WorldWideScience

Sample records for polyimide foam model

  1. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    Science.gov (United States)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  2. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  3. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  4. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  5. Functionally Graded Polyimide Nanocomposite Foams for Ablative and Inflatable/Flexible/Deplorable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed research is to develop functionally graded polyimide foams as light-weight, high performance thermal protection systems (TPS) for...

  6. Thermal design of spacecraft solar arrays using a polyimide foam

    International Nuclear Information System (INIS)

    Bianco, N; Iasiello, M; Naso, V

    2015-01-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics ® . Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared. (paper)

  7. Thermal design of spacecraft solar arrays using a polyimide foam

    Science.gov (United States)

    Bianco, N.; Iasiello, M.; Naso, V.

    2015-11-01

    The design of the Thermal Control System (TCS) of spacecraft solar arrays plays a fundamental role. Indeed, the spacecraft components must operate within a certain range of temperature. If this doesn't occur, their performance is reduced and they may even break. Solar arrays, which are employed to recharge batteries, are directly exposed to the solar heat flux, and they need to be insulated from the earth's surface irradiation. Insulation is currently provided either with a white paint coating or with a Multi Layer Insulation (MLI) system [1]. A configuration based on an open-cell polyimide foam has also been recently proposed [2]. Using polyimide foams in TCSs looks very attractive in terms of costs, weight and assembling. An innovative thermal analysis of the above cited TCS configurations is carried out in this paper, by solving the porous media energy equation, under the assumption of Local Thermal Equilibrium (LTE) between the two phases. Radiation effects through the solar array are also considered by using the Rosseland approximation. Under a stationary daylight condition, temperature profiles are obtained by means of the finite-element based code COMSOL Multiphysics®. Finally, since the weight plays an important role in aerospace applications, weights of the three TCS configurations are compared.

  8. Studies of Sound Absorption by and Transmission Through Layers of Elastic Noise Control Foams: Finite Element Modeling and Effects of Anisotropy

    Science.gov (United States)

    Kang, Yeon June

    In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction

  9. Development of rubidium and niobium containing plastic foams. Final report

    International Nuclear Information System (INIS)

    Botham, R.A.; McClung, C.E.; Schwendeman, J.I.

    1978-01-01

    Rubidium fluoride and niobium metal-containing foam samples (rods and sheets) were prepared using two foam sytems: (1) hydrophilic polyurethanes prepared from W.R. Grace Co.'s Hypol prepolymers and (2) polyimides prepared from Monsanto Company's Skybond polyimide resin. The first system was used only for preparation of rubidium fluoride-containing foams while the second was used for both rubidium fluoride and niobium-containing foams. The niobium metal could readily be incorporated into the polyimide foam during molding, to produce foam sheets of the required dimensions and density. The rubidium fluoride-containing polyimide foams were preferably prepared by first rendering the molded polyimide foam hydrophilic with a postcuring treatment, then absorbing the rubidium fluoride from water solution. Similarly, rubidium fluoride was absorbed into the hydrophilic polyurethanes from water solution. Since the high reactive rubidium metal could not be employed, rubidium fluoride, which is very hygroscopic, was used instead, primarily because of its high rubidium content (approximately 82 weight percent). This was important in view of the low total densities and the high weight percentage rubidium required in the foam samples. In addition, at the later request of LLL, a block of rigid Hypol hydrophilic polyurethane foam (with a density of approximately 0.04 g/cm 3 and cell sizes = or <0.2 mm) was prepared without any metal or metal compounds in it. Two shipments of foam samples, which met or closely approximated the project specifications, were submitted to LLL during the course of this project. Information on these samples is contained in Table 1. A complete description of their preparation is given in the Experimental Results and Discussion Section

  10. Development of fire-resistant, low smoke generating, thermally stable end items for commercial aircraft and spacecraft using a basic polyimide resin

    Science.gov (United States)

    Gagliani, J.; Lee, R.; Sorathia, U. A.; Wilcoxson, A. L.

    1980-01-01

    A terpolyimide precursor was developed which can be foamed by microwave methods and yields foams possessing the best seating properties. A continuous process, based on spray drying techniques, permits production of polyimide powder precursors in large quantities. The constrained rise foaming process permits fabrication of rigid foam panels with improved mechanical properties and almost unlimited density characteristics. Polyimide foam core rigid panels were produced by this technique with woven fiberglass fabric bonded to each side of the panel in a one step microwave process. The fire resistance of polyimide foams was significantly improved by the addition of ceramic fibers to the powder precursors. Foams produced from these compositions are flexible, possess good acoustical attenuation and meet the minimum burnthrough requirements when impinged by high flux flame sources.

  11. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  12. Fire-retardant foams

    Science.gov (United States)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  13. Operator spin foam models

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy

    2011-01-01

    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin

  14. Flexible Foam Model.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.; Scherzinger, William M.; Lo, Chi S.

    2018-03-01

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented into SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.

  15. Foam-on-Tile Damage Model

    Science.gov (United States)

    Koharchik, Michael; Murphy, Lindsay; Parker, Paul

    2012-01-01

    An impact model was developed to predict how three specific foam types would damage the Space Shuttle Orbiter insulating tiles. The inputs needed for the model are the foam type, the foam mass, the foam impact velocity, the foam impact incident angle, the type being impacted, and whether the tile is new or aged (has flown at least one mission). The model will determine if the foam impact will cause damage to the tile. If it can cause damage, the model will output the damage cavity dimensions (length, depth, entry angle, exit angle, and sidewall angles). It makes the calculations as soon as the inputs are entered (less than 1 second). The model allows for the rapid calculation of numerous scenarios in a short time. The model was developed from engineering principles coupled with significant impact testing (over 800 foam impact tests). This model is applicable to masses ranging from 0.0002 up to 0.4 pound (0.09 up to 181 g). A prior tool performed a similar function, but was limited to the assessment of a small range of masses and did not have the large test database for verification. In addition, the prior model did not provide outputs of the cavity damage length, entry angle, exit angle, or sidewall angles.

  16. Electrical conduction of polyimide films prepared from polyamic acid (PAA and pre-imidized polyimide (PI solution

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Electrical conduction characteristics in two different polyimide films prepared by the imidization of polyamic acid (PAA and pre-imidized polyimide (PI solution were investigated. It is found that the current density of the polyimide film from PAA was higher than that of the polyimide film from PI at the same electric field, even though the conduction mechanism in both polyimide films follows the ionic hopping model. The hopping distance was calculated to be 2.8 nm for PAA type and 3.2 nm for PI type polyimide film. It is also found that the decay rate of the residual electrostatic charges on the polyimide films becomes faster in the PAA type than in the PI type polyimide film.

  17. Numerical Modeling of Foam Drilling Hydraulics

    Directory of Open Access Journals (Sweden)

    Ozcan Baris

    2007-12-01

    Full Text Available The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow.

  18. New Spin Foam Models of Quantum Gravity

    Science.gov (United States)

    Miković, A.

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  19. Numerical modeling of foam flows

    International Nuclear Information System (INIS)

    Cheddadi, Ibrahim

    2010-01-01

    Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)

  20. Processing, Characterization, and Modeling of Polymer/Clay Nanocomposite Foams

    Science.gov (United States)

    Jo, Choonghee; Naguib, Hani E.

    2007-04-01

    The effects of the material parameters and processing conditions on the foam morphologies, and mechanical properties of polymer/clay nanocomposite foams were studied. Microcellular closed-cell nanocomposite foams were manufactured with poly(methylmethacrylate) (PMMA) and high density polyethylene (HDPE), where the nanoclay loadings of 0.5, 1.0, and 2.0 wt% were used. The effect of clay contents and foaming conditions on the volume expansion ratio, cell size, elastic modulus, tensile strength, and elongation at break were investigated and compared between amorphous and semicrystalline polymers. An elastic modulus model for tensile behavior of foams was proposed by using the micromechanics theory. The model was expressed in terms of microstructural properties of polymer and physical properties of the foams. The tensile experimental data of the foams were compared with those predicted by the theoretical model.

  1. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Giron, Nicholas Henry [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  2. Development of a phenomenological constitutive model for polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.; Yoshimura, H.R.

    1989-01-01

    Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste transport containers. During a hypothetical nuclear waste transport accident, the foam is expected to absorb a significant amount of impact energy by undergoing large inelastic volume reductions. Consequently, the crushing of polyurethane foams must be well characterized and accurately modeled to properly analyze a transport container accident. At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic and triaxial compression tests on polyurethane foams were performed by the New Mexico Engineering Research Institute (NMERI). The combination of hydrostatic and triaxial tests was chosen to provide sufficient data to characterize both the volumetric and deviatoric behaviors of the foams and the coupling between the two responses. Typical results from the NMERI tests are included in this paper. A complete description of these tests can be found in Neilsen et al., 1987. Constitutive models that have been used in the past to model foam did not capture some important foam behaviors observed in the NMERI tests. Therefore, a new constitutive model for rigid, closed-cell, polyurethane foams was developed and implemented in two finite element codes. Development of the new model is discussed in this paper. Also, results from analyses with the new model and other constitutive models are presented to demonstrate differences between the various models. 4 refs., 6 figs., 1 tab

  3. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  4. Inflatable Tubular Structures Rigidized with Foams

    Science.gov (United States)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  5. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  6. An Improved Model for FE Modeling and Simulation of Closed Cell Al-Alloy Foams

    OpenAIRE

    Hasan, MD. Anwarul

    2010-01-01

    Cell wall material properties of Al-alloy foams have been derived by a combination of nanoindentation experiment and numerical simulation. Using the derived material properties in FE (finite element) modeling of foams, the existing constitutive models of closed-cell Al-alloy foams have been evaluated against experimental results. An improved representative model has been proposed for FE analysis of closed-cell Al-alloy foams. The improved model consists of a combination of spherical and cruci...

  7. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  8. The effect of polyimide imidization conditions on adhesion strength of thin metal films on polyimide substrates

    CERN Document Server

    Yoo, S H

    1999-01-01

    The effects of Ar sup + RF plasma precleaning and polyimide curing conditions on the peel strength between Al thin films and polyimides have been studied. The BPDA-PDA polyimide precursor of PI-2611 (Du pont) was spin-coated and cured under various imidization conditions. The cured polyimide substrates were in-situ AR sup + RF plasma cleaned prior to metal deposition. Al-1 % Si-0.5 % Cu thin films were deposited onto the polyimide substrates by using DC magnetron sputtering. The peel strength was enhanced by Ar sup + RF plasma precleaning. The Al/modified PI specimen failed cohesively in the polyimide. The polyimide curing conditions strongly affect the peel strength in the Al/modified PI system.

  9. Testing and modeling the dynamic response of foam materials for blast protection

    Science.gov (United States)

    Fitek, John H.

    The pressure wave released from an explosion can cause injury to the lungs. A personal armor system concept for blast lung injury protection consists of a polymer foam layer behind a rigid armor plate to be worn over the chest. This research develops a method for testing and modeling the dynamic response of foam materials to be used for down-selection of materials for this application. Constitutive equations for foam materials are incorporated into a lumped parameter model of the combined armor plate and foam system. Impact testing and shock tube testing are used to measure the foam model parameters and validate the model response to a pressure wave load. The plate and foam armor model is then coupled to a model of the human thorax. With a blast pressure wave input, the armor model is evaluated based on how it affects the injury-causing mechanism of chest wall motion. Results show that to reduce chest wall motion, the foam must compress at a relatively constant stress level, which requires a sufficient foam thickness.

  10. Characterization and three-dimensional reconstruction of synthetic bone model foams

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, S. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Vlad, M.D. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Faculty of Medical Bioengineering, “Gr. T. Popa” University of Medicine and Pharmacy, Str. Kogalniceanu 9-13, 700454 Iasi (Romania); López, J. [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain); Navarro, M. [Centre de Biotecnologia Animal i de Teràpia Gènica (CBATEG), Departament de Sanitat i d' Anatomia Animals, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Cerdanyola del Vallès (Spain); Fernández, E., E-mail: enrique.fernandez@upc.edu [Interdepartment Research Group for the Applied Scientific Collaboration (IRGASC), Division of Biomaterials and Bioengineering, Technical University of Catalonia (UPC), Avda. Diagonal 647, E-08028 Barcelona (Spain)

    2013-08-01

    Sawbones© open-cell foams with different porosity grades are being used as synthetic bone-like models for in vitro mechanical and infiltration experiments. However, a comprehensive characterization of these foams is not available and there is a lack of reliable information about them. For this reason two of these foams (Refs. 1522-505 and -507) have been characterized at the micro architectural level by scanning electron microscopy, computed tomography and image data analysis. BoneJ open software and ImageJ open software were used to obtain the characteristic histomorphometric parameters and the three dimensional virtual models of the foams. The results showed that both foams, while having different macro porosities, appeared undistinguishable at the micro scale. Moreover, the micro structural features resembled those of osteoporotic rather than healthy trabecular bone. It is concluded that Sawbones© foams behave reasonably as synthetic bone-like models. Consequently, their use is recommended for in vitro comparison purposes of both mechanical and infiltration testing performed in real vertebra. Finally, the virtual models obtained, which are available under request, can favour comparisons between future self-similar in vitro experiments and computer simulations. - Highlights: • Sawbones© model foams have been scanned by μ-CT. • Histomorphometric indices and 3D virtual models have been obtained. • The results will be of use to understand biocement vertebra infiltration studies.

  11. Characterization and three-dimensional reconstruction of synthetic bone model foams

    International Nuclear Information System (INIS)

    Gómez, S.; Vlad, M.D.; López, J.; Navarro, M.; Fernández, E.

    2013-01-01

    Sawbones© open-cell foams with different porosity grades are being used as synthetic bone-like models for in vitro mechanical and infiltration experiments. However, a comprehensive characterization of these foams is not available and there is a lack of reliable information about them. For this reason two of these foams (Refs. 1522-505 and -507) have been characterized at the micro architectural level by scanning electron microscopy, computed tomography and image data analysis. BoneJ open software and ImageJ open software were used to obtain the characteristic histomorphometric parameters and the three dimensional virtual models of the foams. The results showed that both foams, while having different macro porosities, appeared undistinguishable at the micro scale. Moreover, the micro structural features resembled those of osteoporotic rather than healthy trabecular bone. It is concluded that Sawbones© foams behave reasonably as synthetic bone-like models. Consequently, their use is recommended for in vitro comparison purposes of both mechanical and infiltration testing performed in real vertebra. Finally, the virtual models obtained, which are available under request, can favour comparisons between future self-similar in vitro experiments and computer simulations. - Highlights: • Sawbones© model foams have been scanned by μ-CT. • Histomorphometric indices and 3D virtual models have been obtained. • The results will be of use to understand biocement vertebra infiltration studies

  12. Foam flow in a model porous medium: I. The effect of foam coarsening.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Foam structure evolves with time due to gas diffusion between bubbles (coarsening). In a bulk foam, coarsening behaviour is well defined, but there is less understanding of coarsening in confined geometries such as porous media. Previous predictions suggest that coarsening will cause foam lamellae to move to low energy configurations in the pore throats, resulting in greater capillary resistance when restarting flow. Foam coarsening experiments were conducted in both a model-porous-media micromodel and in a sandstone core. In both cases, foam was generated by coinjecting surfactant solution and nitrogen. Once steady state flow had been achieved, the injection was stopped and the system sealed off. In the micromodel, the foam coarsening was recorded using time-lapse photography. In the core flood, the additional driving pressure required to reinitiate flow after coarsening was measured. In the micromodel the bubbles coarsened rapidly to the pore size. At the completion of coarsening the lamellae were located in minimum energy configurations in the pore throats. The wall effect meant that the coarsening did not conform to the unconstricted growth laws. The coreflood tests also showed coarsening to be a rapid process. The additional driving pressure to restart flow reached a maximum after just 2 minutes.

  13. Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions

    NARCIS (Netherlands)

    Ashoori, E.

    2012-01-01

    Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our

  14. Phosphonium modified clay/polyimide nanocomposites

    International Nuclear Information System (INIS)

    Ceylan, Hatice; Çakmakçi, Emrah; Beyler-Çiǧil, Asli; Kahraman, Memet Vezir

    2014-01-01

    In this study, octyltriphenylphosphonium bromide [OTPP-Br] was prepared from the reaction of triphenylphosphine and 1 -bromooctane. The modification of clay was done by ion exchange reaction using OTPP-Br in water medium. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide(PI)/clay hybrids were prepared by blending of poly(amic acid) and organically modified clay as a type of layered clays. The morphology of the Polyimide/ phosphonium modified clay hybrids was characterized by scanning electron microscopy (SEM). Chemical structures of polyimide and Polyimide/ phosphonium modified clay hybrids were characterized by FTIR. SEM and FTIR results showed that the Polyimide/ phosphonium modified clay hybrids were successfully prepared. Thermal properties of the Polyimide/ phosphonium modified clay hybrids were characterized by thermogravimetric analysis (TGA)

  15. Multiscale mass-spring models of carbon nanotube foams

    NARCIS (Netherlands)

    Fraternali, F.; Blesgen, T.; Amendola, A.; Daraio, C.

    This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the

  16. A phenomenological constitutive model for low density polyurethane foams

    International Nuclear Information System (INIS)

    Neilsen, M.K.; Morgan, H.S.; Krieg, R.D.

    1987-04-01

    Results from a series of hydrostatic and triaxial compression tests which were performed on polyurethane foams are presented in this report. These tests indicate that the volumetric and deviatoric parts of the foam behavior are strongly coupled. This coupling behavior could not be captured with any of several commonly used plasticity models. Thus, a new constitutive model was developed. This new model was based on a decomposition of the foam response into two parts: (1) response of the polymer skeleton, and (2) response of the air inside the cells. The air contribution was completely volumetric. The new constitutive model was implemented in two finite element codes, SANCHO and PRONTO. Results from a series of analyses completed with these codes indicated that the new constitutive model captured all of the foam behaviors that had been observed in the experiments. Finally, a typical dynamic problem was analyzed using the new constitutive model and other constitutive models to demonstrate differences between the models. Results from this series of analyses indicated that the new constitutive model generated displacement and acceleration predictions that were between predictions obtained using the other models. This result was expected. 9 refs., 45 figs., 4 tabs

  17. Phosphorylated nano-diamond/ Polyimide Nanocomposites

    International Nuclear Information System (INIS)

    Beyler-Çiǧil, Asli; Çakmakçi, Emrah; Kahraman, Memet Vezir

    2014-01-01

    In this study, a novel route to synthesize polyimide (PI)/phosphorylated nanodiamond films with improved thermal and mechanical properties was developed. Surface phosphorylation of nano-diamond was performed in dichloromethane. Phosphorylation dramatically enhanced the thermal stability of nano-diamond. Poly(amic acid) (PAA), which is the precursor of PI, was successfully synthesized with 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydianiline (4,4'-ODA) in the solution of N,N- dimethylformamide (DMF). Pure BTDA-ODA polyimide films and phosphorylated nanodiamond containing BTDA-ODA PI films were prepared. The PAA displayed good compatibility with phosphorylated nano-diamond. The morphology of the polyimide (PI)/phosphorylated nano-diamond was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and polyimide (PI)/phosphorylated nano-diamond was characterized by FTIR. SEM and FTIR results showed that the phosphorylated nano-diamond was successfully prepared. Thermal properties of the polyimide (PI)/phosphorylated nanodiamond was characterized by thermogravimetric analysis (TGA). TGA results showed that the thermal stability of (PI)/phosphorylated nano-diamond film was increased

  18. MODELING OF TRANSIENT HEAT TRANSFER IN FOAMED CONCRETE SLAB

    Directory of Open Access Journals (Sweden)

    MD AZREE OTHUMAN MYDIN

    2013-06-01

    Full Text Available This paper reports the basis of one-dimensional Finite Difference method to obtain thermal properties of foamed concrete in order to solve transient heat conduction problems in multi-layer panels. In addition, this paper also incorporates the implementation of the method and the validation of thermal properties model of foamed concrete. A one-dimensional finite difference heat conduction programme has been developed to envisage the temperature development through the thickness of the foamed concrete slab, based on an initial estimate of the thermal conductivity-temperature relationship as a function of porosity and radiation within the voids. The accuracy of the model was evaluated by comparing predicted and experimental temperature profiles obtained from small scale heat transfer test on foamed concrete slabs, so that the temperature history of the specimen calculated by the programme closely matches those recorded during the experiment. Using the thermal properties of foamed concrete, the validated heat transfer program predicts foamed concrete temperatures in close agreement with experimental results obtained from a number of high temperature tests. The proposed numerical and thermal properties are simple yet efficient and can be utilised to aid manufacturers to develop their products without having to conduct numerous large-scale fire tests.

  19. A kinetic approach to modeling the manufacture of high density strucutral foam: Foaming and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Mondy, Lisa Ann [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Noble, David R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Brunini, Victor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Roberts, Christine Cardinal [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Long, Kevin Nicholas [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Soehnel, Melissa Marie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Celina, Mathias C. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Wyatt, Nicholas B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Thompson, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sandia National Laboratories, Livermore, CA (United States); Tinsley, James

    2015-09-01

    We are studying PMDI polyurethane with a fast catalyst, such that filling and polymerization occur simultaneously. The foam is over-packed to tw ice or more of its free rise density to reach the density of interest. Our approach is to co mbine model development closely with experiments to discover new physics, to parameterize models and to validate the models once they have been developed. The model must be able to repres ent the expansion, filling, curing, and final foam properties. PMDI is chemically blown foam, wh ere carbon dioxide is pr oduced via the reaction of water and isocyanate. The isocyanate also re acts with polyol in a competing reaction, which produces the polymer. A new kinetic model is developed and implemented, which follows a simplified mathematical formalism that decouple s these two reactions. The model predicts the polymerization reaction via condensation chemis try, where vitrification and glass transition temperature evolution must be included to correctly predict this quantity. The foam gas generation kinetics are determined by tracking the molar concentration of both water and carbon dioxide. Understanding the therma l history and loads on the foam due to exothermicity and oven heating is very important to the results, since the kinetics and ma terial properties are all very sensitive to temperature. The conservation eq uations, including the e quations of motion, an energy balance, and thr ee rate equations are solved via a stabilized finite element method. We assume generalized-Newtonian rheology that is dependent on the cure, gas fraction, and temperature. The conservation equations are comb ined with a level set method to determine the location of the free surface over time. Results from the model are compared to experimental flow visualization data and post-te st CT data for the density. Seve ral geometries are investigated including a mock encapsulation part, two configur ations of a mock stru ctural part, and a bar geometry to

  20. Innovative polyimide film

    International Nuclear Information System (INIS)

    Yaro, L.

    1988-01-01

    This paper reports on a new type of polyimide film with a unique chemical structure. Developed using proprietary technology, Upilex features outstanding properties over a wide range of temperatures, and offers the following advantages over previously available polyimide film: ultra-high heat resistance, excellent cryogenic properties, high tensile strength and modulus, excellent radiation resistance, excellent weather resistance (ultraviolet), superior dimensional stability, excellent chemical resistance, low water absorption, and low gas permeability

  1. Polyimides containing amide and perfluoroisopropylidene connecting groups

    Science.gov (United States)

    Dezern, James F. (Inventor)

    1993-01-01

    New, thermooxidatively stable polyimides were prepared from the reaction of aromatic dianhydrides containing isopropylidene bridging groups with aromatic diamines containing amide connecting groups between the rings. Several of these polyimides were shown to be semi-crystalline as evidenced by wide angle x ray scattering and differential scanning calorimetry. Most of the polyimides form tough, flexible films with high tensile properties. These polyimide films exhibit enhanced solubility in organic solvents.

  2. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  3. A finite element/level set model of polyurethane foam expansion and polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brunini, Victor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Noble, David R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tinsley, James [Honeywell Federal Manufacturing & Technologies, Kansas City, MO (United States); Mondy, Lisa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Polyurethane foams are used widely for encapsulation and structural purposes because they are inexpensive, straightforward to process, amenable to a wide range of density variations (1 lb/ft3 - 50 lb/ft3), and able to fill complex molds quickly and effectively. Computational model of the filling and curing process are needed to reduce defects such as voids, out-of-specification density, density gradients, foam decomposition from high temperatures due to exotherms, and incomplete filling. This paper details the development of a computational fluid dynamics model of a moderate density PMDI structural foam, PMDI-10. PMDI is an isocyanate-based polyurethane foam, which is chemically blown with water. The polyol reacts with isocyanate to produces the polymer. PMDI- 10 is catalyzed giving it a short pot life: it foams and polymerizes to a solid within 5 minutes during normal processing. To achieve a higher density, the foam is over-packed to twice or more of its free rise density of 10 lb/ft3. The goal for modeling is to represent the expansion, filling of molds, and the polymerization of the foam. This will be used to reduce defects, optimize the mold design, troubleshoot the processed, and predict the final foam properties. A homogenized continuum model foaming and curing was developed based on reaction kinetics, documented in a recent paper; it uses a simplified mathematical formalism that decouples these two reactions. The chemo-rheology of PMDI is measured experimentally and fit to a generalized- Newtonian viscosity model that is dependent on the extent of cure, gas fraction, and temperature. The conservation equations, including the equations of motion, an energy balance, and three rate equations are solved via a stabilized finite element method. The equations are combined with a level set method to determine the location of the foam-gas interface as it evolves to fill the mold. Understanding the thermal history and loads on the foam due to exothermicity and oven

  4. FoamVis, A Visualization System for Foam Research: Design and Implementation

    OpenAIRE

    Lipsa, Dan; Roberts, Richard; Laramee, Robert

    2015-01-01

    Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design ...

  5. Synthesis and characterization of polyimide-epoxy hybrid films

    International Nuclear Information System (INIS)

    Butt, M.S.; Akhter, Z.; Siddiqi, H.M.

    2011-01-01

    Composites from polyimide and epoxy-amine were prepared aiming for enhancing its thermal and mechanical properties. Polyimide-epoxy-amine hybrid films were prepared by blending of polyimide and epoxy-amine in different ratios whereas, polyimide was prepared by reacting 1,2-di(p-aminophenyloxy)ethylene with 3,3/sub '/4,4/sub '/-benzophenone tetracarboxylic acid dianhydride. The blend systems with Araldite LY564 (1,4-butanediolediglycidyl ether) (BDDE) and Hardener HY2954 (3,3/sub '/-dimethyl-4,4/sub '/-diamino dicyclohexyl)methane (MACM) were investigated in term of thermal, mechanical and viscoelastic measurements. Thermal stability was determined using thermogravimetric analysis. The effect of the polyimide content on the glass transition temperature (Tg) and thermal stability was observed. Viscoelastic measurements showed that the glass transition temperature shifted with the increase of polyimide content. The composites showed higher thermal stability in comparison with neat epoxy-amine matrix for higher polyimide concentration. The effect of polyimide content on the mechanical properties was also investigated. The tensile measurements of the films showed that with the increase of polyimide content the tensile modulus of the films was increased. (author)

  6. Spin foam models for quantum gravity

    International Nuclear Information System (INIS)

    Perez, Alejandro

    2003-01-01

    In this topical review, we review the present status of the spin foam formulation of non-perturbative (background-independent) quantum gravity. The topical review is divided into two parts. In the first part, we present a general introduction to the main ideas emphasizing their motivation from various perspectives. Riemannian three-dimensional gravity is used as a simple example to illustrate conceptual issues and the main goals of the approach. The main features of the various existing models for four-dimensional gravity are also presented here. We conclude with a discussion of important questions to be addressed in four dimensions (gauge invariance, discretization independence, etc). In the second part, we concentrate on the definition of the Barrett-Crane model. We present the main results obtained in this framework from a critical perspective. Finally, we review the combinatorial formulation of spin foam models based on the dual group field theory technology. We present the Barrett-Crane model in this framework and review the finiteness results obtained for both its Riemannian and its Lorentzian variants. (topical review)

  7. mdFoam+: Advanced molecular dynamics in OpenFOAM

    Science.gov (United States)

    Longshaw, S. M.; Borg, M. K.; Ramisetti, S. B.; Zhang, J.; Lockerby, D. A.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    This paper introduces mdFoam+, which is an MPI parallelised molecular dynamics (MD) solver implemented entirely within the OpenFOAM software framework. It is open-source and released under the same GNU General Public License (GPL) as OpenFOAM. The source code is released as a publicly open software repository that includes detailed documentation and tutorial cases. Since mdFoam+ is designed entirely within the OpenFOAM C++ object-oriented framework, it inherits a number of key features. The code is designed for extensibility and flexibility, so it is aimed first and foremost as an MD research tool, in which new models and test cases can be developed and tested rapidly. Implementing mdFoam+ in OpenFOAM also enables easier development of hybrid methods that couple MD with continuum-based solvers. Setting up MD cases follows the standard OpenFOAM format, as mdFoam+ also relies upon the OpenFOAM dictionary-based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of an MD simulation is not typical of most OpenFOAM applications. Results show that mdFoam+ compares well to another well-known MD code (e.g. LAMMPS) in terms of benchmark problems, although it also has additional functionality that does not exist in other open-source MD codes.

  8. Modelling of Churn-Annular foam flows

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. According to Nimwegen, who performed experiments with foam flows, foam

  9. Foam-oil interaction in porous media: implications for foam assisted enhanced oil recovery.

    Science.gov (United States)

    Farajzadeh, R; Andrianov, A; Krastev, R; Hirasaki, G J; Rossen, W R

    2012-11-15

    The efficiency of a foam displacement process in enhanced oil recovery (EOR) depends largely on the stability of foam films in the presence of oil. Experimental studies have demonstrated the detrimental impact of oil on foam stability. This paper reviews the mechanisms and theories (disjoining pressure, coalescence and drainage, entering and spreading of oil, oil emulsification, pinch-off, etc.) suggested in the literature to explain the impact of oil on foam stability in the bulk and porous media. Moreover, we describe the existing approaches to foam modeling in porous media and the ways these models describe the oil effect on foam propagation in porous media. Further, we present various ideas on an improvement of foam stability and longevity in the presence of oil. The outstanding questions regarding foam-oil interactions and modeling of these interactions are pointed out. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Modeling the overall heat conductive and convective properties of open-cell graphite foam

    International Nuclear Information System (INIS)

    Tee, C C; Yu, N; Li, H

    2008-01-01

    This work develops analytic models on the overall thermal conductivity, pressure drop and overall convective heat transfer coefficient of graphite foam. The models study the relationship between the overall heat conductive and convective properties, and foam microstructure, temperature, foam surface friction characteristics and cooling fluid properties. The predicted thermal conductivity, convective heat transfer coefficient and pressure drop agree well with experimental data

  11. Structure-Property Relationship in High Tg Thermosetting Polyimides

    Science.gov (United States)

    Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise

    2000-01-01

    This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.

  12. Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Alan R., E-mail: alan.r.hopkins@aero.org [Aerospace Corporation, Space Materials Lab, Micro/Nano Technology Dept, Polymers Section, M2/242, Los Angeles, CA 90009-2957 (United States); Tomczak, Sandra J. [AFRL/RZSM Materials Application Branch, Space and Missile Propulsion Division 10 East Saturn Blvd., Bldg. 8451, Edwards Air Force Base, CA 93524 (United States); Vij, Vandana [ERC. Inc., AFRL/PRSM, Edwards AFB, CA (United States); Jackson, Andrew J. [National Institute of Standards and Technology (NIST) Center for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899-6102 (United States)

    2011-12-30

    Nanocomposites of polyaniline nanofibers and polyimide were fabricated and studied using small angle neutron scattering (SANS). The immiscible nature of the conformationally dissimilar polyaniline nanofiber and polyimide host is established by a series of experiments involving neutron scattering. Based on these techniques, we conclude that the crystal structure of the polyimides is not disrupted, and that there is no mixing between the two components on a molecular level. The morphology of the conducting salt component was analyzed by SANS data and was treated by two common models: Debye-Bueche (D-B) and inverse power law (IPL). Due to deviations in the linear curve fitting over a large scattering range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2% concentration, the D-B model suggested salt domains between 20 and 70 A with fractal geometries implied by the IPL model. As salt concentrations increased to 5%, the structures were observed to change, but there is no simple structural model that provides a suitable basis for comparison.

  13. Models and observations of foam coverage and bubble content in the surf zone

    Science.gov (United States)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water

  14. Numerical modelling of closed-cell aluminium foam under dynamic loading

    Science.gov (United States)

    Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.

    2015-06-01

    Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.

  15. Area-selective atomic layer deposition of platinum using photosensitive polyimide.

    Science.gov (United States)

    Vervuurt, René H J; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus Erwin M M; Bol, Ageeth A

    2016-10-07

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  16. Impact of Interfacial Characteristics on Foam Structure: Study on Model Fluids and at Pilot Scale

    Directory of Open Access Journals (Sweden)

    Mezdour Samir

    2017-03-01

    Full Text Available Foams represent an important area of research because of their relevance to many industrial processes. In continuous foaming operations, foaming ability depends on the process parameters and the characteristics of the raw materials used for foamed products. The effects of fluid viscosity and equilibrium surface tension on foam structure have been studied extensively. Furthermore, as surface active agents diffuse to the interface, they can modify other interface properties through their adsorption, such as interfacial rheology and surface tension kinetics. In order to better understand how these two interfacial properties influence foam structuring, we formulated model foaming solutions with different interface viscoelasticity levels and adsorption rates, but all with the same equilibrium surface tension and viscosity. The solutions were made up of a surface active agent and glucose syrup, so as to maintain a Newtonian behaviour. Five surface active agents were used: Whey Protein Isolate (WPI, sodium caseinate, saponin, cetyl phosphate and Sodium Dodecyl Sulphate (SDS, at concentrations ranging from 0.1% to 1%. Their molecular characteristics, and their interaction with the glucose syrup, made it possible to obtain a range of interface viscoelasticities and surface tension kinetics for these model solutions. The solutions were whipped in a continuously-operating industrial foaming device in order to control process parameters such as shearing and overrun, and to ensure that the experiment was representative of industrial production. The structure of the foams thus obtained foams was then determined by characterising bubble size using image analysis. For all the model solutions, both the viscoelastic moduli and apparent diffusion coefficient were linked to foam structure. The results showed that both high interface viscoelasticity and rapid diffusion kinetics induced a foam structure containing small bubbles. Both effects, as well as the impact of

  17. Morphology and Properties of Aminosilane Grafted MWCNT/Polyimide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Siu-Ming Yuen

    2008-01-01

    Full Text Available This investigation presents a novel method for modifying multiwalled carbon nanotubes (MWCNTs. The morphology, electrical resistivity, and percolation threshold of MWCNT/Polyimide nanocomposites were studied. Acid-modified MWCNTs reacted with (3-aminopropyltriethoxysilane by ionic bonding, and were then mixed with polyamic acid via imidization. TEM microphotographs reveal that silane-grafted MWCNTs were connected to each other. The electrical resistivity of silane-grafted MWCNT/polyimide decreased substantially below than that of acid-treated MWCNTs when the silane-modified MWCNT content was lower than 2.4 wt%. The percolation threshold of the MWCNT/polyimide composites is 1.0 wt% for silane-modified MWCNT and exceeds 7.0 wt% for acid-modified MWCNT. The acid-modified MWCNT/polyimide composites possess slightly higher glass transition temperatures than that of pure polyimide. The glass transition temperature of the polyimide increased significantly with silane-modified MWCNT content. Tensile properties of the polyimide have been improved with the MWCNTs content.

  18. FoamVis, A Visualization System for Foam Research: Design and Implementation

    Directory of Open Access Journals (Sweden)

    Dan R. Lipsa

    2015-03-01

    Full Text Available Liquid foams are used in areas such as mineral separation, oil recovery, food and beverage production, sanitation and fire fighting. To improve the quality of products and the efficiency of processes in these areas, foam scientists wish to understand and control foam behaviour. To this end, foam scientists have used foam simulations to model foam behaviour; however, analysing these simulations presents difficult challenges. We describe the main foam research challenges and present the design of FoamVis, the only existing visualization, exploration and analysis application created to address them. We describe FoamVis’ main features, together with relevant design and implementation notes. Our goal is to provide a global overview and individual feature implementation details that would allow a visualization scientist to extend the FoamVis system with new algorithms and adapt it to new requirements. The result is a detailed presentation of the software that is not provided in previous visualization research papers.

  19. Spin foam models of Yang-Mills theory coupled to gravity

    International Nuclear Information System (INIS)

    Mikovic, A

    2003-01-01

    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity

  20. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    Science.gov (United States)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  1. Review of Polyimides Used in the Manufacturing of Micro Systems

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  2. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  3. Role of foam drainage in producing protein aggregates in foam fractionation.

    Science.gov (United States)

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    Science.gov (United States)

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3

  5. Simulation of helium release in the Battelle Model Containment facility using OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, Heinz; Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.eu

    2013-12-15

    Highlights: • The HYJET Jx7 hydrogen release experiment at BMC facility is studied using OpenFOAM. • The SST model and 2nd order numerics for momentum and species concentration are used. • The behaviour is captured well but helium concentration is generally over-predicted. • OpenFOAM needs smaller time steps, higher resolution, more CPU time compared to CFX. • The study shows the potential of open source CFD codes in some nuclear application. - Abstract: The open source CFD code OpenFOAM has been validated against an experiment of jet release phenomena in the Battelle Model Containment facility (BMC), and benchmarked with the Ansys CFX5.7 results. In the selected test, HYJET Jx7, helium was released into the containment at a speed of 42 m/s over a time of 200 s. The SST turbulence model was applied to model helium release and dispersion with both codes. The overall behaviour is captured adequately. However, there are still some noticeable differences between the CFX and OpenFOAM solutions. The study confirms the potential of using open source codes like OpenFOAM in some nuclear applications. Nevertheless further investigations and improvements are needed.

  6. Simulation of helium release in the Battelle Model Containment facility using OpenFOAM

    International Nuclear Information System (INIS)

    Wilkening, Heinz; Ammirabile, Luca

    2013-01-01

    Highlights: • The HYJET Jx7 hydrogen release experiment at BMC facility is studied using OpenFOAM. • The SST model and 2nd order numerics for momentum and species concentration are used. • The behaviour is captured well but helium concentration is generally over-predicted. • OpenFOAM needs smaller time steps, higher resolution, more CPU time compared to CFX. • The study shows the potential of open source CFD codes in some nuclear application. - Abstract: The open source CFD code OpenFOAM has been validated against an experiment of jet release phenomena in the Battelle Model Containment facility (BMC), and benchmarked with the Ansys CFX5.7 results. In the selected test, HYJET Jx7, helium was released into the containment at a speed of 42 m/s over a time of 200 s. The SST turbulence model was applied to model helium release and dispersion with both codes. The overall behaviour is captured adequately. However, there are still some noticeable differences between the CFX and OpenFOAM solutions. The study confirms the potential of using open source codes like OpenFOAM in some nuclear applications. Nevertheless further investigations and improvements are needed

  7. Crosslinked polyimide electro-optic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kowalczyk, T.C.; Kosc, T.Z.; Singer, K.D. [Case Western Reserve University, Department of Physics, Cleveland, Ohio 44106-7079 (United States); Beuhler, A.J.; Wargowski, D.A. [Amoco Research Center, Amoco Chemical Co., Naperville, Illinois 60566 (United States); Cahill, P.A.; Seager, C.H.; Meinhardt, M.B. [Sandia National Laboratories, Division 1811, Albuquerque, New Mexico 87185-1407 (United States); Ermer, S. [Lockheed Research and Development Division, Palo Alto, California 94304 (United States)

    1995-11-15

    We report studies of the optical and electro-optic properties of guest--host polymeric nonlinear optical materials based on aromatic, fluorinated, fully imidized, organic soluble, thermally, and photochemically crosslinkable, guest--host polyimides. We have introduced temperature stable nonlinear optical chromophores into these polyimides and studied optical losses, electric field poling, electro-optic properties, and orientational stability. We measured electro-optic coefficients of 5.5 and 12.0 pm/V for ((2,6-Bis(2-(3-(9-(ethyl)carbazolyl))ethenyl)4H-pyran-4-ylidene)propanedinitrile) (4-(Dicyanomethylene)-2-methyl-6-(p -dimethylaminostyryl)-4H-pyran) DCM-doped guest--host systems at 800 nm using a poling field of 1.3 MV/cm. Poling induced nonlinearities in single-layer films were in agreement with the oriented gas model, but were lower in three-layer films due to voltage division across the layers. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  8. Influence of high power ultrasound on rheological and foaming properties of model ice-cream mixtures

    Directory of Open Access Journals (Sweden)

    Verica Batur

    2010-03-01

    Full Text Available This paper presents research of the high power ultrasound effect on rheological and foaming properties of ice cream model mixtures. Ice cream model mixtures are prepared according to specific recipes, and afterward undergone through different homogenization techniques: mechanical mixing, ultrasound treatment and combination of mechanical and ultrasound treatment. Specific diameter (12.7 mm of ultrasound probe tip has been used for ultrasound treatment that lasted 5 minutes at 100 percent amplitude. Rheological parameters have been determined using rotational rheometer and expressed as flow index, consistency coefficient and apparent viscosity. From the results it can be concluded that all model mixtures have non-newtonian, dilatant type behavior. The highest viscosities have been observed for model mixtures that were homogenizes with mechanical mixing, and significantly lower values of viscosity have been observed for ultrasound treated ones. Foaming properties are expressed as percentage of increase in foam volume, foam stability index and minimal viscosity. It has been determined that ice cream model mixtures treated only with ultrasound had minimal increase in foam volume, while the highest increase in foam volume has been observed for ice cream mixture that has been treated in combination with mechanical and ultrasound treatment. Also, ice cream mixtures having higher amount of proteins in composition had shown higher foam stability. It has been determined that optimal treatment time is 10 minutes.

  9. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  10. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    Science.gov (United States)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  11. Rheological characterization of addition polyimide matrix resins and prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1984-01-01

    Although graphite-reinforced polyimide matrix composites offer outstanding specific strength and stiffness, together with high thermal oxidative stability, processing problems connected with their rheological behavior remain to be addressed. The present rheological studies on neat polyimide resin systems encountered outgassing during cure. A staging technique has been developed which can successfully handle polyimide samples, and novel methods were applied to generate rheological curves for graphite-reinforced prepregs. The commercial graphite/polyimide systems studied were PRM 15, LARC 160, and V378A.

  12. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  13. Foam Assisted WAG, Snorre Revisit with New Foam Screening Model

    DEFF Research Database (Denmark)

    Spirov, Pavel; Rudyk, Svetlana Nikolayevna; Khan, Arif

    2012-01-01

    This study deals with simulation model of Foam Assisted Water Alternating Gas (FAWAG) method that had been implemented to two Norwegian Reservoirs. Being studied on number of pilot projects, the method proved successful, but Field Scale simulation was never understood properly. New phenomenological...... of the simulation contributes to more precise planning of the schedule of water and gas injection, prediction of the injection results and evaluation of the method efficiency. The testing of the surfactant properties allows making grounded choice of surfactant to use. The analysis of the history match gives insight...

  14. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  15. One-dimensional thermal response modeling of a transuranic foamed overpack system to a fire

    International Nuclear Information System (INIS)

    Suchsland, K.E.; Kwong, K.C.; Fretter, E.F.; Boyd, R.D.; Auerbach, I.; Yoshimura, H.R.

    1980-01-01

    Procedures have been established for modeling the thermal response of TRU container walls (TRUPACT) exposed to a fire environment. The effort included simulation testing and thermal modeling of the wall material. In this study, both testing and modeling were directed at determining a one-dimensional thermal model for undamaged polyurethane foam. The foam was assumed to exist in a nonoxidizing environment and was exposed to an almost step change in surface temperature. Results indicate that if the TRU waste container wall includes a polyurethane foam (64 kg/m 3 density) of thickness greater than 20 cm and the wall is otherwise undamaged, there will be no change in the waste content temperature where the container is subjected to a surface temperature as high as 1333 K for times less than 3600 s. Further improvements are needed in the thermal model to include transpiration, better estimates of the temperature-dependent thermal conductivity, effects of damaged wall structure and radiation absorption effects for the charged foam. 10 figures

  16. Surface interaction of polyimide with oxygen ECR plasma

    International Nuclear Information System (INIS)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P.S.; Bhoraskar, V.N.; Mandle, A.B.; Ganeshan, V.; Bhoraskar, S.V.

    2004-01-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis

  17. Surface interaction of polyimide with oxygen ECR plasma

    Science.gov (United States)

    Naddaf, M.; Balasubramanian, C.; Alegaonkar, P. S.; Bhoraskar, V. N.; Mandle, A. B.; Ganeshan, V.; Bhoraskar, S. V.

    2004-07-01

    Polyimide (Kapton-H), was subjected to atomic oxygen from an electron cyclotron resonance plasma. An optical emission spectrometer was used to characterize the atomic oxygen produced in the reactor chamber. The energy of the ions was measured using a retarding field analyzer, placed near the substrate. The density of atomic oxygen in the plasma was estimated using a nickel catalytic probe. The surface wettability of the polyimide samples monitored by contact angle measurements showed considerable improvement when treated with plasma. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopic studies showed that the atomic oxygen in the plasma is the main specie affecting the surface chemistry and adhesion properties of polyimide. The improvement in the surface wettability is attributed to the high degree of cross-linking and large concentration of polar groups generated in the surface region of polyimide, after plasma treatment. The changes in the surface region of polyimide were observed by atomic force microscopic analysis.

  18. FOAM3D: A numerical simulator for mechanistic prediciton of foam displacement in multidimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, A.R.; Patzek, T.W. [Lawrence Berkeley Laboratory, Berkeley, CA (United States); Radke, C.J. [Univ. of California, Berkeley, CA (United States)

    1995-03-01

    Field application of foam is a technically viable enhanced oil recovery process (EOR) as demonstrated by recent steam-foam field studies. Traditional gas-displacement processes, such as steam drive, are improved substantially by controlling gas mobility and thereby improving volumetric displacement efficiency. For instance, Patzek and Koinis showed major oil-recovery response after about two years of foam injection in two different pilot studies at the Kern River field. They report increased production of 5.5 to 14% of the original oil in place over a five year period. Because reservoir-scale simulation is a vital component of the engineering and economic evaluation of any EOR project, efficient application of foam as a displacement fluid requires a predictive numerical model of foam displacement. A mechanistic model would also expedite scale-up of the process from the laboratory to the field scale. No general, mechanistic, field-scale model for foam displacement is currently in use.

  19. Thermoplastic-thermosetting merged polyimides via furan-maleimide Diels–Alder polymerization

    Directory of Open Access Journals (Sweden)

    Yogesh S. Patel

    2017-02-01

    Full Text Available Novel thermoplastic-thermosetting merged polyimide system has been developed via Diels–Alder intermolecular polymerization of bisfuran namely, 2,5-bis(furan-2-ylmethylcarbamoyl terephthalic acid A with a series of bismaleimides B1–4. Thus obtained intermediate Diels–Alder adducts C1–4 were aromatized and imidized (i.e. cyclized through carboxylic and amide groups to afford thermoplastic-thermosetting merged polyimides D1–4. Bisfuran A was prepared by the condensation of pyromellitic dianhydride with furan-2-ylmethanamine and characterized by elemental, spectral, thermal and LCMS analyses. Synthesized Diels–Alder adducts C1–4 and polyimides D1–4 were characterized by elemental analysis, spectral features, number average molecular weight (Mn‾, degree of polymerization (DP and thermal analysis. To facilitate the correct structural assessment and to be able to verify the occurrence of the DA adducts and PIs, a model compound 4 was prepared from phthalic anhydride and furan-2-ylmethanamine in a similar way. FTIR spectral features of polyimides D1–4 were compared with model compound 4 and they were found to be quite identical. The ‘in situ' void-free glass fiber reinforced composites GFRC1–4 were prepared from the produced system and characterized by chemical, mechanical and electrical analyses. All the composites showed good mechanical, electrical and thermal properties and good resistance to organic solvents and mineral acids.

  20. Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use

    KAUST Repository

    Ghanem, Bader; Pinnau, Ingo; Swaidan, Raja

    2015-01-01

    A triptycene-based monomer, a method of making a triptycene-based monomer, a triptycene-based aromatic polyimide, a method of making a triptycene- based aromatic polyimide, methods of using triptycene-based aromatic polyimides, structures incorporating triptycene-based aromatic polyimides, and methods of gas separation are provided. Embodiments of the triptycene-based monomers and triptycene-based aromatic polyimides have high permeabilities and excellent selectivities. Embodiments of the triptycene-based aromatic polyimides have one or more of the following characteristics: intrinsic microporosity, good thermal stability, and enhanced solubility. In an exemplary embodiment, the triptycene-based aromatic polyimides are microporous and have a high BET surface area. In an exemplary embodiment, the triptycene-based aromatic polyimides can be used to form a gas separation membrane.

  1. Triptycene-based dianhydrides, polyimides, methods of making each, and methods of use

    KAUST Repository

    Ghanem, Bader

    2015-12-30

    A triptycene-based monomer, a method of making a triptycene-based monomer, a triptycene-based aromatic polyimide, a method of making a triptycene- based aromatic polyimide, methods of using triptycene-based aromatic polyimides, structures incorporating triptycene-based aromatic polyimides, and methods of gas separation are provided. Embodiments of the triptycene-based monomers and triptycene-based aromatic polyimides have high permeabilities and excellent selectivities. Embodiments of the triptycene-based aromatic polyimides have one or more of the following characteristics: intrinsic microporosity, good thermal stability, and enhanced solubility. In an exemplary embodiment, the triptycene-based aromatic polyimides are microporous and have a high BET surface area. In an exemplary embodiment, the triptycene-based aromatic polyimides can be used to form a gas separation membrane.

  2. The electrical conductivities of polyimide and polyimide/Li triflate composites: An a.c. impedance study

    Science.gov (United States)

    Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina

    2017-09-01

    Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.

  3. Generalization of the memory integer model for the analysis of the quasi-static behaviour of polyurethane foams

    International Nuclear Information System (INIS)

    Jmal, Hamdi; Ju, Ming Lei; Dupuis, Raphael; Aubry, Evelyne

    2014-01-01

    Polyurethane foam is a cellular material characterized by an interesting mechanical spectrum of properties: low density, capacity to absorb the deformation energy and low stiffness. This spectrum of properties makes polyurethane foam commonly used in many thermal, acoustic and comfort applications. Several models, such as memory, hyper-elastic and pseudo-elastic models have been developed in the literature to describe the mechanical response of polyurethane foam under quasi-static and dynamic test conditions. The main disadvantage of these models is the dependence of their parameters against the test conditions (strain rate, maximum compression level, etc). This affects the general character of their representativeness to the quasi-static and dynamic behaviours of polyurethane foam. The main goal of this article is to implement reliable mechanical model which is able to provide the quasi-static response of the polyurethane foam under different strain rates and large compressive deformation. The dimensional parameters of our model can be expressed by the product of two independent parts; the first contain only the test conditions and the second define the dimensionless and invariant parameters that characterize the foam material. The developed model has been proposed after several experimental studies allowing the apprehension of the quasi-static behaviour (through unidirectional compression tests). The polyurethane foam, under large deformations, exhibits a nonlinear elastic behaviour and viscoelastic behaviour. To assess the ability of our model to be a general representation, three industrial polyurethane foams have been considered.

  4. A nonlinear vertex-based model for animation of two-dimensional dry foam

    DEFF Research Database (Denmark)

    Kelager, Micky; Erleben, Kenny

    2010-01-01

    Foam is the natural phenomenon of bubbles that arise due to nucleation of gas in liquids. The current state of art in Computer Graphics rarely includes foam effects on large scales. In this paper we introduce a vertexbased, quasi-static equilibrium model from the field of Computational Physics...

  5. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver

    Science.gov (United States)

    White, C.; Borg, M. K.; Scanlon, T. J.; Longshaw, S. M.; John, B.; Emerson, D. R.; Reese, J. M.

    2018-03-01

    dsmcFoam+ is a direct simulation Monte Carlo (DSMC) solver for rarefied gas dynamics, implemented within the OpenFOAM software framework, and parallelised with MPI. It is open-source and released under the GNU General Public License in a publicly available software repository that includes detailed documentation and tutorial DSMC gas flow cases. This release of the code includes many features not found in standard dsmcFoam, such as molecular vibrational and electronic energy modes, chemical reactions, and subsonic pressure boundary conditions. Since dsmcFoam+ is designed entirely within OpenFOAM's C++ object-oriented framework, it benefits from a number of key features: the code emphasises extensibility and flexibility so it is aimed first and foremost as a research tool for DSMC, allowing new models and test cases to be developed and tested rapidly. All DSMC cases are as straightforward as setting up any standard OpenFOAM case, as dsmcFoam+ relies upon the standard OpenFOAM dictionary based directory structure. This ensures that useful pre- and post-processing capabilities provided by OpenFOAM remain available even though the fully Lagrangian nature of a DSMC simulation is not typical of most OpenFOAM applications. We show that dsmcFoam+ compares well to other well-known DSMC codes and to analytical solutions in terms of benchmark results.

  6. Determination of Acreage Thermal Protection Foam Loss From Ice and Foam Impacts

    Science.gov (United States)

    Carney, Kelly S.; Lawrence, Charles

    2015-01-01

    A parametric study was conducted to establish Thermal Protection System (TPS) loss from foam and ice impact conditions similar to what might occur on the Space Launch System. This study was based upon the large amount of testing and analysis that was conducted with both ice and foam debris impacts on TPS acreage foam for the Space Shuttle Project External Tank. Test verified material models and modeling techniques that resulted from Space Shuttle related testing were utilized for this parametric study. Parameters varied include projectile mass, impact velocity and impact angle (5 degree and 10 degree impacts). The amount of TPS acreage foam loss as a result of the various impact conditions is presented.

  7. Numerical modeling of aluminium foam on two scales

    Czech Academy of Sciences Publication Activity Database

    Němeček, J.; Denk, F.; Zlámal, Petr

    Roč. 267, September (2015), s. 506-516 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP105/12/0824 Institutional support: RVO:68378297 Keywords : closed-cell aluminium foam * Alporas * multiscale modeling * homogenization * FFT * finite element modeling Subject RIV: JI - Composite Materials Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315001162

  8. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  9. Modeling of Flexible Polyurethane Foam Shrinkage for Bra Cup Moulding Process Control

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-04-01

    Full Text Available Nowadays, moulding technology has become a remarkable manufacturing process in the intimate apparel industry. Polyurethane (PU foam sheets are used to mould three-dimensional (3D seamless bra cups of various softness and shapes, which eliminate bulky seams and reduce production costs. However, it has been challenging to accurately and effectively control the moulding process and bra cup thickness. In this study, the theoretical mechanism of heat transfer and the thermal conductivity of PU foams are first examined. Experimental studies are carried out to investigate the changes in foam materials at various moulding conditions (viz., temperatures, and lengths of dwell time in terms of surface morphology and thickness by using electron and optical microscopy. Based on the theoretical and experimental investigations of the thermal conductivity of the foam materials, empirical equations of shrinkage ratio and thermal conduction of foam materials were established. A regression model to predict flexible PU foam shrinkage during the bra cup moulding process was formulated by using the Levenberg-Marquardt method of nonlinear least squares algorithm and verified for accuracy. This study therefore provides an effective approach that optimizes control of the bra cup moulding process and assures the ultimate quality and thickness of moulded foam cups.

  10. A constitutive model for the compressive response of metallic closed-cell foams including micro-inertia effects

    Directory of Open Access Journals (Sweden)

    Barthélémy Romain

    2015-01-01

    Full Text Available Metallic foams have known a keen interest in the last decades. Their ability to undergo very large deformations while transmitting low stress levels make them capable of performing functions of protective layers against intense loadings and of energy absorbers, for instance. The behaviour of metal foams varies considerably between quasi-static and dynamic regimes. Those differences can be linked to the strain-rate sensitivity of the skeleton material and to micro-inertial effects (induced by the crushing of the foam cells. In the present work, a micromechanical model has been developed to take into account micro-inertia effects on the macroscopic behaviour of closed-cell foams under dynamic loading conditions. The proposed modelling is based on the dynamic homogenisation procedure introduced by Molinari and Mercier (J. Mech. Phys. Solids 49 (2001 1497–1516. Within this framework, the macrostress is the sum of two terms. The first one is a static stress, that can be described with any existing model of metal foam. The second contribution is a dynamic stress related to micro-inertia effects. Considering an initially spherical shell as a Representative Volume Element (RVE of the foam material, a closed-form expression of the dynamic stress was obtained. The proposed modelling was applied to shock propagation in aluminium foams (it should however be noted that the present theory is not restricted to uniaxial deformation but can be applied to arbitrary loadings. From experimental data of the literature, it is observed that incorporating micro-inertia effects allows one to achieve a better description of the foam shock response. This indicates that micro-inertia may have a significant influence on the dynamic behaviour of metallic foams.

  11. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)

  12. Spin foam models of matter coupled to gravity

    International Nuclear Information System (INIS)

    Mikovic, A

    2002-01-01

    We construct a class of spin foam models describing matter coupled to gravity, such that the gravitational sector is described by the unitary irreducible representations of the appropriate symmetry group, while the matter sector is described by the finite-dimensional irreducible representations of that group. The corresponding spin foam amplitudes in the four-dimensional gravity case are expressed in terms of the spin network amplitudes for pentagrams with additional external and internal matter edges. We also give a quantum field theory formulation of the model, where the matter degrees of freedom are described by spin network fields carrying the indices from the appropriate group representation. In the non-topological Lorentzian gravity case, we argue that the matter representations should be appropriate SO(3) or SO(2) representations contained in a given Lorentz matter representation, depending on whether one wants to describe a massive or a massless matter field. The corresponding spin network amplitudes are given as multiple integrals of propagators which are matrix spherical functions

  13. Numerical simulation of heat transfer in metal foams

    Science.gov (United States)

    Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.

    2018-02-01

    This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.

  14. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  15. Microsecond atomic-scale molecular dynamics simulations of polyimides

    NARCIS (Netherlands)

    Lyulin, S.V.; Gurtovenko, A.A.; Larin, S.V.; Nazarychev, V.M.; Lyulin, A.V.

    2013-01-01

    We employ microsecond atomic-scale molecular dynamics simulations to get insight into the structural and thermal properties of heat-resistant bulk polyimides. As electrostatic interactions are essential for the polyimides considered, we propose a two-step equilibration protocol that includes long

  16. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  17. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    Science.gov (United States)

    2015-09-01

    UNCLASSIFIED UNCLASSIFIED CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM ... OpenFOAM to replace some of the Fluent simulations. The fidelity of the Fluent code has been carefully validated, but the accuracy of parts of the... OpenFOAM code have not been so extensively tested. To test the accuracy of the OpenFOAM software, CFD simulations have been performed on the DSTO

  18. Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rao, Rekha Ranjana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Russick, Edward Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hileman, Michael Bryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thompson, Kyle Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, David Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  19. Effect of foam stirrer design on the catalytic performance of rotating foam stirrer reactions

    NARCIS (Netherlands)

    Leon Matheus, M.A.; Geers, P.; Nijhuis, T.A.; Schaaf, van der J.; Schouten, J.C.

    2012-01-01

    The liquid–solid mass transfer rate in a rotating foam stirrer reactor and in a slurry reactor is studied using the hydrogenation of styrene as a model reaction. The rotating foam stirrer reactor is a novel type of multi-phase reactor where highly open-celled materials, solid foams, are used as a

  20. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  1. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  2. Parametric model of ventilators simulated in OpenFOAM and Elmer

    Science.gov (United States)

    Čibera, Václav; Matas, Richard; Sedláček, Jan

    2016-03-01

    The main goal of presented work was to develop parametric model of a ventilator for CFD and structural analysis. The whole model was designed and scripted in freely available open source programmes in particular in OpenFOAM and Elmer. The main script, which runs or generates other scripts and further control the course of simulation, was written in bash scripting language in Linux environment. Further, the scripts needed for a mesh generation and running of a simulation were prepared using m4 word pre-processor. The use of m4 allowed comfortable set up of the higher amount of scripts. Consequently, the mesh was generated for fluid and solid part of the ventilator within OpenFOAM. Although OpenFOAM offers also a few tools for structural analysis, the mesh of solid parts was transferred into Elmer mesh format with the aim to perform structural analysis in this software. This submitted paper deals namely with part concerning fluid flow through parametrized geometry with different initial conditions. As an example, two simulations were conducted for the same geometric parameters and mesh but for different angular velocity of ventilator rotation.

  3. Parametric model of ventilators simulated in OpenFOAM and Elmer

    Directory of Open Access Journals (Sweden)

    Čibera Václav

    2016-01-01

    Full Text Available The main goal of presented work was to develop parametric model of a ventilator for CFD and structural analysis. The whole model was designed and scripted in freely available open source programmes in particular in OpenFOAM and Elmer. The main script, which runs or generates other scripts and further control the course of simulation, was written in bash scripting language in Linux environment. Further, the scripts needed for a mesh generation and running of a simulation were prepared using m4 word pre-processor. The use of m4 allowed comfortable set up of the higher amount of scripts. Consequently, the mesh was generated for fluid and solid part of the ventilator within OpenFOAM. Although OpenFOAM offers also a few tools for structural analysis, the mesh of solid parts was transferred into Elmer mesh format with the aim to perform structural analysis in this software. This submitted paper deals namely with part concerning fluid flow through parametrized geometry with different initial conditions. As an example, two simulations were conducted for the same geometric parameters and mesh but for different angular velocity of ventilator rotation.

  4. Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer

    NARCIS (Netherlands)

    Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2006-01-01

    In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The

  5. Modeling Manufacturing Impacts on Aging and Reliability of Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Rekha R.; Roberts, Christine Cardinal; Mondy, Lisa Ann; Soehnel, Melissa Marie; Johnson, Kyle; Lorenzo, Henry T.

    2016-10-01

    Polyurethane is a complex multiphase material that evolves from a viscous liquid to a system of percolating bubbles, which are created via a CO2 generating reaction. The continuous phase polymerizes to a solid during the foaming process generating heat. Foams introduced into a mold increase their volume up to tenfold, and the dynamics of the expansion process may lead to voids and will produce gradients in density and degree of polymerization. These inhomogeneities can lead to structural stability issues upon aging. For instance, structural components in weapon systems have been shown to change shape as they age depending on their molding history, which can threaten critical tolerances. The purpose of this project is to develop a Cradle-to-Grave multiphysics model, which allows us to predict the material properties of foam from its birth through aging in the stockpile, where its dimensional stability is important.

  6. Electrical conductivity of quasi-two-dimensional foams.

    Science.gov (United States)

    Yazhgur, Pavel; Honorez, Clément; Drenckhan, Wiebke; Langevin, Dominique; Salonen, Anniina

    2015-04-01

    Quasi-two-dimensional (quasi-2D) foams consist of monolayers of bubbles squeezed between two narrowly spaced plates. These simplified foams have served successfully in the past to shed light on numerous issues in foam physics. Here we consider the electrical conductivity of such model foams. We compare experiments to a model which we propose, and which successfully relates the structural and the conductive properties of the foam over the full range of the investigated liquid content. We show in particular that in the case of quasi-2D foams the liquid in the nodes needs to be taken into account even at low liquid content. We think that these results may provide different approaches for the characterization of foam properties and for the in situ characterization of the liquid content of foams in confining geometries, such as microfluidics.

  7. Structure-Property Study of Piezoelectricity in Polyimides

    Science.gov (United States)

    Ounaies, Zoubeida; Park, Cheol; Harrison, Joycelyn S.; Smith, Joseph G.; Hinkley, Jeffrey

    1999-01-01

    High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.

  8. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  9. Churn-annular foam flow: experiments and modelling

    NARCIS (Netherlands)

    Westende, J.M.C. van 't; Shoeibi Omrani, P.; Vercauteren, F.F.; Nennie, E.D.

    2016-01-01

    Foam assisted lift is a deliquification method in the oil and gas industry, which aims to prevent or postpone countercurrent gas-liquid flow in maturing gas wells or to assist in removing downhole accumulated liquids. The creation of foam reduces the density of the liquid that needs to be

  10. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    Directory of Open Access Journals (Sweden)

    J. Chauchat

    2017-11-01

    Full Text Available In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I. For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only, a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  11. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    Science.gov (United States)

    Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian

    2017-11-01

    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  12. Forming foam structures with carbon foam substrates

    Science.gov (United States)

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  13. Fire-Induced Response in Foam Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Borek, T.T.; Chu, T.Y.; Erickson, K.L.; Gill, W.; Hobbs, M.L.; Humphries, L.L.; Renlund, A.M.; Ulibarri, T.A.

    1999-04-02

    The paper provides a concise overview of a coordinated experimental/theoretical/numerical program at Sandia National Laboratories to develop an experimentally validated model of fire-induced response of foam-filled engineered systems for nuclear and transportation safety applications. Integral experiments are performed to investigate the thermal response of polyurethane foam-filled systems exposed to fire-like heat fluxes. A suite of laboratory experiments is performed to characterize the decomposition chemistry of polyurethane. Mass loss and energy associated with foam decomposition and chemical structures of the virgin and decomposed foam are determined. Decomposition chemistry is modeled as the degradation of macromolecular structures by bond breaking followed by vaporization of small fragments of the macromolecule with high vapor pressures. The chemical decomposition model is validated against the laboratory data. Data from integral experiments is used to assess and validate a FEM foam thermal response model with the chemistry model developed from the decomposition experiments. Good agreement was achieved both in the progression of the decomposition front and the in-depth thermal response.

  14. Effect of Bulky and Hydroxyl Groups on Gas Separation Performance of Polyimide Membranes.

    Science.gov (United States)

    Lee, Bo Mi; Kim, Deuk Ju; Nam, Sang Yong

    2015-03-01

    A series of polyimides were synthesized by a polycondensation reaction using various aromatic dianhydrides and diamines containing bulky cardo and hydroxyl groups. The imidization and chemical structure of the polyimides were confirmed by NMR and FT-IR. The thermal and gas properties of the polyimides were measured by time-lag, XRD, TGA, and DSC studies. The polyimides showed excellent solubility in common organic solvents and high thermal stability. The CO2 selectivity of HPI membrane was higher than traditional polyimides. In particular, the incorporation of hydroxyl groups improved the CO2 permeability of the polyimide due to increased carbon dioxide solubility. The HPI was thermally converted to polybenzoxazole (PBO) at 450 °C.

  15. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  16. Some aspects of image processing using foams

    International Nuclear Information System (INIS)

    Tufaile, A.; Freire, M.V.; Tufaile, A.P.B.

    2014-01-01

    We have explored some concepts of chaotic dynamics and wave light transport in foams. Using some experiments, we have obtained the main features of light intensity distribution through foams. We are proposing a model for this phenomenon, based on the combination of two processes: a diffusive process and another one derived from chaotic dynamics. We have presented a short outline of the chaotic dynamics involving light scattering in foams. We also have studied the existence of caustics from scattering of light from foams, with typical patterns observed in the light diffraction in transparent films. The nonlinear geometry of the foam structure was explored in order to create optical elements, such as hyperbolic prisms and filters. - Highlights: • We have obtained the light scattering in foams using experiments. • We model the light transport in foams using a chaotic dynamics and a diffusive process. • An optical filter based on foam is proposed

  17. Foam, Foam-resin composite and method of making a foam-resin composite

    Science.gov (United States)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  18. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.

    Science.gov (United States)

    Angeloni, Valentina; Contessi, Nicola; De Marco, Cinzia; Bertoldi, Serena; Tanzi, Maria Cristina; Daidone, Maria Grazia; Farè, Silvia

    2017-11-01

    Breast cancer (BC) represents the most incident cancer case in women (29%), with high mortality rate. Bone metastasis occurs in 20-50% cases and, despite advances in BC research, the interactions between tumor cells and the metastatic microenvironment are still poorly understood. In vitro 3D models gained great interest in cancer research, thanks to the reproducibility, the 3D spatial cues and associated low costs, compared to in vivo and 2D in vitro models. In this study, we investigated the suitability of a poly-ether-urethane (PU) foam as 3D in vitro model to study the interactions between BC tumor-initiating cells and the bone microenvironment. PU foam open porosity (>70%) appeared suitable to mimic trabecular bone structure. The PU foam showed good mechanical properties under cyclic compression (E=69-109kPa), even if lower than human trabecular bone. The scaffold supported osteoblast SAOS-2 cell line proliferation, with no cytotoxic effects. Human adipose derived stem cells (ADSC) were cultured and differentiated into osteoblast lineage on the PU foam, as shown by alizarin red staining and RT-PCR, thus offering a bone biomimetic microenvironment to the further co-culture with BC derived tumor-initiating cells (MCFS). Tumor aggregates were observed after three weeks of co-culture by e-cadherin staining and SEM; modification in CaP distribution was identified by SEM-EDX and associated to the presence of tumor cells. In conclusion, we demonstrated the suitability of the PU foam to reproduce a bone biomimetic microenvironment, useful for the co-culture of human osteoblasts/BC tumor-initiating cells and to investigate their interaction. 3D in vitro models represent an outstanding alternative in the study of tumor metastases development, compared to traditional 2D in vitro cultures, which oversimplify the 3D tissue microenvironment, and in vivo studies, affected by low reproducibility and ethical issues. Several scaffold-based 3D in vitro models have been proposed

  19. Investigation into stress wave propagation in metal foams

    Directory of Open Access Journals (Sweden)

    Li Lang

    2015-01-01

    Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.

  20. Modeling Heat Transfer and Pressurization of Polymeric Methylene Diisocyanate (PMDI) Polyurethane Foam in a Sealed Container.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Sarah Nicole

    2018-01-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. It can be advantageous to surround objects of interest, such as electronics, with foams in a hermetically sealed container to protect the electronics from hostile en vironments, such as a crash that produces a fire. However, i n fire environments, gas pressure from thermal decomposition of foams can cause mechanical failure of the sealed system . In this work, a detailed study of thermally decomposing polymeric methylene diisocyanate (PMDI) - polyether - polyol based polyurethane foam in a sealed container is presented . Both experimental and computational work is discussed. Three models of increasing physics fidelity are presented: No Flow, Porous Media, and Porous Media with VLE. Each model us described in detail, compared to experiment , and uncertainty quantification is performed. While the Porous Media with VLE model matches has the best agreement with experiment, it also requires the most computational resources.

  1. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  2. HPLC for quality control of polyimides

    Science.gov (United States)

    Young, P. R.; Sykes, G. F.

    1979-01-01

    High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.

  3. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Roostapour, A. [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Kam, S.I., E-mail: kam@lsu.edu [Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A new mathematical framework established for vadose-zone foam remediation. Black-Right-Pointing-Pointer Graphical solutions presented by Method of Characteristics quantitatively. Black-Right-Pointing-Pointer Effects of design parameters in the field applications thoroughly investigated. Black-Right-Pointing-Pointer Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S{sub w}), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam

  4. Modeling foam delivery mechanisms in deep vadose-zone remediation using method of characteristics

    International Nuclear Information System (INIS)

    Roostapour, A.; Kam, S.I.

    2012-01-01

    Highlights: ► A new mathematical framework established for vadose-zone foam remediation. ► Graphical solutions presented by Method of Characteristics quantitatively. ► Effects of design parameters in the field applications thoroughly investigated. ► Implication of modeling study for successful field treatment discussed. - Abstract: This study investigates foam delivery mechanisms in vadose-zone remediation by using Method of Characteristics (MoC), a mathematical tool long been used for the analysis of miscible and immiscible flooding in porous media in petroleum industry. MoC converts the governing material-balance partial differential equations into a series of ordinary differential equations, and the resulting solutions are in a form of wave propagation (more specifically, for chemical species and phase saturations) through the system as a function of time and space. Deep vadose-zone remediation has special features compared to other conventional remediation applications. They include, not limited to, a high level of heterogeneity, a very dry initial condition with low water saturation (S w ), pollutants such as metals and radionuclides fully dissolved in groundwater, and a serious concern about downward migration during the remediation treatments. For the vadose-zone remediation processes to be successful, the injected aqueous phase should carry chemicals to react with pollutants and precipitate them for immobilization and stabilization purposes. As a result, foams are believed to be an effective means, and understanding foam flow mechanism in situ is a key to the optimal design of field applications. Results show that foam delivery mechanism is indeed very complicated, making the optimum injection condition field-specific. The five major parameters selected (i.e., initial saturation of the medium, injection foam quality, surfactant adsorption, foam strength, and foam stability) are shown to be all important, interacting with each other. Results also

  5. Structural mechanisms of photoeffect in polyimide structures containing heterocyclic fragments

    International Nuclear Information System (INIS)

    Aleksandrova, E. L.

    2006-01-01

    Trends in the variation in the quantum yields of charge-carrier photogeneration in polyimide structures containing heterocyclic fragments are studied. It is shown that the efficiency of sensitization of polyimides depends on the donor and acceptor properties of the fragments of monomeric units of the polyimide. It is established that the range of spectral sensitivity for heterocyclic fragments representing intramolecular complexes with charge transport is wider than that for heterocycles that do not represent such complexes

  6. An approach to model validation and model-based prediction -- polyurethane foam case study.

    Energy Technology Data Exchange (ETDEWEB)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical

  7. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    Science.gov (United States)

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  8. Dianhydrides, polyimides, methods of making each, and methods of use

    KAUST Repository

    Ma, Xiaohua; Pinnau, Ingo; Ghanem, Bader

    2015-01-01

    Embodiments of the present disclosure provide for an aromatic dianhydride, a method of making an aromatic dianhydride, an aromatic dianhydride-based polyimide, a method of making an aromatic dianhydride-based polyimide, and the like.

  9. Dianhydrides, polyimides, methods of making each, and methods of use

    KAUST Repository

    Ma, Xiaohua

    2015-01-08

    Embodiments of the present disclosure provide for an aromatic dianhydride, a method of making an aromatic dianhydride, an aromatic dianhydride-based polyimide, a method of making an aromatic dianhydride-based polyimide, and the like.

  10. The thermal-spike model description of the ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Zhang Chonghong; Zhu Zhiyong; Wang Zhiguang; Jin Yunfan; Liu Jie; Wang Ying

    2004-01-01

    To describe the role of electronic energy loss (dE/dX) e for chemical modification of polyimide (PI), multi-layer stacks (corresponding to different dE/dX) were irradiated by different swift heavy ions (1.158 GeV Fe 56 and 1.755 GeV Xe 136 ) under vacuum and at room temperature. Chemical changes of modified PI films were studied by Fourier transform infrared (FTIR) spectroscopy. The chain disruption rate of PI was investigated in the fluence range from 1 x 10 11 to 6 x 10 12 ions/cm 2 and a wider energy stopping power range (2.2-5.1 keV/nm for Fe 56 ions and 8.6-11.5 keV/nm for Xe 136 ions). Alkyne formation was observed over the electronic energy loss range of interest. By applying the saturated track model assumption (the damage process only occur in a cylinder of area σ), the mean degradation and alkyne formation radii in tracks were induced for Fe and Xe ion irradiation, respectively. The results were validated by the thermal-spike model. The analysis of the irradiated PI films shows that the predictions of the thermal-spike model of Szenes are in qualitative agreement with the curve shape of experimental results

  11. Modelling of Tip Vortex Cavitation for Engineering Applications in OpenFOAM

    NARCIS (Netherlands)

    Schot, J.J.A.; Pennings, P.C.; Pourquie, M.J.B.M.; Van Terwisga, T.J.C.

    2014-01-01

    In this paper modelling assumptions for the prediction of tip vortex flow and vortex cavitation with the RANS equations and homogeneous fluid approach in Open-FOAM are presented. The effects of the changes in the turbulence model are investigated and the results are compared with PIV measurements.

  12. Polyimides Containing Amide And Perfluoroisopropyl Links

    Science.gov (United States)

    Dezem, James F.

    1993-01-01

    New polyimides synthesized from reactions of aromatic hexafluoroisopropyl dianhydrides with asymmetric amide diamines. Soluble to extent of at least 10 percent by weight at temperature of about 25 degrees C in common amide solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide. Polyimides form tough, flexible films, coatings, and moldings. Glass-transition temperatures ranged from 300 to 365 degrees C, and crystalline melting temperatures observed between 543 and 603 degrees C. Display excellent physical, chemical, and electrical properties. Useful as adhesives, laminating resins, fibers, coatings for electrical and decorative purposes, films, wire enamels, and molding compounds.

  13. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  14. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  15. Natural Gas Sweetening by Ultra-Microporous Polyimides Membranes

    KAUST Repository

    Alghunaimi, Fahd

    2017-05-01

    Most natural gas fields in Saudi Arabia contain around 10 mol.% carbon dioxide. The present technology to remove carbon dioxide is performed by chemical absorption, which has many drawbacks. Alternatively, membrane-based gas separation technology has attracted great interest in recent years due to: (i) simple modular design, (ii) potential cost effectiveness, (iii) ease of scale-up, and (iv) environmental friendliness. The state-of-the-art membrane materials for natural gas sweetening are glassy cellulose acetate and polyimide, which were introduced in the 1980s. In the near future, the kingdom is planning to boost its production of natural gas for power generation and increase the feedstock for new petrochemical plants. Therefore, the kingdom and worldwide market has an urgent need for better membrane materials to remove carbon dioxide from raw natural gas. The focus of this dissertation was to design new polyimide membrane materials for CO2/CH4 separation exhibiting high permeability and high selectivity relative to the standard commercial materials tested under realistic mixed-gas feed conditions. Furthermore, this study provided a fundamental understanding of structure/gas transport property relationships of triptycene-based PIM-polyimides. Optimally designed intrinsically microporous polyimide (PIM-PIs) membranes in this work exhibited drastically increased CO2/CH4 selectivities of up to ~75. In addition, a novel triptycene-based hydroxyl-containing polyimide (TDA1-APAF) showed 5-fold higher permeabilities over benchmark commercial materials such as cellulose acetate. Furthermore, this polyimide had a N2/CH4 selectivity of 2.3, thereby making it possible to simultaneously treat CO2- and N2-contaminated natural gas. Also, TDA1-APAF showed a CO2 permeability of 21 Barrer under binary 1:1 CO2/CH4 mixed-gas feed with a selectivity of 72 at a partial CO2 pressure of 10 bar which are significantly better than cellulose triacetate. These results suggest that TDA1

  16. Rheological properties of the soft-disk model of two-dimensional foams

    DEFF Research Database (Denmark)

    Langlois, Vincent; Hutzler, Stefan; Weaire, Denis

    2008-01-01

    The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel-Bulkley re......The soft-disk model previously developed and applied by Durian [D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995)] is brought to bear on problems of foam rheology of longstanding and current interest, using two-dimensional systems. The questions at issue include the origin of the Herschel......-Bulkley relation, normal stress effects (dilatancy), and localization in the presence of wall drag. We show that even a model that incorporates only linear viscous effects at the local level gives rise to nonlinear (power-law) dependence of the limit stress on strain rate. With wall drag, shear localization...

  17. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  18. Preparation and characterization of PMMA graded microporous foams via one-step supercritical carbon dioxide foaming

    International Nuclear Information System (INIS)

    Yuan Huan; Li Junguo; Xiong Yuanlu; Luo Guoqiang; Shen Qiang; Zhang Lianmeng

    2013-01-01

    Supercritical carbon dioxide (ScCO 2 ) foaming which is inexpensive and environmental friendly has been widely used to prepare polymer-based microporous materials. In this paper, PMMA graded microporous materials were foamed by PMMA matrix after an unstable saturation process which was done under supercritical condition of 28MPa and 50 °C. The scanning electron microscopy (SEM) was utilized to observe the morphology of the graded foam. A gas adsorption model was proposed to predict the graded gas concentration in the different region of the polymer matrix. The SEM results showed that the solid and foam region of the graded foam can be connected without laminated layers. With the increasing thickness position of the graded microporous foam, the cell size increased from 3.4 to 27.5 μm, while the cell density decreased from 1.04 × 10 9 to 1.96 × 10 7 cells/cm 3 . It also found that the gradient microporous structure of the foam came from graded gas concentration which was obtained in the initial saturation process.

  19. NiTi-polyimide composites prepared using thermal imidization process

    Czech Academy of Sciences Publication Activity Database

    Vokoun, David; Sysel, P.; Heller, Luděk; Kadeřávek, L.; Svatuška, Michal; Goryczka, T.; Kafka, Vratislav; Šittner, Petr

    2016-01-01

    Roč. 25, č. 5 (2016), 1993-1999 ISSN 1059-9495 R&D Projects: GA ČR GC15-13174J; GA ČR GA14-15264S Institutional support: RVO:68378271 ; RVO:68378297 Keywords : actuator * composite * model * NiTi * polyimide * residual * stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.331, year: 2016

  20. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    Science.gov (United States)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  1. Nanostructured metal foams: synthesis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  2. Biomass derived novel functional foamy materials - BIO-FOAM

    Energy Technology Data Exchange (ETDEWEB)

    Suurnaekki, A.; Boer, H.; Forssell, P. (and others) (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: anna.suurnakki@vtt.fi

    2010-10-15

    BIO-FOAM has aimed at exploiting the potential of biomaterials in replacing synthetic polymers in solid foamy materials. The target applications have been various, including food, packaging, construction and insulation. The project activities during the second project year have focused on characterisation of the solid model foams and on modeling the behaviour of polymers at liquid- liquid interfaces. In the modelling study the intrinsic consistence of the applied thermodynamic approach was confirmed. The experimentally obtained solubility parameters of polymers were in good agreement with the calculated solubility parameters. The polymers were, however, found to posses too little surface activity to alone provide stable foams, but they were able to act as co-surfactants. In the model polymer foam work both expanded polymer foams and wood fibre based foams were prepared. Supercritical CO{sub 2}-gas chamber was found to be a useful tool to prepare expanded polymer foams in small scale. Only partial replacement of synthetic polymers could, however, be obtained with native biomaterials indicating the need of tailoring of biopolymer properties and suitable formulations including surfactants or stabilizing particles. In wood fibre-based foams both nanocellulose and lignin showed potential as additives or reinforcing components.The outcome of the extruded food snacks study was that the processing parameters were related with the equipmentvariables. Furthermore, glycerol was shown to facilitate greatly extrusion processing. In foam concrete work concrete pore structure was shown to correlate with its strength and stability. At optimum concentration wood fibres affected positively the concrete processing performance. (orig.)

  3. Chemical formation of palladium-free surface-nickelized polyimide film for flexible electronics

    International Nuclear Information System (INIS)

    Hsiao, Y.-S.; Whang, W.-T.; Wu, S.-C.; Chuang, Kuen-Ru

    2008-01-01

    Flexible polyimide (PI) films for flexible electronics were surface-nickelized using a fully solution-based process and excellent adhesion between the nickel and polyimide phases was observed. Polyimide substrates were modified by alkaline hydrolysis, ion exchange, reduction and nickel electroless deposition without palladium. Atomic force microscopy and field emission scanning electron microscopy were used to follow the growth of nickel nanoparticles (Ni-NPs) and nickel layers on the polyimide surface. The surface resistances of the Ni-NPs/PI films and Ni/PI films, measured using a four-point probe, were 1.6 x 10 7 and 0.83 Ω/cm 2 , respectively. The thicknesses of Ni-NPs and the Ni layer on the polyimide surface were 82 nm and 382 nm, respectively, as determined by transmission electron microscopy, and the Ni layer adhered well to PI, as determined by the adhesive tape testing method

  4. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    KAUST Repository

    Xu, Sheng

    2015-12-01

    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2\\'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3\\',4,4\\'-benzophenone tetracarboxylic dianhydride-4,4\\'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  5. Novel thermally cross-linked polyimide membranes for ethanol dehydration via pervaporation

    KAUST Repository

    Xu, Sheng; Wang, Yan

    2015-01-01

    © 2015 Elsevier B.V. In this work, two novel carboxyl-containing polyimides, 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-4,4'-diaminodiphenylmethane/3,5-diaminobenzoic acid (6FDA-MDA/DABA, FMD) and 3,3',4,4'-benzophenone tetracarboxylic dianhydride-4,4'-diaminodiphenylmethane/3,5-diaminobenzoic acid (BTDA-MDA/DABA, BMD), are synthesized via chemical and thermal imidization methods, respectively, and employed as pervaporation membranes for ethanol dehydration. Chemical structures of the two polyimides are examined by FTIR and TGA to confirm the successful synthesis. A post thermal treatment of the polyimide membranes with the temperature range of 250 to 400. °C is applied, and its effects on the membrane morphology and separation performance are studied and characterized by FTIR, TGA, WXRD, solubility and sorption test. It is believed that the thermal treatment of the carboxyl-containing polyimide membrane at a relative low temperature only leads to the physical annealing, while it may cause the decarboxylation-induced cross-linking at a higher temperature. In addition, the operation temperature in pervaporation is also varied and shown to be an important factor to affect the final membrane performance. Performance benchmarking shows that the developed polyimide membranes both have superior pervaporation performance to most other flat-sheet dense membranes. This work is believed to shed useful insights on polyimide membranes for pervaporation applications.

  6. Synthesis, characterization and thermal analysis of polyimide-cobalt ferrite nanocomposites

    International Nuclear Information System (INIS)

    Mazuera, David; Perales, Oscar; Suarez, Marcelo; Singh, Surinder

    2010-01-01

    Research highlights: · Polyimide-cobalt ferrite nanocomposites were successfully produced. · Produced nanocomposites are suitable for use at temperatures below 80 deg. C. · Magnetic properties of nanocomposites were no sensitive to particle agglomeration. · Good distribution of clustered nanoparticles was achieved in produced composites. - Abstract: Cobalt ferrite nanocrystals were synthesized under size-controlled conditions in aqueous phase and incorporated into a polyimide matrix at various volumetric loads. Synthesized 20 nm cobalt ferrite single crystals, which exhibited a room-temperature coercivity of 2.9 kOe, were dispersed in polyimide precursor using two techniques: homogenizer and ball milling. These suspensions were then cured to develop the polyimide structure in the resulting nanocomposites. Produced films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and vibrating sample magnetometry, which confirmed the formation of the desired phases. As expected, the saturation magnetization in the nanocomposites varied according to the polyimide/ferrite weight ratio, while coercivity remained at the value corresponding to pure cobalt ferrite nanocrystals. Thermal degradation, thermal stability and dynamic mechanical analyses tests were also carried out to assess the effect of the concentration of the ferrite disperse phase on the thermo-mechanical behavior of the corresponding nanocomposites as well as the used dispersion techniques.

  7. Design of numerical model for thermoacoustic devices using OpenFOAM

    Science.gov (United States)

    Tisovsky, Tomas; Vit, Tomas

    2017-09-01

    Thermoacoustic devices are increasingly popular especially because of their construction simplicity and the ability to easily convert waste heat into the form of usable energy. Aim of this paper is to introduce some of the effective procedures for creating a complex mathematical model of thermoacoustic devices in OpenFOAM.

  8. Fracture of metal foams : In-situ testing and numerical modeling

    NARCIS (Netherlands)

    Onck, P.R.; van Merkerk, R.; de Hosson, J.T.M.; Schmidt, I

    This paper is on a combined experimental/modeling study on the tensile fracture of open-cell foams. In-situ tensile tests show that individual struts can fail in a brittle or ductile mode, presumably depending on the presence of casting defects. In-situ single strut tests were performed, enabling

  9. Destabilization, Propagation, and Generation of Surfactant-Stabilized Foam during Crude Oil Displacement in Heterogeneous Model Porous Media.

    Science.gov (United States)

    Xiao, Siyang; Zeng, Yongchao; Vavra, Eric D; He, Peng; Puerto, Maura; Hirasaki, George J; Biswal, Sibani L

    2018-01-23

    Foam flooding in porous media is of increasing interest due to its numerous applications such as enhanced oil recovery, aquifer remediation, and hydraulic fracturing. However, the mechanisms of oil-foam interactions have yet to be fully understood at the pore level. Here, we present three characteristic zones identified in experiments involving the displacement of crude oil from model porous media via surfactant-stabilized foam, and we describe a series of pore-level dynamics in these zones which were not observed in experiments involving paraffin oil. In the displacement front zone, foam coalesces upon initial contact with crude oil, which is known to destabilize the liquid lamellae of the foam. Directly upstream, a transition zone occurs where surface wettability is altered from oil-wet to water-wet. After this transition takes place, a strong foam bank zone exists where foam is generated within the porous media. We visualized each zone using a microfluidic platform, and we discuss the unique physicochemical phenomena that define each zone. In our analysis, we also provide an updated mechanistic understanding of the "smart rheology" of foam which builds upon simple "phase separation" observations in the literature.

  10. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    Science.gov (United States)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  11. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups

    Science.gov (United States)

    Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua

    2018-05-01

    Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.

  12. Area-selective atomic layer deposition of platinum using photosensitive polyimide

    NARCIS (Netherlands)

    Vervuurt, R.H.J.; Sharma, A.; Jiao, Y.; Kessels, W.M.M.; Bol, A.A.

    2016-01-01

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a

  13. Systems and methods for using a boehmite bond-coat with polyimide membranes for gas separation

    Science.gov (United States)

    Polishchuk, Kimberly Ann

    2013-03-05

    The subject matter disclosed herein relates to gas separation membranes and, more specifically, to polyimide gas separation membranes. In an embodiment, a gas separation membrane includes a porous substrate, a substantially continuous polyimide membrane layer, and one or more layers of boehmite nanoparticles disposed between the porous substrate and the polyimide membrane layer to form a bond-coat layer. The bond-coat layer is configured to improve the adhesion of the polyimide membrane layer to the porous substrate, and the polyimide membrane layer has a thickness approximately 100 nm or less.

  14. Impact of foamed matrix components on foamed concrete properties

    Science.gov (United States)

    Tarasenko, V. N.

    2018-03-01

    The improvement of the matrix foam structure by means of foam stabilizing additives is aimed at solving the technology-oriented problems as well as at the further improvement of physical and mechanical properties of cellular-concrete composites. The dry foam mineralization is the mainstream of this research. Adding the concrete densifiers, foam stabilizers and mineral powders reduces the drying shrinkage, which makes the foam concrete products technologically effective.

  15. Tribological properties at 25 C of seven polyimide films bonded to 440 C high-temperature stainless steel

    Science.gov (United States)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of seven polyimide films applied to 440 C high temperature stainless steel substrates were studied at 25 C with a pin-on-disk type of friction and were apparatus. The polyimides fell into two groups according to friction and wear properties. Group I polyimides had slightly lower friction but much higher wear than group II polyimides. The wear mechanism was predominately adhesion, but the wear particles were larger for group I polyimides. For most of the polyimides the transfer films consisted of clumps of compacted wear particles. One polyimide composition produced a very thin transfer film that sheared plastically in the contact area.

  16. Performance of 6FDA–6FpDA polyimide for propylene/propane separations

    KAUST Repository

    Das, Mita

    2010-12-01

    This work addresses the challenges faced by previous researchers with 6FDA-6FpDA polyimide for propylene/propane separations due to plasticization. A study of film annealing temperature is reported to optimize plasticization suppression in elevated temperature permeation on properly annealed dense films made with high molecular weight polymer. A detailed analysis of pure and mixed gas results using different permeability models is shown in this work. The annealing effects in terms of plasticization suppression and permeability and selectivity changes are discussed in detail. According to our best knowledge, this is for the first time plasticization suppression for propylene/propane has been reported with any polyimide dense film membrane. Results of pure gas sorption experiments using a pressure decay method with un-annealed and annealed films are discussed and used to analyze the permeation data using the dual-mode model. Mixed gas permeation results also are explained with dual mode and bulk flow transport models. © 2010 Elsevier B.V.

  17. Permeability of Aluminium Foams Produced by Replication Casting

    Directory of Open Access Journals (Sweden)

    Maxim L. Cherny

    2012-12-01

    Full Text Available The replication casting process is used for manufacturing open-pore aluminum foams with advanced performances, such as stability and repeatability of foam structure with porosity over 60%. A simple foam structure model based on the interaction between sodium chloride solid particles poorly wetted by melted aluminum, which leads to the formation of air pockets (or “air collars”, is proposed for the permeability of porous material. The equation for the minimum pore radius of replicated aluminum foam is derived. According to the proposed model, the main assumption of the permeability model consists in a concentration of flow resistance in a circular aperture of radius rmin. The permeability of aluminum open-pore foams is measured using transformer oil as the fluid, changing the fractions of initial sodium chloride. Measured values of minimum pore size are close to theoretically predicted ones regardless of the particle shape. The expression for the permeability of replicated aluminum foam derived on the basis of the “bottleneck” model of porous media agrees well with the experimental data. The obtained data can be applied for commercial filter cells and pneumatic silencers.

  18. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  19. Faraday instability at foam-water interface.

    Science.gov (United States)

    Bronfort, A; Caps, H

    2012-12-01

    A nearly two-dimensional foam is generated inside a Hele-shaw cell and left at rest on its liquid bath. The system is then vertically shaken and, above a well-defined acceleration threshold, surface waves appear at the foam-liquid interface. Those waves are shown to be subharmonic. The acceleration threshold is studied and compared to the common liquid-gas case, emphasizing the energy dissipation inside the foam. An empirical model is proposed for this energy loss, accounting for the foam characteristics such as the bubble size but also the excitation parameter, namely the linear velocity.

  20. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    Science.gov (United States)

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  1. Polarization and Piezoelectric Properties of a Nitrile Substituted Polyimide

    Science.gov (United States)

    Simpson, Joycelyn; Ounaies, Zoubeida; Fay, Catharine

    1997-01-01

    This research focuses on the synthesis and characterization of a piezoelectric (beta-CN)- APB/ODPA polyimide. The remanent polarization and piezoelectric d(sub 31) and g(sub 33) coefficients are reported to assess the effect of synthesis variations. Each of the materials exhibits a level of piezoelectricity which increases with temperature. The remanent polarization is retained at temperatures close to the glass transition temperature of the polyimide.

  2. Time-dependent crashworthiness of polyurethane foam

    Science.gov (United States)

    Basit, Munshi Mahbubul; Cheon, Seong Sik

    2018-05-01

    Time-dependent stress-strain relationship as well as crashworthiness of polyurethane foam was investigated under constant impact energy with different velocities, considering inertia and strain-rate effects simultaneously during the impact testing. Even though the impact energies were same, the percentage in increase in densification strain due to higher impact velocities was found, which yielded the wider plateau region, i.e. growth in crashworthiness. This phenomenon is analyzed by the microstructure of polyurethane foam obtained from scanning electron microscopy. The equations, coupled with the Sherwood-Frost model and the impulse-momentum theory, were employed to build the constitutive equation of the polyurethane foam and calculate energy absorption capacity of the foam. The nominal stress-strain curves obtained from the constitutive equation were compared with results from impact tests and were found to be in good agreement. This study is dedicated to guiding designer use polyurethane foam in crashworthiness structures such as an automotive bumper system by providing crashworthiness data, determining the crush mode, and addressing a mathematical model of the crashworthiness.

  3. High-temperature polyimide coating for optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Semjonov, S L; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Sapozhnikov, D A; Erin, D Yu; Zabegaeva, O N; Kushtavkina, I A; Vygodskii, Ya S [A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation); Nishchev, K N [N.P. Ogarev Mordovia State University, Saransk (Russian Federation)

    2015-04-30

    We present our first results on the fabrication of new, high-performance polyimide coatings. The key components of the coatings are polyimides containing various cardo and/or fluoroalkylene groups, which allows the coatings to retain their high-temperature stability and facilitates the storage of the starting polymer and the optical fibre coating process owing to the good solubility of such copolymers in many organic solvents. Annealing for 30 s, 1 h and 24 h at temperatures of 430, 350 and 300 °C, respectively, reduces the strength of optical fibres having such coating by no more than 10%. (optical fibres)

  4. Polyimide, dianhydride monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Pinnau, Ingo; Ghanem, Bader Saleh; Abdulhamid, Mahmoud Atef

    2017-01-01

    Embodiments of the present disclosure include, a dianhydride monomer, a polyimide, a method of making a dianhydride, a method of making a polyimide, and the like. Embodiments of the present disclosure can be used in membrane-based gas separation applications.

  5. Polyimide, dianhydride monomers, and polymers, methods of making and uses thereof

    KAUST Repository

    Pinnau, Ingo

    2017-11-16

    Embodiments of the present disclosure include, a dianhydride monomer, a polyimide, a method of making a dianhydride, a method of making a polyimide, and the like. Embodiments of the present disclosure can be used in membrane-based gas separation applications.

  6. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  7. Porosity and cell size control in alumina foam preparation by thermo-foaming of powder dispersions in molten sucrose

    Directory of Open Access Journals (Sweden)

    Sujith Vijayan

    2016-09-01

    Full Text Available The foaming characteristics of alumina powder dispersions in molten sucrose have been studied as a function of alumina powder to sucrose weight ratio (WA/S and foaming temperature. The increase in foaming temperature significantly decreases the foaming and foam setting time and increases the foam volume due to an increase in the rate of OH condensation as well as a decrease in the viscosity of the dispersion. Nevertheless, the foam collapses beyond a critical foaming temperature, which depends on the WA/S. The sintering shrinkage depends mainly on the WA/S and marginally on the foaming temperature. The porosity (83.4–94.6 vol.% and cell size (0.55–1.6 mm increase with an increase in foaming temperature (120–170 °C and a decrease in WA/S (0.8–1.6. The drastic decrease in compressive strength and modulus beyond a WA/S of 1.2 is due to the pores generated on the cell walls and struts as a result of particle agglomeration. Gibson and Ashby plots show large deviation with respect to the model constants ‘C’ and ‘n’, especially at higher alumina powder to sucrose weight ratios.

  8. Impact of silver metallization and electron irradiation on the mechanical deformation of polyimide films

    Science.gov (United States)

    Muradov, A. D.; Mukashev, K. M.; Yar-Mukhamedova, G. Sh.; Korobova, N. E.

    2017-11-01

    The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1-5 μm. The surface coatings contained 80-97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using Cu K α radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δɛ = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.

  9. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed

    2018-03-01

    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  10. Development of design data for graphite reinforced epoxy and polyimide composites

    Science.gov (United States)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  11. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    Science.gov (United States)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  12. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  13. Polarization Stability of Amorphous Piezoelectric Polyimides

    Science.gov (United States)

    Park, C.; Ounaies, Z.; Su, J.; Smith, J. G., Jr.; Harrison, J. S.

    2000-01-01

    Amorphous polyimides containing polar functional groups have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The thermal stability of the piezoelectric effect of one polyimide was evaluated as a function of various curing and poling conditions under dynamic and static thermal stimuli. First, the polymer samples were thermally cycled under strain by systematically increasing the maximum temperature from 50 C to 200 C while the piezoelectric strain coefficient was being measured. Second, the samples were isothermally aged at an elevated temperature in air, and the isothermal decay of the remanent polarization was measured at room temperature as a function of time. Both conventional and corona poling methods were evaluated. This material exhibited good thermal stability of the piezoelectric properties up to 100 C.

  14. Dynamics of poroelastic foams

    Science.gov (United States)

    Forterre, Yoel; Sobac, Benjamin

    2010-11-01

    Soft poroelastic structures are widespread in biological tissues such as cartilaginous joints in bones, blood-filled placentae or plant organs. Here we investigate the dynamics of open elastic foams immersed in viscous fluids, as model soft poroelastic materials. The experiment consists in slowly compacting blocs of polyurethane solid foam embedded in silicon oil-tanks and studying their relaxation to equilibrium when the confining stress is suddenly released. Measurements of the local fluid pressure and foam velocity field are compared with a simple two-phase flow approach. For small initial compactions, the results show quantitative agreement with the classical diffusion theory of soil consolidation (Terzaghi, Biot). On the other hand, for large initial compactions, the dynamics exhibits long relaxation times and decompaction fronts, which are mainly controlled by the highly non-linear mechanical response of the foam. The analogy between this process and the evaporation of a polymer melt close to the glass transition will be briefly discussed.

  15. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    International Nuclear Information System (INIS)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-01-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO 2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  16. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  17. Shelf Life of PMR Polyimide Monomer Solutions and Prepregs Extended

    Science.gov (United States)

    Alston, William B.; Scheiman, Daniel A.

    2000-01-01

    PMR (Polymerization of Monomeric Reactants) technology was developed in the mid-1970's at the NASA Glenn Research Center at Lewis Field for fabricating high-temperature stable polyimide composites. This technology allowed a solution of polyimide monomers or prepreg (a fiber, such as glass or graphite, impregnated with PMR polyimide monomers) to be thermally cured without the release of volatiles that cause the formation of voids unlike the non-PMR technology used for polyimide condensation type resins. The initial PMR resin introduced as PMR 15 is still commercially available and is used worldwide by aerospace industries as the state-of-the-art resin for high-temperature polyimide composite applications. PMR 15 offers easy composite processing, excellent composite mechanical property retention, a long lifetime at use temperatures of 500 to 550 F, and relatively low cost. Later, second-generation PMR resin versions, such as PMR II 50 and VCAP 75, offer improvements in the upper-use temperature (to 700 F) and in the useful life at temperature without major compromises in processing and property retention but with significant increases in resin cost. Newer versions of nontoxic (non-methylene dianiline) PMR resins, such as BAX PMR 15, offer similar advantages as originally found for PMR 15 but also with significant increases in resin cost. Thus, the current scope of the entire PMR technology available meets a wide range of aeronautical requirements for polymer composite applications.

  18. Experimental and theoretical study of flowing foam and of the liquid film formed on the wall for the improvement of decontamination processes using foams

    International Nuclear Information System (INIS)

    Pouvreau, J.

    2002-01-01

    Amongst chemical decontamination techniques, the foam cleaning process has the advantage of reducing the amount of liquid used, thus limiting the quantity of the chemical reagents and the secondary waste volume. In order to improve this process, it is essential to understand the behaviour of the foam in the vicinity of the contaminated surface. Two methods of study have been initiated. Firstly, the characterization of the liquid film formed on the wall, and secondly, the characterization of the foam bed. Furthermore, our goal is to set up a drainage model which enables a choice of process parameters. Flush-mounted conductance probes have been developed in order to determine the thickness of the liquid film at the surface and the foam liquid fraction. The influence of the foam on the film structure and the interpretation of the thickness measured is discussed. The process studied consists of filling the facility with foam and letting the foam drain once the facility is full. It was demonstrated that the liquid film thickness varies between a few microns and 50 μm and that the value depends on position and time. Furthermore, a strong correlation links the film thickness and the foam liquid fraction. A drift-flux model has been built to describe the drainage of the upstream flow or static foam. The model is solved by using the method of characteristics. Analytical solutions are obtained and the liquid fraction evolution can easily be represented on a single diagram. The parameters of the void-drift closure law have been deducted from the experiments. The comparison to experimental data has shown that the model is well adapted. The laboratory therefore has experimental and theoretical equipment to study any foam. Finally, the model is applied to realistic decontamination configurations in order to present how determine the parameters of the process. (author) [fr

  19. Characterization of Polyimide Matrix Resins and Prepregs

    Science.gov (United States)

    Maximovich, M. G.; Galeos, R. M.

    1985-01-01

    Graphite/polyimide composite materials are attractive candidates for a wide range of aerospace applications. They have many of the virtues of graphite/epoxies, i.e., high specific strengths and stiffness, and also outstanding thermal/oxidative stability. Yet they are not widely used in the aerospace industry due to problems of procesability. By their nature, modern addition polyimide (PI) resins and prepregs are more complex than epoxies; the key to processing lies in characterizing and understanding the materials. Chemical and rheological characterizations are carried out on several addition polyimide resins and graphite reinforced prepregs, including those based on PMR-15, LARC 160 (AP 22), LARC 160 (Curithane 103) and V378A. The use of a high range torque transducer with a Rheometrics mechanical spectrometer allows rheological data to be generated on prepreg materials as well as neat resins. The use of prepreg samples instead of neat resins eliminates the need for preimidization of the samples and the data correlates well with processing behavior found in the shop. Rheological characterization of the resins and prepregs finds significant differences not readily detected by conventional chemical characterization techniques.

  20. Liquid foam templating - A route to tailor-made polymer foams.

    Science.gov (United States)

    Andrieux, Sébastien; Quell, Aggeliki; Stubenrauch, Cosima; Drenckhan, Wiebke

    2018-06-01

    Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It

  1. Positivity of spin foam amplitudes

    International Nuclear Information System (INIS)

    Baez, John C; Christensen, J Daniel

    2002-01-01

    The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model

  2. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin; Xu, Liren; Chen, Chien-Chiang; Paul, Donald R.; Koros, William J.

    2013-01-01

    stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied

  3. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    Science.gov (United States)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  4. Auxetic foam for snowsport safety devices

    OpenAIRE

    Allen, Tom; Duncan, Olly; Foster, Leon; Senior, Terry; Zampieri, Davide; Edeh, Victor; Alderson, Andrew

    2017-01-01

    Skiing and snowboarding are popular snow-sports with inherent risk of injury. There is potential to reduce the prevalence of injuries by improving and implementing snow-sport safety devices with the application of advanced materials. This paper investigates the application of auxetic foam to snow-sport safety devices. Composite pads - consisting of foam covered with a semi-rigid shell - were investigated as a simple model of body armour and a large 70 x 355 x 355 mm auxetic foam sample was fa...

  5. Photochemically Synthesized Polyimides

    Science.gov (United States)

    Meador, Michael A.; Tyson, Daniel S.

    2008-01-01

    An alternative to the conventional approach to synthesis of polyimides involves the use of single monomers that are amenable to photopolymerization. Heretofore, the synthesis of polyimides has involved multiple-monomer formulations and heating to temperatures that often exceed 250 C. The present alternative approach enables synthesis under relatively mild conditions that can include room temperature. The main disadvantages of the conventional approach are the following: Elevated production temperatures can lead to high production costs and can impart thermal stresses to the final products. If the proportions of the multiple monomeric ingredients in a given batch are not exactly correct, the molecular weight and other physical properties of the final material could be reduced from their optimum or desired values. To be useful in the alternative approach, a monomer must have a molecular structure tailored to exploit Diels-Alder trapping of a photochemically generated ortho-quinodimethane. (In a Diels-Alder reaction, a diene combines with a dienophile to form molecules that contain six-membered rings.) In particular, a suitable monomer (see figure) contains ortho-methylbenzophenone connected to a dienophile (in this case, a maleimide) through a generic spacer group. Irradiation with ultraviolet light gives rise to a photochemical intermediate the aforementioned ortho-quinodimethane from the ortho-methylbenzophenone. This group may react with the dienophile on another such monomer molecule to produce an oligomer that, in turn may react in a stepgrowth manner to produce a polyimide. This approach offers several advantages in addition to those mentioned above: The monomer can be stored for a long time because it remains unreactive until exposed to light. Because the monomer is the only active starting ingredient, there is no need for mixing, no concern for ensuring correct proportions of monomers, and the purity of the final product material is inherently high. The use

  6. Optical fiber shape sensing of polyimide skin for a flexible morphing wing.

    Science.gov (United States)

    Sun, Guangkai; Li, Hong; Dong, Mingli; Lou, Xiaoping; Zhu, Lianqing

    2017-11-20

    This paper presents the 3D shape sensing of polyimide thin film skin for a flexible morphing wing using fiber Bragg grating (FBG) sensors. The calibration curves of the FBG sensors are measured experimentally to ensure relative accurate conversion between Bragg wavelength shift (BWS) and bending curvature of the polyimide skin. The reflection spectra of the FBG sensors are measured at different airfoil profiles, and the variation tendency of the BWS values with the airfoil profiles are analyzed. The bending curvatures of the polyimide thin film skin at different airfoil profiles are calculated using the measured BWS values of the FBG sensors and the linear interpolation algorithm. The 3D shapes of the polyimide skin at different airfoil profiles are reconstructed based on the measured bending curvatures and the interpolation and curve fitting functions. The 3D precise visual measurements are conducted using a digital photogrammetry system, and then the correctness of the shape reconstruction results are verified. The results prove that the maximum error between the 3D visual and FBG measurements is less than 5%. The FBG sensing method is effective for the shape sensing of polyimide skin for flexible morphing wing.

  7. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  8. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    Directory of Open Access Journals (Sweden)

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  9. Etude préliminaire de la stabilité à l'hydrolyse des polyimides 6F Preliminary Study of the Hydrolysis Stability of 6f Polyimides

    Directory of Open Access Journals (Sweden)

    Mileo J. C.

    2006-11-01

    water and of the temperature suggests rather a balanced opening cycle of the imide ring. The fundamental study that was undertaken on monomer models by means of the NMR of fluorine will doubtless be able to determine the mechanism involved, but this handicap of 6F polyImides should not rule out the outlook for their industrial use as separation membranes.

  10. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  11. Foam Microrheology

    International Nuclear Information System (INIS)

    KRAYNIK, ANDREW M.; LOEWENBERG, MICHAEL; REINELT, DOUGLAS A.

    1999-01-01

    The microrheology of liquid foams is discussed for two different regimes: static equilibrium where the capillary number Ca is zero, and the viscous regime where viscosity and surface tension are important and Ca is finite. The Surface Evolver is used to calculate the equilibrium structure of wet Kelvin foams and dry soap froths with random structure, i.e., topological disorder. The distributions of polyhedra and faces are compared with the experimental data of Matzke. Simple shearing flow of a random foam under quasistatic conditions is also described. Viscous phenomena are explored in the context of uniform expansion of 2D and 3D foams at low Reynolds number. Boundary integral methods are used to calculate the influence of Ca on the evolution of foam microstructure, which includes bubble shape and the distribution of liquid between films, Plateau borders, and (in 3D) the nodes where Plateau borders meet. The micromechanical point of view guides the development of structure-property-processing relationships for foams

  12. Damping of liquid sloshing by foams

    Science.gov (United States)

    Sauret, A.; Boulogne, F.; Cappello, J.; Dressaire, E.; Stone, H. A.

    2015-02-01

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus, we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  13. Sound Velocity in Soap Foams

    International Nuclear Information System (INIS)

    Wu Gong-Tao; Lü Yong-Jun; Liu Peng-Fei; Li Yi-Ning; Shi Qing-Fan

    2012-01-01

    The velocity of sound in soap foams at high gas volume fractions is experimentally studied by using the time difference method. It is found that the sound velocities increase with increasing bubble diameter, and asymptotically approach to the value in air when the diameter is larger than 12.5 mm. We propose a simple theoretical model for the sound propagation in a disordered foam. In this model, the attenuation of a sound wave due to the scattering of the bubble wall is equivalently described as the effect of an additional length. This simplicity reasonably reproduces the sound velocity in foams and the predicted results are in good agreement with the experiments. Further measurements indicate that the increase of frequency markedly slows down the sound velocity, whereas the latter does not display a strong dependence on the solution concentration

  14. In Situ Poling and Imidization of Amorphous Piezoelectric Polyimides

    Science.gov (United States)

    Park, Cheol; Ounaies, Zoubeida; Wise, Kristopher E.; Harrison, Joycelyn S.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    An amorphous piezoelectric polyimide containing polar functional groups has been developed using a combination of experimental and molecular modeling for potential use in high temperature applications. This amorphous polyimide, (Beta-CN)APB/ODPA, has exhibited good thermal stability and piezoelectric response at temperatures up to 150C. Density functional calculations predicted that a partially cured amic acid (open imide ring) possesses a dipole moment four times larger than the fully imidized closed ring. In situ poling and imidization of the partially cured (Beta-CN)APB/ODPA, was studied in an attempt to maximize the degree of dipolar orientation and the resultant piezoelectric response. A positive corona poling was used to minimize localized arcing during poling and to allow use of higher poling fields without dielectric breakdown. The dielectric relaxation strength, remanent polarization, and piezoelectric response were evaluated as a function of the poling profile. The partially cured, corona poled polymers exhibited higher dielectric relaxation strength (delta varepsilon), remanent polarization (Pr) and piezoelectric strain coefficient (d33) than the fully cured, conventionally poled ones.

  15. Models for Strength Prediction of High-Porosity Cast-In-Situ Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao

    2018-01-01

    Full Text Available A study was undertaken to develop a prediction model of compressive strength for three types of high-porosity cast-in-situ foamed concrete (cement mix, cement-fly ash mix, and cement-sand mix with dry densities of less than 700 kg/m3. The model is an extension of Balshin’s model and takes into account the hydration ratio of the raw materials, in which the water/cement ratio was a constant for the entire construction period for a certain casting density. The results show that the measured porosity is slightly lower than the theoretical porosity due to few inaccessible pores. The compressive strength increases exponentially with the increase in the ratio of the dry density to the solid density and increases with the curing time following the composite function A2ln⁡tB2 for all three types of foamed concrete. Based on the results that the compressive strength changes with the porosity and the curing time, a prediction model taking into account the mix constitution, curing time, and porosity is developed. A simple prediction model is put forward when no experimental data are available.

  16. Gas separation performance of 6FDA-based polyimides with different chemical structures

    KAUST Repository

    Qiu, Wulin

    2013-10-01

    This work reports the gas separation performance of several 6FDA-based polyimides with different chemical structures, to correlate chemical structure with gas transport properties with a special focus on CO2 and CH 4 transport and plasticization stability of the polyimides membranes relevant to natural gas purification. The consideration of the other gases (He, O2 and N2) provided additional insights regarding effects of backbone structure on detailed penetrant properties. The polyimides studied include 6FDA-DAM, 6FDA-mPDA, 6FDA-DABA, 6FDA-DAM:DABA (3:2), 6FDA-DAM:mPDA (3:2) and 6FDA-mPDA:DABA (3:2). Both pure and binary gas permeation were investigated. The packing density, which is tunable by adjusting monomer type and composition of the various samples, correlated with transport permeability and selectivity. The separation performance of the polyimides for various gas pairs were also plotted for comparison to the upper bound curves, and it was found that this family of materials shows attractive performance. The CO 2 plasticization responses for the un-cross-linked polyimides showed good plasticization resistance to CO2/CH4 mixed gas with 10% CO2; however, only the cross-linked polyimides showed good plasticization resistance under aggressive gas feed conditions (CO 2/CH4 mixed gas with 50% CO2 or pure CO 2). For future work, asymmetric hollow fibers and carbon molecular sieve membranes based on the most attractive members of the family will be considered. © 2013 Elsevier Ltd. All rights reserved.

  17. Transport of particles in liquid foams: a multi-scale approach

    International Nuclear Information System (INIS)

    Louvet, N.

    2009-11-01

    Foam is used for the decontamination of radioactive tanks since foam is a system that has a large surface for a low amount of liquid and as a consequence requires less water to be decontaminated. We study experimentally different particle transport configurations in fluid micro-channels network (Plateau borders) of aqueous foam. At first, foam permeability is measured at the scale of a single channel and of the whole foam network for 2 soap solutions known for their significant different interface mobility. Experimental data are well described by a model that takes into account the real geometry of the foam and by considering a constant value of the Boussinesq number of each soap solutions. Secondly, the velocity of one particle convected in a single foam channel is measured for different particle/channel aspect ratio. For small aspect ratio, a counterflow that is taking place at the channel's corners slows down the particle. A recirculation model in the channel foam films is developed to describe this effect. To do this, the Gibbs elasticity is introduced. Then, the threshold between trapped and released of one particle in liquid foam are carried out. This threshold is deduced from hydrodynamic and capillary forces equilibrium. Finally, the case of a clog foam node is addressed. (author)

  18. Mathematical modeling of the heat frozen earth in OpenFOAM

    International Nuclear Information System (INIS)

    Kudryashov, N.A.; Chmykhov, M.A.; Kartashev, A.P.

    2015-01-01

    A mathematical model of heating permafrost has been presented with allowance for the Stefan condition at the boundary melting. A numerical algorithm has been proposed for analyzing this process. A computation module has been developed on an open architecture with the use of object-oriented programming language OpenFOAM. The computation module has been verified on the known exact solutions of simplified problems [ru

  19. Effect of gas type on foam film permeability and its implications for foam flow in porous media.

    Science.gov (United States)

    Farajzadeh, R; Muruganathan, R M; Rossen, W R; Krastev, R

    2011-10-14

    The aim of this paper is to provide a perspective on the effect of gas type on the permeability of foam films stabilized by different types of surfactant and to present a critical overview of the tracer gas experiments, which is the common approach to determine the trapped fraction of foam in porous media. In these experiments some part of the gas is replaced by a "tracer gas" during the steady-state stage of the experiments and trapped fraction of foam is determined by fitting the effluent data to a capacitance mass-transfer model. We present the experimental results on the measurement of the gas permeability of foam films stabilized with five surfactants (non-ionic, anionic and cationic) and different salt concentrations. The salt concentrations assure formation of either common black (CBF) or Newton black films (NBF). The experiments are performed with different single gasses. The permeability of the CBF is in general higher than that of the NBF. This behavior is explained by the higher density of the surfactant molecules in the NBF compared to that of CBF. It is also observed that the permeability coefficient, K(cm/s), of CBF and NBF for non-ionic and cationic surfactants are similar and K is insensitive to film thickness. Compared to anionic surfactants, the films made by the non-ionic surfactant have much lower permeability while the films made by the cationic surfactant have larger permeability. This conclusion is valid for all gasses. For all types of surfactant the gas permeability of foam film is largely dependent on the dissolution of gas in the surfactant solution and increases with increasing gas solubility in the bulk liquid. The measured values of K are consistent with rapid diffusion of tracer gasses through trapped gas adjacent to flowing gas in porous media, and difficulties in interpreting the results of tracer-foam experiments with conventional capacitance models. The implications of the results for foam flow in porous media and factors leading

  20. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers.

    Science.gov (United States)

    Kong, Lushi; Rui, Guanchun; Wang, Guangyu; Huang, Rundong; Li, Ran; Yu, Jiajie; Qi, Shengli; Wu, Dezhen

    2017-11-02

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  1. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    Directory of Open Access Journals (Sweden)

    Lushi Kong

    2017-11-01

    Full Text Available A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for use as highly efficient catalysts. The approach developed here is applicable for coating various noble metals on a wide range of polymer matrices, and can be used for obtaining polyimide nanotubes with metal loaded on both the inner and outer surface.

  2. Graphite Foam Heat Exchangers for Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Klett, J.W.

    2004-06-07

    Improved thermal management is needed to increase the power density of electronic and more effectively cool electronic enclosures that are envisioned in future aircraft, spacecraft and surface ships. Typically, heat exchanger cores must increase in size to more effectively dissipate increased heat loads, this would be impossible in many cases, thus improved heat exchanger cores will be required. In this Phase I investigation, MRi aimed to demonstrate improved thermal management using graphite foam (Gr-foam) core heat exchangers. The proposed design was to combine Gr-foams from POCO with MRi's innovative low temperature, active metal joining process (S-Bond{trademark}) to bond Gr-foam to aluminum, copper and aluminum/SiC composite faceplates. The results were very favorable, so a Phase II SBIR with the MDA was initiated. This had primarily 5 tasks: (1) bonding, (2) thermal modeling, (3) cooling chip scale packages, (4) evaporative cooling techniques and (5) IGBT cold plate development. The bonding tests showed that the ''reflow'' technique with S-Bond{reg_sign}-220 resulted in the best and most consistent bond. Then, thermal modeling was used to design different chip scale packages and IGBT cold plates. These designs were used to fabricate many finned graphite foam heat sinks specifically for two standard type IC packages, the 423 and 478 pin chips. These results demonstrated several advantages with the foam. First, the heat sinks with the foam were lighter than the copper/aluminum sinks used as standards. The sinks for the 423 design made from foam were not as good as the standard sinks. However, the sinks made from foam for the 478 pin chips were better than the standard heat sinks used today. However, this improvement was marginal (in the 10-20% better regime). However, another important note was that the epoxy bonding technique resulted in heat sinks with similar results as that with the S-bond{reg_sign}, slightly worse than the S

  3. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  4. Adhesion between a rutile surface and a polyimide: a coarse grained molecular dynamics study

    Science.gov (United States)

    Kumar, Arun; Sudarkodi, V.; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Nair, Nisanth N.; Basu, Sumit

    2018-04-01

    Titanium, due to its high strength to weight ratio and polyimides, due to their excellent thermal stability are being increasingly used in aerospace applications. We investigate the bonding between a (110) rutile substrate and a popular commercial polyimide, PMR-15, starting from the known atomic structure of the rutile substrate and the architecture of the polymer. First, the long PMR-15 molecule is divided into four fragments and an all-atom non-bonded forcefield governing the interaction between PMR-15 and a rutile substrate is developed. To this end, parameters of Buckingham potential for interaction between each atom in the fragments and the rutile surface are fitted, so as to ensure that the sum of non-bonded and electrostatic interaction energy between the substrate and a large number of configurations of each fragment, calculated by the quantum mechanical route and obtained from the fitted potential, is closely matched. Further, two coarse grained models of PMR-15 are developed—one for interaction between two coarse grained PMR-15 molecules and another for that between a coarse grained PMR-15 and the rutile substrate. Molecular dynamics simulations with the coarse grained models yields a traction separation law—a very useful tool for conducting continuum level finite element simulations of rutile-PMR-15 joints—governing the normal separation of a PMR-15 block from a flat rutile substrate. Moreover, detailed information about the affinity of various fragments to the substrate are also obtained. In fact, though the separation energy between rutile and PMR-15 turns out to be rather low, our analysis—with merely the molecular architecture of the polyimide as the starting point—provides a scheme for in-silico prediction of adhesion energies for new polyimide formulations.

  5. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    Science.gov (United States)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  6. Rationally designed polyimides for high-energy density capacitor applications.

    Science.gov (United States)

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-09

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  7. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Science.gov (United States)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  8. PUR-PIR foam produced based on poly(hydroxybutyl citrate foamed founded with different factories

    Directory of Open Access Journals (Sweden)

    Liszkowska Joanna

    2018-03-01

    Full Text Available A poly(hydroxybutyl citrate p(HBC was obtained. The product compound produced in the solution during esterification, was added to rigid polyurethane-polyisocyanurate foams (PUR-PIR. The amount of petrochemical polyol in the foams was decreased in favor of the p(HBC from 0.1 to 0.5 equivalent. The foams were foamed in two ways: with distilled water (W foams and with Solkane 365/227 (S foams. The examination results of both foam series were compared. They showed that the foams foamed with water have higher softening temperature than the foams foamed with solkane. The retention values for both foam series are around 91–95%, and water absorption in the range of 0.7–3.2%. The anisotropy coefficient did not exceed 1.08 (the lowest value being 1.01.

  9. Polyimide Prepregs With Improved Tack

    Science.gov (United States)

    Vanucci, R.

    1987-01-01

    Drape and tack improved without loss of strength. Composites made with PMR-15 (or equivalent) polyimides have gained acceptance as viable engineering materials for high-use-temperature applications. Acceptance due to both thermo-oxidative stability of PMR-15 (or equivalent) and ease which PMR-15 (or equivalent) prepreg materials processed into composite structures.

  10. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  11. Study of the technics of coating stripping and FBG writing on polyimide fiber

    Science.gov (United States)

    Song, ZhiQiang; Qi, HaiFeng; Ni, JiaSheng; Wang, Chang

    2017-10-01

    Compared with ordinary optical fiber, polyimide fiber has the characteristics of high temperature resistance and high strength, which has important application in the field of optical fiber sensing. The common methods of polyimide coating stripping were introduced in this paper, including high temperature stripping, chemical stripping and arc ablation. In order to meet the requirements of FBG writing technology, a method using argon ion laser ablation coating was proposed. The method can precisely control the stripping length of the coating and completely does not affect the tensile strength of the optical fiber. According to the experiment, the fabrication process of polyimide FBG is stripping-hydrogen loadingwriting. Under the same conditions, 10 FBG samples were fabricated with good uniformity of wavelength bandwidth and reflectivity. UV laser ablation of polyimide coating has been proved to be a safe, reliable and efficient method.

  12. Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams

    Science.gov (United States)

    Combrzyński, Maciej; Mościcki, Leszek; Kwaśniewska, Anita; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Sołowiej, Bartosz; Gładyszewska, Bożena; Muszyński, Siemowit

    2017-10-01

    The aim of this work was to determine the water vapour sorption properties of thermoplastic starch filling foams processed by extrusion-cooking technique from various combinations of potato starch and two foaming agents: poly(vinyl) alcohol and Plastronfoam, in amount of 1, 2 and 3% each. Foams were processed with the single screw extruder-cooker at two different screw rotational speeds 100 and 130 r.p.m. The sorption isotherms of samples were determined and described using the Guggenheim-Anderson-de Boer model. Also, the kinetics of water vapour adsorption by foams, as a function of time, was measured and fitted with Peleg model. On the basis of the analysis the influence of the applied foaming agents, as well as the technological parameters of extrusion-cooking process in relation to water vapour adsorption by thermoplastic starch foams was demonstrated. There was no difference between the shapes of the isotherms for poly(vinyl) alcohol foams while for Plastronfoam foams a notable difference among foams extruded at 100 r.p.m. was observed in the regions of low and high humidity content. The analysis of the Guggenheim-Anderson-de Boer model parameters showed that the water molecules were less strongly bound with the foam surface when extruded at a lower screw speed.

  13. Polyimides From BTDA, m-PDA, and HDA

    Science.gov (United States)

    Delano, Chadwick B.; Kiskiras, Charles J.

    1987-01-01

    Aliphatic segments in polyimide backbones achieve low molding temperatures and resistance to solvents. Low molding temperatures in combination with good solvent resistance make these polymers candidates for use in aerospace applications.

  14. 1-D nanochannels fabricated in polyimide

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; Bomer, Johan G.; Tas, Niels Roelof; van den Berg, Albert

    2004-01-01

    A simple method using spin-deposition and sacrificial layer etching is used to fabricate all-polyimide nanochannels (100 and 500 nm channel height). Channels are characterized using spontaneous capillary filling with water, ethanol and isopropanol, and with electroosmotic flow. The channels can be

  15. Bubble and foam chemistry

    CERN Document Server

    Pugh, Robert J

    2016-01-01

    This indispensable guide will equip the reader with a thorough understanding of the field of foaming chemistry. Assuming only basic theoretical background knowledge, the book provides a straightforward introduction to the principles and properties of foams and foaming surfactants. It discusses the key ideas that underpin why foaming occurs, how it can be avoided and how different degrees of antifoaming can be achieved, and covers the latest test methods, including laboratory and industrial developed techniques. Detailing a variety of different kinds of foams, from wet detergents and food foams, to polymeric, material and metal foams, it connects theory to real-world applications and recent developments in foam research. Combining academic and industrial viewpoints, this book is the definitive stand-alone resource for researchers, students and industrialists working on foam technology, colloidal systems in the field of chemical engineering, fluid mechanics, physical chemistry, and applied physics.

  16. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm

    Science.gov (United States)

    Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin

    2018-06-01

    The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.

  17. Thermal aging of traditional and additively manufactured foams: analysis by time-temperature-superposition, constitutive, and finite-element models

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weisgraber, T. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Small, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Duoss, E. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spadaccini, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chinn, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, T. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maxwell, R. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    Cellular solids or foams are a very important class of materials with diverse applications ranging from thermal insulation and shock absorbing support cushions, to light-weight structural and floatation components, and constitute crucial components in a large number of industries including automotive, aerospace, electronics, marine, biomedical, packaging, and defense. In many of these applications the foam material is subjected to long periods of continuous stress, which can, over time, lead to a permanent change in structure and a degradation in performance. In this report we summarize our modeling efforts to date on polysiloxane foam materials that form an important component in our systems. Aging of the materials was characterized by two measured quantities, i.e., compression set and load retention. Results of accelerated aging experiments were analyzed by an automated time-temperaturesuperposition (TTS) approach, which creates a master curve that can be used for long-term predictions (over decades) under ambient conditions. When comparing such master curves for traditional (stochastic) foams with those for recently 3D-printed (i.e., additively manufactured, or AM) foams, it became clear that AM foams have superior aging behavior. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material.

  18. New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    Science.gov (United States)

    Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.

    1969-01-01

    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.

  19. Foam engineering fundamentals and applications

    CERN Document Server

    2012-01-01

    Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams.

  20. Foams theory, measurements, and applications

    CERN Document Server

    Khan, Saad A

    1996-01-01

    This volume discusses the physics and physical processes of foam and foaming. It delineates various measurement techniques for characterizing foams and foam properties as well as the chemistry and application of foams. The use of foams in the textile industry, personal care products, enhanced oil recovery, firefighting and mineral floatation are highlighted, and the connection between the microstructure and physical properties of foam are detailed. Coverage includes nonaqueous foams and silicone antifoams, and more.

  1. Electrospun Nanofibers for Sandwiched Polyimide/Poly (vinylidene fluoride)/Polyimide Separators with the Thermal Shutdown Function

    International Nuclear Information System (INIS)

    Wu, Dezhi; Shi, Chuan; Huang, Shaohua; Qiu, Xiaochun; Wang, Huan; Zhan, Zhan; Zhang, Peng; Zhao, Jinbao; Sun, Daoheng; Lin, Liwei

    2015-01-01

    Nanofibers fabricated by the electrospinning process have been used to construct sandwich-type Polyimide/Poly (vinylidene fluoride)/Polyimide (PI/PVDF/PI) separators with the thermal shutdown function for lithium ion batteries. This architecture uses the good thermal stability of PI as the top and bottom structure layers. Under high temperature operations, the middle layer made of PVDF nanofibers can melt and form a pore-free film to shut down the battery operation. The electrolyte uptake and ionic conductivity of the PI/PVDF/PI separator are superior to those of commercial polyolefin separators at 476% and 3.46 mS cm −1 , respectively, resulting better battery performances in terms of impedance, discharge capacity and cycle life. Under high temperature treatments above 170 °C, the self-shutdown function of the PI/PVDF/PI has been observed within 10 minutes, which could serve as the safety mechanism to defend the thermal runaway issue of lithium ion batteries. The effects of heating temperature and different time on the morphologies of each layer and electrolyte uptake of the separator are characterized as well

  2. Electromigration study of Al thin films deposited on low dielectric polyimide and SiO sub 2 ILD

    CERN Document Server

    Eun, B S

    1999-01-01

    The electromigration characteristics of Al-1 %Si-0.5 %Cu films deposited onto three kinds of polyimides (PI-2734, PI-2611, and BG-2480) and onto SiO sub 2 prepared by low pressure chemical vapor deposition have been investigated. The Al lines deposited onto SiO sub 2 showed about a one-order higher electromigration lifetime than those deposited onto polyimide interlayer dielectrics (ILDs). The electromigration characteristics degraded as the polyimide thickness increased. Joule heat which accumulated at the Al/polyimide interface was the main cause of the decrease in the electromigration reliability because the thermal conductivity of the polyimides was about one order lower than that of SiO sub 2.

  3. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    Science.gov (United States)

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  4. Development of High Performance Piezoelectric Polyimides

    Science.gov (United States)

    Simpson, Joycelyn O.; St.Clair, Terry L.; Welch, Sharon S.

    1996-01-01

    In this work a series of polyimides are investigated which exhibit a strong piezoelectric response and polarization stability at temperatures in excess of 100 C. This work was motivated by the need to develop piezoelectric sensors suitable for use in high temperature aerospace applications.

  5. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  6. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Science.gov (United States)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  7. A swirl generator case study for OpenFOAM

    International Nuclear Information System (INIS)

    Petit, O; Nilsson, H; Bosioc, A I; Susan-Resiga, R F; Muntean, S

    2010-01-01

    This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-ε model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against designed velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and designed profiles. This case study was presented at the 5th OpenFOAM Workshop, held in Gothenburg, Sweden, as a tutorial on how to treat turbomachinery applications in OpenFOAM.

  8. Multifunctional foaming agent to prepare aluminum foam with enhanced mechanical properties

    Science.gov (United States)

    Li, Xun; Liu, Ying; Ye, Jinwen; An, Xuguang; Ran, Huaying

    2018-03-01

    In this paper, CuSO4 was used as foaming agent to prepare close cell Aluminum foam(Al foam) at the temperature range of 680 °C ∼ 758 °C for the first time. The results show that CuSO4 has multifunctional such as, foaming, viscosity increasing, reinforcement in Al matrix, it has a wide decomposition temperature range of 641 °C ∼ 816 °C, its sustain-release time is 5.5 min at 758 °C. The compression stress and energy absorption of CuSO4-Al foam is 6.89 Mpa and 4.82 × 106 J m‑3(compression strain 50%), which are 77.12% and 99.17% higher than that of TiH2-Al foam at the same porosity(76% in porosity) due to the reinforcement in Al matrix and uniform pore dispersion.

  9. Preparation, Characterization and Thermal Degradation of Polyimide (4-APS/BTDA/SiO2 Composite Films

    Directory of Open Access Journals (Sweden)

    Arash Dehzangi

    2012-04-01

    Full Text Available Polyimide/SiO2 composite films were prepared from tetraethoxysilane (TEOS and poly(amic acid (PAA based on aromatic diamine (4-aminophenyl sulfone (4-APS and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA via a sol-gel process in N-methyl-2-pyrrolidinone (NMP. The prepared polyimide/SiO2 composite films were characterized using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM and thermogravimetric analysis (TGA. The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA and the formation of SiO2 particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO2 particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO2 composite films were investigated using TGA in N2 atmosphere. The activation energy of the solid-state process was calculated using Flynn–Wall–Ozawa’s method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.

  10. The sedimentation of fine particles in liquid foams

    OpenAIRE

    Rouyer , Florence; Fritz , Christelle; Pitois , Olivier

    2010-01-01

    International audience; We investigate the sedimentation of fine particles in liquid channels of foams. The study combines numerical simulations with experiments performed in foams and in isolated vertical foam channels. Results show that particulate motion is controlled by the confinement parameter (l) and the mobility of the channel surfaces modelled by interfacial shear viscosity. Interestingly, whereas the position of the particle within the channel cross-section is expected to be a relev...

  11. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  12. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  13. Technological parameters influence on the non-autoclaved foam concrete characteristics

    Science.gov (United States)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  14. Preparation of three-dimensional shaped aluminum alloy foam by two-step foaming

    International Nuclear Information System (INIS)

    Shang, J.T.; Xuming, Chu; Deping, He

    2008-01-01

    A novel method, named two-step foaming, was investigated to prepare three-dimensional shaped aluminum alloy foam used in car industry, spaceflight, packaging and related areas. Calculations of thermal decomposition kinetics of titanium hydride showed that there is a considerable amount of hydrogen releasing when the titanium hydride is heated at a relatively high temperature after heated at a lower temperature. The hydrogen mass to sustain aluminum alloy foam, having a high porosity, was also estimated by calculations. Calculations indicated that as-received titanium hydride without any pre-treatment can be used as foaming agents in two-step foaming. The processes of two-step foaming, including preparing precursors and baking, were also studied by experiments. Results showed that, low titanium hydride dispersion temperature, long titanium hydride dispersion time and low precursors porosity are beneficial to prepare three-dimensional shaped aluminum alloy foams with uniform pores

  15. CO2 Induced Foaming Behavior of Polystyrene near the Glass Transition

    Directory of Open Access Journals (Sweden)

    Salah Al-Enezi

    2017-01-01

    Full Text Available This paper examines the effect of high-pressure carbon dioxide on the foaming process in polystyrene near the glass transition temperature and the foaming was studied using cylindrical high-pressure view cell with two optical windows. This technique has potential applications in the shape foaming of polymers at lower temperatures, dye impregnation, and the foaming of polystyrene. Three sets of experiments were carried out at operating temperatures of 50, 70, and 100°C, each over a range of pressures from 24 to 120 bar. Foaming was not observed when the polymer was initially at conditions below Tg but was observed above Tg. The nucleation appeared to occur randomly leading to subsequent bubble growth from these sites, with maximum radius of 0.02–0.83 mm. Three models were applied on the foaming experimental data. Variable diffusivity and viscosity model (Model C was applied to assess the experimental data with the WLF equation. The model shows very good agreement by using realistic parameter values. The expansion occurs by diffusion of a dissolved gas from the supersaturated polymer envelope into the bubble.

  16. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam

    Science.gov (United States)

    Li, Junfeng; Lu, Wu; Luo, Zhengping; Zeng, Yibing

    2017-03-01

    The thermal performance of the erythritol/carbon foam composites, including thermal diffusivity, thermal capacity, thermal conductivity and latent heat, were investigated via surface modification of carbon foam using hydrogen peroxide as oxider. It was found that the surface modification enhanced the wetting ability of carbon foam surface to the liquid erythritol of the carbon foam surface and promoted the increase of erythritol content in the erythritol/carbon foam composites. The dense interfaces were formed between erythritol and carbon foam, which is due to that the formation of oxygen functional groups C=O and C-OH on the carbon surface increased the surface polarity and reduced the interface resistance of carbon foam surface to the liquid erythritol. The latent heat of the erythritol/carbon foam composites increased from 202.0 to 217.2 J/g through surface modification of carbon foam. The thermal conductivity of the erythritol/carbon foam composite before and after surface modification further increased from 40.35 to 51.05 W/(m·K). The supercooling degree of erythritol also had a large decrease from 97 to 54 °C. Additionally, the simple and effective surface modification method of carbon foam provided an extendable way to enhance the thermal performances of the composites composed of carbon foams and PCMs.

  17. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    Science.gov (United States)

    Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.

    2016-03-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.

  18. Stress wave propagation and mitigation in two polymeric foams

    Science.gov (United States)

    Pradel, Pierre; Malaise, Frederic; Cadilhon, Baptiste; Quessada, Jean-Hugues; de Resseguier, Thibaut; Delhomme, Catherine; Le Blanc, Gael

    2017-06-01

    Polymeric foams are widely used in industry for thermal insulation or shock mitigation. This paper investigates the ability of a syntactic epoxy foam and an expanded polyurethane foam to mitigate intense (several GPa) and short duration (<10-6 s) stress pulses. Plate impact and electron beam irradiation experiments have been conducted to study the dynamic mechanical responses of both foams. Interferometer Doppler Laser method is used to record the target rear surface velocity. A two-wave structure associated with the propagation of an elastic precursor followed by the compaction of the pores has been observed. The compaction stress level deduced from the velocity measurement is a good indicator of mitigation capability of the foams. Quasi-static tests and dynamic soft recovery experiments have also been performed to determine the compaction mechanisms. In the polyurethane foam, the pores are closed by elastic buckling of the matrix and damage of the structure. In the epoxy foam, the compaction is due to the crushing of glass microspheres. Two porous material models successfully represent the macroscopic response of these polymeric foams.

  19. The dynamics of diffracted rays in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-12-18

    We have studied some aspects of the optics of the light scattering in foams. This paper describes the difference between rays and diffracted rays from the point of view of geometrical theory of diffraction. We have represented some bifurcations of light rays using dynamical systems. Based on our observations of foams, we created a solid optical device. The interference patterns of light scattering in foams forming Airy fringes were explored observing the pattern named as the eye of Horus. In the cases we examine, these Airy fringes are associated with light scattering in curved surfaces, while the halo formation is related to the law of edge diffraction. We are proposing a Pohl interferometer using a three-sided bubble/Plateau border system. - Highlights: • We obtained halos scattering light in foams. • We model the light scattering in foams using the geometrical theory of diffraction. • We examine the difference between rays and the diffracted rays. • We developed optical devices for diffracted rays.

  20. Carbon particle induced foaming of molten sucrose for the preparation of carbon foams

    International Nuclear Information System (INIS)

    Narasimman, R.; Vijayan, Sujith; Prabhakaran, K.

    2014-01-01

    Graphical abstract: - Highlights: • An easy method for the preparation of carbon foam from sucrose is presented. • Wood derived activated carbon particles are used to stabilize the molten sucrose foam. • The carbon foams show relatively good mechanical strength. • The carbon foams show excellent CO 2 adsorption and oil absorption properties. • The process could be scaled up for the preparation of large foam bodies. - Abstract: Activated carbon powder was used as a foaming and foam setting agent for the preparation of carbon foams with a hierarchical pore structure from molten sucrose. The rheological measurements revealed the interruption of intermolecular hydrogen bonding in molten sucrose by the carbon particles. The carbon particles stabilized the bubbles in molten sucrose by adsorbing on the molten sucrose–gas interface. The carbon foams obtained at the activated carbon powder to sucrose weight ratios in the range of 0–0.25 had a compressive strength in the range of 1.35–0.31 MPa. The produced carbon foams adsorb 2.59–3.04 mmol/g of CO 2 at 760 mmHg at 273 K and absorb oil from oil–water mixtures and surfactant stabilized oil-in-water emulsions with very good selectivity and recyclability

  1. Drug delivery properties of macroporous polystyrene solid foams.

    Science.gov (United States)

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  2. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  3. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  4. Fabrication of self-written waveguide in photosensitive polyimide resin by controlling photochemical reaction of photosensitizer

    International Nuclear Information System (INIS)

    Yamashita, K.; Kuro, T.; Oe, K.; Mune, K.; Tagawa, K.; Naitou, R.; Mochizuki, A.

    2004-01-01

    We have investigated optical properties of photosensitive polyimide appropriating for long self-written waveguide fabrication. From systematic measurements of absorption properties, it was found that photochemical reaction of photosensitizer dissolved in the photosensitive polyimide resins relates to transparency after the exposure, which limits the length of the fabricated self-written waveguide. By controlling the photochemical reaction, in which the photosensitive polyimide resin has sufficient transparency during exposure, four times longer self-written waveguide core was fabricated

  5. Acousto-optic interaction in polyimide coated optical fibers with flexural waves

    OpenAIRE

    ALCUSA-SÁEZ, E. P.; Díez, A.; Rivera-Pérez, E.; Margulis, W.; Norin, L.; Andrés, M. V.

    2017-01-01

    Acousto-optic coupling in polyimide-coated single-mode optical fibers using flexural elastic waves is demonstrated. The effect of the polyimide coating on the acousto-optic interaction process is analyzed in detailed. Theoretical and experimental results are in good agreement. Although the elastic attenuation is significant, we show that acousto-optic coupling can be produced with a reasonably good efficiency. To our knowledge, it is the first experimental demonstration of acousto-optic coupl...

  6. Preparation of Palladium/Silver-Coated Polyimide Nanotubes: Flexible, Electrically Conductive Fibers

    OpenAIRE

    Lushi Kong; Guanchun Rui; Guangyu Wang; Rundong Huang; Ran Li; Jiajie Yu; Shengli Qi; Dezhen Wu

    2017-01-01

    A simple and practical method for coating palladium/silver nanoparticles on polyimide (PI) nanotubes is developed. The key steps involved in the process are silver ion exchange/reduction and displacement reactions between silver and palladium ions. With the addition of silver, the conductivity of the PI nanotubes is greatly enhanced. Further, the polyimide nanotubes with a dense, homogeneous coating of palladium nanoparticles remain flexible after heat treatment and show the possibility for u...

  7. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective

    Science.gov (United States)

    Sahu, Sritam Swapnadarshi; Gandhi, Indu Siva Ranjani; Khwairakpam, Selija

    2018-06-01

    Foam concrete finds application in many areas, generally as a function of its relatively lightweight and its beneficial properties in terms of reduction in dead load on structure, excellent thermal insulation and contribution to energy conservation. For production of foam concrete with desired properties, stable and good quality foam is the key requirement. It is to be noted that the selection of surfactant and foam production parameters play a vital role in the properties of foam which in turn affects the properties of foam concrete. However, the literature available on the influence of characteristics of foaming agent and foam on the properties of foam concrete are rather limited. Hence, a more systematic research is needed in this direction. The focus of this work is to provide a review on characteristics of surfactant (foaming agent) and foam for use in foam concrete production.

  8. Analytic Model for Predicting the Permeability of Foam-type Wick

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Ich-Long; Byon, Chan [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2016-06-15

    Wicks play an important role in determining the thermal performance of heat pipes. Foam-type wicks are known to have good potential for enhancing the capillary performance of conventional types of wicks, and this is because of their high porosity and permeability. In this study, we develop an analytic expression for predicting the permeability of a foam-type wick based on extensive numerical work. The proposed correlation is based on the modified Kozeny-Carman’s equation, where the Kozeny-Carman coefficient is given as an exponential function of porosity. The proposed correlations are shown to predict the previous experimental results well for an extensive parametric range. The permeability of the foam-type wick is shown to be significantly higher than that of conventional wicks because of their high porosity.

  9. High performance co-polyimide nanofiber reinforced composites

    NARCIS (Netherlands)

    Yao, Jian; Li, Guang; Bastiaansen, Cees; Peijs, Ton

    2015-01-01

    Electrospun co-polyimide BPDA (3, 3′, 4, 4′-Biphenyltetracarboxylic dianhydride)/PDA (p-Phenylenediamine)/ODA (4, 4′-oxydianiline) nanofiber reinforced flexible composites were manufactured by impregnating these high performance nanofibers with styrene-butadiene-styrene (SBS) triblock copolymer

  10. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.

    Science.gov (United States)

    Morales, R; Martinez, M J; Pilosof, A M R

    2017-11-01

    Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-05-01

    Full Text Available The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  12. Analysis of Influence of Foaming Mixture Components on Structure and Properties of Foam Glass

    Science.gov (United States)

    Karandashova, N. S.; Goltsman, B. M.; Yatsenko, E. A.

    2017-11-01

    It is recommended to use high-quality thermal insulation materials to increase the energy efficiency of buildings. One of the best thermal insulation materials is foam glass - durable, porous material that is resistant to almost any effect of substance. Glass foaming is a complex process depending on the foaming mode and the initial mixture composition. This paper discusses the influence of all components of the mixture - glass powder, foaming agent, enveloping material and water - on the foam glass structure. It was determined that glass powder is the basis of the future material. A foaming agent forms a gas phase in the process of thermal decomposition. This aforementioned gas foams the viscous glass mass. The unreacted residue thus changes a colour of the material. The enveloping agent slows the foaming agent decomposition preventing its premature burning out and, in addition, helps to accelerate the sintering of glass particles. The introduction of water reduces the viscosity of the foaming mixture making it evenly distributed and also promotes the formation of water gas that additionally foams the glass mass. The optimal composition for producing the foam glass with the density of 150 kg/m3 is defined according to the results of the research.

  13. PUFoam : A novel open-source CFD solver for the simulation of polyurethane foams

    Science.gov (United States)

    Karimi, M.; Droghetti, H.; Marchisio, D. L.

    2017-08-01

    In this work a transient three-dimensional mathematical model is formulated and validated for the simulation of polyurethane (PU) foams. The model is based on computational fluid dynamics (CFD) and is coupled with a population balance equation (PBE) to describe the evolution of the gas bubbles/cells within the PU foam. The front face of the expanding foam is monitored on the basis of the volume-of-fluid (VOF) method using a compressible solver available in OpenFOAM version 3.0.1. The solver is additionally supplemented to include the PBE, solved with the quadrature method of moments (QMOM), the polymerization kinetics, an adequate rheological model and a simple model for the foam thermal conductivity. The new solver is labelled as PUFoam and is, for the first time in this work, validated for 12 different mixing-cup experiments. Comparison of the time evolution of the predicted and experimentally measured density and temperature of the PU foam shows the potentials and limitations of the approach.

  14. Strain-rate dependence for Ni/Al hybrid foams

    Directory of Open Access Journals (Sweden)

    Jung Anne

    2015-01-01

    Full Text Available Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposition as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure due to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (μCT system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests.

  15. Tensile and fracture behavior of polymer foams

    International Nuclear Information System (INIS)

    Kabir, Md. E.; Saha, M.C.; Jeelani, S.

    2006-01-01

    Tensile and mode-I fracture behavior of cross-linked polyvinyl chloride (PVC) and rigid polyurethane (PUR) foams are examined. Tension tests are performed using prismatic bar specimens and mode-I fracture tests are performed using single edge notched bend (SENB) specimens under three-point bending. Test specimens are prepared from PVC foams with three densities and two different levels of cross-linking, and PUR foam with one density. Tension and quasi-static fracture tests are performed using a Zwick/Rowell test machine. Dynamic fracture tests are performed using a DYNATUP model 8210 instrumented drop-tower test set up at three different impact energy levels. Various parameters such as specimen size, loading rate, foam density, cross-linking, crack length, cell orientation (flow and rise-direction) and solid polymer material are studied. It is found that foam density and solid polymer material have a significant effect on tensile strength, modulus, and fracture toughness of polymer foams. Level of polymer cross-linking is also found to have a significant effect on fracture toughness. The presence of cracks in the rise- and flow direction as well as loading rate has minimal effect. Dynamic fracture behavior is found to be different as compared to quasi-static fracture behavior. Dynamic fracture toughness (K d ) increases with impact energy. Examination of fracture surfaces reveals that the fracture occurs in fairly brittle manner for all foam materials

  16. Effective Opacity for Gold-Doped Foam Plasmas

    International Nuclear Information System (INIS)

    Huang Cheng-Wu; Song Tian-Ming; Zhao Yang; Zhu Tuo; Shang Wan-Li; Xiong Gang; Zhang Ji-Yan; Yang Jia-Min; Jiang Shao-En

    2012-01-01

    Radiation flow through gold-doped hydrocarbon foam is investigated and a model is presented to calculate effective opacity for an inhomogeneous, pressure-equilibrated gold/foam mixture based on the Levermore—Pomraning method for binary stochastic media. The effective opacity dependance on the size of the gold particles and the foam temperature are studied. The results suggest that when the mixture temperature is lower than 250 eV, the opacity difference between the 5 μm particle mix case and the atomic mix case is large enough to induce a significant discrepancy in radiation transport, which is confirmed by the hydrodynamic simulation

  17. Indentation of aluminium foam at low velocity

    Directory of Open Access Journals (Sweden)

    Shi Xiaopeng

    2015-01-01

    Full Text Available The indentation behaviour of aluminium foams at low velocity (10 m/s ∼ 30 m/s was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ∼10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ∼10 m/s velocity may be caused by plastic wave effect.

  18. Electrical contacts on polyimide substrates for flexible thin film photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C.; Herrero, J

    2003-05-01

    Both frontal and back electrical contacts have been developed onto polyimide sheets (Kapton KJ[reg]) as alternative substrates to the conventional glasses, for application in lightweight and flexible thin film photovoltaic devices. Transparent and conductive indium tin oxide (ITO) thin films have been deposited by r.f.-magnetron sputtering as the frontal electrical contact. On the other hand, Mo, Cr and Ni layers have been prepared by e-gun evaporation for the back electrical connections. ITO films deposited onto polyimide have shown similar optical transmittance and higher electrical conductivity than onto glass substrates. The transmittance decreases and the conductivity increases after heating at 400 sign C in vacuum atmosphere. Mo, Cr and Ni layers deposited onto polyimide showed similar structure and electrical conductivity than onto conventional glasses. The properties of Mo and Cr layers remained unchanged after heating at 400 sign C in selenium atmosphere.

  19. Optimization of foam-filled bitubal structures for crashworthiness criteria

    International Nuclear Information System (INIS)

    Zhang, Yong; Sun, Guangyong; Li, Guangyao; Luo, Zhen; Li, Qing

    2012-01-01

    Highlights: ► The paper aims to optimize foam-filled bitubal squared column for crashworthiness. ► It explores different formulations and configurations of design. ► The optimal foam-filled bitubal column is better than foam-filled monotubal column. ► The optimal foam-filled bitubal column is better than empty bitubal column. -- Abstract: Thin-walled structures have been widely used as key components in automobile and aerospace industry to improve the crashworthiness and safety of vehicles while maintaining overall light-weight. This paper aims to explore the design issue of thin-walled bitubal column structures filled with aluminum foam. As a relatively new filler material, aluminum foam can increase crashworthiness without sacrificing too much weight. To optimize crashworthiness of the foam-filled bitubal square column, the Kriging meta-modeling technique is adopted herein to formulate the objective and constraint functions. The genetic algorithm (GA) and Non-dominated Sorting Genetic Algorithm II (NSGA II) are used to seek the optimal solutions to the single and multiobjective optimization problems, respectively. To compare with other thin-walled configurations, the design optimization is also conducted for empty bitubal column and foam-filled monotubal column. The results demonstrate that the foam-filled bitubal configuration has more room to enhance the crashworthiness and can be an efficient energy absorber.

  20. THIRD-GENERATION FOAM BLOWING AGENTS FOR FOAM INSULATION

    Science.gov (United States)

    The report gives results of a study of third-generation blowing agents for foam insulation. (NOTE: the search for third-generation foam blowing agents has led to the realization that, as the number of potential substitutes increases, new concerns, such as their potential to act a...

  1. Two dimensional dynamic analysis of sandwich plates with gradient foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)

    2016-09-15

    Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.

  2. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  3. The role of colloidal particles in the stability of decontamination foams

    International Nuclear Information System (INIS)

    Guignot, S.

    2008-12-01

    Illustrating an effort in the design of more controllable foams, therefore better adapted to decontamination, this research aims at highlighting the reciprocal interaction mechanisms between foam and a population of hydrophilic of hydrophobic particles. This study aims at identifying the particle system model for these both cases, hydrophilic and hydrophobic. Then, in the case of partially hydrophobic particles, the author tries to identify the viscoelastic properties of a water-air interface bearing the particles, and then to characterize the corresponding foams. In the case of hydrophilic particles, he investigated the influence of confinement on flow properties of suspensions, using a stack of spherical balls as a foam model. The obtained results are compared to those obtained in a free drainage configuration which is more representative of the use of a decontamination foam

  4. Gas Permeation Properties of Soluble Aromatic Polyimides Based on 4-Fluoro-4,4'-Diaminotriphenylmethane

    Directory of Open Access Journals (Sweden)

    Diego Guzmán-Lucero

    2015-04-01

    Full Text Available A series of new organic polyimides were synthesized from 4-fluoro-4'4"-diaminotriphenylmethane and four different aromatic dianhydrides through a one-step, high-temperature, direct polycondensation in m-cresol at 180–200 °C, resulting in the formation of high-molecular-weight polyimides (inherent viscosities ~ 1.0–1.3 dL/g. All the resulting polyimides exhibited good thermal stability with initial decomposition temperatures above 434 °C, glass-transition temperatures between 285 and 316 °C, and good solubility in polar aprotic solvents. Wide-angle X-ray scattering data indicated that the polyimides were amorphous. Dense membranes were prepared by solution casting and solvent evaporation to evaluate their gas transport properties (permeability, diffusivity, and solubility coefficients toward pure hydrogen, helium, oxygen, nitrogen, methane, and carbon dioxide gases. In general, the gas permeability was increased as both the fractional free volume and d-spacing were also increased. A good combination of permeability and selectivity was promoted efficiently by the bulky hexafluoroisopropylidene and 4-fluoro-phenyl groups introduced into the polyimides. The results indicate that the gas transport properties of these films depend on both the structure of the anhydride moiety, which controls the intrinsic intramolecular rigidity, and the 4-fluoro-phenyl pendant group, which disrupts the intermolecular packing.

  5. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  6. The Construction of Spin Foam Vertex Amplitudes

    Directory of Open Access Journals (Sweden)

    Eugenio Bianchi

    2013-01-01

    Full Text Available Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.

  7. Polyimide and Metals MEMS Multi-User Processes

    KAUST Repository

    Arevalo, Arpys

    2016-11-01

    The development of a polyimide and metals multi-user surface micro-machining process for Micro-electro-mechanical Systems (MEMS) is presented. The process was designed to be as general as possible, and designed to be capable to fabricate different designs on a single silicon wafer. The process was not optimized with the purpose of fabricating any one specific device but can be tweaked to satisfy individual needs depending on the application. The fabrication process uses Polyimide as the structural material and three separated metallization layers that can be interconnected depending on the desired application. The technology allows the development of out-of-plane compliant mechanisms, which can be combined with six variations of different physical principles for actuation and sensing on a single processed silicon wafer. These variations are: electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception.

  8. Steam foam studies in the presence of residual oil

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.A.; Demiral, B.; Castanier, L.M.

    1992-05-01

    The lack of understanding regarding foam flow in porous media necessitates further research. This paper reports on going work at Stanford University aimed at increasing our understanding in the particular area of steam foams. The behavior of steam foam is investigated with a one dimensional (6 ft. {times} 2.15 in.) sandpack under residual oil conditions of approximately 12 percent. The strength of the in-situ generated foam, indicated by pressure drops, is significantly affected by injection procedure, slug size, and steam quality. The surfactant concentration effect is minor in the range studied. In the presence of residual oil the simultaneous injection of steam and surfactant fails to generate foam in the model even though the same procedure generates a strong foam in the absence of oil. Nevertheless when surfactant is injected as a slug ahead of the steam using a surfactant alternating (SAG) procedure, foam is generated. The suggested reason for the success of SAG is the increased phase mixing that results from steam continually having to reestablish a path through a slug of surfactant solution.

  9. Growth and decay of surface voltage on silver diffused polyimide exposed to 3-15 keV electrons

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, S K; Dhole, S D; Bhoraskar, V N [Department of Physics, University of Pune, Pune-411007 (India)

    2007-02-21

    During electron irradiation, the growth in the surface voltage on virgin and silver diffused polyimide sample was studied by varying electron energy from 3 to 15 keV and beam diameter from 3 to 15 mm. At a constant beam current, the surface voltage increased nonlinearly with electron energy but decreased slowly with beam diameter at fixed electron energy. At a surface voltage around saturation or beyond 3 kV, the electron beam was switched off and the decay in the surface voltage was studied for a period of 9 x 10{sup 4} s. The surface analysis revealed that the relative concentrations of carbon increased and that of the oxygen and the nitrogen decreased in the electron irradiated virgin and silver diffused polyimide sample, however in different proportions. Under the identical conditions of electron irradiation, the growth rate of the surface voltage, the post irradiated surface resistivity and the voltage decay constant of the silver diffused polyimide were lower than that of the virgin polyimide. The results of the present study reveal that the resistance of the silver diffused polyimide to keV electrons is higher than that of the virgin polyimide.

  10. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  11. Surface modification of polyimide (PI) film using water cathode atmospheric pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Zheng Peichao; Liu Keming; Wang Jinmei; Dai Yu; Yu Bin; Zhou Xianju; Hao Honggang; Luo Yuan

    2012-01-01

    Highlights: ► Equipment called water cathode atmospheric pressure glow discharge was used to improve the hydrophilicity of polyimide films. ► The data shows good homogeneity and the variation trends of contact angles are different for polar and non-polar testing liquids. ► The thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. ► Surface hydrophilicity after plasma treatment is improved partly due to the increase in the roughness. ► The hydrophilicity of polyimide films is still better than untreated ones after long-term storage. - Abstract: The industrial use of polyimide film is limited because of undesirable properties such as poor wettability. In the present paper, a new kind of equipment called water cathode atmospheric pressure glow discharge was used to improve the surface properties of polyimide films and made them useful to technical applications. The changes in hydrophilicity of modified polyimide film surfaces were investigated by contact angle, surface energy and water content measurements as a function of treatment time. The results obtained show good treatment homogeneity and that the variation trends of contact angles are different for polar and non-polar testing liquids, while surface energy and water content are significantly enhanced with the increase of treatment time until they achieve saturated values after 60 s plasma treatment. Also, the thickness of liquid layer plays an important role in plasma processing and directly affects the treatment effect. Changes in morphology of polyimide films were analyzed by atomic force microscope and the results indicate that surface hydrophilicity after plasma treatment are improved partly due to the increase in the roughness. In addition, polyimide films treated by plasma are subjected to an ageing process to determine the durability of plasma treatment. It is found that the hydrophilicity is still better than untreated ones though the

  12. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  13. Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides

    KAUST Repository

    Ma, Xiaohua

    2014-01-01

    A novel o-hydroxyl-functionalized spirobifluorene-based diamine monomer, 2,2′-dihydroxyl-9,9′-spiro-bifluorene- 3,3′-diamine (HSBF), was successfully prepared by a universal synthetic method. Two o-hydroxyl-containing polyimides, denoted as 6FDA-HSBF and SPDA-HSBF, were synthesized and characterized. The BET surface areas of 6FDA-HSBF and SPDA-HSBF are 70 and 464 m2 g-1, respectively. To date, SPDA-HSBF exhibits the highest CO2 permeability (568 Barrer) among all hydroxyl-containing polyimides. The HSBF-based polyimides exhibited higher CO2/CH4 selectivity than their spirobifluorene (SBF) analogues (42 for 6FDA-HSBF vs. 27 for 6FDA-SBF) due to an increase in their diffusivity selectivity. Polybenzoxazole (PBO) membranes obtained from HSBF-based polyimide precursors by thermal rearrangement showed enhanced permeability but at the cost of significantly decreased selectivity.

  14. Foam patterns

    Science.gov (United States)

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  15. Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model

    International Nuclear Information System (INIS)

    Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J

    2016-01-01

    Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)

  16. External Tank (ET) Foam Thermal/Structural Analysis Project

    Science.gov (United States)

    Moore, David F.; Ungar, Eugene K.; Chang, Li C.; Malroy, Eric T.; Stephan, Ryan A.

    2008-01-01

    An independent study was performed to assess the pre-launch thermally induced stresses in the Space Shuttle External Tank Bipod closeout and Ice/Frost ramps (IFRs). Finite element models with various levels of detail were built that included the three types of foam (BX-265, NCFI 24-124, and PDL 1034) and the underlying structure and bracketry. Temperature profiles generated by the thermal analyses were input to the structural models to calculate the stress levels. An area of high stress in the Bipod closeout was found along the aluminum tank wall near the phenolic insulator and along the phenolic insulator itself. This area of high stress might be prone to cracking and possible delamination. There is a small region of slightly increased stress in the NCFI 24-124 foam near its joint with the Bipod closeout BX-265 foam. The calculated stresses in the NCFI 24-124 acreage foam are highest at the NCFI 24-124/PDL 1034/tank wall interface under the LO2 and LH2 IFRs. The highest calculated stresses in the LH2 NCFI 24-124 foam are higher than in similar locations in the LO2 IFR. This finding is consistent with the dissection results of IFRs on ET-120.

  17. Thermosetting Fluoropolymer Foams

    Science.gov (United States)

    Lee, Sheng Yen

    1987-01-01

    New process makes fluoropolymer foams with controllable amounts of inert-gas fillings in foam cells. Thermosetting fluoropolymers do not require foaming additives leaving undesirable residues and do not have to be molded and sintered at temperatures of about 240 to 400 degree C. Consequently, better for use with electronic or other parts sensitive to high temperatures or residues. Uses include coatings, electrical insulation, and structural parts.

  18. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Science.gov (United States)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  19. Infrared Thermography As Quality Control For Foamed In-Place Insulation

    Science.gov (United States)

    Schwartz, Joel A.

    1989-03-01

    Since November of 1985, FOAM-TECH, INC. has been utilizing an I.S.I. Model 91 Videotherm Camera to quality control the installation of foamed in-place polyurethane and polyisocyanurate insulation. Monitoring the injection of foam into the walls and roofs of new construction and during the the retrofitting of older buildings has become an integral and routine step in daily operations. The Videotherm is also used to monitor the injection of foam into hot water tanks, trailer bodies for refrigeration trucks, and pontoons and buoys for flotation. The camera is also used for the detection of heat loss and air infiltration for conventionally insulated buildings. Appendix A are thermograms of foamed in-place insulation.

  20. Direct synthesis of highly textured Ge on flexible polyimide films by metal-induced crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Oya, N.; Toko, K., E-mail: toko@bk.tsukuba.ac.jp; Suemasu, T. [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, N.; Yoshizawa, N. [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan)

    2014-06-30

    The highly (111)-textured Ge thin film (50-nm thickness) is demonstrated on a flexible polyimide film via the low-temperature crystallization (325 °C) of amorphous Ge using Al as a catalyst. Covering the polyimide with insulators significantly improved the crystal quality of the resulting Ge layer. In particular, SiN covering led to 97% (111)-oriented Ge with grains 200 μm in size, two orders larger than the grain size of polycrystalline Ge directly formed on the polyimide film. This achievement will give a way to realize advanced electronic and optical devices simultaneously allowing for high performance, inexpensiveness, and flexibility.

  1. Synthesis, characterization and gas separation properties of novel polyimides containing cardo and tert-butyl-m-terphenyl moieties

    Directory of Open Access Journals (Sweden)

    L. A. Bermejo

    2018-05-01

    Full Text Available A series of aromatic polyimides has been obtained by the reaction of two dianhydrides, the commercial 2,2′-bis(3,4-dicarboxyphenylhexafluoropropane dianhydride (6FDA and another having a 5′-tert-butyl-m-terphenyl moiety (BTPDA, with several diamines, including two that have a cardo structure (derived from 9H-fluorene, one of them bearing methyl groups ortho to the amino functionalities (TMeCardo. The solubility, and also the thermal, mechanical, and gas separation properties of the corresponding polyimide membranes were evaluated and compared in order to explore the effect of the different groups in the polyimide backbone. The novel polyimides, which were derived from BTPDA and the cardo diamines, showed high thermal stability, excellent solubility in organic solvents and good gas separation properties, especially the polyimide that bore the ortho methyl substituents. The behavior was especially good for the pair O2/N2, where the TMeCardo polymer overpassed the Robeson upper bound.

  2. Effect of large dose gamma-ray irradiation on polyimide

    International Nuclear Information System (INIS)

    Morita, Yohsuke; Watanabe, Kiyoshi; Yagyu, Hideki.

    1988-01-01

    In the radiation environment of atomic energy, space and so on, with the heightening of the performance of equipment, the organic materials having the radiation resistance up to several hundreds MGy have been demanded. Polyimide is one of a small number of the polymers which are considered to be applicable to such environment. However, actually the characteristics as the insulator for such large dose radiation environment have not been sufficiently verified. In this study, the gamma-ray of as large dose as 100 MGy was irradiated on the polyimides having different chemical structure in the air and in nitrogen, and the change of their mechanical and electrical characteristics was elucidated, at the same time, the structural change was examined. The four kinds of polyimides used for the experiment were three kinds of thermosetting type and thermoplastic polyether imide. Co-60 gamma-ray was irradiated at the dose rate of 17 kGy/h at room temperature. The tensile properties, volume resistivity, dielectric tangent, gel fraction, glass transition temperature and IR spectra were examined. In the air, the characteristics lowered by large dose irradiation due to the severance of main chains. In nitrogen, the deterioration was extremely slight, and cross-linking occurred. (K.I.)

  3. Pipe Decontamination Involving String-Foam Circulation

    International Nuclear Information System (INIS)

    Turchet, J.P.; Estienne, G.; Fournel, B.

    2002-01-01

    Foam applications number for nuclear decontamination purposes has recently increased. The major advantage of foam decontamination is the reduction of secondary liquid wastes volumes. Among foam applications, we focus on foam circulation in contaminated equipment. Dynamic properties of the system ensures an homogeneous and rapid effect of the foam bed-drifted chemical reagents present in the liquid phase. This paper describes a new approach of foam decontamination for pipes. It is based on an alternated air and foam injections. We called it 'string-foam circulation'. A further reduction of liquid wastes is achieved compared to continuous foam. Secondly, total pressure loss along the pipe is controlled by the total foam length in the pipe. It is thus possible to clean longer pipes keeping the pressure under atmospheric pressure value. This ensures the non dispersion of contamination. This study describes experimental results obtained with a neutral foam as well with an acid foam on a 130 m long loop. Finally, the decontamination of a 44 meters pipe is presented. (authors)

  4. Toughening of thermosetting polyimides

    Science.gov (United States)

    Gollob, D. S.; Mandell, J. F.; Mcgarry, F. J.

    1979-01-01

    Work directed toward increasing the resistance to crack propagation of thermoset polyimides is described. Rubber modification and Teflon microfiber impregnation techniques for increasing fracture toughness are investigated. Unmodified Kerimid 601 has a fracture surface work value of 0.20 in-lbs/sq in. Dispersed particles of amine terminated butadiene acrylonitrile liquid rubber or of silicone rubber do not raise this value much. By contrast, 5 percent of well fibrillated Teflon produces an eight-fold increase in fracture toughness. Further process improvements should increase this factor to 20-30.

  5. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  6. Preparation and properties of polymer foams for ICF targets

    International Nuclear Information System (INIS)

    Letts, S.A.; Lucht, L.M.

    1986-09-01

    Low density small cell sized foams were developed to localize the liquid DT layer in a direct drive wetted foam laser fusion target. We have developed foams made from ultrahigh molecular weight polyethylene gels and polystyrene inverse emulsions. Materials in the density range of from 0.020 to 0.300 g/cc were prepared and characterized for cell size, mechanical properties, machinability, specific surface area, and wetting. Foams with a density of 0.05 g/cc were made with a cell size of less than 5 μm. A cell structure model was developed which relates the density and specific surface area to cell size and cell wall thickness. Wetting tests in organic solvents and in liquid hydrogen were used to characterize the capillary pressure, pore structure and uniformity of the foams. 13 refs., 9 figs., 2 tabs

  7. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  8. High-fluence implantation of iron into polyimide

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Hnatowicz, Vladimír; Peřina, Vratislav; Popok, V. N.; Khaibullin, R. I.; Bazarov, V. V.; Odzhaev, V. B.

    158/159, - (2002), s. 395-398 ISSN 0257-8972 R&D Projects: GA ČR GA203/99/1626; GA ČR GA102/01/1324 Keywords : polyimide * ion implantation * iron * Rutherford backscattering spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2002

  9. Causality and matter propagation in 3D spin foam quantum gravity

    International Nuclear Information System (INIS)

    Oriti, Daniele; Tlas, Tamer

    2006-01-01

    In this paper we tackle the issue of causality in quantum gravity, in the context of 3d spin foam models. We identify the correct procedure for implementing the causality/orientation dependence restriction that reduces the path integral for BF theory to that of quantum gravity in first order form. We construct explicitly the resulting causal spin foam model. We then add matter degrees of freedom to it and construct a causal spin foam model for 3d quantum gravity coupled to matter fields. Finally, we show that the corresponding spin foam amplitudes admit a natural approximation as the Feynman amplitudes of a noncommutative quantum field theory, with the appropriate Feynman propagators weighting the lines of propagation, and that this effective field theory reduces to the usual quantum field theory in flat space in the no-gravity limit

  10. Properties of Syntactic Foam for Simulation of Mechanical Insults.

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Neal Benson [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Spletzer, Matthew A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ortiz, Lyndsy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Syntactic foam encapsulation protects sensitive components. The energy mitigated by the foam is calculated with numerical simulations. The properties of a syntactic foam consisting of a mixture of an epoxy-rubber adduct and glass microballoons are obtained from published literature and test results. The conditions and outcomes of the tests are discussed. The method for converting published properties and test results to input for finite element models is described. Simulations of the test conditions are performed to validate the inputs.

  11. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    Science.gov (United States)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  12. Polyimide as a versatile enabling material for microsystems fabrication: surface micromachining and electrodeposited nanowires integration

    Science.gov (United States)

    Walewyns, Thomas; Reckinger, Nicolas; Ryelandt, Sophie; Pardoen, Thomas; Raskin, Jean-Pierre; Francis, Laurent A.

    2013-09-01

    The interest of using polyimide as a sacrificial and anchoring layer is demonstrated for post-processing surface micromachining and for the incorporation of metallic nanowires into microsystems. In addition to properties like a high planarization factor, a good resistance to most non-oxidizing acids and bases, and CMOS compatibility, polyimide can also be used as a mold for nanostructures after ion track-etching. Moreover, specific polyimide grades, such as PI-2611 from HD Microsystems™, involve a thermal expansion coefficient similar to silicon and low internal stress. The process developed in this study permits higher gaps compared to the state-of-the-art, limits stiction problems with the substrate and is adapted to various top-layer materials. Most metals, semiconductors or ceramics will not be affected by the oxygen plasma required for polyimide etching. Released structures with vertical gaps from one to several tens of μm have been obtained, possibly using multiple layers of polyimide. Furthermore, patterned freestanding nanowires have been synthesized with diameters from 20 to 60 nm and up to 3 μm in length. These results have been applied to the fabrication of two specific devices: a generic nanomechanical testing lab-on-chip platform and a miniaturized ionization sensor.

  13. Foam formation in low expansion fire fighting equipment

    International Nuclear Information System (INIS)

    Rogers, Lucy Elizabeth

    2001-01-01

    This thesis describes an investigation into the foam generation mechanisms involved in producing foam from a low expansion fire fighting branchpipe. The investigation was carried out using scale models of branchpipes, and a high-speed video camera was used to study the formation of the foam. The experiments provided evidence of three possible methods of bubble formation within this type of system: Stage 1 - Mixing within the branchpipe; Stage 2 - Air entrainment and bubble growth during the flight of the jet; Stage 3 - Aeration produced from the collision of the high speed jet onto a surface. Each stage is described in detail and the mechanism which has the greatest effect on the expansion ratio of the foam produced has been determined. The relevance of these findings to the design of branchpipes is discussed. (author)

  14. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  15. Coarse graining flow of spin foam intertwiners

    Science.gov (United States)

    Dittrich, Bianca; Schnetter, Erik; Seth, Cameron J.; Steinhaus, Sebastian

    2016-12-01

    Simplicity constraints play a crucial role in the construction of spin foam models, yet their effective behavior on larger scales is scarcely explored. In this article we introduce intertwiner and spin net models for the quantum group SU (2 )k×SU (2 )k, which implement the simplicity constraints analogous to four-dimensional Euclidean spin foam models, namely the Barrett-Crane (BC) and the Engle-Pereira-Rovelli-Livine/Freidel-Krasnov (EPRL/FK) model. These models are numerically coarse grained via tensor network renormalization, allowing us to trace the flow of simplicity constraints to larger scales. In order to perform these simulations we have substantially adapted tensor network algorithms, which we discuss in detail as they can be of use in other contexts. The BC and the EPRL/FK model behave very differently under coarse graining: While the unique BC intertwiner model is a fixed point and therefore constitutes a two-dimensional topological phase, BC spin net models flow away from the initial simplicity constraints and converge to several different topological phases. Most of these phases correspond to decoupling spin foam vertices; however we find also a new phase in which this is not the case, and in which a nontrivial version of the simplicity constraints holds. The coarse graining flow of the BC spin net models indicates furthermore that the transitions between these phases are not of second order. The EPRL/FK model by contrast reveals a far more intricate and complex dynamics. We observe an immediate flow away from the original simplicity constraints; however, with the truncation employed here, the models generically do not converge to a fixed point. The results show that the imposition of simplicity constraints can indeed lead to interesting and also very complex dynamics. Thus we need to further develop coarse graining tools to efficiently study the large scale behavior of spin foam models, in particular for the EPRL/FK model.

  16. Polyurethane-Foam Maskant

    Science.gov (United States)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  17. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

    Science.gov (United States)

    Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua

    2018-01-01

    Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

  18. A 2d model for the effect of gas diffusion on mobility of foam for EOR

    NARCIS (Netherlands)

    Nonnekes, L.E.; Cox, S.J.; Rossen, W.R.

    2012-01-01

    Transport of gas across liquid films between bubbles is cited as one reason why CO2 foams for enhanced oil recovery (EOR) are usually weaker than N2 foams and why steam foams are weaker than foams of steam mixed with N2. We examine here the effect of inter-bubble gas diffusion on flowing bubbles in

  19. Influence of the glass particle size on the foaming process and physical characteristics of foam glasses

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2016-01-01

    We have prepared low-density foam glasses from cathode-ray-tube panel glass using carbon and MnO2 as the foaming agents. The effect of the glass particle size on the foaming process, the apparent density and the pore morphology is revealed. The results show that the foaming is mainly caused...... by the reduction of manganese. Foam glasses with a density of

  20. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  1. Foam pad of appropriate thickness can improve diagnostic value of foam posturography in detecting postural instability.

    Science.gov (United States)

    Liu, Bo; Leng, Yangming; Zhou, Renhong; Liu, Jingjing; Liu, Dongdong; Liu, Jia; Zhang, Su-Lin; Kong, Wei-Jia

    2018-04-01

    The present study investigated the effect of foam thickness on postural stability in patients with unilateral vestibular hypofunction (UVH) during foam posturography. Static and foam posturography were performed in 33 patients (UVH group) and 30 healthy subjects (control group) with eyes open (EO) and closed (EC) on firm surface and on 1-5 foam pad(s). Sway velocity (SV) of center of pressure, standing time before falling (STBF) and falls reaction were recorded and analyzed. (1) SVs had an increasing tendency in both groups as the foam pads were added under EO and EC conditions. (2) STBFs, only in UVH group with EC, decreased with foam thickness increasing. (3) Significant differences in SV were found between the control and UVH group with EO (except for standing on firm surface, on 1 and 2 foam pad(s)) and with EC (all surface conditions). (4) Receiver operating characteristic curve analysis showed that the SV could better reflect the difference in postural stability between the two groups while standing on the 4 foam pads with EC. Our study showed that diagnostic value of foam posturography in detecting postural instability might be enhanced by using foam pad of right thickness.

  2. Spin foam model for pure gauge theory coupled to quantum gravity

    International Nuclear Information System (INIS)

    Oriti, Daniele; Pfeiffer, Hendryk

    2002-01-01

    We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett-Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang-Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang-Mills scale

  3. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    Yang, X H; Kuang, J J; Lu, T J; Han, F S; Kim, T

    2013-01-01

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  4. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  5. Bio-based Polymer Foam from Soyoil

    Science.gov (United States)

    Bonnaillie, Laetitia M.; Wool, Richard P.

    2006-03-01

    The growing bio-based polymeric foam industry is presently lead by plant oil-based polyols for polyurethanes and starch foams. We developed a new resilient, thermosetting foam system with a bio-based content higher than 80%. The acrylated epoxidized soybean oil and its fatty acid monomers is foamed with pressurized carbon dioxide and cured with free-radical initiators. The foam structure and pore dynamics are highly dependent on the temperature, viscosity and extent of reaction. Low-temperature cure hinds the destructive pore coalescence and the application of a controlled vacuum results in foams with lower densities ˜ 0.1 g/cc, but larger cells. We analyze the physics of foam formation and stability, as well as the structure and mechanical properties of the cured foam using rigidity percolation theory. The parameters studied include temperature, vacuum applied, and cross-link density. Additives bring additional improvements: nucleating agents and surfactants help produce foams with a high concentration of small cells and low bulk density. Hard and soft thermosetting foams with a bio content superior to 80% are successfully produced and tested. Potential applications include foam-core composites for hurricane-resistant housing, structural reinforcement for windmill blades, and tissue scaffolds.

  6. MyrrhaFoam: A CFD model for the study of the thermal hydraulic behavior of MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Koloszar, Lilla; Buckingham, Sophia; Planquart, Philippe [von Karman Institute, Chaussée de Waterloo 72, B-1640 Rhode-St-Genèse (Belgium); Keijers, Steven [SCK-CEN, Boeretang 200, 2400 Mol (Belgium)

    2017-02-15

    Highlights: • Development of a modeling approach for simulating the thermal hydraulics of heavy liquid metal nuclear reactors. • Detailed description of the modeling of each component through the MYRRHA reactor. • Detailed analysis of the flow field of the MYRRHA reactor under operating condition. • Assessment of the thermal load on the structures as well as the thermal stratification in the upper and the lower plenum. - Abstract: Numerical analysis of the thermohydraulic behavior of the innovative flexible fast spectrum research reactor, MYRRHA, under design by the Belgian Nuclear Research Center (SCK• CEN) is a very challenging task. The primary coolant of the reactor is Lead Bismuth Eutectic, LBE, which is an opaque heavy liquid metal with low Prandtl number. The simulation tool needs to involve many complex physical phenomena to be able to predict accurately the flow and thermal field in the pool type reactor. In the past few years, within the frame of a collaboration between SCK• CEN and the von Karman Institute, a new platform, MyrrhaFoam, was developed based on the open source simulation environment, OpenFOAM. The current tool can deal with incompressible buoyancy corrected steady/unsteady single phase flows. It takes into account conjugate heat transfer in the solid parts which is mandatory due to the expected high temperature gradients between the different parts of the reactor. The temperature dependent properties of LBE are also considered. MyrrhaFoam is supplemented with the most relevant thermal turbulence models for low Prandtl number liquids up to date.

  7. Foam flow in a model porous medium: II. The effect of trapped gas.

    Science.gov (United States)

    Jones, S A; Getrouw, N; Vincent-Bonnieu, S

    2018-05-09

    Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.

  8. An approach for characterising cellular polymeric foam structures using computed tomography

    Science.gov (United States)

    Chen, Youming; Das, Raj; Battley, Mark

    2018-02-01

    Global properties of foams depend on foam base materials and microstructures. Characterisation of foam microstructures is important for developing numerical foam models. In this study, the microstructures of four polymeric structural foams were imaged using a micro-CT scanner. Image processing and analysis methods were proposed to quantify the relative density, cell wall thickness and cell size of these foams from the captured CT images. Overall, the cells in these foams are fairly isotropic, and cell walls are rather straight. The measured average relative densities are in good agreement with the actual values. Relative density, cell size and cell wall thickness in these foams are found to vary along the thickness of foam panel direction. Cell walls in two of these foams are found to be filled with secondary pores. In addition, it is found that the average cell wall thickness measured from 2D images is around 1.4 times of that measured from 3D images, and the average cell size measured from 3D images is 1.16 times of that measured from 2D images. The distributions of cell wall thickness and cell size measured from 2D images exhibit lager dispersion in comparison to those measured from 3D images.

  9. Improvement of stability of polidocanol foam for nonsurgical permanent contraception.

    Science.gov (United States)

    Guo, Jian Xin; Lucchesi, Lisa; Gregory, Kenton W

    2015-08-01

    Polidocanol foam (PF), used clinically as a venous sclerosant, has recently been studied as a safe and inexpensive means for permanent contraception. Delivering the sclerosant to the fallopian tubes as a foam rather than a liquid increases the surface areas and thus enhances the desired epithelial disrupting activity of the agent. However, the foam is inherently unstable and degrades with time. Therefore, increasing foam stability and thus duration of the agent exposure time could increase epithelial effect while allowing reduction in agent concentration and potential toxicity. We studied methods to improve foam properties that might improve safety and efficacy of PF for intrauterine application. Several types of microporous filters adapted to a syringe-based foaming device were used to study the effect of pore structures on the formation of PF. The foam drainage time and bubble size were characterized. The addition of benzalkonium chloride (BZK) to polidocanol was also investigated for its effects on foam characteristics. A syringe-based foaming device adapted with an inline filter produced smaller bubble PF with a longer foam drainage time. PF generated with a circular pore filter lasts longer than with a noncircular pore filter. The addition of 0.01% of BZK also improved the stability of PF. The stability of PF is affected by the pore characteristics of the filter used for foam generation and enhanced by the presence of a small amount of BZK. The improved foam, if shown to be efficacious in animal models of contraception, could lead to a safe, simple and inexpensive method alternative to surgical contraception. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Thermal degradation of organo-soluble polyimides

    Institute of Scientific and Technical Information of China (English)

    黄俐研; 史燚; 金熹高

    1999-01-01

    The thermal degradation behavior of two organo-soluble polyimides was investigated by high resolution pyrolysis-gas chromatography/mass spectrometry. The pyrolyzates of the polymers at various temperatures were identified and characterized quantitatively. The relationship between the polymer structure and pyrolyzate distribution was discussed. The kinetic parameters of the thermal degradation were calculated based on thermogravimetric measurements. Finally, the thermal degradation mechanism for the polymers was suggested.

  11. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  12. Systematic approach for the calibration of humidity sensitive polyimide recoated fibre Bragg gratings for measuring humidity and temperature and their application for measuring moisture absorption in polymers

    International Nuclear Information System (INIS)

    Young, T J; Lodeiro, M J; Gower, M R L; Sassi, M B

    2013-01-01

    This paper describes a systematic method for calibrating polyimide recoated fibre Bragg grating (FBG) optical fibres and the associated models used to measure temperature and relative humidity (RH) from 20 to 70 °C and 20% RH to 80% RH. The method was validated by comparing known values of temperature and RH with calculated values from two FBG sensors with different thicknesses of polyimide recoat. Results show good agreement, with a standard deviation error of 0.5 °C and 4.8% RH for temperature and humidity respectively. Drift in the measured wavelength was observed for both thicknesses of polyimide coating under the combined effect of elevated temperature and high humidity. This drift was reversed after a reduction in the humidity. Additional results are provided on the use of embedded polyimide recoated FBG optical fibres for measuring moisture ingress within polymers and composites. (paper)

  13. Foam flows through a local constriction

    Science.gov (United States)

    Chevalier, T.; Koivisto, J.; Shmakova, N.; Alava, M. J.; Puisto, A.; Raufaste, C.; Santucci, S.

    2017-11-01

    We present an experimental study of the flow of a liquid foam, composed of a monolayer of millimetric bubbles, forced to invade an inhomogeneous medium at a constant flow rate. To model the simplest heterogeneous fracture medium, we use a Hele-Shaw cell consisting of two glass plates separated by a millimetric gap, with a local constriction. This single defect localized in the middle of the cell reduces locally its gap thickness, and thus its local permeability. We investigate here the influence of the geometrical property of the defect, specifically its height, on the average steady-state flow of the foam. In the frame of the flowing foam, we can observe a clear recirculation around the obstacle, characterized by a quadrupolar velocity field with a negative wake downstream the obstacle, which intensity evolves systematically with the obstacle height.

  14. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  15. Optical alignment control of polyimide molecules containing azobenzene in the backbone structure

    International Nuclear Information System (INIS)

    Sakamoto, Kenji; Usami, Kiyoaki; Sasaki, Toru; Kanayama, Takashi; Ushioda, Sukekatsu

    2004-01-01

    Using polarized infrared absorption spectroscopy, we have determined the orientation of the polyimide backbone structure in photo-alignment films for liquid crystals (LC). The polyimide used in this study contains azobenzene in the backbone structure. Photo-alignment treatment was performed on the corresponding polyamic acid film, using a light source of wavelength 340-500 nm. The polyamic acid film (∼16 nm thick) was first irradiated at normal incidence with linearly polarized light (LP-light) of 156 J/cm 2 , and then oblique angle irradiation of unpolarized light (UP-light) was performed in the plane of incidence perpendicular to the polarization direction of the LP-light. The UP-light exposure was varied up to 882 J/cm 2 . We found that the average inclination angle of the polyimide backbone structure, measured from the surface plane, increases almost linearly with UP-light exposure. On the other hand, the in-plane anisotropy induced by the first irradiation with LP-light decreases with the increase of UP-light exposure

  16. Graphene foam as a biocompatible scaffold for culturing human neurons

    Science.gov (United States)

    Mattei, Cristiana; Nasr, Babak; Hudson, Emma J.; Alshawaf, Abdullah J.; Chana, Gursharan; Everall, Ian P.; Dottori, Mirella; Skafidas, Efstratios

    2018-01-01

    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation. PMID:29657752

  17. Scaling up the Fabrication of Mechanically-Robust Carbon Nanofiber Foams

    Directory of Open Access Journals (Sweden)

    William Curtin

    2016-02-01

    Full Text Available This work aimed to identify and address the main challenges associated with fabricating large samples of carbon foams composed of interwoven networks of carbon nanofibers. Solutions to two difficulties related with the process of fabricating carbon foams, maximum foam size and catalyst cost, were developed. First, a simple physical method was invented to scale-up the constrained formation of fibrous nanostructures process (CoFFiN to fabricate relatively large foams. Specifically, a gas deflector system capable of maintaining conditions supportive of carbon nanofiber foam growth throughout a relatively large mold was developed. ANSYS CFX models were used to simulate the gas flow paths with and without deflectors; the data generated proved to be a very useful tool for the deflector design. Second, a simple method for selectively leaching the Pd catalyst material trapped in the foam during growth was successfully tested. Multiple techniques, including scanning electron microscopy, surface area measurements, and mechanical testing, were employed to characterize the foams generated in this study. All results confirmed that the larger foam samples preserve the basic characteristics: their interwoven nanofiber microstructure forms a low-density tridimensional solid with viscoelastic behavior. Fiber growth mechanisms are also discussed. Larger samples of mechanically-robust carbon nanofiber foams will enable the use of these materials as strain sensors, shock absorbers, selective absorbents for environmental remediation and electrodes for energy storage devices, among other applications.

  18. Mechanical behaviour of nickel foams: three-dimensional morphology, non-linear models and fracture; Caracterisation et simulation numerique du comportement mecanique des mousses de nickel: morphologie tridimensionnelle, reponse elastoplastique et rupture

    Energy Technology Data Exchange (ETDEWEB)

    Dillard, Th.

    2004-03-15

    The deformation behaviour and failure of nickel foams were studied during loading by using X-ray microtomography. Strut alignment and stretching are observed in tension whereas strut bending followed by strut buckling are observed in compression. Strain localisation, that occurs during compression tests, depends on nickel weight distribution in the foam. Fracture in tension first takes place at cell nodes and the crack propagates cell by cell. The damaged area in front of a crack is about five cells wide. A detailed description of the three-dimensional morphology is also presented. One third of the cells are dodecahedral and 57 % of the faces are pentagonal. The most frequent cell is composed of two quadrilaterals, two hexagons and eight pentagons. The dimensions of the equivalent ellipsoid of each cell are identified and cell orientation are determined. The geometrical aspect ratio is linked to the mechanical anisotropy of the foam. In tension, a uniaxial analytical model, based on elastoplastic strut bending, is developed. The whole stress-strain curve of the foam is predicted according to its specific weight and its anisotropy. It is found that the non-linear regime of the macroscopic curve of the foam is not only due to the elastoplastic bending of the struts. The model is also extended to two-phase foams and the influence of the hollow struts is analysed. The two-phase foams model is finally applied to oxidized nickel foams and compared with experimental data. The strong increase in the rigidity of nickel foams with an increasing rate of oxidation, is well described by the model. However, a fracture criterion must also be introduced to take into account the oxide layer cracking. A phenomenological compressible continuum plasticity model is also proposed and identified in tension. The identification of the model is carried out using experimental strain maps obtained by a photo-mechanical technique. A validation of the model is provided by investigating the

  19. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle

    International Nuclear Information System (INIS)

    Xiang, Zhuolin; Yen, Shih-Cheng; Zhang, Songsong; Lee, Chengkuo; Xue, Ning; Sun, Tao; Tsang, Wei Mong; Liao, Lun-De; Thakor, Nitish V

    2014-01-01

    The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe body while its flexibility can minimize the micromotion between the probe and brain tissue. To provide sufficient stiffness for penetration purposes, we developed a drawing lithography technology for uniform maltose coating to make the maltose-coated polyimide neural probe become a stiff microneedle. The coating thicknesses under different temperature and the corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on the neural probe recording electrodes to improve the charge delivery ability and reduce the impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated by in vivo tests. (paper)

  20. Ultra-thin flexible polyimide neural probe embedded in a dissolvable maltose-coated microneedle

    Science.gov (United States)

    Xiang, Zhuolin; Yen, Shih-Cheng; Xue, Ning; Sun, Tao; Mong Tsang, Wei; Zhang, Songsong; Liao, Lun-De; Thakor, Nitish V.; Lee, Chengkuo

    2014-06-01

    The ultra-thin flexible polyimide neural probe can reduce the glial sheath growth on the probe body while its flexibility can minimize the micromotion between the probe and brain tissue. To provide sufficient stiffness for penetration purposes, we developed a drawing lithography technology for uniform maltose coating to make the maltose-coated polyimide neural probe become a stiff microneedle. The coating thicknesses under different temperature and the corresponding stiffness are studied. It has been proven that the coated maltose is dissolved by body fluids after implantation for a few seconds. Moreover, carbon nanotubes are coated on the neural probe recording electrodes to improve the charge delivery ability and reduce the impedance. Last but not least, the feasibility and recording characteristic of this ultra-thin polyimide neural probe embedded in a maltose-coated microneedle are further demonstrated by in vivo tests.

  1. Study of two-phase foam flow

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Guliev, B B; Mekhtiev, K G; Kerimov, R G

    1970-01-01

    The objectives of this study were to determine characteristics of aqueous foam flow through porous media and to estimate the depth of foam penetration into a formation. Foam was generated by mixing air and 1% solution of surfactant PO-1. Foam density was maintained at 0.14 g/cc in all experiments. The foam was passed through sand columns (800 mm long x 30 mm diam) of permeabilities 26, 39, 80, 111, and 133 darcys. Flow rates were measured at various pressure drops and the relationship between system parameters was expressed analytically and graphically. From the data, distance of foam penetration into a formation as a function of pressure drop and permeability was calculated. The data indicate that under most conditions, foam will penetrate the formation to a negligible distance. This study indicates that when foam is used to remove sand from a well, a negligible loss of foam to the formation occurs.

  2. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    Science.gov (United States)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  3. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.

    Science.gov (United States)

    Borkotoky, Shasanka Sekhar; Dhar, Prodyut; Katiyar, Vimal

    2018-01-01

    This article addresses the elegant and green approach for fabrication of bio-based poly (lactic acid) (PLA)/cellulose nanocrystal (CNCs) bionanocomposite foam (PLA/CNC) with cellular morphology and hydrophobic surface behavior. Highly porous (porosity >80%) structure is obtained with interconnected pores and the effect of CNCs in the cell density (N f ) and cell size of foams are thoroughly investigated by morphological analysis. The thermo-mechanical investigations are performed for the foam samples and almost ∼1.7 and ∼2.2 fold increase in storage modulus is observed for the compressive and tensile mode respectively. PLA/CNC based bionanocomposite foams displayed similar thermal stability as base PLA foam. Detailed investigations of decomposition behavior are studied by using hyphenated thermogravimetric analysis-fourier transmission infrared spectroscopy (TGA-FTIR) system. Almost ∼13% increment is observed in crystallinity at highest loading of CNCs compared to neat counterpart. To investigate the splitting and spreading phenomenon of the wettability of the samples, linear model is used to find the Young's contact angle and contact angle hysteresis (CAH). Besides, ∼6.1 folds reduction in the density of PLA and the nanocomposite foams compared to PLA carries much significance in specialized application areas where weight is an important concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mixing foams and grains in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A P B; Tufaile, A; Haddad, T A S, E-mail: tufaile@usp.b [Escola de Artes, Ciencias e Humanidades da Universidade de Sao Paulo, R. Arlindo Bettio, 1000, 03828-000, Sao Paulo (Brazil)

    2010-09-01

    We have observed some features of the coexistence of foams and granular materials in Hele-Shaw cells. The most part of the liquid and granular material stays at the bottom of the cell, with only a small quantity of the mixture resting on the froth. The fractal dimensions of the final states of the foams are close to the values obtained from the Random Apollonian Packing model. The disperse structure of the granular material affects the probability distribution of number of sides of the foam bubbles. The nearest neighbor distances between the peaks of the sand piles at the bottom of the cell are close to a lognormal distribution.

  5. Border-crossing model for the diffusive coarsening of two-dimensional and quasi-two-dimensional wet foams

    Science.gov (United States)

    Schimming, C. D.; Durian, D. J.

    2017-09-01

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called "border-blocking" models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet or unjamming limit where the bubbles become close-packed spheres and coarsening proceeds even though there are no films. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We compute that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling by numerical solution of the diffusion equation. We similarly consider transport across inflated vertices and surface Plateau borders in quasi-two-dimensional foams. And we show how the d A /d t =K0(n -6 ) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scales. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble area, which is not constant.

  6. Poly(imide benzimidazole)s for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Yuan, Sen; Guo, Xiaoxia; Aili, David

    2014-01-01

    A series of poly(imide benzimidazole) random copolymers (PIBIs) was synthesized by condensation polymerization of biphenyl-4,4'-diyldi(oxo)-4,4'-bis(1,8-naphthalenedicarboxylic anhydride) (BPNDA), 2-(4-aminophenyl)-5-aminobenzimidazole (APABI) and 4,4'diaminodiphenyl ether (ODA) in m-cresol in th......A series of poly(imide benzimidazole) random copolymers (PIBIs) was synthesized by condensation polymerization of biphenyl-4,4'-diyldi(oxo)-4,4'-bis(1,8-naphthalenedicarboxylic anhydride) (BPNDA), 2-(4-aminophenyl)-5-aminobenzimidazole (APABI) and 4,4'diaminodiphenyl ether (ODA) in m...

  7. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    OpenAIRE

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan; Angelidaki, Irini

    2013-01-01

    Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses ...

  8. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  9. Effects of a new foam formulation of ketoprofen lysine salt in experimental models of inflammation and hyperalgesia.

    Science.gov (United States)

    Daffonchio, L; Bestetti, A; Clavenna, G; Fedele, G; Ferrari, M P; Omini, C

    1995-05-01

    The anti-inflammatory and analgesic profile of a new topical foam formulation of ketoprofen lysine salt (CAS 57469-78-0, Artrosilene Schiuma, KLS-foam) was characterized in comparison with marketed gel formulations containing KLS (KLS-gel) or diclofenac diethylammonium salt (DCF-gel). KLS-foam dose-dependently inhibited oedema formation and hyperalgesia induced by subplantar injection of carrageenan or substance P, being more potent than KLS-gel. At equieffective anti-inflammatory doses, KLS-foam provided a more pronounced analgesic effect than DCF-gel. KLS-foam also markedly inhibited exudate formation and prostaglandin production induced by subcutaneous implantation of carrageenan soaked sponges. In carrageenan induced paw inflammation, KLS-foam provided the same anti-inflammatory effect as orally administered KLS, but induced significantly less gastric damages. Oral administration of KLS resulted in sustained systemic absorption of ketoprofen, whereas after topical application of KLS-foam no appreciable ketoprofen plasma levels were detected. These data support the anti-inflammatory and particularly the analgesic effectiveness of the new foam formulation of KLS, a finding that, together with the high gastric tolerability, further emphasizes the usefulness of KLS-foam in the treatment of localized flogistic diseases and associated pain.

  10. Polyimide resin composites via in situ polymerization of monomeric reactants

    Science.gov (United States)

    Cavano, P. J.

    1974-01-01

    Thermo-oxidatively stable polyimide/graphite-fiber composites were prepared using a unique in situ polymerization of monomeric reactants directly on reinforcing fibers. This was accomplished by using an aromatic diamine and two ester-acids in a methyl alcohol solvent, rather than a previously synthesized prepolymer varnish, as with other A-type polyimides. A die molding procedure was developed and a composite property characterization conducted with high modulus graphite fiber tow. Flexure, tensile, compressive, and shear tests were conducted at temperatures from 72 to 650 F on laminates before and after exposures at the given temperatures in an air environment for times up to 1000 hours. The composite material was determined to be oxidatively, thermally, and hydrolytically stable.

  11. Chaotic bubbling and nonstagnant foams.

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  12. Drug delivery properties of macroporous polystyrene solid foams

    OpenAIRE

    Canal Barnils, Cristina; Aparicio, Rosa María; Vílchez, Alejandro; Esquena, Jordi; García-Celma, María José

    2012-01-01

    Purpose. Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. Methods. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Results. Solid foams with very h...

  13. HIGH-FREQUENCY MICROINDUCTOR ON THE BASE OF FLEXIBLE POLYIMIDE FILM

    Directory of Open Access Journals (Sweden)

    A. V. Petrov

    2011-01-01

    Full Text Available A method of creation of 3D flexible high-frequency microinductor on the base of polyimide film with etched swift heavy ion tracks, filled with a conducting material is proposed. This methos is more simple as compared with existing technologies. The service model of the microinductor having dimensions 0,04 mm3 is fabricated. This model has following main operational characteristics: winding density of 7 winding/mm at the winding thickness 10 μm; inductivity 0.3 mH with the Q-factor of 8 at 200 MHz. A possibility of the decrease of dimensions of the device down to 10-6 mm3 is shown. 

  14. A review of aqueous foam in microscale.

    Science.gov (United States)

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Hyperbolic prisms and foams in Hele-Shaw cells

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil); Tufaile, A.P.B. [Soft Matter Laboratory, Escola de Artes, Ciencias e Humanidades, Universidade de Sao Paulo, 03828-000, Sao Paulo (Brazil)

    2011-10-03

    The propagation of light in foams creates patterns which are generated due to the reflection and refraction of light. One of these patterns is observed by the formation of multiple mirror images inside liquid bridges in a layer of bubbles in a Hele-Shaw cell. We are presenting the existence of these patterns in foams and their relation with hyperbolic geometry and Sierpinski gaskets using the Poincare disk model. The images obtained from the experiment in foams are compared to the case of hyperbolic optical elements. -- Highlights: → The chaotic scattering of light in foams generating deltoid patterns is based on hyperbolic geometry. → The deltoid patterns are obtained through the Plateau borders in a Hele-Shaw cell. → The Plateau borders act like hyperbolic prism. → Some effects of the refraction and reflection of the light rays were studied using a hyperbolic prism.

  16. Applicability of Solid Solution Heat Treatments to Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pérez

    2012-12-01

    Full Text Available Present research work evaluates the influence of both density and size on the treatability of Aluminum-based (6000 series foam-parts subjected to a typical solid solution heat treatment (water quenching. The results are compared with those obtained for the bulk alloy, evaluating the fulfilment of cooling requirements. Density of the foams was modeled by tomography analysis and the thermal properties calculated, based on validated density-scaled models. With this basis, cooling velocity maps during water quenching were predicted by finite element modeling (FEM in which boundary conditions were obtained by solving the inverse heat conduction problem. Simulations under such conditions have been validated experimentally. Obtained results address incomplete matrix hardening for foam-parts bigger than 70 mm in diameter with a density below 650 kg/m3. An excellent agreement has been found in between the predicted cooling maps and final measured microhardness profiles.

  17. Beer foam physics

    NARCIS (Netherlands)

    Ronteltap, A.D.

    1989-01-01

    The physical aspects of beer foam behavior were studied in terms of the four physical processes, mainly involved in the formation and breakdown of foam. These processes are, bubble formation, drainage, disproportionation and coalescence. In detail, the processes disproportionation and

  18. Incorporation of the Pore Size Variation to Modeling of the Elastic Behavior of Metallic Open-Cell Foams

    Directory of Open Access Journals (Sweden)

    Ćwieka K.

    2017-03-01

    Full Text Available In the present paper we present the approach for modeling of the elastic behavior of open-cell metallic foams concerning non-uniform pore size distribution. This approach combines design of foam structures and numerical simulations of compression tests using finite element method (FEM. In the design stage, Laguerre-Voronoi tessellations (LVT were performed on several sets of packed spheres with defined variation of radii, bringing about a set of foam structures with porosity ranging from 74 to 98% and different pore size variation quantified by the coefficient of pore volume variation, CV(V, from 0.5 to 2.1. Each structure was numerically subjected to uni-axial compression test along three directions within the elastic region. Basing on the numerical response, the effective Young’s modulus, Eeff, was calculated for each structure. It is shown that the Eeff is not only dependent on the porosity but also on the pore size variation.

  19. Foaming and emulsifying properties of pectin isolated from different plant materials

    Science.gov (United States)

    Yancheva, Nikoleta; Markova, Daniela; Murdzheva, Dilyana; Vasileva, Ivelina; Slavov, Anton

    2016-03-01

    The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase) with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  20. Foaming and emulsifying properties of pectin isolated from different plant materials

    Directory of Open Access Journals (Sweden)

    Yancheva Nikoleta

    2016-03-01

    Full Text Available The foaming and emulsifying properties of pectins obtained from waste rose petals, citrus pressings, grapefruit peels and celery were studied. It was found that the highest foaming capacity showed pectin derived from celery. The effect of pectin concentration on the foaming capacity of pectin solutions was investigated. For all the investigated pectins increasing the concentration led to increase of the foaming capacity. Emulsifying activity and emulsion stability of model emulsion systems (50 % oil phase with 0.6 % pectic solutions were determined. The highest emulsifying activity and stability showed pectin isolated by dilute acid extraction from waste rose petals.

  1. Anti-foam System design description

    International Nuclear Information System (INIS)

    White, M.A.

    1994-01-01

    The Anti-foam System is a sub-system of the 242-A Evaporator facility. The Anti-foam is used within the C-A-1 Vapor-Liquid Separator, to reduce the effect of foaming and reduce fluid bumping while the vapor and liquid are separated within the C-A-1 Vapor-Liquid Separator. Excessive foaming within the vessel may possibly cause the liquid slurry mixture in the evaporator vessel to foul the de-entrainment pads and cause plant shutdown. The Anti-foam System consists of the following primary elements: the Anti-foam Tank and the Metering Pump. The upgrades to Anti-foam System include the following: installation of a new pump, instruments, and valves; and connection of the instruments, pump and agitator associated with the Anti-foam System to the Monitoring and Control System (MCS). The 242-A Evaporator is a waste treatment facility designed to reduce liquid waste volumes currently stored in the Hanford Area double shell Waste Storage Tanks. The evaporator uses evaporative concentration to achieve this volume reduction, returning the concentrated slurry to the double-shell tanks for storage and, at the same time, releasing the process effluent to a retention facilities for eventual treatment and release to the environment

  2. High performance polymeric foams

    International Nuclear Information System (INIS)

    Gargiulo, M.; Sorrentino, L.; Iannace, S.

    2008-01-01

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy

  3. Surface analysis of graphite fiber reinforced polyimide composites

    Science.gov (United States)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  4. Stability of metallic foams studied under microgravity

    CERN Document Server

    Wuebben, T; Banhart, J; Odenbach, S

    2003-01-01

    Metal foams are prepared by mixing a metal powder and a gas-releasing blowing agent, by densifying the mix to a dense precursor and finally foaming by melting the powder compact. The foaming process of aluminium foams is monitored in situ by x-ray radioscopy. One observes that foam evolution is accompanied by film rupture processes which lead to foam coalescence. In order to elucidate the importance of oxides for foam stability, lead foams were manufactured from lead powders having two different oxide contents. The two foam types were generated on Earth and under weightlessness during parabolic flights. The measurements show that the main function of oxide particles is to prevent coalescence, while their influence on bulk viscosity of the melt is of secondary importance.

  5. Reduced material model for closed cell metal foam infiltrated with phase change material based on high resolution numerical studies

    International Nuclear Information System (INIS)

    Ohsenbrügge, Christoph; Marth, Wieland; Navarro y de Sosa, Iñaki; Drossel, Welf-Guntram; Voigt, Axel

    2016-01-01

    Highlights: • Closed cell metal foam sandwich structures were investigated. • High resolution numerical studies were conducted using CT scan data. • A reduced model for use in commercial FE software reduces needed degrees of freedom. • Thermal inertia is increased about 4 to 5 times in PCM filled structures. • The reduced material model was verified using experimental data. - Abstract: The thermal behaviour of closed cell metal foam infiltrated with paraffin wax as latent heat storage for application in high precision tool machines was examined. Aluminium foam sandwiches with metallically bound cover layers were prepared in a powder metallurgical process and cross-sectional images of the structures were generated with X-ray computed tomography. Based on the image data a three dimensional highly detailed model was derived and prepared for simulation with the adaptive FE-library AMDiS. The pores were assumed to be filled with paraffin wax. The thermal conductivity and the transient thermal behaviour in the phase-change region were investigated. Based on the results from the highly detailed simulations a reduced model for use in commercial FE-software (ANSYS) was derived. It incorporates the properties of the matrix and the phase change material into a homogenized material. A sandwich-structure with and without paraffin was investigated experimentally under constant thermal load. The results were used to verify the reduced material model in ANSYS.

  6. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Cousins, Ian T; Yu, Gang

    2018-07-01

    Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    KAUST Repository

    Alaslai, Nasser Y.; Ghanem, Bader; Alghunaimi, Fahd; Pinnau, Ingo

    2016-01-01

    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  8. High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation

    KAUST Repository

    Alaslai, Nasser Y.

    2016-03-22

    A novel polyimide of intrinsic microporosity (PIM-PI) was synthesized from a 9,10-diisopropyl-triptycene-based dianhydride (TPDA) and dihydroxyl-functionalized 4,6-diaminoresorcinol (DAR). The unfunctionalized TPDA-m-phenylenediamine (mPDA) polyimide derivative was made as a reference material to evaluate the effect of the OH group in TPDA-DAR on its gas transport properties. Pure-gas permeability coefficients of He, H2, N2, O2, CH4, and CO2 were measured at 35 °C and 2 atm. The BET surface area based on nitrogen adsorption of dihydroxyl-functionalized TPDA-DAR (308 m2g-1) was 45% lower than that of TPDA-mPDA (565 m2g-1). TPDA-mPDA had a pure-gas CO2 permeability of 349 Barrer and CO2/CH4 selectivity of 32. The dihydroxyl-functionalized TPDA-DAR polyimide exhibited enhanced pure-gas CO2/CH4 selectivity of 46 with a moderate decrease in CO2 permeability to 215 Barrer. The CO2 permeability of TPDA-DAR was ∼30-fold higher than that of a commercial cellulose triacetate membrane coupled with 39% higher pure-gas CO2/CH4 selectivity. The TPDA-based dihydroxyl-containing polyimide showed good plasticization resistance and maintained high mixed-gas selectivity of 38 when tested at a typical CO2 natural gas wellhead CO2 partial pressure of 10 atm.

  9. Applications of Foamed Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Sari Kamarul Aini

    2017-01-01

    Full Text Available Application of foamed concrete is increasing at present due to high demand on foamed concrete structures with good mechanical and physical properties. This paper discusses on the use of basic raw materials, their characteristics, production process, and their application in foamed lightweight concrete with densities between 300 kg/m3 and 1800 kg/m3. It also discusses the factors that influence the strengths and weaknesses of foamed concrete based on studies that were conducted previously.

  10. A versatile multi-user polyimide surface micromachinning process for MEMS applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    This paper reports a versatile multi-user micro-fabrication process for MEMS devices, the \\'Polyimide MEMS Multi-User Process\\' (PiMMPs). The reported process uses polyimide as the structural material and three separate metallization layers that can be interconnected depending on the desired application. This process enables for the first time the development of out-of-plane compliant mechanisms that can be designed using six different physical principles for actuation and sensing on a wafer from a single fabrication run. These principles are electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception. © 2015 IEEE.

  11. The mechanical behavior of microcellular foams

    Energy Technology Data Exchange (ETDEWEB)

    Ozkul, M.H.; Mark, J.E. (Cincinnati Univ., OH (USA)); Aubert, J.H. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    The mechanical behavior of microcellular open-cell foams prepared by a thermally induced phase separation process are investigated. The foams studied were prepared from isotactic polystyrene, polyacrylonitrile, and poly(4-methyl-1-pentene) (rigid foams), and polyurethane and Lycra (elastomeric foams). Their densities were in the range 0.04--0.27 g/cm3. Conventional polystyrene foams were used for comparison. The moduli and collapse stresses of these foams were measured in compression and compared with the current constitutive laws which relate mechanical properties to densities. A reinforcement technique based on the in-situ precipitation of silica was used to improve the mechanical properties. 13 refs., 4 figs., 3 tabs.

  12. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    International Nuclear Information System (INIS)

    Francés, A B; Bañón, M V Navarro

    2014-01-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO 2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction

  13. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    Science.gov (United States)

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  14. Preparation of nanoporous polyimide thin films via layer-by-layer self-assembly of cowpea mosaic virus and poly(amic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Peng Bo; Wu Guojun; Lin Yuan [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208 (United States); Su Zhaohui, E-mail: zhsu@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2011-09-01

    Low dielectric (low-{kappa}) materials are of key importance for the performance of microchips. In this study, we show that nanosized cowpea mosaic virus (CPMV) particles can be assembled with poly(amic acid) (PAA) in aqueous solutions via the layer-by-layer technique. Then, upon thermal treatment CPMV particles are removed and PAA is converted into polyimide in one step, resulting in a porous low-{kappa} polyimide film. The multilayer self-assembly process was monitored by quartz crystal microbalance and UV-Vis spectroscopy. Imidization and the removal of the CPMV template was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy respectively. The dielectric constant of the nanoporous polyimide film thus prepared was 2.32 compared to 3.40 for the corresponding neat polyimide. This work affords a facile approach to fabrication of low-{kappa} polyimide ultrathin films with tunable thickness and dielectric constant.

  15. Design Analysis and Thermo-Mechanical Fatigue of a Polyimide Composite for Combustion Chamber Support

    Science.gov (United States)

    Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris

    2004-01-01

    Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.

  16. Production of Polystyrene Open-celled Microcellular Foam in Batch Process by Super Critical CO2

    Directory of Open Access Journals (Sweden)

    M.S. Enayati

    2010-12-01

    Full Text Available Open-celled foams are capable to allow the passage of fluids through their structure, because of interconnections between the open cells or bubbles and therefore these structures can be used as a membrane and filter. In thiswork, we have studied the production of polystyrene open-celled microcellular foam by using CO2 as blowing agent. To achieve such structures, it is necessary to control the stages of growth in such a way that the cells would connect to each other through the pores without any coalescence. The required processing condition to achieve open-celled structures is predictable by a model theory of opened-cell. This model suggests that at least a 130 bar saturation pressure and foaming time between 9 and 58 s are required for this system. The temperature range has been selected for to be both higher than polymer glass transition temperature and facilitating the foaming process. Experimental results in the batch foaming process has verified the model quite well. The SEM and mercury porousimetry tests show the presence of pores between the cells with open-celled structure. Experimental results show that by increasing the saturation pressure and the foaming temperature, there is a drop in the time required for open-celled structure formation. A 130 bar saturation pressure, 150o C foaming temperature and 60 s foaming time, suggest the attainment of open-celled microcellular foam based on polystyrene/CO2 system in the batch process.

  17. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation

    KAUST Repository

    Qiu, Wulin

    2011-08-01

    Seven polyimides based on (4,4′-hexafluoroisopropylidene) diphthalic anhydride, 6FDA, with different chemical structures were synthesized in a single pot two-step procedure by first producing a high molecular weight polyamic acid (PAA), followed by reaction with acetic anhydride to produce polyimide (PI). The resulting polymers were characterized using thermal analysis techniques including TGA, derivative weight analysis, TGA-MS, and DSC. The decarboxylation-induced thermal cross-linking, ester cross-linking through a diol, and ion-exchange reactions of selected polyimide membranes were investigated. Cross-linking of polymer membranes was confirmed by solubility tests and CO 2 permeability measurements. The thermal analysis provides simple and timesaving opportunities to characterize the polymer properties, the ability to optimize polymer cross-linking conditions, and to monitor polymer functionalization to develop high performance polymeric membranes for gas separations. © 2011 Elsevier Ltd. All rights reserved.

  18. Study of a flowing aqueous decontamination foam drainage mechanisms and hydrodynamic behaviour

    International Nuclear Information System (INIS)

    Boissonnet, G.

    1998-01-01

    For the decontamination of nuclear facilities, the use of foams has a great potentiality. This work deals with the study of a flowing aqueous foam regarding two aspects: the structure and the drainage on one hand, the hydrodynamic behaviour on the other hand. The foam has been studied from a photograph of a plexiglass column wall, in which the foam flows vertically. Image processing and analysis have been used to measure the foam structure parameters and demonstrate that the smaller the average diameter of the bubbles is, the more stable the foam is. The competition between the gravity and the interfacial forces has been showed by two types of fluid flow in the inter-bubble channels: one where the gravity is preponderant, the other where the two forces exist. Two drainage models based on the Darcy law and the Weaire model have been elaborated. From an hydrodynamic behaviour point of view, the sliding of a shear core in the liquid film on wall, has been demonstrated. A Ostwald De Weale type behaviour appears concerning the whole flow; a Herschel Bulkley type behaviour of the foam core appears when the shearing and the sliding are dissociated. The sliding speed is 5 to 95% of the global speed according to the experiment conditions. A method to forecast the pressure losses, based on the Moody diagram has been established. (A.L.B.)

  19. Anaerobic Digestion Foaming Causes

    OpenAIRE

    Ganidi, Nafsika

    2008-01-01

    Anaerobic digestion foaming has been encountered in several sewage treatment plants in the UK. Foaming has raised major concerns for the water utilities due to significant impacts on process efficiency and operational costs. Several foaming causes have been suggested over the past few years by researchers. However, the supporting experimental information is limited and in some cases site specific. The present report aimed to provide a better understanding of the anaerobic di...

  20. Experimental characterization of fire-induced response of rigid polyurethane foam

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.; Gill, W.; Moore, J.W.; Hobbs, M.L.; Gritzo, L.A.; Moya, J.L.

    1995-12-31

    Reported is the result of an experimental investigation of fire-induced response of a 96 kg/m{sup 3} closed cell rigid polyurethane foam. The specimen is 0.37 m in diameter, and 152 mm thick, placed in a cylindrical test vessel. The fire condition is simulated by heating the bottom of the test vessel to 1283 K using a radiant heat source. Real-time x-ray shows that the degradation process involves the progression of a charring front into the virgin material. The charred region has a regular and graded structure consisting of a packed bubble outer layer and successive layers of thin shells. The layer-to-layer permeability appears to be poor. There are indications that gas vents laterally. The shell-like structure might be the result of lateral venting. Although the foam degradation process is quite complicated, the in-depth temperature responses in the uncharted foam appear to be consistent with steady state ablation. The measured temperature responses are well represented by the exponential distribution for steady state ablation. An estimate of the thermal diffusivity of the foam is obtained from the ablation model. The experiment is part of a more comprehensive program to develop material response models of foams and encapsulants.

  1. Foam-forming properties of Ilex paraguariensis (mate saponin: foamability and foam lifetime analysis by Weibull equation

    Directory of Open Access Journals (Sweden)

    Janine Treter

    2010-01-01

    Full Text Available Saponins are natural soaplike foam-forming compounds widely used in foods, cosmetic and pharmaceutical preparations. In this work foamability and foam lifetime of foams obtained from Ilex paraguariensis unripe fruits were analyzed. Polysorbate 80 and sodium dodecyl sulfate were used as reference surfactants. Aiming a better data understanding a linearized 4-parameters Weibull function was proposed. The mate hydroethanolic extract (ME and a mate saponin enriched fraction (MSF afforded foamability and foam lifetime comparable to the synthetic surfactants. The linearization of the Weibull equation allowed the statistical comparison of foam decay curves, improving former mathematical approaches.

  2. Fire retardant polyisocyanurate foam

    Science.gov (United States)

    Riccitiello, S. R.; Parker, J. A.

    1972-01-01

    Fire retardant properties of low density polymer foam are increased. Foam has pendant nitrile groups which form thermally-stable heterocyclic structures at temperature below degradation temperature of urethane linkages.

  3. Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E.; Suo-Anttila, Jill M.; Erickson, Kenneth L

    2014-09-01

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation result is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.

  4. Foaming in manure based digesters: Effect of overloading and foam suppression using antifoam agents

    DEFF Research Database (Denmark)

    Kougias, Panagiotis; Tsapekos, Panagiotis; Boe, Kanokwan

    Anaerobic digestion foaming is one of the major problems that occasionally occur in full-scale biogas plants, affecting negatively the overall digestion process. The foam is typically created either in the main biogas reactor or/and in the pre-storage tank and the entrapped solids in the foam cause...... severe operational problems, such as blockage of mixing devices and collapse of pumps. Furthermore, the foaming problem is linked with economic consequences for biogas plants, due to income losses derived from the reduced biogas production, extra labour work and additional maintenance costs. Moreover....... A continuous stirred tank reactor, operating under thermophilic conditions (55 oC) was fed with cattle manure. In order to investigate the effect of organic overloading on foam formation, a stepwise increase of the organic loading rate was performed by the addition of glucose in the feeding substrate. Biogas...

  5. 46 CFR 108.463 - Foam rate: Protein.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Foam rate: Protein. 108.463 Section 108.463 Shipping... EQUIPMENT Fire Extinguishing Systems Foam Extinguishing Systems § 108.463 Foam rate: Protein. (a) If the outlets of a protein foam extinguishing system are in a space, the foam rate at each outlet must be at...

  6. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  7. A methodology for the preparation of nanoporous polyimide films with low dielectric constants

    International Nuclear Information System (INIS)

    Jiang Lizhong; Liu Jiugui; Wu Dezhen; Li Hangquan; Jin Riguang

    2006-01-01

    A method to generate nanoporous polyimide films with low dielectric constants was proposed. The preparation consisted of two steps. Firstly, a polyimide/silica hybrid film was prepared via sol-gel process. Secondly, the hybrid film was treated with hydrofluoric acid to remove the dispersed silica particles, leaving pores with diameters between 20 and 120 nm, depending on the size of silica particles. Both hybrid and porous films were subjected to a variety of characterizations including transmission electron microscopy observation, dielectric constant measurement and tensile strength measurement

  8. 2-vertex Lorentzian spin foam amplitudes for dipole transitions

    Science.gov (United States)

    Sarno, Giorgio; Speziale, Simone; Stagno, Gabriele V.

    2018-04-01

    We compute transition amplitudes between two spin networks with dipole graphs, using the Lorentzian EPRL model with up to two (non-simplicial) vertices. We find power-law decreasing amplitudes in the large spin limit, decreasing faster as the complexity of the foam increases. There are no oscillations nor asymptotic Regge actions at the order considered, nonetheless the amplitudes still induce non-trivial correlations. Spin correlations between the two dipoles appear only when one internal face is present in the foam. We compute them within a mini-superspace description, finding positive correlations, decreasing in value with the Immirzi parameter. The paper also provides an explicit guide to computing Lorentzian amplitudes using the factorisation property of SL(2,C) Clebsch-Gordan coefficients in terms of SU(2) ones. We discuss some of the difficulties of non-simplicial foams, and provide a specific criterion to partially limit the proliferation of diagrams. We systematically compare the results with the simplified EPRLs model, much faster to evaluate, to learn evidence on when it provides reliable approximations of the full amplitudes. Finally, we comment on implications of our results for the physics of non-simplicial spin foams and their resummation.

  9. Research Update: Polyimide/CaCu3Ti4O12 nanofiber functional hybrid films with improved dielectric properties

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2013-11-01

    Full Text Available This work reports the excellent dielectric properties of polyimide (PI embedded with CaCu3Ti4O12 (CCTO nanofibers. The dielectric behaviors were investigated over a frequency of 100 Hz–1 MHz. It is shown that embedding CCTO nanofibers with high aspect ratio (67 is an effective means to enhance the dielectric permittivity and reduce the percolation threshold. The dielectric permittivity of PI/CCTO nanofiber composites is 85 with 1.5 vol.% loading of filler, also the dielectric loss is only 0.015 at 100 Hz. Monte Carlo simulation was used to investigate the percolation threshold of CCTO nanofibers reinforced polyimide matrix by using excluded volume theory and soft, hard-core models. The results are in good agreement with the percolation theory and the hard-core model can well explain the percolation phenomena in PI/CCTO nanofiber composites. The dielectric properties of the composites will meet the practical requirements for the application in high dielectric constant capacitors and high energy density materials.

  10. Structural Foams of Biobased Isosorbide-Containing Copolycarbonate

    Directory of Open Access Journals (Sweden)

    Stefan Zepnik

    2017-01-01

    Full Text Available Isosorbide-containing copolycarbonate (Bio-PC is a partly biobased alternative to conventional bisphenol A (BPA based polycarbonate (PC. Conventional PC is widely used in polymer processing technologies including thermoplastic foaming such as foam injection molding. At present, no detailed data is available concerning the foam injection molding behavior and foam properties of Bio-PC. This contribution provides first results on injection-molded foams based on isosorbide-containing PC. The structural foams were produced by using an endothermic chemical blowing agent (CBA masterbatch and the low pressure foam injection molding method. The influence of weight reduction and blowing agent concentration on general foam properties such as density, morphology, and mechanical properties was studied. The test specimens consist of a foam core in the center and compact symmetrical shell layers on the sides. The thickness of the foam core increases with increasing weight reduction irrespective of the CBA concentration. The specific (mechanical bending properties are significantly improved and the specific tensile properties can almost be maintained while reducing the density of the injection-molded parts.

  11. Hysteresis and avalanches in two-dimensional foam rheology simulations

    International Nuclear Information System (INIS)

    Jiang, Y.; Swart, P.J.; Saxena, A.; Asipauskas, M.; Glazier, J.A.

    1999-01-01

    Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain; sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelastic fluid. This wide-ranging dynamical response and the associated history effects of foams result from avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As the shear rate or structural disorder increases, the topological events become more correlated and their power spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored energy also exhibit this 1/f trend. copyright 1999 The American Physical Society

  12. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    Science.gov (United States)

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  13. Using modified soy protein to enhance foaming of egg white protein.

    Science.gov (United States)

    Wang, Guang; Troendle, Molly; Reitmeier, Cheryll A; Wang, Tong

    2012-08-15

    It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk-contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry.

  14. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  15. TPX foams for inertial fusion laser experiments: foam preparation, machining, characterization, and discussion of density issues

    International Nuclear Information System (INIS)

    Grosse, M.; Guillot, L.; Reneaume, B.; Fleury, E.; Hermerel, C.; Choux, A.; Jeannot, L.; Geoffray, I.; Faivre, A.; Breton, O.; Andre, J.; Collier, R.; Legaie, O.

    2011-01-01

    Low density foams (in this work, foam density refers to apparent density) are materials of interest for fusion experiments. Low density poly(4-methyl-1-pentene)(commercial name TPX) foams have been produced for 30 years. TPX foams have been shown to have densities as low as 3 mg.cm -3 , which is very close to air density (1.2 mg.cm -3 ). Around this density foams are very light and highly fragile. Their fabrication is thus a real technological challenge. However, shrinking always appears in ranges ranking from 25% to almost 200%. As a result, the apparent density of the final foam never matches the expected value given by the precursor solution concentration. Besides, even if the mold dimensions are precisely known, shrinkage is never linear, and foams have to be machined for precise density measurement. In our work we present a fabrication process for TPX foams and discuss machining and density measuring issues. Particularly, we have found that there are volume and weight limits for a determination of density within the range of 3% uncertainty. This raises the question whether density should rather be determined directly on millimeter-sized targets or should be performed on a bigger scale sample prepared from the same batch. (authors)

  16. INFLUENCE OF THE CEMENT TYPE ON THE CHARACTERISTICS OF THE MINERAL FOAM APPLICABLE IN FOAMED CERAMIC TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Korolev Evgeniy Valer'evich

    2012-10-01

    Full Text Available The subject of the research is the influence of the type of Portland cement, as well as the nature and concentration of additives that represent electrolytes and polymers, onto the foam stability. The project is implemented within the framework of the research of foamed ceramic. Detailed explanation of the influence pattern is provided. The research performed by the authors has generated the following findings. Besides the rheological properties of the solution, chemical interaction between the mix components must be taken into account in the course of development of the best foamed ceramic mix composition, as chemical processes produce a substantial influence onto the foam stability. Polymer additives based on liquid carbamyde-formaldehyde and polyacrylamide substantially improve the quality of the foam mineralized by the particles of the cement binder. They also assure the foam stability rate sufficient for the formation of a high-quality foamed material.

  17. A Novel Method for Preparing Auxetic Foam from Closed-cell Polymer Foam Based on Steam Penetration and Condensation (SPC) Process.

    Science.gov (United States)

    Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao

    2018-05-31

    Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.

  18. Development of drilling foams for geothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

    1980-01-01

    The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

  19. Modification of the surface properties of a polyimide film during irradiation with polychromic light

    International Nuclear Information System (INIS)

    Rosu, Liliana; Sava, Ion; Rosu, Dan

    2011-01-01

    The behaviour of a polyimide film with the aromatic structure during the exposure to UV light with λ > 290 nm was studied. Significant changes in color surface and gloss surface were identified during irradiation. Sample became lighten and less glossy after exposure to the light. These modifications were correlated with the structural changes in FTIR spectra. Based on changes in FTIR spectra recorded during irradiation, a mechanism for the photochemical degradation of polyimide film was proposed.

  20. Industrial waste utilization for foam concrete

    Science.gov (United States)

    Krishnan, Gokul; Anand, K. B.

    2018-02-01

    Foam concrete is an emerging and useful construction material - basically a cement based slurry with at least 10% of mix volume as foam. The mix usually containing cement, filler (usually sand) and foam, have fresh densities ranging from 400kg/m3 to 1600kg/m3. One of the main drawbacks of foam concrete is the large consumption of fine sand as filler material. Usage of different solid industrial wastes as fillers in foam concrete can reduce the usage of fine river sand significantly and make the work economic and eco-friendly. This paper aims to investigate to what extent industrial wastes such as bottom ash and quarry dust can be utilized for making foam concrete. Foam generated using protein based agent was used for preparing and optimizing (fresh state properties). Investigation to find the influence of design density and air-void characteristics on the foam concrete strength shows higher strength for bottom ash mixes due to finer air void distribution. Setting characteristics of various mix compositions are also studied and adoption of Class C flyash as filler demonstrated capability of faster setting.

  1. Foam shell project: Progress report

    International Nuclear Information System (INIS)

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-01-01

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 μm thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D 2 or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE

  2. The Modification of Polyurethane Foams Using New Boroorganic Polyols (II) Polyurethane Foams from Boron-Modified Hydroxypropyl Urea Derivatives

    Science.gov (United States)

    2014-01-01

    The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams' properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen. PMID:24587721

  3. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H. [Metal and Material Technology Group, R and D Center, LS Mtron Ltd., Gyeonggi 431-080 (Korea, Republic of); Seol, Jae-Bok, E-mail: zptkfm20@hanmail.net [Max-Planck-Insititut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany)

    2014-05-02

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength.

  4. Application of NiMoNb adhesion layer on plasma-treated polyimide substrate for flexible electronic devices

    International Nuclear Information System (INIS)

    Bang, S.-H.; Kim, K.-K.; Jung, H.-Y.; Kim, T.-H.; Jeon, S.-H.; Seol, Jae-Bok

    2014-01-01

    A thin film, NiMoNb, was introduced as an adhesion layer between the Cu metal and the insulator polyimide substrate in a flexible Cu-clad laminated structure. Using 90° peel test, we evaluated the peel strength of the system as a function of the thickness of the adhesion layer. An increase in the NiMoNb thickness from 7 to 40 nm enhanced the peel strength of the deposited systems. After plasma treatment by the roll-to-roll method, the multilayer structure showed an outstanding peel strength of ∼ 529 N/m, even after thermal annealing at 150 °C for 168 h. We also studied the role of plasma treatment of the polyimide substrate on the adhesion strength and microstructure of a flexible Cu-clad laminated structure by peel strength, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. These experimental observations showed that the plasma-treated polyimide substrate with the deposition of NiMoNb showed the enhanced adhesion of ∼ 656 N/m, because of the change of functional groups, which affected the bonding force and crystallinity of the thin films deposited on polyimide, rather than an increase in the surface roughness. - Highlights: • NiMoNb film on polyimide substrate was employed for higher peel strength. • Plasma-treated substrate enhances the peel strength of multilayer. • Even when annealed at 150 °C, plasma-treated films showed enhanced peel strength

  5. Volume simplicity constraint in the Engle-Livine-Pereira-Rovelli spin foam model

    Science.gov (United States)

    Bahr, Benjamin; Belov, Vadim

    2018-04-01

    We propose a quantum version of the quadratic volume simplicity constraint for the Engle-Livine-Pereira-Rovelli spin foam model. It relies on a formula for the volume of 4-dimensional polyhedra, depending on its bivectors and the knotting class of its boundary graph. While this leads to no further condition for the 4-simplex, the constraint becomes nontrivial for more complicated boundary graphs. We show that, in the semiclassical limit of the hypercuboidal graph, the constraint turns into the geometricity condition observed recently by several authors.

  6. Evaluation of Canisterized Foams and Evaluation of Radiation Hardened Foams for D&D Activities

    Energy Technology Data Exchange (ETDEWEB)

    Nicholson, J. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The introduction of polyurethane foams has previously been examined elsewhere within the DOE complex with regards to decontamination and decommissioning (D&D) activities, though its use has been prohibited as a result of excessive heat generation and flammability concerns per the safety basis. Should these foams be found compatible with respect to the facility safety basis requirements, D&D work involving large void containing structures such as gloveboxes could be eased through the fixation of residual contamination after decontamination efforts have concluded. To this end, SRNL embarked on a characterization of commercial epoxy foams to identify the characteristics that would be most important to safety basis requirements. Through SRNL’s efforts, the performance of commercial two-part epoxy foams was evaluated for their foaming characteristics, temperature profiles, loading capability with high-Z (high density) additives, and applicability for shielding gamma emission from isotopes including; Am-241, Cs-137, and Co-60. It was found that these foams are capable of encapsulation of a desired volume, though the ideal and experimental expansion coefficients were found to differ. While heat is generated during the reaction, no samples generated heat above 70 °C. Of the down–selected materials, heating was on the order of 40 °C for the flexible foam and 60 °C for the rigid foam. Both were found to return to room temperature after 20 minutes regardless of the volume of foam cast. It was also found that the direct introduction of high-Z additives were capable of attenuating 98% of Am-241 gamma signal, 16% of Cs-137 signal, and 9.5% of Co-60 signal at 1:1 loading capacities of total liquid constituent weight to additive weight. These efforts are currently being reviewed for the ASTM January 2017 subcommittee discussions to address the lack of test methods and standards regarding these materials with respect to D&D environments.

  7. Effective tritium processing using polyimide films

    International Nuclear Information System (INIS)

    Hayashi, T.; Okuno, K.; Ishida, T.; Yamada, M.; Suzuki, T.

    1998-01-01

    Applying a gas separation membrane module of polyimide hollow fiber films, a new tritium removal system has been studied and designed to develop a more compact and cost-effective system than the conventional type of catalytic reactors and molecular sieves dryers. The recent investigations are focused on the development of a more effective membrane module, specifically, an increase in the processing capacity for a unit module. One idea is to purge the permeated side of the module by using a small part of the bleed flow as a counter-current flow. Another idea is to apply a new polyimide membrane module (Φ 0.1 x 1.8 m) with 5 times larger permeability of N 2 (0.24 std. m 3 h -1 atm -1 ) than the original one, though the selectivity (permeability ratio of H 2 /N 2 : 80) is reduced by about a half. The results show that the purging effect improves the module capacity to be 3 times larger and the new membrane has almost 5 times larger capacity under reasonable operation conditions with the same tritium decontamination ability. The total capacity of a unit module is being improved by more than 10 times. Using the recent results, a case design of the membrane detritiation system is discussed for an application to the ITER scale tritium facility. (orig.)

  8. From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation

    Science.gov (United States)

    Hansen, Lee D.; McCarlie, V. Wallace

    2004-01-01

    The process of foam formation is used for demonstrating the way in which the application of physiochemical principles and knowledge of the physical properties of the materials contributes towards the understanding of a wide range of phenomenon. Solubility of gas and bubble growth should be considered during the development of foamed polymer…

  9. Dynamics of foam flow in porous media in the presence of oil

    Science.gov (United States)

    Shokri, N.; Osei-Bonsu, K.

    2016-12-01

    Foams demonstrate great potential for fluid displacement in porous media which is important in a number of subsurface operations such as the enhanced oil recovery and soil remediation. The application of foam in these processes is down to its unique ability to reduce gas mobility by increasing its effective viscosity and to divert gas to un-swept low permeability zones in porous media [1-4]. To investigate the fundamental aspects of foam flow in porous media, we have conducted a systematic series of experiment using a well-characterised porous medium manufactured by a high resolution 3D printer. This enabled us to design and control the properties of porous media with high accuracy. The model porous medium was initially saturated with oil. Then the pre-generated foam was injected into the model at well-defined injection rates to displace oil. The dynamics of foam-oil displacement in porous media was recorded using a digital camera controlled by a computer [5]. The recorded images were analysed in MATLAB to determine the dynamics of foam-oil displacement under different boundary conditions. Effects of the type of oil, foam quality and foam flow rate were investigated. Our results reveal that generation of stable foam is delayed in the presence of light oil in the porous medium compared to the heavy oil. Furthermore, higher foam quality appears to be less stable in the presence of oil lowering its recovery efficiency. Pore-scale inspection of foam-oil patterns formed during displacement revealed formation of a more stable front in the case of lower foam quality which affected the oil recovery efficiency. This study extends the physical understanding of governing mechanisms controlling oil displacement by foam in porous media. Grassia, P., E. Mas-Hernandez, N. Shokri, S.J. Cox, G. Mishuris, W.R. Rossen (2014), J. Fluid Mech., 751, 346-405. Grassia, P., C. Torres-Ulloa, S. Berres, E. Mas-Hernandez, N. Shokri (2016), European Physical Journal E, 39 (4), 42. Mas

  10. Determination of effective thermal conductivity for polyurethane foam by use of fractal method

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; LI Xiaochuan; CHEN Yongping

    2006-01-01

    The microstructure of polyurethane foam is disordered, which influences the foam heat conduction process significantly. In this paper foam structure is described by using the local area fractal dimension in a certain small range of length scales. An equivalent element cell is constructed based on the local fractal dimensions along the directions parallel and transverse to the heat flux. By use of fractal void fraction a simplified heat conduction model is proposed to calculate the effective thermal conductivity of polyurethane foam. The predicted effective thermal conductivity agrees well with the experimental data.

  11. Polyethoxylated carboxylic surfactant for ion foam flotation: fundamental study from solution to foam

    International Nuclear Information System (INIS)

    Micheau, Cyril

    2013-01-01

    Ion foam flotation allows to concentrate ions in a foam phase formed by a soap. For classical systems, the strong interaction between ions and surfactant generally leads to the formation of precipitates and of froth. When the froth collapses, the solid residue thus recovered requires a recycling or conversion. In order to remedy this, the present work uses as collector a polyethoxylated carboxylic surfactant, AKYPO RO 90 VG, which forms soluble ion/surfactant complexes, even with multi-charge ions. This work presents a detailed study of the fundamental mechanisms that govern the extraction of ions by foaming. In the first part, surface activity and acid/base properties of the surfactant in solution are determined by combining numerous independent techniques which are pH-metric dosage, tensiometry and small angle scattering. The evolution of these properties in the presence of different nitrate salts (Nd, Eu, Ca, Sr, Cu, Li, Na, Cs) coupled with electrophoretic measurements give a first approach to selectivity. Finally, all of these data combined with a study of the formation of surfactant/ion complexes allow us to determine the speciation of Nd/AKYPO system as a function of pH. In the second part, the analysis of the foam by conductivity and neutron scattering provides information on the wetness and foam film thickness, parameters governing foam stability. The pH and the nature of the added ions, their number of charge and also their chemical nature thus appear to be major parameters that governed wetness and foam film thickness. The last part is devoted to the understanding of the ion extraction/separation experiments by flotation based on all previous results. It is shown that the flotation of neodymium is strongly related to its speciation, which could lead to its re-extraction or its flotation in precipitated form. It is shown that, neodymium induces a phenomenon of mono-charge ion depletion in the foam. This ionic specificity allows to consider the studied

  12. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  13. Controlling of density uniformity of polyacrylate foams

    International Nuclear Information System (INIS)

    Shan Wenwen; Yuan Baohe; Wang Yanhong; Xu Jiayun; Zhang Lin

    2010-01-01

    The density non-uniformity existing in most low-density foams will affect performance of the foams. The trimethylolpropane trimethacrylate (TMPTA) foam targets were prepared and controlling methods of the foams, density uniformity were explored together with its forming mechanism. It has been found that the UV-light with high intensity can improve the distribution uniformity of the free radicals induced by UV photons in the solvents, thus improve the density uniformity of the foams. In addition, container wall would influence the concentration distribution of the solution, which affects the density uniformity of the foams. Thus, the UV-light with high intensity was chosen together with polytetrafluoroethylene molds instead of glass molds to prepare the foams with the density non-uniformity less than 10%. β-ray detection technology was used to measure the density uniformity of the TMPTA foams with the density in the range of 10 to 100 mg · cm -3 , and the results show that the lower the foam density is, the worse the density uniformity is. (authors)

  14. Study on methane separation from steam reforming product gas with polyimide membrane

    International Nuclear Information System (INIS)

    Koiso, Hiroshi; Inagaki, Yoshiyuki; Aita, Hideki; Sekita, Kenji; Haga, Katsuhiro; Hino, Ryutaro.

    1997-10-01

    In the HTTR hydrogen production system by steam reforming of natural gas (main component: CH 4 ), CH 4 conversion rate is limited to approximately 65% due to high pressure and low temperature conditions (4.5 MPa, 800degC). The one of the measures to improve CH 4 conversion is recycling of residual CH 4 extracted from steam reforming product gas with a gas separator. Experimental and analytical studies on CH 4 separation from gas mixture composed of CH 4 , H 2 , CO 2 and CO were carried out to investigate gas separation characteristics of a polyimide membrane gas separator. Measured permeability of each gas in gas mixture was reduced from 1/3 to 1/14 of that obtained with a single gas (catalog value). The polyimide membrane could extracted CH 4 of approximately 80% from gas mixture, then, H 2 and CO 2 more than 98% were removed. It was confirmed that the polyimide membrane could be available to residual CH 4 recycling. The analytical results by a difference method gave good prospects of experimental results such as permeated flow rate, mol-fraction profiles and so on. Therefore, it can be said the analysis method was established. (author)

  15. Milestone 5 test report. Task 5, subtask 5.2: Tile to foam strength tests

    Science.gov (United States)

    Greenberg, H. S.

    1994-01-01

    This report summarizes work that has been performed to date on the strength of a cryotank insulation system using Rohacell foam and TUFI-coated AETB-12 ceramic tiles directly bonded to a simulated graphite-epoxy tank wall. Testing utilized a custom specimen design which consists of a long tensile specimen with eccentric loading to induce curvature similar to the curvature expected due to 'pillowing' of the tank when pressurized. A finite element model was constructed to predict the specific element strains in the test article, and to assist with design of the test specimen to meet the specific goals of curvature and laminate strain. The results indicate that the heat treated 3.25-pcf density Rohacell foam does not provide sufficient strength for the induced stresses due to curvature and stress concentration at the RTV bondline to the TUFI tile. The test was repeated using higher density non-heat treated Rohacell foam (6.9 pcf) without foam failure. The finite element model was shown to predict specimen behavior, and validation of the model was successful. It is pertinent to mention that the analyses described herein accurately predicted the failure of the heat treated foams and based on this analysis method it is expected that the untreated 3.25 pcf Rohacell foam will be successful.

  16. Space-charge effects in vacuum-deposited polyimide layer

    Czech Academy of Sciences Publication Activity Database

    Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.

    2005-01-01

    Roč. 7, č. 1 (2005), s. 245-248 ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant - others:Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  17. Blast wave protection of aqueous foams

    Energy Technology Data Exchange (ETDEWEB)

    Britan, Alexander; Ben-Dor, M. Liverts G. [Shock tube Laboratory of Protective Technologies R and D Center, Department of Mechanical Engineering, Faculty of Engineering Sciences, Ben Gurion University, Beer-Sheva (Israel)

    2011-07-01

    The primary intention of the present study is to present new contribution of shock tube tests to the problem of particle related stabilization and enhanced mitigation action of the wet particulate foams. The experiments reported were designed to examine (i) the reflection of a shock wave from an air/foam face, (ii) the transmission of the shock wave through the air/foam face and (iii) propagation and dispersion of the transmitted shock wave inside the foam column. Because wet aqueous foam of desired specification is difficult to reproduce, handle and quantitatively characterize the fact that experiments on all the above aspects were conducted in a single facility is a potentially important consideration. Moreover vertical position of shock tube simplified the issues since the gradient of the liquid fraction in draining foam coincides with the shock wave propagation. Under these, much simplified test conditions resulted flows could be treated as one-dimensional and the shock wave mitigation depends on three parameters: the intensity of the incident shock wave, s M , the duration of the foam decay, ∆t and on the particle concentration, n.

  18. Tooling Foam for Structural Composite Applications

    Science.gov (United States)

    DeLay, Tom; Smith, Brett H.; Ely, Kevin; MacArthur, Doug

    1998-01-01

    Tooling technology applications for composite structures fabrication have been expanded at MSFC's Productivity Enhancement Complex (PEC). Engineers from NASA/MSFC and Lockheed Martin Corporation have developed a tooling foam for use in composite materials processing and manufacturing that exhibits superior thermal and mechanical properties in comparison with other tooling foam materials. This tooling foam is also compatible with most preimpregnated composite resins such as epoxy, bismaleimide, phenolic and their associated cure cycles. MARCORE tooling foam has excellent processability for applications requiring either integral or removable tooling. It can also be tailored to meet the requirements for composite processing of parts with unlimited cross sectional area. A shelf life of at least six months is easily maintained when components are stored between 50F - 70F. The MARCORE tooling foam system is a two component urethane-modified polyisocyanurate, high density rigid foam with zero ozone depletion potential. This readily machineable, lightweight tooling foam is ideal for composite structures fabrication and is dimensionally stable at temperatures up to 350F and pressures of 100 psi.

  19. Covering sources of toxic vapors with foam

    International Nuclear Information System (INIS)

    Aue, W. P.; Guidetti, F.

    2009-01-01

    In a case of chemical terrorism, first responders might well be confronted with a liquid source of toxic vapor which keeps spreading out its hazardous contents. With foam as an efficient and simple means, such a source could be covered up in seconds and the spread of vapors mitigated drastically. Once covered, the source could then wait for a longer time to be removed carefully and professionally by a decontamination team. In order to find foams useful for covering up toxic vapor sources, a large set of measurements has been performed in order to answer the following questions: - Which foams could be used for this purpose? - How thick should the foam cover be? - For how long would such a foam cover be effective? - Could the practical application of foam cause a spread of the toxic chemical? The toxic vapors sources included GB, GD and HD. Among the foams were 10 fire fighter foams (e.g. AFFF, protein) and the aqueous decontamination foam CASCAD. Small scale experiments showed that CASCAD is best suited for covering a toxic source; a 10 cm layer of it covers and decontaminates GB. The large scale experiments confirmed that any fire fighter foam is a suitable cover for a longer or shorter period.(author)

  20. Crosslinked polyethylene foams, via eb radiation

    International Nuclear Information System (INIS)

    Cardoso, E.C.L.; Lugao, A. B.; Andrade e Silva, L. G.

    1998-01-01

    Polyethylene foams, produced by radio-induced crosslinking, show a smooth and homogeneous surface, when compared to chemical crosslinking method using peroxide as crosslinking agent. This process fosters excellent adhesive and printability properties. Besides that, closed cells, intrinsic to these foams, imparts optimum mechanical, shocks and insulation resistance, indicating these foams to some markets segments as: automotive and transport; buoyancy, flotation and marine; building and insulation; packaging; domestic sports and leisure goods. We were in search of an ideal foam, by adding 5 to 15% of blowing agent in LDPE. A series of preliminary trials defined 203 degree sign C as the right blowing agent decomposition temperature. At a 22.7 kGys/dose ratio, the lowest dose for providing an efficient foam was 30 kGy, for a formulation comprising 10% of azodicarbonamide in LDPE, within a 10 minutes foaming time

  1. Earth/Mars Landing Impact Attenuation Using Foam

    Data.gov (United States)

    National Aeronautics and Space Administration — Used results from extensive foam testing performed on a previous JSC Innovation Charge Account (ICA) project to develop material models in MSC/Marc commercial finite...

  2. Stretching and folding mechanism in foams

    International Nuclear Information System (INIS)

    Tufaile, Alberto; Pedrosa Biscaia Tufaile, Adriana

    2008-01-01

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board

  3. Stretching and folding mechanism in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, Alberto [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)], E-mail: tufaile@usp.br; Pedrosa Biscaia Tufaile, Adriana [Escola de Artes, Ciencias e Humanidades, Soft Matter Laboratory, Universidade de Sao Paulo, 03828-000 Sao Paulo, SP (Brazil)

    2008-10-13

    We have described the stretching and folding of foams in a vertical Hele-Shaw cell containing air and a surfactant solution, from a sequence of upside-down flips. Besides the fractal dimension of the foam, we have observed the logistic growth for the soap film length. The stretching and folding mechanism is present during the foam formation, and this mechanism is observed even after the foam has reached its respective maximum fractal dimension. Observing the motion of bubbles inside the foam, large bubbles present power spectrum associated with random walk motion in both directions, while the small bubbles are scattered like balls in a Galton board.

  4. Changes in wetting and contact charge transfer by femtosecond laser-ablation of polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.D., E-mail: xiaodong.guo@uib.no [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway); Dai, Y.; Gong, M. [Department of Physics, Shanghai 200444, Shanghai University (China); Qu, Y.G. [Center for Geobiology, Allegaten 41, 5020 Bergen, University of Bergen (Norway); Helseth, L.E. [Department of Physics and Technology, Allegaten 55, 5020 Bergen, University of Bergen (Norway)

    2015-09-15

    Highlights: • Laser ablation significantly reduced the triboelectric charging of polyimide films. • Hierarchical micro/nanostructures formed on the surface of the sample. • Structural anisotropy leads to spatially varying contact angles of water droplets. • Raman spectroscopy revealed a carbonization of the polyimide sample. • The corresponding loss of insulation may explain the reduction of charge transfer. - Abstract: In this study it is demonstrated that the triboelectric charging of polyimide thin films is significantly reduced by using a femtosecond laser to nanostructure its. It is found that the contact charge transfer between laser-ablated Kapton and aluminum is almost negligible, and even much lower than the significant current occurring when non-treated Kapton touches the metal. Scanning electron microscopy demonstrates that laser ablation produces a hierarchical micro and nanostructure, and it is found that the structural anisotropy leads to spatially varying contact angles of water droplets residing on the surface. Raman spectra suggest that the centers of the laser-ablated tracks are carbonized; therefore, the loss of insulation can be responsible for the reduction of charge transfer.

  5. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)

    2009-06-15

    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Materials for fire resistant passenger seats in aircraft

    Science.gov (United States)

    Tesoro, G.; Moussa, A.

    1980-01-01

    The paper considers the selection of cushioning foam and upholstery fabric materials for aircraft passenger seats. Polyurethane, polychloroprene, polyimide, and polyphosphazene are the foam materials considered; and a variety of commercial and developmental fabrics (including wool, cotton, synthetics, and blends) are examined. Viable approaches to the design of fire-resistant seat assemblies are indicated. Results of an experimental laboratory study of fabrics and fabric/foam assemblies exposed to external point-source radiative heat flux are discussed.

  7. DC electrical, thermal, and spectroscopic properties of various condensation polyimides containing surface cobalt oxide

    Science.gov (United States)

    Rancourt, J. D.; Boggess, R. K.; Horning, L. S.; Taylor, L. T.

    1987-01-01

    Doping polyimides with cobalt ion causes the room temperature direct current electrical resistivity to decrease relative to the polymer alone, the reduction being most pronounced for the air-side of the cobalt modified polyimides. At a constant electrical field, resistivity for the volume, air-side and glass-side modes decreases yet further with an increase in temperature as expected for semiconductors and insulators. X-ray photoelectron spectroscopy indicates the air-side of the cobalt modified polyimides is predominantly Co3O4. The bulk resistivity of the air-side and activation energy of conduction for this surface are comparable to high purity sintered Co3O4. Charging characteristics at room temperature indicate a substantial polymer matrix contribution to both the glass-side and volume mode measurements but a negligible contribution to the air-side electrical properties. Volume electrical resistivity for similar additive levels is reduced by increasing the molecular flexibility of the host polymer.

  8. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  9. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Hassan, H H [Physics Department, Faculty of Science, Cairo University, Giza (Egypt)

    2006-02-07

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.

  10. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain

  11. A novel application of ADC/K-foaming agent-loaded NBR rubber composites as pressure sensor

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-02-01

    Nitrile butadiene rubber (NBR) structure foam of different apparent densities was obtained by using different concentrations of foaming agent, azodicarbonamide, ADC/K. The true stress-strain characteristics, in case of compression, of foamed samples were measured. It was found that the theoretical values predicted from the simple blending model are in more agreement with the experimental results than those from the square-relationship model. The effect of cyclic loading-unloading and dissipation energy of rubber foams was studied. The results also indicated that foams with low density exhibited a small hysteresis. The electrical properties were found dependent on the foaming agent concentration. This study was assisted by Mott and Gurney equation. The effect of compressive strain on the electrical conductivity of rubber foams was studied. The free current carrier mobility and the equilibrium concentration of charge carrier in the conduction band were produced as functions of compressive strain. The results also indicate that there is a linear variation between pressure and conductivity for all samples, which means that these samples can be used as a pressure sensor. At a certain concentration of foaming agent (5 phr) a change of electrical conductivity by more than three orders is observed at 20% compression strain.

  12. The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polyether chains: Experimental and modeling

    Directory of Open Access Journals (Sweden)

    Luca Olivieri

    2016-10-01

    Full Text Available In this work, we studied two copolymers formed by segments of a rubbery polyether (PPO or PEO and of a glassy polyimide (BPDA-ODA or BKDA-ODA suitable for gas separation and CO2 capture. Firstly, we assessed the absorption of water vapor in the materials, as a function of relative humidity (R.H., finding that the humidity uptake of the copolymers lies between that of the corresponding pure homopolymers values. Furthermore, we studied the effect of humidity on CO2 and N2 permeability, as well as on CO2/N2 selectivity, up to R.H. of 75%. The permeability decreases with increasing humidity, while the ideal selectivity remains approximately constant in the entire range of water activity investigated. The humidity-induced decrease of permeability in the copolymers is much smaller than the one observed in polyimides such as Matrimid® confirming the positive effect of the polyether phase on the membrane performance.Finally, we modeled the humidity-induced decrease of gas solubility, diffusivity and, consequently, permeability, using a suitable approach that considers the free volume theory for diffusion and LF model for solubility. Such model allows estimating the extent of competition that the gases undergo with water during sorption in the membranes, as a function of the relative humidity, as well as the expected reduction of free volume by means of water molecules occupation and consequent reduction of diffusivity. Keywords: CO2 capture, Humid gas permeation, Transport properties in polymeric membranes, Water vapor sorption, Modeling

  13. Foam injection method and system

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, W C; Parmley, J B; Shepard, J C

    1977-05-10

    A method is described for more efficiently practicing in situ combustion techniques by generating a gas-water mist or foam adjacent to the combustion formation within the injection well. The mist or foam is forced out of the well into the formation to transport heat away from the burned region of the formation toward the periphery of the combustion region to conserve fuel. Also taught are a method and system for fluid treating a formation while maintaining enhanced conformance of the fluid injection profile by generating a mist or foam down-hole adjacent to the formation and then forcing the mist or foam out into the formation. (19 claims)

  14. Polyurethane Foams with Pyrimidine Rings

    Directory of Open Access Journals (Sweden)

    Kania Ewelina

    2014-09-01

    Full Text Available Oligoetherols based on pyrimidine ring were obtained upon reaction of barbituric acid with glycidol and alkylene carbonates. These oligoetherols were then used to obtain polyurethane foams in the reaction of oligoetherols with isocyanates and water. The protocol of foam synthesis was optimized by the choice of proper kind of oligoetherol and synthetic composition. The thermal resistance was studied by dynamic and static methods with concomitant monitoring of compressive strength. The polyurethane foams have similar physical properties as the classic ones except their enhanced thermal resistance. They stand long-time heating even at 200°C. Moreover thermal exposition of foams results generally in increase of their compressive strength.

  15. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  16. Foam stabilization by solid particle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France); Pitois, O. [UniversiteParis-Est Marne-La-Valle, Lab. Physique des Materiaux Divises et des Interfaces (LPMDI), 77 - Marne la Vallee (France)

    2008-07-01

    During the dismantling of nuclear facilities, radioactive deposits on exposed areas are removed and solubilized by successive rinses of reactive liquid. Using this liquid in a foam state reduces the amount of resulting wastes. During the required decontamination time (1 to 5 hours) the foam has to be sufficiently wet (1). In the Laboratory of Advanced Processes for Decontamination, new formulations are currently studied to slow down the drainage kinetics of these foams, by adding colloidal particles of hydrophilic fumed silica into the classical mixtures of well-defined non ionic foaming surfactants previously used (2). The objective of our study is to shed light on the foam surprising stability induced by these particles. The study focuses on drainage of foams generated by air sparging through a suspension lying on a porous glass. The foaming suspensions contain between 0 and 70 g.L-1 of a fumed silica (Aerosil 380) which is well-known to form gels for concentrations above 200 g.L{sup -1}. In the studied solutions this silica builds up into aggregates of dozens of microns, whose volume-averaged mean diameter after sonication is centred around 300 nm. Under gentle stirring, they display no sign of re-aggregation during 24 h. On a free drainage configuration, a foam that contains particles keeps a significant amount of its initial liquid: up to 60 % during up to 5 hours, in contrast to classical foams that drain out all of their liquid in about 20 minutes. From a rheological point of view, the most concentrated suspensions display a yield stress behaviour. This evidences the structuring of the aggregates into a coherent network that might explain the incomplete drainage of the solutions. For the lowest concentrated solutions, such rheological properties have not been observed although the corresponding foams can retain large amount of solution. This suggests that local concentrations of aggregates can rise owing to their retention by foam channels, until they form

  17. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  18. Rate Dependence of the Compressive Response of Ti Foams

    Directory of Open Access Journals (Sweden)

    Nik Petrinic

    2012-06-01

    Full Text Available Titanium foams of relative density ranging from 0.3 to 0.9 were produced by titanium powder sintering procedures and tested in uniaxial compression at strain rates ranging from 0.01 to 2,000 s−1. The material microstructure was examined by X-ray tomography and Scanning Electron Microscopy (SEM observations. The foams investigated are strain rate sensitive, with both the yield stress and the strain hardening increasing with applied strain rate, and the strain rate sensitivity is more pronounced in foams of lower relative density. Finite element simulations were conducted modelling explicitly the material’s microstructure at the micron level, via a 3D Voronoi tessellation. Low and high strain rate simulations were conducted in order to predict the material’s compressive response, employing both rate-dependant and rate-independent constitutive models. Results from numerical analyses suggest that the primary source of rate sensitivity is represented by the intrinsic sensitivity of the foam’s parent material.

  19. Mechanical Properties of Electrolyte Jet Electrodeposited Nickel Foam

    Directory of Open Access Journals (Sweden)

    Jinsong Chen

    2013-07-01

    Full Text Available Principles of the preparation of nickel foam by electrolyte jet electrodeposition were introduced, Nickel foam samples with different porosity were fabricated. Effect of different porosity on microhardness and uniaxial tensile properties of nickel foam was discussed. The results show that the microhardness of nickel foam is 320~400 HV, lower than entitative metal clearly. The lower the porosity of nickel foam, the higher the microhardness is. During the process of uniaxial tensile, nickel foam is characterized by three distinct regions, e.g. elastic deforming region, plastic plateau region and densification region. The higher the porosity of nickel foam, the lower the plastic plateau and the poorer the strength of nickel foam, accordingly

  20. Making continuous bubble type polyethylene foam incombustible

    International Nuclear Information System (INIS)

    Kaji, Kanako; Hatada, Motoyoshi; Yoshizawa, Iwao; Komai, Kuniaki; Kohara, Choji.

    1989-01-01

    Since continuous bubble type plastic foam has excellent compression characteristics and sound absorption characteristics, it has been widely used as cushion material, sealing material, sound insulating material and so on. However, the most part of plastic foam is taken by air, therefore at the time of fires, it becomes a very dangerous material. At present, the material used mostly as the seat cushions for airliners, railroad coaches, automobiles and others is polyurethane foam, but since it contains C-N couples in its molecules, it is feared to generate cyanic gas according to the condition of combustion. As the plastic foam that does not generate harmful gas at the time of fires, there is continuous bubble type polyethylene which is excellent in its weathering property and chemical resistance. A reactive, phosphorus-containing oligomer has large molecular weight and two or more double couplings in a molecule, therefore, it does not enter the inside of polyethylene, and polymerizes and crosslinks on the surfaces of bubble walls in the foam, accordingly it is expected that the apparent graft polymerization is carried out, and it is very effective for making polyethylene foam incombustible. The method of making graft foam, the properties of graft foam and so on are reported. When the graft polymerization of this oligomer to continuous bubble type polyethylene foam was tried, highly incombustible polyethylene foam was obtained. (K.I.)

  1. A study of tensile test on open-cell aluminum foam sandwich

    Science.gov (United States)

    Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.

    2018-01-01

    Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.

  2. Surface Modification of Titanium and Polyimide Sheet for Adhesive Bonding

    NARCIS (Netherlands)

    Akram, M.

    2015-01-01

    Major industrial sectors like automotive, aerospace and others are increasingly using polymer composites in their structural parts. Polyimide sheet and adhesives, are high performance polymers. They are widely used in various engineering applications due to their excellent thermal, mechanical and

  3. Method of making a cyanate ester foam

    Science.gov (United States)

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  4. Microstructure of high-strength foam concrete

    International Nuclear Information System (INIS)

    Just, A.; Middendorf, B.

    2009-01-01

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  5. A cement based syntactic foam

    International Nuclear Information System (INIS)

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  6. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  7. Influence of the glass-calcium carbonate mixture's characteristics on the foaming process and the properties of the foam glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    2014-01-01

    We prepared foam glasses from cathode-ray-tube panel glass and CaCO3 as a foaming agent. We investigated the influences of powder preparation, CaCO3 concentration and foaming temperature and time on the density, porosity and homogeneity of the foam glasses. The results show that the decomposition...

  8. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    Directory of Open Access Journals (Sweden)

    Bogusław Czupryński

    2014-01-01

    Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.

  9. Processable polyimide adhesive and matrix composite resin

    Science.gov (United States)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  10. Osmosis and pervaporation in polyimide submicron microfluidic channel structures

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; Bomer, Johan G.; van den Berg, Albert

    2005-01-01

    Osmosis and pervaporation of water through the roof of all-polyimide channels of 500 nm height is described. The phenomena cause both a liquid flow in the channels and a concentration change of dissolved salt. Both effects are amplified due to the thin channel roof and the small channel height.

  11. Optimisation of energy absorbing liner for equestrian helmets. Part II: Functionally graded foam liner

    International Nuclear Information System (INIS)

    Cui, L.; Forero Rueda, M.A.; Gilchrist, M.D.

    2009-01-01

    The energy absorbing liner of safety helmets was optimised using finite element modelling. In this present paper, a functionally graded foam (FGF) liner was modelled, while keeping the average liner density the same as in a corresponding reference single uniform density liner model. Use of a functionally graded foam liner would eliminate issues regarding delamination and crack propagation between interfaces of different density layers which could arise in liners with discrete density variations. As in our companion Part I paper [Forero Rueda MA, Cui L, Gilchrist MD. Optimisation of energy absorbing liner for equestrian helmets. Part I: Layered foam liner. Mater Des [submitted for publication

  12. Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Hye-jin; Lee, Sang-kyo; Cho, Chongdu; Choi, Hae-kyu [Inha University, Incheon (Korea, Republic of); Cho, Jae-ung [Kongju University, Gongju (Korea, Republic of)

    2014-05-15

    In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus.

  13. Fracture Behavior of Adhesive-Bonded Aluminum Foam with Double Cantilever Beam

    International Nuclear Information System (INIS)

    Bang, Hye-jin; Lee, Sang-kyo; Cho, Chongdu; Choi, Hae-kyu; Cho, Jae-ung

    2014-01-01

    In this study, closed-cell aluminum foam with an initial crack was investigated to produce an axial load-time graph. Using the 10-kN Landmarks of MTS Corporation, a 15-mm/min velocity of mode I shape was applied to the aluminum foam specimen using the displacement control method. ABAQUS 6.10 simulation was used to model and analyze the identical model in three dimensions under conditions identical to those of the experiment. The energy release rate was calculated on the basis of an axial load-displacement graph obtained from the experiment and a transient image of the crack length, and then an FE model was analyzed on the basis of this fracture energy condition. The relation between load and displacement was discussed; it was found that the aluminum foam deformed somewhat less than the adhesive layer owing to the difference in elastic modulus

  14. Nanoparticle-stabilized CO₂ foam for CO₂ EOR application

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Lee, Robert [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Yu, Jianjia [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Li, Liangxiong [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Bustamante, Elizabeth [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Khalil, Munawar [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Mo, Di [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Jia, Bao [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); Wang, Sai [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); San, Jingshan [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States); An, Cheng [New Mexico Petroleum Recovery Research Center, Socorro, NM (United States)

    2015-01-31

    The purpose of this project was to develop nanoparticle-stabilized CO₂ foam for CO₂ -EOR application, in which nanoparticles instead of surfactants are used for stabilizing CO₂ foam to improve the CO₂ sweep efficiency and increase oil recovery. The studies included: (1) investigation of CO₂ foam generation nanoparticles, such as silica nanoparticles, and the effects of particle concentration and surface properties, CO₂/brine ratio, brine salinity, pressure, and temperature on foam generation and foam stability; (2) coreflooding tests to understand the nanoparticle-stabilized CO₂ foam for waterflooded residual oil recovery, which include: oil-free coreflooding experiments with nanoparticle-stabilized CO₂ foam to understand the transportation of nanoparticles through the core; measurements of foam stability and CO₂ sweep efficiency under reservoir conditions to investigate temperature and pressure effects on the foam performance and oil recovery as well as the sweep efficiency in different core samples with different rock properties; and (3) long-term coreflooding experiments with the nanoparticle- stabilized CO₂ foam for residual oil recovery. Finally, the technical and economical feasibility of this technology was evaluated.

  15. Curing Characterisation of Spruce Tannin-based Foams using the Advanced Isoconversional Method

    Directory of Open Access Journals (Sweden)

    Matjaž Čop

    2014-06-01

    Full Text Available The curing kinetics of foam prepared from the tannin of spruce tree bark was investigated using differential scanning calorimetry (DSC and the advanced isoconversional method. An analysis of the formulations with differing amounts of components (furfuryl alcohol, glycerol, tannin, and a catalyst showed that curing was delayed with increasing proportions of glycerol or tannins. An optimum amount of the catalyst constituent was also found during the study. The curing of the foam system was accelerated with increasing temperatures. Finally, the advanced isoconversional method, based on the model-free kinetic algorithm developed by Vyazovkin, appeared to be an appropriate model for the characterisation of the curing kinetics of tannin-based foams.

  16. SEM/XPS analysis of fractured adhesively bonded graphite fibre-reinforced polyimide composites

    Science.gov (United States)

    Devilbiss, T. A.; Messick, D. L.; Wightman, J. P.; Progar, D. J.

    1985-01-01

    The surfaces of the graphite fiber-reinforced polyimide composites presently pretreated prior to bonding with polyimide adhesive contained variable amounts of a fluoropolymer, as determined by X-ray photoelectron spectroscopy. Lap shear strengths were determined for unaged samples and for those aged over 500- and 1000-hour periods at 177 and 232 C. Unaged sample lap strengths, which were the highest obtained, exhibited no variation with surface pretreatment, but a significant decrease is noted with increasing aging temperature. These thermally aged samples, however, had increased surface fluorine concentration, while a minimal concentration was found in unaged samples. SEM demonstrated a progressive shift from cohesive to adhesive failure for elevated temperature-aged composites.

  17. New decontamination process using foams containing particles

    International Nuclear Information System (INIS)

    Guignot, S.; Faure, S.

    2008-01-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  18. Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3ʹ-dimethylnaphthidine

    KAUST Repository

    Ghanem, Bader

    2016-08-29

    Two intrinsically microporous polyimides were obtained by high-temperature, one-pot poly-condensation reaction of novel triptycene-based dianhydrides containing dimethyl- or diisopropyl-bridgehead groups with a commercially available highly sterically hindered 3,3 \\'-dimethylnaphthidine (DMN) diamine monomer. The dimethyl bridgehead groups in the triptycene building block provided the DMN-based polyimide (TDA1-DMN) with larger surface area (760 m(2) g(-1)) than the diisopropyl-based polyimide (TDA1-DMN) (680 m(2) g(-1)), greater fraction of ultramicroporosity, as observed from N-2 and CO2 NLDFT adsorption analysis, and higher gas permeability and selectivity. Wide-angle X-ray diffraction (WAXD) measurements demonstrated that TDA1-DMN and TDAi3-DMN exhibited a bimodal pore size distribution, where TDA1-DMN showed smaller d-spacing values and broader intensity peaks. Both TDADMN-based polyimides showed very high gas permeabilities with moderate selectivities. For example, fresh TDA1-DMN exhibited an O-2 permeability of 783 Barrer coupled with an O-2/N-2 selectivity of 4.3 and H-2 permeability of 3050 Barrer with H-2/N-2 selectivity of 16.7, values that surpassed the 2008 Robeson permeability/selectivity upper bounds. Physical aging of the TDA-DMN polyimide films over a period of 250 days showed relatively small changes in permeability (similar to 20%) and selectivity (similar to 5%). (C) 2016 Elsevier Ltd. All rights reserved.

  19. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    Science.gov (United States)

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Viscous Control of the Foam Glass Process

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Smedskjær, Morten Mattrup

    The production of foam glass as heat insulating material is an important industrial process because it enables low-cost recycling of glass waste from a variety of chemical compositions. Optimization of the foaming process of new glass waste compositions is time consuming, since many factors affect...... the foaming process such as temperature, particle size, type and concentration of foaming agent. The foaming temperature is one of the key factors, because even small temperature changes can affect the melt viscosity by several orders of magnitude. Therefore, it is important to establish the viscosity range...... in which the foaming process should take place, particularly when the type of recycled cullet is changed or several types of cullet are mixed in one batch. According to recent glass literature, the foaming process should occur at viscosity 103 to 105 Pa s. However, no systematic studies have hitherto been...

  1. Oxidation behaviour of metallic glass foams

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, B.R. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States)], E-mail: bbarnard@utk.edu; Liaw, P.K. [Department of Materials Science and Engineering, 434 Dougherty Hall, University of Tennessee, Knoxville, TN 37996-2200 (United States); Demetriou, M.D.; Johnson, W.L. [Department of Materials Science, Keck Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2008-08-15

    In this study, the effects of porosity on the oxidation behaviour of bulk-metallic glasses were investigated. Porous Pd- and Fe-based bulk-metallic glass (BMG) foams and Metglas ribbons were studied. Oxidizing experiments were conducted at 70 deg. C, and around 80 deg. C below glass-transition temperatures, (T{sub g}s). Scanning-electron microscopy/energy-dispersive spectroscopy (SEM/EDS) studies revealed little evidence of oxidation at 70 deg. C. Specimens exhibited greater oxidation at T{sub g} - 80 deg. C. Oxides were copper-based for Pd-based foams, Fe-, Cr-, and Mo-based for Fe-based foams, and Co-based with borosilicates likely for the Metglas. Pd-based foams demonstrated the best oxidation resistance, followed by Metglas ribbons, followed by Fe-based foams.

  2. Preparation of Microcellular Epoxy Foams through a Limited-Foaming Process: A Contradiction with the Time-Temperature-Transformation Cure Diagram.

    Science.gov (United States)

    Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li

    2018-01-01

    3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mechanical properties and impact behavior of a microcellular structural foam

    Directory of Open Access Journals (Sweden)

    M. Avalle

    Full Text Available Structural foams are a relatively new class of materials with peculiar characteristics that make them very attractive in some energy absorption applications. They are currently used for packaging to protect goods from damage during transportation in the case of accidental impacts. Structural foams, in fact, have sufficient mechanical strength even with reduced weight: the balance between the two antagonist requirements demonstrates that these materials are profitable. Structural foams are generally made of microcellular materials, obtained by polymers where voids at the microscopic level are created. Although the processing technologies and some of the material properties, including mechanical, are well known, very little is established for what concerns dynamic impact properties, for the design of energy absorbing components made of microcellular foams. The paper reports a number of experimental results, in different loading conditions and loading speed, which will be a basis for the structural modeling.

  4. USING BIOPOLYMERS TO STABILIZE THE PROTEIN OXYGEN FOAM

    Directory of Open Access Journals (Sweden)

    N. V. Nepovinnyh

    2013-01-01

    Full Text Available The cottage cheese whey as an oxygen cocktail foaming base and natural juices as a flavoring ingredient are analyzed. The lifetime of foam generated by the serum proteins is not long: foam falls off rapidly; because from the foam liquid is released (syneresis. The effects of plant polysaccharides on the stabilization of the protein foam oxygen cocktail is studied. It was shown that the use of plant polysaccharides (guar gum, high methoxyl citrus pectin, locust been gum prolong the life of the foam up to 20 times, compared with conventional blowing agents. It was found that oxygen foam properties depend on the molecular weight of guar gum.

  5. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Murr, L.E.; Gaytan, S.M.; Medina, F.; Martinez, E.; Martinez, J.L.; Hernandez, D.H.; Machado, B.I.; Ramirez, D.A.; Wicker, R.B.

    2010-01-01

    Ti-6Al-4V open cellular foams were fabricated by additive manufacturing using electron beam melting (EBM). Foam models were developed from CT-scans of aluminum open cellular foams and embedded in CAD for EBM. These foams were fabricated with solid cell structures as well as hollow cell structures and exhibit tailorable stiffness and strength. The strength in proportion to the measured microindentation hardness is as much as 40% higher for hollow cell (wall) structures in contrast to solid, fully dense EBM fabricated components. Plots of relative stiffness versus relative density were in good agreement with the Gibson-Ashby model for open cellular foam materials. Stiffness or Young's modulus values measured using a resonant frequency-damping analysis technique were found to vary inversely with porosity especially for solid cell wall, open cellular structure foams. These foams exhibit the potential for novel biomedical, aeronautics, and automotive applications.

  6. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  7. rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows - Simulation of planar detonations -

    Science.gov (United States)

    Gutiérrez Marcantoni, L. F.; Tamagno, J.; Elaskar, S.

    2017-10-01

    A new solver developed within the framework of OpenFOAM 2.3.0, called rhoCentralRfFoam which can be interpreted like an evolution of rhoCentralFoam, is presented. Its use, performing numerical simulations on initiation and propagation of planar detonation waves in combustible mixtures H2-Air and H2-O2-Ar, is described. Unsteady one dimensional (1D) Euler equations coupled with sources to take into account chemical activity, are numerically solved using the Kurganov, Noelle and Petrova second order scheme in a domain discretized with finite volumes. The computational code can work with any number of species and its corresponding reactions, but here it was tested with 13 chemically active species (one species inert), and 33 elementary reactions. A gaseous igniter which acts like a shock-tube driver, and powerful enough to generate a strong shock capable of triggering exothermic chemical reactions in fuel mixtures, is used to start planar detonations. The following main aspects of planar detonations are here, treated: induction time of combustible mixtures cited above and required mesh resolutions; convergence of overdriven detonations to Chapman-Jouguet states; detonation structure (ZND model); and the use of reflected shocks to determine induction times experimentally. The rhoCentralRfFoam code was verified comparing numerical results and it was validated, through analytical results and experimental data.

  8. An elasto-visco-plastic model for immortal foams or emulsions.

    Science.gov (United States)

    Bénito, S; Bruneau, C-H; Colin, T; Gay, C; Molino, F

    2008-03-01

    A variety of complex fluids consists in soft, round objects (foams, emulsions, assemblies of copolymer micelles or of multilamellar vesicles--also known as onions). Their dense packing induces a slight deviation from their preferred circular or spherical shape. As a frustrated assembly of interacting bodies, such a material evolves from one conformation to another through a succession of discrete, topological events driven by finite external forces. As a result, the material exhibits a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion, object coalescence, molecular diffusion), and the material properties under low or vanishing stress may alter with time, a phenomenon known as aging. We neglect such effects to address the simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the ability of such soft materials to deform substantially in the elastic regime (be it compressible or not) before they undergo (incompressible) plastic creep--or viscous flow under even higher stresses.

  9. Titanium reinforced boron-polyimide composite

    Science.gov (United States)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  10. Notch-strengthening in two-dimensional foams

    NARCIS (Netherlands)

    Onck, P.R.

    Metallic foams show notch-strengthening behavior when analyzing double-edge notched specimen in compression and tension. A discrete microstructural model has been used to simulate the effect of notch depth and specimen size on the net-section-strength. The non-uniform deformation behavior is

  11. Laser absorption and energy transfer in foams of various pore structures and chemical compositions

    International Nuclear Information System (INIS)

    Limpouch, J.; Kuba, J.; Borisenko, N.G.; Demchenko, N.N.; Gus'kov, S.Y.; Khalenkov, A.M.; Merkul'ev, Y.A.; Rozanov, V.B.; Kasperczuk, A.; Pisarczyk, T.; Kondrashov, V.N.; Limpouch, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Renner, O.; Nazarov, W.; Pisarczyk, P.

    2006-01-01

    Interaction of sub-nanosecond intense laser pulses with foams containing fine and large pores has been studied experimentally. The foams included: fine-structured TMPTA (trimethylol propane tri-acrylate) foams, fine-structured TAC (cellulose tri-acetate) foams and rougher agar-agar foams. In all cases, an aluminum foil was placed at the rear side of the foam targets. Laser penetration and energy transport in the foam material are measured via streaked side-on X-ray slit images. Shock wave transition through the foam is detected via streaked optical self-emission from foil attached on the foam rear side. The shock transition time increases with the pore size, foam density, and also with the contents of high Z additions in plastic foams. Foil acceleration is observed via 3-frame interferometry. In the case of TAC foam with a 9.1 mg/cm 3 and small pores (D p = 1-3 μm) minor pre-heating of the foil at the target rear is observed at about 0.25 ns after emission from the front side and at the same time small signal appears on optical streak. Laser is absorbed in the surface layer and then thermal waves propagates into the foam with average speed of 3.4*10 7 cm/s. This wave reaches the foil rear side 1.1 ns after X-ray emission onset, earlier than the main optical emission which appears at 2.1 ns. Comparison of experimental results with numerical simulations and an analytical model is underway

  12. Damping of liquid sloshing by foams: from everyday observations to liquid transport

    Science.gov (United States)

    Sauret, Alban; Boulogne, Francois; Cappello, Jean; Stone, Howard

    2014-11-01

    When a liquid-filled container is set in motion, the free surface of the liquid starts to slosh, i.e. oscillate. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rim of the container. However, beer does not slosh as readily, which suggests that the presence of foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of liquid foam placed on top of a liquid bath in a Hele-Shaw cell. We generate a monodisperse 2D liquid foam and track its motion. The influence of the foam on the sloshing dynamics is characterized: 2 to 3 layers of bubbles are sufficient to significantly damp the oscillations. For more than 5 layers of bubbles, the original vertical motion of the foam becomes mainly horizontal. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient. This study motivated by everyday observations has promising applications in numerous industrial applications such as the transport of liquid in cargoes.

  13. Micro-scale metallization on flexible polyimide substrate by Cu electroplating using SU-8 photoresist mask

    International Nuclear Information System (INIS)

    Cho, S.H.; Kim, S.H.; Lee, N.-E.; Kim, H.M.; Nam, Y.W.

    2005-01-01

    Technologies for flexible electronics have been developed to make electronic or microelectromechanical (MEMS) devices on inexpensive and flexible organic substrates. In order to fabricate the interconnect lines between device elements or layers in flexible electronic devices, metallization on the flexible substrate is essential. In this case, the width and conductivity of metallization line are very important for minimizing the size of device. Therefore, the realization of metallization process with the scale of a few micrometers on the flexible substrate is required. In this work, micro-scale metallization lines of Cu were fabricated on the flexible substrate by electroplating using the patterned mask of a negative-tone SU-8 photoresist. Polyimide surface was treated by O 2 /Ar atmospheric plasma for the improvement in adhesion between Cr layer and polyimide and in situ sputter deposition of 100-nm-thick Cu seed layers on the sputter-deposited 50-nm-thick Cr adhesion layer was followed. SU-8 photoresist was spin-coated and patterned by photolithography. Electroplating of Cu line, removal of SU-8, and selective wet etch of Cr adhesion and Cu seed layers were carried out. Gap between the Cu lines was successfully filled by spin-coating of polyimide. Micro-scale Cu metal lines with gap filling on the polyimide substrate with a thickness of 6-12 μm and an aspect ratio of 1-3 were successfully fabricated

  14. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  15. Mechanical Characterization of Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Marcin Kozłowski

    2018-01-01

    Full Text Available Foamed concrete shows excellent physical characteristics such as low self weight, relatively high strength and superb thermal and acoustic insulation properties. It allows for minimal consumption of aggregate, and by replacement of a part of cement by fly ash, it contributes to the waste utilization principles. For many years, the application of foamed concrete has been limited to backfill of retaining walls, insulation of foundations and roof tiles sound insulation. However, during the last few years, foamed concrete has become a promising material for structural purposes. A series of tests was carried out to examine mechanical properties of foamed concrete mixes without fly ash and with fly ash content. In addition, the influence of 25 cycles of freezing and thawing on the compressive strength was investigated. The apparent density of hardened foamed concrete is strongly correlated with the foam content in the mix. An increase of the density of foamed concrete results in a decrease of flexural strength. For the same densities, the compressive strength obtained for mixes containing fly ash is approximately 20% lower in comparison to the specimens without fly ash. Specimens subjected to 25 freeze-thaw cycles show approximately 15% lower compressive strengths compared to the untreated specimens.

  16. High-precision cutting of polyimide film using femtosecond laser for the application in flexible electronics

    Science.gov (United States)

    Ganin, D. V.; Lapshin, K. E.; Obidin, A. Z.; Vartapetov, S. K.

    2018-01-01

    The experimental results of cutting a polyimide film on the optical glass substrate by means of femtosecond lasers are given. Two modes of laser cutting of this film without damages to a glass base are determined. The first is the photo graphitization using a high repetition rate femtosecond laser. The second is ablative, under the effect of femtosecond laser pulses with high energy and low repetition rate. Cutting of semiconductor chips formed on the polyimide film surface is successfully demonstrated.

  17. Application of Auxetic Foam in Sports Helmets

    Directory of Open Access Journals (Sweden)

    Leon Foster

    2018-03-01

    Full Text Available This investigation explored the viability of using open cell polyurethane auxetic foams to augment the conformable layer in a sports helmet and improve its linear impact acceleration attenuation. Foam types were compared by examining the impact severity on an instrumented anthropomorphic headform within a helmet consisting of three layers: a rigid shell, a stiff closed cell foam, and an open cell foam as a conformable layer. Auxetic and conventional foams were interchanged to act as the helmet’s conformable component. Attenuation of linear acceleration was examined by dropping the combined helmet and headform on the front and the side. The helmet with auxetic foam reduced peak linear accelerations (p < 0.05 relative to its conventional counterpart at the highest impact energy in both orientations. Gadd Severity Index reduced by 11% for frontal impacts (38.9 J and 44% for side impacts (24.3 J. The conformable layer within a helmet can influence the overall impact attenuating properties. The helmet fitted with auxetic foam can attenuate impact severity more than when fitted with conventional foam, and warrants further investigation for its potential to reduce the risk of traumatic brain injuries in sport specific impacts.

  18. Optical fiber sensors based on novel polyimide for humidity monitoring of building materials

    Science.gov (United States)

    Chai, Jing; Liu, Qi; Liu, Jinxuan; Zhang, Dingding

    2018-03-01

    This paper presents novel preparation methods of polyimide and coupling agent, coated on the fiber Bragg grating (FBG) sensor for monitoring relative humidity (RH). The sensing mechanism that the volume change of the moisture-sensitive polyimide induces the shift of the Bragg wavelength of FBG is used in the RH sensor. The performance of the polymer-coated RH sensor was evaluated under laboratory conditions of temperature over a range of values (20.0-80.0 °C) and humidity over a range of RH values (25.0-95.0%). The time response and RH sensitivity of the sensor based on novel polyimide and coupling agent was improved, compared to the previous. A new packaged RH sensor was designed, which was used in detecting the moisture diffusion and evolutions inside of sample made of building materials which exposed to a controlled environment in the lab after casting. Relative humidity inside of sample with time was 100% in the first phase of vapor-saturated, slowly reduced in the latter phase. The results indicate the RH sensor developed provides a feasible method to detect the influence of environment on moisture inside the material in the drying process.

  19. Equilibrium states and ground state of two-dimensional fluid foams

    International Nuclear Information System (INIS)

    Graner, F.; Jiang, Y.; Janiaud, E.; Flament, C.

    2001-01-01

    We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs ''repel'' while charges of the opposite signs ''attract;'' (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams

  20. A study on fracture characteristic of aluminum foam by thickness

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Teng [Dept. of Mechanical Engineering, Graduate School, Kongju National University, Kongju (Korea, Republic of); Cho, Jae Ung [Div. of Mechanical and Automotive Engineering, Kongju National University, Kongju (Korea, Republic of)

    2015-10-15

    Because foam metal has the excellent physical characteristics and mechanical performance, they are applied extensively into a lot of advanced technology areas. The aluminum foam with closed cell is one of the foam metals. It is applied widely into automobile and airplane because of the excellent absorption performance of impact energy. In this study, the mechanical characteristics by thickness was analyzed through the impact experiment of closed-cell aluminum foam, and the simulation analysis was performed for the verification. As the simulation analysis method, a finite-element analysis was carried under the same boundary conditions as the experiment by using ANSYS. By comparing with the results of experiment and simulation, it was thought that the case of thickness of 20 mm was the most efficient of among the cases of thicknesses of 10 mm, 20 mm and 30 mm. At the case of thickness of 20 mm, the absorption energy by comparing with the specimen thickness is shown to become the most among three models. By using the result of this study, it is thought that it can apply the material necessary to develop the mechanical structure with aluminum foam.

  1. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    Science.gov (United States)

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  2. Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes

    KAUST Repository

    Swaidan, Raja

    2014-08-12

    Highly ultramicroporous, solution-processable polyimides bearing 9,10-bridgehead-substituted triptycene demonstrated the highest BET surface area reported for polyimides (840 m2 g-1) and several new highs in gas selectivity and permeability for hydrogen (1630-3980 barrers, H2/CH4 ∼ 38) and air (230-630 barrers, O 2/N2 = 5.5-5.9) separations. Two new dianhydrides bearing 9,10-diethyl- and 9,10-dipropyltriptycenes indicate that the ultramicroporosity is optimized for fast polymeric sieving with the use of short, bulky isopropyl bridgeheads and methyl-substituted diamines (TrMPD, TMPD, and TMBZ) that increase intrachain rigidity. Mechanically, the triptycene-based analogue of a spirobisindane-based polyimide exhibited 50% increases in both tensile strength at break (94 MPa) and elastic modulus (2460 MPa) with corresponding 90% lower elongations at break (6%) likely due to the ability of highly entangled spiro-based chains to unwind. To guide future polyimide design, structure/property relationships are suggested between the geometry of the contortion center, the diamine and bridgehead substituent, and the mechanical, microstructural, and gas transport properties. © 2014 American Chemical Society.

  3. Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes

    KAUST Repository

    Swaidan, Raja; Al-Saeedi, Majed; Ghanem, Bader; Litwiller, Eric; Pinnau, Ingo

    2014-01-01

    Highly ultramicroporous, solution-processable polyimides bearing 9,10-bridgehead-substituted triptycene demonstrated the highest BET surface area reported for polyimides (840 m2 g-1) and several new highs in gas selectivity and permeability for hydrogen (1630-3980 barrers, H2/CH4 ∼ 38) and air (230-630 barrers, O 2/N2 = 5.5-5.9) separations. Two new dianhydrides bearing 9,10-diethyl- and 9,10-dipropyltriptycenes indicate that the ultramicroporosity is optimized for fast polymeric sieving with the use of short, bulky isopropyl bridgeheads and methyl-substituted diamines (TrMPD, TMPD, and TMBZ) that increase intrachain rigidity. Mechanically, the triptycene-based analogue of a spirobisindane-based polyimide exhibited 50% increases in both tensile strength at break (94 MPa) and elastic modulus (2460 MPa) with corresponding 90% lower elongations at break (6%) likely due to the ability of highly entangled spiro-based chains to unwind. To guide future polyimide design, structure/property relationships are suggested between the geometry of the contortion center, the diamine and bridgehead substituent, and the mechanical, microstructural, and gas transport properties. © 2014 American Chemical Society.

  4. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    KAUST Repository

    Kratochvil, Adam M.; Koros, William J.

    2010-01-01

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a

  5. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  6. Behaviour of aluminum foam under fire conditions

    Directory of Open Access Journals (Sweden)

    J. Grabian

    2008-07-01

    Full Text Available Taking into account fire-protection requirements it is advantageous for aluminum foam, after melting at a temperature considerably exceeding the melting point, to have a structure of discontinuous suspension of solid inclusions to liquid metal instead of liquid consistency. Continuity of the suspension depends on the solid phase content. The boundary value of the phase determined by J. Śleziona, above which the suspension becomes discontinuous, is provided by the formula (1. Figure 1 presents the relationship graphically. Boundary values of the vs content resulting from the above relationship is too low, taking into account the data obtained from the technology of suspension composites [4]. Therefore, based on the structure assumed for the suspension shown in Figure 2 these authors proposed another way of determining the contents, the value of which is determined by the relationship (3 [5].For purposes of the experimental study presented in the paper two foams have been molten: a commercially available one, made by aluminum foaming with titanium hydride, and a foam manufactured in the Marine Materials Plant of the Maritime University of Szczecin by blowing the AlSi7 +20% SiC composite with argon. Macrophotographs of foam cross-sections are shown in Figure 3. The foams have been molten in the atmosphere of air at a temperature of 750ºC. The products of melting are presented in Figure 4. It appears that molten aluminum foam may have no liquid consistency, being unable to flow, which is a desired property from the point of view of fire-protection. The above feature of the molten foam results from the fact that it may be a discontinuous suspension of solid particles in a liquid metal. The suspended particles may be solid particles of the composite that served for making the foam or oxide membranes formed on extended metal surface of the bubbles included in the foam. The desired foam ability to form a discontinuous suspension after melting may be

  7. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  8. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    GOOLSBY, TOMMY D.; SCOTT, STEVEN H.

    1999-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  9. Investigation the foam dynamics capacity of SDS in foam generator by affecting the presence of organic and inorganic contaminant

    Science.gov (United States)

    Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam

    2017-05-01

    The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.

  10. Modification of Foamed Articles Based on Cassava Starch

    International Nuclear Information System (INIS)

    Ponce, P.

    2006-01-01

    This work reports the influence of radiation, plasticizers and poly vinyl alcohol (PVA) on the barrier properties [water vapour permeability (WVP)) and mechanical properties (tensile strength and elongation; compression resistance and flexibility) of foamed articles based on cassava starch. The starch foam was obtained by thermopressing process. Poly ethylene glycol (PEG, 300) was selected as plasticizer and water was necessary for the preparation of the foams. The foamed articles based on cassava starch were irradiated at low doses of 2 and 5 kGy, commonly used in food irradiation. The mechanical properties of starch foams are influenced by the plasticizer concentration and by irradiation dose. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the foams; also increase the permeability of the foams in water. After irradiation, the barrier properties and mechanical properties of the foams were improved due to chemical reactions among polymer molecules. Irradiated starch cassava foams with poly vinyl alcohol (PVA) have good flexibility and low water permeability. WVP can be reduced by low doses of gamma radiation

  11. The Laser ablation of a metal foam: The role of electron-phonon coupling and electronic heat diffusivity

    Science.gov (United States)

    Rosandi, Yudi; Grossi, Joás; Bringa, Eduardo M.; Urbassek, Herbert M.

    2018-01-01

    The incidence of energetic laser pulses on a metal foam may lead to foam ablation. The processes occurring in the foam may differ strongly from those in a bulk metal: The absorption of laser light, energy transfer to the atomic system, heat conduction, and finally, the atomistic processes—such as melting or evaporation—may be different. In addition, novel phenomena take place, such as a reorganization of the ligament network in the foam. We study all these processes in an Au foam of average porosity 79% and an average ligament diameter of 2.5 nm, using molecular dynamics simulation. The coupling of the electronic system to the atomic system is modeled by using the electron-phonon coupling, g, and the electronic heat diffusivity, κe, as model parameters, since their actual values for foams are unknown. We show that the foam coarsens under laser irradiation. While κe governs the homogeneity of the processes, g mainly determines their time scale. The final porosity reached is independent of the value of g.

  12. SYNTHESIS AND CHARACTERIZATION OF POLYIMIDE-ZEOLITE MIXED MATRIX MEMBRANE

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2012-02-01

    Full Text Available Biogas has become an attractive alternative energy source due to the limitation of energy from fossil. In this study, a new type of mixed matrix membrane (MMM consisting of polyimide-zeolite was synthesized and characterized for biogas purification. The MMM consists of medium concentration of polymer (20% wt polyimide, 80% N-Methyl-2-pyrrolidone (NMP and 25% zeolite 4A in total solid were prepared by a dry/wet phase inversion technique.  The fabricated MMM was characterized using SEM, DSC, TGA and gas permeation. Post treatment coating procedure was also conducted. The research showed that surface coating by 3% silicone rubber toward MMM PI 20% gave the significant effect to improve membrane selectivity. The ideal selectivity for CO2/CH4 separation increased from 0.99 for before coating to 7.9 after coating for PI-Zeolite MMM, respectively. The results suggest that PI-Zeolite MMM with good post treatment procedure will increase the membrane selectivity and permeability with more saver polymer requirement as well as energy saving due to low energy for mixing.

  13. Structure formation control of foam concrete

    Science.gov (United States)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  14. Synthesis of polyimides from α,αʹ-bis(3-aminophenoxy)-p-xylene: Spectroscopic, single crystal XRD and thermal studies

    Science.gov (United States)

    Ashraf, Ahmad Raza; Akhter, Zareen; Simon, Leonardo C.; McKee, Vickie; Castel, Charles Dal

    2018-05-01

    The meta-catenated ether-based diamine monomer α,αʹ-bis(3-aminophenoxy)-p-xylene (3APX) was synthesized from dinitro precursor α,αʹ-bis(3-nitrophenoxy)-p-xylene (3NPX). FTIR, 1H and 13C NMR spectroscopic studies accompanied by elemental analysis were performed for structural elucidations of 3NPX and 3APX. The spatial orientations of 3APX were explored by single crystal X-ray diffraction analysis. Its crystal system was found to be monoclinic, adopting the space group P21/c. The synthesized diamine monomer (3APX) was used for preparation of new series of polyimides by reacting with three different dianhydrides (BTDA, ODPA, 6FDA). The relevant copolyimides were developed via incorporation of 4,4ʹ-methylenedianiline (MDA) in the backbone of afore-synthesized polyimides. The structures of polyimides and copolyimides were verified by FTIR and 1H NMR spectroscopic techniques. Their properties were evaluated by dynamic and isothermal TGA (nitrogen and air atmospheres) and WAXRD studies. Polyimides displayed significantly high thermal stability as their degradation started around 400 °C and it was improved further by execution of copolymerization strategy with MDA. The 5% weight loss temperature (T5) of polyimides under nitrogen atmosphere was in the range of 425-460 °C while for copolyimides it increased to 454-498 °C. Thermal decomposition in air was slower than nitrogen between 400 and 550 °C however it was accelerated above 550 °C. Isothermal TGA disclosed that copolyimides have the ability to endure elevated temperatures for extended period. WAXRD analysis showed the amorphous nature of polyimides and copolyimides.

  15. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    ; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of

  16. Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Cavar, Dalibor; Réthoré, Pierre-Elouan; Bechmann, Andreas

    2016-01-01

    The flow solvers OpenFOAM and EllipSys3D are compared in the case of neutral atmospheric flow over terrain using the test cases of Askervein and Bolund hills. Both solvers are run using the steady-state Reynolds-averaged Navier–Stokes k– turbulence model. One of the main modeling differences...... between the two solvers is the wall-function approach. The Open-FOAM v.1.7.1 uses a Nikuradse’s sand roughness model, while EllipSys3D uses a model based on the atmospheric roughness length. It is found that Nikuradse’s model introduces an error dependent on the near-wall cell height. To mitigate...... this error the near-wall cells should be at least 10 times larger than the surface roughness. It is nonetheless possible to obtain very similar results between EllipSys3D and OpenFOAM v.1.7.1. The more recent OpenFOAM v.2.2.1, which includes the atmospheric roughness length wall-function approach, has also...

  17. Photoactivity of Titanium Dioxide Foams

    Directory of Open Access Journals (Sweden)

    Maryam Jami

    2018-01-01

    Full Text Available TiO2 foams have been prepared by a simple mechanical stirring method. Short-chain amphiphilic molecules have been used to stabilize colloidal suspensions of TiO2 nanoparticles. TiO2 foams were characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, UV-vis absorption spectroscopy, and scanning electron microscopy (SEM. The photoassisted oxidation of NO in the gas phase according to ISO 22197-1 has been used to compare the photoactivity of the newly prepared TiO2 foams to that of the original powders. The results showed that the photoactivity is increased up to about 135%. Foam structures seem to be a good means of improving the photoactivity of semiconductor materials and can readily be used for applications such as air purification devices.

  18. Microcellular foams via phase separation

    International Nuclear Information System (INIS)

    Young, A.T.

    1985-01-01

    A study of wide variety of processes for making plastic foams shows that phase separation processes for polymers from solutions offers the most viable methods for obtaining rigid plastic foams which met the physical requirements for fusion target designs. Four general phase separation methods have been shown to give polymer foams with densities less than 0.1 g/cm 3 and cell sizes of 30μm or less. These methods involve the utilization of non-solvent, chemical or thermal cooling processes to achieve a controlled phase separation wherein either two distinct phases are obtained where the polymer phase is a continuous phase or two bicontinuous phases are obtained where both the polymer and solvent are interpenetrating, continuous, labyrinthine phases. Subsequent removal of the solvent gives the final foam structure

  19. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  20. Hydrodynamics of foam flows for in situ bioremediation of DNAPL-contaminated subsurface

    International Nuclear Information System (INIS)

    Bouillard, J.X.; Enzien, M.; Peters, R.W.; Frank, J.; Botto, R.E.; Cody, G.

    1995-01-01

    In situ remediation technologies such as (1) pump-and-treat, (2) soil vacuum extraction, (3) soil flushing/washing, and (4) bioremediation are being promoted for cleanup of contaminated sites. However, these technologies are limited by flow channeling of chemical treatment agents. Argonne National Laboratory (ANL), the Gas Research Institute, and the Institute of Gas Technology are collaboratively investigating a new bioremediation technology using foams. The ability of a foam to block pores and limit flow bypassing makes it ideal for DNAPL remediation. The hydrodynamics of gas/liquid foam flows differ significantly from the hydrodynamics of single and multiphase nonfoaming flows. This is illustrated using a multiphase flow hydrodynamic computer model and a two-dimensional flow visualization cell. A state-of-the-art, nonintrusive, three-dimensional magnetic resonance imaging technique was developed to visualize DNAPL mobilization in three dimensions. Mechanisms to be investigated are in situ DNAPL interactions with the foam, DNAPL emulsification, DNAPL scouring by the foam, and subsequent DNAPL mobilization/redeposition in the porous media

  1. Morphological comparison of PVA scaffolds obtained by gas foaming and microfluidic foaming techniques.

    Science.gov (United States)

    Colosi, Cristina; Costantini, Marco; Barbetta, Andrea; Pecci, Raffaella; Bedini, Rossella; Dentini, Mariella

    2013-01-08

    In this article, we have exploited a microfluidic foaming technique for the generation of highly monodisperse gas-in-liquid bubbles as a templating system for scaffolds characterized by an ordered and homogeneous porous texture. An aqueous poly(vinyl alcohol) (PVA) solution (containing a surfactant) and a gas (argon) are injected simultaneously at constant flow rates in a flow-focusing device (FFD), in which the gas thread breaks up to form monodisperse bubbles. Immediately after its formation, the foam is collected and frozen in liquid nitrogen, freeze-dried, and cross-linked with glutaraldehyde. In order to highlight the superior morphological quality of the obtained porous material, a comparison between this scaffold and another one, also constituted of PVA but obtained with a traditional gas foaming technique, was carried out. Such a comparison has been conducted by analyzing electron microscopy and X-ray microtomographic images of the two samples. It turned out that the microfluidic produced scaffold was characterized by much more uniform porous texture than the gas-foaming one as witnessed by narrower pore size, interconnection, and wall thickness distributions. On the other side, scarce pore interconnectivity, relatively low pore volume, and limited production rate represent, by now, the principal disadvantages of microfluidic foaming as scaffold fabrication method, emphasizing the kind of improvement that this technique needs to undergo.

  2. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide

    Science.gov (United States)

    Huang, Haitao; Yu, Jiayu; Guo, Hanxiang; Shen, Yibo; Yang, Fan; Wang, Han; Liu, Rong; Liu, Yang

    2018-01-01

    On the basis of the outstanding fouling resistance of zwitterionic polymers, an antifouling ultrafiltration membrane was fabricated through phase inversion induced by immersion precipitation method, directly using the novel zwitterionic polyimide (Z-PI), which was synthesized via a two-step procedure including polycondensation and quaternary amination reaction, as membrane material. The chemical structure and composition of the obtained polymer were confirmed by using FTIR, 1H NMR and XPS analysis, and its thermal stability was thoroughly characterized by TGA measurement, respectively. The introduction of zwitterionic groups into polyimide could effectively increase membrane pore size, porosity and wettability, and convert the membrane surface from hydrophobic to highly hydrophilic. As a result, Z-PI membrane displayed significantly improved water permeability compared with that of the reference polyimide (R-PI) membrane without having an obvious compromise in protein rejection. According to the static adsorption and dynamic cycle ultrafiltration experiments of bovine serum albumin (BSA) solution, Z-PI membrane exhibited better fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling property and long-term performance stability. Moreover, Z-PI membrane had a water flux recovery ratio of 93.7% after three cycle of BSA solution filtration, whereas only about 68.5% was obtained for the control R-PI membrane. These findings demonstrated the advantages of Z-PI membrane material and aimed to provide a facile and scalable method for the large-scale preparation of low fouling ultrafiltration membranes for potential applications.

  3. Premixed combustion on ceramic foam burners

    NARCIS (Netherlands)

    Bouma, P.H.; Goey, de L.P.H.

    1999-01-01

    Combustion of a lean premixed methane–air mixture stabilized on a ceramic foam burner has been studied. The stabilization of the flame in the radiant mode has been simulated using a one-dimensional numerical model for a burner stabilized flat-flame, taking into account the heat transfer between the

  4. DRY MIX FOR OBTAINING FOAM CONCRETE

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2015-01-01

    Full Text Available Composition of a dry mix has been developed for production of non-autoclaved foam concrete with natural curing. The mix has been created on the basis of Portland cement, UFAPORE foaming agent, mineral additives (RSAM sulfoaluminate additive, MK-85 micro-silica and basalt fiber, plasticizing and accelerating “Citrate-T” additive and   redispersible Vinnapas-8034 H powder. It has been established that foam concrete with  density of 400–800 kg/m3, durability of 1,1–3,4 MPa, low water absorption (40–50 %, without shrinkable cracks has been formed while adding water of Water/Solid = 0.4–0.6 in the dry mix,  subsequent mechanical swelling and curing of foam mass.Introduction of the accelerating and plasticizing “Citrate-T” additive into composition of the dry mix leads to an increase of rheological properties in expanded foam mass and  time reduction of its drying and curing. An investigation on microstructure of foam-concrete chipping surface carried out with the help of a scanning electron microscope has shown that the introduction of  basalt fiber and redispersible Vinnapas-8034 H powder into the composition of the dry mix promotes formation of more finely-divided crystalline hydrates. Such approach makes it possible to change purposefully morphology of crystalline hydrates and gives the possibility to operate foam concrete structurization process.

  5. Drainage and Stratification Kinetics of Foam Films

    Science.gov (United States)

    Zhang, Yiran; Sharma, Vivek

    2014-03-01

    Baking bread, brewing cappuccino, pouring beer, washing dishes, shaving, shampooing, whipping eggs and blowing bubbles all involve creation of aqueous foam films. Foam lifetime, drainage kinetics and stability are strongly influenced by surfactant type (ionic vs non-ionic), and added proteins, particles or polymers modify typical responses. The rate at which fluid drains out from a foam film, i.e. drainage kinetics, is determined in the last stages primarily by molecular interactions and capillarity. Interestingly, for certain low molecular weight surfactants, colloids and polyelectrolyte-surfactant mixtures, a layered ordering of molecules, micelles or particles inside the foam films leads to a stepwise thinning phenomena called stratification. Though stratification is observed in many confined systems including foam films containing particles or polyelectrolytes, films containing globular proteins seem not to show this behavior. Using a Scheludko-type cell, we experimentally study the drainage and stratification kinetics of horizontal foam films formed by protein-surfactant mixtures, and carefully determine how the presence of proteins influences the hydrodynamics and thermodynamics of foam films.

  6. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  8. Quantum group spin nets: Refinement limit and relation to spin foams

    Science.gov (United States)

    Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian

    2014-07-01

    So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.

  9. EMS providers do not use FOAM for education.

    Science.gov (United States)

    Bucher, Joshua; Donovan, Colleen; McCoy, Jonathan

    2018-05-24

    Free open access to medical education (FOAM, #FOAM) is the free availability of educational materials on various medicine topics. We hope to evaluate the use of social media and FOAM by emergency medical services (EMS) providers. We designed an online survey distributed to EMS providers with questions about demographics and social media/FOAM use by providers. The survey was sent to the American College of Emergency Physicians (ACEP) EMS Listserv of medical directors and was asked to be distributed to their respective agencies. The survey was designed to inquire about the providers' knowledge of FOAM and social media and their use of the above for EMS education. There were 169 respondents out of a total of 523 providers yielding a response rate of 32.3%. Fifty-three percent of respondents are paramedics, 37% are EMT-Basic trained, and the remainder (16%) were "other." The minority (20%) of respondents had heard of FOAM. However, 54% of respondents had heard of "free medical education online" regarding pertinent topics. Of the total respondents who used social media for education, 31% used Facebook and 23% used blogs and podcasts as resources for online education. Only 4% of respondents stated they produced FOAM content. Seventy-six percent of respondents said they were "interested" or "very interested" in using FOAM for medical education. If FOAM provided continuing medical education (CME), 83% of respondents would be interested in using it. Social media is not used frequently by EMS providers for the purposes of FOAM. There is interest within EMS providers to use FOAM for education, even if CME was not provided. FOAM can provide a novel area of education for EMS.

  10. Evaluation of polyimide/glass fiber composites for construction of light weight pressure vessels for cryogenic propellants

    Science.gov (United States)

    Petker, I.; Segimoto, M.

    1973-01-01

    The application of polyimide resin as a matrix for glass filament-wound thin metal-lined pressure vessels was studied over a temperature range of (minus) 320 to 600 F. Keramid 601 polyimide was found to perform quite well over the entire range of temperature. Hoop stress values of 425 ksi were determined at 75 F which is equivalent to epoxy resin in similar structures. At -320 and 600 F, 125 and 80% of this strength was retained. Thermal ageing at 500 F for up to 50 hours was studied with severe reduction in strength, but there is evidence that this reduction could be improved. Another polyimide resin studied was P10PA which was found to have processing characteristics inappropriate for filament-winding. NOL ring tensile and shear data was determined from both resins with S-glass. Pressure vessel design, fabrication and test procedures are described in detail.

  11. Rigid Polyurethane Foam Reinforced Coconut Coir Fiber Properties

    OpenAIRE

    Mohd Azham Azmi

    2012-01-01

    This research work studied the properties of composite foam panels. Coconut coir fibers were used as reinforcement in polyurethane (PU) foam in order to increase the properties of foam. This composite foam panels were fabricated by using polyurethane molded method. The polyurethane foam panels reinforced from 5 to 20wt% coconut coir were produced to investigate the physical and mechanical test via density test and three point bending test respectively. It was found that the density test resul...

  12. Experimental Investigation of Properties of Foam Concrete for Industrial Floors in Testing Field

    Science.gov (United States)

    Vlcek, Jozef; Drusa, Marian; Scherfel, Walter; Sedlar, Bronislav

    2017-12-01

    Foam concrete (FC), as a mixture of cement, water, additives and technical foam, is well known for more than 30 years. It is building material with good mechanical properties, low thermal conductivity, simple and even high technological treatment. Foam concrete contains closed void pores, what allows achieving low bulk density and spare of raw materials. Thanks to its properties, it is usable as a replacement of conventional subbase layers of the industrial floors, the transport areas or as a part of the foundation structures of the buildings. Paper presents the preparation of the testing field (physical model) which was created for experimental investigation of the foam concrete subbase layer of the industrial floor in a real scale.

  13. Auxetic Polyurethane Foam (Fabrication, Properties and Applications)

    International Nuclear Information System (INIS)

    Yousif, H.I.Y.

    2012-01-01

    Modern technology requires new materials of special properties. For the last two decades there has been a great interest in a class of materials known as auxetic materials. An auxetic material is a material that has a negative Poisson's ratio which means that this material expands laterally when they subjected to a tensile force unlike most of the other traditional materials. This material has superior properties over the traditional material such as high shear modulus and high impact resistance, which makes this material a good candidate for many engineering applications. In the present research work, auxetic flexible polyurethane polymeric foams having different densities were fabricated from conventional flexible polyurethane polymeric foam at different compression ratios. The microstructure of conventional and processed foams was examined by optical microscope to compare between the two structures. The microstructure of processed foam was compared with the one presented in the literature and it has shown the auxetic structure configuration. This is the first time to produce auxetic foam in Egypt. Conventional and auxetic foam samples having cylindrical and square cross-sections were produced from foams having different densities (25 kg/m 3 and 30 kg/m 3 ). The compression ratios used to produce the auxetic samples are (5.56, 6.94 and 9.26). Four mechanical tests were carried out to get the mechanical properties for both conventional and auxetic foams. Two quasi-static mechanical tests t ension and compression a nd two dynamic mechanical tests H ysteresis and resilience w ere carried out to compare between the conventional and auxetic foams. The quasi-static tensile test was carried out at speed was adjusted to be position control rate of 0.2 mm/s. The compression and hysteresis tests were carried out at strain control rate of 0.3 S -1 . The data recorded from the machine were stress and strain. The modulus of elasticity and Poisson's ratio of the test

  14. Field demonstration of foam injection to confine a chlorinated solvent source zone.

    Science.gov (United States)

    Portois, Clément; Essouayed, Elyess; Annable, Michael D; Guiserix, Nathalie; Joubert, Antoine; Atteia, Olivier

    2018-05-01

    A novel approach using foam to manage hazardous waste was successfully demonstrated under active site conditions. The purpose of the foam was to divert groundwater flow, that would normally enter the source zone area, to reduce dissolved contaminant release to the aquifer. During the demonstration, foam was pre generated and directly injected surrounding the chlorinated solvent source zone. Despite the constraints related to the industrial activities and non-optimal position of the injection points, the applicability and effectiveness of the approach have been highlighted using multiple metrics. A combination of measurements and modelling allowed definition of the foam extent surrounding each injection point, and this appears to be the critical metric to define the success of the foam injection approach. Information on the transport of chlorinated solvents in groundwater showed a decrease of contaminant flux by a factor of 4.4 downstream of the confined area. The effective permeability reduction was maintained over a period of three months. The successful containment provides evidence for consideration of the use of foam to improve traditional flushing techniques, by increasing the targeting of contaminants by remedial agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Steady-state capabilities for hydroturbines with OpenFOAM

    Science.gov (United States)

    Page, M.; Beaudoin, M.; Giroux, A. M.

    2010-08-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R&D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Québec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  16. Steady-state capabilities for hydroturbines with OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Page, M; Beaudoin, M; Giroux, A M, E-mail: page.maryse@ireq.c [Hydro-Quebec, Institut de recherche 1800 Lionel-Boulet, Varennes, Quebec J3X 1S1 (Canada)

    2010-08-15

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  17. Steady-state capabilities for hydroturbines with OpenFOAM

    International Nuclear Information System (INIS)

    Page, M; Beaudoin, M; Giroux, A M

    2010-01-01

    The availability of a high quality Open Source CFD simulation platform like OpenFOAM offers new R and D opportunities by providing direct access to models and solver implementation details. Efforts have been made by Hydro-Quebec to adapt OpenFOAM to hydroturbines for the development of steady-state capabilities. The paper describes the developments that have been made to implement new turbomachinery related capabilities: Multiple Frame of Reference solver, domain coupling interfaces (GGI, cyclicGGI and mixing plane) and specialized boundary conditions. Practical use of the new turbomachinery capabilities are demonstrated for the analysis of a 195-MW Francis hydroturbine.

  18. Applications of Polymer Matrix Syntactic Foams

    Science.gov (United States)

    Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh

    2013-11-01

    A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.

  19. Shrinkage deformation of cement foam concrete

    Science.gov (United States)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  20. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    Science.gov (United States)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy