP, Raman and UV-vis spectroscopies. The behaviour of the three different electrode coatings with respect to p-doping process has been studied by conventional electrochemical techniques and by potentiostatic and potentiodynamic UV-vis spectroelectrochemical methods. Conclusions are drawn out about the effect of the presence of the surfactant and of Au nanoparticles on the electrochemical properties of the electrode system

  9. Chitosan-gold-Lithium nanocomposites as solid polymer electrolyte.

    Science.gov (United States)

    Begum, S N Suraiya; Pandian, Ramanathaswamy; Aswal, Vinod K; Ramasamy, Radha Perumal

    2014-08-01

    Lithium micro batteries are emerging field of research. For environmental safety biodegradable films are preferred. Recently biodegradable polymers have gained wide application in the field of solid polymer electrolytes. To make biodegradable polymers films plasticizers are usually used. However, use of plasticizers has disadvantages such as inhomogenities in phases and mechanical instability that will affect the performance of Lithium micro batteries. We have in this research used gold nanoparticles that are environmentally friendly, instead of plasticizers. Gold nanoparticles were directly template upon chitosan membranes by reduction process so as to enhance the interactions of Lithium with the polymer. In this article, for the first time the characteristics of Chitosan-gold-Lithium nanocomposite films are investigated. The films were prepared using simple solution casting technique. We have used various characterization tools such as Small Angle Neutron Scattering (SANS), XRD, FTIR, Raman, FESEM, and AFM, Light scattering, Dielectric and electrical conductivity measurements. Our investigations show that incorporation of gold results in enhancement of conductivity in Lithium containing Chitosan films. Also it affects the dielectric characteristics of the films. We conclude through various characterization tools that the enhancement in the conductivity was due to the retardation of crystal growth of lithium salt in the presence of gold nanoparticles. A model is proposed regarding the formation of the new nanocomposite. The conductivity of these biodegradable films is comparable to those of the current inorganic Lithium micro batteries. This new chitosan-Au-Li nanocomposite has potential applications in the field of Lithium micro batteries.

  10. Increased charge transfer of PVDF-HFP based electrolyte by addition of graphite nanofiber and its application in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing Guan; Jin, En Mei; Gu, Hal-Bon, E-mail: hbgu@chonnam.ac.kr

    2013-12-15

    The PEO and PVDF-HFP mixtures were used as polymer electrolytes in solid-state dye-sensitized solar cells (DSSCs). Correlation between the ionic conductivity and cell performance by varying the composition of polymer electrolytes was investigated to elucidate the importance of the ionic conductivity in determining the charge transfer and energy conversion efficiency of solid-state DSSCs. In this work, for increasing the ionic conductivity and charge transfer, GNF was added to the polymer electrolyte. The ionic conductivity of polymer electrolyte containing GNF (0.005 g) is 8.67 × 10{sup −4} S cm{sup −1} and pristine polymer electrolyte is 3.81 × 10{sup −4} S cm{sup −1}. The charge transfer of GNF (0.005 g) added DSSCs is faster than the other samples, the electron transport time is 1.53 ms and electron life time is 27.20 ms. The increase of current density with the polymer electrolyte containing GNF (0.005 g) can be possibly attributed to the direct contact between dye/TiO{sub 2} and I{sup −}/I{sub 3}{sup −} that will improve the charge transportation. The highest energy conversion efficiency of 4.60% is obtained for polymer electrolyte containing GNF (0.005 g)

  11. Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Vondrák, Jiří; Michálek, Jiří; Mička, Z.

    2006-01-01

    Roč. 52, č. 3 (2006), s. 1398-1408 ISSN 0013-4686 R&D Projects: GA MŠk LC523; GA MŽP SN/3/171/05 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : polymer gel electrolyte * ionic liquids * lithium-ion batteries Subject RIV: CA - Inorganic Chemistry Impact factor: 2.955, year: 2006

  12. CO tolerance of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gubler, L; Scherer, G G; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Reformed methanol can be used as a fuel for polymer electrolyte fuel cells instead of pure hydrogen. The reformate gas contains mainly H{sub 2}, CO{sub 2} in the order of 20% and low levels of CO in the order of 100 ppm. CO causes severe voltage losses due to poisoning of the anode catalyst. The effect of CO on cell performance was investigated at different CO levels up to 100 ppm. Various options to improve the CO tolerance of the fuel cell were assessed thereafter, of which the injection of a few percents of oxygen into the fuel feed stream proved to be most effective. By mixing 1% of oxygen with hydrogen containing 100 ppm CO, complete recovery of the cell performance could be attained. (author) 2 figs., 2 tabs., 3 refs.

  13. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  14. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous ...

  15. Study on performance of blended fuel PPO - Diesel at generator

    Science.gov (United States)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  16. Radiolytic preparation of PFA-g-PVBSA membranes as a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Fei Geng [Department of Chemistry and Materials Engineering, Changshu Institute of Technology, Nansanhuan Road 99, Changshu, Jiangsu 215-500 (China); Hwang, Mi-Lim; Sohn, Joon-Yong; Nho, Young Chang [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2012-03-01

    In this study, a polymer electrolyte membrane, PFA-g-PVBSA was prepared through the radiation-induced graft copolymerization of vinylbenzyl chloride (VBC) monomer onto a poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA) film and subsequent sulfonation processes. The IEC values and water uptakes of the prepared membranes increased when increasing the contents of the poly(vinylbenzyl sulfonic acid) (PVBSA) graft polymers in the membranes. Compared with Nafion 212, the degree of grafting (DOG) of membranes of 50% and 70% showed higher proton conductivity with significantly lower methanol permeability. The combination of these properties suggests that the prepared membranes are promising for future application in direct methanol fuel cells.

  17. X-ray diffraction studies of chitosan acetate-based polymer electrolytes

    International Nuclear Information System (INIS)

    Osman, Z.; Ibrahim, Z.A.; Abdul Kariem Arof

    2002-01-01

    Chitosan is the product when partially deacetylated chitin dissolves in dilute acetic acid. This paper presents the x-ray diffraction patterns of chitosan acetate, plasticised chitosan acetate and plasticised-salted chitosan acetate films. The results show that the chitosan acetate based polymer electrolyte films are not completely amorphous but it is partially crystalline. X-ray diffraction study also confirms the occurrence of the complexation between chitosan and the salt and the interaction between salt and plasticizer. The salt-chitosan interaction is clearly justified by infrared spectroscopy. (Author)

  18. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  19. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  20. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration.

    Science.gov (United States)

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-03-01

    Although a vast amount of research has been dedicated to investigate the Hofmeister effect on the stability of polymer solutions, a clear understanding of the role of polymer properties in this phenomenon is still missing. Here, the Hofmeister effect of NaCl (destabilizing) and NaSCN (stabilizing) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order to understand the effect of inter-chain interactions on the response to addition of salt. The temperature-driven phase separation of the solutions was monitored by differential scanning calorimetry, which provides the precise value of the phase separation temperature, as well as the enthalpy change accompanied with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect, but amplified the NaSCN effect. This difference is attributed to an electrostatic stabilization mechanism in the case of NaSCN. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Conductivity studies of biopolymer electrolytes based on chitosan incorporated with NH4Br

    International Nuclear Information System (INIS)

    Shukur, M F; Azmi, M S; Zawawi, S M M; Majid, N A; Illias, H A; Kadir, M F Z

    2013-01-01

    A polymer electrolyte system based on chitosan complexed with ammonium bromide (NH 4 Br) salt was prepared by the solution cast technique. 30 wt% NH 4 Br added electrolyte gave a room temperature conductivity of (4.38 ± 1.26) × 10 −7  S cm −1 and increased to (2.15 ± 0.47) × 10 −4  S cm −1 with addition of 40 wt% glycerol. The dependence of the conductivity on temperature proves that both chitosan–NH 4 Br and chitosan–NH 4 Br–glycerol systems are Arrhenian. The activation energy (E a ) value for 70 wt% chitosan–30 wt% NH 4 Br film is 0.31 eV and the E a value for 42 wt% chitosan–18 wt% NH 4 Br–40 wt% glycerol film is 0.20 eV. The carboxamide band at 1640 cm −1 and the amine band at 1549 cm −1 in the spectrum of pure chitosan film shifted to 1617 and 1516 cm −1 , respectively, in the spectrum of 70 wt% chitosan–30 wt% NH 4 Br film, indicating the occurrence of complexation between polymer and salt. The band at 1024 cm −1 in the pure chitosan film spectrum, which corresponds to the C–O stretching vibration, shifted to lower wavenumbers on addition of salt. A new band appears at 997 cm −1 on addition of 40 wt% glycerol. (paper)

  2. Phase separation phenomena in solutions of poly(2,6-dimethyl-1,4-phenyleneoxide) in mixtures of trichloroethylene, 1-octanol, and methanol: Relationship to membrane formation

    NARCIS (Netherlands)

    Wijmans, J.G.; Rutten, H.J.J.; Smolders, C.A.

    1985-01-01

    The phase boundaries in the quaternary system consisting of the polymer poly(2,6-dimethyl-1,4-phenyleneoxide) (PPO[Note ][PPO is a registered trademark of the General Electric Company.]), the solvent trichloroethylene (TCE), and the nonsolvents 1-octanol (OcOH) and methanol (MeOH) are determined.

  3. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Nasef, M.M.; Nasef, M.M.

    2010-01-01

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  4. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  5. Electrode of solid state polymer electrolyte type electrochemical cell; Kobunshi kotai denkaisitsugata denki kagaku seru yo denkyo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M [Yamanashi, (Japan); Inoue, M [Tanaka Kikinzoku Kogyo, Tokyo (Japan)

    1996-04-12

    The solid state polymer electrolyte type electrochemical cell (PEMFC) has such problem that the gas diffusion from the resin surface to the catalyst surface is prevented when the coating thickness of cation exchange resin on the catalyst particle and the number of micropores which conduct the gas flow in the catalyst layer are reduced. Resultingly, a sufficiently large current cannot be taken out of the cell. This invention solves the problem. The catalyst layer of electrode of PEMFC consists of a mixture of the conductive catalyst carrier coated with cation exchange resin and the conductive carrier coated with fluorinated hydrocarbon polymer. Adding the water repellent material to the electrode in this way improves the air-passing porosity. As for the cation exchange resin, perfluorocarbon sulfonate or perfluorocarbon carboxylate can be used. For the fluorinated hydrocarbon polymer, fluorinated polyethylene is preferably used. 4 figs., 2 tabs.

  6. Optical absorption studies on biodegradable PVA/PVP blend polymer electrolyte system

    Science.gov (United States)

    Basha, S. K. Shahenoor; Reddy, K. Veera Bhadra; Rao, M. C.

    2018-05-01

    Biodegradable blend polymer electrolytes of PVA/PVP with different wt% ratios of MgCl2.6H2O have been prepared using solution cast technique. Optical absorption studies were carried-out on to the prepared films at room temperature using JASCO V-670 Spectrophotometer in the wavelength region 200-600 nm. Due to the clusters between the vibrations of molecules a broad peak is obtained due to п-п* transition in the wavelength region 310-340 nm.

  7. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    Science.gov (United States)

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  8. [Spectral analysis of polyphenol oxidase (PPO) and lipoxygenase (LOX) treated by pulsed electric field].

    Science.gov (United States)

    Luo, Wei; Zhang, Ruo-Bing; Chen, Jie; Wang, Li-Ming; Guan, Zhi-Cheng; Jia, Zhi-Dong

    2009-08-01

    Inactivation effect of pulsed electric field (PEF) on polyphenol oxidase (PPO) and lipoxygenase (LOX) was investigated using a laboratory PEF system with a coaxial treatment chamber. Circular dichroism (CD) and fluorescence analysis were used to study the conformation change of the protein. The experimental results show that PPO and LOX can be effectively inactivated by the PEF treatment. Inactivation effect of PPO and LOX increases with the increase in the applied electric strength and the treatment time. Activity of PPO and LOX can be reduced by 60.3% and 21.7% at 20 kV x cm(-1) after being treated for 320 micros respectively. The decrease of the negative peaks (208 and 215 nm in PPO spectra, 208 nm and 218 nm in LOX spectra) in CD spectra of PPO and LOX shows that PEF treatment caused a loss of alpha-helix and increase in beta-sheet content, indicating that conformation changes occur in the secondary structure of PPO and LOX enzyme. This effect was strengthened as the applied electric field increased: alpha-helical content of PPO and LOX was 56% and 29% after being treated at 8 kV x cm(-1), however, when the electric field was increased up to 20 kV x cm(-1), alpha-helical content of PPO and LOX decreased to 21% and 16% respectively. The decrease rate of alpha-helix and increase rate of beta-sheet in PPO are higher than LOX, indicating that the second conformation of PPO is less resistant to PEF treatment than LOX. The fluorescence intensity of LOX increases after PEF treatment. At the same time, increasing the applied pulsed electric field increases the fluorescence intensity emitted. Fluorescence measurements confirm that tertiary conformation changes occur in the local structure of LOX. However the possible mechanism of the conformation change induced by the PEF treatment is beyond the scope of the present investigation.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... range of 298–823 K. In the present work, FTIR spectroscopy is used to study polymer structure and interactions between PEO and LiClO4, which can make changes in the vibrational modes of the atoms or molecules in the material. FTIR spectra show the complexation of LiClO4 with PEO. The SEM photographs indicated ...

  10. Development of nano-structure controlled polymer electrolyte fuel-cell membranes by high-energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Asano, Masaharu; Maekawa, Yasunari; Yoshida, Masaru; Kobayashi, Misaki; Nomura, Kumiko; Takagi, Shigeharu

    2008-01-01

    There is increasing interest in polymer electrolyte fuel cells (PEFCs) together with recent worldwide energy demand and environmental issues. In order to develop proton-conductive membranes for PEFCs, we have been using high-energy heavy ion beams from the cyclotron accelerator of Takasaki Ion Accelerators for Advanced Radiation Application (TIARA), JAEA. Our strategic focus is centered on using nano-scale controllability of the ion-beam processing; the membrane preparation involves (1) the irradiation of commercially-available base polymer films with MeV ions, (2) graft polymerization of vinyl monomers into electronically-excited parts along the ion trajectory, called latent tracks, and (3) sulfonation of the graft polymers. Interestingly, the resulting membranes exhibited anisotropic proton transport, i.e., higher conductivity in the thickness direction. According to microscopic observations, this is probably because the columnar electrolyte phase extended, with a width of tens-to-hundreds nanometers, through the membrane. Other excellent membrane properties, e.g., sufficient mechanical strength, high dimensional stability, and low gas permeability should be due to such a controlled structure. (author)

  11. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    Science.gov (United States)

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    Science.gov (United States)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  13. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin; Lee, Jyh-Fu; Wu, Nae-Lih

    2009-01-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  14. Electrochemical characterizations on MnO2 supercapacitors with potassium polyacrylate and potassium polyacrylate-co-polyacrylamide gel polymer electrolytes

    KAUST Repository

    Lee, Kuang-Tsin

    2009-11-01

    MnO2·nH2O supercapacitors with potassium polyacrylate (PAAK) and potassium polyacrylate-co-polyacrylamide (PAAK-co-PAAM) gel polymer electrolytes (GPEs) having the weight compositions of polymer:KCl:H2O = 9%:6.7%:84.3% have been characterized for their electrochemical performance. Compared with the liquid electrolyte (LE) counterpart, the GPE cells exhibit remarkable (∼50-130%) enhancement in specific capacitance of the oxide electrode, and the extent of the enhancement increases with increasing amount of the carboxylate groups in the polymers as well as with increasing oxide/electrolyte interfacial area. In situ X-ray absorption near-edge structure (XANES) analysis indicates that the oxide electrodes of the GPE cells possess higher Mn-ion valences and are subjected to greater extent of valence variation than that of the LE cell upon charging/discharging over the same potential range. Copolymerization of PAAK with PAAM greatly improves the cycling stability of the MnO2·nH2O electrode, and the improvement is attributable to the alkaline nature of the amino groups. Both GPEs exhibit ionic conductivities greater than 1.0 × 10-1 S cm-1 and are promising for high-rate applications. © 2009 Elsevier Ltd. All rights reserved.

  15. Polymer electrolyte for lithium batteries and fuel cells - A key element; L'electrolyte polymere pour batterie lithium et piles a combustible. Un element cle

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.Y.; Chauvin, C.; Marechal, M.; Saunier, J.; Glandut, N.; Alloin, F.; My Ahmed Said, A.S.; Guindet, J. [Institut National Polytechnique, ENSEEG/INPG, LEPMI, 38 - Grenoble (France); Chabert, F.; El Kissi, N. [Ecole Nationale Superieure d' Hydraulique et de Mecanique de Grenoble, ENSHMG/INPG, 38 - Grenoble (France); Lojoiu, C. [ERAS-Labo 222, 38 - Saint Nazaires les Eymes (France); Dufresne, A. [CERMAV/CNRS, 38 - Grenoble (France)

    2003-10-01

    Fuel cells and lithium batteries based on polymer electrolytes are promising technologies. A global approach of these materials, including their functional as well as their structural properties and the film forming conditions is necessary. At the junction of several scientific fields - i.e. chemistry, electrochemistry, physical chemistry, rheology - the development of new materials requires a multi-disciplinary approach. The huge variety of macromolecular structure, as the opportunity to incorporate the ionic function onto the macromolecular backbone, will allow many draw-backs related to the use of liquid electrolytes to be overcame. (authors)

  16. Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization

    International Nuclear Information System (INIS)

    Vittadello, Michele; Waxman, David I.; Sideris, Paul J.; Gan Zhehong; Vezzù, Keti; Negro, Enrico; Safari, Ahmad; Greenbaum, Steve G.; Di Noto, Vito

    2011-01-01

    A major obstacle for a viable technological development of dye sensitized solar cells (DSSCs) is still the synthesis of a high performance iodide-conducting polymer electrolyte. Here we present a series of eight electrolytic complexes with formula PEG1000/(MgI 2 ) x (I 2 ) y (0.0038 ≤ x ≤ 0.5801, 0 ≤ y ≤ 0.0636). The synthesis involves the preparation of a disordered form of MgI 2 by a metallorganic route, which enables us to dissolve high amounts of salt in the chosen polymer host. The thermal analysis of the resulting polymer electrolytes was performed using modulated differential scanning calorimetry measurements. Vibrational studies were carried out using medium FT-IR, far FT-IR and FT-Raman. The variation of the CO and OH stretching modes in the medium infrared, as a function of the mole-to-mole ratio n Mg /n O , was investigated by Gaussian decomposition to provide insight into the polymer–polymer and salt–polymer interactions in these materials. The FT-Raman spectra confirmed and complemented the vibrational assignment. The conductivity study of these systems was performed by electrical spectroscopy in the frequency interval 10 mHz–10 MHz. The direct current conductivity (σ DC ) profiles versus the reciprocal temperature exhibited a Vögel-Tamman-Fülcher (VTF) behavior. The best σ DC at 50 °C was 5 × 10 −5 S cm −1 . The overall results indicate the presence of bivalent, monovalent and neutral species, Mg 2+ , [MgI] + and MgI 2 , respectively, which participate in the conduction process. These results are consistent with what was previously observed in PEG400-based systems doped with δ-MgCl 2 . The presence of at least one Mg site containing a distribution in parameters was observed using 25 Mg solid state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The site has been assigned to a Mg complex involving the coordination by oxygen atoms of the polymer backbone.

  17. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  18. Effect of Dimethyl Carbonate Plasticizer on Ionic Conductivity of Methyl Cellulose-Based Polymer Electrolytes

    International Nuclear Information System (INIS)

    Mustafa, M.F.; Ridwan, N.I.M.; Hatta, F.F.; Yahya, M.Z.A.

    2012-01-01

    Influences of dimethyl carbonate (DMC) plasticizer on ionic conductivity, dielectric permittivity and electrical modulus formalism of methyl cellulose (MC)-based polymer electrolytes have been studied. The room temperature electrical conductivity as measured by impedance spectroscopy shows that a methyl cellulose film has a conductivity of ∼10 -10 S cm -1 . In this study, other than KOH ionic dopant, DMC plasticizer is also added to the polymer with the aim of enhancing the electrical conductivity of the polymer. The highest room temperature conductivity of the plasticised sample is ∼10 -5 S cm -1 . The plot of log σ versus 10 3 / T for the highest conducting sample obeys Arrhenius rule indicating that the conductivity occurs by thermally activated mechanism. (author)

  19. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Wang, Yun [NON LANL; Mishlera, Jeff [NON LANL

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  20. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  1. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  2. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  3. Analyses of ionic conductivity and dielectric behavior of solid polymer electrolyte based 2-hydroxyethyl cellulose doped ammonium nitrate plasticized with ethylene carbonate

    Science.gov (United States)

    Hafiza, M. N.; Isa, M. I. N.

    2017-09-01

    A solid polymer electrolyte (SPE) based 2-hydroxyethyl cellulose (2-HEC) doped ammonium nitrate (NH4NO3) plasticized with ethylene carbonate (EC) has been investigated using electrical impedance spectroscopy (EIS). The highest ionic conductivity of (1.17±0.01) × 10-3 Scm-1 was obtained for 2-HEC-NH4NO3 plasticized with 16 wt.% EC. Dielectric and modulus study showed non-Debye type of 2-HEC-NH4NO3-EC SPE.

  4. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  5. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell

    DEFF Research Database (Denmark)

    Singdeo, Debanand; Dey, Tapobrata; Gaikwad, Shrihari

    2017-01-01

    field design is proposed and its usefulness for the fuel cell applications are evaluated in a high-temperature polymer electrolyte fuel cell. The proposed geometry retains some of the features of serpentine flow field such as multiple bends, while modifications are made in its in-plane flow path...

  6. New approaches to the design of polymer and liquid electrolytes for lithium batteries

    Science.gov (United States)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they do not interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference, and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in poly(ethylene oxide) (PEO)-based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation complexing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach, since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion complexing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3SO 3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane-based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2 M LiF solutions in DME, an increase in solubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6×10 -3 S cm -1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2O 4 cells.

  7. Effect of sulphuric acid concentration on electroosmotic flow through polymer electrolyte membranes in PEM fuel cells. Paper no. IGEC-1-061

    International Nuclear Information System (INIS)

    Karimi, G.; Li, X.

    2005-01-01

    Polymer electrolyte membrane (PEM) fuel cells are highly efficient and environmentally clean, and hence one of the most promising power sources for both stationary and mobile applications. The operations of PEM fuel cells are complicated by the electroosmotic flow of water from anode to cathode through the polymer electrolyte membrane leading to the membrane dehydration and fuel cell performance degradations. In this study, electro osmotic flow in polymer electrolyte membranes is modeled by incorporating the electro kinetic effects in the presence of euphoric acid. The governing Poisson-Boatman and the Nervier-Stokes equations were solved numerically for a single membrane pore to determine the electro osmotic flow distributions through the membrane over a wide range of acid concentrations. The presence of euphoric acid modifies the protons distribution in the membrane and hence alters the driving force for electroosmotic drag. Numerical results indicate that the electro osmotic flow increases steadily with acid concentration. The water transport due to electro osmosis is almost doubled at 2 M acid concentration compared with that of non-doped membrane. The value of electroosmotic drag coefficient however falls steadily with acid concentration due to the presence of a larger number of protons in the electrolyte. (author)

  8. Chemical stability of {gamma}-butyrolactone-based electrolytes for aluminium electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Takeda, Masayuki [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Suzuki, Yoko [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1996-06-01

    {gamma}-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/{gamma}-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/{gamma}-butyrolactone electrolytes decomposed by SN2 reactions giving alkyl benzoates and trialkylamines. The deterioration of the carboxylate salt/{gamma}-butyrolactone electrolytes was accelerated by electrolysis. (orig.)

  9. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  10. Optimum pH and pH Stability of Crude Polyphenol Oxidase (PPO ...

    African Journals Online (AJOL)

    The effect of pH on the activity and stability of crude polyphenol oxidase (PPO) extracted from garden egg (Solanum aethiopicum), pawpaw (Carica papaya), pumpkin ... Optimum pH values were found to be 6.0,6.5,6.0, 4.5 and 4.0/or 8.0 for the enzyme extracted from Solanum aethiopicum, Carica papaya, Cucurbita pepo, ...

  11. Dynamic NMR studies of polymer electrolyte materials for application to lithium-ion batteries and fuel cells

    Science.gov (United States)

    Khalfan, Amish N.

    This dissertation investigates the structural and dynamical properties of polymer electrolyte materials for applications to lithium-ion batteries and fuel cells. The nuclear magnetic resonance (NMR) technique was used to characterize these materials. NMR aids in understanding the local environments of nuclei and the mobility of a molecular/ionic species. Five research projects were carried out, and they have been outlined in this work. NASA has developed rod-coil block copolymers for use as electrolytes in lithium-ion batteries. The copolymers exhibit a microphase separation within their structure leading to the formation of ionically conducting channels. We studied ion transport properties of the copolymers, and determined the predominant mechanism for transport to occur in the amorphous phase. Seven gel polymer electrolytes, each containing a mixture of LiBETI salt and organic solvents, were studied. Two of them incorporated BMI (1-n-butyl-3-methylimidazolium) ionic liquid. Ionic liquids are room temperature molten salts. BMI had been thought to enhance ion mobility. However, the BMI component was observed to restrict ion mobility. Gel polymer electrolytes containing LiTFSI salt and P13TFSI ionic liquid with or without the inclusion of ethylene carbonate (EC) were studied for application to lithium metal/air batteries, which have high theoretical energy densities. The addition of EC was found to improve lithium ion transport. The gels with EC therefore prove to be favorable for use as electrolytes in lithium metal/air batteries. Highly sulfonated poly(arylenethioethersulfone) (SPTES) membranes were examined for use in direct methanol fuel cells (DMFCs) as an alternative to the Nafion membrane. DMFCs use methanol as a fuel instead of reformed hydrogen as in conventional proton exchange membrane fuel cells. Compared to Nafion, the SPTES membranes were shown to retain water better at high temperatures and yield lower methanol diffusion. SPTES membranes with the

  12. Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraaman, B. [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India); Maruthamuthu, P., E-mail: pmaruthu@yahoo.com [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India)

    2011-09-01

    Highlights: > Incorporation of a {pi}-electron donor compound as dopant in poly(vinylidene fluoride) along with redox couple (I{sup -}/I{sub 3}{sup -}) which forms brush like nanotubes. > Investigations about the use of conducting carbon coated FTO as a durable counter electrode and its effects in DSC. > High charge separation and the channelized flow of electrons in the nanotubes in electrolyte favors stable performance. - Abstract: In the present work, we report the incorporation of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) in poly(vinylidene fluoride) (PVDF) along with the redox couple (I{sup -}/I{sub 3}{sup -}). When ABTS, a {pi}-electron donor, is used to dope PVDF, the polymer composite forms brush-like nanotubes and has been successfully used as a solid polymer electrolyte in dye-sensitized solar cells. Under the given conditions, the electrolyte composition forms nanotubes while it is doped with ABTS, a {pi}-electron donor. With this new electrolyte, a dye-sensitized solar cell was fabricated using N3 dye adsorbed over TiO{sub 2} nanoparticles as the photoanode and conducting carbon cement coated FTO as counter electrode.

  13. Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0.5Co0.2Mn0.3O2 lithium-polymer batteries

    International Nuclear Information System (INIS)

    Yang, Chun-Chen; Lian, Zuo-Yu; Lin, S.J.; Shih, Jeng-Ywan; Chen, Wei-Houng

    2014-01-01

    Graphical abstract: - Highlights: • PVDF-HFP/SBA15 membrane and NCM cathode material were prepared for Li ion battery. • SBA15 fillers can trap more liquid electrolytes to enhance the ionic conductivity. • Modified fillers with functional groups play a key role in reducing impedance. • LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery showed excellent electrochemical performance. - Abstract: This study reports the preparation of a composite polymer electrolyte for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries. Poly(vinylidiene fluoride-hexafluoropropylene) (denoted as PVDF-HFP) was used as the polymer host and mesoporous modified-silica fillers (denoted as m-SBA15) used as the solid plasticizer were added into the polymer matrix. The characteristic properties of the composite polymer membranes were examined using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and an AC impedance method. The discharge capacities of LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer batteries with a PE separator, pure PVDF-HFP polymer membrane, or a PVDF-HFP/10 wt.%m-SBA15 composite at 0.1 C were determined to be 155.5, 159.5, and 198.6 mAh g −1 , respectively. The LiNi 0.5 Co 0.2 Mn 0.3 O 2 polymer battery containing the PVDF-HFP/10 wt.%m-SBA15 composite achieved discharge capacities of 194, 170, 161, 150, 129, 115, and 87 mAh g −1 at 0.1, 0.2, 0.5, 1, 3, 5, and 10 C, respectively. The lithium-polymer battery demonstrated a high coulomb efficiency of ca. 99%. The PVDF-HFP/m-SBA15 composite membrane is a strong candidate for application in LiNi 0.5 Co 0.2 Mn 0.3 O 2 lithium-polymer batteries

  14. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  15. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  16. Performance comparison of protonic and sodium phosphomolybdovanadate polyoxoanion catholytes within a chemically regenerative redox cathode polymer electrolyte fuel cell

    Science.gov (United States)

    Ward, David B.; Gunn, Natasha L. O.; Uwigena, Nadine; Davies, Trevor J.

    2018-01-01

    The direct reduction of oxygen in conventional polymer electrolyte fuel cells (PEFCs) is seen by many researchers as a key challenge in PEFC development. Chemically regenerative redox cathode (CRRC) polymer electrolyte fuel cells offer an alternative approach via the indirect reduction of oxygen, improving durability and reducing cost. These systems substitute gaseous oxygen for a liquid catalyst that is reduced at the cathode then oxidised in a regeneration vessel via air bubbling. A key component of a CRRC system is the liquid catalyst or catholyte. To date, phosphomolybdovanadium polyoxometalates with empirical formula H3+nPVnMo12-nO40 have shown the most promise for CRRC PEFC systems. In this work, four catholyte formulations are studied and compared against each other. The catholytes vary in vanadium content, pH and counter ion, with empirical formulas H6PV3Mo9O40, H7PV4Mo8O40, Na3H3PV3Mo9O40 and Na4H3PV4Mo8O40. Thermodynamic properties, cell performance and regeneration rates are measured, generating new insights into how formulation chemistry affects the components of a CRRC system. The results include the best CRRC PEFC performance reported to date, with noticeable advantages over conventional PEFCs. The optimum catholyte formulation is then determined via steady state tests, the results of which will guide further optimization of the catholyte formulation.

  17. Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)_3:LiCF_3SO_3 Polymer Electrolytes

    International Nuclear Information System (INIS)

    Xue, Sha; Liu, Yingdi; Li, Yaping; Teeters, Dale; Crunkleton, Daniel W.; Wang, Sanwu

    2017-01-01

    The PEO_3:LiCF_3SO_3 polymer electrolyte has attracted significant research due to high conductivity and enhanced stability in lithium polymer batteries. Most experimental studies have shown that amorphous PEO lithium salt electrolytes have higher conductivity than the crystalline ones. Other studies, however, have shown that crystalline PEO salt complexes can conduct ions. As a result, further theoretical investigations are warranted to help clarify the issue. In this work, we use density functional theory with the climbing image nudged elastic band method to investigate the atomic-scale mechanism of lithium ion transport in the polymer electrolytes. We also use density functional theory and ab initio molecular dynamics simulations to obtain the amorphous structure of PEO_3:LiCF_3SO_3. The diffusion pathways and activation energies of lithium ions in both crystalline and amorphous PEO_3:LiCF_3SO_3 are determined. In crystalline PEO_3:LiCF_3SO_3, the activation energy for the low-barrier diffusion pathway is approximately 1.0 eV. In the amorphous phase, the value is 0.6 eV. This result would support the experimental observation that amorphous PEO_3:LiCF_3SO_3 has higher ionic conductivity than the crystalline phase.

  18. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  19. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z; Kanemura, S; Inaba, M; Takehara, Z; Yao, K; Uchimoto, Y [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  20. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes

    Science.gov (United States)

    Saadiah, M. A.; Samsudin, A. S.

    2018-04-01

    The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.

  1. Electrochromic properties of poly (1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole-co-3,4-ethylenedioxy thiophene) and its application in electrochromic devices

    Science.gov (United States)

    Tarkuc, S.; Sahmetlioglu, E.; Tanyeli, C.; Akhmedov, I. M.; Toppare, L.

    2008-06-01

    Electrochemical copolymerization of 1-(phenyl)-2,5-di(2-thienyl)-1H-pyrrole (PTP) with 3,4-ethylenedioxy thiophene (EDOT) was carried out in acetonitrile (AN)/NaClO4/LiClO4 (0.1 M) solvent-electrolyte couple via potentiodynamic electrolysis. Characterizations of the resulting copolymer were performed via cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and spectroelectrochemical analysis. Spectroelectrochemical analyses show that the copolymer of PTP with EDOT has an electronic band gap (due to π to π∗ transition) of 1.9 eV at 480 nm, with a claret red in the fully reduced form and a blue color in the fully oxidized form. Via kinetic studies, the optical contrast (ΔT %) was found to be 8% for P(PTP-co-EDOT). Results showed that the time required to reach 95% of the ultimate transmittance was 1.7 s for the copolymer. The P(PTP-co-EDOT) film was used to construct a dual type polymer electrochromic device (ECDs) with poly(3,4-ethylenedioxy thiophene) (PEDOT). Spectroelectrochemistry, electrochromic switching and open circuit memory of the device were investigated.

  2. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  3. Highly dispersed TaOx nanoparticles prepared by electrodeposition as oxygen reduction electrocatalysts for polymer electrolyte fuel cells

    KAUST Repository

    Seo, Jeongsuk; Zhao, Lan; Cha, Dong Kyu; Takanabe, Kazuhiro; Katayama, Masao; Kubota, Jun; Domen, Kazunari

    2013-01-01

    for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells (PEFCs). Electrodeposition conditions of Ta complexes and subsequent various heat treatments for the deposited TaOx were examined for the best performance of the ORR. TaOx particles

  4. Advances in Ceramic Supports for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Oran Lori

    2015-08-01

    Full Text Available Durability of catalyst supports is a technical barrier for both stationary and transportation applications of polymer-electrolyte-membrane fuel cells. New classes of non-carbon-based materials were developed in order to overcome the current limitations of the state-of-the-art carbon supports. Some of these materials are designed and tested to exceed the US DOE lifetime goals of 5000 or 40,000 hrs for transportation and stationary applications, respectively. In addition to their increased durability, the interactions between some new support materials and metal catalysts such as Pt result in increased catalyst activity. In this review, we will cover the latest studies conducted with ceramic supports based on carbides, oxides, nitrides, borides, and some composite materials.

  5. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors.

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-04-07

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.

  6. Tantalum oxide-based compounds as new non-noble cathodes for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Ishihara, Akimitsu; Tamura, Motoko; Matsuzawa, Koichi; Mitsushima, Shigenori; Ota, Ken-ichiro

    2010-01-01

    Tantalum oxide-based compounds were examined as new non-noble cathodes for polymer electrolyte fuel cell. Tantalum carbonitride powder was partially oxidized under a trace amount of oxygen gas at 900 o C for 4 or 8 h. Onset potential for oxygen reduction reaction (ORR) of the specimen heat-treated for 8 h was 0.94 V vs. reversible hydrogen electrode in 0.1 mol dm -3 sulfuric acid at 30 o C. The partial oxidation of tantalum carboniride was effective to enhance the catalytic activity for the ORR. The partially oxidized specimen with highest catalytic activity had ca. 5.25 eV of ionization potential, indicating that there was most suitable strength of the interaction of oxygen and tantalum on the catalyst surface.

  7. The effects of PPO activity on the proteome of ingested red clover and implications for improving the nutrition of grazing cattle.

    Science.gov (United States)

    Hart, E H; Onime, L A; Davies, T E; Morphew, R M; Kingston-Smith, A H

    2016-06-01

    Increasing the rumen-stable protein content of feed would lead to improved nitrogen utilisation in cattle, and less nitrogenous waste. Red clover (Trifolium pratense L.) is a high protein ruminant feed containing high polyphenol oxidase (PPO) activity. PPO mediated protein-quinone binding has been linked to protecting plant proteins from proteolysis. To explore the mechanism underlying the effect of PPO on protein protection in fresh forage feeds, proteomic components of feed down-boli produced from wild-type red clover and a low PPO mutant, at point of ingestion and after 4h in vitro incubation with rumen inoculum were analysed. Significant differences in proteomic profiles between wild-type and mutant red clover were determined after 4h incubation, with over 50% less spots in mutant than wild-type proteomes, indicating decreased proteolysis in the latter. Protein identifications revealed preferentially retained proteins localised within the chloroplast, suggesting that PPO mediated protection in the wild-type operates due to the proximity of target proteins to the enzyme and substrates, either diffusing into this compartment from the vacuole or are present in the chloroplast. This increased understanding of protein targets of PPO indicates that wider exploitation of the trait could contribute to increased protein use efficiency in grazing cattle. One of the main challenges for sustainable livestock farming is improving capture of dietary nitrogen by ruminants. Typically up to 70% of ingested protein-N is excreted representing a loss of productivity potential and a serious environmental problem in terms of nitrogenous pollution of lands and water. Identification of key characteristics of rumen-protected protein will deliver target traits for selection in forage breeding programmes. The chloroplastic enzyme PPO catalyzes the oxidation of phenols to quinones, which react with protein. Little is currently known about the intracellular protein targets of the products

  8. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  9. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte.

    Science.gov (United States)

    Zhao, Chen; Wang, Caiyun; Yue, Zhilian; Shu, Kewei; Wallace, Gordon G

    2013-09-25

    There has been an emerging interest in stretchable power sources compatible with flexible/wearable electronics. Such power sources must be able to withstand large mechanical strains and still maintain function. Here we report a highly stretchable H3PO4-poly(vinyl alcohol) (PVA) polymer electrolyte obtained by optimizing the polymer molecular weight and its weight ratio to H3PO4 in terms of conductivity and mechanical properties. The electrolyte demonstrates a high conductivity of 3.4 × 10(-3) S cm(-1), and a high fracture strain at 410% elongation. It is mechanically robust with a tensile strength of 2 MPa and a Young's modulus of 1 MPa, and displays a small plastic deformation (5%) after 1000 stretching cycles at 100% strain. A stretchable supercapacitor device has been developed based on buckled polypyrrole electrodes and the polymer electrolyte. The device shows only a small capacitance loss of 5.6% at 30% strain, and can retain 81% of the initial capacitance after 1000 cycles of such stretching.

  10. The Effects of Lithium Triflate (LiCF3SO3) on the PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    Chew, K. W.; Chen, S. S.; Pang, W. L.; Tan, C. G.; Osman, Z.

    2010-01-01

    The effects of Lithium triflate salt (LiCF 3 SO 3 ), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF 3 SO 3 ) and (PMMA+PC+LiCF 3 SO 3 ) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperature to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF 3 SO 3 ) system is 2.83x10 -12 Scm -1 , 4.39x10 -11 Scm -1 and 3.93x10 -6 Scm -1 respectively. The conductivity for (PMMA+PC+LiCF 3 SO 3 ) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10 -5 Scm -1 . Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH 3 band.

  11. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Brissot, C.; Rosso, M.; Chazalviel, J.N.; Lascaud, S.

    1999-12-01

    The authors report on three different in situ and ex situ concentration measurement methods in symmetric lithium/polymer-electrolyte/lithium cells. The results were examined on the basis of a simple calculation of ionic concentration within the electrolyte, in the case where no dendrite is observed, this calculation accounts quantitatively for all experimental results. In the case of dendritic growth, the authors can measure the concentration distribution around the dendrites; this permits correlation of the active parts of the electrodes and of the growing dendrites with local ionic depletion in the vicinity of these active parts.

  12. Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte

    International Nuclear Information System (INIS)

    Gupta, Ravindra Kumar; Rhee, Hee-Woo

    2012-01-01

    Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I 2 redox-couple solid polymer electrolyte is reported for the first time. For the poly(ethylene oxide)-succinonitrile blend-based electrolyte electrical conductivity was noted as high as ∼3 × 10 −4 S cm −1 at 25 °C, which is an order of magnitude higher than that of pure poly(ethylene oxide)-based electrolyte. It also exhibited relatively better pseudo-activation energy (∼0.08 eV). X-ray diffractometry, polarized optical microscopy, and differential scanning calorimetry studies revealed that succinonitrile is helpful in reducing the poly(ethylene oxide) crystallinity due to its plasticizing property. FT-IR study showed significant modification of the poly(ethylene oxide) chain conformation due to the succinonitrile.

  13. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  14. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  15. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1997-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  16. Syntheses of electroactive layers based on functionalized anthracene for electrochromic applications

    International Nuclear Information System (INIS)

    Yildirim, A.; Tarkuc, S.; Ak, M.; Toppare, L.

    2008-01-01

    A new monomer (DTAT) was synthesized via linking 3,4-ethylenedioxythiophene (EDOT) on anthracene. The polymer, P(DTAT) was electrosynthesized by anodic oxidation of the corresponding monomer in 0.1 M LiClO 4 acetonitrile (ACN) solution. The optical properties, the absorption spectra and the kinetics, were examined. Spectroelectrochemical analysis showed that P(DTAT) has an electronic band gap (due to π-π* transition) of 1.57 eV at 776 nm. Copolymers of DTAT with EDOT were prepared in ACN/LiClO 4 (0.1 M) solvent-electrolyte couple by varying applied potential. The incorporation of an EDOT into the full conjugated backbone, DTAT, affects its optical behavior resulting in different colors; a claret red neutral state, gray and red intermediate states and a blue oxidized state

  17. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  18. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  19. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  20. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

    International Nuclear Information System (INIS)

    Li Mingqiang; Scott, Keith

    2010-01-01

    Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H 3 PO 4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm -1 at a relative humidity 8.4% and temperature of 180 deg. C with a 300% H 3 PO 4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm -2 at cell voltages >0.4 V and current densities of 3.0 A cm -2 . The PTFE/PBI/H 3 PO 4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 deg. C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.

  1. Density functional theory calculations of H/D isotope effects on polymer electrolyte membrane fuel cell operations

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, Satoshi; Oi, Takao [Sophia Univ., Tokyo (Japan). Faculty of Science and Technology

    2015-10-01

    To elucidate hydrogen isotope effects observed between fuel and exhaust hydrogen gases during polymer electrolyte membrane fuel cell operations, H-to-D reduced partition function ratios (RPFRs) for the hydrogen species in the Pt catalyst phase of the anode and the electrolyte membrane phase of the fuel cell were evaluated by density functional theory calculations on model species of the two phases. The evaluation yielded 3.2365 as the value of the equilibrium constant of the hydrogen isotope exchange reaction between the two phases at 39 C, which was close to the experimentally estimated value of 3.46-3.99 at the same temperature. It was indicated that H{sup +} ions on the Pt catalyst surface of the anode and H species in the electrolyte membrane phase were isotopically in equilibrium with one another during fuel cell operations.

  2. The quadrupoles and its formation constant in an electrolytic solution of lithium perchlorate in tetrahydrofuran plus formic acid, at 298.15 K

    International Nuclear Information System (INIS)

    Inocencio, A.A.; Almeida, E.T. de

    1985-01-01

    The condutance data for the electrolytic solutions of LiclO 4 in a mixture of tetrahydrofuran (THF) plus formic acid, indicate the existence of pairs, triple ions and quadrupoles. The association constantes K sub(a) and K sub(t) for the ion pairs and triple ions, respectively, have been included in a previous paper, where those experimental results have been published. Now, through an analysis accounting simultaneously for the pairs, triple ions and quadrupoles in the solution, the quadrupole formation constant K sub(q) has been calculated, together with K sub(a) and K sub(t). The activity coefficients have been obtained by means of the Debye-Huckel's theory, Stockes radii and solvation numbers have been estimated and the structure of the ionic aggregates discussed. (Author) [pt

  3. Immunogold Labelling to Localize Polyphenol Oxidase (PPO) During Wilting of Red Clover Leaf Tissue and the Effect of Removing Cellular Matrices on PPO Protection of Glycerol-Based Lipid in the Rumen

    Science.gov (United States)

    The enzyme polyphenol oxidase (PPO) reduces the extent of proteolysis and lipolysis within red clover fed to ruminants. PPO catalyses the conversion of phenols to quinones which can react with nucleophilic cellular constituents (e.g. proteins), forming protein-phenol complexes that may reduce protei...

  4. Preparation and characterization of a Polyacrylonitrile based gel polymer electrolyte for redox capacitors

    Directory of Open Access Journals (Sweden)

    C.M. Bandaranayake

    2016-06-01

    Full Text Available In this study, a gel polymer electrolyte (GPE consisting with polyacrylonitrile (PAN, ethylene carbonate (EC, propylene carbonate (PC and magnesium trifluromethane sulfonate (Mg(CF3SO32 was prepared using the hot pressed method. The starting materials were heated at 130 oC for 2 hours and the resulting hot viscous mixture was pressed in between two well cleaned glass plates. The composition was fine-tuned by varying the salt and the polymer concentration in order to obtain a mechanically stable, thin and flexible film with a high ionic conductivity. It was found that the composition, 105 PAN : 150 MgTF : 400 EC : 400 PC gives the maximum conductivity of 1.06 x 10-2 Scm-1. DC polarization test done with blocking electrodes confirmed the ionic nature of the sample while the results obtained with non-blocking electrodes proved that the anionic contribution for the conductivity is dominant. The sample was used in redox capacitors having two identical polypyrrole electrodes doped with dodecylbenzesulfonate. Cyclic Voltammetry, Galvanostatic Charge Discharge and Electrochemical Impedance Spectroscopy techniques were used to evaluate the performance of the redox capacitors. The specific capacitance was high at low scan rates. The electrolyte was quite stable when use in the redox capacitors. Further, redox capacitor was having a good cycleability which is one of the important key issues to be considered for practical applications.

  5. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Adam, Nurul Ilham [Faculty of Applied Sciences, Universiti Teknologi MARA, KampusTapah, 35400 Tapah Road, Tapah, Perak (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Sciences and Technology, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia); Ali, Ab Malik Marwan [Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  6. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    International Nuclear Information System (INIS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-01-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ( 1 HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1 HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF 3 SO 3 show the highest conductivity. The complexation between EMG30 and LiCF 3 SO 3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  7. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    Science.gov (United States)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  8. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-01-01

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456

  9. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Po-Hsin Wang

    2018-04-01

    Full Text Available A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL and ionic liquid (IL. This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br and TFSI− in PIL-M-(TFSI, respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br and (PIL-M-(TFSI solid electrolytes, respectively.

  10. Ultrahigh-vacuum in situ electrochemistry with solid polymer electrolyte and x-ray photoelectron spectroscopy studies of polypyrrole

    International Nuclear Information System (INIS)

    Skotheim, T.A.; Florit, M.I.; Melo, A.; O'Grady, W.E.

    1984-01-01

    A new in situ combined electrochemistry and x-ray-photoelectron-spectroscopy (XPS) technique using solid polymer electrolytes has been used to characterize electrically conducting films of polypyrrole perchlorate. The technique allows in situ electrochemical oxidation and reduction (doping and undoping) in ultrahigh vacuum and the simultaneous study of the polymer with XPS as a function of its electrochemical potential. We demonstrate that some anion species interact strongly electrostatically with the nitrogen heteroatoms. We also show conclusively that the electrochemistry of polypyrrole is highly irreversible

  11. Characterization of polymer electrolytes for fuel cell applications

    International Nuclear Information System (INIS)

    Zawodzinski, T.A. Jr.; Springer, T.E.; Uribe, F.; Gottesfeld, S.

    1992-01-01

    We review here our recent work on polymer electrolyte fuel cells emphasizing membrane transport issues. Transport parameters measured at 30 degrees C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and pretonic conductivity were determined for Nafion reg-sign 117, Membrane C, and Dow XUS 13204.10 Developmental Fuel Cell Membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Data on water sorption and conductivity are reported for an experimental membrane which is a modified form of Nafion. Contact angle measurements indicate that the surface of a perfluorosulfonic acid membrane exposed to water vapor is quite hydrophobic, even in the presence of saturated water vapor. Modeling of water distribution in PEFC's based on the uptake and transport data shows that membrane thickness contributes in a nonlinear fashion to performance in PEM fuel cells. Finally, some work currently underway is discussed

  12. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  13. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible