WorldWideScience

Sample records for polymer based systems

  1. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  2. Polymer-based platform for microfluidic systems

    Science.gov (United States)

    Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA

    2009-10-13

    A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.

  3. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...

  4. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  5. Polymer based drug delivery systems for mycobacterial infections.

    Science.gov (United States)

    Pandey, Rajesh; Khuller, G K

    2004-07-01

    In the last decade, polymer based technologies have found wide biomedical applications. Polymers, whether synthetic (e.g. polylactide-co-glycolide or PLG) or natural (e.g. alginate, chitosan etc.), have the property of encapsulating a diverse range of molecules of biological interest and bear distinct therapeutic advantages such as controlled release of drugs, protection against the premature degradation of drugs and reduction in drug toxicity. These are important considerations in the long-duration treatment of chronic infectious diseases such as tuberculosis in which patient non-compliance is the major obstacle to successful chemotherapy. Antitubercular drugs, singly or in combination, have been encapsulated in polymers to provide controlled drug release and the system also offers the flexibility of selecting various routes of administration such as oral, subcutaneous and aerosol. The present review highlights the approaches towards the preparation of polymeric antitubercular drug delivery systems, emphasizing how the route of administration may influence drug bioavailability as well as the chemotherapeutic efficacy. In addition, the pros and cons of the various delivery systems are also discussed.

  6. Development of buccal drug delivery systems based on a thiolated polymer.

    Science.gov (United States)

    Langoth, Nina; Kalbe, Jochen; Bernkop-Schnürch, Andreas

    2003-02-18

    The purpose of the present study was to investigate the benefit of thiolated polymers (thiomers) for the development of buccal drug delivery systems. L-Cysteine was thereby covalently attached to polycarbophil (PCP) mediated by a carbodiimide. The resulting conjugate displayed 140.5+/-8.4 microM thiol groups per gram polymer. Disintegration studies were carried out with tablets based on unmodified polymer and conjugated polymer, respectively. Due to the formation of disulfide bonds within the thiolated polymer, the stability of matrix-tablets based on this polymer was strongly improved. Additionally tensile studies were carried out, which were in good correlation with further results obtained by mucoadhesion studies, using the rotating cylinder method. These results showed that tablets based on thiolated PCP remained attached on freshly excised porcine mucosa 1.8 times longer than the corresponding control. Moreover, the enzyme inhibitory properties of polymers were evaluated as well. Thiolated PCP increased the stability of the synthetic substrate for aminopeptidase N-leu-p-nitroanilide (N-leu-pNA) and the model drug leucin-enkephalin (leu-enkephalin) against enzymatic degradation on buccal mucosa. Due to the use of thiolated polymers also a controlled drug release for leu-enkephalin was guaranteed over a time period for more than 24 h. Results of the present studies suggest that thiolated polymers represent a very useful tool for buccal delivery of peptide drugs.

  7. Novel routes to liquid-based self-healing polymer systems

    NARCIS (Netherlands)

    Mookhoek, S.D.

    2010-01-01

    Inspired by the current state-of-the-art and the progressing advancements in the field of self-healing materials, this thesis addresses several novel routes to advance the concept of liquid-based self-healing polymer systems. This thesis presents the concept and characterisation of a one-component

  8. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  9. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  10. Polymer-Based Novel Lung Targeted Delivery Systems.

    Science.gov (United States)

    Elmowafy, Enas; Osman, Rihab; Ishak, Rania A H

    2017-01-01

    Due to its unique features, the respiratory tract had received great attention as a promising non-invasive route for drug administration to achieve both local and systemic effects. Efforts spent to tailor systems able to overcome the lung defence mechanisms and biological barriers are followed in this review. Aerodynamic diameter, morphology, lung deposition and drug release profiles are the main criteria describing the selected new smart lung targeted delivery systems. Novel systems such as nanoparticles, nano-embedded-in microparticles (NEM), small microparticles (MP), large porous particles (LPP), PulmospheresTM and polymeric micelles are used to passively target different areas in the respiratory tract. The most common preparation methods are outlined in the article. Special emphasis was given to the characteristics of the polymers used to fabricate the developed systems. Efforts made to prepare systems using chitosan (CS), alginate (alg), hyaluronic acid (HA), gelatin and albumin as examples of natural polymers and poly lactic-co-glycolic acid (PLGA) and poly(Ɛ-caprolactone) (PCL) as synthetic polymers were compiled. The continuous development and work in the area of lung targeting resulted in the development of engineered smart platforms with the capability to carry small drug molecules, proteins and genes to treat a variety of local and systemic diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  12. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  13. Polymer hydrogels as optimized delivery systems

    International Nuclear Information System (INIS)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B.

    2013-01-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  14. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  15. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  16. Exploring the role of peptides in polymer-based gene delivery.

    Science.gov (United States)

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Morphology of polymer-based films for organic photovoltaics

    OpenAIRE

    Ruderer, Matthias A.

    2012-01-01

    In this thesis, polymer-based films are examined for applications in organic photovoltaics. Polymer-fullerene, polymer-polymer and diblock copolymer systems are characterized as active layer materials. The focus is on experimental parameters influencing the morphology formation of the active layer in organic solar cells. Scattering and imaging techniques provide a complete understanding of the internal structure on different length scales which is compared to spectroscopic and photovoltaic pr...

  18. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Alka Lohani

    2014-01-01

    Full Text Available Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.

  19. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polymer reinforcement of cement systems

    International Nuclear Information System (INIS)

    Swamy, R.N.

    1979-01-01

    In the last couple of decades several cement- and concrete-based composites have come into prominence. Of these, cement-polymer composites, like cement-fibre composites, have been recognised as very promising, and considerable research and development on their properties, fabrication methods and application are in progress. Of the three types of concrete materials which incorporate polymers to form composites, polymer impregnated concrete forms a major development in which hardened concrete is impregnated with a liquid monomer which is subsequently polymerized to form a rigid polymer network in the pores of the parent material. In this first part of the extensive review of the polymer reinforcement of cement systems, the process technology of the various monomer impregnation techniques and the properties of the impregnated composite are assessed critically. It is shown that the high durability and superior performance of polymer impregnated concrete can provide an economic and competitive alternative in in situ strengthening, and in other areas where conventional concrete can only at best provide adequate performance. The review includes a section on radiation-induced polymerization. (author)

  1. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  2. Atomistic simulation of graphene-based polymer nanocomposites

    International Nuclear Information System (INIS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-01-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  3. Comparison of two polymer-based immunohistochemical detection systems: ENVISION+ and ImmPRESS.

    Science.gov (United States)

    Ramos-Vara, José A; Miller, Margaret A

    2006-11-01

    The non-specific background reaction produced in avidin-biotin-based immunohistochemistry, particularly after harsh antigen retrieval procedures, has promoted the use of non-avidin-biotin systems, yet there are few reports comparing the performance of non-avidin-biotin, polymer-based methods. In this study we compare two of these methods, ENVISION+trade mark and ImmPRESS, in animal tissues. We examined the immunoreactivity of 18 antigens in formalin-fixed, paraffin-embedded tissues. Antigens were located in the cytoplasmic membrane (CD11d, CD18 and CD79a), cytoplasm (calretinin, COX-1, COX-2, Glut-1, HepPar 1, KIT, Melan A, tryptase and uroplakin III) or nucleus (MUM-1, PGP 9.5 and thyroid transcription factor 1). We also evaluated three infectious agents (Aspergillus, calicivirus and West Nile virus). The staining with ENVISION+ or ImmPRESS was performed simultaneously for each antigen. The intensity of the reaction and background staining were scored. ImmPRESS yielded similar or higher reaction intensity than ENVISION+trade mark in 16/18 antigens. ImmPRESS produced abundant background with the other two antigens (calretinin and COX-2), which hindered interpretation of the specific reaction. The cost of ImmPRESS was 25% lower than for ENVISION+trade mark. Based on these results, ImmPRESS is a good polymer-based detection system for routine immunohistochemistry.

  4. Injection Molding and Mechanical Properties of Bio-Based Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Maria Chiara Mistretta

    2018-04-01

    Full Text Available The use of biodegradable/bio-based polymers is of great importance in addressing several issues related to environmental protection, public health, and new, stricter legislation. Yet some applications require improved properties (such as barrier or mechanical properties, suggesting the use of nanosized fillers in order to obtain bio-based polymer nanocomposites. In this work, bionanocomposites based on two different biodegradable polymers (coming from the Bioflex and MaterBi families and two different nanosized fillers (organo-modified clay and hydrophobic-coated precipitated calcium carbonate were prepared and compared with traditional nanocomposites with high-density polyethylene (HDPE as matrix. In particular, the injection molding processability, as well as the mechanical and rheological properties of the so-obtained bionanocomposites were investigated. It was found that the processability of the two biodegradable polymers and the related nanocomposites can be compared to that of the HDPE-based systems and that, in general, the bio-based systems can be taken into account as suitable alternatives.

  5. Performance limitations of polymer electrolytes based on ethylene oxide polymers

    International Nuclear Information System (INIS)

    Buriez, Olivier; Han, Yong Bong; Hou, Jun; Kerr, John B.; Qiao, Jun; Sloop, Steven E.; Tian, Minmin; Wang, Shanger

    1999-01-01

    Studies of polymer electrolyte solutions for lithium-polymer batteries are described. Two different salts, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium trifluoromethanesulfonate (LiTf), were dissolved in a variety of polymers. The structures were all based upon the ethylene oxide unit for lithium ion solvation and both linear and comb-branch polymer architectures have been examined. Conductivity, salt diffusion coefficient and transference number measurements demonstrate the superior transport properties of the LiTFSI salt over LiTf. Data obtained on all of these polymers combined with LiTFSI salts suggest that there is a limit to the conductivity achievable at room temperature, at least for hosts containing ethylene oxide units. The apparent conductivity limit is 5 x 10-5 S/cm at 25 C. Providing that the polymer chain segment containing the ethylene oxide units is at least 5-6 units long there appears to be little influence of the polymer framework to which the solvating groups are attached. To provide adequate separator function, the mechanical properties may be disconnected from the transport properties by selection of an appropriate architecture combined with an adequately long ethylene oxide chain. For both bulk and interfacial transport of the lithium ions, conductivity data alone is insufficient to understand the processes that occur. Lithium ion transference numbers and salt diffusion coefficients also play a major role in the observed behavior and the transport properties of these polymer electrolyte solutions appear to be quite inadequate for ambient temperature performance. At present, this restricts the use of such systems to high temperature applications. Several suggestions are given to overcome these obstacles

  6. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free

  7. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  8. Electrostatic polymer-based microdeformable mirror for adaptive optics

    Science.gov (United States)

    Zamkotsian, Frederic; Conedera, Veronique; Granier, Hugues; Liotard, Arnaud; Lanzoni, Patrick; Salvagnac, Ludovic; Fabre, Norbert; Camon, Henri

    2007-02-01

    Future adaptive optics (AO) systems require deformable mirrors with very challenging parameters, up to 250 000 actuators and inter-actuator spacing around 500 μm. MOEMS-based devices are promising for the development of a complete generation of new deformable mirrors. Our micro-deformable mirror (MDM) is based on an array of electrostatic actuators with attachments to a continuous mirror on top. The originality of our approach lies in the elaboration of layers made of polymer materials. Mirror layers and active actuators have been demonstrated. Based on the design of this actuator and our polymer process, realization of a complete polymer-MDM has been done using two process flows: the first involves exclusively polymer materials while the second uses SU8 polymer for structural layers and SiO II and sol-gel for sacrificial layers. The latest shows a better capability in order to produce completely released structures. The electrostatic force provides a non-linear actuation, while AO systems are based on linear matrices operations. Then, we have developed a dedicated 14-bit electronics in order to "linearize" the actuation, using a calibration and a sixth-order polynomial fitting strategy. The response is nearly perfect over our 3×3 MDM prototype with a standard deviation of 3.5 nm; the influence function of the central actuator has been measured. First evaluation on the cross non-linarities has also been studied on OKO mirror and a simple look-up table is sufficient for determining the location of each actuator whatever the locations of the neighbor actuators. Electrostatic MDM are particularly well suited for open-loop AO applications.

  9. A review study of (bio)sensor systems based on conducting polymers.

    Science.gov (United States)

    Ates, Murat

    2013-05-01

    This review article concentrates on the electrochemical biosensor systems with conducting polymers. The area of electro-active polymers confined to different electrode surfaces has attracted great attention. Polymer modified carbon substrate electrodes can be designed through polymer screening to provide tremendous improvements in sensitivity, selectivity, stability and reproducibility of the electrode response to detect a variety of analytes. The electro-active films have been used to entrap different enzymes and/or proteins at the electrode surface, but without obvious loss of their bioactivity for the development of biosensors. Electropolymerization is a well-known technique used to immobilize biomaterials to the modified electrode surface. Polymers might be covalently bonding to enzymes or proteins; therefore, thickness, permeation and charge transport characteristics of the polymeric films can be easily and precisely controlled by modulating the electrochemical parameters for various electrochemical techniques, such as chronoamperometry, chronopotentiometry, cyclic voltammetry, and differential pulse voltammetry. This review article is divided into three main parts as given in the table of contents related to the immobilization process of some important conducting polymers, polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol, poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives. A total of 216 references are cited in this review article. The literature reviewed covers a 7 year period beginning from 2005. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Norbornylene-based polymer systems for dielectric applications

    Science.gov (United States)

    Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM

    2012-07-17

    A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.

  11. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  12. Indaceno-Based Conjugated Polymers for Polymer Solar Cells.

    Science.gov (United States)

    Yin, Yuli; Zhang, Yong; Zhao, Liancheng

    2018-01-04

    Polymer solar cells have received considerable attention due to the advantages of low material cost, tunable band gaps, ultralight weight, and high flexible properties, and they have been a promising organic photovoltaic technology for alternative non-renewable fossil fuels for the past decade. Inspired by these merits, numerous state-of-the-art organic photovoltaic materials have been constructed. Among them, indaceno-based polymer materials have made an impact in obtaining an impressive power conversion efficiency of more than 11%, which shows the momentous potential of this class of materials for commercial applications. In this review, recent progress of indaceno-based organic polymer solar cells are reviewed, and the structure-property device performance correlations of the reported materials are highlighted. Then, common regularities of these successful cases are collected, and encouraging viewpoints on the further development of more exciting indaceno-based organic photovoltaic materials are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Monte Carlo simulations of confined polymer systems

    NARCIS (Netherlands)

    Vliet, Johannes Henricus van

    1991-01-01

    This thesis considers confined polymer systems. These systems are of considerable interest, e.g., thin polymer films, chromotography of polymer solutions, drag reduction, enhanced oil recovery, stabilization of colloidal dispersions, lubrication and biolubrication. The method used to study these

  14. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  15. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  16. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  17. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  18. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  19. Polymer based tunneling sensor

    Science.gov (United States)

    Cui, Tianhong (Inventor); Wang, Jing (Inventor); Zhao, Yongjun (Inventor)

    2006-01-01

    A process for fabricating a polymer based circuit by the following steps. A mold of a design is formed through a lithography process. The design is transferred to a polymer substrate through a hot embossing process. A metal layer is then deposited over at least part of said design and at least one electrical lead is connected to said metal layer.

  20. Numerical solution of the polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Haugse, V.; Karlsen, K.H.; Lie, K.-A.; Natvig, J.R.

    1999-05-01

    The paper describes the application of front tracking to the polymer system, an example of a nonstrictly hyperbolic system. Front tracking computes piecewise constant approximations based on approximate Remain solutions and exact tracking of waves. It is well known that the front tracking method may introduce a blow-up of the initial total variation for initial data along the curve where the two eigenvalues of the hyperbolic system are identical. It is demonstrated by numerical examples that the method converges to the correct solution after a finite time that decreases with the discretization parameter. For multidimensional problems, front tracking is combined with dimensional splitting and numerical experiments indicate that large splitting steps can be used without loss of accuracy. Typical CFL numbers are in the range of 10 to 20 and comparisons with the Riemann free, high-resolution method confirm the high efficiency of front tracking. The polymer system, coupled with an elliptic pressure equation, models two-phase, tree-component polymer flooding in an oil reservoir. Two examples are presented where this model is solved by a sequential time stepping procedure. Because of the approximate Riemann solver, the method is non-conservative and CFL members must be chosen only moderately larger than unity to avoid substantial material balance errors generated in near-well regions after water breakthrough. Moreover, it is demonstrated that dimensional splitting may introduce severe grid orientation effects for unstable displacements that are accentuated for decreasing discretization parameters. 9 figs., 2 tabs., 26 refs.

  1. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title

  2. High-Performance All-Polymer Solar Cells Achieved by Fused Perylenediimide-Based Conjugated Polymer Acceptors.

    Science.gov (United States)

    Yin, Yuli; Yang, Jing; Guo, Fengyun; Zhou, Erjun; Zhao, Liancheng; Zhang, Yong

    2018-05-09

    We report three n-type polymeric electron acceptors (PFPDI-TT, PFPDI-T, and PFPDI-Se) based on the fused perylene diimide (FPDI) and thieno[3,2- b]thiophene, thiophene, or selenophene units for all-polymer solar cells (all-PSCs). These FPDI-based polymer acceptors exhibit strong absorption between 350 and 650 nm with wide optical bandgap of 1.86-1.91 eV, showing good absorption compensation with the narrow bandgap polymer donor. The lowest unoccupied molecular orbital (LUMO) energy levels were located at around -4.11 eV, which are comparable with those of the fullerene derivatives and other small molecular electron acceptors. The conventional all-PSCs based on the three polymer acceptors and PTB7-Th as polymer donor gave remarkable power conversion efficiencies (PCEs) of >6%, and the PFPDI-Se-based all-PSC achieved the highest PCE of 6.58% with a short-circuit current density ( J sc ) of 13.96 mA/cm 2 , an open-circuit voltage ( V oc ) of 0.76 V, and a fill factor (FF) of 62.0%. More interestingly, our results indicate that the photovoltaic performances of the FPDI-based polymer acceptors are mainly determined by the FPDI unit with a small effect from the comonomers, which is quite different from the others reported rylenediimide-based polymer acceptors. This intriguing phenomenon is speculated as the huge geometry configuration of the FPDI unit, which minimizes the effect of the comonomer. These results highlight a promising future for the application of the FPDI-based polymer acceptors in the highly efficient all-PSCs.

  3. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  4. Structuring polymers for delivery of DNA-based therapeutics: updated insights.

    Science.gov (United States)

    Gupta, Madhu; Tiwari, Shailja; Vyas, Suresh

    2012-01-01

    Gene therapy offers greater opportunities for treating numerous incurable diseases from genetic disorders, infections, and cancer. However, development of appropriate delivery systems could be one of the most important factors to overcome numerous biological barriers for delivery of various therapeutic molecules. A number of nonviral polymer-mediated vectors have been developed for DNA delivery and offer the potential to surmount the associated problems of their viral counterpart. To address the concerns associated with safety issues, a wide range of polymeric vectors are available and have been utilized successfully to deliver their therapeutics in vivo. Today's research is mainly focused on the various natural or synthetic polymer-based delivery carriers that protect the DNA molecule from degradation, which offer specific targeting to the desired cells after systemic administration, have transfection efficiencies equivalent to virus-mediated gene delivery, and have long-term gene expression through sustained-release mechanisms. This review explores an updated overview of different nonviral polymeric delivery system for delivery of DNA-based therapeutics. These polymeric carriers have been evaluated in vitro and in vivo and are being utilized in various stages of clinical evaluation. Continued research and understanding of the principles of polymer-based gene delivery systems will enable us to develop new and efficient delivery systems for the delivery of DNA-based therapeutics to achieve the goal of efficacious and specific gene therapy for a vast array of clinical disorders as the therapeutic solutions of tomorrow.

  5. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new uses...

  6. Fluctuation-induced long-range interactions in polymer systems

    International Nuclear Information System (INIS)

    Semenov, A N; Obukhov, S P

    2005-01-01

    We discover a new universal long-range interaction between solid objects in polymer media. This polymer-induced interaction is directly opposite to the van der Waals attraction. The predicted effect is deeply related to the classical Casimir interactions, providing a unique example of universal fluctuation-induced repulsion rather than normal attraction. This universal repulsion comes from the subtracted soft fluctuation modes in the ideal counterpart of the real polymer system. The effect can also be interpreted in terms of subtracted (ghost) large-scale polymer loops. We establish the general expressions for the energy of polymer-induced interactions for arbitrary solid particles in a concentrated polymer system. We find that the correlation function of the polymer density in a concentrated solution of very long chains follows a scaling law rather than an exponential decay at large distances. These novel universal long-range interactions can be of importance in various polymer systems. We discuss the ways to observe/simulate these fluctuation-induced effects

  7. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  8. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  9. Application of polyacrylonitrile-based polymer electrolytes in rechargeable lithium batteries

    DEFF Research Database (Denmark)

    Perera, K.S.; Dissanayake, M.A.K.L.; Skaarup, Steen

    2008-01-01

    Polyacrylonitrile (PAN)-based polymer electrolytes have obtained considerable attention due to their fascinating characteristics such as appreciable ionic conductivity at ambient temperatures and mechanical stability. This study is based on the system PAN-ethylene carbonate (EC)-propylene carbona...

  10. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  11. Segment-based Eyring-Wilson viscosity model for polymer solutions

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat

    2005-01-01

    A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer

  12. Microbial conversion of biomass into bio-based polymers.

    Science.gov (United States)

    Kawaguchi, Hideo; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    The worldwide market for plastics is rapidly growing, and plastics polymers are typically produced from petroleum-based chemicals. The overdependence on petroleum-based chemicals for polymer production raises economic and environmental sustainability concerns. Recent progress in metabolic engineering has expanded fermentation products from existing aliphatic acids or alcohols to include aromatic compounds. This diversity provides an opportunity to expand the development and industrial uses of high-performance bio-based polymers. However, most of the biomonomers are produced from edible sugars or starches that compete directly with food and feed uses. The present review focuses on recent progress in the microbial conversion of biomass into bio-based polymers, in which fermentative products from renewable feedstocks serve as biomonomers for the synthesis of bio-based polymers. In particular, the production of biomonomers from inedible lignocellulosic feedstocks by metabolically engineered microorganisms and the synthesis of bio-based engineered plastics from the biological resources are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nanocomposites Based on Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2018-05-01

    Full Text Available In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018 are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes. Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors’ contribution to the state of the art in the field of biodegradable polymeric nanocomposites.

  14. Associating Polymer Networks Based on Cyclodextrin Inclusion Compounds for Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-01-01

    Full Text Available This work evaluates an approach to improve the enhanced heavy oil recovery performance of hydrophobic associating polymer. A polymeric system based on water-soluble hydrophobic associating polymer (WSHAP and cyclodextrin (CD polymer was proposed in this work. Addition of CD polymer to WSHAP forms interpolymer bridges by inclusion of CD groups with hydrophobic tails, and thereby the network structure is strengthened. The proposed system offers good viscoelasticity, pronounced shear thinning, and interesting viscosity-temperature relations. Sand pack tests indicated that the proposed system can build high resistance factor during the propagation in porous media, and its moderate adsorption phenomenon was represented by the thickness of the adsorbed layer. The relationship between effective viscosity and oil recovery increment indicated that the proposed system can significantly reduce the residual oil saturation due to the “piston-like” propagation. The overall oil recovery was raised by 5.7 and 24.5% of the original oil in place compared with WSHAP and partially hydrolyzed polyacrylamide (HPAM, respectively.

  15. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-09

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  16. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  17. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  18. An oral oligonucleotide delivery system based on a thiolated polymer: Development and in vitro evaluation.

    Science.gov (United States)

    Martien, Ronny; Hoyer, Herbert; Perera, Glen; Schnürch, Andreas Bernkop

    2011-08-01

    The purpose of this study was to develop and evaluate an oral oligonucleotide delivery system based on a thiolated polymer/reduced glutathione (GSH) system providing a protective effect toward nucleases and permeation enhancement. A polycarbophil-cysteine conjugate (PCP-Cys) was synthesized. Enzymatic degradation of a model oligonucleotide by DNase I and within freshly collected intestinal fluid was investigated in the absence and presence of PCP-Cys. Permeation studies with PCP-Cys/GSH versus control were performed in vitro on Caco-2 cell monolayers and ex vivo on rat intestinal mucosa. PCP-Cys displayed 223 ± 13.8 μmol thiol groups per gram polymer. After 4h, 61% of the free oligonucleotides were degraded by DNase I and 80% within intestinal fluid. In contrast, less than 41% (DNase I) and 60% (intestinal fluid) were degraded in the presence of 0.02% (m/v) PCP-Cys. Permeation studies revealed an 8-fold (Caco-2) and 10-fold (intestinal mucosa) increase in apparent permeability compared to buffer control. Hence, this PCP-Cys/GSH system might be a promising tool for the oral administration of oligonucleotides as it allows a significant protection toward degrading enzymes and facilitates their transport across intestinal membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Evaluation of chitosan–anionic polymers based tablets for extended-release of highly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Yang Shao

    2015-02-01

    Full Text Available The objective of this study is to develop chitosan–anionic polymers based extended-release tablets and test the feasibility of using this system for the sustained release of highly water-soluble drugs with high drug loading. Here, the combination of sodium valproate (VPS and valproic acid (VPA were chosen as the model drugs. Anionic polymers studied include xanthan gum (XG, carrageenan (CG, sodium carboxymethyl cellulose (CMC-Na and sodium alginate (SA. The tablets were prepared by wet granulation method. In vitro drug release was carried out under simulated gastrointestinal condition. Drug release mechanism was studied. Compared with single polymers, chitosan–anionic polymers based system caused a further slowdown of drug release rate. Among them, CS–xanthan gum matrix system exhibited the best extended-release behavior and could extend drug release for up to 24 h. Differential scanning calorimetry (DSC and Fourier transform infrared spectroscopy (FTIR studies demonstrated that polyelectrolyte complexes (PECs were formed on the tablet surface, which played an important role on retarding erosion and swelling of the matrix in the later stage. In conclusion, this study demonstrated that it is possible to develop highly water-soluble drugs loaded extended-release tablets using chitosan–anionic polymers based system.

  20. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. Development of radiation processes wood-polymer composites based on tropical hardwoods

    International Nuclear Information System (INIS)

    Iya, V.K.; Majali, A.B.

    1978-01-01

    The wood-polymer composites based on tropical hardwoods were prepared with three monomer systems. Use of chlorinated paraffin oil as an additive imparted fire resistance to the composites and also brought down the gamma dose requirement for total polymerisation. A number of tropical hardwoods can be upgraded by radiation curing, but for cost optimisation, hardwoods with high improvement per unit polymer should be selected. (author)

  2. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers.

    Science.gov (United States)

    Ali, Akbar; Ahmed, Shakeel

    2018-06-26

    The over increasing demand of eco-friendly materials to counter various problems, such as environmental issues, economics, sustainability, biodegradability, and biocompatibility, open up new fields of research highly focusing on nature-based products. Edible polymer based materials mainly consisting of polysaccharides, proteins, and lipids could be a prospective contender to handle such problems. Hydrogels based on edible polymer offer many valuable properties compared to their synthetic counterparts. Edible polymers can contribute to the reduction of environmental contamination, advance recyclability, provide sustainability, and thereby increase its applicability along with providing environmentally benign products. This review is highly emphasizing on toward the development of hydrogels from edible polymer, their classification, properties, chemical modification, and their potential applications. The application of edible polymer hydrogels covers many areas including the food industry, agricultural applications, drug delivery to tissue engineering in the biomedical field and provide more safe and attractive products in the pharmaceutical, agricultural, and environmental fields, etc.

  3. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  4. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes.

    Science.gov (United States)

    Sergeyeva, T A; Gorbach, L A; Piletska, E V; Piletsky, S A; Brovko, O O; Honcharova, L A; Lutsyk, O D; Sergeeva, L M; Zinchenko, O A; El'skaya, A V

    2013-04-03

    An easy-to-use colorimetric test-system for the efficient detection of creatinine in aqueous samples was developed. The test-system is based on composite molecularly imprinted polymer (MIP) membranes with artificial receptor sites capable of creatinine recognition. A thin MIP layer was created on the surface of microfiltration polyvinylidene fluoride (PVDF) membranes using method of photo-initiated grafting polymerization. The MIP layer was obtained by co-polymerization of a functional monomer (e.g. 2-acrylamido-2-methyl-1-propanesulfonic acid, itaconic acid or methacrylic acid) with N, N'-methylenebisacrylamide as a cross-linker. The choice of the functional monomer was based on the results of computational modeling. The creatinine-selective composite MIP membranes were used for measuring creatinine in aqueous samples. Creatinine molecules were selectively adsorbed by the MIP membranes and quantified using color reaction with picrates. The intensity of MIP membranes staining was proportional to creatinine concentration in an analyzed sample. The colorimetric test-system based on the composite MIP membranes was characterized with 0.25 mM detection limit and 0.25-2.5mM linear dynamic range. Storage stability of the MIP membranes was estimated as at least 1 year at room temperature. As compared to the traditional methods of creatinine detection the developed test-system is characterized by simplicity of operation, small size and low cost. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform for drug delivery.

    Science.gov (United States)

    Liu, Zhihong; Wang, Yutao; Zhang, Na

    2012-07-01

    During the past decades, polymer-drug conjugates are one of the hottest topics in novel drug development fields. Amphiphilic polymer-drug conjugates in aqueous solution could form micelles or micelle-like nanoassemblies. Compared with polymer-drug conjugates and the micelles into which drugs are physically entrapped, micelles or micelle-like nanoassemblies based on polymer-drug conjugates bring several additional advantages, including increased drug-loading capacity, enhanced intracellular uptake, reduced systemic toxicity, and improved therapeutic efficacy. This review focuses on recent progress achieved in the research field of micelles or micelle-like nanoassemblies based on polymer-drug conjugates. Firstly, properties of polymers, drugs, and linkers which could be used to build polymer-drug conjugate micelles or micelle-like nanoassemblies are summarized. Then, the characterization methods are described. Finally, the drug-targeting mechanisms are discussed. Micelles or micelle-like nanoassemblies based on polymer-drug conjugates as an emerging platform have the potential to achieve medical treatments with enhanced therapeutic effect. The application of micelles or micelle-like nanoassemblies based on polymer-drug conjugates may give new life to old active compounds abandoned due to their low solubility problems. For clinical application, there is a need to further optimize the properties of the polymer, drug, and linker.

  6. A primer on polymer nomenclature: Structure-based, sourced-based and trade names

    Science.gov (United States)

    Polymer nomenclature is important because it is part of the language of polymer science and is needed for polymer identification, reference, and documentation. A primer on polymer nomenclature is provided herein for people new to the field or for instructional use. Both structure-based and source-...

  7. Extrudable polymer-polymer composites based on ultra-high molecular weight polyethylene

    Science.gov (United States)

    Panin, S. V.; Kornienko, L. A.; Alexenko, V. O.; Buslovich, D. G.; Dontsov, Yu. V.

    2017-12-01

    Mechanical and tribotechnical characteristics of polymer-polymeric composites of UHMWPE are studied with the aim of developing extrudable, wear-resistant, self-lubricant polymer mixtures for Additive Manufacturing (AM). The motivation of the study is their further application as feedstocks for 3D printing. Blends of UHMWPE with graft- and block copolymers of low-density polyethylene (HDPE-g-VTMS, HDPE-g-SMA, HDPE-b-EVA), polypropylene (PP), block copolymers of polypropylene and polyamide with linear low density polyethylene (PP-b-LLDPE, PA-b-LLDPE), as well as cross-linked polyethylene (PEX-b), are examined. The choice of compatible polymer components for an ultra- high molecular weight matrix for increasing processability (extrudability) is motivated by the search for commercially available and efficient additives aimed at developing wear-resistant extrudable polymer composites for additive manufacturing. The extrudability, mechanical properties and wear resistance of UHMWPE-based polymer-polymeric composites under sliding friction with different velocities and loads are studied.

  8. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  9. Selectivity of radiation-induced processes in hydrocarbons, related polymers and organized polymer systems

    International Nuclear Information System (INIS)

    Feldman, V.I.; Sukhov, F.F.; Zezin, A.A.; Orlov, A.Yu.

    1999-01-01

    Fundamental aspects of the selectivity of radiation-induced events in polymers and polymeric systems were considered: (1) The grounds of selectivity of the primary events were analyzed on the basis of the results of studies of model compounds (molecular aspect). Basic results were obtained for hydrocarbon molecules irradiated in low-temperature matrices. The effects of selective localization of the primary events on the radical formation were examined for several polymers irradiated at low and superlow temperatures (77 and 15 K). A remarkable correlation between the properties of prototype ionized molecules (radical cations) and selectivity of the primary bond rupture in the corresponding polymers were found for polyethylene, polystyrene and some other hydrocarbon polymers. The first direct indication of selective localization of primary events at conformational defects was obtained for oriented high-crystalline polyethylene irradiated at 15 K. The significance of dimeric ring association was proved for the radiation chemistry of polystyrene. Specific mechanisms of low-temperature radiation-induced degradation were also analyzed for polycarbonate and poly(alkylene terephthalates). (2) Specific features of the localization of primary radiation-induced events in microheterogeneous polymeric systems were investigated (microstructural aspect). It was found that the interphase processes played an important role in the radiation chemistry of such systems. The interphase electron migration may result in both positive and negative non-additive effects in the formation of radiolysis products. The effects of component diffusion and chemical reactions on the radiation-induced processes in microheterogeneous polymeric systems were studied with the example of polycarbonate - poly(alkylene terephthalate) blends. (3) The effects of restricted molecular motion on the development of the radiation-chemical processes in polymers were investigated (dynamic aspect). In particular, it

  10. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    Science.gov (United States)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  11. All-solid-state reference electrodes based on conducting polymers.

    Science.gov (United States)

    Kisiel, Anna; Marcisz, Honorata; Michalska, Agata; Maksymiuk, Krzysztof

    2005-12-01

    A novel construction of solution free (pseudo)reference electrodes, compatible with all-solid-state potentiometric indicator electrodes, has been proposed. These electrodes use conducting polymers (CP): polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene) (PEDOT). Two different arrangements have been tested: solely based on CP and those where the CP phase is covered with a poly(vinyl chloride) based outer membrane of tailored composition. The former arrangement was designed to suppress or compensate cation- and anion-exchange, using mobile perchlorate ions and poly(4-styrenesulfonate) or dodecylbenzenesulfonate anions as immobilized dopants. The following systems were used: (i) polypyrrole layers doped simultaneously by two kinds of anions, both mobile and immobilized in the polymer layer; (ii) bilayers of polypyrrole with anion exchanging inner layer and cation-exchanging outer layer; (iii) polypyrrole doped by surfactant dodecylbenzenesulfonate ions, which inhibit ion exchange on the polymer/solution interface. For the above systems, recorded potentials have been found to be practically independent of electrolyte concentration. The best results, profound stability of potentials, have been obtained for poly(3,4-ethylenedioxythiophene) or polypyrrole doped by poly(4-styrenesulfonate) anions covered by a poly(vinyl chloride) based membrane, containing both anion- and cation-exchangers as well as solid potassium chloride and silver chloride with metallic silver. Differently to the cases (i)-(iii) these electrodes are much less sensitive to the influence of redox and pH interferences. This arrangement has been also characterized using electrochemical impedance spectroscopy and chronopotentiometry.

  12. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  13. Development and characterization of rosin-based polymer and its application as a cream base.

    Science.gov (United States)

    Dhanorkar, V T; Gawande, R S; Gogte, B B; Dorle, A K

    2002-01-01

    The literature contains many references to the wide range of uses of rosin-based polymers, but little has appeared in the area of rosin-based polymers used as cream bases. Various rosin polymers based on glycerol, sorbitol, and pentaerythritol were prepared and screened for efficacy as cream bases. Among these polymers, polymer 2 (glycerol-based) is reported in the present study as it produced creams with a better stability and release profile as compared to other creams. The creams were formulated employing polymer 2 (P2) and Tween 60 as surfactants. The stability of the prepared creams, as well as the diclofenac diethylammonium release pattern, was investigated using particle size analysis, conductivity, relative dielectric constant, spreadability, and irritation potential measurement, and was compared with that of creams containing Tween 60 (RT) prepared in the laboratory. The release of the drug, diclofenac diethylammonium, was measured after eight hours and compared with a standard cream (RT) and a marketed cream (RM).

  14. Polymers for hydrogen infrastructure and vehicle fuel systems :

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  15. A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Hasiotis, C.

    2002-01-01

    , compared to less than 100 ppm CO for the Nafion-based technology at 80degrees C. The high CO tolerance makes it possible to use the reformed hydrogen directly from a simple methanol reformer without further CO removal. That both the fuel cell and the methanol reformer operate at temperatures around 200......On the basis of blend polymer electrolytes of polybenzimidazole and sulfonated polysulfone, a polymer electrolyte membrane fuel cell was developed with an operational temperature up to 200degrees C. Due to the high operational temperature, the fuel cell can tolerate 1.0-3.0 vol % CO in the fuel...

  16. Oligomers and Polymers Based on Pentacene Building Blocks

    Science.gov (United States)

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  17. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes.

    Science.gov (United States)

    Liu, Dianyi; Zhao, Mingyan; Li, Yan; Bian, Zuqiang; Zhang, Luhui; Shang, Yuanyuan; Xia, Xinyuan; Zhang, Sen; Yun, Daqin; Liu, Zhiwei; Cao, Anyuan; Huang, Chunhui

    2012-12-21

    Most previous fiber-shaped solar cells were based on photoelectrochemical systems involving liquid electrolytes, which had issues such as device encapsulation and stability. Here, we deposited classical semiconducting polymer-based bulk heterojunction layers onto stainless steel wires to form primary electrodes and adopted carbon nanotube thin films or densified yarns to replace conventional metal counter electrodes. The polymer-based fiber cells with nanotube film or yarn electrodes showed power conversion efficiencies in the range 1.4% to 2.3%, with stable performance upon rotation and large-angle bending and during long-time storage without further encapsulation. Our fiber solar cells consisting of a polymeric active layer sandwiched between steel and carbon electrodes have potential in the manufacturing of low-cost, liquid-free, and flexible fiber-based photovoltaics.

  18. Improvement of N-phthaloylchitosan based gel polymer electrolyte in dye-sensitized solar cells using a binary salt system.

    Science.gov (United States)

    Yusuf, S N F; Azzahari, A D; Selvanathan, V; Yahya, R; Careem, M A; Arof, A K

    2017-02-10

    A binary salt system utilizing lithium iodide (LiI) as the auxiliary component has been introduced to the N-phthaloylchitosan (PhCh) based gel polymer electrolyte consisting of ethylene carbonate (EC), dimethylformamide (DMF), tetrapropylammonium iodide (TPAI), and iodine (I 2 ) in order to improve the performance of dye-sensitized solar cell (DSSC) with efficiency of 6.36%, photocurrent density, J SC of 17.29mAcm -2 , open circuit voltage, V OC of 0.59V and fill factor, FF of 0.62. This efficiency value is an improvement from the 5.00% performance obtained by the DSSC consisting of only TPAI single salt system. The presence of the LiI in addition to the TPAI improves the charge injection rates and increases the iodide contribution to the total conductivity and both factors contribute to the increase in efficiency of the DSSC. The interaction behavior between polymer-plasticizer-salt was thoroughly investigated using EIS, FTIR spectroscopy and XRD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  20. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  1. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  2. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    International Nuclear Information System (INIS)

    Kim, Jeong Rae; Choi, Sung Won; Jo, Seong Mu; Lee, Wha Seop; Kim, Byung Chul

    2004-01-01

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 μm have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 μm, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10 -3 s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF 6 -EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R i ) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO 2 ) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C

  3. Oligomers and Polymers Based on Pentacene Building Blocks

    Directory of Open Access Journals (Sweden)

    Dan Lehnherr

    2010-04-01

    Full Text Available Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  4. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  5. Properties and applications of polymer nanocomposites clay and carbon based polymer nanocomposites

    CERN Document Server

    Prasad Sahoo, Bibhu

    2017-01-01

    The aim of the present edited book is to furnish scientific information about manufacturing, properties, and application of clay and carbon based polymer nanocomposites. It can be used as handbook for undergraduate and post graduate courses (for example material science and engineering, polymer science and engineering, rubber technology, manufacturing engineering, etc.) as well as as reference book for research fellows and professionals. Polymer nanocomposites have received outstanding importance in the present decade because of their broad range of high-performance applications in various areas of engineering and technology due to their special material properties. A great interest is dedicated to nanofiller based polymeric materials, which exhibit excellent enhancement in macroscopic material properties (mechanical, thermal, dynamic mechanical, electrical and many more) at very low filler contents and can therefore be used for the development of next-generation composite materials.

  6. EFFICIENT POLYMER PHOTOVOLTAIC DEVICES BASED ON POLYMER D-A BLENDS

    Institute of Scientific and Technical Information of China (English)

    Xian-yu Deng; Li-ping Zheng; Yue-qi Mo; Gang Yu; Wei Yang; Wen-hua Weng; Yong Cao

    2001-01-01

    Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks[1,2]. In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEHPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.

  7. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  8. Studies on the Properties of Plasticizer and Lithium Salt on PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    Chew, K. W.; Tan, C. G.; Osman, Z.

    2010-01-01

    The effects of plasticizer and lithium salt on PMMA-based solid polymer electrolyte have been investigated. In current project, three system samples consisted of pure poly(methyl methacrylate (PMMA) system, plasticized poly(methyl methacrylate)(PMMA-EC) system and the LiCF 3 SO 3 salted-poly(methyl methacrylate) containing a fixed amount of plasticizer ([PMMA-EC]-LiCF 3 SO 3 ) system have been prepared using solution casting technique. The conductivities of the films from each system are characterized by impedance spectroscopy and infrared spectrum. With the addition of plasticizer, results show improvement on the ionic conductivity value where the value of 6.25x10 -10 Scm -1 is obtained. This may be due to the nature of plasticizer that softens the polymer and hence enhanced the ionic transportation across the polymer. The room temperature conductivity for the highest conducting sample in the ([PMMA-EC]-LiCF 3 SO 3 ) system is 1.36x10 -5 Scm -1 . Fourier Transform Infrared Spectroscopy (FTIR) indicates complexation between the polymer and the plasticizer and the polymer, the plasticizer and the salts, and the result of XRD further supports the observation.

  9. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  10. Toward flexible polymer and paper-based energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Nyholm, Leif [Department of Materials Chemistry, The Aangstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Nystroem, Gustav; Mihranyan, Albert; Stroemme, Maria [Nanotechnology and Functional Materials, Department of Engineering Sciences, The Aangstroem Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden)

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  12. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  13. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  14. Nanostructures for polymer-based organic photovoltaics

    OpenAIRE

    Guo, Shuai

    2014-01-01

    In this thesis, the influence of external parameters during the processing procedures on the active layer morphology of the polymer:fullerene PTB7:PCBM bulk heterojunction system are thoroughly investigated. It is ascertained that the power conversion efficiency can be easily manipulated by varying these external parameters (a slight chemical modification of the used polymer, the usage of host solvent, or an additional solvent treatment). The focus of the present work is to elucidate the rela...

  15. Functional Hybrid Biomaterials based on Peptide-Polymer Conjugates for Nanomedicine

    Science.gov (United States)

    Shu, Jessica Yo

    The focus of this dissertation is the design, synthesis and characterization of hybrid functional biomaterials based on peptide-polymer conjugates for nanomedicine. Generating synthetic materials with properties comparable to or superior than those found in nature has been a "holy grail" for the materials community. Man-made materials are still rather simplistic when compared to the chemical and structural complexity of a cell. Peptide-polymer conjugates have the potential to combine the advantages of the biological and synthetic worlds---that is they can combine the precise chemical structure and diverse functionality of biomolecules with the stability and processibility of synthetic polymers. As a new family of soft matter, they may lead to materials with novel properties that have yet to be realized with either of the components alone. In order for peptide-polymer conjugates to reach their full potential as useful materials, the structure and function of the peptide should be maintained upon polymer conjugation. The success in achieving desirable, functional assemblies relies on fundamentally understanding the interactions between each building block and delicately balancing and manipulating these interactions to achieve targeted assemblies without interfering with designed structures and functionalities. Such fundamental studies of peptide-polymer interactions were investigated as the nature of the polymer (hydrophilic vs. hydrophobic) and the site of its conjugation (end-conjugation vs. side-conjugation) were varied. The fundamental knowledge gained was then applied to the design of amphiphiles that self-assemble to form stable functional micelles. The micelles exhibited exceptional monodispersity and long-term stability, which is atypical of self-assembled systems. Thus such micelles based on amphiphilic peptide-polymer conjugates may meet many current demands in nanomedicine, in particular for drug delivery of hydrophobic anti-cancer therapeutics. Lastly

  16. Synthesis and Characterization of Chlorinated Bisphenol-Based Polymers and Polycarbodiimides as Inherently Fire-Safe Polymers

    National Research Council Canada - National Science Library

    Stewart, Jennifer

    2000-01-01

    .... The first class, 1,1-dichloro-2,2-(4-hydroxyphenyl)ethylidene (bisphenol C) based polymers, were found to be among the most fire- resistant polymers with peak heat release capacities as low as 20 J/g-K...

  17. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  18. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  19. Pyridine-Based Conjugated Polymers: Photophysical Properties and Light- Emitting Diodes

    National Research Council Canada - National Science Library

    Epstein, A

    1997-01-01

    We study the photophysical properties of the pyridine-based polymers poly (p-pyridyl vinylene) (PPyV) and poly (p-pyridine) (PPy). The primary photoexcitations in the pyridine-based polymers are singlet excitons...

  20. Soft X-ray spectromicroscopy of biological and synthetic polymer systems

    International Nuclear Information System (INIS)

    Hitchcock, A.; Morin, C.; Araki, T.; Zhang, X.; Dynes, J.; Stover, H.; Brash, J.

    2004-01-01

    Full text: Scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM) are synchrotron based, soft X-ray spectromicroscopy techniques which provide chemical speciation at 50 nm spatial resolution based on near edge X-ray absorption spectral (NEXAFS) contrast. The instrumentation and techniques of soft X-ray spectro- microscopy will be described and illustrated with applications to wet biofilms, protein interactions with patterned polymer surfaces, and polymer microstructure optimization. STXM can be applied to samples in air, He, vacuum, or a fully hydrated environment. With many collaborators, my group is using STXM to study fundamental and applied aspects of polymer microstructure, to map metal ions and anti-microbial agents in wet biofilms, and to identify sites of selective adsorption of proteins on phase separated polymer thin films in the presence of an overlayer of protein solution. X-PEEM has greater surface sensitivity than STXM but requires a flat, conductive, and vacuum-compatible sample. Comparison of X-PEEM and STXM for the same system - fibrinogen adsorption on a PS:PMMA blend, will be used to illustrate advantages and limitations of each technique. Measurements at 5.3.2 STXM and 7.3.1 PEEM at the Advanced Light Source, funded by DoE under contract DE-AC03- 76SF00098. Research supported by NSERC (Canada), AFMnet (Advanced Food and Biomaterials Network) and the Canada Research Chair program

  1. Integration of polystyrene microlenses with both convex and concave profiles in a polymer-based microfluidic system

    KAUST Repository

    Fan, Yiqiang

    2013-12-20

    This paper reports a new technique of fabricating polystyrene microlenses with both convex and concave profiles that are integrated in polymer-based microfluidic system. The polystyrene microlenses, or microlens array, are fabricated using the free-surface thermal compression molding method. The laser fabricated poly(methyl methacrylate) (PMMA) sheet is used as the mold for the thermal compression molding process. With different surface treatment methods of the PMMA mold, microlenses with either convex or concave profiles could be achieved during the thermal molding process. By integrating the microlenses in the microfluidic systems, observing the flow inside the microchannels is easier. This new technique is rapid, low cost, and it does not require cleanroom facilities. Microlenses with both convex and concave profiles can be easily fabricated and integrated in microfluidic system with this technique. © 2013 Springer-Verlag Berlin Heidelberg.

  2. From precision polymers to complex materials and systems

    Science.gov (United States)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  3. Thiolated polymers as mucoadhesive drug delivery systems.

    Science.gov (United States)

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    Science.gov (United States)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  5. Cellular Trojan horse based polymer nanoreactors with light-sensitive activity.

    Science.gov (United States)

    Baumann, Patric; Spulber, Mariana; Dinu, Ionel Adrian; Palivan, Cornelia G

    2014-08-07

    Stimulus-sensitive systems at the nanoscale represent ideal candidates for improving therapeutic and diagnostic approaches by producing rapid responses to the presence of specific molecules or conditions either by changing properties or by acting "on demand". Here we introduce an optimized light-sensitive nanoreactor based on encapsulation of a photosensitizer inside polymer vesicles to serve as an efficient source of reactive oxygen species (ROS) "on demand". Two types of amphiphilic block copolymers, poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline), PMOXA-PDMS-PMOXA, and poly(N-vinylpyrrolidone)-block-poly(dimethylsiloxane)-block-poly(N-vinylpyrrolidone), PNVP-PDMS-PNVP, were used to encapsulate Rose Bengal-bovine serum albumin (RB-BSA) inside the cavity of vesicles. The difference of copolymers molecular properties (hydrophobic to hydrophilic ratio, different chemical nature of the hydrophilic block) influenced the encapsulation ability, and uptake by cells, allowing therefore a selection of the most efficient polymer system. Nanoreactors were optimized in terms of (i) size, (ii) stability, and (iii) encapsulation efficiency based on a combination of light scattering, TEM, and UV-vis spectroscopy. By illumination, encapsulated RB-BSA conjugates generated in situ ROS, which diffused through the polymer membrane to the environment of the vesicles, as proved by electron spin resonance spectroscopy (ESR). Optimum illumination conditions were obtained based on the effect of the illumination time on the amount of ROS produced in situ by the encapsulated RB-BSA conjugates. ROS diffusion monitored by ESR was dependent on the molecular weight of copolymer that influences the thickness of the polymer membrane. Upon uptake into HeLa cells our nontoxic nanoreactors acted as a Trojan horse: they produced illumination-controlled ROS in sufficient amounts to induce cell death under photodynamic therapy (PDT) conditions. Straightforward

  6. Advances in Hybrid Polymer-Based Materials for Sustained Drug Release

    Directory of Open Access Journals (Sweden)

    Lígia N. M. Ribeiro

    2017-01-01

    Full Text Available The use of biomaterials composed of organic pristine components has been successfully described in several purposes, such as tissue engineering and drug delivery. Drug delivery systems (DDS have shown several advantages over traditional drug therapy, such as greater therapeutic efficacy, prolonged delivery profile, and reduced drug toxicity, as evidenced by in vitro and in vivo studies as well as clinical trials. Despite that, there is no perfect delivery carrier, and issues such as undesirable viscosity and physicochemical stability or inability to efficiently encapsulate hydrophilic/hydrophobic molecules still persist, limiting DDS applications. To overcome that, biohybrid systems, originating from the synergistic assembly of polymers and other organic materials such as proteins and lipids, have recently been described, yielding molecularly planned biohybrid systems that are able to optimize structures to easily interact with the targets. This work revised the biohybrid DDS clarifying their advantages, limitations, and future perspectives in an attempt to contribute to further research of innovative and safe biohybrid polymer-based system as biomaterials for the sustained release of active molecules.

  7. Preparation and mechanical property of polymer-based biomaterials

    International Nuclear Information System (INIS)

    Zhang, P; Chen, G; Zheng, X F

    2010-01-01

    The porous polymer-based biomaterial has been synthesized from PLGA, dioxane and tricalcium phosphate (TCP) by low-temperature deposition process. The deformation behaviours and fracture mechanism of polymer-based biomaterials were investigated using the compression test and the finite element (FE) simulation. The results show that the stress-strain curve of compression process includes linear elastic stage I, platform stage II and densification stage III, and the fracture mechanism can be considered as brittle fracture.

  8. based gel polymer electrolytes

    Indian Academy of Sciences (India)

    (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate ... TG/DTA studies showed the thermal stability of the polymer electrolytes. .... are observed while comparing pure XRD spectra with .... batteries as its operating temperature is normally in the .... chain ion movements and the conductivity of the polymer.

  9. Characterization of Polymer Surfaces by the Use of Different Wetting Theories Regarding Acid-Base Properties

    Directory of Open Access Journals (Sweden)

    Eduard Kraus

    2017-01-01

    Full Text Available The existing wetting methods for the determination of acid-base properties on solid surfaces are discussed. Striving for a better understanding of the adhesive polymer interactions in adhesively joined polymers, the methods of Berger and van Oss-Chaudhury-Good were found as the most suitable methods for the investigation of wetting on solid polymer surfaces. Methods of nonlinear systems by Della Volpe and Siboni were adapted and evaluated on plastic surfaces. In the context of these investigations various data of the surface free energy as well as its components have been identified for a number of polymer surfaces by application of spatial equation solutions.

  10. FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes

    Science.gov (United States)

    Winie, Tan; Arof, A. K.

    2006-03-01

    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF 3SO 3)-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF 3SO 3 interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR) 2, C dbnd O sbnd NHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF 3SO 3 has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li + ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.

  11. Low cost Polymer Optical Fibre based transmission system for feeding integrated broadband wireless in-house LANs

    NARCIS (Netherlands)

    Ng'Oma, A.; Koonen, A.M.J.; Tafur Monroy, I.; Boom, van den H.P.A.; Smulders, P.F.M.; Khoe, G.D.; Visser, D. Taco; Lenstra, Daan; Schouten, F. Hugo

    2002-01-01

    A bi-directional transmission system using low cost Polymer Optical Fibre (POF) to feed the required large number of radio access points in next-generation integrated broadband wireless in-house LANs is proposed. Results from simulations and experiments show that, by tuning system parameters, a

  12. Polymer-based oral rehydration solution for treating acute watery diarrhoea

    Science.gov (United States)

    Gregorio, Germana V; Gonzales, Maria Liza M; Dans, Leonila F; Martinez, Elizabeth G

    2016-01-01

    Background Acute diarrhoea is one of the main causes of morbidity and mortality among children in low-income countries. Glucose-based oral rehydration solution (ORS) helps replace fluid and prevent further dehydration from acute diarrhoea. Since 2004, the World Health Organization (WHO) has recommended the osmolarity of less than 270 mOsm/L (ORS ≤ 270) versus greater than 310 mOsm/L formulation (ORS ≥ 310). Polymer-based ORS (for example, prepared using rice or wheat) slowly releases glucose and may be superior to glucose-based ORS. Objectives To compare polymer-based oral rehydration solution (polymer-based ORS) with glucose-based oral rehydration solution (glucose-based ORS) for treating acute watery diarrhoea. Search methods We searched the following sources up to 5 September 2016: the Cochrane Infectious Diseases Group (CIDG) Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (1966 to 5 September 2016), EMBASE (1974 to 5 September 2016), LILACS (1982 to 5 September 2016), and mRCT (2007 to 5 September 2016). We also contacted researchers, organizations, and pharmaceutical companies, and searched reference lists. Selection criteria We included randomized controlled trials (RCTs) of people with acute watery diarrhoea (cholera and non-cholera associated) that compared polymer-based and glucose-based ORS (with identical electrolyte contents). Data collection and analysis Two review authors independently assessed the search results and risk of bias, and extracted data. In multiple-treatment arms with two or more treatment groups, we combined outcomes as appropriate and compared collectively with the control group. Main results Thirty-five trials that included 4284 participants met the inclusion criteria: 28 trials exclusively included children, five included adults, and two included both adults and children. Polymer-based ORS versus glucose-based ORS (osmolarity ≤ 270) Eight trials

  13. Plastic scintillators based on polymers with eliminated excimer forming

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F., E-mail: adadurov@isma.kharkov.u [Institute for Scintillating Materials NAN of Ukraine, 60 Lenin Ave, 61001 Kharkov (Ukraine); Yelyseev, D.A.; Titskaya, V.D.; Lebedev, V.N.; Zhmurin, P.N. [Institute for Scintillating Materials NAN of Ukraine, 60 Lenin Ave, 61001 Kharkov (Ukraine)

    2011-05-15

    Plastic scintillators (PS) were made based on benzyl methacrylate and methyl-methacrylate P(BzMA + MMA) copolymer in which the excimer forming rate is by two order lesser than that in polystyrene-based polymer matrix. Studying of these PS light yield demonstrates the importance of migration processes comparing to excimer formation. It is found that to obtain PS with high scintillation efficiency it is necessary to use the polymer base (matrix) in which excimer forming is eliminated but the migration process along the chromophores is maximally favored. To explain the accelerated energy transfer between phenyl chromophores it is proposed to use a mechanism of exchange of that virtual excitons that can propagate along a one-dimensional back-bone of polymer molecule. Clearing the details of mechanism of interaction between chromophores of polymer molecules which is responsible for accelerated radiationless energy transfer enable will determine in future the way of effective plastic scintillators designing.

  14. Star polymer-based unimolecular micelles and their application in bio-imaging and diagnosis.

    Science.gov (United States)

    Jin, Xin; Sun, Pei; Tong, Gangsheng; Zhu, Xinyuan

    2018-02-03

    As a novel kind of polymer with covalently linked core-shell structure, star polymers behave in nanostructure in aqueous medium at all concentration range, as unimolecular micelles at high dilution condition and multi-micelle aggregates in other situations. The unique morphologies endow star polymers with excellent stability and functions, making them a promising platform for bio-application. A variety of functions including imaging and therapeutics can be achieved through rational structure design of star polymers, and the existence of plentiful end-groups on shell offers the opportunity for further modification. In the last decades, star polymers have become an attracting platform on fabrication of novel nano-systems for bio-imaging and diagnosis. Focusing on the specific topology and physicochemical properties of star polymers, we have reviewed recent development of star polymer-based unimolecular micelles and their bio-application in imaging and diagnosis. The main content of this review summarizes the synthesis of integrated architecture of star polymers and their self-assembly behavior in aqueous medium, focusing especially on the recent advances on their bio-imaging application and diagnosis use. Finally, we conclude with remarks and give some outlooks for further exploration in this field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Electrochemical Impedance Spectroscopy Studies of Magnesium-Based Polymethylmethacrylate Gel Polymer Electroytes

    International Nuclear Information System (INIS)

    Osman, Z.; Zainol, N.H.; Samin, S.M.; Chong, W.G.; Md Isa, K.B.; Othman, L.; Supa’at, I.; Sonsudin, F.

    2014-01-01

    Magnesium-based rechargeable batteries might be an interesting future alternative to lithium-based batteries since magnesium compounds are highly abundant in the earth and are environmental friendly. In this work, we have prepared polymethylmethacrylate (PMMA) based gel polymer electrolyte (GPE) films containing two different magnesium salts, which is magnesium triflate, Mg(CF 3 SO 3 ) 2 and magnesium perchlorate, Mg(ClO 4 ) 2 using solution casting technique . The ionic conductivity of both gel polymer electrolyte systems was evaluated using a.c impedance spectroscopy. Results show that at room temperature, GPE-Mg(CF 3 SO 3 ) 2 system exhibits the highest conductivity value at 1.27 × 10 −3 S cm −1 for the film containing 20 wt.% of Mg(CF 3 SO 3 ) 2 salt, while the highest conductivity value for the GPE-Mg(ClO 4 ) 2 system is 3.13 × 10 −3 S cm −1 for the film containing 15 wt.% of Mg(ClO 4 ) 2 salt. The conductivity-temperature studies of both GPE systems follow the Arrhenius behavior. The activation energies for ionic conduction were determined to be in the range of 0.18–0.26 eV. The transport numbers of magnesium ions in both GPE systems were evaluated using the combination of a.c impedance spectroscopy and d.c polarization techniques. The results obtained indicate that the charge carriers in the GPE films for both systems are predominantly due to ions

  16. Performance Improvement by Layout Designs of Conductive Polymer Microelectrode Based Impedimetric Biosensors

    DEFF Research Database (Denmark)

    Rosati, Giulio; Daprà, Johannes; Cherré, Solène

    2014-01-01

    In this work we present a theoretical, computational, and experimental evaluation of the performance of an impedimetric biosensor based on interdigitated conductive polymer (PEDOT:TsO) microelectrodes in a microfluidic system. The influence of the geometry of the electrodes and microchannels on t...

  17. Optical sensor array platform based on polymer electronic devices

    Science.gov (United States)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  18. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  19. Recycling of Polymer-Based Multilayer Packaging: A Review

    Directory of Open Access Journals (Sweden)

    Katharina Kaiser

    2017-12-01

    Full Text Available Polymer-based multilayer packaging materials are commonly used in order to combine the respective performance of different polymers. By this approach, the tailored functionality of packaging concepts is created to sufficiently protect sensitive food products and thus obtain extended shelf life. However, because of their poor recyclability, most multilayers are usually incinerated or landfilled, counteracting the efforts towards a circular economy and crude oil independency. This review depicts the current state of the European multilayer packaging market and sketches the current end-of-life situation of postconsumer multilayer packaging waste in Germany. In the main section, a general overview of the state of research about material recycling of different multilayer packaging systems is provided. It is divided into two subsections, whereby one describes methods to achieve a separation of the different components, either by delamination or the selective dissolution–reprecipitation technique, and the other describes methods to achieve recycling by compatibilization of nonmiscible polymer types. While compatibilization methods and the technique of dissolution–reprecipitation are already extensively studied, the delamination of packaging has not been investigated systematically. All the presented options are able to recycle multilayer packaging, but also have drawbacks like a limited scope or a high expenditure of energy.

  20. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  1. Polymer-based Drug Delivery Systems Applied to Insects Repellents Devices: A Review.

    Science.gov (United States)

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Ricci, Eduardo; Mansur, Claudia Regina Elias

    2016-01-01

    Insects-borne diseases constitute a public health concern. Since there is no vaccine or curative treatment for many of these diseases, individual protection is the main approach to prevent them. Nowadays, the search for replacing synthetic molecules for insect repellents from natural sources, such as essential oils, is increasing. However, most of them present low efficiency compared to synthetic repellents. Therefore, decreasing skin permeation of synthetic repellents or yet, increasing effectiveness of natural repellents are challenges that must be overcome during the development of novel insect repellent formulations. In this context, polymer-based formulations allow entrapping active ingredients and provide release control. Encapsulation into polymeric micro/nanocapsules, cyclodextrins, polymeric micelles or hydrogels constitutes an approach to modify physicochemical properties of encapsulated molecules. Such techniques, applied in topical formulations, fabrics modification for personal protection, or food packaging have proved to be more effective in increasing repellency time and also in reducing drug dermal absorption, improving safety profiles of these products. In this work, the main synthetic and natural insect repellents are described as well as their polymeric carrier systems and their potential applications.

  2. Permeation enhancing polymers in oral delivery of hydrophilic macromolecules: thiomer/GSH systems.

    Science.gov (United States)

    Bernkop-Schnürch, A; Kast, C E; Guggi, D

    2003-12-05

    Thiolated polymers (= thiomers) in combination with reduced glutathione (GSH) were shown to improve the uptake of hydrophilic macromolecules from the GI tract. The mechanism responsible for this permeation enhancing effect seems to be based on the thiol groups of the polymer. These groups inhibit protein tyrosine phosphatase, being involved in the closing process of tight junctions, via a GSH-mediated mechanism. The strong permeation enhancing effect of various thiomer/GSH systems such as poly(acrylic acid)-cysteine/GSH or chitosan-4-thio-butylamidine (chitosan-TBA)/GSH could be shown via permeation studies on freshly excised intestinal mucosa in Ussing-type chambers. Furthermore, the efficacy of the system was also shown in vivo. By utilizing poly(acrylic acid)-cysteine/GSH as carrier matrix, an absolute oral bioavailability for low molecular weight heparin of 19.9 +/- 9.3% and a pharmacological efficacy--calculated on the basis of the areas under the reduction in serum glucose levels of the oral formulation versus subcutaneous (s.c.) injection-for orally given insulin of 7% could be achieved. The incorporation of salmon calcitonin in chitosan-TBA/GSH led on the other hand to a pharmacological efficacy based on the areas under the reduction in plasma calcium levels of the oral thiomer formulation versus intravenous (i.v.) injection of 1.3%. Because of this high efficacy (i), the possibility to combine thiomer/GSH systems with additional low molecular weight permeation enhancers acting in other ways (ii) and minimal toxicological risks as these polymers are not absorbed from the GI tract (iii), thiolated polymers represent a promising novel tool for the oral administration of hydrophilic macromolecules.

  3. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  4. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  5. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo

    2015-02-05

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using triptycene-based ladder polymers, a structure incorporating triptycene-based ladder polymers, a method of gas separation, and the like.

  6. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2017-10-01

    Full Text Available Shape-memory polymers are outstanding “smart” materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies, for the development of “smart” actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.

  7. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  8. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  9. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  10. Industrial Irradiation of Polymers: Systems and Concepts

    International Nuclear Information System (INIS)

    Mittendorfer, J.

    2006-01-01

    This paper provides a systematic survey of systems and concepts used in the industrial irradiation of polymers. It consists basically of three parts: in the first part, different types of applications like wires and cables, pipes and engineering plastics are discussed and the associated irradiation systems analyzed and highlighted according their basics modules. These are identified as the radiation source, the product handling system, process control and facility/shielding layout. In the second part, the irradiation process design is reviewed in detail. The discussion starts with the requirement analysis, e.g. the desired polymer parameters and effects, continues with a process development roadmap and concludes with process verification and validation. Special attention is drawn to process control, which plays an important role in industrial irradiation technology. The use of mathematical modeling to facilitate and support process and system design is discussed as well and several examples are given which demonstrate their capabilities. In the third part, the design of a electron beam facility for the irradiation of small plastic parts for the automotive industry is worked out in detail. Besides system and product handling considerations, throughput and economical estimates are provided. The paper concludes with a summary of the design and concept bullets which proved to be important in history and can facilitate new developments which will enhance the potential of industrial polymer irradiation

  11. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    Science.gov (United States)

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Smart DNA vectors based on cyclodextrin polymers: compaction and endosomal release.

    Science.gov (United States)

    Wintgens, Véronique; Leborgne, Christian; Baconnais, Sonia; Burckbuchler, Virginie; Le Cam, Eric; Scherman, Daniel; Kichler, Antoine; Amiel, Catherine

    2012-02-01

    Neutral β-cyclodextrin polymers (polyβCD) associated with cationic adamantyl derivatives (Ada) can be used to deliver plasmid DNA into cells. In absence of an endosomolytic agent, transfection efficiency remains low because most complexes are trapped in the endosomal compartment. We asked whether addition of an imidazole-modified Ada can increase efficiency of polyβCD/cationic Ada-based delivery system. We synthesized two adamantyl derivatives: Ada5, which has a spacer arm between the Ada moiety and a bi-cationic polar head group, and Ada6, which presents an imidazole group. Strength of association between polyβCD and Ada derivatives was evaluated by fluorimetric titration. Gel mobility shift assay, zeta potential, and dark field transmission electron microscopy experiments demonstrated the system allowed for efficient DNA compaction. In vitro transfection experiments performed on HepG2 and HEK293 cells revealed the quaternary system polyβCD/Ada5/Ada6/DNA has efficiency comparable to cationic lipid DOTAP. We successfully designed fine-tuned DNA vectors based on cyclodextrin polymers combined with two new adamantyl derivatives, leading to significant transfection associated with low toxicity.

  13. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akers, Ronald R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  14. A resonant force sensor based on ionic polymer metal composites

    International Nuclear Information System (INIS)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-01-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors

  15. A resonant force sensor based on ionic polymer metal composites

    Science.gov (United States)

    Bonomo, Claudia; Fortuna, Luigi; Giannone, Pietro; Graziani, Salvatore; Strazzeri, Salvatore

    2008-02-01

    In this paper a novel force sensor, based on ionic polymer metal composites (IPMCs), is presented. The system has DC sensing capabilities and is able to work in the range of a few millinewtons. IPMCs are emerging materials used to realize motion actuators and sensors. An IPMC strip is activated in a beam fixed/simply-supported configuration. The beam is tightened at the simply-supported end by a force. This influences the natural resonant frequency of the beam; the value of the resonant frequency is used in the proposed system to estimate the force applied in the axial direction. The performance of the system based on the IPMC material has proved to be comparable with that of sensors based on other sensing mechanisms. This suggests the possibility of using this class of polymeric devices to realize PMEMS (plastic micro electrical mechanical systems) sensors.

  16. Study of a thiophene-based polymer for optoelectronic applications

    International Nuclear Information System (INIS)

    Cheylan, S.; Fraleoni-Morgera, A.; Puigdollers, J.; Voz, C.; Setti, L.; Alcubilla, R.; Badenes, G.; Costa-Bizzarri, P.; Lanzi, M.

    2006-01-01

    A thiophene-based conjugated polymer bearing a cyano group (-CN) as a side chain substituent was successfully synthesized. The polymer evidences an excellent film ability from various organic solvents as well as an enhanced photoluminescence. The polymer has been characterized optically (Fourier Transformed Infrared spectroscopy, absorption and photoluminescence) in solution and in film, while X-ray diffraction measurements (XRD) of thin films were performed to investigate its bulk morphological features. From the absorption edge of the spectrum of a thin polymer film, the optical band gap of the polymer is estimated to be 2.0 eV, which corresponds to orange emission. Furthermore, a single layer light emitting diode (LED) was fabricated. The device produced bright stable electroluminescence at room temperature. All of the results indicate that this polymer is a promising emissive material for application in polymeric LEDs

  17. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  18. Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene.

    Science.gov (United States)

    Ye, Long; Zhang, Shaoqing; Huo, Lijun; Zhang, Maojie; Hou, Jianhui

    2014-05-20

    As researchers continue to develop new organic materials for solar cells, benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers have come to the fore. To improve the photovoltaic properties of BDT-based polymers, researchers have developed and applied various strategies leading to the successful molecular design of highly efficient photovoltaic polymers. Novel polymer materials composed of two-dimensional conjugated BDT (2D-conjugated BDT) have boosted the power conversion efficiency of polymer solar cells (PSCs) to levels that exceed 9%. In this Account, we summarize recent progress related to the design and synthesis of 2D-conjugated BDT-based polymers and discuss their applications in highly efficient photovoltaic devices. We introduce the basic considerations for the construction of 2D-conjugated BDT-based polymers and systematic molecular design guidelines. For example, simply modifying an alkoxyl-substituted BDT to form an alkylthienyl-substituted BDT can improve the polymer hole mobilities substantially with little effect on their molecular energy level. Secondly, the addition of a variety of chemical moieties to the polymer can produce a 2D-conjugated BDT unit with more functions. For example, the introduction of a conjugated side chain with electron deficient groups (such as para-alkyl-phenyl, meta-alkoxyl-phenyl, and 2-alkyl-3-fluoro-thienyl) allowed us to modulate the molecular energy levels of 2D-conjugated BDT-based polymers. Through the rational design of BDT analogues such as dithienobenzodithiophene (DTBDT) or the insertion of larger π bridges, we can tune the backbone conformations of these polymers and modulate their photovoltaic properties. We also discuss the influence of 2D-conjugated BDT on polymer morphology and the blends of these polymers with phenyl-C61 (or C71)-butyric acid methyl ester (PCBM). Finally, we summarize the various applications of the 2D-conjugated BDT-based polymers in highly efficient PSC devices. Overall, this Account

  19. Comparison of Flexural Strength of Different CAD/CAM PMMA-Based Polymers.

    Science.gov (United States)

    Alp, Gülce; Murat, Sema; Yilmaz, Burak

    2018-01-28

    To compare the flexural strength of different computer-aided design/computer-aided manufacturing (CAD/CAM) poly(methyl methacrylate)-based (PMMA) polymers and conventional interim resin materials after thermocycling. Rectangular-shaped specimens (n = 15, for each material) (25 × 2 × 2 mm 3 ) were fabricated from 3 CAD/CAM PMMA-based polymers (Telio CAD [T]; M-PM-Disc [M]; Polident-PMMA [P]), 1 bis-acrylate composite resin (Protemp 4 [PT]), and 1 conventional PMMA (ArtConcept Artegral Dentine [C]) according to ISO 10477:2004 Standards (Dentistry-Polymer-Based Crown and Bridge Materials). The specimens were subjected to 10,000 thermocycles (5 to 55°C). Three-point flexural strength of the specimens was tested in a universal testing machine at a 1.0 mm/min crosshead speed, and the flexural strength data (σ) were calculated (MPa). The flexural strength values were statistically analyzed using 1-way ANOVA, and Tukey HSD post-hoc test for multiple comparisons (α = 0.05). Flexural strength values ranged between 66.1 ± 13.1 and 131.9 ± 19.8 MPa. There were significant differences among the flexural strengths of tested materials, except for between T and P CAD/CAM PMMA-based polymers (p > 0.05). CAD/CAM PMMA-based polymer M had the highest flexural strength and conventional PMMA had the lowest (p CAD/CAM PMMA-based T and P polymers had significantly higher flexural strength than the bis-acrylate composite resin (p CAD/CAM PMMA-based M (p CAD/CAM PMMA-based polymers was greater than the flexural strength of bis-acrylate composite resin, which had a greater flexural strength compared to conventional PMMA resin. © 2018 by the American College of Prosthodontists.

  20. Formulation of caesium based and caesium containing geo-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, S.; Joussot-Dubien, C.; Frizon, F. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN, Decontamination and Conditioning Department, DEN/DTCD/SPDE/L2ED, 30 - Marcoule (France)

    2009-10-15

    Cement encapsulation is widely used as a low- and intermediate level radioactive waste immobilisation process. Among these wastes, caesium ions are poorly immobilised by Portland cement based materials. This work consists of an experimental investigation into the ability of geo-polymers to effectively encapsulate this chemical species and to determine the impact of caesium incorporation on the geo-polymer properties. Geo-polymers were synthesised with several compositions based on the activation of metakaolin with an alkali hydroxide solution containing caesium. The setting time, mineralogy, porosity and mechanical properties of the samples were examined for one month. Leach tests were conducted during the same period to determine the immobilisation efficiency. The results depend to a large extent on the composition of the activation solution in terms of soluble silica content and alkali used. These parameters determine both the degree of condensation and the geo-polymer composition. (authors)

  1. Formulation of caesium based and caesium containing geo-polymers

    International Nuclear Information System (INIS)

    Berger, S.; Joussot-Dubien, C.; Frizon, F.

    2009-01-01

    Cement encapsulation is widely used as a low- and intermediate level radioactive waste immobilisation process. Among these wastes, caesium ions are poorly immobilised by Portland cement based materials. This work consists of an experimental investigation into the ability of geo-polymers to effectively encapsulate this chemical species and to determine the impact of caesium incorporation on the geo-polymer properties. Geo-polymers were synthesised with several compositions based on the activation of metakaolin with an alkali hydroxide solution containing caesium. The setting time, mineralogy, porosity and mechanical properties of the samples were examined for one month. Leach tests were conducted during the same period to determine the immobilisation efficiency. The results depend to a large extent on the composition of the activation solution in terms of soluble silica content and alkali used. These parameters determine both the degree of condensation and the geo-polymer composition. (authors)

  2. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  3. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution

  4. Conjugated polymer photovoltaic devices and materials

    International Nuclear Information System (INIS)

    Mozer, A.J.; Niyazi, Serdar Sariciftci

    2006-01-01

    The science and technology of conjugated polymer-based photovoltaic devices (bulk heterojunction solar cells) is highlighted focusing on three major issues, i.e. (i) nano-morphology optimization, (ii) improving charge carrier mobility, (iii) improving spectral sensitivity. Successful strategies towards improved photovoltaic performance are presented using various novel materials, including double-cable polymers, regioregular polymers and low bandgap polymers. The examples presented herein demonstrate that the bulk heterojunction concept is a viable approach towards developing photovoltaic systems by inexpensive solution-based fabrication technologies. (authors)

  5. Preparation and characterization of high performance Schiff-base liquid crystal diepoxide polymer

    International Nuclear Information System (INIS)

    Liu Huan; Fu Zien; Xu Kai; Cai Hualun; Liu Xin; Chen Mingcai

    2012-01-01

    Graphical abstract: The specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer were proposed first by us. From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed improved thermal stability. Highlights: ► In this work, we first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer. ► As one aim of this study, the thermal and thermal-oxidative stabilities of the thermosets were studied by TGA under nitrogen and under air. ► The second aim of this study was to further understand the thermal degradation mechanism. ► For thermal degradation mechanism of this polymer under nitrogen, TG-IR was used to investigate volatile components, and SEM/EDS was used to explore morphologies and chemical components of the residual char. ► From the point of view of structure-properties relationship, it can be considered that owing to the presence of the Schiff-base group, the high performance liquid crystal diepoxide polymer displayed the improved thermal stability. - Abstract: A novel Schiff-base liquid crystal diepoxide polymer was prepared via a thermal copolymerization of a Schiff-base epoxy monomer (PBMBA) with a diamine co-monomer (MDA). We first proposed that specific effects of highly conjugated Schiff-base moiety on thermal properties of the Schiff-base epoxy polymer (PBMBA/MDA). Thermal degradation behavior of the polymer was characterized using thermogravimetric analysis (TGA) under nitrogen and under air, respectively. Thermogravimetric data obtained from TGA under nitrogen and under air reveal that PBMBA/MDA exhibits higher thermal stability compared with bisphenol-A type epoxy polymer (DGEBA/MDA) and other mesogene-containing epoxy polymer. It is worth pointing out that the outstanding residual

  6. Interfacial compatibility of polymer-based structures in electronics

    OpenAIRE

    Turunen, Markus P. K.

    2004-01-01

    Interfacial compatibility of dissimilar materials was investigated to achieve a better understanding of interfacial adhesion in metal/polymer/metal systems. Surface modifications of polymers were applied to improve the adhesion. The modified surfaces were characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements accompanied by surface free energy evaluations. The pull-off test was employed to asses...

  7. Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers

    Science.gov (United States)

    Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco

    2011-03-01

    The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.

  8. A Simple Opto-Fluidic Switch Detecting Liquid Filling in Polymer-Based Microfluidic Systems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Geschke, Oliver; Zengerle, R

    2007-01-01

    A novel detection scheme for detection of liquid levels and bubbles in microfluidic systems, using the principle of total internal reflection (TIR) is presented. A laser beam impinges on the side walls of a channel which are inclined at 45deg. In an unfilled channel of such a "V-groove", TIR defl...... of the microfluidic channels. The machining of the V-groves can seamlessly be integrated into common polymer microfabrication schemes such as injection molding....

  9. Fabrication of polymer-alloy based on polytetrafluoroethylene by radiation-crosslinking

    International Nuclear Information System (INIS)

    Oshima, A.; Asano, S.; Hyunga, T.; Ichizuri, S.; Washio, M.

    2003-01-01

    Perfluoropolymer such as polytetrafluoroethylene (PTFE), tetrafluoroethylene co-perfluoroalkylvinylether (PFA) and tetrafluoroethylene-co-hexafluoropropylene (FFP) have been classified to be a typical polymer of radiation-induced degradation. However, we confirmed that the crosslinking of PTFE, PFA and FEP proceed by irradiation under selective condition where oxygen-free and high temperature above the melting temperature of them. In this study, fabrication of polymer-alloy based on PTFE has been demonstrated by radiation-crosslinking techniques. The polymer alloy, which was PTFE fine powder contained with other polymeric materials, was obtained by electron beams irradiation under oxygen-free atmosphere. Characterization of polymer-alloy based on PTFE has been studied by various measurements such as solid state 19F- and 13C-NMR spectroscopy, thermal analysis (DSC, TGA)

  10. Discontinuous and heterogeneous glass transition behavior of carbohydrate polymer-plasticizer systems.

    Science.gov (United States)

    Kawai, Kiyoshi; Hagura, Yoshio

    2012-07-01

    In order to understand the glass transition properties of carbohydrate polymer-plasticizer systems, glass transition temperatures of dextrin-glucose and dextrin-maltose systems were investigated systematically using differential scanning calorimetry. The onset (Tg(on)) and offset (Tg(off)) of the glass transition decreased with increasing plasticizer (glucose or maltose) content, and showed an abrupt depression at certain plasticizer content. The abrupt depression of Tg(off) occurred at higher plasticizer content than that of Tg(on). The glass transition was much broader for intermediate plasticizer content. From the enthalpy relaxation behavior of samples aged at various temperatures, it was found that two different glass transitions occurred contentiously in the broad glass transition. These results suggested that carbohydrate polymer-plasticizer systems can be classified into three regions: the entrapment of the plasticizer by the polymer, the formations of the polymer-plasticizer and plasticizer-rich domains, and the embedment of polymer into the plasticizer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  12. Polymer association in a microemulsion system

    International Nuclear Information System (INIS)

    Fountain, L.E.; Shahidan Radiman; Toprakcioglu, C.

    1997-01-01

    Using small angle neutron scattering technique with appropriate contrast we have been able to elucidate some associations structures of polystyrene (PS) and triblock co-polymers of polyethylene oxide-polystyrene- polyethylene oxide (PEO-PS-PEO) in a water-in-oil microemulsion system

  13. Improving reservoir conformance using gelled polymer systems. Annual report, September 25, 1994--September 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.

    1996-05-01

    The objectives of the research program are to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems -- KUSP1 systems which contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethylphthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system. The KUSP1 polymer-ester system and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to super-critical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  14. Low Humidity Characteristics of Polymer-Based Capacitive Humidity Sensors

    OpenAIRE

    Majewski Jacek

    2017-01-01

    Polymer-based capacitive humidity sensors emerged around 40 years ago; nevertheless, they currently constitute large part of sensors’ market within a range of medium (climatic and industrial) humidity 20−80%RH due to their linearity, stability and cost-effectiveness. However, for low humidity values (0−20%RH) that type of sensor exhibits increasingly nonlinear characteristics with decreasing of humidity values. This paper presents the results of some experimental trials of CMOS polymer-based ...

  15. Ultra-fast solid state electro-optical modulator based on liquid crystal polymer and liquid crystal composites

    Energy Technology Data Exchange (ETDEWEB)

    Ouskova, Elena; Sio, Luciano De, E-mail: luciano@beamco.com; Vergara, Rafael; Tabiryan, Nelson [Beam Engineering for Advanced Measurements Company, Winter Park, Florida 32789 (United States); White, Timothy J.; Bunning, Timothy J. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7707 (United States)

    2014-12-08

    A different generation of polymer-dispersed liquid crystals (PDLCs) based on a liquid crystalline polymer host is reported wherein the fluid behavior of the reactive mesogenic monomer is an enabler to concentration windows (liquid crystal polymer/liquid crystal) (and subsequent morphologies) not previously explored. These liquid crystal (LC) polymer/LC composites, LCPDLCs, exhibit excellent optical and electro-optical properties with negligible scattering losses in both the ON and OFF states. These systems thus have application in systems where fast phase modulation of optical signal instead of amplitude control is needed. Polarized optical microscopy and high resolution scanning electron microscopy confirm a bicontinuous morphology composed of aligned LC polymer coexisting with a phase separated LC fluid. Operating voltages, switching times, and spectra of LCPDLCs compare favourably to conventional PDLC films. The LCPDLCs exhibit a low switching voltage (4–5 V/μm), symmetric and submillisecond (200 μs) on/off response times, and high transmission in both the as formed and switched state in a phase modulation geometry.

  16. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    Science.gov (United States)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  17. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  18. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Lithner, Delilah, E-mail: delilah.lithner@gmail.com; Larsson, Ake; Dave, Goeran

    2011-08-15

    Plastics constitute a large material group with a global annual production that has doubled in 15 years (245 million tonnes in 2008). Plastics are present everywhere in society and the environment, especially the marine environment, where large amounts of plastic waste accumulate. The knowledge of human and environmental hazards and risks from chemicals associated with the diversity of plastic products is very limited. Most chemicals used for producing plastic polymers are derived from non-renewable crude oil, and several are hazardous. These may be released during the production, use and disposal of the plastic product. In this study the environmental and health hazards of chemicals used in 55 thermoplastic and thermosetting polymers were identified and compiled. A hazard ranking model was developed for the hazard classes and categories in the EU classification and labelling (CLP) regulation which is based on the UN Globally Harmonized System. The polymers were ranked based on monomer hazard classifications, and initial assessments were made. The polymers that ranked as most hazardous are made of monomers classified as mutagenic and/or carcinogenic (category 1A or 1B). These belong to the polymer families of polyurethanes, polyacrylonitriles, polyvinyl chloride, epoxy resins, and styrenic copolymers. All have a large global annual production (1-37 million tonnes). A considerable number of polymers (31 out of 55) are made of monomers that belong to the two worst of the ranking model's five hazard levels, i.e. levels IV-V. The polymers that are made of level IV monomers and have a large global annual production (1-5 million tonnes) are phenol formaldehyde resins, unsaturated polyesters, polycarbonate, polymethyl methacrylate, and urea-formaldehyde resins. This study has identified hazardous substances used in polymer production for which the risks should be evaluated for decisions on the need for risk reduction measures, substitution, or even phase out

  19. Electro-Optical Parameters Of Hairy Rod Polymer/Dimethylformamide System

    International Nuclear Information System (INIS)

    Spasevska, Hristina

    2003-01-01

    Rigid rod polymers are materials with special features, that is the reason why they have large scientific and technological applications like isotropic-nematic and other types of transition. One of the biggest problems that happen while investigation to these polymers, at molecular level, is their poor solubility in most of the common solvents. Solubility gets better if while synthesize junctions flexible side chains, [1]. Remaining polymers belong on one new class - hairy rod polymers and have big potential for their technological applications. Because of their nonlinear optical properties and opportunity for self-organization in super molecular structures (films and fibers), can be used in electronics and telecommunications industry either at display-technologies [2]. That is the main reason why controlling the remaining polymer features and connection of their microscopic and macroscopic characteristics, like an complete characterization (in solutions and solid state) is from essential scientific interest, actually it is an imperative. The polymer POD-2/that is subject of investigation, bellows to hairy rod polymers and it is synthesized for the first time [3] by giving a support to their characterization. Measures on diluted solutions from the system POD-2/dimethylformamide are made by the method electric birefringence, at three temperatures (25, 40 and 55 o C). For different concentrations on system, from obtained electro-optical signals (EOS), dependence on electric birefringence (Δn) against applied electric field (E 2 ), is determined. By investigation of electro-optical effects, especially studding the way of their maintenance and losing, while applying electric square impulses, relaxation time τ o of polymer molecules is calculated. From these parameters, as presented data for EOS rise and decay too, deformational electro-optical effect has been determined. (Author)

  20. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  1. Polymer containing functional end groups is base for new polymers

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Butadiene is polymerized with lithium-p-lithiophenoxide to produce linear polymer containing oxy-lithium group at one end and active carbon-lithium group at other end. Living polymers represent new approach to preparation of difunctional polymers in which structural features, molecular weight, type and number of end groups are controlled.

  2. Optimal Control of Polymer Flooding Based on Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  3. Asymmetric Alkyl Side-Chain Engineering of Naphthalene Diimide-Based n-Type Polymers for Efficient All-Polymer Solar Cells.

    Science.gov (United States)

    Jia, Tao; Li, Zhenye; Ying, Lei; Jia, Jianchao; Fan, Baobing; Zhong, Wenkai; Pan, Feilong; He, Penghui; Chen, Junwu; Huang, Fei; Cao, Yong

    2018-02-13

    The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. UV-cured polymer optics

    Science.gov (United States)

    Piñón, Victor; Santiago, Freddie; Vogelsberg, Ashten; Davenport, Amelia; Cramer, Neil

    2017-10-01

    Although many optical-quality glass materials are available for use in optical systems, the range of polymeric materials is limited. Polymeric materials have some advantages over glass when it comes to large-scale manufacturing and production. In smaller scale systems, they offer a reduction in weight when compared to glass counterparts. This is especially important when designing optical systems meant to be carried by hand. We aimed to expand the availability of polymeric materials by exploring both crown-like and flint-like polymers. In addition, rapid and facile production was also a goal. By using UV-cured thiolene-based polymers, we were able to produce optical materials within seconds. This enabled the rapid screening of a variety of polymers from which we down-selected to produce optical flats and lenses. We will discuss problems with production and mitigation strategies in using UV-cured polymers for optical components. Using UV-cured polymers present a different set of problems than traditional injection-molded polymers, and these issues are discussed in detail. Using these produced optics, we integrated them into a modified direct view optical system, with the end goal being the development of drop-in replacements for glass components. This optical production strategy shows promise for use in lab-scale systems, where low-cost methods and flexibility are of paramount importance.

  5. Magnetoelectric polymer-based composites fundamentals and applications

    CERN Document Server

    Martins, Pedro

    2017-01-01

    The first book on this topic provides a comprehensive and well-structured overview of the fundamentals, synthesis and emerging applications of magnetoelectric polymer materials. Following an introduction to the basic aspects of polymer based magnetoelectric materials and recent developments, subsequent chapters discuss the various types as well as their synthesis and characterization. There then follows a review of the latest applications, such as memories, sensors and actuators. The book concludes with a look at future technological advances. An essential reference for entrants to the field as well as for experienced researchers.

  6. Polymer-based surface plasmon resonance biochip: construction and experimental aspects

    Directory of Open Access Journals (Sweden)

    Cleumar da Silva Moreira

    Full Text Available Abstract Introduction: Surface plasmon resonance biosensors are high sensitive analytical instruments that normally employ glass materials at the optical substrate layer. However, the use of polymer-based substrates is increasing in the last years due to favorable features, like: disposability, ease to construction and low-cost design. Review Recently, a polymer-based SPR biochip was proposed by using monochromatic and polychromatic input sources. Its construction and experimental considerations are detailed here. Experimental considerations and results, aspects from performance characteristics (resonance parameters, sensitivity and full width at half maximum – FWHM – calculations are presented for hydrophilic and hydrophobic solutions. It is included also a brief description of the state of the art of polymer-based SPR biosensors.

  7. Rewritable 3D bit optical data storage in a PMMA-based photorefractive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Day, D.; Gu, M. [Swinburne Univ. of Tech., Hawthorn, Vic. (Australia). Centre for Micro-Photonics; Smallridge, A. [Victoria Univ., Melbourne (Australia). School of Life Sciences and Technology

    2001-07-04

    A cheap, compact, and rewritable high-density optical data storage system for CD and DVD applications is presented by the authors. Continuous-wave illumination under two-photon excitation in a new poly(methylmethacrylate) (PMMA) based photorefractive polymer allows 3D bit storage of sub-Tbyte data. (orig.)

  8. Graphene-based polymer nanocomposites

    NARCIS (Netherlands)

    Tkalya, E.

    2012-01-01

    The main reason for the rapid development of polymer composite materials is that the traditional "pure" polymers have largely played out its performance capabilities whereas technology requires materials with new properties and advances. There are a number of advantages polymeric composites have

  9. Highly Sensitive Polymer-based Cantilever-sensors for DNA Detection

    DEFF Research Database (Denmark)

    Gomez, Montserrat; Nordström, Maria; Alvarez, M.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel...... polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized...

  10. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  11. Polymers for Pharmaceutical Packaging and Delivery Systems

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel

    materials of interest for pharmaceutical packaging and delivery systems. Confocal fluorescence microscopy studies and stability studies with insulin aspart (AspB28 insulin) were conducted to evaluate the impact of modified PP compared to unmodified PP. In contrast to PEEK, PP did not contain any functional....... In order to decrease the amount of catalyst residual in the modified materials, activator regenerated by electron transfer (ARGET) SI-ATRP was applied in the second experimental round. Two poly(ethylene glycol)methyl ether methacrylate (MPEGMA) monomers with 4 and 23 ethylene oxide units in the side chain......Selection of polymer materials which will be exposed to protein drugs in either containers or medical devices is often very challenging due to the demands on the polymers. Suitable polymer materials should comply with requirements like compatibility with proteins, sterilisability, good barrier...

  12. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    —laser diffraction particle size analysis, and it allows an easy and reliable measurement of the absorbency of superabsorbent polymers. It is shown in detail how both the definition of the exposure liquid and the definition of the system of SAP particles can be selected so that absorbency can be experimentally...... so that the properties of concrete with superabsorbent polymers can be better controlled in practice. In this paper, a technique that can be potentially used as a standard method is developed. The method is based on a measurement technique validated through an international standard procedure...

  13. S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers

    Science.gov (United States)

    2015-07-09

    AFRL-OSR-VA-TR-2015-0161 S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers Dietmar Pum ZENTRUM FUER NANOBIOTECHNOLOGIE Final Report 07/09...COVERED (From - To)      01-06-2012 to 31-05-2015 4.  TITLE AND SUBTITLE S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers 5a.  CONTRACT...technology for the fabrication of nano patterned thin film imprints by using functional S-layer protein arrays as templates. The unique feature of

  14. Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes

    International Nuclear Information System (INIS)

    Anand, S V; Arvind, K; Bharath, P; Roy Mahapatra, D

    2010-01-01

    In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)–metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-and nano-electro-mechanical systems (MEMS and NEMS) for biomedical, aerospace and oceanic applications

  15. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer.

    Science.gov (United States)

    Guo, Chunjing; Yin, Jungang; Chen, Daquan

    2018-02-01

    In this work, in order to enhance the stability, bioavailability and antioxidant activity of insoluble antioxidants used into juice, yoghourt and nutritional supplements, the oligo-hyalurosomes nano-delivery system (CRHs) based on oligo-hyaluronic acid -curcumin (oHC) polymer loaded curcumin(Cur) and resveratrol (Res) was fabricated with new nanotechnolgy. The rosy biodegradable amphiphilic oHC polymer was successfully synthesized and used to fabricate the hyalurosomes containing both Cur and Res, called CRHs. The CRHs can spontaneously self-assemble into nano-sized spherical shape of average particle size 134.5±5.1nm and Zeta potential -29.4±1.2 at pH 7.4 PBS conditions. In vitro gastrointestinal release test showed a perfect stability and outstanding sustained release character. Moreover, compared to the single formulations and liposomes, CRHs showed a dose-dependent manner with a higher radical scavenging activity. Therefore, the novel CRHs nano-food manifested the hopeful properties for the new effective gastrointestinal formulation and promising new nano-food delivery system in the use of juice, yoghourt and nutritional supplements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  17. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    Science.gov (United States)

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-04-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals.

  18. Cascade use indicators for selected biopolymers: Are we aiming for the right solutions in the design for recycling of bio-based polymers?

    Science.gov (United States)

    Hildebrandt, Jakob; Bezama, Alberto; Thrän, Daniela

    2017-01-01

    When surveying the trends and criteria for the design for recycling (DfR) of bio-based polymers, priorities appear to lie in energy recovery at the end of the product life of durable products, such as bio-based thermosets. Non-durable products made of thermoplastic polymers exhibit good properties for material recycling. The latter commonly enjoy growing material recycling quotas in countries that enforce a landfill ban. Quantitative and qualitative indicators are needed for characterizing progress in the development towards more recycling friendly bio-based polymers. This would enable the deficits in recycling bio-based plastics to be tracked and improved. The aim of this paper is to analyse the trends in the DfR of bio-based polymers and the constraints posed by the recycling infrastructure on plastic polymers from a systems perspective. This analysis produces recommendations on how life cycle assessment indicators can be introduced into the dialogue between designers and recyclers in order to promote DfR principles to enhance the cascading use of bio-based polymers within the bioeconomy, and to meet circular economy goals. PMID:28097922

  19. Halloysite-based dopamine-imprinted polymer for selective protein capture.

    Science.gov (United States)

    Zhu, Xiaohong; Li, Hui; Liu, Hui; Peng, Wei; Zhong, Shian; Wang, Yan

    2016-06-01

    We describe a facile, general, and highly efficient approach to obtain polydopamine-coated molecularly imprinted polymer based on halloysite nanotubes for bovine serum albumin. The method combined surface molecular imprinting and one-step immobilized template technique. Hierarchically structured polymer was prepared in physiological conditions adopting dopamine as functional monomer. A thin layer of polydopamine can be coated on the surface of amino-modified halloysite nanotubes by self-polymerization, and the thickness of the imprinted shells can be controlled by the mass ratio of matrix and dopamine. The polymer was characterized by Fourier transform infrared spectrometry, transmission electron microscopy, and thermogravimetric analysis. The prepared material showed high binding capacity (45.4 mg/g) and specific recognition behavior toward the template protein. In addition, stability and regeneration analyses indicated that the imprinted polymer exhibited excellent reusability (relative standard deviation < 9% for batch-to-batch evaluation). Therefore, the developed polymer is effective for protein recognition and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication and Optimization of Polymer Solar Cells Based on P3HT:PC70BM System

    Directory of Open Access Journals (Sweden)

    Huangzhong Yu

    2016-01-01

    Full Text Available Efficient bulk heterojunction (BHJ polymer solar cells (PSCs based on P3HT:PC70BM were fabricated by optimizing the processing parameters. The optimized thickness and annealing temperature have been found to be about 200 nm and 130°C. The effect of cathode interfacial layers on device performance is related to the formation of interfacial dipole. Furthermore, the effect of optimum ZnO interfacial thickness (~30 nm on device performance is attributed to good interfacial conductivity and its optical property. The metal electrode deposited in the slow rate has a better influence on device performance. Based on these optimal conditions, the best power conversion efficiency (PCE of 3.91% was obtained under AM 1.5G and 100 mW/cm2 illumination. This detailed investigation provides an important reference for the fabrication and optimization of polymer photovoltaic devices.

  1. Phenothiazine based polymers for energy and data storage application

    Energy Technology Data Exchange (ETDEWEB)

    Golriz, Seyed Ahmad Ali

    2013-03-15

    charge and discharge cycles. In addition to applications in batteries the bistability of phenothiazine polymers for high density data storage purposes was studied. Using the conductive mode of scanning force microscopy (SFM), nano-scaled patterning of spin-coated polymer films induced by electrochemical oxidation was successfully demonstrated. The scanning probe experiments revealed differences in the conductive states of written patterns before and after oxidation with no significant change in topography. Remarkably, the patterns were stable with respect to the storage time as well as mechanical wear. Finally, new synthetic approaches towards mechanically nanowear stable and redox active surfaces were established. Via grafting from methods based on Atom Transfer Radical Polymerization (ATRP), redox active polymer brushes with phenothiazine moieties were prepared and characterized by SFM and X-ray techniques. In particular, a synthetic route based on polymer brush structures with activated ester functionality appeared as a very promising and versatile fabrication method. The activated ester brushes were used for attachment of phenothiazine moieties in a successive step. By using crosslinkable diamine moieties, polymer brushes with redox functionalities and with increased surface wear resistance were successfully synthesized. In summary, this work offers deep insights into the electronic properties of polymers with phenothiazine redox active moieties. Furthermore, the applicability of phenothiazine polymers for electronic devices was explored and improved from synthetic polymer chemistry point of view.

  2. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Science.gov (United States)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  3. Kinetics and mechanism of thermal degradation of pentose- and hexose-based carbohydrate polymers.

    Science.gov (United States)

    Akbar, Jamshed; Iqbal, Mohammad S; Massey, Shazma; Masih, Rashid

    2012-10-15

    This work aims at study of thermal degradation kinetics and mechanism of pentose- and hexose-based carbohydrate polymers isolated from Plantago ovata (PO), Salvia aegyptiaca (SA) and Ocimum basilicum (OB). The analysis was performed by isoconversional method. The materials exhibited mainly two-stage degradation. The weight loss at ambient-115°C characterized by low activation energy corresponds to loss of moisture. The kinetic triplets consisting of E, A and g(α) model of the materials were determined. The major degradation stage represents a loss of high boiling volatile components. This stage is exothermic in nature. Above 340°C complete degradation takes place leaving a residue of 10-15%. The master plots of g(α) function clearly differentiated the degradation mechanism of hexose-based OB and SA polymers and pentose-based PO polymer. The pentose-based carbohydrate polymer showed D(4) type and the hexose-based polymers showed A(4) type degradation mechanism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  5. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  6. Evaluation of polymer based third order nonlinear integrated optics devices

    NARCIS (Netherlands)

    Driessen, A.; Hoekstra, Hugo; Blom, F.C.; Horst, F.; Horst, F.; Krijnen, Gijsbertus J.M.; van Schoot, J.B.P.; van Schoot, J.B.P.; Lambeck, Paul; Popma, T.J.A.; Diemeer, Mart

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS

  7. Experimental Study of Enhancing Oil Recovery with Weak Base Alkaline/Surfactant/Polymer

    Directory of Open Access Journals (Sweden)

    Dandan Yin

    2017-01-01

    Full Text Available Na2CO3 was used together with surfactant and polymer to form the Alkaline/Surfactant/Polymer (ASP flooding system. Interfacial tension (IFT and emulsification of Dagang oil and chemical solutions were studied in the paper. The experiment results show that the ASP system can form super-low interfacial tension with crude oil and emulsified phase. The stability of the emulsion is enhanced by the Na2CO3, surfactant, and the soap generated at oil/water contact. Six core flooding experiments are conducted in order to investigate the influence of Na2CO3 concentration on oil recovery. The results show the maximum oil recovery can be obtained with 0.3 wt% surfactant, 0.6 wt% Na2CO3, and 2000 mg/L polymer. In a heterogeneous reservoir, the ASP flooding could not enhance the oil recovery by reducing IFT until it reaches the critical viscosity, which indicates expanding the sweep volume is the premise for reducing IFT to enhance oil recovery. Reducing or removing the alkali from ASP system to achieve high viscosity will reduce oil recovery because of the declination of oil displacement efficiency. Weak base ASP alkali can ensure that the whole system with sufficient viscosity can start the medium and low permeability layers and enhance oil recovery even if the IFT only reaches 10−2 mN/m.

  8. Ultra-sensitive EUV resists based on acid-catalyzed polymer backbone breaking

    Science.gov (United States)

    Manouras, Theodoros; Kazazis, Dimitrios; Koufakis, Eleftherios; Ekinci, Yasin; Vamvakaki, Maria; Argitis, Panagiotis

    2018-03-01

    The main target of the current work was to develop new sensitive polymeric materials for lithographic applications, focusing in particular to EUV lithography, the main chain of which is cleaved under the influence of photogenerated acid. Resist materials based on the cleavage of polymer main chain are in principle capable to create very small structures, to the dimensions of the monomers that they consist of. Nevertheless, in the case of the commonly used nonchemically amplified materials of this type issues like sensitivity and poor etch resistance limit their areas of application, whereas inadequate etch resistance and non- satisfactory process reliability are the usual problems encountered in acid catalysed materials based on main chain scission. In our material design the acid catalyzed chain cleavable polymers contain very sensitive moieties in their backbone while they remain intact in alkaline ambient. These newly synthesized polymers bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behavior, adhesion to the substrate). Our approach for achieving acceptable etch resistance, a main drawback in other main chain cleavable resists, is based on the introduction of polyaromatic hydrocarbons in the polymeric backbone, whereas the incorporation of an inorganic component further enhances the etch resistance. Single component systems can also be designed following the proposed approach by the incorporation of suitable PAGs and base quencher molecules in the main chain. Resist formulations based on a random copolymer designed according to the described rules evaluated in EUV exhibit ultrahigh sensitivity, capability for high resolution patterning and overall processing characteristics that make them strong candidates for industrial use upon further optimization.

  9. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  10. All Polymer Micropump

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen

    2008-01-01

    In this thesis an all polymer micropump, and the fabrication method required to fabricate this, are examined. Polymer microfluidic. devices are of major scientific interest because they can combine complicated chemical and biological analys~s in cheap and disposable devices. The electrode system...... in the micropump is based on the conducting polymer poly(3,4 ethylenedioxythiophene) (PEDOT). The majority of the work conducted was therefore aimed at developing methods for patterning and processing PEDOT. First a method was developed, where the conducting polymer PEDOT can be integrated into non...... of the substrate, the PEDOT is integrated into the non-conductive polymer. The result is a material that retains the good conductivity of PEDOT, but gains the mechanical stability of the substrate. The best results were obtained for PEDOTjPMMA. The new mechanically stable PEDOTjPMMA was micro-patterned using clean...

  11. Hybrid energy harvesting systems, using piezoelectric elements and dielectric polymers

    Science.gov (United States)

    Cornogolub, Alexandru; Cottinet, Pierre-Jean; Petit, Lionel

    2016-09-01

    Interest in energy harvesting applications has increased a lot during recent years. This is especially true for systems using electroactive materials like dielectric polymers or piezoelectric materials. Unfortunately, these materials despite multiple advantages, present some important drawbacks. For example, many dielectric polymers demonstrated high energy densities; they are cheap, easy to process and can be easily integrated in many different structures. But at the same time, dielectric polymer generators require an external energy supply which could greatly compromise their autonomy. Piezoelectric systems, on the other hand, are completely autonomous and can be easily miniaturized. However, most common piezoelectric materials present a high rigidity and are brittle by nature and therefore their integration could be difficult. This paper investigates the possibility of using hybrid systems combining piezoelectric elements and dielectric polymers for mechanical energy harvesting applications and it is focused mainly on the problem of electrical energy transfer. Our objective is to show that such systems can be interesting and that it is possible to benefit from the advantages of both materials. For this, different configurations were considered and the problem of their optimization was addressed. The experimental work enabled us to prove the concept and identify the main practical limitations.

  12. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  13. Thieno[3,4-c]Pyrrole-4,6-Dione-Based Polymer Acceptors for High Open-Circuit Voltage All-Polymer Solar Cells

    KAUST Repository

    Liu, Shengjian

    2017-04-20

    While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all-polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all-polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4-c]pyrrole-4,6-dione (TPD) and 3,4-difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low-bandgap polymer donor commonly used with fullerenes (PBDT-TS1; taken as a model system). In this material set, the introduction of a third electron-deficient motif, namely 2,1,3-benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (Eopt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow-gap P2TPDBT[2F]T analog (Eopt = 1.7 eV) used as fullerene alternative yields high open-circuit voltages (VOC) of ≈1.0 V, notable short-circuit current values (JSC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all-polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates.

  14. Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

    Science.gov (United States)

    Jin, Sung Giu; Yousaf, Abid Mehmood; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jin Ki; Yong, Chul Soon; Youn, Yu Seok; Kim, Jong Oh; Choi, Han-Gon

    2016-03-30

    The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Phases of polymer systems in solution studied via molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)

    2009-05-01

    Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.

  16. Fiber-optical accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer.......Fiber-optical accelerometers based on polymer optical fiber Bragg gratings (FBGs) are reported. We have written 3mm FBGs for 1550nm operation, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  17. Intelligent structures based on the improved activation of shape memory polymers using Peltier cells

    International Nuclear Information System (INIS)

    Díaz Lantada, Andrés; Lafont Morgado, Pilar; Muñoz Sanz, José Luis; Muñoz García, Julio; Munoz-Guijosa, Juan Manuel; Echávarri Otero, Javier

    2010-01-01

    This study is focused on obtaining intelligent structures manufactured from shape memory polymers possessing the ability to change their geometry in successive or 'step-by-step' actions. This objective has been reached by changing the conventionally used shape memory activation systems (heating resistance, laser or induction heating). The solution set out consists in using Peltier cells as a heating system capable of heating (and activating) a specific zone of the device in the first activation, while the opposite zone keeps its original geometry. By carefully reversing the polarity of the electrical supply to the Peltier cell, in the second activation, the as yet unchanged zone is activated while the already changed zone in the first activation remains unaltered. We have described the criteria for the selection, calibration and design of this alternative heating (activation) system based on the thermoelectric effect, together with the development of different 'proof of concept' prototypes that have enabled us to validate the concepts put forward, as well as suggest future improvements for 'intelligent' shape memory polymer-based devices

  18. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  19. Supramolecular materials based on hydrogen-bonded polymers

    NARCIS (Netherlands)

    ten Brinke, Gerrit; Ruokolainen, Janne; Ikkala, Olli; Binder, W

    2007-01-01

    Combining supramolecular principles with block copolymer self-assembly offers unique possibilities to create materials with responsive and/or tunable properties. The present chapter focuses on supramolecular materials based on hydrogen bonding and (block co-) polymers. Several cases will be

  20. BCB polymer based row-column addressed CMUT

    DEFF Research Database (Denmark)

    Havreland, Andreas Spandet; Ommen, Martin Lind; Silvestre, Chantal

    2017-01-01

    This paper presents an inexpensive, low temperature and rapid fabrication method for capacitive micromachined ultrasonic transducers (CMUT). The fabrication utilizes the bonding and dielectric properties of the photosensitive polymer Benzocyclobutene (BCB). A BCB based row-column addressed CMUT w...

  1. Conducting Polymer Based Nanobiosensors

    Directory of Open Access Journals (Sweden)

    Chul Soon Park

    2016-06-01

    Full Text Available In recent years, conducting polymer (CP nanomaterials have been used in a variety of fields, such as in energy, environmental, and biomedical applications, owing to their outstanding chemical and physical properties compared to conventional metal materials. In particular, nanobiosensors based on CP nanomaterials exhibit excellent performance sensing target molecules. The performance of CP nanobiosensors varies based on their size, shape, conductivity, and morphology, among other characteristics. Therefore, in this review, we provide an overview of the techniques commonly used to fabricate novel CP nanomaterials and their biosensor applications, including aptasensors, field-effect transistor (FET biosensors, human sense mimicking biosensors, and immunoassays. We also discuss prospects for state-of-the-art nanobiosensors using CP nanomaterials by focusing on strategies to overcome the current limitations.

  2. International PolyScene-workshop on polymer electronics. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Topics of this proceedings are: RFID: tagging the opportunities and threats for polymer electronics; polymeric semiconductor development for thin film transistors; hole and electron transport in semiconducting polymers for organic electronics; a circuit based strategy for the development of polymer TFTS; towards a technology for all-polymer electronics; electrically doped organic semiconductors: physics and device applications; organic solar cells and photodetectors; organic solar cells: trends, challenges and positioning in the field of thin-film solar cell technologies; technical production of plastic solar cells: an overview; optical and ESR studies on polymer/fullerene composites for solar cells; targets for OTFT development for active matrix displays; reflective electroactive display (READ) technology and opportunities in printed devices; OFETs, OLEDs, OLDs: organic devices for future polytronic systems; design of active polymer materials and their application in electronic devices; blue emitting ALQ3 for full color organic displays; technologies for the reel-to-reel production of flexible polytronic systems; new developments in polyester films for flexible electronics; printed conductive polymer structures; non-lithographic patterning of polymer transistors; laser structuring- a method for polymer and metal patterning; direct printing of polymer transistor circuits; molecular design of interphases - the key for the development of reliable polymer based products; wafer level packaging - encapsulation of micro structures.

  3. Effect of attractive interactions between polymers on the effective force acting between colloids immersed in a polymer system: Analytic liquid-state theory.

    Science.gov (United States)

    Chervanyov, A I

    2016-12-28

    By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.

  4. An all-polymer micropump based on the conductive polymer poly(3,4-ethylenedioxythiophene) and a polyurethane channel system

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2007-01-01

    An all-polymer micropunlp was realized using the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDT) as the active cODlponent. The pUlnping effect originated fronl an ac potential applied to an aSylnlnetric array of interdigitat.ed electrodes. The PEDT electrodes were fabricated using...... of t.he conducting polylner electrodes by an insulating polYlTIer layer prevented electrode break-down at the cost of puolping efficiency. Continuous punlping for 40 nlin at 20 fJ..,m s-l without detectable pump degradation was delTIOnstrated in this configuration....

  5. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    Science.gov (United States)

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  6. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    Science.gov (United States)

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  8. Homo- and heterodinuclear coordination polymers based on a tritopic cyclam bis-terpyridine unit: Structure and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Li; Fan, Jiangxia; Ren, Yong; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Yan, Minhao, E-mail: yanminhao@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Tuo, Xianguo, E-mail: tuoxg@swust.edu.cn [Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China); Terech, Pierre [SPrAM, UMR CEA/CNRS/UJF-Grenoble 1, INAC, Grenoble F-38054 (France); Royal, Guy [Université Joseph Fourier Grenoble I, Département de Chimie Moléculaire, UMR CNRS-5250, Institut de Chimie Moléculaire de Grenoble, FR CNRS-2607, BP 53, 38041 Grenoble Cedex 9 (France)

    2015-03-01

    An innovative coordination polymer based on a tritopic ligand having the bis-terpyridine cyclam (CHTT) unit is explored. Homo- or heteronuclear 1D coordination polymers can be formed with bivalent metal ions such as Co(II) and Ni(II) in solvent DMF. Creep-recovery curves of the (Co{sup II}){sub 2}CHTT gels formed from 1D coordination polymers were analyzed with the Burgers model and demonstrated an original self-healing property, unusual in the class of molecular gels. The influence of the metal type was studied through the structural features using small-angle neutron scattering (SANS) experiments. In gels, the corresponding network involves genuine fibers (R ≈ 35 Å), bundles of these fibers and also a fraction of finite size aggregates (rods with aspect ratio f ≈ 3–5). We found that the distribution of these latter structural components is sensitive to the metal ions type. Such tritopic 1D coordination polymers exhibit a range of original structural features and a facile control of the developed structures in solutions and gels by tuning their thermodynamic parameters. The versatility associated to the intrinsic dynamic ability of the systems should pave the way to original properties for molecular devices. - Graphical abstract: A tritopic ligand with a bis-terpyridine cyclam (CHTT) unit can form homo- and heterobinuclear coordination polymers with bivalent metal ions in DMF. Gels exhibit a remarkable self-healing property while structures of solutions and gels are studied by small-angle neutron scattering. - Highlights: • Homo- and heteronuclear coordination polymers based on innovative tritopic ligand. • The gels formed from the coordination polymers demonstrated self-healing property. • Influence of the metal type was studied through the structural properties by SANS. • Versatility of the singular system present original properties for molecular device.

  9. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes

    Science.gov (United States)

    Patla, Subir Kumar; Ray, Ruma; Asokan, K.; Karmakar, Sanat

    2018-03-01

    We investigate the effect of blend host polymer on solid polymer electrolyte (SPE) films doped with ammonium iodide (NH4I) salt using a variety of experimental techniques. Structural studies on the composite SPEs show that the blending of Poly(ethylene oxide) (PEO)-Poly(vinylidene fluoride) (PVDF) polymers in a suitable ratio enhances the amorphous fraction of the polymer matrix and facilitates fast ion conduction through it. We observe that the addition of a small amount of PVDF in the PEO host polymer enhances the ion - polymer interaction leading to more ion dissociation. As a result, the effective number of mobile charge carriers within the polymer matrix increases. Systematic investigation in these blend SPEs shows that the maximum conductivity (1.01 × 10-3 S/cm) is obtained for PEO - rich (80 wt. % PEO, 20 wt. % PVDF) composites at 35 wt. % NH4I concentration at room temperature. Interestingly, at higher salt concentrations (above 35 wt. %), the conductivity is found to decrease in this system. The reduction of conductivity at higher salt concentrations is the consequence of decrease in the carrier concentration due to the formation of an ion pair and ion aggregates. PVDF-rich compositions (20 wt. % PEO and 80 wt. % PVDF), on the other hand, show a very complex porous microstructure. We also observe a much lower ionic conductivity (maximum ˜ 10-6 S/cm at 15 wt. % salt) in these composite systems relative to PEO-rich composites.

  10. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  11. Polymers for 3D Printing and Customized Additive Manufacturing.

    Science.gov (United States)

    Ligon, Samuel Clark; Liska, Robert; Stampfl, Jürgen; Gurr, Matthias; Mülhaupt, Rolf

    2017-08-09

    Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.

  12. Polymers for 3D Printing and Customized Additive Manufacturing

    Science.gov (United States)

    2017-01-01

    Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems. PMID:28756658

  13. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    Science.gov (United States)

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improving reservoir conformance using gelled polymer systems. Final report, September 25, 1992--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Buller, C.; McCool, S.; Vossoughi, S.; Michnick, M.

    1997-06-01

    The objectives of the research program were to (1) identify and develop polymer systems which have potential to improve reservoir conformance of fluid displacement processes, (2) determine the performance of these systems in bulk and in porous media, and (3) develop methods to predict their performance in field applications. The research focused on four types of gel systems--KUSP1 systems that contain an aqueous polysaccharide designated KUSP1, phenolic-aldehyde systems composed of resorcinol and formaldehyde, colloidal-dispersion systems composed of polyacrylamide and aluminum citrate, and a chromium-based system where polyacrylamide is crosslinked by chromium(III). Gelation behavior of the resorcinol-formaldehyde systems and the KUSP1-borate system was examined. Size distributions of aggregates that form in the polyacrylamide-aluminum colloidal-dispersion gel system were determined. Permeabilities to brine of several rock materials were significantly reduced by gel treatments using the KUSP1 polymer-ester (monoethyl phthalate) system, the KUSP1 polymer-boric acid system, and the sulfomethylated resorcinol-formaldehyde system were also shown to significantly reduce the permeability to supercritical carbon dioxide. A mathematical model was developed to simulate the behavior of a chromium redox-polyacrylamide gel system that is injected through a wellbore into a multi-layer reservoir in which crossflow between layers is allowed. The model describes gelation kinetics and filtration of pre-gel aggregates in the reservoir. Studies using the model demonstrated the effect filtration of gel aggregates has on the placement of gel systems in layered reservoirs.

  15. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  16. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel – Part B: Overall system design and energy performance analysis

    International Nuclear Information System (INIS)

    Intini, M.; De Antonellis, S.; Joppolo, C.M.; Casalegno, A.

    2015-01-01

    Highlights: • Seasonal simulation of a trigeneration system for building air-conditioning. • Effects of technical constraints on trigeneration system power consumption. • Optimal PEMFC unit size for maximizing trigeneration primary energy savings. - Abstract: This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 °C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings

  17. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.

    Science.gov (United States)

    Gu, Li; Faig, Allison; Abdelhamid, Dalia; Uhrich, Kathryn

    2014-10-21

    Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular

  18. Ibuprofen-loaded microspheres based on a co-polymer of Eudragit ...

    African Journals Online (AJOL)

    The objective of this study was to encapsulate ibuprofen in microspheres based on a co-polymer of Eudragit® RS100 and RL100 with a view to achieving a controlled release of the incorporated drug. The microparticles were prepared by an o/o emulsion-solvent evaporation method using varying polymer ratios and ...

  19. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-01-01

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed. PMID:28773772

  20. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    Supramolecular polymers are a broad class of materials that include all polymerscapable of associating via secondary interactions. These materials represent an emerging class of systems with superior versatility compared to classical polymers with applications in food stuff, coatings, cost...... efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening...

  1. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer

    Directory of Open Access Journals (Sweden)

    Ulrich S. Schubert

    2010-08-01

    Full Text Available Thermoresponsive polymers that undergo a solubility transition by variation of the temperature are important materials for the development of ‘smart’ materials. In this contribution we exploit the solubility phase transition of poly(methoxy diethylene glycol methacrylate, which is accompanied by a transition from hydrophilic to hydrophobic, for the development of a fluorescent thermometer. To translate the polymer phase transition into a fluorescent response, the polymer was functionalized with pyrene resulting in a change of the emission based on the microenvironment. This approach led to a soluble polymeric fluorescent thermometer with a temperature range from 11 °C to 21 °C. The polymer phase transition that occurs during sensing is studied in detail by dynamic light scattering.

  2. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee; Melianas, Armantas; Zhuang, Wenliu; Bergqvist, Jonas; Diaz De Zerio Mendaza, Amaia; Steckler, Timothy T.; Yu, Liyang; Bradley, Siobhan J.; Musumeci, Chiara; Gedefaw, Desta; Nann, Thomas; Amassian, Aram; Mü ller, Christian; Inganä s, Olle; Andersson, Mats R.

    2015-01-01

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  3. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  4. Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach

    Science.gov (United States)

    Kracalik, Milan

    2015-04-01

    Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.

  5. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo; Ghanem, Bader; Swaidan, Raja

    2015-01-01

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using

  6. Quasi-homogenous approximation for description of the properties of dispersed systems. The basic approaches to model hardening processes in nanodispersed silica systems. Part 1. Statical polymer method

    Directory of Open Access Journals (Sweden)

    KUDRYAVTSEV Pavel Gennadievich

    2015-02-01

    Full Text Available The paper deals with possibilities to use quasi-homogenous approximation for discription of properties of dispersed systems. The authors applied statistical polymer method based on consideration of average structures of all possible macromolecules of the same weight. The equiations which allow evaluating many additive parameters of macromolecules and the systems with them were deduced. Statistical polymer method makes it possible to model branched, cross-linked macromolecules and the systems with them which are in equilibrium or non-equilibrium state. Fractal analysis of statistical polymer allows modeling different types of random fractal and other objects examined with the mehods of fractal theory. The method of fractal polymer can be also applied not only to polymers but also to composites, gels, associates in polar liquids and other packaged systems. There is also a description of the states of colloid solutions of silica oxide from the point of view of statistical physics. This approach is based on the idea that colloid solution of silica dioxide – sol of silica dioxide – consists of enormous number of interacting particles which are always in move. The paper is devoted to the research of ideal system of colliding but not interacting particles of sol. The analysis of behavior of silica sol was performed according to distribution Maxwell-Boltzmann and free path length was calculated. Using this data the number of the particles which can overcome the potential barrier in collision was calculated. To model kinetics of sol-gel transition different approaches were studied.

  7. Investigation of the Spatial Resolution of MR-Based Polymer Gel Dosimetry versus Film Densitometry using Dose Modulation Transfer Function

    Directory of Open Access Journals (Sweden)

    Reza Moghadam-Drodkhani

    2011-03-01

    Full Text Available Introduction: The conventional methods of dosimetry are not capable of dosimetry in such a small volume of less than one cubic millimeter. Although the polymer gel dosimetry method based on magnetic resonance imaging (MRI could achieve three dimensional dosimetry with high resolution, a spatial resolution evaluation based on gel dose modulation transfer function has not been investigated yet. Therefore, in this study, the spatial resolution of two systems of film densitometry and polymer gel dosimetry based on MRI has been evaluated by using the dose modulation transfer function (DMTF.   Material and Methods: Kodak therapy verification films and MAGICA polymer gel samples were positioned below a brass absorption grid with different periodic slices (a/2= 280, 525, 1125 μm, which was placed in a water bath container to avoid regions of dose build-up just below the absorption grid and then irradiated with Cobalt-60 photons on a Theratron external-beam treatment unit. Dose variation under the brass grid was determined using a calibration curve, while transverse relaxation time (T2 as the selective parameter in a dose image based on multiple echo MRI with 1.5 Tesla GE Signa Echo Speed system (FOV=10 cm, matrix size=512 ×512, pixel size =0.199×0.199 mm2, TE = 20, 40, 60, 80 ms, TR=4200 ms, NEX = 4, slice thickness=2 mm, gap=1 mm was calculated. DMTF from the modulation depths of T2 and variation in film optical density after calibration would be achieved. The results of polymer gel were compared with film. Results: After deriving the dose distribution profile under the absorption grid, minima and maxima at the smallest period of a = 560 μm could scarcely be resolved, but the modulations due to a=2250 μm and a = 1050 μm grids could be discerned. The modulation depth for a=2250 μm grid was set to 100% and the other modulations were subsequently referred to this maximum modulation. For film densitometry at a = 1050 μm, the modulation depth was

  8. Synthesis and characterization of triglyceride based thermosetting polymers

    Science.gov (United States)

    Can, Erde

    2005-07-01

    Plant oils, which are found in abundance in all parts of the world and are easily replenished annually, have the potential to replace petroleum as a chemical feedstock for making polymers. Within the past few years, there has been growing interest to use triglycerides as the basic constituent of thermosetting polymers with the necessary rigidity, strength and glass transition temperatures required for engineering applications. Plant oils are not polymerizable in their natural form, however various functional groups that can polymerize can easily be attached to the triglyceride structure making them ideal cross-linking monomers for thermosetting liquid molding resins. Through this research project a number of thermosetting liquid molding resins based on soybean and castor oil, which is a specialty oil with hydroxyls on its fatty acids, have been developed. The triglyceride based monomers were prepared via the malination of the alcoholysis products of soybean and castor oil with various polyols, such as pentaerythritol, glycerol, and Bisphenol A propoxylate. The malinated glycerides were then cured in the presence of a reactive diluent, such as styrene, to form rigid glassy materials with a wide range of properties. In addition to maleate half-esters, methacrylates were also introduced to the glyceride structure via methacrylation of the soybean oil glycerolysis product with methacrylic anhydride. This product, which contains methacrylic acid as by-product, and its blends with styrene also gave rigid materials when cured. The triglyceride based monomers were characterized via conventional spectroscopic techniques. Time resolved FTIR analysis was used to determine the curing kinetics and the final conversions of polymerization of the malinated glyceride-styrene blends. Dynamic Mechanical Analysis (DMA) was used to determine the thermomechanical behavior of these polymers and other mechanical properties were determined via standard mechanical tests. The use of lignin

  9. Stimulus-responsive hydrogels based on associative polymers

    DEFF Research Database (Denmark)

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja

    2008-01-01

    An important group of water soluble polymers are associative ones in which hydrophobic parts of the polymer molecules interact, self-assemble and enhance the viscosity of aqueous solutions even at low polymer concentrations. For many applications it would be beneficial to be able to combine the a......, in press. 3. S. Hietala, P. Mononen, S. Strandman, P. Jarvi, M. Torkkeli, K. Jankova, S. Hvilsted, H. Tenhu Polymer, 48 (2007) 4087-4096........ The resulting hydrogels were studied with respect to the polymer concentration, temperature and ionic strength.3 REFERENCES 1. Nuopponen M.; Kalliomaki K.; Laukkanen A.; Hietala S.; Tenhu H. 1. Polym. Sci. Polym. Chern. 2008, 46, 38-46. 2. Hietala S.; Nuopponen M.; Kalliomaki K.; Tenhu H. Macromolecules...

  10. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  11. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  12. Polymer Nanoparticle-Based Chemotherapy for Spinal Malignancies

    Directory of Open Access Journals (Sweden)

    Hongyun Ma

    2016-01-01

    Full Text Available Malignant spinal tumors, categorized into primary and metastatic ones, are one of the most serious diseases due to their high morbidity and mortality rates. Common primary spinal tumors include chordoma, chondrosarcoma, osteosarcoma, Ewing’s sarcoma, and multiple myeloma. Spinal malignancies are not only locally invasive and destructive to adjacent structures, such as bone, neural, and vascular structures, but also disruptive to distant organs (e.g., lung. Current treatments for spinal malignancies, including wide resection, radiotherapy, and chemotherapy, have made significant progress like improving patients’ quality of life. Among them, chemotherapy plays an important role, but its potential for clinical application is limited by severe side effects and drug resistance. To ameliorate the current situation, various polymer nanoparticles have been developed as promising excipients to facilitate the effective treatment of spinal malignancies by utilizing their potent advantages, for example, targeting, stimuli response, and synergetic effect. This review overviews the development of polymer nanoparticles for antineoplastic delivery in the treatment of spinal malignancies and discusses future prospects of polymer nanoparticle-based treatment methods.

  13. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    Science.gov (United States)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  14. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J., E-mail: dsirbuly@ucsd.edu [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States)

    2014-09-14

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  15. Identification and design of novel polymer-based mechanical transducers: A nano-structural model for thin film indentation

    International Nuclear Information System (INIS)

    Villanueva, Joshua; Huang, Qian; Sirbuly, Donald J.

    2014-01-01

    Mechanical characterization is important for understanding small-scale systems and developing devices, particularly at the interface of biology, medicine, and nanotechnology. Yet, monitoring sub-surface forces is challenging with current technologies like atomic force microscopes (AFMs) or optical tweezers due to their probe sizes and sophisticated feedback mechanisms. An alternative transducer design relying on the indentation mechanics of a compressible thin polymer would be an ideal system for more compact and versatile probes, facilitating measurements in situ or in vivo. However, application-specific tuning of a polymer's mechanical properties can be burdensome via experimental optimization. Therefore, efficient transducer design requires a fundamental understanding of how synthetic parameters such as the molecular weight and grafting density influence the bulk material properties that determine the force response. In this work, we apply molecular-level polymer scaling laws to a first order elastic foundation model, relating the conformational state of individual polymer chains to the macroscopic compression of thin film systems. A parameter sweep analysis was conducted to observe predicted model trends under various system conditions and to understand how nano-structural elements influence the material stiffness. We validate the model by comparing predicted force profiles to experimental AFM curves for a real polymer system and show that it has reasonable predictive power for initial estimates of the force response, displaying excellent agreement with experimental force curves. We also present an analysis of the force sensitivity of an example transducer system to demonstrate identification of synthetic protocols based on desired mechanical properties. These results highlight the usefulness of this simple model as an aid for the design of a new class of compact and tunable nanomechanical force transducers.

  16. Terminology of Polymers and Polymerization Processes in Dispersed Systems (IUPAC Recommendations 2011

    Directory of Open Access Journals (Sweden)

    Rogošić, M.

    2012-07-01

    Full Text Available A large group of industrially important polymerization processes is carried out in dispersed systems. These processes differ with respect to their physical nature, mechanism of particle formation, particle morphology, size, charge, types of interparticle interactions, and many other aspects. Polymer dispersions, and polymers derived from polymerization in dispersed systems,are used in diverse areas such as paints, adhesives, microelectronics, medicine, cosmetics, biotechnology, and others. Frequently, the same names are used for different processes and products or different names are used for the same processes and products. The document contains a list of recommended terms and definitions necessary for the unambiguous description of processes, products, parameters, and characteristic features relevant to polymers in dispersed systems.

  17. New neuro-fuzzy system-based holey polymer fibers drawing process

    Science.gov (United States)

    Mohammed Salim, Omar Nameer

    2017-10-01

    Furnace temperature (T), draw tension (TE), and draw ratio (Dr) are the main parameters that could directly affect holey polymer fiber (HPF) production during the drawing stage. Therefore, a suitable mechanism to control (T), (TE), and (Dr) is required to enhance the HPF production process. The conventional approaches, such as observation and tuning technique, experience many difficulties in realizing the accurate values of (T), (TE), and (Dr) in addition to being expensive and time consuming. Therefore, an artificial intelligence model using the adaptive neuro-fuzzy system (ANFIS) method is proposed as an effective solution to achieve an accurate value of the main parameters that affect HPF drawing. Three ANFIS models are developed and tested to determine which one has the best performance for emulating the operation of HPF drawing tower. The ANFIS model with a gbell MF provides a better performance than Gaussian MF ANFIS model and triangular MF ANFIS model in terms of lower mean absolute error and mean square error. Furthermore, the proposed gbell MF model achieved the highest Q-Q response, which indicates the excellent performance of this model.

  18. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    polymerize in-situ around the fillers or even graft to them [71], thus it overcomes the problem of dramatically increased viscosity of the polymer...filler dispersion, increased polymer viscosity during processing and filler damage due to thermal degradation or strong shear forces [3, 82]. At...123, 124]. Figure 1.12 (a) SEM image of the fracture surface of GO/PVA nanocomposite film [85]. (b) TEM image of a clay reinforced Nylon-6

  19. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    Science.gov (United States)

    Causa, Andrea; Salerno, Aurelio; Domingo, Concepción; Acierno, Domenico; Filippone, Giovanni

    2014-05-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ɛ-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and "green" solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO2. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  20. Brush Polymer of Donor-Accepter Dyads via Adduct Formation between Lewis Base Polymer Donor and All Carbon Lewis Acid Acceptor

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-09-01

    Full Text Available A synthetic method that taps into the facile Lewis base (LB→Lewis acid (LA adduct forming reaction between the semiconducting polymeric LB and all carbon LA C60 for the construction of covalently linked donor-acceptor dyads and brush polymer of dyads is reported. The polymeric LB is built on poly(3-hexylthiophene (P3HT macromers containing either an alkyl or vinyl imidazolium end group that can be readily converted into the N-heterocyclic carbene (NHC LB site, while the brush polymer architecture is conveniently constructed via radical polymerization of the macromer P3HT with the vinyl imidazolium chain end. Simply mixing of such donor polymeric LB with C60 rapidly creates linked P3HT-C60 dyads and brush polymer of dyads in which C60 is covalently linked to the NHC junction connecting the vinyl polymer main chain and the brush P3HT side chains. Thermal behaviors, electronic absorption and emission properties of the resulting P3HT-C60 dyads and brush polymer of dyads have been investigated. The results show that a change of the topology of the P3HT-C60 dyad from linear to brush architecture enhances the crystallinity and Tm of the P3HT domain and, along with other findings, they indicate that the brush polymer architecture of donor-acceptor domains provides a promising approach to improve performances of polymer-based solar cells.

  1. The determination of acid-base properties of polymer surfaces by XPS: Present status and future prospects

    International Nuclear Information System (INIS)

    Chehimi, M.M.; Delamar, M.; Shahidzadeh-Ahmadi, N.; Arefi-Khonsari, F.; Amouroux, J.; Watts, J.F.

    1996-01-01

    The use of the molecular probe technique in conjunction with X-ray photoelectron spectroscopy (XPS) for the assessment of acid-base properties of polymer surfaces is reviewed. The method is based on the determination of the concentration and chemical shifts of Lewis acids (bases) sorbed in polymers of basic (acidic) character. In the case of chloroform (Lewis acid) sorbed in polymers of Lewis basic character, C12p binding energy is linearly correlated with ΔH AB , the heat of acid-base complex formation chloroform-polymer. This relationship has been used to determine the acid-base properties of poly(phenylene oxide), a homopolymer, and ammonia plasma-treated polypropylene. This work shows that XPS can now indeed be used to quantitatively assess the acid-base properties of modified polymer surfaces and perhaps be extended to map acid-base properties of polymer surfaces at the micron or submicron scale. copyright 1996 American Institute of Physics

  2. Microchemostat - microbial continuous culture in a polymer-based, instrumented microbioreactor

    DEFF Research Database (Denmark)

    Zhang, Z.; Bocazzi, P.; Choi, H. G.

    2006-01-01

    -based microbioreactor system integrated with optical density (OD), pH, and dissolved oxygen (DO) real-time measurements for continuous cultivation of microbial cells. Escherichia coli (E. coli) cells are continuously cultured in a 150 mL, membrane-aerated, well-mixed microbioreactor fed by a pressure-driven flow......In a chemostat, microbial cells reach a steady state condition at which cell biomass production, substrates and the product concentrations remain constant. These features make continuous culture a unique and powerful tool for biological and physiological research. We present a polymer...

  3. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Nasif, Muhammad; Sultan, Neelam; Aslam, Nosheen; Noreen, Aqdas; Zuber, Mohammad

    2017-03-01

    Carrageenan is a natural polysaccharide extracted from edible red seaweeds of Rhodophycea class. It has been used as a viscosity increasing or gelling agent for prolonged and controlled drug release, food, pharmaceuticals and other industries. However, in spite of wide range of applications, carrageenan has some drawbacks and adverse effects on the biological systems, so its modifications with natural and synthetic polymers are carried out. This review article presents different sources and properties of carrageenans with special emphasis on natural polymer based carrageenan blends and composites and their applications in controlled drug delivery system, wound dressing and tissue engineering because of their biodegradability and biocompatibility, food industry as thickening/gelling materials, cosmeceuticals and making polyelectrolyte complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  5. Polycyanurates and Polycarbonates Based on Eugenol: Alternatives to Thermosetting and Thermoplastic Polymers Based on Bisphenol A

    Science.gov (United States)

    2014-08-14

    to 5a. CONTRACT NUMBER In-House Thermosetting and Thermoplastic Polymers based on Bisphenol A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Francisco, CA, 14 August 2014. PA#14389 14. ABSTRACT Polycyanurate thermosetting networks, polycarbonate thermoplastics, and homogenous polycarbonate...ON EUGENOL: ALTERNATIVES TO THERMOSETTING AND THERMOPLASTIC POLYMES BASED ON BISPHENOL A 14 August 2014 Andrew J. Guenthner1, Benjamin G. Harvey2

  6. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions.

    Directory of Open Access Journals (Sweden)

    Gayathri Acharya

    Full Text Available The objective of this study was to optimize the physicodynamic conditions of polymeric system as a coating substrate for drug eluting stents against restenosis. As Nitric Oxide (NO has multifunctional activities, such as regulating blood flow and pressure, and influencing thrombus formation, a continuous and spatiotemporal delivery of NO loaded in the polymer based nanoparticles could be a viable option to reduce and prevent restenosis. To identify the most suitable carrier for S-Nitrosoglutathione (GSNO, a NO prodrug, stents were coated with various polymers, such as poly (lactic-co-glycolic acid (PLGA, polyethylene glycol (PEG and polycaprolactone (PCL, using solvent evaporation technique. Full factorial design was used to evaluate the effects of the formulation variables in polymer-based stent coatings on the GSNO release rate and weight loss rate. The least square regression model was used for data analysis in the optimization process. The polymer-coated stents were further assessed with Differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy analysis (FTIR, Scanning electron microscopy (SEM images and platelet adhesion studies. Stents coated with PCL matrix displayed more sustained and controlled drug release profiles than those coated with PLGA and PEG. Stents coated with PCL matrix showed the least platelet adhesion rate. Subsequently, stents coated with PCL matrix were subjected to the further optimization processes for improvement of surface morphology and enhancement of the drug release duration. The results of this study demonstrated that PCL matrix containing GSNO is a promising system for stent surface coating against restenosis.

  7. EXTRACTION AND SORPTION BENZOIC ACID FROM AQUEOUS SOLUTIONS OF POLYMERS BASED ON N-VINYLAMIDES

    Directory of Open Access Journals (Sweden)

    A. G. Savvina

    2015-01-01

    Full Text Available The widespread use of aromatic acids (benzoic acid, salicylic as preservatives necessitates their qualitative and quantitative determination in food. Effective and common way to separation and concentration of aromatic acids liquid extraction. Biphasic system of water-soluble polymers based on (poly-N-vinyl pyrrolidone, and poly-N-vinylcaprolactam satisfy the requirements of the extraction system. When sorption concentration improved definition of the metrological characteristics, comply with the requirements for sensitivity and selectivity definition appears possible, use of inexpensive and readily available analytical equipment. When studying the adsorption of benzoic acid used as a sorbent crosslinked polymer based on N-vinyl pyrrolidone, obtained by radical polymerisation of a functional monomer and crosslinker. In the extraction of benzoic acid to maximize the allocation of water and the organic phase of the polymer used salt solutions with concentrations close to saturation. Regardless of the nature of the anion salt is used as salting-out agent, aromatic acids sorption increases with the size of the cations. In the experiment the maximum recovery rate (80% benzoic acid obtained in the PVP (0.2 weight%. Ammonium sulphate. The dependence stepepni benzoic acid extraction from time sorption sorbent mass and the pH of the aqueous phase. To establish equilibrium in the system, for 20 minutes. The dependence of the degree of extraction of the acid pH indicates that the acid is extracted into the molecular form. The maximum adsorption is reached at pH 3,5, with its efficiency decreases symbatically reduce the amount of undissociated acid molecules in solution.

  8. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Unconventional, amphiphilic polymers based on chiral polyethylene oxide derivatives I. Synthesis and Characterization.

    NARCIS (Netherlands)

    Janssen, H.M.; Peeters, E.; Zundert, van M.F.; Genderen, van M.H.P.; Meijer, E.W.

    1997-01-01

    The first representatives of a new class of synthetic, amphiphilic polymers based on poly(ethylene oxide) are introduced. These polymers are constituted in a similar way to that for coiled-coil-forming peptides: the polymers possess a regular repeat of apolar (A) residues in a polar (P) sequence of

  10. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    Science.gov (United States)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure

  11. New NIR Absorbing DPP-based Polymer for Thick Organic Solar Cells

    KAUST Repository

    Oklem, Gulce

    2018-02-05

    infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers compromising diketopyrrolopyrrole based acceptors and simple donors (thiophene or furan) achieve absorption maximum around 800 nm. In this study, the selenophene based donor units coupled with diketopyrrolopyrrole acceptor unit based polymer (PFDPPSe) was synthesized with an absorption maximum at 830 nm and absorption onset of 930 nm. The optimized organic solar cells with PFDDPSe: PC71BM active layer blends of 210 nm showed maximum PCE of 6.16 % (ave. 6.02 %) via solvent additive engineering with inverted device structure. Charge transport, recombination loss mechanism, and morphology are systematically studied. These results demonstrate that highly efficient NIR polymer can be achieved by the introduction of selenophene and a suitable solvent additive process suitable for NIR organic solar cells. PFDPPSe is also one of the rare examples of a polymer with a PCE over 6% that does not contain any thiophene-based unit in its backbone.

  12. Nanomembranes and Nanofibers from Biodegradable Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Jordi Puiggalí

    2013-09-01

    Full Text Available This review provides a current status report of the field concerning preparation of fibrous mats based on biodegradable (e.g., aliphatic polyesters such as polylactide or polycaprolactone and conducting polymers (e.g., polyaniline, polypirrole or polythiophenes. These materials have potential biomedical applications (e.g., tissue engineering or drug delivery systems and can be combined to get free-standing nanomembranes and nanofibers that retain the better properties of their corresponding individual components. Systems based on biodegradable and conducting polymers constitute nowadays one of the most promising solutions to develop advanced materials enable to cover aspects like local stimulation of desired tissue, time controlled drug release and stimulation of either the proliferation or differentiation of various cell types. The first sections of the review are focused on a general overview of conducting and biodegradable polymers most usually employed and the explanation of the most suitable techniques for preparing nanofibers and nanomembranes (i.e., electrospinning and spin coating. Following sections are organized according to the base conducting polymer (e.g., Sections 4–6 describe hybrid systems having aniline, pyrrole and thiophene units, respectively. Each one of these sections includes specific subsections dealing with applications in a nanofiber or nanomembrane form. Finally, miscellaneous systems and concluding remarks are given in the two last sections.

  13. Control of polymer network topology in semi-batch systems

    Science.gov (United States)

    Wang, Rui; Olsen, Bradley; Johnson, Jeremiah

    Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.

  14. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D.; Schubert, Ulrich S.

    2015-11-01

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  15. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.

    Science.gov (United States)

    Janoschka, Tobias; Martin, Norbert; Martin, Udo; Friebe, Christian; Morgenstern, Sabine; Hiller, Hannes; Hager, Martin D; Schubert, Ulrich S

    2015-11-05

    For renewable energy sources such as solar, wind, and hydroelectric to be effectively used in the grid of the future, flexible and scalable energy-storage solutions are necessary to mitigate output fluctuations. Redox-flow batteries (RFBs) were first built in the 1940s and are considered a promising large-scale energy-storage technology. A limited number of redox-active materials--mainly metal salts, corrosive halogens, and low-molar-mass organic compounds--have been investigated as active materials, and only a few membrane materials, such as Nafion, have been considered for RFBs. However, for systems that are intended for both domestic and large-scale use, safety and cost must be taken into account as well as energy density and capacity, particularly regarding long-term access to metal resources, which places limits on the lithium-ion-based and vanadium-based RFB development. Here we describe an affordable, safe, and scalable battery system, which uses organic polymers as the charge-storage material in combination with inexpensive dialysis membranes, which separate the anode and the cathode by the retention of the non-metallic, active (macro-molecular) species, and an aqueous sodium chloride solution as the electrolyte. This water- and polymer-based RFB has an energy density of 10 watt hours per litre, current densities of up to 100 milliamperes per square centimetre, and stable long-term cycling capability. The polymer-based RFB we present uses an environmentally benign sodium chloride solution and cheap, commercially available filter membranes instead of highly corrosive acid electrolytes and expensive membrane materials.

  16. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  17. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  18. 3-D dosimetric evaluation of 2.5 mm HD120 multileaf system for intensity modulated stereotactic radiosurgery using optical CT based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Wuu, C-S; Kessel, Jack; Xu, Y

    2009-01-01

    A Trilogy TX equipped with a 2.5 mm HD120 multileaf collimator system is available for the treatment of radiosurgery and IMRT. In this study, we evaluated the 3-D dosimetric impact of leaf width on an IMRT radiosurgery plan by comparing the target coverage and the dose gradient around the target, produced from both a 2.5 mm HD120 high-definition MLC system and a 5mm-leaf-width millennium 120 MLC system, using an optical CT based polymer gel dosimetry system. The 2.5 mm MLC improves target conformity and surrounding tissue sparing when compared to that of 5 mm MLC.

  19. The potential of organic polymer-based hydrogen storage materials.

    Science.gov (United States)

    Budd, Peter M; Butler, Anna; Selbie, James; Mahmood, Khalid; McKeown, Neil B; Ghanem, Bader; Msayib, Kadhum; Book, David; Walton, Allan

    2007-04-21

    The challenge of storing hydrogen at high volumetric and gravimetric density for automotive applications has prompted investigations into the potential of cryo-adsorption on the internal surface area of microporous organic polymers. A range of Polymers of Intrinsic Microporosity (PIMs) has been studied, the best PIM to date (a network-PIM incorporating a triptycene subunit) taking up 2.7% H(2) by mass at 10 bar/77 K. HyperCrosslinked Polymers (HCPs) also show promising performance as H(2) storage materials, particularly at pressures >10 bar. The N(2) and H(2) adsorption behaviour at 77 K of six PIMs and a HCP are compared. Surface areas based on Langmuir plots of H(2) adsorption at high pressure are shown to provide a useful guide to hydrogen capacity, but Langmuir plots based on low pressure data underestimate the potential H(2) uptake. The micropore distribution influences the form of the H(2) isotherm, a higher concentration of ultramicropores (pore size <0.7 nm) being associated with enhanced low pressure adsorption.

  20. Investigation of ITO free transparent conducting polymer based electrode

    Science.gov (United States)

    Sharma, Vikas; Sapna, Sachdev, Kanupriya

    2016-05-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10-4Ω-cm), high carrier concentration (2.9 x 1021 cm-3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  1. Investigation of ITO free transparent conducting polymer based electrode

    International Nuclear Information System (INIS)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya

    2016-01-01

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10"−"4Ω-cm), high carrier concentration (2.9 x 10"2"1 cm"−"3) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  2. Investigation of ITO free transparent conducting polymer based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vikas; Sapna,; Sachdev, Kanupriya [Department of Physics, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur-India-302017 (India)

    2016-05-23

    The last few decades have seen a significant improvement in organic semiconductor technology related to solar cell, light emitting diode and display panels. The material and structure of the transparent electrode is one of the major concerns for superior performance of devices such as OPV, OLED, touch screen and LCD display. Commonly used ITO is now restricted due to scarcity of indium, its poor mechanical properties and rigidity, and mismatch of energy levels with the active layer. Nowadays DMD (dielectric-metal-dielectric) structure is one of the prominent candidates as alternatives to ITO based electrode. We have used solution based spin coated polymer layer as the dielectric layer with silver thin film embedded in between to make a polymer-metal-polymer (PMP) structure for TCE applications. The PMP structure shows low resistivity (2.3 x 10{sup −4}Ω-cm), high carrier concentration (2.9 x 10{sup 21} cm{sup −3}) and moderate transparency. The multilayer PMP structure is characterized with XRD, AFM and Hall measurement to prove its suitability for opto-electronic device applications.

  3. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers

    OpenAIRE

    Wienhold, T.; Kraemmer, S.; Wondimu, S.F.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T.; Koeber, S.; Koos, C.

    2015-01-01

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 105 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid reso...

  4. Optimized protocol for the radioiodination of hydrazone-type polymer drug delivery systems

    International Nuclear Information System (INIS)

    Sedláček, Ondřej; Kučka, Jan; Hrubý, Martin

    2015-01-01

    Hydrazone conjugates of polymers with doxorubicin represent a very promising tool for cancer chemotherapy. However, these conjugates are very difficult to radiolabel with iodine radionuclides, which possess otherwise very advantageous nuclear properties to, e.g., follow biodistribution. In this study, we developed a robust protocol for the high-yield radioiodination of hydrazone-type drug delivery systems with doxorubicin. In particular, it is crucial that the polymer radioiodination step be performed before the deprotection of the hydrazide and doxorubicin binding. - Highlights: • Hydrazone-type drug delivery systems with doxorubicin were radioiodinated. • Radioiodination was performed via polymer-bound phenolic moiety. • Radioiodination step must be performed before deprotection and drug binding

  5. Nanoparticles from Renewable Polymers

    Directory of Open Access Journals (Sweden)

    Frederik Roman Wurm

    2014-07-01

    Full Text Available The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin or by complex structure (proteins, lignin. This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  6. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji [School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10{sup −6} S cm{sup −1} when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm{sup −1}, carbonyl (-C=O) at 1750–1650 cm{sup −1} and ether (-C-O-C-) at 1150–1000 cm{sup −1} of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF{sub 3}SO{sub 3} salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF{sub 3}SO{sub 3}.

  7. Preparation and characterization of plasticized palm-based polyurethane solid polymer electrolyte

    International Nuclear Information System (INIS)

    Daud, Farah Nadia; Ahmad, Azizan; Badri, Khairiah Haji

    2013-01-01

    Palm-based polyurethane solid polymer electrolyte was prepared via prepolymerization method between palm kernel oil based polyols (PKO-p) and 2,4’-diphenylmethane diisocyanate (2,4’-MDI) in acetone at room temperature with the vary amount of lithium trifuoromethanesulfonate (LiCF 3 SO 3 ) salt and polyethylene glycol (PEG). The film was analyzed using attenuated total reflection infrared (ATR-IR) spectroscopy, electrochemical impedance spectroscopy (EIS) and X-ray diffractometry (XRD). EIS result indicated ionic conductivity obtained with 30 wt% LiCF3SO3 increased to 6.55 × 10 −6 S cm −1 when 10 wt.% of plasticizer was added into the system. FTIR analysis showed the interaction between lithium ions and amine (-N-H) at 3600–3100 cm −1 , carbonyl (-C=O) at 1750–1650 cm −1 and ether (-C-O-C-) at 1150–1000 cm −1 of the polyurethane forming polymer-salt complexes. The XRD result confirmed that LiCF 3 SO 3 salt completely dissociated within the polyurethane film with the absence of crystalline peaks of LiCF 3 SO 3

  8. Impact of solvents and supercritical CO2 drying on the morphology and structure of polymer-based biofilms

    International Nuclear Information System (INIS)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni; Salerno, Aurelio; Domingo, Concepción

    2014-01-01

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO 2 . The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films

  9. Synthesis and characterization of thiolated polymers based on polyhydroxyethylakrylate and 3-mercaptopropylmethoxysilane

    Directory of Open Access Journals (Sweden)

    G. Irmukhametova

    2012-03-01

    Full Text Available In the presented paper thiolated polymer based on nonionic polyhydroxyethylmethacrylate (PHEMA and 3-mercaptopropyltrimethoxysilane (MPTS was obtained and characterized. Results of Raman-spectroscopy and Elman’s assay showed the presence of thiol groups in the modified polymer.

  10. Relation between exciplex formation and photovoltaic properties of PPV polymer-based blends

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Chunhong; Neher, Dieter [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Kietzke, Thomas [Institute of Physics, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany); Institute of Materials Research and Engineering (IMRE), Research Link 3, 117602 Singapore (Singapore); Kumke, Michael [Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Street 24-25, 14476 Golm (Germany); Hoerhold, Hans-Heinrich [Institute of Organic Chemistry and Macromolecular Chemistry, University of Jena, Humboldtstr. 10, 07743 Jena (Germany)

    2007-03-06

    As a new record for pure polymer-blend solar cells, an energy conversion efficiency (ECE) of 1.7% was recently achieved for M3EH-PPV:CN-ether-PPV (Poly[oxa-1,4-phenylene-1,2-(1-cyano)-ethylene-2,5-dioctyloxy-1,4-phenylene-1,2- (2-cyano)-ethylene-1,4-phenylene]) based devices [T. Kietzke, H.-H. Hoerhold, D. Neher, Chem. Mater. 17 (2005) 6532]. Even though that photoluminescence experiments indicated that 95% of the photogenerated excitions were dissociated in the blend, the external quantum efficiency reached only 31%. Thus more than 2/3 of the dissociated excitons were lost for the energy conversion. In order to identify the processes which limit the photovoltaic efficiency of polymer-blend solar cells, studies on the steady state and time-resolved photoluminescence of the individual polymer and polymer blend were performed. In the polymer-blend layer, we observed a considerable long-wavelength emission due to exciplex formation. The exciplex emission can be reduced by thermal annealing. At the same time the IPCE of the blend-based device increased, indicating a more efficient generation of free-charge carriers. These findings lead to the conclusion that charge-carrier recombination via exciplex formation constitutes one of the loss channels which limits the efficiency of polymer solar cells. (author)

  11. Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system.

    Science.gov (United States)

    Huang, Hui; Li, Yongxin; Liu, Jintong; Tong, Jin; Su, Xingguang

    2015-10-15

    Bisphenol A (BPA) is a kind of carcinogen, which can interfere with the body's endocrine system. In this paper, a new kind of fluorescent sensor for BPA detection was established based on the fluorescent conjugated polymer PPESO3. The oxidative product of BPA is able to quench PPESO3 in the presence of HRP and H2O2, and the quenched PL intensity of PPESO3 was proportionally to the concentration of BPA in the range of 1-100 μmol/L with a detection limit of 4 × 10(-7) mol/L. The proposed method has been applied to detect BPA in eight food packaging samples with satisfactory results. The proposed method has the potential for the assay of BPA in food or food packaging samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Post-modification by γ-radiation of VDF-based polymers: Electrochemical capacitor membrane application

    International Nuclear Information System (INIS)

    Dumas, L.

    2012-01-01

    This work deals with the modification of VDF-based polymer induced by γ-radiation as the polymer may be used in electrochemical super-capacitors. The main objective was to limit the swelling of the fluorinated matrix with a given electrolyte while a good wetting of the polymer by the liquid was also required. As the main basic process involved in polymer radiolysis is the formation of radicals, a part of the work was dedicated to the study of such species by using Electron Spin Resonance spectroscopy. A simulation model of ESR spectra was established in order to identify and quantify each radical species. The effect of several parameters such as radiation dose, annealing time or the nature of polymer matrix on the concentration of each species where investigated. A relation with the evolution of the crosslink density of the network formed during the radiolysis was proposed. In addition, one of the key steps of this work was to study the radiation crosslinking ability of VDF-based polymers and find a way to increase the crosslink density. This was achieved by incorporating, prior to the radiation process, a radiation sensitive cross linker: TAIC. Finally, a new strategy based on the modification of surface properties of PVDF was investigated. It consists in the radiation grafting of penta-fluor-styrene onto PVDF surface followed by the chemo-selective functionalization of the grafted segments. As a conclusion, the different approaches used in this thesis allowed us to understand the radiolysis of VDF-based polymers and take advantage of the elementary process involved in this type of chemistry, to build up robust and promising strategies for tuning properties. (author)

  13. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.

    Science.gov (United States)

    Hirano, Laos A; Escote, Márcia T; Martins-Filho, Luiz S; Mantovani, Gerson L; Scuracchio, Carlos H

    2011-05-01

    This work contextualizes the research of materials that can be applied as artificial muscles. The main motivation of this research is the importance of the development of mechatronic systems for the replacement of traditional devices of actuation and motion based on rotational electrical motors by other devices that reproduce biological muscle movements. Electroactive polymers (EAPs) are materials that respond to electric stimuli with shape and/or dimension changes, and accomplish movements that are smooth enough to mimic biological muscles. Among EAPs, the ionomeric polymer-metal composites (IPMCs) are an interesting alternative to biomimetic devices due to large displacements when submitted to low applied voltage. This article presents a brief review of IPMCs, a sample preparation procedure, and some electromechanical experimental results. We also discuss the applicability of this technology in medical devices and as artificial muscles. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries

    International Nuclear Information System (INIS)

    Sterby, Mia; Emanuelsson, Rikard; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2017-01-01

    Lithium-ion technologies show great promise to meet the demands that the transition towards renewable energy sources and the electrification of the transport sector put forward. However, concerns regarding lithium-ion batteries, including limited material resources, high energy consumption during production, and flammable electrolytes, necessitate research on alternative technologies for electrochemical energy storage. Organic materials derived from abundant building blocks and with tunable properties, together with water based electrolytes, could provide safe, inexpensive and sustainable alternatives. In this study, two conducting redox polymers based on poly(3,4-ethylenedioxythiophene) (PEDOT) and a hydroquinone pendant group have been synthesized and characterized in an acidic aqueous electrolyte. The polymers were characterized with regards to kinetics, pH dependence, and mass changes during oxidation and reduction, as well as their conductance. Both polymers show redox matching, i.e. the quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves proton cycling during pendant group redox conversion. These properties make the presented materials promising candidates as electrode materials for water based all-organic batteries.

  15. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  16. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    Science.gov (United States)

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  18. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Song, E-mail: niusong84@163.com; Yan, Hongxia, E-mail: hongxiayan@nwpu.edu.cn

    2015-04-28

    Highlights: • A novel silicone-based polymer with active methylene was explored. • Surface tension of liquid paints could be lowered using the polymer. • The polymer was easy to migrate toward the air-coating interface. • Free HCHO could effectively be removed using the polymer. • A lights on HCHO reduction without complicated preparation procedure was shielded. - Abstract: Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by {sup 13}C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4 wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  19. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  20. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  1. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  2. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...

  3. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers

    KAUST Repository

    Nikolka, Mark

    2017-12-13

    Over the past 25 years, various design motifs have emerged for the development of organic semiconductors for demanding applications in flexible organic light emitting diode display backplanes or even printed organic logic. Due to their large area uniformity paired with high charge carrier mobilities, conjugated polymers have attracted increasing attention in this respect. However, the performances delivered by current generation conjugated polymers still fall short of many industrial requirements demanding devices with ideal transistor characteristics and higher mobilities. The discovery of conjugated polymers with low energetic disorder, such as the indacenodithiophene-based polymer indacenodithiophene-co-benzothiadiazole, represent an exciting opportunity to breach this chasm if these materials can be further optimized while maintaining their low disorder. Here, it is shown how both the charge transport properties as well as the energetic disorder are affected by tuning the molecular structure of a large range of indacenodithiophene-based semiconducting polymer derivatives. This study allows to understand better the interplay between molecular design and structure of the polymer backbone and the degree of energetic disorder that governs the charge transport properties in thin polymer films.

  4. ROMP-based polymer composites and biorenewable rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wonje [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    This research is divided into two related topics. In the first topic, the synthesis and characterization of novel composite materials reinforced with MWCNTs by ring-opening metathesis polymerization (ROMP) is reported for two ROMP based monomers: dicyclopentadiene (DCPD) and 5-ethylidene-2-norbornene (ENB). Homogeneous dispersion of MWCNTs in the polymer matrices is achieved by grafting norbornene moieties onto the nanotube surface. For the DCPD-based system, the investigation of mechanical properties of the composites shows a remarkable increase of tensile toughness with just 0.4 wt % of functionalized MWCNTs (f-MWCNTs). To our knowledge, this represents the highest toughness enhancement efficiency in thermosetting composites ever reported. DMA results show that there is a general increase of thermal stability (rg) with the addition of f-MWCNTs, which means that covalently bonded f-MWCNTs can reduce the local chain mobility of the matrix by interfacial interactions. The ENB system also shows significant enhancement of the toughness using just 0.8 wt % f-MWCNTs. These results indicate that the ROMP approach for polyENB is also very effective. The second topic is an investigation of the biorenewable rubbers synthesized by the tandem ROMP and cationic polymerization. The resin consists of a norbornenyl-modified linseed oil and a norbornene diester. Characterization of the bio-based rubbers includes dynamic mechanical analysis, tensile testing, and thermogravimetric analysis. The experimental results show that there is a decrease in glass transition temperature and slight increase of elongation with increased diester loading.

  5. Surface decontamination studies using polyvinyl acetate based strippable polymer

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.

    2004-01-01

    Polyvinyl acetate based strippable polymer has been developed for surface decontamination. Stainless steel, mild steel, polyvinyl chloride and rubber have been selected as candidate materials for the radioactive decontamination studies. The ease of strippability and homogeneity of the polymer coating has been studied using infrared spectrophotometer. Decontamination of used radioactive respirator has been carried out and the peels obtained have been subjected to leaching and incineration studies. The infrared spectrophotometric studies also have been conducted to study the interaction between polyvinyl acetate and ions, like cesium, strontium and cobalt. (author)

  6. Current state and future prospect on polyacrylic scid based superabsorbent polymer. Polyacrylic sankei kokyusuisei polymer no genjo to kongo no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, T.; Kobayashi, H. (Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka (Japan))

    1991-10-01

    A polymer that absorbs water vigorously and swells is called a superabsorbent polymer (SAP). This peculiar character has developed diverse applications including paper diapers, and its production showed a rapid growth to more than 200,000 tons (worldwide) in the past decade. This paper introduces the development and applications for polyacrylic acid-based SAP, a representative SAP. The research began in the U.S.A. in about the year 1976. For its characteristics suitable for paper diapers and cost advantages, the acrylate-based SAP has become accounting for the most at the present. The polymer is manufactured by polymerzation crosslinking of acrylic acid or sodium acrylate to produce polyacrylate crosslinked bodies. The polymer swells to 100 to 1000 times in deionized water, and turns into a hydrogel. Unlike a sponge, the swelled gel will not ooze out water even if pressed. However, its absorption performance decreases extremely in electrolytic aqueous solution, which is a problem for the future development. 17 refs., 5 figs., 7 tabs.

  7. Graphene-based polymer nanocomposites in electronics

    CERN Document Server

    Sadasivuni, Kishor Kumar; Kim, Jaehwan

    2015-01-01

    This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.

  8. Highly sensitive polymer-based cantilever-sensors for DNA detection

    International Nuclear Information System (INIS)

    Calleja, M.; Nordstroem, M.; Alvarez, M.; Tamayo, J.; Lechuga, L.M.; Boisen, A.

    2005-01-01

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers

  9. High-photovoltage all-polymer solar cells based on a diketopyrrolopyrrole-isoindigo acceptor polymer

    NARCIS (Netherlands)

    Li, Z.; Xu, X.; Zhang, W.; Genene, Z.; Mammo, W.; Yartsev, A.; Andersson, M.R.; Janssen, R.A.J.; Wang, E.

    2017-01-01

    In this work, we synthesized and characterized two new n-type polymers PTDPP-PyDPP and PIID-PyDPP. The former polymer is composed of pyridine-flanked diketopyrrolopyrrole (PyDPP) and thiophene-flanked diketopyrrolopyrrole (TDPP). The latter polymer consists of PyDPP and isoindigo (IID). PIID-PyDPP

  10. Machine learning-based screening of complex molecules for polymer solar cells

    Science.gov (United States)

    Jørgensen, Peter Bjørn; Mesta, Murat; Shil, Suranjan; García Lastra, Juan Maria; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer; Schmidt, Mikkel N.

    2018-06-01

    Polymer solar cells admit numerous potential advantages including low energy payback time and scalable high-speed manufacturing, but the power conversion efficiency is currently lower than for their inorganic counterparts. In a Phenyl-C_61-Butyric-Acid-Methyl-Ester (PCBM)-based blended polymer solar cell, the optical gap of the polymer and the energetic alignment of the lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM are crucial for the device efficiency. Searching for new and better materials for polymer solar cells is a computationally costly affair using density functional theory (DFT) calculations. In this work, we propose a screening procedure using a simple string representation for a promising class of donor-acceptor polymers in conjunction with a grammar variational autoencoder. The model is trained on a dataset of 3989 monomers obtained from DFT calculations and is able to predict LUMO and the lowest optical transition energy for unseen molecules with mean absolute errors of 43 and 74 meV, respectively, without knowledge of the atomic positions. We demonstrate the merit of the model for generating new molecules with the desired LUMO and optical gap energies which increases the chance of finding suitable polymers by more than a factor of five in comparison to the randomised search used in gathering the training set.

  11. Process modeling of conductivity in nanocomposites based on reticulated polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Dolgoshej, V.B.; Korskanov, V.V.; Karpova, I.L.; Bardash, L.V.

    2012-01-01

    The dependences of electric conductivities of thermosetting polymer nanocomposites based on epoxy polymer and polycyanurate filled by carbon nanotubes were investigated. Low values of percolation threshold at volume fraction of carbon nanotubes from 0.001 to 0.002 were observed for all samples.Absolute values of the percolation threshold are in good agreement with the results of mathematical modeling. It is established that electrical properties of thermosetting polymer nanocomposites can be characterized in the frame of the same theoretical model despite difference in polymers properties

  12. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    Science.gov (United States)

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

  13. Measurement of infinite dilution activity coefficient and application of modified ASOG model for solvent-polymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B.; Choi, J. [Kwangwoon University, Seoul (Korea, Republic of); Tochigi, K.; Kojima, K. [Nihon University, Tokyo (Japan)

    1996-04-20

    A gas chromatographic method was used in order to measure vapor-liquid equilibria for solvent (1)-polymer (2) systems in which the polymers were polystyrene, poly(a-methyl) styrene and the advents were benzene toluene cyclohexane methylisobutylketone, ethylacetate, and vinylacetate. The activity coefficients of solvents for solvent (1)-polymer (2) systems were measured at infinite dilution and the modified ASOG (Analytical Solution of Group) model was suggested to describe vapor-liquid equilibria of those systems within a range of temperatures 423.15K through 498.15K. The model consists of the original ASOG and the free volume term. An external degree of freedom in the free volume term empirically became to a C1={alpha}+{beta}/T as a function of temperature. Each tern in the modified ASOG model is based on the weight fraction. The external degree of freedom in the model was estimated by experimental data within a range of temperatures. As a result of doing it the infinite dilution activity coefficients calculated were agreed with the experimental data within an error of 0.1%. 27 refs., 3 figs., 7 tabs.

  14. The characterisation of polymers using pulsed NMR

    International Nuclear Information System (INIS)

    Charlesby, A.

    1983-01-01

    Broad line pulsed NMR is applied to obtain information on radiation-induced polymer changes and other aspects of polymer science based on the interpretation of spin-spin relaxation curves. Calculations are made to determine the molecular weight, the crosslink density of simple, low molecular weight, flexible polymers. For higher molecular weight polymers, a conclusion can be drawn on the concentrations of entangled and crosslinked units by means of pulsed NMR. Some typical applications of the technique are illustrated by the examples of polyethylenes, rubbers, filled polymeric systems and aqueous polyethylene oxide solutions. The morphology of polymers can be followed by pulsed NMR. (V.N.)

  15. Multi-scale optical metrology for the quality control of polymer microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Micro injection moulding is a replication technology enabling large scale production of polymer-based micro products. To this respect, optical measuring technologies were selected to perform the quality control of a polymer micro-component: an optical coordinate measuring machine (CMM) and a white...

  16. based anion exchange membrane for alkaline polymer electrolyte

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Hydroxyl ion (OH–) conducting anion exchange membranes based on modified poly (phenylene oxide) are fabricated for their application in alkaline polymer electrolyte fuel cells (APEFCs). In the present study, chloromethylation of poly(phenylene oxide) (PPO) is performed by aryl substitution rather than benzyl.

  17. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  18. Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes.

    Science.gov (United States)

    Do, Yu Seong; Lee, Won Hee; Seong, Jong Geun; Kim, Ju Sung; Wang, Ho Hyun; Doherty, Cara M; Hill, Anita J; Lee, Young Moo

    2016-11-15

    Highly permeable, thermally rearranged polymer membranes based on bismaleimide derivatives that exhibit excellent CO 2 permeability up to 5440 Barrer with a high BET surface area (1130 m 2 g -1 ) are reported for the first time. In addition, the membranes can be easily used to form semi-interpenetrating networks with other polymers endowing them with superior gas transport properties.

  19. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  20. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  1. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei; Rose, Bradley Daniel; Liu, Yao; Nahid, Masrur M.; Gann, Eliot; Ly, Jack; Zhao, Wei; Rosa, Stephen J.; Russell, Thomas P.; Facchetti, Antonio; McNei, Christopher R.; Bredas, Jean-Luc; Briseno, Alejandro L.

    2016-01-01

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  2. Near infrared photodetector based on polymer and indium nitride nanorod organic/inorganic hybrids

    International Nuclear Information System (INIS)

    Lai, Wei-Jung; Li, Shao-Sian; Lin, Chih-Cheng; Kuo, Chun-Chiang; Chen, Chun-Wei; Chen, Kuei-Hsien; Chen, Li-Chyong

    2010-01-01

    We propose a nanostructured near infrared photodetector based on indium nitride (InN) nanorod/poly(3-hexylthiophene) hybrids. The current-voltage characteristic of the hybrid device demonstrates the typical p-n heterojunction diode behavior, consisting of p-type polymer and n-type InN nanorods. The device shows a photoresponse range of 900-1260 nm under various reverse biases. An external quantum efficiency of 3.4% at 900 nm operated at -10 V reverse bias was obtained, which is comparable with devices based on lead sulfide and lead selenide hybrid systems.

  3. Conducting polymer nanocomposite-based supercapacitors

    OpenAIRE

    Liew, Soon Yee; Walsh, Darren A.; Chen, George Z.

    2016-01-01

    The use of nanocomposites of electronically-conducting polymers for supercapacitors has increased significantly over the past years, due to their high capacitances and abilities to withstand many charge-discharge cycles. We have recently been investigating the use of nanocomposites of electronically-conducting polymers containing conducting and non-conducting nanomaterials such as carbon nanotubes and cellulose nanocrystals, for use in supercapacitors. In this contribution, we provide a summa...

  4. Naphthalene Diimide Based n-Type Conjugated Polymers as Efficient Cathode Interfacial Materials for Polymer and Perovskite Solar Cells.

    Science.gov (United States)

    Jia, Tao; Sun, Chen; Xu, Rongguo; Chen, Zhiming; Yin, Qingwu; Jin, Yaocheng; Yip, Hin-Lap; Huang, Fei; Cao, Yong

    2017-10-18

    A series of naphthalene diimide (NDI) based n-type conjugated polymers with amino-functionalized side groups and backbones were synthesized and used as cathode interlayers (CILs) in polymer and perovskite solar cells. Because of controllable amine side groups, all the resulting polymers exhibited distinct electronic properties such as oxidation potential of side chains, charge carrier mobilities, self-doping behaviors, and interfacial dipoles. The influences of the chemical variation of amine groups on the cathode interfacial effects were further investigated in both polymer and perovskite solar cells. We found that the decreased electron-donating property and enhanced steric hindrance of amine side groups substantially weaken the capacities of altering the work function of the cathode and trap passivation of the perovskite film, which induced ineffective interfacial modifications and declining device performance. Moreover, with further improvement of the backbone design through the incorporation of a rigid acetylene spacer, the resulting polymers substantially exhibited an enhanced electron-transporting property. Upon use as CILs, high power conversion efficiencies (PCEs) of 10.1% and 15.2% were, respectively, achieved in polymer and perovskite solar cells. Importantly, these newly developed n-type polymers were allowed to be processed over a broad thickness range of CILs in photovoltaic devices, and a prominent PCE of over 8% for polymer solar cells and 13.5% for perovskite solar cells can be achieved with the thick interlayers over 100 nm, which is beneficial for roll-to-roll coating processes. Our findings contribute toward a better understanding of the structure-performance relationship between CIL material design and solar cell performance, and provide important insights and guidelines for the design of high-performance n-type CIL materials for organic and perovskite optoelectronic devices.

  5. Photochemical stability and photovoltaic performance of low-band gap polymers based on dithiophene with different bridging atoms

    DEFF Research Database (Denmark)

    Helgesen, Martin; Sørensen, Thomas J.; Manceau, Matthieu

    2011-01-01

    New low-band gap polymers based on dithienylbenzothiadiazole (DBT) and dithiophene with different bridging atoms have been synthesized and explored in a comparative study on the photochemical stability and photovoltaic performance. Two differently modified DBT units were exploited, namely 5,6- bis......(tetradecyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole (DBT1) and 4,7-bis(4-dodecylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (DBT2). In thin films the polymers had optical band gaps in the range of 1.51-1.70 eV where the DBT2 based polymers are red shifted 61-81 nm compared to the DBT1 based polymers...... indicating greater interchain packing when the side chains are situated on the thienyl groups compared to on the benzothiadiazole unit. The best photovoltaic devices based on blends of polymer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were prepared with polymers based on the DBT1 unit giving...

  6. Performance enhancement of quantum dot-sensitized solar cells based on polymer nano-composite catalyst

    International Nuclear Information System (INIS)

    Seo, Hyunwoong; Gopi, Chandu V.V.M.; Kim, Hee-Je; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2017-01-01

    Highlights: •We studied polymer nano-composite containing TiO 2 nano-particles as a catalyst. •Polymer nano-composite was applied for quantum dot-sensitized solar cells. •Polymer nano-composite catalyst was considerably improved with TiO 2 nano-particles. •Polymer nano-composite showed higher photovoltaic performance than conventional Au. -- Abstract: Polymer nano-composite composed of poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) and TiO 2 nano-particles was deposited on fluorine-doped tin oxide substrate and applied as an alternative to Au counter electrode of quantum dot-sensitized solar cell (QDSC). It became surface-richer with the increase in nano-particle amount so that catalytic reaction was increased by widened catalytic interface. Electrochemical impedance spectroscopy and cyclic voltammetry clearly demonstrated the enhancement of polymer nano-composite counter electrode. A QDSC based on polymer nano-composite counter electrode showed 0.56 V of V OC , 12.24 mA cm −2 of J SC , 0.57 of FF, and 3.87% of efficiency and this photovoltaic performance was higher than that of QDSC based on Au counter electrode (3.75%).

  7. Impact of solvents and supercritical CO{sub 2} drying on the morphology and structure of polymer-based biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Salerno, Aurelio; Domingo, Concepción [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2014-05-15

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO{sub 2}. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  8. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  9. Highly sensitive polymer-based cantilever-sensors for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain) and Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)]. E-mail: mcalleja@imm.cnm.csic.es; Nordstroem, M. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark); Alvarez, M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Tamayo, J. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Lechuga, L.M. [Biosensors Group, Nacional Center of Microelectronics (CNM-CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid (Spain); Boisen, A. [Mikroelektronics Centret, Technical University of Denmark, 345E, DK-2800, Lyngby (Denmark)

    2005-11-15

    We present a technology for the fabrication of cantilever arrays aimed to develop an integrated biosensor microsystem. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. Arrays of up to 33 microcantilevers are fabricated in the novel polymer material SU-8. The low Young's modulus of the polymer, 40 times lower than that of silicon, enables to improve the sensitivity of the sensor device for target detection. The mechanical properties of SU-8 cantilevers, such as spring constant, resonant frequency and quality factor are characterized as a function of the dimensions and the medium. The devices have been tested for measurement of the adsorption of single stranded DNA and subsequent interstitial adsorption of lateral spacer molecules. We demonstrate that sensitivity is enhanced by a factor of six compared to that of commercial silicon nitride cantilevers.

  10. Nanoporous thermosetting polymers.

    Science.gov (United States)

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  11. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  12. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Utilization of polymer enclosed intermediate class arresters to improve the performance of modern power systems

    International Nuclear Information System (INIS)

    Sakich, J.D.; Lenk, D.W.; Koepfinger, J.L.

    1992-01-01

    This paper introduces the first commercially available polymer enclosed intermediate class metal oxide surge arrester. It describes the unique construction of the design, including reduced size, increased flexibility, a collared seal on the polymer housing and an open webbed fiberglass-epoxy module which houses the metal oxide disc elements. Performance advantages are discussed. These include improved short term contamination performance of the insulator-like polymer design when compared to multi-unit porcelain housed designs. Data will show that polymer housed open-webbed fiberglass module construction extends the pressure relief capability beyond that of typical porcelain enclosed designs. The capability of the polymer enclosed design to withstand repeated pressure relief tests, simulating system reclose on a failed arrester, is also discussed. This paper discusses the circumstances at one utility which has considered utilizing polymer enclosed intermediate class arresters to effectively upgrade their system protection capabilities

  14. Hydrogen storing and electrical properties of hyperbranched polymers-based nanoporous materials

    International Nuclear Information System (INIS)

    Abdel Rehim, Mona H.; Ismail, Nahla; Badawy, Abd El-Rahman A.A.; Turky, Gamal

    2011-01-01

    Highlights: · The hydrogen storage capacity of hyperbranched P-Urea, PAMAM and PAMAM and VO x is studied and electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. · Electrical properties measurements for the samples showed complete insulating behavior at hydrogenation measuring temperature. · These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage. - Abstract: Hydrogen storage and electrical properties of different hyperbranched polymer systems beside a nanocomposite are studied. The polymers examined are aliphatic hyperbranched poly urea (P-Urea), polyamide amine (PAMAM) and polyamide amine/vanadium oxide (PAMAM/VO x ) nanocomposite. At 80 K and up to 20 bar hydrogen pressure, the hydrogen storage capacity of hyperbranched P-Urea reached 1.6 wt%, 0.9 wt% in case of PAMAM and 0.6 wt% for VO x . The hydrogen storage capacity significantly enhanced when PAMAM and VO x form a nanocomposite and increased up to 2 wt%. At 298 K and up to 20 bar, all the samples did not show measurable hydrogen uptake. Electrical properties of the samples are also investigated; the measurements showed complete insulating behavior at hydrogenation measuring temperature. These investigations ensure that the polymer conductivity does not play a role in hydrogen uptake, also hyperbranched polymers are promising materials for hydrogen storage.

  15. Functional polymers as therapeutic agents: concept to market place.

    Science.gov (United States)

    Dhal, Pradeep K; Polomoscanik, Steven C; Avila, Louis Z; Holmes-Farley, S Randall; Miller, Robert J

    2009-11-12

    Biologically active synthetic polymers have received considerable scientific interest and attention in recent years for their potential as promising novel therapeutic agents to treat human diseases. Although a significant amount of research has been carried out involving polymer-linked drugs as targeted and sustained release drug delivery systems and prodrugs, examples on bioactive polymers that exhibit intrinsic therapeutic properties are relatively less. Several appealing characteristics of synthetic polymers including high molecular weight, molecular architecture, and controlled polydispersity can all be utilized to discover a new generation of therapies. For example, high molecular weight bioactive polymers can be restricted to gastrointestinal tract, where they can selectively recognize, bind, and remove target disease causing substances from the body. The appealing features of GI tract restriction and stability in biological environment render these polymeric drugs to be devoid of systemic toxicity that are generally associated with small molecule systemic drugs. The present article highlights recent developments in the rational design and synthesis of appropriate functional polymers that have resulted in a number of promising polymer based therapies and biomaterials, including some marketed products.

  16. Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems

    Science.gov (United States)

    Polverino, Pierpaolo; Frisk, Erik; Jung, Daniel; Krysander, Mattias; Pianese, Cesare

    2017-07-01

    The present paper proposes an advanced approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems fault detection and isolation through a model-based diagnostic algorithm. The considered algorithm is developed upon a lumped parameter model simulating a whole PEMFC system oriented towards automotive applications. This model is inspired by other models available in the literature, with further attention to stack thermal dynamics and water management. The developed model is analysed by means of Structural Analysis, to identify the correlations among involved physical variables, defined equations and a set of faults which may occur in the system (related to both auxiliary components malfunctions and stack degradation phenomena). Residual generators are designed by means of Causal Computation analysis and the maximum theoretical fault isolability, achievable with a minimal number of installed sensors, is investigated. The achieved results proved the capability of the algorithm to theoretically detect and isolate almost all faults with the only use of stack voltage and temperature sensors, with significant advantages from an industrial point of view. The effective fault isolability is proved through fault simulations at a specific fault magnitude with an advanced residual evaluation technique, to consider quantitative residual deviations from normal conditions and achieve univocal fault isolation.

  17. A Possibility for Construction of an Iodine Cleaning System Based on Doping for π-Conjugated Polymers

    Directory of Open Access Journals (Sweden)

    Hiromasa Goto

    2011-05-01

    Full Text Available An iodine accumulation method using polyaniline (PANI and a textile composite is proposed. PANI/pulp paper sheets prepared by a paper making technique are suitable for iodine adsorption, because of good processability. The PANI-based paper sheets can be applied for iodine cleanup as air filters, water filters, and floorcloth. This concept may lead to a development of an iodine cleaning machine or iodine shield cloth based on π-conjugated polymer composites. In-situ vapor phase doping of iodine, observation of surface images, and IR measurements are carried out to examine iodine doping function for the PANI/pulp paper sheets.

  18. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  19. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Chen Xiaoban; Zhang Wenfei; Zeng Xuyu; Gu Qiuwen

    2010-01-01

    We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED's emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.

  20. Polymer systems testing: Final report

    International Nuclear Information System (INIS)

    1993-01-01

    Los Alamos National Laboratory (LANL) is in the process of decontaminating lead shielding material. The procedure involves abrasive surface etching of the shielding to remove the outer layer of lead that contains the majority of the radioactive contaminants. This procedure generates a small volume of mixed waste in the form of a wet residue containing lead, abrasive grit (Al 2 O 3 ), uranium and water. IC Technologies, Inc. (ICT) has developed several processes for the treatment of mixed wastes involving stabilizing/encapsulating the waste in a polymer monolith. The objective of the test program was to verify the applicability of ICT's technology to this specific waste stream and provide LANL baseline data on the performance of polymer encapsulation techniques. Polymer microencapsulation of lead shielding/blasting grit (surrogate) mixed waste was evaluated. Two polymers, melamine formaldehyde and polyester xylene, were used to examine the effect of waste loading on Toxicity Characteristic Leaching Procedure (TCLP) extract Pb concentration. Six levels of waste loading were evaluated by eleven tests. Significant reduction in Pb solubility during TCLP was achieved. Additional optimization to the single-stage microencapsulation technique utilized will be necessary to mitigate the toxic (RCRA) characteristic of the waste

  1. Thermal insulation coating based on water-based polymer dispersion

    Directory of Open Access Journals (Sweden)

    Panchenko Iuliia

    2018-01-01

    Full Text Available For Russia, due to its long winter period, improvement of thermal insulation properties of envelope structures by applying thermal insulation paint and varnish coating to its inner surface is considered perspective. Thermal insulation properties of such coatings are provided by adding aluminosilicate microspheres and aluminum pigment to their composition. This study was focused on defining the effect of hollow aluminosilicate microspheres and aluminum pigment on the paint thermal insulation coating based on water-based polymer dispersion and on its optimum filling ratio. The optimum filling ratio was determined using the method of critical pigment volume concentration (CPVC. The optimum filling ratio was found equal to 55%.

  2. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  3. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  4. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    International Nuclear Information System (INIS)

    Kaeaeriaeinen, Tommi O.; Maydannik, Philipp; Cameron, David C.; Lahtinen, Kimmo; Johansson, Petri; Kuusipalo, Jurkka

    2011-01-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O 2 TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O 2 TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  5. Atomic layer deposition on polymer based flexible packaging materials: Growth characteristics and diffusion barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, Tommi O., E-mail: tommi.kaariainen@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Cameron, David C., E-mail: david.cameron@lut.f [ASTRaL, Lappeenranta University of Technology, Prikaatinkatu 3 E, 50100 Mikkeli (Finland); Lahtinen, Kimmo, E-mail: kimmo.lahtinen@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Johansson, Petri, E-mail: petri.johansson@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.f [Tampere University of Technology, Paper Converting and Packaging Technology, P.O. Box 541, 33101 Tampere (Finland)

    2011-03-01

    One of the most promising areas for the industrial application of atomic layer deposition (ALD) is for gas barrier layers on polymers. In this work, a packaging material system with improved diffusion barrier properties has been developed and studied by applying ALD on flexible polymer based packaging materials. Nanometer scale metal oxide films have been applied to polymer-coated papers and their diffusion barrier properties have been studied by means of water vapor and oxygen transmission rates. The materials for the study were constructed in two stages: the paper was firstly extrusion coated with polymer film, which was then followed by the ALD deposition of oxide layer. The polymers used as extrusion coatings were polypropylene, low and high density polyethylene, polylactide and polyethylene terephthalate. Water vapor transmission rates (WVTRs) were measured according to method SCAN-P 22:68 and oxygen transmission rates (O{sub 2}TRs) according to a standard ASTM D 3985. According to the results a 10 nm oxide layer already decreased the oxygen transmission by a factor of 10 compared to uncoated material. WVTR with 40 nm ALD layer was better than the level currently required for most common dry flexible packaging applications. When the oxide layer thickness was increased to 100 nm and above, the measured WVTRs were limited by the measurement set up. Using an ALD layer allowed the polymer thickness on flexible packaging materials to be reduced. Once the ALD layer was 40 nm thick, WVTRs and O{sub 2}TRs were no longer dependent on polymer layer thickness. Thus, nanometer scale ALD oxide layers have shown their feasibility as high quality diffusion barriers on flexible packaging materials.

  6. Design, fabrication and performance tests for a polymer-based flexible flat heat pipe

    International Nuclear Information System (INIS)

    Hsieh, Shou-Shing; Yang, Ya-Ru

    2013-01-01

    Highlights: ► Fabrication of a polymer-based flexible flat heat pipe. ► Bending angle of 15° will lead to a better thermal performance of the system. ► Powers higher than 12.67 W can be transferred/delivered. - Abstract: In this paper, we report on the novel design, fabrication and performance tests for a polymer-based flexible flat heat pipe (FHP) with a bending angle in the range of 15–90°. Each heat pipe is 4 mm thick, 20 mm wide and 80 mm long, with two layers of No. 250 copper mesh as the wicking material. A copper/silicone rubber hybrid structure is designed and fabricated to achieve the flexibility of the heat pipe. Thermal characteristics are measured and studied for de-ionized water under different working conditions. Experimental results reveal that a bending angle of 15° on the vertical plane has a better thermal performance than those of heat pipes with/without bending. In addition, a higher power of 12.67 W can be transferred/delivered

  7. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  8. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  9. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  10. An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (Hetero)Arylation Polymerization.

    Science.gov (United States)

    Chávez, Patricia; Bulut, Ibrahim; Fall, Sadiara; Ibraikulov, Olzhas A; Chochos, Christos L; Bartringer, Jérémy; Heiser, Thomas; Lévêque, Patrick; Leclerc, Nicolas

    2018-05-25

    In this work, a new n -type polymer based on a thiazole-diketopyrrolopyrrole unit has been synthesized through direct (hetero)arylation polycondensation. The molar mass has been optimized by systematic variation of the the monomer concentration. Optical and electrochemical properties have been studied. They clearly suggested that this polymer possess a high electron affinity together with a very interesting absorption band, making it a good non-fullerene acceptor candidate. As a consequence, its charge transport and photovoltaic properties in a blend with the usual P3HT electron-donating polymer have been investigated.

  11. An Electron-Transporting Thiazole-Based Polymer Synthesized Through Direct (HeteroArylation Polymerization

    Directory of Open Access Journals (Sweden)

    Patricia Chávez

    2018-05-01

    Full Text Available In this work, a new n-type polymer based on a thiazole-diketopyrrolopyrrole unit has been synthesized through direct (heteroarylation polycondensation. The molar mass has been optimized by systematic variation of the the monomer concentration. Optical and electrochemical properties have been studied. They clearly suggested that this polymer possess a high electron affinity together with a very interesting absorption band, making it a good non-fullerene acceptor candidate. As a consequence, its charge transport and photovoltaic properties in a blend with the usual P3HT electron-donating polymer have been investigated.

  12. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  13. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    Science.gov (United States)

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  14. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  15. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  16. Multifunctional Polymer-Based Graphene Foams with Buckled Structure and Negative Poisson’s Ratio

    Science.gov (United States)

    Dai, Zhaohe; Weng, Chuanxin; Liu, Luqi; Hou, Yuan; Zhao, Xuanliang; Kuang, Jun; Shi, Jidong; Wei, Yueguang; Lou, Jun; Zhang, Zhong

    2016-01-01

    In this study, we report the polymer-based graphene foams through combination of bottom-up assembly and simple triaxially buckled structure design. The resulting polymer-based graphene foams not only effectively transfer the functional properties of graphene, but also exhibit novel negative Poisson’s ratio (NPR) behaviors due to the presence of buckled structure. Our results show that after the introduction of buckled structure, improvement in stretchability, toughness, flexibility, energy absorbing ability, hydrophobicity, conductivity, piezoresistive sensitivity and crack resistance could be achieved simultaneously. The combination of mechanical properties, multifunctional performance and unusual deformation behavior would lead to the use of our polymer-based graphene foams for a variety of novel applications in future such as stretchable capacitors or conductors, sensors and oil/water separators and so on. PMID:27608928

  17. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold

    DEFF Research Database (Denmark)

    Goffri, S.; Müller, C.; Stingelin-Stutzmann, N.

    2006-01-01

    of the two components, during which the semiconductor is predominantly expelled to the surfaces of cast films, we can obtain vertically stratified structures in a one-step process. Incorporating these as active layers in polymer field-effect transistors, we find that the concentration of the semiconductor......–crystalline/semiconducting–insulating multicomponent systems offer expanded flexibility for realizing high-performance semiconducting architectures at drastically reduced materials cost with improved mechanical properties and environmental stability, without the need to design all performance requirements into the active semiconducting polymer...

  18. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    International Nuclear Information System (INIS)

    Lee, ChaBum; Tarbutton, Joshua A

    2014-01-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step. (paper)

  19. Catalysis as an Enabling Science for Sustainable Polymers.

    Science.gov (United States)

    Zhang, Xiangyi; Fevre, Mareva; Jones, Gavin O; Waymouth, Robert M

    2018-01-24

    The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.

  20. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory

    Directory of Open Access Journals (Sweden)

    R. A. Reis

    2004-12-01

    Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.

  2. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  3. Application of the mass-based UNIQUAC model to membrane systems: A critical revision

    International Nuclear Information System (INIS)

    Chovau, S.; Van der Bruggen, B.; Luis, P.

    2012-01-01

    Highlights: ► UNIQUAC model in mass-based terms is considered for the description of sorption equilibria in membrane systems. ► Model validation of molar and mass-based model is performed on simple (vapor + liquid) equilibrium. ► Discrepancy is found between molar and mass-based model, which is attributed to an incorrect conversion. ► Novel model based on correct thermodynamics is provided for future research. - Abstract: The UNIQUAC model is very suitable in describing (liquid + liquid) as well as (vapor + liquid) equilibrium for a wide range of systems. It can be extended to (solvent + polymer) systems for describing sorption equilibria. The original model is expressed in molar-based terms, but requires knowledge of structural parameters and molar masses of all components. Since these cannot always be easily determined for membranes, a conversion to mass-based terms is often performed, which eliminates this issue. Many studies use this model to calculate sorption equilibria in (solvent + polymer) systems. Nevertheless, in this work the conversion from molar to mass-based parameters is postulated to be erroneous. This even leads to an incorrect description of simple (vapor + liquid) equilibrium of pure liquid mixtures and hence it is advised not to use this model for further modeling of sorption equilibrium in (solvent + polymer) systems. In this paper, the errors in the conversion are pinpointed, and the effects it can have on the description of (vapor + liquid) equilibrium, if used improvident, are demonstrated. Furthermore, it is shown that in fact a simple and straightforward conversion can be performed. Finally, in the case when polymers are involved, an adaption and simplification to the model was successfully applied.

  4. Repairability of CAD/CAM high-density PMMA- and composite-based polymers.

    Science.gov (United States)

    Wiegand, Annette; Stucki, Lukas; Hoffmann, Robin; Attin, Thomas; Stawarczyk, Bogna

    2015-11-01

    The study aimed to analyse the shear bond strength of computer-aided design and computer-aided manufacturing (CAD/CAM) polymethyl methacrylate (PMMA)- and composite-based polymer materials repaired with a conventional methacrylate-based composite after different surface pretreatments. Each 48 specimens was prepared from six different CAD/CAM polymer materials (Ambarino high-class, artBloc Temp, CAD-Temp, Lava Ultimate, Telio CAD, Everest C-Temp) and a conventional dimethacrylate-based composite (Filtek Supreme XTE, control) and aged by thermal cycling (5000 cycles, 5-55 °C). The surfaces were left untreated or were pretreated by mechanical roughening, aluminium oxide air abrasion or silica coating/silanization (each subgroup n = 12). The surfaces were further conditioned with an etch&rinse adhesive (OptiBond FL) before the repair composite (Filtek Supreme XTE) was adhered to the surface. After further thermal cycling, shear bond strength was tested, and failure modes were assessed. Shear bond strength was statistically analysed by two- and one-way ANOVAs and Weibull statistics, failure mode by chi(2) test (p ≤ 0.05). Shear bond strength was highest for silica coating/silanization > aluminium oxide air abrasion = mechanical roughening > no surface pretreatment. Independently of the repair pretreatment, highest bond strength values were observed in the control group and for the composite-based Everest C-Temp and Ambarino high-class, while PMMA-based materials (artBloc Temp, CAD-Temp and Telio CAD) presented significantly lowest values. For all materials, repair without any surface pretreatment resulted in adhesive failures only, which mostly were reduced when surface pretreatment was performed. Repair of CAD/CAM high-density polymers requires surface pretreatment prior to adhesive and composite application. However, four out of six of the tested CAD/CAM materials did not achieve the repair bond strength of a conventional dimethacrylate-based

  5. Photochemical stability of electrochromic polymers and devices

    DEFF Research Database (Denmark)

    Jensen, Jacob; Madsen, Morten Vesterager; Krebs, Frederik C

    2013-01-01

    The stability of fully printed flexible organic electrochromics based on 11 different conjugated polymers is explored from the fundamental chemical degradation level to the operational device level. The photochemical stability of the electrochromic polymers (ECPs) is studied enabling an analysis ...... based on flexible barrier substrates exhibit increased stability and are indeed viable in devices such as shading elements, light management systems, displays with low switching speed requirements and signage. © 2013 The Royal Society of Chemistry....

  6. Polymer density functional theory approach based on scaling second-order direct correlation function.

    Science.gov (United States)

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  7. Micro-resonators based on integrated polymer technology for optical sensing

    Science.gov (United States)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  8. Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems

    Science.gov (United States)

    Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida

    2013-11-01

    Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.

  9. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    Science.gov (United States)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  10. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells.

    Science.gov (United States)

    Shin, Jicheol; Park, Gi Eun; Lee, Dae Hee; Um, Hyun Ah; Lee, Tae Wan; Cho, Min Ju; Choi, Dong Hoon

    2015-02-11

    New thienothiophene-flanked diketopyrrolopyrrole and thiophene-containing π-extended conjugated polymers with various branched alkyl side-chains were successfully synthesized. 2-Octyldodecyl, 2-decyltetradecyl, 2-tetradecylhexadecyl, 2-hexadecyloctadecyl, and 2-octadecyldocosyl groups were selected as the side-chain moieties and were anchored to the N-positions of the thienothiophene-flanked diketopyrrolopyrrole unit. All five polymers were found to be soluble owing to the bulkiness of the side chains. The thin-film transistor based on the 2-tetradecylhexadecyl-substituted polymer showed the highest hole mobility of 1.92 cm2 V(-1) s(-1) due to it having the smallest π-π stacking distance between the polymer chains, which was determined by grazing incidence X-ray diffraction. Bulk heterojunction polymer solar cells incorporating [6,6]-phenyl-C71-butyric acid methyl ester as the n-type molecule and the additive 1,8-diiodooctane (1 vol %) were also constructed from the synthesized polymers without thermal annealing; the device containing the 2-octyldodecyl-substituted polymer exhibited the highest power conversion efficiency of 5.8%. Although all the polymers showed similar physical properties, their device performance was clearly influenced by the sizes of the branched alkyl side-chain groups.

  11. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system

    International Nuclear Information System (INIS)

    Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2008-01-01

    Polymer electrolyte based on PVA doped with different concentrations of NH 4 Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7x10 -4 S cm -1 ) has been obtained for 25 mol% NH 4 Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra

  12. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    Directory of Open Access Journals (Sweden)

    Abdalla H. Karoyo

    2015-06-01

    Full Text Available Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties.

  13. Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review

    Science.gov (United States)

    Karoyo, Abdalla H.; Wilson, Lee D.

    2015-01-01

    Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047

  14. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    International Nuclear Information System (INIS)

    Jirasek, A; Hilts, M; McAuley, K B

    2010-01-01

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  15. Monte Carlo simulations of lattice models for single polymer systems

    Science.gov (United States)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  16. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  17. Fine-tuning of electronic properties in donor-acceptor conjugated polymers based on oligothiophenes

    Science.gov (United States)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor-acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  18. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  19. Ferritin nanocontainers that self-direct in synthetic polymer systems

    Science.gov (United States)

    Sengonul, Merih C.

    Currently, there are many approaches to introduce functionality into synthetic polymers. Among these, for example, are copolymerization, grafting, and blending methods. However, modifications made by such methods also change the thermodynamics and rheological properties of the polymer system of interest, and each new modification often requires a costly reoptimization of polymer processing. Such a reoptimalization would not be necessary if new functionality could be introduced via a container whose external surface is chemically and physically tuned to interact with the parent polymer. The contents of the container could then be changed without changing other important properties of the parent polymer. In this context this thesis project explores an innovative nanocontainer platform which can be introduced into phase-separating homopolymer blends. Ferritin is a naturally existing nanocontainer that can be used synthetically to package and selectively transport functional moieties to a particular phase that is either in the bulk or on the surface of a homopolymer blend system. The principal focus of this work centers on modifying the surface of wild ferritin to: (1) render modified ferritin soluble in a non-aqueous solvent; and (2) impart it with self-directing properties when exposed to a homopolymer blend surface or incorporated into the bulk of a homopolymer blend. Wild ferritin is water soluble, and this research project successfully modified wild ferritin by grafting either amine-functional poly(ethylene glycol) (PEG) or short-chain alkanes to carbodiimide activated carboxylate groups on ferritin's surface. Such modified ferritin is soluble in dichloromethane (DCM). Modification was confirmed by ion-exchange chromatography, zeta-potential measurements, and electrospray mass spectroscopy. FT-IR was used to quantify the extent of PEGylation of the reaction products through area ratios of the -C-O-C asymmetric stretching vibration of the grafted PEG chains to the

  20. Thiolated polymers: synthesis and in vitro evaluation of polymer-cysteamine conjugates.

    Science.gov (United States)

    Bernkop-Schnürch, A; Clausen, A E; Hnatyszyn, M

    2001-09-11

    The purpose of the present study was to synthesize and characterize novel thiolated polymers. Mediated by a carbodiimide cysteamine was covalently linked to sodium carboxymethylcellulose (CMC) and polycarbophil (PCP). The resulting CMC-cysteamine conjugates displayed 77.9+/-6.7 and 365.1+/-8.7 micromol thiol groups per gram of polymer, whereas the PCP-cysteamine conjugates showed 26.3+/-1.9 and 122.7+/-3.8 micromol thiol groups per gram of polymer (mean+/-S.D.; n=3). In aqueous solutions above pH 5.0 both modified polymers were capable of forming inter- and/or intra-molecular disulfide bonds. The reaction velocity of this oxidation process was accelerated with a decrease in the proton concentration. The oxidation proceeded more rapidly within thiolated CMC than within thiolated PCP. Permeation studies carried out in Ussing-type chambers with freshly excised intestinal mucosa from guinea pigs utilizing sodium fluorescein as model drug for the paracellular uptake revealed an enhancement ratio (R=P(app) (conjugate)/P(app) (control)) of 1.15 and 1.41 (mean+/-S.D.; n=3) for the higher thiolated CMC-cysteamine (0.5%; m/v) and PCP-cysteamine conjugate (1.0%; m/v), respectively. The decrease in the transepithelial electrical resistance values was in good correlation with the enhancement ratios. Due to a high crosslinking tendency by the formation of disulfide bonds stabilizing drug carrier systems based on thiolated polymers and a permeation enhancing effect, CMC- and PCP-cysteamine conjugates represent promising excipients for the development of novel drug delivery systems.

  1. Inorganic polymers and materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2001-01-01

    This DOE-sponsored project was focused on the design, synthesis, characterization, and applications of new types of boron and silicon polymers with a goal of attaining processable precursors to advanced ceramic materials of technological importance. This work demonstrated a viable design strategy for the systematic formation of polymeric precursors to ceramics based on the controlled functionalization of preformed polymers with pendant groups of suitable compositions and crosslinking properties. Both the new dipentylamine-polyborazylene and pinacolborane-hydridopolysilazane polymers, unlike the parent polyborazylene and other polyborosilazanes, are stable as melts and can be easily spun into polymer fibers. Subsequent pyrolyses of these polymer fibers then provide excellent routes to BN and SiNCB ceramic fibers. The ease of synthesis of both polymer systems suggests new hybrid polymers with a range of substituents appended to polyborazylene or polysilazane backbones, as well as other types of preceramic polymers, should now be readily achieved, thereby allowing even greater control over polymer and ceramic properties. This control should now enable the systematic tailoring of the polymers and derived ceramics for use in different technological applications. Other major recent achievements include the development of new types of metal-catalyzed methods needed for the polymerization and modification of inorganic monomers and polymers, and the modification studies of polyvinylsiloxane and related polymers with substituents that enable the formation of single source precursors to high-strength, sintered SiC ceramics.

  2. Competency Based Modular Experiments in Polymer Science and Technology.

    Science.gov (United States)

    Pearce, Eli M; And Others

    1980-01-01

    Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)

  3. Design and Application of Nanogel-Based Polymer Networks

    Science.gov (United States)

    Dailing, Eric Alan

    Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating

  4. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  5. Key product development based on cyclo olefin polymer for LCD-TV

    Science.gov (United States)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  6. An integrated system for dissolution studies and magnetic resonance imaging of controlled release, polymer-based dosage forms-a tool for quantitative assessment of hydrogel formation processes.

    Science.gov (United States)

    Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P

    2008-11-04

    Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.

  7. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications.

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman; Ramamurthy, Praveen C

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1 , exhibited a highest occupied molecular orbital (HOMO) energy level at -5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2 , were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3 .

  8. Molecular-level architectural design using benzothiadiazole-based polymers for photovoltaic applications

    Science.gov (United States)

    Viswanathan, Vinila N; Rao, Arun D; Pandey, Upendra K; Kesavan, Arul Varman

    2017-01-01

    A series of low band gap, planar conjugated polymers, P1 (PFDTBT), P2 (PFDTDFBT) and P3 (PFDTTBT), based on fluorene and benzothiadiazole, was synthesized. The effect of fluorine substitution and fused aromatic spacers on the optoelectronic and photovoltaic performance was studied. The polymer, derived from dithienylated benzothiodiazole and fluorene, P1, exhibited a highest occupied molecular orbital (HOMO) energy level at −5.48 eV. Density functional theory (DFT) studies as well as experimental measurements suggested that upon substitution of the acceptor with fluorine, both the HOMO and lowest unoccupied molecular orbital (LUMO) energy levels of the resulting polymer, P2, were lowered, leading to a higher open circuit voltage and short circuit current with an overall improvement of more than 110% for the photovoltaic devices. Moreover, a decrease in the torsion angle between the units was also observed for the fluorinated polymer P2 due to the enhanced electrostatic interaction between the fluorine substituents and sulfur atoms, leading to a high hole mobility. The use of a fused π-bridge in polymer P3 for the enhancement of the planarity as compared to the P1 backbone was also studied. This enhanced planarity led to the highest observed mobility among the reported three polymers as well as to an improvement in the device efficiency by more than 40% for P3. PMID:28546844

  9. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  10. Investigation of waste incineration of fluorotelomer-based polymers as a potential source of PFOA in the environment.

    Science.gov (United States)

    Taylor, P H; Yamada, T; Striebich, R C; Graham, J L; Giraud, R J

    2014-09-01

    In light of the widespread presence of perfluorooctanoic acid (PFOA) in the environment, a comprehensive laboratory-scale study has developed data requested by the U.S. Environmental Protection Agency (EPA) to determine whether municipal and/or medical waste incineration of commercial fluorotelomer-based polymers (FTBPs) at end of life is a potential source of PFOA that may contribute to environmental and human exposures. The study was divided into two phases (I and II) and conducted in accordance with EPA Good Laboratory Practices (GLPs) as described in the quality assurance project plan (QAPP) for each phase. Phase I testing determined that the PFOA transport efficiency across the thermal reactor system to be used in Phase II was greater than 90%. Operating at 1000°C over 2s residence time with 3.2-6.6mgdscm(-1) hydrogen fluoride (HF), corrected to 7% oxygen (O2), and continuously monitored exhaust oxygen of 13%, Phase II testing of the FTBP composites in this thermal reactor system yielded results demonstrating that waste incineration of fluorotelomer-based polymers does not result in the formation of detectable levels of PFOA under conditions representative of typical municipal waste combustor (MWC) and medical waste incinerator (MWI) operations in the U.S. Therefore, waste incineration of these polymers is not expected to be a source of PFOA in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Development of quinoxaline based polymers for photovoltaic applications

    Czech Academy of Sciences Publication Activity Database

    Yuan, J.; Ouyang, J.; Cimrová, Věra; Leclerc, M.; Najari, A.; Zou, Y.

    2017-01-01

    Roč. 5, č. 8 (2017), s. 1858-1879 ISSN 2050-7526 R&D Projects: GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : conjugated polymers * quinoxaline based * photovoltaic s Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 5.256, year: 2016

  12. Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites

    International Nuclear Information System (INIS)

    Kassiba, A; Boucle, J; Makowska-Janusik, M; Errien, N

    2007-01-01

    Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK

  13. Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites

    Science.gov (United States)

    Kassiba, A.; Bouclé, J.; Makowska-Janusik, M.; Errien, N.

    2007-08-01

    Hybrid nanocomposites which combine polymer as host matrix and nanocrystals as active elements are promising functional materials for electronics, optics or photonics. In these systems, the physical response is governed by the nanocrystal features (size, surface and defect states), the polymer properties and the polymer-nanocrystal interface. This work reviews some selective nanostructured architectures based on active elements such as silicon carbide (SiC) nanocrystals and polymer host matrices. Beyond an overview of some key properties of the nanocrystals, a main part will be devoted to the electro-optical (EO) properties of SiC based hybrid systems where SiC nanocrystals are embedded in polymer matrices of different chemical nature such as poly-(methylmethacrylate) (PMMA), poly-vinylcarbazole (PVK) or polycarbonate. Using this approach, the organic-inorganic interface effects are emphasised with regard to the dielectric or hole transporting behaviour of PMMA and PVK respectively. These effects are illustrated through different EO responses associated with hybrid composites based on PMMA or PVK.

  14. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  15. Design and fabrication of polymer based dry adhesives inspired by the gecko adhesive system

    Science.gov (United States)

    Jin, Kejia

    There has been significant interest in developing dry adhesives mimicking the gecko adhesive system, which offers several advantages compared to conventional pressure sensitive adhesives. Specifically, gecko adhesive pads have anisotropic adhesion properties: the adhesive pads (spatulae) stick strongly when sheared in one direction but are non-adherent when sheared in the opposite direction. This anisotropy property is attributed to the complex topography of the array of fine tilted and curved columnar structures (setae) that bear the spatulae. In this thesis, easy, scalable methods, relying on conventional and unconventional techniques are presented to incorporate tilt in the fabrication of synthetic polymer-based dry adhesives mimicking the gecko adhesive system, which provide anisotropic adhesion properties. In the first part of the study, the anisotropic adhesion and friction properties of samples with various tilt angles to test the validity of a nanoscale tape-peeling model of spatular function are measured. Consistent with the Peel Zone model, samples with lower tilt angles yielded larger adhesion forces. Contact mechanics of the synthetic array were highly anisotropic, consistent with the frictional adhesion model and gecko-like. Based on the original design, a new design of gecko-like dry adhesives was developed which showed superior tribological properties and furthermore showed anisotropic adhesive properties without the need for tilt in the structures. These adhesives can be used to reversibly suspend weights from vertical surfaces (e.g., walls) and, for the first time to our knowledge, horizontal surfaces (e.g., ceilings) by simultaneously and judiciously activating anisotropic friction and adhesion forces. Furthermore, adhesion properties between artificial gecko-inspired dry adhesives and rough substrates with varying roughness are studied. The results suggest that both adhesion and friction forces on a rough substrate depends significantly on the

  16. LDRD final report on intelligent polymers for nanodevice performance control

    Energy Technology Data Exchange (ETDEWEB)

    JAMISON,GREGORY M.; LOY,DOUGLAS A.; WHEELER,DAVID R.; SAUNDERS,RANDALL S.L; SHELNUTT,JOHN A.; CARR,MARTIN J.; SHALTOUT,RAAFAT M.

    2000-01-01

    A variety of organic and hybrid organic-inorganic polymer systems were prepared and evaluated for their bulk response to optical, thermal and chemical environmental changes. These included modeling studies of polyene-bridged metal porphyrin systems, metal-mediated oligomerization of phosphaalkynes as heteroatomic analogues to polyacetylene monomers, investigations of chemically amplified degradation of acid- and base-sensitive polymers and thermally responsive thermoplastic thermosets based on Diels-Alder cycloaddition chemistry. The latter class of materials was utilized to initiate work to develop a new technique for rapidly building a library of systems with varying depolymerization temperatures.

  17. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  18. TM-pass polarizer based on multilayer graphene polymer waveguide

    Science.gov (United States)

    Cai, Ke-su; Li, Yue-e.; Wei, Wen-jing; Mu, Xi-jiao; Ma, A.-ning; Wang, Zhong; Song, Dan-ming

    2018-05-01

    A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.

  19. Fabrication and characterization of shape memory polymers at small-scales

    Science.gov (United States)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  20. Temperature range extension of an organically crosslinked polymer system and its successful field application for water and gas shutoff

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, Julio; Eoff, Larry; Dalrymple, Dwyann [Halliburton, Rio de Janeiro. RJ (Brazil)

    2008-07-01

    Excessive water production from hydrocarbon reservoirs is one of the most serious problems in the oil industry. Water production greatly affects the economic life of producing wells and brings along secondary problems such as sand production, corrosion, and tubular scale. Remediation techniques for controlling water production, generally referred to as conformance control, include the use of polymer systems to reduce or plug permeability to water. This paper presents the laboratory evaluation of an organically crosslinked polymer (OCP) system used as a sealant for water control problems in hydrocarbon wells. Originally, the OCP system had a limited working temperature range (140 deg to 260 deg F). Recently, an alternative base polymer (for low temperatures) and a retarder (for high temperatures) have been introduced to expand the temperature range of applicability of the OCP system from 70 deg F to 350 deg F without compromising its effectiveness or thermal stability. More than 400 jobs have been performed with the OCP system around the world to address conformance problems such as water coning/cresting, high-permeability streaks, gravel pack isolation, fracture shutoff, and casing leak repairs. This paper presents an overview of case histories that used the OCP system in various regions of the world for a wide variety of applications. (author)

  1. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  2. Parallelized event chain algorithm for dense hard sphere and polymer systems

    International Nuclear Information System (INIS)

    Kampmann, Tobias A.; Boltz, Horst-Holger; Kierfeld, Jan

    2015-01-01

    We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers

  3. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Science.gov (United States)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  4. The hydrodynamic size of polymer stabilized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Karl M; Al-Somali, Ali M; Mejia, Michelle; Colvin, Vicki L [Department of Chemistry, Rice University, MS-60 6100 Main Street, Houston, TX 77005 (United States)

    2007-11-28

    For many emerging applications, nanocrystals are surface functionalized with polymers to control self-assembly, prevent aggregation, and promote incorporation into polymer matrices and biological systems. The hydrodynamic diameter of these nanoparticle-polymer complexes is a critical factor for many applications, and predicting this size is complicated by the fact that the structure of the grafted polymer at a nanocrystalline interface is not generally established. In this work we evaluate using size-exclusion chromatography the overall hydrodynamic diameter of nanocrystals (Au, CdSe, d<5 nm) surface coated with polystyrene of varying molecular weight. The polymer is tethered to the nanoparticles via a terminal thiol to provide strong attachment. Our data show that at full coverage the polymer assumes a brush conformation and is 44% longer than the unbound polymer in solution. The brush conformation is confirmed by comparison with models used to describe polymer brushes at flat interfaces. From this work, we suggest an empirical formula which predicts the hydrodynamic diameter of polymer coated nanoparticles based on the size of the nanoparticle core and the size of the randomly coiled unbound polymer in solution.

  5. Preparing Methods and Its Influencing Factors about Nanoparticles Based on Dendritic Polymer

    OpenAIRE

    Zhang Jianwei; Li Jeff

    2017-01-01

    Based on the properties, structure and application of dendritic polymer, this paper analysed the methods of the preparation of nanoparticles using dendritic polymer, detailed preparation process, technical parameters and application effect about a single metal nanoparticles, bimetallic nanoparticles, sulfide and halide nanoparticles. The influencing factors of the preparation about nanoparticles were discussed, including the molecular algebra, the molar ratio of the metal ions to the dendriti...

  6. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  7. Long-term biocompatibility of implanted polymer-based intrafascicular electrodes

    DEFF Research Database (Denmark)

    Lawrence, Stephen M; Larsen, Jytte Overgaard; Horch, Kenneth W

    2002-01-01

    Polymer-based longitudinal intrafascicular electrodes (polyLIFEs) were chronically implanted into the sciatic nerve of white New Zealand rabbits (n=8) for a period of 6 months (hereafter referred to as the long-term group). The impact of the implantation procedure, as observed 6 months post surge...

  8. Occurrence, degradation, and effect of polymer-based materials in the environment.

    Science.gov (United States)

    Lambert, Scott; Sinclair, Chris; Boxall, Alistair

    2014-01-01

    There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of

  9. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  10. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  11. Polymer gel dosimeters with enhanced sensitivity for use in x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Hilts, M [Medical Physics, BC Cancer Agency-Vancouver Island Centre, Victoria BC V6R 2B6 (Canada); McAuley, K B, E-mail: jirasek@uvic.c [Department of Chemical Engineering, Queens University, Kingston, ON K7 L 3N6 (Canada)

    2010-09-21

    A primary limitation of current x-ray CT polymer gel dosimetry is the low contrast, and hence poor dose resolution, of dose images produced by the system. The low contrast is largely due to the low-dose sensitivity of current formulations of polymer gel for x-ray CT imaging. This study reports on the investigation of new dosimeter formulations with improved dose sensitivity for x-ray CT polymer gel dosimetry. We incorporate an isopropanol co-solvent into an N-isopropylacrylamide-based gel formulation in order to increase the total monomer/crosslinker concentration (%T) within the formulation. It is shown that gels of high %T exhibit enhanced dose sensitivity and dose resolutions over traditional formulations. The gels are shown to be temporally stable and reproducible. A single formulation (16%T) is used to demonstrate the capabilities of the x-ray CT polymer gel dosimetry system in measuring known dose distributions. A 1 L gel volume is exposed to three separate irradiations: a single-field percent depth dose, a two-field 'cross' and a three-field 'test case'. The first two irradiations are used to generate a dose calibration curve by which images are calibrated. The calibrated images are compared with treatment planning predictions and it is shown that the x-ray CT polymer gel dosimetry system is capable of capturing spatial and dose information accurately. The proposed new gel formulation is shown to be sensitive, stable and to improve the dose resolution over current formulations so as to provide a feasible gel for clinical applications of x-ray CT polymer gel dosimetry.

  12. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  13. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  14. Comparative Investigation on the Performance of Modified System Poles and Traditional System Poles Obtained from PDC Data for Diagnosing the Ageing Condition of Transformer Polymer Insulation Materials

    Directory of Open Access Journals (Sweden)

    Jiefeng Liu

    2018-02-01

    Full Text Available The life expectancy of a transformer is largely depended on the service life of transformer polymer insulation materials. Nowadays, several papers have reported that the traditional system poles obtained from polarization and depolarization current (PDC data can be used to assess the condition of transformer insulation systems. However, the traditional system poles technique only provides limited ageing information for transformer polymer insulation. In this paper, the modified system poles obtained from PDC data are proposed to assess the ageing condition of transformer polymer insulation. The aim of the work is to focus on reporting a comparative investigation on the performance of modified system poles and traditional system poles for assessing the ageing condition of a transformer polymer insulation system. In the present work, a series of experiments have been performed under controlled laboratory conditions. The PDC measurement data, degree of polymerization (DP and moisture content of the oil-immersed polymer pressboard specimens were carefully monitored. It is observed that, compared to the relationships between traditional system poles and DP values, there are better correlations between the modified system poles and DP values, because the modified system poles can obtain much more ageing information on transformer polymer insulation. Therefore, the modified system poles proposed in the paper are more suitable for the diagnosis of the ageing condition of transformer polymer insulation.

  15. Lithium polymer cell assembled by in situ chemical cross-linking of ionic liquid electrolyte with phosphazene-based cross-linking agent

    International Nuclear Information System (INIS)

    Choi, Ji-Ae; Kang, Yongku; Kim, Dong-Won

    2013-01-01

    Highlights: ► Ionic liquid-based cross-linked gel polymer electrolytes were synthesized and their electrochemical properties were investigated. ► Lithium polymer cells with in situ cross-linked gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. ► The use of ionic liquid-based cross-linked gel polymer electrolytes significantly improved the thermal stability of the cells. -- Abstract: Ionic liquid-based cross-linked gel polymer electrolytes were prepared with a phosphazene-based cross-linking agent, and their electrochemical properties were investigated. Lithium polymer cells composed of lithium anode and LiCoO 2 cathode were assembled with ionic liquid-based cross-linked gel polymer electrolyte and their cycling performance was evaluated. The interfacial adhesion between the electrodes and the electrolyte by in situ chemical cross-linking resulted in stable capacity retention of the cell. A reduction in the ionic mobility in both the electrolyte and the electrode adversely affected discharge capacity and high rate performance of the cell. DSC studies demonstrated that the use of ionic liquid-based cross-linked gel polymer electrolytes provided a significant improvement in the thermal stability of the cell

  16. Polymer Materials for the Heat Recovery

    International Nuclear Information System (INIS)

    Kolasińska, E; Mazurek, B; Kolasiński, P

    2016-01-01

    Many of the processes in the industry, agriculture and microscale systems are associated with the waste heat generation, which often may be a menace or lower the efficiency of the processes. The thermoelectric cooling is becoming increasingly popular and gives the possibility to convert waste heat into electricity. The current thermoelectric cooling solutions are based on alloy materials. However, the new technologies pay attention to the environment burden, moreover the regulations of the production and recycling are becoming more and more restrictive. Conducting polymers are thermoelectrically active at low temperatures, cheap and environmentally safe. In this paper authors discuss the possibility of the application of conducting polymers for the heat recovery. Due to the operating temperature range and different nature of the waste heat sources, polymers might be an interesting solution and a complement for alloy-based thermoelectric materials. The character and nature of the formation of waste heat sources and conventional technologies of its recovery are also described in this paper. Moreover the advantages of thermoelectric cooling with the use of polymers are presented and two materials based on polyaniline are proposed. (paper)

  17. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  18. Crosslinkable coatings from phosphorylcholine-based polymers.

    Science.gov (United States)

    Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W

    2001-01-01

    2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.

  19. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  20. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sugam, E-mail: sugam@barc.gov.in; Aswal, V. K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, H-5232 PSI Villigen (Switzerland)

    2015-06-24

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology.

  1. Tuning of electrostatic vs. depletion interaction in deciding the phase behavior of nanoparticle-polymer system

    International Nuclear Information System (INIS)

    Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2015-01-01

    Nanoparticle-polymer system interestingly show a re-entrant phase behavior where charge stabilized silica nanoparticles (phase I) undergo particle clustering (phase II) and then back to individual particles (phase I) as a function of polymer concentration. Such phase behavior arises as a result of dominance of various interactions (i) nanoparticle-nanoparticle electrostatic repulsion (ii) polymer induced attractive depletion between nanoparticles and (iii) polymer-polymer repulsion, at different concentration regimes. Small-angle neutron scattering (SANS) has been used to study the evolution of interaction during this re-entrant phase behavior of nanoparticles by contrast-marching the polymer. The SANS data have been modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The degree of both of these parts has been separately tuned by varying the polymer concentration and ionic strength of the solution. Both of these parts are found to have long-range nature. At low polymer concentrations, the electrostatic repulsion dominates over the depletion attraction. The magnitude and the range of the depletion interaction increase with the polymer concentration leading to nanoparticle clustering. At higher polymer concentrations, the increased polymer-polymer repulsion reduces the strength of depletion leading to re-entrant phase behavior. The clusters formed under depletion attraction are found to have surface fractal morphology

  2. Smart Surface Chemistries of Conducting Polymers

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik

    In this thesis we investigate post-polymerization covalent modifications of poly(3,4-dioxythiophene (PEDOT)-type conducting polymers. The aim of the modifications is to gain specific control of the interaction between the material and living mammalian cells. The use of “click-chemistry” to modify...... a straightforward and in-expensive method for patterning conducting polymer thin films into microelectrodes, without losing control of the surface chemistry of the samples. On the contrary, the method provides direct control of the surface chemistry of both the fabricated micro-electrodes and the gaps between them....... The method is based on locally removing PEDOTtype polymers to expose underlying non-conducting functional polymer substrates. Thereby, multifunctional substrates are obtained. By applying this method, we are able to fabricate allpolymer micro-systems with multiple types of localized functional (bio...

  3. Process to prepare stable trifluorostyrene containing compounds grafted to base polymers using a solvent/water mixture

    Science.gov (United States)

    Roelofs, Mark Gerrit; Yang, Zhen-Yu; Han, Amy Qi

    2010-06-15

    A fluorinated ion exchange polymer is prepared by grafting at least one grafting monomer derived from trifluorostyrene on to at least one base polymer in a organic solvent/water mixture. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  4. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2004-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report is performed jointly by, Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures and the work done on recovery experiments on core rocks. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results do not show a

  5. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  6. Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers

    CERN Document Server

    Broer, Dirk

    2011-01-01

    With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu

  7. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Science.gov (United States)

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  8. Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide.

    Science.gov (United States)

    Paek, Kwanyeol; Yang, Hyunseung; Lee, Junhyuk; Park, Junwoo; Kim, Bumjoon J

    2014-03-25

    In this paper, we report the development of a versatile platform for a highly efficient and stable graphene oxide (GO)-based optical sensor that exhibits distinctive ratiometric color responses. To demonstrate the applicability of the platform, we fabricated a colorimetric, GO-based pH sensor that responds to a wide range of pH changes. Our sensing system is based on responsive polymer and quantum dot (QD) hybrids integrated on a single GO sheet (MQD-GO), with the GO providing an excellent signal-to-noise ratio and high dispersion stability in water. The photoluminescence emissions of the blue and orange color-emitting QDs (BQDs and OQDs) in MQD-GO can be controlled independently by different pH-responsive linkers of poly(acrylic acid) (PAA) (pKa=4.5) and poly(2-vinylpyridine) (P2VP) (pKa=3.0) that can tune the efficiencies of Förster resonance energy transfer from the BQDs to the GO and from the OQDs to the GO, respectively. As a result, the color of MQD-GO changes from orange to near-white to blue over a wide range of pH values. The detailed mechanism of the pH-dependent response of the MQD-GO sensor was elucidated by measurements of time-resolved fluorescence and dynamic light scattering. Furthermore, the MQD-GO sensor showed excellent reversibility and high dispersion stability in pure water, indicating that our system is an ideal platform for biological and environmental applications. Our colorimetric GO-based optical sensor can be expanded easily to various other multifunctional, GO-based sensors by using alternate stimuli-responsive polymers.

  9. Numerical modelling of porous cement-based materials by superabsorbent polymers

    DEFF Research Database (Denmark)

    Viejo, Ismael; Esteves, Luis Pedro; Laspalas, Manuel

    2016-01-01

    The development of new cementitious materials raises new challenges with regard to structural design. One of the potential applications of superabsorbent polymers (SAP) is to deliver well-defined porosity to cement systems. This is particularly interesting for the development of porous cement...

  10. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control

    Directory of Open Access Journals (Sweden)

    Olaf Mühling

    2010-12-01

    Full Text Available The aim of this review is to present the actual status of development in adaptive solar control by use of thermotropic and organic thermochromic materials. Such materials are suitable for application in smart windows. In detail polymer blends, hydrogels, resins, and thermoplastic films with a reversible temperature-dependent switching behavior are described. A comparative evaluation of the concepts for these energy efficient materials is given as well. Furthermore, the change of strategy from ordinary shadow systems to intrinsic solar energy reflection materials based on phase transition components and a first remark about their realization is reported. Own current results concerning extruded films and high thermally stable casting resins with thermotropic properties make a significant contribution to this field.

  11. Fabrication of polymer-based reflowed microlenses on optical fibre ...

    Indian Academy of Sciences (India)

    Abstract. Thermal reflow of polymer to generate spherical profile has been used to fabricate microlenses in this paper. A simple model based on the volume conservation (before and after reflow) and geometrical consideration of lens profile, shows that the focal length of the microlens produced by reflow technique is a.

  12. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  13. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; Leenaers, P.J.; Janssen, R.A.J.

    2017-01-01

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of

  14. Properties of Polymer Composites Used in High-Voltage Applications

    Directory of Open Access Journals (Sweden)

    Ilona Pleşa

    2016-04-01

    Full Text Available The present review article represents a comprehensive study on polymer micro/nanocomposites that are used in high-voltage applications. Particular focus is on the structure-property relationship of composite materials used in power engineering, by exploiting fundamental theory as well as numerical/analytical models and the influence of material design on electrical, mechanical and thermal properties. In addition to describing the scientific development of micro/nanocomposites electrical features desired in power engineering, the study is mainly focused on the electrical properties of insulating materials, particularly cross-linked polyethylene (XLPE and epoxy resins, unfilled and filled with different types of filler. Polymer micro/nanocomposites based on XLPE and epoxy resins are usually used as insulating systems for high-voltage applications, such as: cables, generators, motors, cast resin dry-type transformers, etc. Furthermore, this paper includes ample discussions regarding the advantages and disadvantages resulting in the electrical, mechanical and thermal properties by the addition of micro- and nanofillers into the base polymer. The study goals are to determine the impact of filler size, type and distribution of the particles into the polymer matrix on the electrical, mechanical and thermal properties of the polymer micro/nanocomposites compared to the neat polymer and traditionally materials used as insulation systems in high-voltage engineering. Properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, erosion resistance, space charge behavior, electric breakdown, tracking and electrical tree resistance, thermal conductivity, tensile strength and modulus, elongation at break of micro- and nanocomposites based on epoxy resin and XLPE are analyzed. Finally, it was concluded that the use of polymer micro/nanocomposites in electrical engineering is very promising and further research work

  15. HWCVD of polymers: Commercialization and scale-up

    International Nuclear Information System (INIS)

    Pryce Lewis, Hilton G.; Bansal, Neeta P.; White, Aleksandr J.; Handy, Erik S.

    2009-01-01

    GVD Corporation specializes in process development and equipment design for the production of ultra-thin polymer coatings using hot wire chemical vapor deposition (HWCVD, also known as initiated chemical vapor deposition, iCVD). HWCVD allows many coating compositions to be produced, including fluorocarbon and silicone polymers, copolymers, and vinyl hydrocarbon polymers. It is especially valuable for creating ultra-thin layers of insoluble, infusible polymers which are hard to process by conventional means, such as polytetrafluoroethylene (PTFE, Teflon. HWCVD PTFE coatings are chemically robust, comprised of essentially 100% CF 2 , resistant to solvents, conformal to complex surface geometry, and have excellent adhesion to a wide range of substrates. Since the part to be coated remains at room temperature, fragile materials like plastics and fabrics can be coated with ease. GVD has focused on scale-up of the process equipment and has developed several standard coating systems, which will be discussed in this paper. These include laboratory-scale batch coating systems, a medium sized production batch coating system, a large scale custom batch coater, and a pilot scale roll-to-roll web coater. All of GVD's systems are complete with fully automated, computer based control systems and include options for effluent monitors and an exhaust scrubber.

  16. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  17. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  18. Synthèse d'hybrides polymère-polymère par la polymérisation en miniémulsion et la caractérisation des latex hybrides

    OpenAIRE

    Udagama , Ravindra

    2009-01-01

    The objectives of work presented in this thesis are to understand droplet and particle formulation processes in order to make useful polymer-polymer hybrids in aqueous dispersions and use our fundamental understanding of these processes to: 1. Improve monomer conversion as much as possible. 2. Understand impact of these processes on hybrid film properties. Specific case studies of interest under commercially feasible conditions (i.e. solids content of 50wt %) were done based on two systems na...

  19. Polymer-based actuators for virtual reality devices

    Science.gov (United States)

    Bolzmacher, Christian; Hafez, Moustapha; Benali Khoudja, Mohamed; Bernardoni, Paul; Dubowsky, Steven

    2004-07-01

    Virtual Reality (VR) is gaining more importance in our society. For many years, VR has been limited to the entertainment applications. Today, practical applications such as training and prototyping find a promising future in VR. Therefore there is an increasing demand for low-cost, lightweight haptic devices in virtual reality (VR) environment. Electroactive polymers seem to be a potential actuation technology that could satisfy these requirements. Dielectric polymers developed the past few years have shown large displacements (more than 300%). This feature makes them quite interesting for integration in haptic devices due to their muscle-like behaviour. Polymer actuators are flexible and lightweight as compared to traditional actuators. Using stacks with several layers of elatomeric film increase the force without limiting the output displacement. The paper discusses some design methods for a linear dielectric polymer actuator for VR devices. Experimental results of the actuator performance is presented.

  20. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    Science.gov (United States)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  1. Physical Properties of Polymers (Ultrastructure Processing of Polymers)

    Science.gov (United States)

    1982-09-30

    vinyl benzene Network-Diluent Systems". 17. J . Appl. Polym. Sci. 28, 219-224 (1983) (with R. Vukovic and W.J. MacKnight) "Compatibility of Some...Temperature of Polymer Networks by Dil uents". 23. J . Appl. Polym. Sci. 28, 1379-1389 (1983) (with R. Vukovic , V. Kuresevic, N. Segudovic, and W.J...AFOSR 80-0101 IV. DATES: 1 January 1980 - 30 September 1982 V. SENIOR RESEARCH PERSONNEL*: Dr. C. Crosby Dr. G. ten Brinke Dr. T. Ellis Dr. R. Vukovic

  2. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  3. Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers.

    Science.gov (United States)

    Nakhmanson, S M; Nardelli, M Buongiorno; Bernholc, J

    2004-03-19

    Highly piezoelectric and pyroelectric phases of boron-nitrogen-based polymers have been designed from first principles. They offer excellent electrical and structural properties, with up to 100% improvement in the piezoelectic response and an enhanced thermal stability with respect to polyvinylidene fluoride (PVDF). Since methods for their synthesis are readily available, these polymers are extremely promising for numerous technological applications, rivaling the properties of ferroelectric ceramics and superseding PVDF-based materials in high-performance devices.

  4. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    , environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part......The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic...

  5. Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity.

    Science.gov (United States)

    Tabet, Lyes; Bussy, Cyrill; Setyan, Ari; Simon-Deckers, Angélique; Rossi, Michel J; Boczkowski, Jorge; Lanone, Sophie

    2011-01-21

    carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis. extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.

  6. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  7. Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer concentration and injection amount limitation. The optimal control model is discretized by full implicit finite-difference method. To cope with the discrete optimal control problem (OCP, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method with new adjoint construction is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  8. The Effects of Lithium Triflate (LiCF3SO3) on the PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    Chew, K. W.; Chen, S. S.; Pang, W. L.; Tan, C. G.; Osman, Z.

    2010-01-01

    The effects of Lithium triflate salt (LiCF 3 SO 3 ), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF 3 SO 3 ) and (PMMA+PC+LiCF 3 SO 3 ) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperature to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF 3 SO 3 ) system is 2.83x10 -12 Scm -1 , 4.39x10 -11 Scm -1 and 3.93x10 -6 Scm -1 respectively. The conductivity for (PMMA+PC+LiCF 3 SO 3 ) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10 -5 Scm -1 . Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH 3 band.

  9. COMBINED MICROBIAL SURFACTANT-POLYMER SYSTEM FOR IMPROVED OIL MOBILITY AND CONFORMANCE CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2005-08-01

    Many domestic oil fields are facing abandonment even though they still contain two-thirds of their original oil. A significant number of these fields can yield additional oil using advanced oil recovery (AOR) technologies. To maintain domestic oil production at current levels, AOR technologies are needed that are affordable and can be implemented by the independent oil producers of the future. Microbial enhanced oil recovery (MEOR) technologies have become established as cost-effective solutions for declining oil production. MEOR technologies are affordable for independent producers operating stripper wells and can be used to extend the life of marginal fields. The demonstrated versatility of microorganisms can be used to design advanced microbial systems to treat multiple production problems in complex, heterogeneous reservoirs. The proposed research presents the concept of a combined microbial surfactant-polymer system for advanced oil recovery. The surfactant-polymer system utilizes bacteria that are capable of both biosurfactant production and metabolically-controlled biopolymer production. This novel technology combines complementary mechanisms to extend the life of marginal fields and is applicable to a large number of domestic reservoirs. The research project described in this report was performed by Bio-Engineering Inc., a woman owned small business, Texas A&M University and Prairie View A&M University, a Historically Black College and University. This report describes the results of our laboratory work to grow microbial cultures, the work done on recovery experiments on core rocks, and computer simulations. We have selected two bacterial strains capable of producing both surfactant and polymers. We have conducted laboratory experiments to determine under what conditions surfactants and polymers can be produced from one single strain. We have conduct recovery experiments to determine the performance of these strains under different conditions. Our results

  10. Can natural polymers assist in delivering insulin orally?

    Science.gov (United States)

    Nur, Mokhamad; Vasiljevic, Todor

    2017-10-01

    Diabetes mellitus is one of the most grave and lethal non communicable diseases. Insulin is normally used to medicate diabetes. Due to bioavailability issues, the most regular route of administration is through injection, which may pose compliance problems to treatment. The oral administration thus appears as a suitable alternative, but with several important problems. Low stability of insulin in the gastrointestinal tract and low intestinal permeation are some of the issues. Encapsulation of insulin into polymer-based particles emerges as a plausible strategy. Different encapsulation approaches and polymers have been used in this regard. Polymers with different characteristics from natural or synthetic origin have been assessed to attain this goal, with natural polymers being preferable. Natural polymers studied so far include chitosan, alginate, carrageenan, starch, pectin, casein, tragacanth, dextran, carrageenan, gelatine and cyclodextrin. While some promising knowledge and results have been gained, a polymeric-based particle system to deliver insulin orally has not been introduced onto the market yet. In this review, effectiveness of different natural polymer materials developed so far along with fabrication techniques are evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling of an ionic polymer metal composite actuator based on an extended Kalman filter trained neural network

    International Nuclear Information System (INIS)

    Truong, Dinh Quang; Ahn, Kyoung Kwan

    2014-01-01

    An ion polymer metal composite (IPMC) is an electroactive polymer that bends in response to a small applied electric field as a result of mobility of cations in the polymer network and vice versa. This paper presents an innovative and accurate nonlinear black-box model (NBBM) for estimating the bending behavior of IPMC actuators. The model is constructed via a general multilayer perceptron neural network (GMLPNN) integrated with a smart learning mechanism (SLM) that is based on an extended Kalman filter with self-decoupling ability (SDEKF). Here the GMLPNN is built with an ability to autoadjust its structure based on its characteristic vector. Furthermore, by using the SLM based on the SDEKF, the GMLPNN parameters are optimized with small computational effort, and the modeling accuracy is improved. An apparatus employing an IPMC actuator is first set up to investigate the IPMC characteristics and to generate the data for training and validating the model. The advanced NBBM model for the IPMC system is then created with the proper inputs to estimate IPMC tip displacement. Next, the model is optimized using the SLM mechanism with the training data. Finally, the optimized NBBM model is verified with the validating data. A comparison between this model and the previously developed model is also carried out to prove the effectiveness of the proposed modeling technique. (paper)

  12. Enzymatic degradation of polymer covered SOPC-liposomes in relation to drug delivery

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Vermehren, C.; Frøkjær, S.

    2001-01-01

    Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolam......Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide...

  13. Numerical investigation of complex flooding schemes for surfactant polymer based enhanced oil recovery

    Science.gov (United States)

    Dutta, Sourav; Daripa, Prabir

    2015-11-01

    Surfactant-polymer flooding is a widely used method of chemical enhanced oil recovery (EOR) in which an array of complex fluids containing suitable and varying amounts of surfactant or polymer or both mixed with water is injected into the reservoir. This is an example of multiphase, multicomponent and multiphysics porous media flow which is characterized by the spontaneous formation of complex viscous fingering patterns and is modeled by a system of strongly coupled nonlinear partial differential equations with appropriate initial and boundary conditions. Here we propose and discuss a modern, hybrid method based on a combination of a discontinuous, multiscale finite element formulation and the method of characteristics to accurately solve the system. Several types of flooding schemes and rheological properties of the injected fluids are used to numerically study the effectiveness of various injection policies in minimizing the viscous fingering and maximizing oil recovery. Numerical simulations are also performed to investigate the effect of various other physical and model parameters such as heterogeneity, relative permeability and residual saturation on the quantities of interest like cumulative oil recovery, sweep efficiency, fingering intensity to name a few. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  14. One-step polymer surface modification for minimizing drug, protein, and DNA adsorption in microanalytical systems

    DEFF Research Database (Denmark)

    Larsen, Esben Kjær Unmack; Larsen, Niels Bent

    2013-01-01

    The non-specific adsorption of dissolved analytes strongly reduces the sensitivity and reliability in polymer microanalytical systems. Here, a one-step aqueous phase procedure modifies polymer material surfaces to strongly reduce their non-specific adsorption of a broad range of organic analytes ...

  15. Polymer gel dosimeter based on itaconic acid

    International Nuclear Information System (INIS)

    Mattea, Facundo; Chacón, David

    2015-01-01

    A new polymeric dosimeter based on itaconic acid and N, N’-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158 cGy/min, 226 cGy min and 298 cGy/min with doses up to 1000 Gy. The dosimeters presented a linear response in the dose range 75–1000 Gy, sensitivities of 0.037 1/Gy at 298 cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species. - Highlights: • A novel polymer gel dosimeters based on itaconic acid is presented and characterized. • The typical linear trend of the dose behavior in a specific dose range was found. • Different gel structures were formed when oxygen and an antioxidant were present. • Absorbed dose is univocally correlated with optic absorbance and Raman spectroscopy. • Itaconic acid appears as a reliable radiation dosimeter that may be further improved.

  16. Initial Drug Dissolution from Amorphous Solid Dispersions Controlled by Polymer Dissolution and Drug-Polymer Interaction.

    Science.gov (United States)

    Chen, Yuejie; Wang, Shujing; Wang, Shan; Liu, Chengyu; Su, Ching; Hageman, Michael; Hussain, Munir; Haskell, Roy; Stefanski, Kevin; Qian, Feng

    2016-10-01

    To identify the key formulation factors controlling the initial drug and polymer dissolution rates from an amorphous solid dispersion (ASD). Ketoconazole (KTZ) ASDs using PVP, PVP-VA, HMPC, or HPMC-AS as polymeric matrix were prepared. For each drug-polymer system, two types of formulations with the same composition were prepared: 1. Spray dried dispersion (SDD) that is homogenous at molecular level, 2. Physical blend of SDD (80% drug loading) and pure polymer (SDD-PB) that is homogenous only at powder level. Flory-Huggins interaction parameters (χ) between KTZ and the four polymers were obtained by Flory-Huggins model fitting. Solution (13)C NMR and FT-IR were conducted to investigate the specific drug-polymer interaction in the solution and solid state, respectively. Intrinsic dissolution of both the drug and the polymer from ASDs were studied using a Higuchi style intrinsic dissolution apparatus. PXRD and confocal Raman microscopy were used to confirm the absence of drug crystallinity on the tablet surface before and after dissolution study. In solid state, KTZ is completely miscible with PVP, PVP-VA, or HPMC-AS, demonstrated by the negative χ values of -0.36, -0.46, -1.68, respectively; while is poorly miscible with HPMC shown by a positive χ value of 0.23. According to solution (13)C NMR and FT-IR studies, KTZ interacts with HPMC-AS strongly through H-bonding and dipole induced interaction; with PVPs and PVP-VA moderately through dipole-induced interactions; and with HPMC weakly without detectable attractive interaction. Furthermore, the "apparent" strength of drug-polymer interaction, measured by the extent of peak shift on NMR or FT-IR spectra, increases with the increasing number of interacting drug-polymer pairs. For ASDs with the presence of considerable drug-polymer interactions, such as KTZ/PVPs, KTZ/PVP-VA, or KTZ /HPMC-AS systems, drug released at the same rate as the polymer when intimate drug-polymer mixing was ensured (i.e., the SDD systems

  17. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance

    Directory of Open Access Journals (Sweden)

    Muntazim Munir Khan

    2018-02-01

    Full Text Available The poly(ethylene glycol-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine/(Jeffamine®. The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR, indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Single gas (H2, O2, N2, CO2, and CH4 transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.

  18. Poly(2-oxazoline)s as Polymer Therapeutics

    OpenAIRE

    Luxenhofer, Robert; Han, Yingchao; Schulz, Anita; Tong, Jing; He, Zhijian; Kabanov, Alexander V.; Jordan, Rainer

    2012-01-01

    Poly(2-oxazoline)s (POx) are currently discussed as an upcoming platform for biomaterials design and especially for polymer therapeutics. POx meets several requirements needed for the development of next-generation polymer therapeutics such as biocompatibility, high modulation of solubility, variation of size, architecture as well as chemical functionality. Although in the early 1990s first and promising POx-based systems were presented but the field lay dormant for almost two decades. Only v...

  19. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  20. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei; Domingo, Ester; Sakowicz, Maciej; Rezasoltani, Elham; McCarthy-Ward, Thomas; Heeney, Martin; Zhang, Xinping; Stingelin, Natalie; Silva, Carlos

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  1. Polymer based amperometric hydrogen sensor

    International Nuclear Information System (INIS)

    Ramesh, C.; Periaswami, G.; Mathews, C.K.; Shankar, P.

    1993-01-01

    A polymer based amperometric hydrogen sensor has been developed for measuring hydrogen in argon. Polyvinyl alcohol-phosphoric acid serves as the solid electrolyte for proton conduction. The electrolyte is sandwiched between two palladium films. Short circuit current between the film at room temperature is measured and is found to be linearly dependant on hydrogen concentration in argon to which one side of the film is exposed. The other side is exposed to air. The response time of the sensor is found to be improved on application of a D.C. potential of 200 mV in series. The sensitivity of the sensor is in ppm range. This may be sufficient for monitoring cover gas hydrogen in FBTR. Work is underway to improve the long-term stability of the sensor. (author)

  2. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    International Nuclear Information System (INIS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-01-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg 2+ , Ca 2+ and Ba 2+ ) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO) 4 , which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (4 4 ·6 2 ) 3 (4 9 ·6 6 ) 2 . The calcium compound consists of 1D infinite “Ca-O” inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D “Ba-O” inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions’ influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies. - Graphical abstract: Three alkaline

  3. Iodide-conducting polymer electrolytes based on poly-ethylene glycol and MgI2: Synthesis and structural characterization

    International Nuclear Information System (INIS)

    Vittadello, Michele; Waxman, David I.; Sideris, Paul J.; Gan Zhehong; Vezzù, Keti; Negro, Enrico; Safari, Ahmad; Greenbaum, Steve G.; Di Noto, Vito

    2011-01-01

    A major obstacle for a viable technological development of dye sensitized solar cells (DSSCs) is still the synthesis of a high performance iodide-conducting polymer electrolyte. Here we present a series of eight electrolytic complexes with formula PEG1000/(MgI 2 ) x (I 2 ) y (0.0038 ≤ x ≤ 0.5801, 0 ≤ y ≤ 0.0636). The synthesis involves the preparation of a disordered form of MgI 2 by a metallorganic route, which enables us to dissolve high amounts of salt in the chosen polymer host. The thermal analysis of the resulting polymer electrolytes was performed using modulated differential scanning calorimetry measurements. Vibrational studies were carried out using medium FT-IR, far FT-IR and FT-Raman. The variation of the CO and OH stretching modes in the medium infrared, as a function of the mole-to-mole ratio n Mg /n O , was investigated by Gaussian decomposition to provide insight into the polymer–polymer and salt–polymer interactions in these materials. The FT-Raman spectra confirmed and complemented the vibrational assignment. The conductivity study of these systems was performed by electrical spectroscopy in the frequency interval 10 mHz–10 MHz. The direct current conductivity (σ DC ) profiles versus the reciprocal temperature exhibited a Vögel-Tamman-Fülcher (VTF) behavior. The best σ DC at 50 °C was 5 × 10 −5 S cm −1 . The overall results indicate the presence of bivalent, monovalent and neutral species, Mg 2+ , [MgI] + and MgI 2 , respectively, which participate in the conduction process. These results are consistent with what was previously observed in PEG400-based systems doped with δ-MgCl 2 . The presence of at least one Mg site containing a distribution in parameters was observed using 25 Mg solid state magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The site has been assigned to a Mg complex involving the coordination by oxygen atoms of the polymer backbone.

  4. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  5. Automated sorting of polymer flakes: fluorescence labeling and development of a measurement system prototype.

    Science.gov (United States)

    Brunner, S; Fomin, P; Kargel, Ch

    2015-04-01

    The extensive demand and use of plastics in modern life is associated with a significant economical impact and a serious ecological footprint. The production of plastics involves a high energy consumption and CO2 emission as well as the large need for (limited) fossil resources. Due to the high durability of plastics, large amounts of plastic garbage is mounting in overflowing landfills (plus 9.6 million tons in Europe in the year 2012) and plastic debris is floating in the world oceans or waste-to-energy combustion releases even more CO2 plus toxic substances (dioxins, heavy metals) to the atmosphere. The recycling of plastic products after their life cycle can obviously contribute a great deal to the reduction of the environmental and economical impacts. In order to produce high-quality recycling products, mono-fractional compositions of waste polymers are required. However, existing measurement technologies such as near infrared spectroscopy show limitations in the sorting of complex mixtures and different grades of polymers, especially when black plastics are involved. More recently invented technologies based on mid-infrared, Raman spectroscopy or laser-aided spectroscopy are still under development and expected to be rather expensive. A promising approach to put high sorting purities into practice is to label plastic resins with unique combinations of fluorescence markers (tracers). These are incorporated into virgin resins during the manufacturing process at the ppm (or sub ppm) concentration level, just large enough that the fluorescence emissions can be detected with sensitive instrumentation but neither affect the visual appearance nor the mechanical properties of the polymers. In this paper we present the prototype of a measurement and classification system that identifies polymer flakes (mill material of a few millimeters size) located on a conveyor belt in real time based on the emitted fluorescence of incorporated markers. Classification performance

  6. Carbazole based electrochromic polymers with benzoazole units: Effect of heteroatom variation on electrochromic performance

    Directory of Open Access Journals (Sweden)

    C. Doyranli

    2016-09-01

    Full Text Available A series of carbazole-based polymers were synthesized via Suzuki polymerization between N-(2-ethylhexylcarbazole-3,6-bis(ethyleneboronate (Cbz and dibromobenzazole unit. Three different polymers, PCBN, PCBS and PCBSe were obtained from 4,7-dibromo-2-hexyl-2H-benzotriazole (BN, 4,7-dibromo-2,1,3-benzothiadiazole- (BS and 4,7-dibromo-2,1,3-benzoselenadiazole (BSe, respectively. It is observed that, the variation of heteroatoms (N,S and Se on the benzazole unit have most important effect on electro-optic properties of the PCBX polymers. Neutral state color of the polymer films and their electrochromic performances are also influenced. Among the synthesized polymers, the PCBS bearing 2,1,3-benzothiadiazole as acceptor units has a broad absorption and 50% of ΔT in the near-IR regime at the oxidized state. This property of PCBS is a great advantage for near-IR electrochromic applications.

  7. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    Science.gov (United States)

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of ι-carrageenan and its derivative based green polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Jumaah, Fatihah Najirah; Mobaraka, Nadhratun Naiim; Ahmad, Azizan; Ramli, Nazaruddin [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    The new types of green polymer electrolytes based on ι-carrageenan derivative have been prepared. ι-carrageenan act as precursor was reacted with monochloroacetic acid to produce carboxymethyl ι-carrageenan. The powders were characterized by Attenuated Total Reflection Fourier Transform infrared (ATR-FTIR) spectroscopy and {sup 1}H nuclear magnetic resonance (NMR) to confirm the substitution of targeted functional group in ι-carrageenan. The green polymer electrolyte based on ι-carrageenan and carboxymethyl ι-carrageenan was prepared by solution-casting technique. The films were characterized by electrochemical impedance spectroscopy to determine the ionic conductivity. The ionic conductivity ι-carrageenan film were higher than carboxymethyl ι-carrageenan which 4.87 ×10{sup −6} S cm{sup −1} and 2.19 ×10{sup −8} S cm{sup −1}, respectively.

  9. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  10. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  11. Scaling in multichain polymer systems in two and three dimensions

    International Nuclear Information System (INIS)

    Bishop, M.; Kalos, M.H.; Sokal, A.D.; Frisch, H.L.

    1983-01-01

    The mean dimensions of multichain polymer systems are predicted to follow a scaling relation with scaling variable X = l/sup d/ν-1 rho, where l is the number of statistical segments on the chain, rho is the segment density, d is the dimension, and ν is the critical exponent for the mean dimensions of an isolated polymer chain. The scaling laws are 2 >roughly-equalA(X) l/sup 2nu/ for l→ infinity with X bounded, and 2 >roughly-equalB(rho) l for l→ infinity with X → infinity. Moreover, the critical amplitudes behave as A(X)approx.X/sup()( -2nu-1/d/ν-1) as X → infinity and B(rho)approx.rho/sup()( -2nu-1/d/ν-1) as rho → 0. Simulations of both continuum and lattice systems are reanalyzed and found to be consistent with these scaling relations. Previous naive use of short-chain data has led to misleading results

  12. Photovoltaic Performance of Polymers Based on Dithienylthienopyrazines Bearing Thermocleavable Benzoate Esters

    DEFF Research Database (Denmark)

    Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Thermocleavable low-band-gap polymers based on dithienylthienopyrazines were prepared and copolymerized with different donor units like dialkoxybenzene, fluorene, thiophene, and cyclopentadithiophene (CPDT) using both Stille and Suzuki cross-coupling reactions. In the solid state the band gaps...... are in the range of 1.17−1.37 eV. The polymers were explored as donor materials in bulk heterojunction solar cells together with PCBM as the acceptor material where they were shown to exhibit a photoresponse in the full absorption range up to 900 nm and power conversion efficiencies of up to 1.21% under 1 sun...

  13. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Semirov, A.V., E-mail: semirov@mail.ru [Irkutsk State University, Irkutsk (Russian Federation); Derevyanko, M.S.; Bukreev, D.A.; Moiseev, A.A.; Kudryavtsev, V.O. [Irkutsk State University, Irkutsk (Russian Federation); Safronov, A.P. [Ural Federal University, Yekaterinburg (Russian Federation)

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons. Both as-cast amorphous ribbons and Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16}/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current. - Highlights: • Impedance and its components of amorphous Co{sub 75}Fe{sub 5}Si{sub 4}B{sub 16} ribbons were studied. • MI sensitivity to the magnetic field depends on a temperature and a deforming force. • Polymer covering can affect the functional properties of the composite.

  14. Thiomers: a new generation of mucoadhesive polymers.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas

    2005-11-03

    Thiolated polymers or designated thiomers are mucoadhesive basis polymers, which display thiol bearing side chains. Based on thiol/disulfide exchange reactions and/or a simple oxidation process disulfide bonds are formed between such polymers and cysteine-rich subdomains of mucus glycoproteins building up the mucus gel layer. Thiomers mimic therefore the natural mechanism of secreted mucus glycoproteins, which are also covalently anchored in the mucus layer by the formation of disulfide bonds-the bridging structure most commonly encountered in biological systems. So far the cationic thiomers chitosan-cysteine, chitosan-thiobutylamidine as well as chitosan-thioglycolic acid and the anionic thiomers poly(acylic acid)-cysteine, poly(acrylic acid)-cysteamine, carboxy-methylcellulose-cysteine and alginate-cysteine have been generated. Due to the immobilization of thiol groups on mucoadhesive basis polymers, their mucoadhesive properties are 2- up to 140-fold improved. The higher efficacy of this new generation of mucoadhesive polymers in comparison to the corresponding unmodified mucoadhesive basis polymers could be verified via various in vivo studies on various mucosal membranes in different animal species and in humans. The development of first commercial available products comprising thiomers is in progress. Within this review an overview of the mechanism of adhesion and the design of thiomers as well as delivery systems comprising thiomers and their in vivo performance is provided.

  15. Puncture Self-Healing Polymers for Aerospace Applications

    Science.gov (United States)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  16. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  17. Synthesis, Characterization and Biological Studies of New Linear Thermally Stable Schiff Base Polymers with Flexible Spacers.

    Science.gov (United States)

    Qureshi, Farah; Khuhawar, Muhammad Yar; Jahangir, Taj Muhammad; Channar, Abdul Hamid

    2016-01-01

    Five new linear Schiff base polymers having azomethine structures, ether linkages and extended aliphatic chain lengths with flexible spacers were synthesized by polycondensation of dialdehyde (monomer) with aliphatic and aromatic diamines. The formation yields of monomer and polymers were obtained within 75-92%. The polymers with flexible spacers of n-hexane were somewhat soluble in acetone, chloroform, THF, DMF and DMSO on heating. The monomer and polymers were characterized by melting point, elemental microanalysis, FT-IR, (1)HNMR, UV-Vis spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), fluorescence emission, scanning electron microscopy (SEM) and viscosities and thermodynamic parameters measurements of their dilute solutions. The studies supported formation of the monomer and polymers and on the basis of these studies their structures have been assigned. The synthesized polymers were tested for their antibacterial and antifungal activities.

  18. RCLED Optimization and Nonlinearity Compensation in a Polymer Optical Fiber DMT System

    Directory of Open Access Journals (Sweden)

    Pu Miao

    2016-09-01

    Full Text Available In polymer optical fiber (POF systems, the nonlinear transfer function of the resonant cavity light emitting diode (RCLED drastically degrades the communication performance. After investigating the characteristics of the RCLED nonlinear behavior, an improved digital look-up-table (LUT pre-distorter, based on an adaptive iterative algorithm, is proposed. Additionally, the system parameters, including the bias current, the average electrical power, the LUT size and the step factor are also jointly optimized to achieve a trade-off between the system linearity, reliability and the computational complexity. With the proposed methodology, both the operating point and efficiency of RCLED are enhanced. Moreover, in the practical 50 m POF communication system with the discrete multi-tone (DMT modulation, the bit error rate performance is improved by over 12 dB when RCLED is operating in the nonlinear region. Therefore, the proposed pre-distorter can both resist the nonlinearity and improve the operating point of RCLED.

  19. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  20. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  1. Multichromic Polymers Containing Alternating Bi(3-Methoxythiophene and Triphenylamine Based Units with Para-Protective Substituents

    Directory of Open Access Journals (Sweden)

    Yingfei Hou

    2016-09-01

    Full Text Available Two novel triphenylamine-based thiophene derivative monomers, 4-cyano-4′,4″-di(4-methoxythiophen-2-yltriphenylamine and 4-methoxy-4′,4″-di(4-methoxythiophen-2-yltriphenylamine, were successfully synthesized. The corresponding polymers including poly (4-cyano-4′,4″-di(4-methoxythiophen-2-yltriphenylamine and poly (4-methoxy-4′,4″-di(4-methoxythiophen-2-yltriphenylamine were electrochemically synthesized and characterized by multiple test method. The electrochemical measurements and spectroelectrochemical analyses revealed that both of the two polymers had quasi-reversible redox behavior and multi-electrochromic properties. The two polymer films showed reversible electrochemical oxidation, excellent optical contrasts in NIR region (62% at 1070 nm for the first polymer, and 86% at 1255 nm for the second polymer, satisfactory coloration efficiencies and fast switching times. The research on the application of the as prepared polymer in the fabrication of electrochromic device was also conducted, employing PCMTPA or PMMTPA as the anodically coloring materials.

  2. Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells

    International Nuclear Information System (INIS)

    Sánchez, C.O.; Bèrnede, J.C.; Cattin, L.; Makha, M.; Gatica, N.

    2014-01-01

    Polytriphenylamine (PTPA), a Schiff base polymer containing triphenylamine (TPA) segments and whose monomer contains triphenylamine and thiophene end groups, was synthesized. The monomer structure enabled the polymerization to be performed under conditions similar to those of thiophene. Oxidative coupling using FeCl 3 as oxidizing agent in anhydrous CHCl 3 medium was employed for the polymer synthesis. Scanning electron microscopy, fluorescence spectroscopy, and cyclic voltammetry were used to characterize the polymer. PTPA exhibited high thermal stability with a mass loss of 13.3 % at 546.5 °C. The fluorescence spectrum showed emission at 300–550 nm and the optical band gap was found to be 2.6 eV. It was also established that PTPA forms complexes with Lewis acids, e.g. MoO 3 and CuI. Its absorption band widened and extended up to the near-IR. It was seen that PTPA is rich in π-electrons and thus can act as electron donor. The value of the Highest Occupied Molecular Orbital (HOMO) was − 5.35 eV indicating its potential application in optoelectronic devices. An attempt was also made to investigate the photovoltaic potential of PTPA. Organic photovoltaic devices with various buffer layer structures, namely ITO/CuI/PTPA/C 60 /BCP/Al, ITO/MoO 3 /PTPA/C 60 /BCP/Al, and ITO/MoO 3 /CuI/PTPA/C 60 /BCP/Al, where ITO stands for indium tin oxide and BCP for bathocuproine, were utilized for the studies. Power conversion efficiency of these devices ranged between 0.21 and 0.43% under simulated AM 1.5 illumination (100 mW cm −2 ). This result proved that polymers containing TPA in the main chain hold promising properties that would allow their use in photovoltaic devices. - Highlights: • A Schiff base polymer with triphenylamine and thiophene segments was synthesized. • In organic cells, the highest efficiency was obtained in a MoO 3 /CuI double layer. • Polymer exhibited a power conversion efficiency between 0.21 and 0.43 %

  3. A novel lignin-based surfactant system for the Salem Unit

    International Nuclear Information System (INIS)

    DeBons, F.E.; Whittington, L.E.

    1991-01-01

    Texaco conducted a successful surfactant/polymer flood in a 60-acre [24 ha] portion of the Salem Benoist reservoir in Salem, Illinois, in 1981. This pilot used a brine-tolerant petroleum sulfonate surfactant system blended in injection brine followed by a xanthan mobility control polymer in fresher water. The oil recovery over the seven year life of the flood was 487,050 bbl [77 435 m 3 ]. This represents 45% of the oil remaining in the total thickness of 73% of that from the more permeable lower interval where most of the surfactant flowed. Since this successful project, Texaco has continued to improve enhanced oil recovery surfactant systems. We have developed novel, brine tolerant surfactants based on the renewable resources lignin and tallow amine. This paper describes the laboratory work leading to a surfactant system which has been recommended for field testing. The laboratory work includes blending, interfacial tension measurements, and core floods in Berea and reservoir cores. The type of lignin based surfactant system described in this report has applicability in all fields where conventional petroleum-based surfactants have been used. Their much lower cost means that they can be used economically at lower crude oil prices

  4. Tailoring the properties of bio-based and biocompostable polymer blends

    NARCIS (Netherlands)

    Ma, P.

    2011-01-01

    Conventional oil-based synthetic polymers (plastics) have shown an almost exponential growth during the past decades and currently more than 200 million tons are produced per annum, viz. approximate 45 kg per capita in the world. In view of the uneven consumption of plastics in the world, this

  5. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  6. RAFT technology for the production of advanced photoresist polymers

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Okazaki, Hiroshi; Sounik, James R.; Clark, George

    2008-03-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) technology has been developed for use in producing high yield low polydispersity (PD) polymers for many applications. RAFT technology is being used to produce low PD polymers and to allow control of the polymer architecture. A variety of polymers are being synthesized for use in advanced photoresists using this technique. By varying the RAFT reagent used we can modulate the system reactivity of the RAFT reagent and optimize it for use in acrylate or methacrylate monomer systems (193 and 193i photoresist polymers) or for use in styrenic monomer systems (248 nm photoresist polymers) to achieve PD as low as 1.05. RAFT polymerization technology also allows us to produce block copolymers using a wide variety of monomers. These block copolymers have been shown to be useful in self assembly polymer applications to produce unique and very small feature sizes. The mutual compatibilities of all the components within a single layer 193 photoresist are very important in order to achieve low LWR and low defect count. The advent of immersion imaging demands an additional element of protection at the solid/liquid interface. We have used RAFT technology to produce block copolymers comprising a random "resist" block with composition and size based on conventional dry photoresist materials, and a "low surface energy" block for use in 193i lithography. The relative block lengths and compositions may be varied to tune solution behavior, surface energy, contact angles, and solubility in developer. The use of this technique will be explored to produce polymers used in hydrophobic single layer resists as well as additives compatible with the main photoresist polymer.

  7. Development of high-throughput analysis system using highly-functional organic polymer monoliths

    International Nuclear Information System (INIS)

    Umemura, Tomonari; Kojima, Norihisa; Ueki, Yuji

    2008-01-01

    The growing demand for high-throughput analysis in the current competitive life sciences and industries has promoted the development of high-speed HPLC techniques and tools. As one of such tools, monolithic columns have attracted increasing attention and interest in the last decade due to the low flow-resistance and excellent mass transfer, allowing for rapid separations and reactions at high flow rates with minimal loss of column efficiency. Monolithic materials are classified into two main groups: silica- and organic polymer-based monoliths, each with their own advantages and disadvantages. Organic polymer monoliths have several distinct advantages in life-science research, including wide pH stability, less irreversible adsorption, facile preparation and modification. Thus, we have so far tried to develop organic polymer monoliths for various chemical operations, such as separation, extraction, preconcentration, and reaction. In the present paper, recent progress in the development of organic polymer monoliths is discussed. Especially, the procedure for the preparation of methacrylate-based monoliths with various functional groups is described, where the influence of different compositional and processing parameters on the monolithic structure is also addressed. Furthermore, the performance of the produced monoliths is demonstrated through the results for (1) rapid separations of alklybenzenes at high flow rates, (2) flow-through enzymatic digestion of cytochrome c on a trypsin-immobilized monolithic column, and (3) separation of the tryptic digest on a reversed-phase monolithic column. The flexibility and versatility of organic polymer monoliths will be beneficial for further enhancing analytical performance, and will open the way for new applications and opportunities both in scientific and industrial research. (author)

  8. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  9. Structure-Property Relationships of Semiconducting Polymers for Flexible and Durable Polymer Field-Effect Transistors.

    Science.gov (United States)

    Kim, Min Je; Jung, A-Ra; Lee, Myeongjae; Kim, Dongjin; Ro, Suhee; Jin, Seon-Mi; Nguyen, Hieu Dinh; Yang, Jeehye; Lee, Kyung-Koo; Lee, Eunji; Kang, Moon Sung; Kim, Hyunjung; Choi, Jong-Ho; Kim, BongSoo; Cho, Jeong Ho

    2017-11-22

    We report high-performance top-gate bottom-contact flexible polymer field-effect transistors (FETs) fabricated by flow-coating diketopyrrolopyrrole (DPP)-based and naphthalene diimide (NDI)-based polymers (P(DPP2DT-T2), P(DPP2DT-TT), P(DPP2DT-DTT), P(NDI2OD-T2), P(NDI2OD-F2T2), and P(NDI2OD-Se2)) as semiconducting channel materials. All of the polymers displayed good FET characteristics with on/off current ratios exceeding 10 7 . The highest hole mobility of 1.51 cm 2 V -1 s -1 and the highest electron mobility of 0.85 cm 2 V -1 s -1 were obtained from the P(DPP2DT-T2) and P(NDI2OD-Se2) polymer FETs, respectively. The impacts of the polymer structures on the FET performance are well-explained by the interplay between the crystallinity, the tendency of the polymer backbone to adopt an edge-on orientation, and the interconnectivity of polymer fibrils in the film state. Additionally, we demonstrated that all of the flexible polymer-based FETs were highly resistant to tensile stress, with negligible changes in their carrier mobilities and on/off ratios after a bending test. Conclusively, these high-performance, flexible, and durable FETs demonstrate the potential of semiconducting conjugated polymers for use in flexible electronic applications.

  10. Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Shibata

    2008-08-01

    Full Text Available Abstract: Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears, and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-D-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalosechemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.

  11. Temperature Distribution Simulation of a Polymer Bearing Basing on the Real Tribological Tests

    Directory of Open Access Journals (Sweden)

    Artur Król

    2015-09-01

    Full Text Available Polymer bearings are widely used due to dry-lubrication mechanism, low weight, corrosion resistance and free maintenance. They are applied in different tribological pairs, i.e. household appliances, mechatronics systems, medical devices, food machines and many more. However their use is limited by high coefficient of thermal expansion and softening at elevated temperature, especially when working outside recommended pv factors. The modification of bearing design to achieve better characteristics at more demanding conditions, requires full understanding of mechanical and thermal phenomena of bearing work. The first step was to observe a thermal behavior of polymer bearing under real test conditions (50, 100, 150 rpm and 350 and 700N until constant values were achieved, i.e. temperature and moment of friction. Subsequently collected data were used in a design of temperature distribution model. Thermal simulations of the polymer bearing were done using commercial software package ANSYS Fluent, which is based on finite volume method. All calculations were performed for 3D geometrical model that included polymer bearing, its housing, shaft and some volume of the surrounding air. The heat generation caused by friction forces was implemented by volumetric heat source. All three main heat transfer mechanism (conduction, convection and radiation were included in heat transfer calculations and the air flow around the bearing and adjacent parts was directly solved. The unknown parameters of the numerical model were adjusted by comparison of the results from computer calculations with the measured temperature rise. In the presented work the calculations were limited to steady state conditions only, but the model may be also used in transient analysis.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7342

  12. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  13. A tri-generation system based on polymer electrolyte fuel cell and desiccant wheel – Part A: Fuel cell system modelling and partial load analysis

    International Nuclear Information System (INIS)

    Najafi, Behzad; De Antonellis, Stefano; Intini, Manuel; Zago, Matteo; Rinaldi, Fabio; Casalegno, Andrea

    2015-01-01

    Highlights: • A mathematical model for a PEMFC based cogeneration system is developed. • Developed model is validated using the available experimental data. • Performance of the plant at full load conditions is investigated. • Performance indices while applying two different modifications are determined. • System’s performance with and without modifications at partial loads is investigated. - Abstract: Polymer Electrolyte Membrane Fuel Cell (PEMFC) based systems have recently received increasing attention as a viable alternative for meeting the residential electrical and thermal demands. However, as the intermittent demand profiles of a building can only be addressed by a tri-generative unit which can operate at partial loads, the variation of performance of the system at partial loads might affect its corresponding potential benefits significantly. Nonetheless, no previous study has been carried out on assessing the performance of this type of tri-generative systems in such conditions. The present paper is the first of a two part study dedicated to the investigation of the performance of a tri-generative system in which a PEMFC based system is coupled with a desiccant wheel unit. This study is focused on evaluating the performance of the PEMFC subsystem while operating at partial loads. Accordingly, a detailed mathematical model of the fuel cell subsystem is first developed and validated using the experimental data obtained from the plant’s and the fuel cell stack’s manufacturer. Next, in order to increase the performance of the plant, two modifications have been proposed and the resulting performance at partial load have been determined. The obtained results demonstrate that applying both modifications results in increasing the electrical efficiency of the plant by 5.5%. It is also shown that, while operating at partial loads, the electrical efficiency of the plant does not significantly change; the fact which corresponds to the trade-off between

  14. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  15. Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures.

    Science.gov (United States)

    Arslan, Mustafa; Murat, Sema; Alp, Gulce; Zaimoglu, Ali

    2018-01-01

    The objectives of this in vitro study were to evaluate the flexural strength (FS), surface roughness (Ra), and hydrophobicity of polymethylmethacrylate (PMMA)-based computer-aided design/computer-aided manufacturing (CAD/CAM) polymers and to compare the properties of different CAD/CAM PMMA-based polymers with conventional heat-polymerized PMMA following thermal cycling. Twenty rectangular-shaped specimens (64 × 10 × 3.3 mm) were fabricated from three CAD/CAM PMMA-based polymers (M-PM Disc [M], AvaDent Puck Disc [A], and Pink CAD/CAM Disc Polident [P], and one conventional heat-polymerized PMMA (Promolux [C]), according to ISO 20795-1:2013 standards. The specimens were divided into two subgroups (n = 10), a control and a thermocycled group. The specimens in the thermocycled group were subjected to 5000 thermal cycling procedures (5 to 55°C; 30 s dwell times). The Ra value was measured using a profilometer. Contact angle (CA) was assessed using the sessile drop method to evaluate surface hydrophobicity. In addition, the FS of the specimens was tested in a universal testing machine at a crosshead speed of 1.0 mm/min. Surface texture of the materials was assessed using scanning electron microscope (SEM). The data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey's HSD post-hoc test (α CAD/CAM PMMA-based polymers showed significantly higher FS than conventional heat-polymerized PMMA for each group (P CAD/CAM PMMA-based polymer [P] showed the highest FS, whereas conventional PMMA [C] showed the lowest FS before and after thermal cycling (P 0.05). In the thermocycled group, the lowest Ra value was observed for CAD/CAM PMMA-based polymer [M] (P CAD/CAM PMMA-based polymers [A] and [P], and conventional PMMA [C] had similar Ra values (P > 0.05). Conventional PMMA [C] had a significantly lower CA and consequently lower hydrophobicity compared to the CAD/CAM polymers in the control group (P CAD/CAM PMMA-based polymer [A] and conventional PMMA [C

  16. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    Energy Technology Data Exchange (ETDEWEB)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh, E-mail: email-mkram83@gmail.com [Department of Physics, Alagappa University, Karaikudi – 630 004, India. (India)

    2016-05-06

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10{sup −4} Scm{sup −1}. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ε’, Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  17. Tunable Semiconducting Polymer Nanoparticles with INDT-Based Conjugated Polymers for Photoacoustic Molecular Imaging.

    Science.gov (United States)

    Stahl, Thomas; Bofinger, Robin; Lam, Ivan; Fallon, Kealan J; Johnson, Peter; Ogunlade, Olumide; Vassileva, Vessela; Pedley, R Barbara; Beard, Paul C; Hailes, Helen C; Bronstein, Hugo; Tabor, Alethea B

    2017-06-21

    Photoacoustic imaging combines both excellent spatial resolution with high contrast and specificity, without the need for patients to be exposed to ionizing radiation. This makes it ideal for the study of physiological changes occurring during tumorigenesis and cardiovascular disease. In order to fully exploit the potential of this technique, new exogenous contrast agents with strong absorbance in the near-infrared range, good stability and biocompatibility, are required. In this paper, we report the formulation and characterization of a novel series of endogenous contrast agents for photoacoustic imaging in vivo. These contrast agents are based on a recently reported series of indigoid π-conjugated organic semiconductors, coformulated with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, to give semiconducting polymer nanoparticles of about 150 nm diameter. These nanoparticles exhibited excellent absorption in the near-infrared region, with good photoacoustic signal generation efficiencies, high photostability, and extinction coefficients of up to three times higher than those previously reported. The absorption maximum is conveniently located in the spectral region of low absorption of chromophores within human tissue. Using the most promising semiconducting polymer nanoparticle, we have demonstrated wavelength-dependent differential contrast between vasculature and the nanoparticles, which can be used to unambiguously discriminate the presence of the contrast agent in vivo.

  18. Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells.

    Science.gov (United States)

    Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang

    2018-06-27

    High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for

  19. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  20. Hydrophobic polymers for orodispersible films: a quality by design approach.

    Science.gov (United States)

    Borges, Ana Filipa; Silva, Branca M A; Silva, Cláudia; Coelho, Jorge F J; Simões, Sérgio

    2016-10-01

    To develop orodispersible films (ODF) based on hydrophobic polymers with higher stability to ordinary environmental humidity conditions without compromising their fast disintegration time. A quality by design approach was applied to screen three different formulations each one based on a different hydrophobic polymer: polyvinyl acetate, methacrylate-based copolymer and shellac. The screening formulations were characterized regarding their mechanical properties, residual water content, disintegration time and appearance, in order to find a suitable ODF formulation according to established critical quality attributes. The selected critical process parameters for the selection of appropriate ODF formulations were the percentage of the different excipients and the plasticizer type. Three hydrophobic-based matrices with fast disintegration were developed. These were generically composed by a hydrophobic polymer, a stabilizer, a disintegrant and a plasticizer. It verified that the common components within the three different formulations behave differently depending on the system/chemical environment that they were included. It was shown that it is possible to develop oral films based on hydrophobic polymers with fast disintegration time, good texture and appearance, breaking a paradigm of the ODF research field.

  1. Large area modules based on low band gap polymers

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2010-01-01

    The use of three low band gap polymers in large area roll-to-roll coated modules is demonstrated. The polymers were prepared by a Stille cross coupling polymerization and all had a band gap around 1.6 eV. The polymers were first tested in small area organic photovoltaic devices which showed...

  2. An introduction to polymer nanocomposites

    International Nuclear Information System (INIS)

    Armstrong, Gordon

    2015-01-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites. (review)

  3. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    International Nuclear Information System (INIS)

    Chehata, Nadia; Ltaief, Adnen; Ilahi, Bouraoui; Salem, Bassem; Bouazizi, Abdelaziz; Maaref, Hassen; Baron, Thierry

    2014-01-01

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J sc value is about 0.39 µA/cm 2 . - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32

  4. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  5. Study of in vitro degradation of biodegradable polymer based thin ...

    African Journals Online (AJOL)

    GREGORY

    2011-12-16

    Dec 16, 2011 ... treatment of bone fracture costs over Ł 900 million annually in the ... implantation when the cells start to migrate deep into the scaffold (Ma .... DISCUSSION. Figure 8 is ... polymer-based materials proceeds via a surface erosion mechanism. ... materials and the critical thickness above which the degradation ...

  6. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  7. Intermolecular energy transfer in binary systems of dye polymers

    Science.gov (United States)

    Liu, Lin-I.; Barashkov, Nikolay N.; Palsule, Chintamani P.; Gangopadhyay, Shubhra; Borst, Walter L.

    2000-10-01

    We present results and physical interpretations for the energy transfer mechanisms in two-component dye polymer systems. The data consist of fluorescence emission spectra and decays. Two dyes were embedded in an epoxypolymer base, and only they participated in the energy transfer. Following pulsed laser excitation of the donor dye, energy transfer took place to the accept dye. The possible transfer paths considered here were nonradiative and radiative transfer. The latter involves two steps, emission and absorption of a photon, and therefore is relatively slow, while nonradiative transfer is a fast single step resulting from direct Coulomb interactions. A predominantly nonradiative transfer is desirable for applications, for instance in wavelength shifters in high energy particle detection. We studied the concentration effects of the dyes on the energy transfer and obtained the relative quantum efficiencies of various wavelength shifters from the fluorescence emission spectra. For low acceptor concentrations, radiative transfer was found to dominate, while nonradiative transfer became dominant at increasing dye concentrations. The fluorescence decays were analyzed with a sum-of-exponentials method and with Förster kinetics. The sum of exponential model yielded mean decay times of the dye polymers useful for a general classification. The decay times decreased as desired with increasing acceptor concentration. The samples, in which nonradiative energy transfer dominated, were analyzed with Förster kinetics. As a result, the natural decay times of the donor and acceptor dyes and the critical radii for nonradiative energy transfer were obtained from a global best fit.

  8. Systems for production of polymer encapsuated solids

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, William L.; Aines, Roger D.; Baker, Sarah E.; Duoss, Eric B.; Maiti, Amitesh; Roberts, Jeffery J.; Spadaccini, Christopher M.; Stolaroff, Joshuah K.; Vericella, John J.; Lewis, Jennifer A.; Hardin, IV, James O.; Floyd, III, William C.

    2017-11-21

    Encapsulated solids are made by first encapsulating precursor materials in a polymer shell. The precursors are some combination of solids, liquids, gases, and/or gels. The precursors are then transformed into solids by emplacement of the capsule in an environment where gas or fluid transport into or out of the polymer shell causes transformation into solids.

  9. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Woosum [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Lee, Jae Wook, E-mail: jlee@donga.ac.kr [Department of Chemistry, Dong-A University, Busan 604-714 (Korea, Republic of); Gal, Yeong-Soon [Polymer Chemistry Lab, College of General Education, Kyungil University, Hayang 712-701 (Korea, Republic of); Kim, Mi-Ra, E-mail: mrkim2@pusan.ac.kr [Department of Polymer Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jin, Sung Ho, E-mail: shjin@pusan.ac.kr [Department of Chemistry Education, and Department of Frontier Materials Chemistry, and Institute for Plastic Information and Energy Materials, Pusan National University, Busan 609-735 (Korea, Republic of)

    2014-02-14

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I{sub 2}), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J{sub sc}, 10.75 mA cm{sup −2}) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm{sup −2} irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte.

  10. Improved power conversion efficiency of dye-sensitized solar cells using side chain liquid crystal polymer embedded in polymer electrolytes

    International Nuclear Information System (INIS)

    Cho, Woosum; Lee, Jae Wook; Gal, Yeong-Soon; Kim, Mi-Ra; Jin, Sung Ho

    2014-01-01

    Side chain liquid crystal polymer (SCLCP) embedded in poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based polymer electrolytes (PVdF-co-HFP:side chain liquid crystal polymer (SCLCP)) was prepared for dye-sensitized solar cell (DSSC) application. The polymer electrolytes contained tetrabutylammonium iodide (TBAI), iodine (I 2 ), and 8 wt% PVdF-co-HFP in acetonitrile. DSSCs comprised of PVdF-co-HFP:SCLCP-based polymer electrolytes displayed enhanced redox couple reduction and reduced charge recombination in comparison to those of the conventional PVdF-co-HFP-based polymer electrolyte. The significantly increased short-circuit current density (J sc , 10.75 mA cm −2 ) of the DSSCs with PVdF-co-HFP:SCLCP-based polymer electrolytes afforded a high power conversion efficiency (PCE) of 5.32% and a fill factor (FF) of 0.64 under standard light intensity of 100 mW cm −2 irradiation of AM 1.5 sunlight. - Highlights: • We developed the liquid crystal polymer embedded on polymer electrolyte for DSSCs. • We fabricated the highly efficient DSSCs using polymer electrolyte. • The best PCE achieved for P1 is 5.32% using polymer electrolyte

  11. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications.

    Science.gov (United States)

    Riga, Esther K; Vöhringer, Maria; Widyaya, Vania Tanda; Lienkamp, Karen

    2017-10-01

    Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Processing considerations with plasma-based ion implantation of polymers: theoretical aspects, limitations, and experimental results

    International Nuclear Information System (INIS)

    Lacoste, A.; Pelletier, J.

    2003-01-01

    Processing of polymers using plasma-based ion implantation techniques (PBII) has general implications in terms of plasma specifications and pulse characteristics. In particular, the different aspects of the processing of polymer layers are discussed as functions of plasma density, pulse duration, and layer characteristics (thickness and permittivity). Clearly, severe limitations (true implantation energy, arcing) may appear for high-density plasmas as well as for long pulse durations, when processing polymer layers with thickness in the mm range. A review of the experimental results of ion implantation in polymeric materials via PBII processing is presented. The experimental results demonstrate the possibility of processing polymer layers with the PBII technique, but with severe limitations resulting from the process itself

  13. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm......The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers....... In order to successfully do this, methods for fabricating micro structures in biodegradable polymers need to be developed. The goal of this project has been to develop methods for micro fabrication in biodegradable polymers and to use these methods to produce micro systems for oral drug delivery. This has...

  14. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.; Forrey, Christopher [Center for Devices and Radiological Health, FDA, Silver Spring, Maryland 20993 (United States)

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  15. Morphology and properties of nanocomposites based on polymer blend and organoclay

    CSIR Research Space (South Africa)

    Gcwabaza, T

    2008-10-01

    Full Text Available improved properties.1-4 such a compatibilizer may be a homopolymer, a block, graft or star copolymer. However, there are few reports on clay containing nanocomposites based on polymer blends, whether miscible or immiscible. Such composite materials offer...

  16. Improving Multi-Functional Properties in Polymer Based Nano Composites by Interfacial

    Science.gov (United States)

    Tajaddod, Navid

    Polymer nanocomposites (PNCs) have become an area of increasing interest for study in the field of polymer science and technology since the rise of nanotechnology research. Despite the significant amount of progress being made towards producing high quality PNC materials, improvement in the mechanical, electrical, thermal and other functional properties still remain a challenge. To date, these properties are only a fraction of the expected theoretical values predicted for these materials. Development of interfacial regions between the filler and matrix within the composite has been found to be an important focus in terms of processing. Proper interfacial control and development may ensure excellent interaction and property transfer between the filler and polymer matrix in addition to improvement of multi-functional properties of PNCs. The property-structure importance for the existence of the interfacial and interphase region within PNCs is discussed in this thesis work. Two specific PNC systems are selected for study as part of this dissertation in order to understand the effect of interfacial region development on influencing multi-functional property trends. Polyethylene (PE)/boron nitride (BN) and polyacrylonitrile (PAN)/carbon nanotube (CNT) composites were selected to investigate their mechanical performance and thermal and electrical conductivity properties, respectively. For these systems it was found that the interfacial region structure is directly related to the enhancement of the subsequent multi-functional properties.

  17. The rational development of molecularly imprinted polymer-based sensors for protein detection.

    Science.gov (United States)

    Whitcombe, Michael J; Chianella, Iva; Larcombe, Lee; Piletsky, Sergey A; Noble, James; Porter, Robert; Horgan, Adrian

    2011-03-01

    The detection of specific proteins as biomarkers of disease, health status, environmental monitoring, food quality, control of fermenters and civil defence purposes means that biosensors for these targets will become increasingly more important. Among the technologies used for building specific recognition properties, molecularly imprinted polymers (MIPs) are attracting much attention. In this critical review we describe many methods used for imprinting recognition for protein targets in polymers and their incorporation with a number of transducer platforms with the aim of identifying the most promising approaches for the preparation of MIP-based protein sensors (277 references).

  18. Nanosystems Based on Magnetic Nanoparticles and Thermo- or pH-Responsive Polymers: An Update and Future Perspectives.

    Science.gov (United States)

    Mai, Binh T; Fernandes, Soraia; Balakrishnan, Preethi B; Pellegrino, Teresa

    2018-05-15

    such pH-responsive magnetic nanoparticles, which are provided by changes in relaxation signals of water molecules surrounding the nanoplatform, is a novel approach to the detection of pathological conditions (such as pH-changes at the ischemic and tumor sites). Despite great efforts by chemists to fabricate different featured materials, there have been few successful preclinical studies to date. A clinical translation of magnetic stimuli-responsive systems would require overcoming the actual nanosystem limitations and the joint efforts of an interdisciplinary scientific community. In this Account, we have framed state of the art magnetic stimuli-responsive systems, focusing on thermo- and pH-responsive behavior, following an organization based on the response mechanisms of polymers. By evaluating the features of the most representative and advanced nanosystems that already exist in literature, we present the challenges to overcome, the future directions to undertake for the development of magnetic stimuli-responsive nanoplatforms that will work under clinical operating conditions and have biodegradable and biocompatible features, and a consideration of the technical aspects.

  19. Electrical study on Carboxymethyl Cellulose-Polyvinyl alcohol based bio-polymer blend electrolytes

    Science.gov (United States)

    Saadiah, M. A.; Samsudin, A. S.

    2018-04-01

    The present work deals with the formulation of bio-materials namely carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) for bio-polymer blend electrolytes (BBEs) system which was successfully carried out with different ratio of polymer blend. The biopolymer blend was prepared via economical & classical technique that is solution casting technique and was characterized by using impedance spectroscopy (EIS). The ionic conductivity was achieved to optimum value 9.12 x 10-6 S/cm at room temperature for sample containing ratio 80:20 of CMC:PVA. The highest conducting sample was found to obey the Arrhenius behaviour with a function of temperature. The electrical properties were analyzed using complex permittivity ε* and complex electrical modulus M* for BBEs system and it shows the non-Debye characteristics where no single relaxation time has observed.

  20. Natural polymers, gums and mucilages as excipients in drug delivery.

    Science.gov (United States)

    Kumar, Shobhit; Gupta, Satish Kumar

    2012-01-01

    Use of natural polymers, gums and mucilages in drug delivery systems has been weighed down by the synthetic materials. Natural based excipients offered advantages such as non-toxicity, less cost and abundantly availablity. Aqueous solubility of natural excipients plays an important role in their selection for designing immediate, controlled or sustained release formulations. This review article provide an overview of natural gum, polymers and mucilages as excipients in dosage forms as well as novel drug delivery systems.