WorldWideScience

Sample records for polyallylamine fluorestsiruyushchie nitevidnye

  1. Synthesis and characterisation of mucoadhesive thiolated polyallylamine.

    Science.gov (United States)

    Duggan, Sarah; Hughes, Helen; Owens, Eleanor; Duggan, Elaine; Cummins, Wayne; O' Donovan, Orla

    2016-02-29

    The thiolation of polyallylamine (PAAm) for use in mucoadhesive drug delivery has been achieved. PAAm was reacted with different ratios of Traut's reagent, yielding products with thiol contents ranging from 134-487μmol/g. Full mucoadhesive characterisation of the thiolated PAAm samples was conducted using swelling studies, mucoadhesive testing on porcine intestinal tissue and rheology. Both swelling and cohesive properties of the thiolated PAAm products were vastly improved in comparison to an unmodified PAAm control. The swelling abilities of the thiolated samples were high and the degree of thiolation of the products affected the initial rate of swelling. High levels of mucoadhesion were demonstrated by the thiolated PAAm samples, with adhesion times of greater than 24h measured for all three samples and, thus, thiol content did not appear to influence mucoadhesion. Rheological studies of the thiolated PAAm samples showed an increase in G' and G″ values upon the addition of a mucin solution which was not observed in the unmodified control, again highlighting the mucoadhesive interactions between these thiolated polymers and mucin. The synthesis of thiolated PAAm by reaction with Traut's reagent and resulting mucoadhesive properties demonstrates its potential for use a mucoadhesive drug delivery device. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A simple approach for producing highly efficient DNA carriers with reduced toxicity based on modified polyallylamine

    Energy Technology Data Exchange (ETDEWEB)

    Oskuee, Reza Kazemi [Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Dosti, Fatemeh [School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Gholami, Leila [Targeted Drug Delivery Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of); Malaekeh-Nikouei, Bizhan, E-mail: malaekehb@mums.ac.ir [Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2015-04-01

    Nowadays gene delivery is a topic in many research studies. Non-viral vectors have many advantages over viral vectors in terms of safety, immunogenicity and gene carrying capacity but they suffer from low transfection efficiency and high toxicity. In this study, polyallylamine (PAA), the cationic polymer, has been modified with hydrophobic branches to increase the transfection efficiency of the polymer. Polyallylamine with molecular weights of 15 and 65 kDa was selected and grafted with butyl, hexyl and decyl acrylate at percentages of 10, 30 and 50. The ability of the modified polymer to condense DNA was examined by ethidium bromide test. The complex of modified polymer and DNA (polyplex) was characterized for size, zeta potential, transfection efficiency and cytotoxicity in Neuro2A cell lines. The results of ethidium bromide test showed that grafting of PAA decreased its ability for DNA condensation but vectors could still condense DNA at moderate and high carrier to DNA ratios. Most of polyplexes had particle size between 150 and 250 nm. The prepared vectors mainly showed positive zeta potential but carriers composed of PAA with high percentage of grafting had negative zeta potential. The best transfection activity was observed in vectors with hexyl acrylate chain. Grafting of polymer reduced its cytotoxicity especially at percentages of 30 and 50. The vectors based of PAA 15 kDa had better transfection efficiency than the vectors made of PAA 65 kDa. In conclusion, results of the present study indicated that grafting PAA 15 kDa with high percentages of hexyl acrylate can help to prepare vectors with better transfection efficiency and less cytotoxicity. - Highlights: • The modified polyallylamine was synthesized as a gene carrier. • Modification of polyallylamine (15 kDa) with high percentages of hexyl acrylate improved transfection activity remarkably. • Grafting of polymer with acrylate derivatives reduced polymer cytotoxicity especially at percentages of

  3. Comparison of the mucoadhesive properties of thiolated polyacrylic acid to thiolated polyallylamine.

    Science.gov (United States)

    Duggan, Sarah; O'Donovan, Orla; Owens, Eleanor; Duggan, Elaine; Hughes, Helen; Cummins, Wayne

    2016-02-10

    Synthetic polymers, polyacrylic acid (PAA) and polyallylamine (PAAm), were thiolated using different methods of thiolation. Both polymers resulted in comparable thiol contents, thus allowing for the direct comparison of mucoadhesive and cohesive properties between the well-established thiolated PAA and the more novel thiolated PAAm. Thiolation of both polymers improved the swelling ability and the cohesive and mucoadhesive properties in comparison to unmodified control samples. In this study, it was shown that the swelling abilities of the thiolated PAAm sample were far greater than that of the thiolated PAA sample which, in turn, affected the drug release profile of the thiolated PAAm sample. Importantly, however, the mucoadhesive properties of thiolated PAAm were equivalent to that of the thiolated PAA sample as demonstrated by both the adhesion times on porcine intestinal tissue as measured by the rotating cylinder method and by rheological studies with a mucin solution. This study demonstrates the potential thiolated polyallylamine has as a mucoadhesive drug delivery device. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film

    International Nuclear Information System (INIS)

    Kafi, A.K.M.; Lee, Dong-Yun; Park, Sang-Hyun; Kwon, Young-Soo

    2007-01-01

    Hemoglobin (Hb) was immobilized in poly-allylamine (PAA) film onto the gold electrode by layer by layer (LBL) method. The modified electrode exhibited a pair of well-defined peaks during cyclic voltammetry, which was attributed from the direct electron transfer of heme proteins. The immobilized Hb showed an excellent electrocatalytical response to the reduction of hydrogen peroxide. The sensor exhibited a fast response and high sensitivity. Through the use of optimized conditions, the linear range for H 2 O 2 detection was from 2.5 x 10 -6 M to 5 x 10 -4 M with detection limit of 0.2 μM. The proposed biosensor showed long-lasting stability and excellent reproducibility

  5. In Vitro and In Vivo Biocompatibility Evaluation of Polyallylamine and Macromolecular Heparin Conjugates Modified Alginate Microbeads.

    Science.gov (United States)

    Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari

    2017-09-15

    Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.

  6. Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication.

    Science.gov (United States)

    Saini, Gaurav; Gates, Richard; Asplund, Matthew C; Blair, Steve; Attavar, Sachin; Linford, Matthew R

    2009-06-21

    The selective adsorption of reagents is often essential for bioarray and lab-on-a-chip type devices. As the starting point for a bioarray, alkyl monolayer terminated silicon shards were photopatterned in a few nanoseconds with thousands of wells (spots) using an optical element, a microlens array. Polyallylamine (PAAm), a primary amine containing polymer, adsorbed with little selectivity to the spots, i.e., silicon oxide, over the hydrophobic background. However, at appropriate concentrations, addition of a cationic surfactant to the PAAm deposition solution, cetyltrimethylammonium chloride, prevented the nonspecific adsorption of PAAm onto the hydrophobic monolayer, while directing it effectively to the active spots on the device. A nonionic surfactant was less effective in preventing the nonspecific adsorption of PAAm onto the hydrophobic monolayer. The localized reactions/interactions of adsorbed PAAm with four species that are useful for bioconjugate chemistry: glutaric anhydride, phenylenediisothiocyanate, biotin NHS ester, and an oligonucleotide (DNA) were shown in the spots of an array. The reactivity of PAAm was further demonstrated with an isocyanate. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) played an important role in confirming selective surface reactivity and adsorption. X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, and wetting confirmed PAAm reactivity on planar substrates.

  7. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    Science.gov (United States)

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Salinity Gradient Energy from Expansion and Contraction of Poly(allylamine hydrochloride) Hydrogels.

    Science.gov (United States)

    Bui, Tri Quang; Cao, Vinh Duy; Do, Nu Bich Duyen; Christoffersen, Trine Eker; Wang, Wei; Kjøniksen, Anna-Lena

    2018-06-22

    Salinity gradients exhibit a great potential for production of renewable energy. Several techniques such as pressure-retarded osmosis and reverse electrodialysis have been employed to extract this energy. Unfortunately, these techniques are restricted by the high costs of membranes and problems with membrane fouling. However, the expansion and contraction of hydrogels can be a new and cheaper way to harvest energy from salinity gradients since the hydrogels swell in freshwater and shrink in saltwater. We have examined the effect of cross-linker concentration and different external loads on the energy recovered for this type of energy-producing systems. Poly(allylamine hydrochloride) hydrogels were cross-linked with glutaraldehyde to produce hydrogels with excellent expansion and contraction properties. Increasing the cross-linker concentration markedly improved the energy that could be recovered from the hydrogels, especially at high external loads. A swollen hydrogel of 60 g could recover more than 1800 mJ when utilizing a high cross-linker concentration, and the maximum amount of energy produced per gram of polymer was 3.4 J/g. Although more energy is recovered at high cross-linking densities, the maximum amount of energy produced per gram of polymer is highest at an intermediate cross-linking concentration. Energy recovery was reduced when the salt concentration was increased for the low-concentration saline solution. The results illustrate that hydrogels are promising for salinity gradient energy recovery, and that optimizing the systems significantly increases the amount of energy that can be recovered.

  9. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    International Nuclear Information System (INIS)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-01-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP–PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX–CMP) via hydrazone and confirmed by FTIR and 1 H-NMR. In vitro release studies of pH-sensitive DOX–CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP–PAA NCs or DOX–CMP–PAA NCs self-assembled into a nanosized (<250 nm) spherical shape as confirmed by DLS and TEM. The hemolysis and cytotoxicity study indicated that the CMP–PAA NCs did not show cytotoxicity in comparison with plain polyallylamine. Gel retardation assay showed complete binding of pDNA with CMP–PAA NCs at 1:2 weight ratio. CMP–PAA NCs/pDNA showed significantly higher transfection in HEK293 cells compared to PAA/pDNA complexes. Confocal imaging demonstrated successful cellular uptake of DOX–CMP–PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery

  10. Self-assembled nanocomplexes of anionic pullulan and polyallylamine for DNA and pH-sensitive intracellular drug delivery

    Science.gov (United States)

    Vora, Lalit; Tyagi, Monica; Patel, Ketan; Gupta, Sanjay; Vavia, Pradeep

    2014-12-01

    The amalgamation of chemotherapy and gene therapy is promising treatment option for cancer. In this study, novel biocompatible self-assembled nanocomplexes (NCs) between carboxylmethylated pullulan t335 (CMP) with polyallylamine (CMP-PAA NCs) were developed for plasmid DNA (pDNA) and pH-sensitive doxorubicin (DOX) delivery. DOX was conjugated to CMP (DOX-CMP) via hydrazone and confirmed by FTIR and 1H-NMR. In vitro release studies of pH-sensitive DOX-CMP conjugate showed 23 and 85 % release after 48 h at pH 7.4 (physiological pH) and pH 5 (intracellular/tumoral pH), respectively. The CMP-PAA NCs or DOX-CMP-PAA NCs self-assembled into a nanosized (successful cellular uptake of DOX-CMP-PAA NCs in HEK293 cells. Thus, NCs hold great potential for targeted pDNA and pH-sensitive intratumoral drug delivery.

  11. Polyallylamine-Rh nanosheet nanoassemblies-carbon nanotubes organic-inorganic nanohybrids: A electrocatalyst superior to Pt for the hydrogen evolution reaction

    Science.gov (United States)

    Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu

    2018-05-01

    Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.

  12. Iron(III) diethylenetriaminepentaacetic acid complex on polyallylamine functionalized multiwalled carbon nanotubes: immobilization, direct electrochemistry and electrocatalysis.

    Science.gov (United States)

    Liu, Hailing; Cui, Yanyun; Li, Pan; Zhou, Yiming; Zhu, Xiaoshu; Tang, Yawen; Chen, Yu; Lu, Tianhong

    2013-05-07

    A nonenzymatic iron(III) diethylenetriaminepentaacetic acid (Fe(III)-DETPA) complex based amperometric sensor for the analytical determination of hydrogen peroxide was developed. By combining the electrostatic interaction between the Fe(III)-DETPA complex and polyallylamine (PAH) functionalized multiwalled carbon nanotubes (MWCNTs) as well as the ionotropic crosslinking interaction between PAH and ethylenediamine-tetramethylene phosphonic acid (EDTMP), the electroactive Fe(III)-DETPA complex was successfully incorporated within the MWCNT matrix, and firmly immobilized on the Au substrate electrode. The fabricated electrochemical sensor was characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical methods. The influences of solution pH and ionic strength on the electrochemical sensor were investigated. The prepared electrochemical sensor had a fast response to hydrogen peroxide (<3 s) and an excellent linear range of concentration from 1.25 × 10(-8) to 4.75 × 10(-3) M with a detection limit of 6.3 × 10(-9) M under the optimum conditions.

  13. Comparative study of layer-by-layer deposition techniques for poly(sodium phosphate) and poly(allylamine hydrochloride).

    Science.gov (United States)

    Elosua, Cesar; Lopez-Torres, Diego; Hernaez, Miguel; Matias, Ignacio R; Arregui, Francisco J

    2013-12-20

    An inorganic short chain polymer, poly(sodium phosphate), PSP, together with poly(allylamine hydrochloride), PAH, is used to fabricate layer-by-layer (LbL) films. The thickness, roughness, contact angle, and optical transmittance of these films are studied depending on three parameters: the precursor solution concentrations (10-3 and 10-4 M), the number of bilayers deposited (20, 40, 60, 80, and 100 bilayers), and the specific technique used for the LbL fabrication (dipping or spraying). In most cases of this experimental study, the roughness of the nanofilms increases with the number of bilayers. This contradicts the basic observations made in standard LbL assemblies where the roughness decreases for thicker coatings. In fact, a wide range of thickness and roughness was achieved by means of adjusting the three parameters mentioned above. For instance, a roughness of 1.23 or 205 nm root mean square was measured for 100 bilayer coatings. Contact angles close to 0 were observed. Moreover, high optical transmittance is also reported, above 90%, for 80 bilayer films fabricated with the 10-4 M solutions. Therefore, these multilayer structures can be used to obtain transparent superhydrophilic surfaces.

  14. Platinum nanoparticles embedded in layer-by-layer films from SnO{sub 2}/polyallylamine for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Barretto, Caroline B.; Parreira, Renato L.T.; Goncalves, Rogeria R.; Huguenin, Fritz [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, 14040-901 Ribeirao Preto SP (Brazil); de Azevedo, Dayse C. [NovoCell Energy Systems S.A., 13478-722 Americana SP (Brazil)

    2008-10-15

    Self-assembled films from SnO{sub 2} and polyallylamine (PAH) were deposited on gold via ionic attraction by the layer-by-layer (LbL) method. The modified electrodes were immersed into a H{sub 2}PtCl{sub 6} solution, a current of 100 {mu}A was applied, and different electrodeposition times were used. The SnO{sub 2}/PAH layers served as templates to yield metallic platinum with different particle sizes. The scanning tunnel microscopy images show that the particle size increases as a function of electrodeposition time. The potentiodynamic profile of the electrodes changes as a function of the electrodeposition time in 0.5 mol L{sup -1} H{sub 2}SO{sub 4}, at a sweeping rate of 50 mV s{sup -1}. Oxygen-like species are formed at less positive potentials for the Pt-SnO{sub 2}/PAH film in the case of the smallest platinum particles. Electrochemical impedance spectroscopy measurements in acid medium at 0.7 V show that the charge transfer resistance normalized by the exposed platinum area is 750 times greater for platinum electrode (300 k{omega} cm{sup 2}) compared with the Pt-SnO{sub 2}/PAH film with 1 min of electrodeposition (0.4 k{omega} cm{sup 2}). According to the Langmuir-Hinshelwood bifunctional mechanism, the high degree of coverage with oxygen-like species on the platinum nanoparticles is responsible for the electrocatalytic activity of the Pt-SnO{sub 2}/PAH concerning ethanol electrooxidation. With these features, this Pt-SnO{sub 2}/PAH film may be grown on a proton exchange membrane (PEM) in direct ethanol fuel cells (DEFC). (author)

  15. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure.

    Science.gov (United States)

    Chertow, G M; Burke, S K; Lazarus, J M; Stenzel, K H; Wombolt, D; Goldberg, D; Bonventre, J V; Slatopolsky, E

    1997-01-01

    Dietary phosphate restriction and the oral administration of calcium and aluminum salts have been the principal means of controlling hyperphosphatemia in individuals with end-stage renal disease over the past decade. Although relatively well-tolerated, a large fraction of patients treated with calcium develop hypercalcemia, particularly when administered concurrently with calcitriol, despite a lowering of the dialysate calcium concentration. We evaluated the efficacy of cross-linked poly[allylamine hydrochloride] (RenaGel; Geltex Pharmaceuticals, Waltham, MA), a nonabsorbable calcium- and aluminum-free phosphate binder, in a randomized, placebo-controlled, double-blind trial of 36 maintenance hemodialysis patients followed over an 8-week period. RenaGel was found to be as effective as calcium carbonate or acetate as a phosphate binder. The reduction in serum phosphorus was significantly greater after 2 weeks of treatment with RenaGel (6.6 +/- 2.1 mg/dL to 5.4 +/- 1.5 mg/dL) compared with placebo (7.0 +/- 2.1 mg/dL to 7.2 +/- 2.4 mg/dL; P = 0.037). There was no significant change in serum calcium concentration in either treatment group. The total serum cholesterol and low-density lipoprotein cholesterol fraction were significantly reduced in RenaGel-treated patients compared with placebo-treated patients (P = 0.013 and P = 0.003, respectively) without a concomitant reduction in high-density lipoprotein cholesterol (P = 0.93). There was no difference among recipients of RenaGel and placebo in terms of adverse events. RenaGel is a safe and effective alternative to oral calcium for the management of hyperphosphatemia in end-stage renal disease.

  16. Modulating the nanorods protrusion from poly(allylamine hydrochloride)-g-pyrene microcapsules by 1-pyrenesulfonic acid sodium salt.

    Science.gov (United States)

    Guan, Erjia; Wang, Tianxiang; Wang, Zhipeng; Gao, Changyou

    2013-09-01

    It was found previously that the Schiff base bonds in poly(allylamine hydrochloride)-g-pyrene (PAH-Py) microcapsules (MCs) are hydrolyzed at pH 2 within 1 h, leading to disassembly of the MCs and protrusion of pyrene aldehyde (Py) nanorods (NRs) on the capsule surface. Herein, we found a new way to modulate the protrusion of NRs by addition of 1-pyrenesulfonic acid sodium salt (PySO3Na). Along with the increase in PySO3Na to Py molar ratio in the MCs solution, the protrusion of NRs was progressively blocked and even inhibited at a ratio of 2.3, and at this condition, the microcapsules were stable under pH 2 for 24 h. After the composite microcapsules with excess PySO3Na were washed with a pH 10 solution and then incubated in a pH 2 solution, the NRs could be protruded from the MCs again. The fluorescence peak position of the PAH-Py/PySO3Na MCs gradually red-shifted with a decrease in pH value, and a sharp transition occurred at p H3.6, demonstrating the formation of pyrene excimers between the PySO3Na small molecules and the pendant Py groups on the PAH chain. The formed excimers take the role of blocking the self-assembly of cleaved Py molecules instead of inhibiting the hydrolysis of the Schiff base, whereas the MCs were stabilized by the charge interaction between PySO3Na and PAH backbone and the hydrophobic interaction between the pyrene rings. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions.

    Science.gov (United States)

    Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C

    2013-12-23

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO 3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg 2+ on CaCO 3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.

  18. Enhanced accumulation and visible light-assisted degradation of azo dyes in poly(allylamine hydrochloride)-modified mesoporous silica spheres

    International Nuclear Information System (INIS)

    Tao Xia; Liu Bing; Hou Qian; Xu Hui; Chen Jianfeng

    2009-01-01

    A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstrated that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater

  19. Ionically cross-linked poly(allylamine) as a stimulus-responsive underwater adhesive: ionic strength and pH effects.

    Science.gov (United States)

    Lawrence, Patrick G; Lapitsky, Yakov

    2015-02-03

    Gel-like coacervates that adhere to both hydrophilic and hydrophobic substrates under water have recently been prepared by ionically cross-linking poly(allylamine) (PAH) with pyrophosphate (PPi) and tripolyphosphate (TPP). Among the many advantages of these underwater adhesives (which include their simple preparation and low cost) is their ability to dissolve on demand when exposed to high or low pH. To further analyze their stimulus-responsive properties, we have investigated the pH and ionic strength effects on the formation, rheology and adhesion of PAH/PPi and PAH/TPP complexes. The ionic cross-linker concentrations needed to form these adhesives decreased with increasing pH and ionic strength (although the complexes ceased to form when the parent solution pH exceeded ca. 8.5; i.e., the effective pKa of PAH). Once formed, their ionic cross-links were most stable (as inferred from their relaxation times) at near-neutral or slightly alkaline pH values (of roughly 6.5-9) and at low ionic strengths. The decrease in ionic cross-link stability within complexes prepared at other pH values and at elevated (150-300 mM) NaCl concentrations diminished both the strength and longevity of adhesion (although, under most conditions tested, the short-term tensile adhesion strengths remained above 10(5) Pa). Additionally, the sensitivity of PAH/PPi and PAH/TPP complexes to ionic strength was demonstrated as a potential route to injectable adhesive design (where spontaneous adhesive formation was triggered via injection of low-viscosity, colloidal PAH/TPP dispersions into phosphate buffered saline). Thus, while the sensitivity of ionically cross-linked PAH networks to pH and ionic strength can weaken their adhesion, it can also impart them with additional functionality, such as minimally invasive, injectable delivery, and ability to form and dissolve their bonds on demand.

  20. Comparative Study of Molecular Basket Sorbents Consisting of Polyallylamine and Polyethylenimine Functionalized SBA-15 for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Wang, Dongxiang; Wang, Xiaoxing; Song, Chunshan

    2017-11-17

    Polyallylamine (PAA)-based molecular basket sorbents (MBS) have been studied for CO 2 capture in comparison with polyethylenimine (PEI)-based MBS. The characterizations including N 2 physisorption, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and thermogravimetric analysis (TGA) showed that PAA (M n =15 000) is more rigid and has more steric hindrance inside SBA-15 pores than PEI owing mainly to its different polymer structure. The effects of temperature and PAA loading on the CO 2 sorption capacity of PAA-based MBS have been examined by TGA by using 100 % CO 2 gas stream and compared with PEI/SBA-15. It was found that the capacity of the PAA/SBA-15 sorbent increased with increasing temperature. The optimum capacity of 88 mg CO2  g sorb -1 was obtained at 140 °C for PAA(50)/SBA-15 whereas the optimum sorption temperature was 75 and 90 °C for PEI-I(50)/SBA-15 (PEI-I, M n =423) and PEI-II(50)/SBA-15 (PEI-II, M n =25 000), respectively. The capacity initially increased with the increase of PAA loading and then dropped at high amine contents, owing to the increased diffusion barrier. The highest CO 2 capacity of 109 mg CO2  g sorb -1 was obtained at a PAA loading of 65 wt %, whereas the PAA(50)/SBA-15 sorbent gave the best amine efficiency of 0.23 mol CO2  mol N -1 . The effect of moisture was examined in a fixed-bed flow system with simulated flue gas containing 15 % CO 2 and 4.5 % O 2 in N 2 . It was found that the presence of moisture significantly enhanced CO 2 sorption over PAA(50)/SBA-15 and greatly improved its cyclic stability and regenerability. Compared with PEI/SBA-15, PAA/SBA-15 possesses a better thermal stability and higher resistance to oxidative degradation. However, the CO 2 sorption rate over the PAA(50)/SBA-15 sorbent was much slower. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determination of degree of ionization of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in layer-by-layer films using vacuum photoabsorption spectroscopy.

    Science.gov (United States)

    Ferreira, Q; Gomes, P J; Ribeiro, P A; Jones, N C; Hoffmann, S V; Mason, N J; Oliveira, O N; Raposo, M

    2013-01-08

    Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that high-resolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the pK(a) using the Henderson-Hasselbach equation. The pK(a) for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.

  2. Protein detection on biotin-derivatized polyallylamine by optical microring resonators

    NARCIS (Netherlands)

    Ullien, D.; Harmsma, P.J.; Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Bosma, D.; Sudhölter, E.J.R.; Smet, L.C.P.M. de; Jager, W.F.

    2014-01-01

    Silicon optical microring resonators (MRRs) are sensitive devices that can be used for biosensing. We present a novel biosensing platform based on the application of polyelectrolyte (PE) layers on such MRRs. The top PE layer was covalently labeled with biotin to ensure binding sites for antibodies

  3. Dynamics of adsorption of polyallylamine hydrochloride/sodium dodecyl sulphate at water/air and water/hexane interfaces

    Czech Academy of Sciences Publication Activity Database

    Sharipova, A.; Aidarova, S.; Fainerman, V. B.; Stocco, A.; Černoch, Peter; Miller, R.

    2011-01-01

    Roč. 391, 1-3 (2011), s. 112-118 ISSN 0927-7757. [International Symposium on Surfactants in Solution /18./ - SIS 2010. Melbourne, 14.11.2010-19.11.2010] Institutional research plan: CEZ:AV0Z40500505 Keywords : mixed adsorption layers * polymer/surfactant mixtures * water /oil interface Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.236, year: 2011

  4. Consecutively spin-assembled layered nanoarchitectures of poly(sodium 4-styrene sulfonate) and poly(allylamine hydrochloride)

    International Nuclear Information System (INIS)

    An, Minshi; Hong, Jong-Dal

    2006-01-01

    The recently established spin-coating electrostatic self-assembly (SCESA) technique has been shown to facilitate not only the rapid fabrication of polyelectrolyte multilayer assemblies, but also allow each layer to be easily controlled on a monomolecular scale by minimizing the film thickness across a substrate surface. In this paper, the influence of polyelectrolyte concentration on the amount and thickness of spin-deposited polymer films has been examined for a multilayer system of poly(allyamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS), when the washing steps employed for removing weakly bound polyelectrolytes on a resultant film on a substrate are excluded from the standard fabrication procedure of the SCESA method. The thickness of the spin-deposited PAH/PSS bilayer increased linearly for the PSS concentrations in the range from 1 to 10 mM with PAH constant at 1 mM, which demonstrates the uniform deposition of each layer material onto the thin film. The thickness of PAH/PSS bilayers increased from 1.43 ± 0.06 to 3.37 ± 0.08 nm as the PSS concentration increased from 1 to 10 mM, while the PAH concentration was kept constant at 1 mM. The multilayer films were found to be stable in a good solvent (H 2 O) for at least 30 h, without any noticeable loss of the adsorbed layer component of the polyelectrolyte. This improvement to the SCESA method (exclusion of washing steps) provides a convenient way to create multilayer heterostructures with the thickness of each layer being easily adjusted

  5. Effect of surfactant hydrophobicity on the interfacial properties of polyallylamine hydrochloride/sodium alkylsulphate at water/hexane interface

    Czech Academy of Sciences Publication Activity Database

    Sharipova, A.; Aidarova, S.; Černoch, Peter; Miller, R.

    2013-01-01

    Roč. 438, 5 December (2013), s. 141-147 ISSN 0927-7757. [EUFOAM Conference /9./. Lisbon, 08.07.2012-11.07.2012] Institutional support: RVO:61389013 Keywords : mixed adsorption layers * polymer-surfactant mixtures * water/oil interface Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.354, year: 2013

  6. Determination of Degree of Ionization of Poly(allylamine hydrochloride) (PAH) and Poly[1-[4-(3-carboxy‑4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in Layer-by-Layer Films using Vacuum Photoabsorption Spectroscopy

    DEFF Research Database (Denmark)

    Ferreira, Q; Gomes, Paulo J.; Ribeiro, Paulo A.

    2013-01-01

    Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that high-resolution ultraviolet spectroscopy (VUV) can b...

  7. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    Science.gov (United States)

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  8. Use of lignocellulose materials as sorption media for phosphorus removal

    Science.gov (United States)

    K.G. Karthikeyan; Mandla A. Tshabalala; Dongmei Wang

    2002-01-01

    The suitability of modified bark or wood fiber derived from southern yellow pine to function as P sorbents was investigated. Sorbent preparation process included grinding, size fractionation] extraction for surface activation] and treatment with polyallylamine hydrochloride (PAA HCI) or 3-chloro-2-hydroxypropyltrimethlyammonium chloride. SEM images revealed surface...

  9. The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers

    NARCIS (Netherlands)

    Cao, Zheng; Gordiichuk, Pavlo; Loos, Katja; Sudhölter, Ernst Jan Robert; Smet, Louis

    2015-01-01

    Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte

  10. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    OpenAIRE

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross...

  11. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  12. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  13. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    Science.gov (United States)

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  14. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    OpenAIRE

    Elena Dellacasa; Li Zhao; Gesheng Yang; Laura Pastorino; Gleb B. Sukhorukov

    2016-01-01

    The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). N...

  15. Synthesis of Copper Nanoparticles Coated with Nitrogen Ligands

    Directory of Open Access Journals (Sweden)

    Rubén Sierra-Ávila

    2014-01-01

    Full Text Available The synthesis of copper nanoparticles was studied by wet chemical methods using copper sulfate pentahydrate (CuSO4·5H2O and nitrogen ligands allylamine (AAm and polyallylamine (PAAm as stabilizers. The results suggest that the use of these ligands leads to the exclusive formation of metallic copper nanoparticles (Cu-NPs. The use of partially crosslinked polyallylamine (PAAmc leads to nanoparticles (NPs with low yields and high coating content, while linear PAAm leads to NPs with high yields and low coating content. The chemical composition of the particles was determined by XRD and average particle diameters were determined by the Debye-Scherrer equation. TGA analysis provided evidence of the content and thermal stability of the coating on the nanoparticles and PAAm. The morphology, particle size distribution, and presence of PAAm coating were observed through TEM. The use of AAm in the synthesis of NPs could be a good alternative to reduce costs. By using TGA, TEM, and DSC techniques, it was determined that synthesized NPs with AAm presented a coating with similar characteristics to NPs with PAAm, suggesting that AAm underwent polymerization during the synthesis.

  16. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ashizawa, Kazuho; Murata, Syota; Terada, Takashi; Ito, Daisuke; Bunya, Masaru; Watanabe, Koji; Teruuchi, Yoko; Tsuchida, Sachio; Satoh, Mamoru; Nishimura, Motoi; Matsushita, Kazuyuki; Sugama, Yuji; Nomura, Fumio

    2017-08-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be used to identify pathogens in blood culture samples. However, sample pretreatment is needed for direct identification of microbes in blood culture bottles. Conventional protocols are complex and time-consuming. Therefore, in this study, we developed a method for collecting bacteria using polyallylamine-polystyrene copolymer for application in wastewater treatment technology. Using representative bacterial species Escherichia coli and Staphylococcus capitis, we found that polyallylamine-polystyrene can form visible aggregates with bacteria, which can be identified using MALDI-TOF MS. The processing time of our protocol was as short as 15min. Hemoglobin interference in MALDI spectra analysis was significantly decreased in our method compared with the conventional method. In a preliminary experiment, we evaluated the use of our protocol to identify clinical isolates from blood culture bottles. MALDI-TOF MS-based identification of 17 strains from five bacterial species (E. coli, Klebsiella pneumoniae, Enterococcus faecalis, S. aureus, and S. capitis) collected by our protocol was satisfactory. Prospective large-scale studies are needed to further evaluate the clinical application of this novel and simple method of collecting bacteria in blood culture bottles. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  18. Investigation of a thiolated polymer in gene delivery

    Science.gov (United States)

    Bacalocostantis, Irene

    Thiol-containing bioreducible polymers show significant potential as delivery vectors in gene therapy, a rapidly growing field which seeks to treat genetic-based disorders by delivering functional synthetic genes to diseased cells. Studies have shown that thiolated polymers exhibit improved biodegradability and prolonged in vivo circulation times over non-thiolated polymers. However, the extent to which thiol concentrations impact the carrier's delivery potential has not been well explored. The aim of this dissertation is to investigate how relative concentrations of free thiols and disulfide crosslinks impact a polymeric carriers delivery performance with respect to DNA packaging, complex stability, cargo protection, gene release, internalization efficiency and cytotoxicity. To accomplish this goal, several fluorescent polymers containing varying concentrations of thiol groups were synthesized by conjugating thiol-pendant chains onto the primary amines of cationic poly(allylamine). In vitro delivery assays and characterization techniques were employed to assess the effect of thiols in gene delivery.

  19. A molecular theory of chemically modified electrodes with self-assembled redox polyelectrolye thin films: Reversible cyclic voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Tagliazucchi, Mario; Calvo, Ernesto J. [INQUIMAE, DQIAyQF Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Szleifer, Igal [Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2008-10-01

    A molecular theory of chemically modified electrodes is applied to study redox polyelectroyte modified electrodes. The molecular approach explicitly includes the size, shape, charge distribution, and conformations of all of the molecular species in the system as well as the chemical equilibria (redox and acid-base) and intermolecular interactions. An osmium pyridine-bipyridine complex covalently bound to poly(allyl-amine) backbone (PAH-Os) adsorbed onto mercapto-propane sulfonate (MPS) thiolated gold electrode is described. The potential and electrolyte composition dependent redox and nonredox capacitance can be calculated with the molecular theory in very good agreement with voltammetric experiments under reversible conditions without the use of freely adjustable parameter. Unlike existing phenomenological models the theory links the electrochemical behavior with the structure of the polymer layer. The theory predicts a highly inhomogeneous distribution of acid-base and redox states that strongly couples with the spatial arrangement of the molecular species in the nanometric redox film. (author)

  20. Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Motoko Harada, Hidenori Noguchi, Nikolas Zanetakis, Satoru Takakusagi, Wenbo Song and Kohei Uosaki

    2011-01-01

    Full Text Available Multilayers of gold nanoclusters (GNCs coated with a thin Pd layer were constructed using GNCs modified with self-assembled monolayers (SAMs of mercaptoundecanoic acid and a polyallylamine hydrochloride (PAH multilayer assembly, which has been reported to act as a three-dimensional electrode. SAMs were removed from GNCs by electrochemical anodic decomposition and then a small amount of Pd was electrochemically deposited on the GNCs. The kinetics of the oxygen reduction reaction (ORR on the Pd modified GNC/PAH multilayer assembly was studied using a rotating disk electrode, and a significant increase in the ORR rate was observed after Pd deposition. Electrocatalytic activities in alkaline and acidic solutions were compared both for the GNC multilayer electrode and Pd modified GNC electrode.

  1. Fibrillar films obtained from sodium soap fibers and polyelectrolyte multilayers.

    Science.gov (United States)

    Zawko, Scott A; Schmidt, Christine E

    2011-08-01

    An objective of tissue engineering is to create synthetic polymer scaffolds with a fibrillar microstructure similar to the extracellular matrix. Here, we present a novel method for creating polymer fibers using the layer-by-layer method and sacrificial templates composed of sodium soap fibers. Soap fibers were prepared from neutralized fatty acids using a sodium chloride crystal dissolution method. Polyelectrolyte multilayers (PEMs) of polystyrene sulfonate and polyallylamine hydrochloride were deposited onto the soap fibers, crosslinked with glutaraldehyde, and then the soap fibers were leached with warm water and ethanol. The morphology of the resulting PEM structures was a dense network of fibers surrounded by a nonfibrillar matrix. Microscopy revealed that the PEM fibers were solid structures, presumably composed of polyelectrolytes complexed with residual fatty acids. These fibrillar PEM films were found to support the attachment of human dermal fibroblasts. Copyright © 2011 Wiley Periodicals, Inc.

  2. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Sarah L. Perry

    2014-06-01

    Full Text Available Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt (pAA and poly(allylamine hydrochloride (pAH, as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  3. Electrostatically self-assembled films containing II-VI semiconductor nanoparticles: Optical and electrical properties

    International Nuclear Information System (INIS)

    Suryajaya; Nabok, A.V.; Tsargorodskaya, A.; Hassan, A.K.; Davis, F.

    2008-01-01

    CdS and ZnS semiconducting colloid nanoparticles were deposited as thin films using the technique of electrostatic self-assembly. The process of alternative deposition of Poly-allylamine Hydrochloride (PAH) and CdS (or ZnS) layers were monitored with a novel optical method of total internal reflection ellipsometry (TIRE). The fitting of TIRE spectra allowed the evaluation of the parameter (thickness, refractive index and extinction coefficients) of all consecutively deposited layers. I-V characteristics of the films obtained were studied in sandwich structures on Indium Tin Oxide (ITO) conductive electrodes using the mercury probe technique. The presence of CdS (or ZnS) nanoparticles in the polyelectrolyte films leads to a switching behaviour, which may be attributed to the resonance electron tunneling via semiconducting nanoparticles

  4. Dialing in the Ratio of Covalent and Coordination Cross-links in Self-healing Hydrogels

    DEFF Research Database (Denmark)

    Andersen, Amanda; Krogsgaard, Marie; Birkedal, Henrik

    ; it is of great interest to control the degree of which these are present; i.e. controlling the degree of catechol oxidation. Here, we report hydrogels in which the catechols participating in reversible (oxidation resistant catechol-analogue6) and irreversible oxidation cross-links are separated, enabling one...... to predefine the ratio of the two by altering the composition. The oxidation-resistant catechol-analogue was grafted onto polyallylamine,4 while the oxidation cross-links are introduced by addition of tannic acid that has the same useful properties as catechols.5,7,8 This affords hydrogels that retain self......-healing abilities even at high pH but that can be stiffened at will by dialing in the required degree of covalent crosslinking. This dial-in method thus harnesses two aspects of catechol-type chemistries to yield double network hydrogels in a straightforward and highly controllable manner....

  5. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  6. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    Science.gov (United States)

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  7. Cell Uptake and Validation of Novel PECs for Biomedical Applications.

    Science.gov (United States)

    Palamà, Ilaria E; Musarò, Mariarosaria; Coluccia, Addolorata M L; D'Amone, Stefania; Gigli, Giuseppe

    2011-01-01

    This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  8. Cell Uptake and Validation of Novel PECs for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Ilaria E. Palamà

    2011-01-01

    Full Text Available This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs obtained via electrostatic interactions between dextran sulphate (DXS and poly(allylamine hydrochloride (PAH. Scanning electron microscopy (SEM and atomic force microscopy (AFM showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM. Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.

  9. The Effect of Salt on the Complex Coacervation of Vinyl Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Sarah; Li, Yue; Priftis, Dimitrios; Leon, Lorraine; Tirrell, Matthew

    2014-06-01

    Complex coacervation is an electrostatically-driven phase separation phenomenon that is utilized in a wide range of everyday applications and is of great interest for the creation of self-assembled materials. Here, we utilized turbidity to characterize the effect of salt type on coacervate formation using two vinyl polyelectrolytes, poly(acrylic acid sodium salt) (pAA) and poly(allylamine hydrochloride) (pAH), as simple models for industrial and biological coacervates. We confirmed the dominant role of salt valence on the extent of coacervate formation, while demonstrating the presence of significant secondary effects, which can be described by Hofmeister-like behavior. These results revealed the importance of ion-specific interactions, which are crucial for the informed design of coacervate-based materials for use in complex ionic environments, and can enable more detailed theoretical investigations on the role of subtle electrostatic and thermodynamic effects in complex coacervation.

  10. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  11. A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles.

    Science.gov (United States)

    Ai Tran, Hoang Ngoc; Sousa, Fernanda; Moda, Fabio; Mandal, Subhra; Chanana, Munish; Vimercati, Chiara; Morbin, Michela; Krol, Silke; Tagliavini, Fabrizio; Legname, Giuseppe

    2010-12-01

    Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls.

  12. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    Science.gov (United States)

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  13. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    Energy Technology Data Exchange (ETDEWEB)

    Szamocki, R.; Flexer, V. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Levin, L.; Forchiasin, F. [Micologia Experimental, Departamento de Biodiversidad y Biologia Experimental. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Calvo, E.J. [INQUIMAE-DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: calvo@qi.fcen.uba.ar

    2009-02-28

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated.

  14. Oxygen cathode based on a layer-by-layer self-assembled laccase and osmium redox mediator

    International Nuclear Information System (INIS)

    Szamocki, R.; Flexer, V.; Levin, L.; Forchiasin, F.; Calvo, E.J.

    2009-01-01

    Trametes trogii laccase has been studied as biocatalyst for the oxygen electro-reduction in three different systems: (i) soluble laccase was studied in solution; (ii) an enzyme monolayer was tethered to a gold surface by dithiobis N-succinimidyl propionate (DTSP), with a soluble osmium pyridine-bipyridine redox mediator in both cases. The third case (iii) consisted in the sequential immobilization of laccase and the osmium complex derivatized poly(allylamine) self-assembled layer-by-layer (LbL) on mercaptopropane sulfonate modified gold to produce an all integrated and wired enzymatic oxygen cathode. The polycation was the same osmium complex covalently bound to poly-(ally-lamine) backbone (PAH-Os), the polyanion was the enzyme adsorbed from a solution of a suitable pH so that the protein carries a net negative charge. The adsorption of laccase was studied by monitoring the mass uptake with a quartz crystal microbalance and the oxygen reduction electrocatalysis was studied by linear scan voltammetry. While for the three cases, oxygen electrocatalysis mediated by the osmium complex was observed, for tethered laccase direct electron transfer in the absence of redox mediator was also apparent but no electrocatalysis for the oxygen reduction was recorded in the absence of mediator in solution. For the fully integrated LbL self-assembled laccase and redox mediator (case iii) a catalytic reduction of oxygen could be recorded at different oxygen partial pressures and different electrolyte pH. The tolerance of the reaction to methanol and chloride was also investigated

  15. Anchoring of self-assembled plasmid DNA/ anti-DNA antibody/cationic lipid micelles on bisphosphonate-modified stent for cardiovascular gene delivery

    Directory of Open Access Journals (Sweden)

    Ma G

    2013-03-01

    Full Text Available Guilei Ma,1,# Yong Wang,1,# Ilia Fishbein,2 Mei Yu,1 Linhua Zhang,1 Ivan S Alferiev,2 Jing Yang,1 Cunxian Song,1 Robert J Levy2 1Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China; 2Children's Hospital of Philadelphia, Abramson Research Building, Philadelphia, PA, USA #These authors contributed equally to this work Purpose: To investigate the anchoring of plasmid DNA/anti-DNA antibody/cationic lipid tri-complex (DAC micelles onto bisphosphonate-modified 316 L coronary stents for cardiovascular site-specific gene delivery. Methods: Stents were first modified with polyallylamine bisphosphonate (PAA-BP, thereby enabling the retention of a PAA-BP molecular monolayer that permits the anchoring (via vector-binding molecules of DAC micelles. DAC micelles were then chemically linked onto the PAA-BP-modified stents by using N-succinimidyl-3-(2-pyridyldithiol-propionate (SPDP as a crosslinker. Rhodamine-labeled DNA was used to assess the anchoring of DAC micelles, and radioactive-labeled antibody was used to evaluate binding capacity and stability. DAC micelles (encoding green fluorescent protein were tethered onto the PAA-BP-modified stents, which were assessed in cell culture. The presence of a PAA-BP molecular monolayer on the steel surface was confirmed by X-ray photoelectron spectroscopy and atomic force microscope analysis. Results: The anchoring of DAC micelles was generally uniform and devoid of large-scale patches of defects. Isotopic quantification confirmed that the amount of antibody chemically linked on the stents was 17-fold higher than that of the physical adsorbed control stents and its retention time was also significantly longer. In cell culture, numerous green fluorescent protein-positive cells were found on the PAA-BP modified stents, which demonstrated high localization and efficiency of gene delivery. Conclusion: The DAC micelle

  16. Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model.

    Directory of Open Access Journals (Sweden)

    Anna Alhaddad

    Full Text Available Small interfering RNAs (siRNAs are powerful tools commonly used for the specific inhibition of gene expression. However, vectorization is required to facilitate cell penetration and to prevent siRNA degradation by nucleases. We have shown that diamond nanocrystals coated with cationic polymer can be used to carry siRNAs into Ewing sarcoma cells, in which they remain traceable over long periods, due to their intrinsic stable fluorescence. We tested two cationic polymers, polyallylamine and polyethylenimine. The release of siRNA, accompanied by Ewing sarcoma EWS-Fli1 oncogene silencing, was observed only with polyethylenimine. We investigated cell penetration and found that the underlying mechanisms accounted for these differences in behavior. Using drugs selectively inhibiting particular pathways and a combination of fluorescence and electronic microscopy, we showed that siRNA gene silencing occurred only if the siRNA:cationic nanodiamond complex followed the macropinocytosis route. These results have potential implications for the design of efficient drug-delivery vectors.

  17. Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes.

    Science.gov (United States)

    Calvo, E J; Danilowicz, C; Lagier, C M; Manrique, J; Otero, M

    2004-05-15

    Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.

  18. Highly hydrated poly(allylamine)/silica magnetic resin

    International Nuclear Information System (INIS)

    Johnson, Andrew K.; Kaczor, Jozef; Han, Hongmei; Kaur, Maninder; Tian, Guoxin; Rao, Linfeng; Qiang, You; Paszczynski, Andrzej J.

    2011-01-01

    The creation of multifunctional nanomaterials by combining organic and inorganic components is a growing trend in nanoscience. The unique size-dependent properties of magnetic nanoparticles (MNPs) make them amenable to numerous applications such as carriers of expensive biological catalysts, in magnetically assisted chemical separation of heavy metals and radionuclides from contaminated water sources. The separation of minor actinides from high-level radionuclide waste requires a sorbent stable in acidic pH, with ease of surface functionalization, and a high capacity for binding the molecules of interest. For the described experiments, the MNPs with 50 nm average size were used (size distribution from 20 to 100 nm and an iron content of 80–90 w/w%). The MNPs that have been double coated with an initial silica coating for protection against iron solubilization and oxidation in nitric acid solution (pH 1) and a second silica/polymer composite coating incorporating partially imbedded poly(allylamine) (PA). The final product is magnetic, highly swelling, containing >95% water, with >0.5 mmol amines g −1 available for functionalization. The amine groups of the magnetic resin were functionalized with the chelating molecules diethylenetriaminepentaacetic acid (DTPA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) for separation of minor actinides from used nuclear fuel.

  19. Modification of an enzyme electrode by electrodeposition of hydroquinone for use as the anode of a glucose fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Takashi; Yamazaki, Hiraku; Kondo, Mizuki [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan); Shimomura, Masato, E-mail: smasato@vos.nagaokaut.ac.jp [Department of Bioengineering, Faculty of Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka-machi, Nagaoka 940-2188 (Japan)

    2012-06-15

    An electrode having immobilized glucose oxidase (GOx) was modified with polyhydroquinone (PHQ), which was employed as an electron-transferring mediator, by a simple electrochemical method and used as the anode of a glucose fuel cell. The GOx-immobilized electrode was fabricated by attaching polyallylamine (PAAm) and then GOx covalently onto a gold electrode covered with a monolayer formed with 3-mercaptopropionic acid. Subsequently, the GOx-immobilized electrode (GOx/PAAm electrode) was modified with PHQ by electrodeposition of hydroquinone. The cyclic voltammogram of the modified electrode (PHQ/GOx/PAAm electrode) in a phosphate buffer solution (0.10 M, pH 7.0) showed redox peaks due to the electrodeposited PHQ, whereas no redox peaks were found for the GOx/PAAm electrode in the buffer solution containing p-benzoquinone (BQ). The onset potential of glucose oxidation with the PHQ/GOx/PAAm electrode became ca. 0.2 V more negative than that observed with the GOx/PAAm electrode in the presence of BQ. The glucose fuel cell equipped with the PHQ/GOx/PAAm electrode as an anode gave a 3 times larger power output than the cell with the GOx/PAAm electrode using dissolved quinone as the mediator.

  20. Towards a super-strainable paper using the Layer-by-Layer technique.

    Science.gov (United States)

    Marais, Andrew; Utsel, Simon; Gustafsson, Emil; Wågberg, Lars

    2014-01-16

    The Layer-by-Layer technique was used to build a polyelectrolyte multilayer on the surface of pulp fibres. The treated fibres were then used to prepare paper sheets and the mechanical properties of these sheets were evaluated as a function of the number of bi-layers on the fibres. Two different systems were studied: polyethyleneimine (PEI)/nanofibrillated cellulose (NFC), and polyallylamine hydrochloride (PAH)/hyaluronic acid (HA). Model experiments using dual polarization interferometry and SiO₂ surfaces showed that the two systems gave different thicknesses for a given number of layers. The outer layer was found to be a key parameter in the PEI/NFC system, whereas it was less important in the PAH/HA system. The mechanical properties of the sheets made from the PAH/HA treated fibres were significantly greater than those made from untreated fibres, reaching 70 Nm/g in tensile index and 6.5% in strain at break. Such a modification could be very useful for 3D forming of paper, opening new perspectives in for example the packaging industry, with a renewable and biodegradable product as a potential substitute for some of the traditional oil-based plastics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  2. Fabrication of molecular hybrid films of gold nanoparticle and polythiophene by covalent assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthy, Jayaraman, E-mail: jsu2@np.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore); Environmental & Water Technology Centre of Innovation, Ngee Ann Polytechnic, 599489 (Singapore); Dharmarajan, Rajarathnam [CERAR, University of South Australia, Mawson Lakes, SA 5095 (Australia); Srinivasan, M.P., E-mail: chesmp@nus.edu.sg [Department of Chemical & Biomolecular Engineering, National University of Singapore, Block E5, 4 Engineering Drive 4, 117576 (Singapore)

    2015-08-31

    This work demonstrates the fabrication of molecular hybrid films comprising gold nanoparticles (AuNPs) incorporated in covalently assembled, substituted polythiophene (poly(3-(2-bromoethoxy)ethoxymethylthiophene-2,5-diyl (PBrEEMT))) films by different surface chemistry routes. AuNPs are incorporated in the immobilized polythiophene matrix due to its affinity for amine and sulfur. The amount of AuNPs present depends on the nature of the incorporation, the extent of film coverage and interaction of thiophene and amine groups. PBrEEMT films functionalized with amine rich polyallylamine immobilize greater numbers of AuNPs due to more extensive gold–amine interactions. Covalent binding between AuNP and PBrEEMT films was accomplished by using pre-functionalised AuNPs (4-aminothiophenol functionalized AuNPs). Atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to study the morphology and chemical constituents of assembled films. These approaches will pave the way for developing facile methods for nanoparticle incorporation and will also facilitate direct interaction of nanoparticles with the conducting polymer matrix and enhance the electrical properties of the films. - Highlights: • Covalent molecular assembly enabled the fabrication of molecular hybrid films. • Monomeric and polymeric species were employed as intermediate linkers. • Adopted approaches facilitated the direct interaction of gold nanoparticle in films. • The amount of nanoparticle incorporation depended on the extent of film coverage.

  3. Study and Optimization of Self-Assembled Polymeric Multilayer Structures with Neutral Red for pH Sensing Applications

    Directory of Open Access Journals (Sweden)

    Javier Goicoechea

    2008-01-01

    Full Text Available The characterization of nanostructured thin films is critical in the design and fabrication of optical sensors. Particularly, this work is a detailed study of the properties of layer-by-layer electrostatic self-assembled multilayer (LbL structures fabricated using poly(allylamine hydrochloride (PAH and Neutral Red (NR as cations, and poly(acrylic acid (PAA as polyanion. These LbL films, due to the colorimetric properties of the NR, are suitable for sensor applications such as pH sensing in the physiological range. In the (PAH+NR/PAA LbL structure, it has been observed a very important influence of the pH of the solutions in the properties of the resultant films. Different techniques such as spectroscopy and atomic force microscopy (AFM are combined to characterize the films, and the results are analyzed showing coherence with previous works. The LbL structure is finally optimized and dramatically improved nanostructured films were fabricated, showing good sensing properties, short response times, and good stability.

  4. Preparation and layer-by-layer solution deposition of Cu(In,GaO2 nanoparticles with conversion to Cu(In,GaS2 films.

    Directory of Open Access Journals (Sweden)

    Walter J Dressick

    Full Text Available We present a method of Cu(In,GaS2 (CIGS thin film formation via conversion of layer-by-layer (LbL assembled Cu-In-Ga oxide (CIGO nanoparticles and polyelectrolytes. CIGO nanoparticles were created via a novel flame-spray pyrolysis method using metal nitrate precursors, subsequently coated with polyallylamine (PAH, and dispersed in aqueous solution. Multilayer films were assembled by alternately dipping quartz, Si, and/or Mo substrates into a solution of either polydopamine (PDA or polystyrenesulfonate (PSS and then in the CIGO-PAH dispersion to fabricate films as thick as 1-2 microns. PSS/CIGO-PAH films were found to be inadequate due to weak adhesion to the Si and Mo substrates, excessive particle diffusion during sulfurization, and mechanical softness ill-suited to further processing. PDA/CIGO-PAH films, in contrast, were more mechanically robust and more tolerant of high temperature processing. After LbL deposition, films were oxidized to remove polymer and sulfurized at high temperature under flowing hydrogen sulfide to convert CIGO to CIGS. Complete film conversion from the oxide to the sulfide is confirmed by X-ray diffraction characterization.

  5. Layer-by-Layer Self-Assembled Ferrite Multilayer Nanofilms for Microwave Absorption

    Directory of Open Access Journals (Sweden)

    Jiwoong Heo

    2015-01-01

    Full Text Available We demonstrate a simple method for fabricating multilayer thin films containing ferrite (Co0.5Zn0.5Fe2O4 nanoparticles, using layer-by-layer (LbL self-assembly. These films have microwave absorbing properties for possible radar absorbing and stealth applications. To demonstrate incorporation of inorganic ferrite nanoparticles into an electrostatic-interaction-based LbL self-assembly, we fabricated two types of films: (1 a blended three-component LbL film consisting of a sequential poly(acrylic acid/oleic acid-ferrite blend layer and a poly(allylamine hydrochloride layer and (2 a tetralayer LbL film consisting of sequential poly(diallyldimethylammonium chloride, poly(sodium-4-sulfonate, bPEI-ferrite, and poly(sodium-4-sulfonate layers. We compared surface morphologies, thicknesses, and packing density of the two types of ferrite multilayer film. Ferrite nanoparticles (Co0.5Zn0.5Fe2O4 were prepared via a coprecipitation method from an aqueous precursor solution. The structure and composition of the ferrite nanoparticles were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. X-ray diffraction patterns of ferrite nanoparticles indicated a cubic spinel structure, and energy dispersive X-ray spectroscopy revealed their composition. Thickness growth and surface morphology were measured using a profilometer, atomic force microscope, and scanning electron microscope.

  6. Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules

    Directory of Open Access Journals (Sweden)

    Jing Kang

    2010-01-01

    Full Text Available H-aggregates of the cyanine dye Cy5 are formed during covalent linkage to the cationic macromolecule Poly(allylamine (PAH. The nonfluorescent H-aggregates strongly restrict the usage of the dye for analytical purposes and prevent a quantitative determination of the labeled macromolecules. The behavior of the H-aggregates has been studied by investigation of the absorption and fluorescence spectra of the dye polymer in dependence on solvent, label degree and additional sulfonate groups. H-aggregate formation is caused by an inhomogeneous distribution of the Cy5 molecules on the polymer chain. The H-aggregates can be destroyed by conformational changes of the PAH induced by interactions with polyanions or in organic solvents. It has been found that the polymer labeling process in high content of organic solvents can prevent the formation of H-aggregates. The results offer a better understanding and improvement of the use of the Cy5 dye for labeling purposes in fluorescence detection of macromolecules.

  7. An Electrochemical Quartz Crystal Microbalance Multisensor System Based on Phthalocyanine Nanostructured Films: Discrimination of Musts

    Directory of Open Access Journals (Sweden)

    Celia Garcia-Hernandez

    2015-11-01

    Full Text Available An array of electrochemical quartz crystal electrodes (EQCM modified with nanostructured films based on phthalocyanines was developed and used to discriminate musts prepared from different varieties of grapes. Nanostructured films of iron, nickel and copper phthalocyanines were deposited on Pt/quartz crystals through the Layer by Layer technique by alternating layers of the corresponding phthalocyanine and poly-allylamine hydrochloride. Simultaneous electrochemical and mass measurements were used to study the mass changes accompanying the oxidation of electroactive species present in must samples obtained from six Spanish varieties of grapes (Juan García, Prieto Picudo, Mencía Regadío, Cabernet Sauvignon, Garnacha and Tempranillo. The mass and voltammetric outputs were processed using three-way models. Parallel Factor Analysis (PARAFAC was successfully used to discriminate the must samples according to their variety. Multi-way partial least squares (N-PLS evidenced the correlations existing between the voltammetric data and the polyphenolic content measured by chemical methods. Similarly, N-PLS showed a correlation between mass outputs and parameters related to the sugar content. These results demonstrated that electronic tongues based on arrays of EQCM sensors can offer advantages over arrays of mass or voltammetric sensors used separately.

  8. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    Energy Technology Data Exchange (ETDEWEB)

    Nunes Pauli, Gisele Elias [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); Araruna, Felipe B. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Eiras, Carla [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil); Leite, José Roberto S.A. [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus Ministro Reis Velloso, CMRV, Universidade Federal do Piauí, UFPI, Parnaíba (Brazil); Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima [Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba (Brazil); Chavero, Lucas Natálio; Sartorelli, Maria Luisa [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900 (Brazil); and others

    2015-02-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H{sub 2}O{sub 2}) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H{sub 2}O{sub 2}. This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H{sub 2}O{sub 2}. - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum.

  9. Biological responses of T cells encapsulated with polyelectrolyte-coated gold nanorods and their cellular activities in a co-culture system

    Science.gov (United States)

    Wattanakull, Porntida; Killingsworth, Murray C.; Pissuwan, Dakrong

    2017-11-01

    Currently, human T cell therapy is of considerable scientific interest. In addition, cell encapsulation has become an attractive approach in biomedical applications. Here, we propose an innovative technique of single-cell encapsulation of human T cells using polyelectrolytes combined with gold nanorods. We have demonstrated encapsulation of human Jurkat T cells with poly(sodium 4-styrenesulfonate) (PSS)-coated gold nanorods (PSS-GNRs). Other forms of encapsulation, using polyelectrolytes without GNRs, were also performed. After Jurkat T cells were encapsulated with poly(allylamine hydrochloride) (PAH) and/or PSS-GNRs or PSS, most cells survived and could proliferate. Jurkat T cells encapsulated with a double layer of PSS-GNR/PAH (PSS-GNR/PAH@Jurkat) showed the highest rate of cell proliferation when compared to 24-h encapsulated cells. With the exception of IL-6, no significant induction of inflammatory cytokines (IL-2, IL-1β, and TNF-α) was observed. Interestingly, when encapsulated cells were co-cultured with THP-1 macrophages, co-cultures exhibited TNF-α production enhancement. However, the co-culture of THP-1 macrophage and PSS-GNR/PAH@Jurkat or PSS/PAH@Jurkat did not enhance TNF-α production. No significant inductions of IL-2, IL-1β, and IL-6 were detected. These data provide promising results, demonstrating the potential use of encapsulated PSS-GNR/PAH@Jurkat to provide a more inert T cell population for immunotherapy application and other biomedical applications.

  10. Electrospinning polyelectrolyte complexes: pH-responsive fibers.

    Science.gov (United States)

    Boas, Mor; Gradys, Arkadiusz; Vasilyev, Gleb; Burman, Michael; Zussman, Eyal

    2015-03-07

    Fibers were electrospun from a solution comprised of oppositely charged polyelectrolytes, in efforts to achieve highly confined macromolecular packaging. A stoichiometric ratio of poly(allylamine hydrochloride) and poly(acrylic acid) solution was mixed in an ethanol-water co-solvent. Differential scanning calorimetry (DSC) analysis of electrospun fibers demonstrated no indication of glass transition, Tg. Infrared spectroscopy (FTIR) analysis of the fibers as a function of temperature, demonstrated an amidation process at lower temperature compared to cast film. Polarized FTIR indicated a preference of the functional groups to be perpendicular to the fiber axis. These results imply formation of mixed phase fibers with enhanced conditions for intermolecular interactions, due to the highly aligned and confined assembly of the macromolecules. The tunable intermolecular interactions between the functional groups of the polyelectrolytes, impact pH-driven, reversible swelling-deswelling of the fibers. The degree of ionization of PAA at pH 5.5 and pH 1.8 varied from 85% to 18%, correspondingly, causing transformation of ionic interactions to hydrogen bonding between the functional groups. The chemical change led to a massive water diffusion of 500% by weight and to a marked increase of 400% in fiber diameter, at a rate of 0.50 μm s(-1). These results allow for manipulation and tailoring of key fiber properties for tissue engineering, membranes, and artificial muscle applications.

  11. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs): How Slow Molecular Tumbling Can Quench CEST Contrast.

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R; Botta, Mauro; Woods, Mark

    2018-01-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM 3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA) after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH) followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  12. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere

    International Nuclear Information System (INIS)

    Li Feng; Tang Chenfei; Liu Shufeng; Ma Guangran

    2010-01-01

    A novel electro-active material was successfully prepared with Fe(CN) 6 3- ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO 3 ) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 x 10 -6 to 2.143 x 10 -3 M), a low detection limit (7.0 x 10 -7 M), a fast response time ( -1 ).

  13. Layer-by-Layer Self-Assembled Metal-Ion- (Ag-, Co-, Ni-, and Pd- Doped TiO2 Nanoparticles: Synthesis, Characterisation, and Visible Light Degradation of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Mphilisi M. Mahlambi

    2012-01-01

    Full Text Available Metal-ion- (Ag, Co, Ni and Pd doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL self-assembly technique using a poly(styrene sulfonate sodium salt (PSS and poly(allylamine hydrochloride (PAH polyelectrolyte system. Solid diffuse reflectance (SDR studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM, the thin films had a porous morphology and the atomic force microscope (AFM studies showed “rough” surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation. The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5 reusability cycles.

  14. Assessment of polyelectrolyte coating stability under dynamic buffer conditions in CE.

    Science.gov (United States)

    Swords, Kyleen E; Bartline, Peter B; Roguski, Katherine M; Bashaw, Sarah A; Frederick, Kimberley A

    2011-09-01

    Dynamic buffer conditions are present in many electrophoretically driven separations. Polyelectrolyte multilayer coatings have been employed in CE because of their chemical and physical stability as well as their ease of application. The goal of this study is to measure the effect of dynamic changes in buffer pH on flow using a real-time method for measuring EOF. Polyelectrolyte multilayers (PEMs) were composed of pairs of strong or completely ionized polyelectrolytes including poly(diallyldimethylammonium) chloride and poly(styrene sulfonate) and weak or ionizable polyelectrolytes including poly(allylamine) and poly(methacrylic acid). Polyelectrolyte multilayers of varying thicknesses (3, 4, 7, 8, 15, or 16 layers) were also studied. While the magnitude of the EOF was monitored every 2 s, the buffer pH was exchanged from a relatively basic pH (7.1) to increasingly acidic pHs (6.6, 6.1, 5.5, and 5.1). Strong polyelectrolytes responded minimally to changes in buffer pH (10%) and sometimes irreversible changes were measured with weak polyelectrolytes. Thicker coatings resulted in a similar magnitude of response but were more likely to degrade in response to buffer pH changes. The most stable coatings were formed from thinner layers of strong polyelectrolytes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Analytical nanosphere sensors using quantum dot-enzyme conjugates for urea and creatinine.

    Science.gov (United States)

    Ruedas-Rama, Maria J; Hall, Elizabeth A H

    2010-11-01

    An enzyme-linked analytical nanosphere sensor (ANSor) is described, responding to enzyme-substrate turnover in the vicinity of a quantum dot (QD) due to coimmobilized enzyme and pH sensitive ligand. QD capping by mercapto-alkanoic acids were rejected as a pH sensitive ligand, but with the use of a layer-by-layer assembly on mercaptopropionic capped QDs and an intermediate poly(allylamine hydrochloride) layer, anthraquinone sulfonate (calcium red, CaR) was introduced to modify the pKa in the immobilized system > 8. QD-CaR absorption shows spectral overlap with QD530 emission at all pHs and gives a complex pH dependent fluorescence resonance energy transfer (FRET) efficiency, due to excited state proton transfer (λ(ex) = 540 nm; λ(em) = 585 nm). In contrast QD615-CaR with spectral overlap between the QD and CaR gave a strong and reproducible pH response. QD-urease and QD-creatinine deiminase conjugates could be linked with pH changes produced by enzyme degradation of urea and creatinine, respectively. Close coupling between the pH sensitive QD and enzyme conjugate maximized signal compared with solution based assays: QD-urease and QD-CD bioconjugates were tested in model biological media (Dulbecco's modified Eagle's Medium and fetal calf serum) and in urine, showing a response in 3-4 min.

  16. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  17. Nano-Protrusive Gold Nanoparticle-Hybridized Polymer Thin Film as a Sensitive, Multipatternable, and Antifouling Biosensor Platform.

    Science.gov (United States)

    Lee, Jeong-Hoon; Park, Byung-Soo; Ghang, Hyun-Gu; Song, Hyunjoon; Yang, Sung Yun

    2018-04-25

    Hybrid films consisting of anisotropic octahedral gold nanoparticles (AuNPs) and polymers had their surfaces functionalized and were immobilized on surface plasmon resonance (SPR) sensors for biomolecule detection. Specifically, carboxylated octahedral AuNPs (C-Oh-AuNPs) and poly(allylamine hydrochloride) (PAH) were assembled as ultrathin films by using a layer-by-layer process. The ionic strength generated from the functional groups of C-Oh-AuNP and PAH influenced the composition, its surface morphology, and the reactivity of the film toward further chemical reactions such as the synthesis of spherical AuNPs (S-AuNPs). We were thus able to control the size and the structure of the C-Oh-AuNP and S-AuNPs converted to nano-raspberry-shaped particles. This hierarchical AuNP hybrid film exhibits much more sensitive and stable detection of biomolecules than regular flat chip systems, and this result may be due to the SPR of the AuNP at its surface being able to markedly enhance the local optical field of the chip. The micropatterning of the hybrid coating was also studied by using a soft lithographic patterning method. We, in particular, worked on creating multiplex patterns having different combinations of shapes and fluorescent colors. We expect our hybrid coating system with multicode biomolecular arrays to be used as a powerful platform for biosensor applications.

  18. Human mesenchymal stem cell osteoblast differentiation, ECM deposition, and biomineralization on PAH/PAA polyelectrolyte multilayers.

    Science.gov (United States)

    Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S

    2015-05-01

    Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. © 2014 Wiley Periodicals, Inc.

  19. Characterization of Responsive Hydrogel Nanoparticles upon Polyelectrolyte Complexation

    Directory of Open Access Journals (Sweden)

    Su-Kyoung Lee

    2017-02-01

    Full Text Available Characterization of responsive hydrogels and their interaction with other molecules have significantly expanded our understanding of the functional materials. We here report on the response of poly(N-isopropylacrylamide-co-acrylic acid (pNIPAm-co-AAc nanogels to the addition of the poly(allylamine hydrochloride (PAH in aqueous dispersions. We find that the hydrodynamic radius and stability of nanogels are dependent on the PAH/nanogel stoichiometry. If the nanogel solution is titrated with very small aliquots of PAH, the nanogels decrease in radius until the equivalence point, followed by aggregation at suprastoichiometric PAH additions. Conversely, when titrated with large aliquots, the nanogel charge switches rapidly from anionic to cationic, and no aggregation is observed. This behavior correlates well with electrophoretic mobility measurements, which shows the nanogel charge transitioning from negative to positive upon PAH addition. The volume phase transition temperature (VPTT of the nanogels is also measured to discover the effect of polyelectrolyte complexation on the deswelling thermodynamics. These data show that charge neutralization upon PAH addition decreases the VPTT of the nanogel at pH 6.5. However, if an excess amount of PAH is added to the nanogel solution, the VPTT shifts back to higher temperatures due to the formation of a net positive charge in the nanogel network.

  20. Connexin 43 Gene Therapy Delivered by Polymer-Modified Salmonella in Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Wei-Kuang Wang

    2014-04-01

    Full Text Available The use of preferentially tumor-targeting bacteria as vectors is one of the most innovative approaches for the treatment of cancer. This method is based on the observation that some obligate or facultative anaerobic bacteria are capable of selectively multiplying in tumors and inhibiting their growth. Previously, we found that the tumor-targeting efficiency of Salmonella could be modulated by modifying the immune response to these bacteria by coating them with poly(allylamine hydrochloride (PAH, and these organisms are designated PAH-S.C. (S. choleraesuis. PAH can provide a useful platform for the chemical modification of Salmonella, perhaps by allowing a therapeutic gene to bind to tumor-targeting Salmonella. This study aimed to investigate the benefits of the use of PAH-S.C. for gene delivery. To evaluate this modulation, the invasion activity and gene transfer of DNA-PAH-S.C. were measured in vitro and in vivo. Treatment with PAH-S.C. carrying a tumor suppressor gene (connexin 43 resulted in inhibition of tumor growth, which suggested that tumor-targeted gene therapy using PAH-S.C. carrying a therapeutic gene could exert antitumor activities. This technique represents a promising strategy for the treatment of tumors.

  1. Photophysical behavior of layer-by-layer electrostatic self-assembled film of azo dye Chromotrope-2R and a polycation

    Energy Technology Data Exchange (ETDEWEB)

    Hansda, Chaitali [Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032 (India); Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104 (India); Dutta, Bipan [Department of Physics, Sammilani Mahavidyalaya, Baghajatin Station, E.M. Bypass, Kolkata 700075 (India); Chakraborty, Utsav; Singha, Tanmoy [Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032 (India); Hussain, Syed Arshad; Bhattacharjee, Debajyoti [Department of Physics, Tripura University, Suryamaninagar 799022, Tripura West (India); Paul, Sharmistha [West Bengal State Council of Science and Technology, Vigyan Chetana Bhavan, Sector-I, Salt Lake, Kolkata 700064 (India); Paul, Pabitra Kumar, E-mail: pabitra_tu@yahoo.co.in [Department of Physics, Jadavpur University, Jadavpur, Kolkata 700032 (India)

    2016-10-15

    This communication reports the fabrication of layer-by-layer electrostatic self-assembled films of an azo dye Chromotrope-2R (CH2R) and a Polycation poly(allylamine hydrochloride) (PAH) onto solid substrate. UV–vis absorption and steady state fluorescence emission spectroscopy successfully confirm the incorporation of dye molecules onto the PAH coated quartz substrate. The adsorption behavior of CH2R onto PAH backbone in LbL films highly depends upon the variation of the microenvironment namely pH of the dye solution from which the film was fabricated. PAH layer onto quartz substrate was able to swell sufficiently in the dye solution at very high pH. The Density functional theory was also utilized here to explain the origin of various spectral transitions from the ground electronic states for both in neutral and anionic form of CH2R. In LbL films the more closure association of dye molecules causes their aggregations which are reflected in their absorption and steady state fluorescence emission spectra when compared to those of pure dye solution. Atomic force microscopic images of LbL films assembled from CH2R aqueous solution at different pH clearly reveal the change in the surface morphology of the films and different degree of association of dye molecules in LbL films deposited at various pH of CH2R.

  2. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells.

    Science.gov (United States)

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-05-01

    The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation. Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules' morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested. Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.

  3. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid/poly(L-lactic acid and self-assembly of polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Elena Dellacasa

    2016-01-01

    Full Text Available The enantiomers poly(D-lactic acid (PDLA and poly(L-lactic acid (PLLA were alternately adsorbed directly on calcium carbonate (CaCO3 templates and on poly(styrene sulfonate (PSS and poly(allylamine hydrochloride (PAH multilayer precursors in order to fabricate a novel layer-by-layer (LBL assembly. A single layer of poly(L-lysine (PLL was used as a linker between the (PDLA/PLLAn stereocomplex and the cores with and without the polymeric (PSS/PAHn/PLL multilayer precursor (PEM. Nuclear magnetic resonance (NMR and gel permeation chromatography (GPC were used to characterize the chemical composition and molecular weight of poly(lactic acid polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC and wide X-ray diffraction (WXRD analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM and transmission electron microscopy (TEM measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.

  4. Sacrificial Template-Based Synthesis of Unified Hollow Porous Palladium Nanospheres for Formic Acid Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Qiu

    2015-06-01

    Full Text Available Large scale syntheses of uniform metal nanoparticles with hollow porous structure have attracted much attention owning to their high surface area, abundant active sites and relatively efficient catalytic activity. Herein, we report a general method to synthesize hollow porous Pd nanospheres (Pd HPNSs by templating sacrificial SiO2 nanoparticles with the assistance of polyallylamine hydrochloride (PAH through layer-by-layer self-assembly. The chemically inert PAH is acting as an efficient stabilizer and complex agent to control the synthesis of Pd HPNSs, probably accounting for its long aliphatic alkyl chains, excellent coordination capability and good hydrophilic property. The physicochemical properties of Pd HPNSs are thoroughly characterized by various techniques, such as transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy. The growth mechanism of Pd HPNSs is studied based on the analysis of diverse experimental observations. The as-prepared Pd HPNSs exhibit clearly enhanced electrocatalytic activity and durability for the formic oxidation reaction (FAOR in acid medium compared with commercial Pd black.

  5. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  6. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling† †Electronic supplementary information (ESI) available: FTIR, NMR spectra of synthesized polymers, XPS spectra and AFM images of non-cross linked and cross linked LBLA and LBLB films, UV-Visible absorption spectra of copper complexation with PAH-His, QCM data of LBLA and LBLB films and stability of the films are provided in the electronic supplementary information. See DOI: 10.1039/c4sc02367f Click here for additional data file.

    Science.gov (United States)

    Puniredd, Sreenivasa Reddy; Go, Dewi Pitrasari; Zhu, Xiaoying; Guo, Shifeng; Ming Teo, Serena Lay; Chen Lee, Serina Siew

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross-linking were used in the fabrication process. Two methods of LbL film formation have been investigated using alternate polyelectrolyte deposition namely non-imprinted LbLA, and imprinted LbLB. Both LbL films were cross linked at mild temperature to yield covalent bridging of the layers for improved stability in a sea water environment. A comparative study of the non-imprinted LbLA films and imprinted LbLB films for Cu2+ ion binding capacity, leaching rate and stability of the films was performed. The results reveal that the imprinted films possess enhanced affinity to retain metal ions due to the preorganization of imidazole bearing histidine receptors. As a result the binding capacity of the films for Cu2+ could be improved by seven fold. Antifouling properties of the resulting materials in a marine environment have been demonstrated against the settlement of barnacle larvae, indicating that controlled release of Cu ions was achieved. PMID:28966763

  7. Nanostructured layer-by-layer films containing phaeophytin-b: Electrochemical characterization for sensing purposes

    International Nuclear Information System (INIS)

    Nunes Pauli, Gisele Elias; Araruna, Felipe B.; Eiras, Carla; Leite, José Roberto S.A.; Chaves, Otemberg Souza; Filho, Severino Gonçalves Brito; Vanderlei de Souza, Maria de Fátima; Chavero, Lucas Natálio; Sartorelli, Maria Luisa

    2015-01-01

    This paper reports the study and characterization of a new platform for practical applications, where the use of phaeophytin-b (phaeo-b), a compound derived from chlorophyll, was characterized and investigated for sensing purposes. Modified electrodes with nanostructured phaeo-b films were fabricated via the layer-by-layer (LbL) technique, where phaeo-b was assembled with cashew gum, a polysaccharide, or with poly(allylamine) hydrochloride (PAH). The multilayer formation was investigated with UV–Vis spectroscopy by monitoring the absorption band associated to phaeo-b at approximately 410 nm, where distinct molecular interactions between the materials were verified. The morphology of the films was analyzed by atomic force microscopy (AFM). The electrochemical properties through redox behavior of phaeo-b were studied with cyclic voltammetry. The produced films were applied as sensors for hydrogen peroxide (H 2 O 2 ) detection. In terms of sensing, the cashew/phaeo-b film exhibited the most promising result, with a fast response and broad linear range upon the addition of H 2 O 2 . This approach provides a simple and inexpensive method for development of a nonenzymatic electrochemical sensor for H 2 O 2 . - Highlights: • Potential applications of phaeophytin-b • Low-cost method to produce sensitive nanostructured films • Electrochemical sensor based on phaeophytin-b and cashew gum

  8. Amino-modified diamond as a durable stationary phase for solid-phase extraction.

    Science.gov (United States)

    Saini, Gaurav; Yang, Li; Lee, Milton L; Dadson, Andrew; Vail, Michael A; Linford, Matthew R

    2008-08-15

    We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0-14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.

  9. Self-assembly of SiO2 nanoparticles for the potentiometric detection of neurotransmitter acetylcholine and its inhibitor.

    Science.gov (United States)

    Arruda, Izabela G; Guimarães, Francisco E G; Ramos, Romildo J; Vieira, Nirton C S

    2014-09-01

    The detection and quantification of neurotransmitter acetylcholine (ACh) are relevant because modifications in the ACh levels constitute a threat to human health. The biological regulator of this neurotransmitter is acetylcholinesterase (AChE), an enzyme that catalyzes the hydrolysis of ACh to choline and acetic acid. However, its activity is inhibited in the presence of organophosphate and carbamate pesticides, compromising the degradation of the neurotransmitter. There has been a growing interest in faster and more sensitive detection systems that include new methods and materials for the determination of the ACh concentration. This paper proposes a potentiometric biosensor for the detection of neurotransmitter ACh and its inhibitors, specifically organophosphate pesticide methamidophos. The biosensor is based on a self-assembled platform formed by poly(allylamine) hydrochloride (PAH) and silicon dioxide nanoparticles (SiO2-Np) that contains the immobilized enzyme AChE. First, the responses of the biosensor were investigated for different concentrations of ACh in buffer solutions. After quantifying ACh, the inhibition of AChE in the presence of methamidophos was determined, enabling the quantification of methamidophos expressed as the percentage of enzyme inhibition. The potential advantages of this biosensor include simplicity in building the electrode, possible production on an industrial scale, limited need for qualified personnel to operate the device and low processing cost.

  10. Ellipsometric Immunosensor for Detection of Amyloid Precursor Protein with a View of Alzheimer's Disease Diagnostics

    Directory of Open Access Journals (Sweden)

    Alexei Nabok

    2010-09-01

    Full Text Available The detection of amyloid precursor protein isoform 770 (APP770 was achieved with the use of total internal reflection ellipsometry (TIRE in a direct immunoassay format with DE2 monoclonal antibodies raised against the β amyloid peptide 1-16 (Aβ 1-16 which is a part of APP770. DE2 antibodies were immobilised on the surface of gold by electrostatic binding to a layer of (polyallylamine hydrochloride (PAH via an intermediate layer of Protein G molecules. TIRE spectra were recorded after adsorption (binding of every molecular layer in a sequence of PAH, Protein G, DE2, and APP770. A noticeable increase in the adsorbed layer thickness was obtained upon binding of APP770 molecules from its solution of unknown concentration in Complete Medium, a complex mixture containing other proteins. For a purpose of TIRE biosensor calibration, complementary quartz crystal microbalance (QCM measurements were utilised and allowed the evaluation of surface concentrations of DE2 and APP770 of 1.08.1011 cm-2 and 4.73.1012 cm-2, respectively.

  11. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes

    Science.gov (United States)

    Cheng, Jin; Ding, Qian; Wang, Jia; Deng, Lin; Yang, Lu; Tao, Lei; Lei, Haihong; Lu, Shaoping

    2016-01-01

    Heart disease is one of the deadliest diseases causing mortality due to the limited regenerative capability of highly differentiated cardiomyocytes. Stem cell-based therapy in tissue engineering is one of the most exciting and rapidly growing areas and raises promising prospects for cardiac repair. In this study, we have synthesized FITC-mesoporous silica nanoparticles (FMSNs) based on a sol-gel method (known as Stöber's method) as a drug delivery platform to transport 5-azacytidine in P19 embryonic carcinoma stem cells. The surfactant CTAB is utilized as a liquid crystal template to self-aggregate into micelles, resulting in the synthesis of MSNs. Based on the cell viability assay, treatment with FMSNs + 5-azacytidine resulted in much more significant inhibition of the proliferation than 5-azacytidine alone. To study the mechanism, we have tested the differentiation genes and cardiac marker genes in P19 cells and found that these genes have been up-regulated in P19 embryonic carcinoma stem cells treated with FMSNs + 5-azacytidine + poly(allylamine hydrochloride) (PAH), with the changes of histone modifications on the regulatory region. In conclusion, with FMSNs as drug delivery platforms, 5-azacytidine can be more efficiently delivered into stem cells and can be used to monitor and track the transfection process in situ to clarify their effects on stem cell functions and the differentiation process, which can serve as a promising tool in tissue engineering and other biomedical fields.

  12. Photophysical behavior of layer-by-layer electrostatic self-assembled film of azo dye Chromotrope-2R and a polycation

    International Nuclear Information System (INIS)

    Hansda, Chaitali; Dutta, Bipan; Chakraborty, Utsav; Singha, Tanmoy; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Sharmistha; Paul, Pabitra Kumar

    2016-01-01

    This communication reports the fabrication of layer-by-layer electrostatic self-assembled films of an azo dye Chromotrope-2R (CH2R) and a Polycation poly(allylamine hydrochloride) (PAH) onto solid substrate. UV–vis absorption and steady state fluorescence emission spectroscopy successfully confirm the incorporation of dye molecules onto the PAH coated quartz substrate. The adsorption behavior of CH2R onto PAH backbone in LbL films highly depends upon the variation of the microenvironment namely pH of the dye solution from which the film was fabricated. PAH layer onto quartz substrate was able to swell sufficiently in the dye solution at very high pH. The Density functional theory was also utilized here to explain the origin of various spectral transitions from the ground electronic states for both in neutral and anionic form of CH2R. In LbL films the more closure association of dye molecules causes their aggregations which are reflected in their absorption and steady state fluorescence emission spectra when compared to those of pure dye solution. Atomic force microscopic images of LbL films assembled from CH2R aqueous solution at different pH clearly reveal the change in the surface morphology of the films and different degree of association of dye molecules in LbL films deposited at various pH of CH2R.

  13. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    Science.gov (United States)

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Science.gov (United States)

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Influence of serum percentage on the behavior of Wharton's jelly mesenchymal stem cells in culture.

    Science.gov (United States)

    Harmouch, C; El-Omar, R; Labrude, P; Decot, V; Menu, P; Kerdjoudj, H

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several lineages with valuable applications in regenerative medicine. MSCs differentiation is highly dependent on physicochemical properties of the culture substrate, cell density and on culture medium composition. In this study, we assessed the influence of fetal bovine serum (FBS) level on Wharton's jelly (WJ)-MSCs behavior seeded on polyelectrolyte multilayer films (PEMF) made of four bilayers of poly-allylamine hydrochloride (PAH) as polycation and poly-styrene sulfonate (PSS) as polyanion. MSCs isolated from WJ by explants method were amplified until the third passage. Their phenotypic characterization was performed by flow cytometry analyses. MSCs were seeded on PEMF, in Endothelial growth medium-2 (EGM-2) supplemented by either 5% or 2% FBS. Cell's behavior was monitored for 20 days by optical microscopy and immunofluorescence. Until 2 weeks on glass slides, no difference was observed whatever the FBS percentage. Then with 5% FBS, MSCs formed three-dimensional spheroids on PSS/PAH after 20 days of culture with a nuclear aggregate. Whereas, with 2% FBS, these spheroids did not appear and cells grown in 2D conserved the fibroblast-like morphology. The decrease of FBS percentage from 5% to 2% avoids 3D cell spheroids formation on PAH/PSS. Such results could guide bioengineering towards building 2D structures like cell layers or 3D structures by increasing the osteogenic or chondrogenic differentiation potential of MSCs.

  16. Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity

    International Nuclear Information System (INIS)

    Li, Fumin; Gao, Xueqing; Xue, Qi; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-01-01

    Reduced graphene oxide (rGO) supported platinum nanocubes (Pt-NCs) composites (Pt-NCs/rGO) were synthesized successfully by a water-based co-chemical reduction method, in which polyallylamine hydrochloride acted as a multi-functional molecule for the functionalization of graphene oxide, anchorage of Pt II precursor, and control of Pt crystal facets. The morphology, structure, composition, and catalytic property of Pt-NCs/rGO composites were characterized in detail by various spectroscopic techniques. Transmission electron microscopy images showed well-defined Pt-NCs with an average size of 9 nm uniformly distributed on the rGO surface. The as-prepared Pt-NCs/rGO composites had excellent colloidal stability in the aqueous solution, and exhibited superior catalytic activity towards the hydrogenation reduction of nitro groups compared to commercial Pt black. The improved catalytic activity originated from the abundant exposed Pt{100} facets of Pt-NCs, excellent dispersion of Pt-NCs on the rGO surface, and synergistic effect between Pt-NCs and rGO. (paper)

  17. Proton electroinsertion in self-assembled materials for neutralization pseudocapacitors.

    Science.gov (United States)

    Facci, Tiago; Gomes, Wellington J A S; Bravin, Bruno; Araújo, Diógenes M; Huguenin, Fritz

    2014-01-14

    We propose novel pseudocapacitors that can store energy related to the partial entropy change associated with proton concentration variations following neutralization reactions. In this situation, it is possible to obtain electrochemical energy after the complete charge/discharge cycle conducted in electrolytic solutions with different proton concentrations. To this end, we prepared modified electrodes from phosphomolybdic acid (PMA), poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and polyallylamine (PAH) by the layer-by-layer (LbL) method and investigated their electrochemical behavior, aiming to use them in these neutralization pseudocapacitors. We analyzed the potentiodynamic profile of the current density at several scan rates, to evaluate the reversibility of the proton electroinsertion process, which is crucial to maximum energy storage efficiency. On the basis of the proposed reaction mechanism and by using frequency-domain measurements and models, we determined rate constants at different potentials. Our results demonstrated that the conducting polymer affects the self-assembled matrixes, ensuring that energy storage is high (22.5 kJ mol(-1)). The process involved neutralization of a hydrochloric acid solution from pH = 1 to pH = 6, which corresponds to 40% of the neutralization enthalpy.

  18. Electronic Tongue Based on Nanostructured Hybrid Films of Gold Nanoparticles and Phthalocyanines for Milk Analysis

    Directory of Open Access Journals (Sweden)

    Luiza A. Mercante

    2015-01-01

    Full Text Available The use of gold nanoparticles combined with other organic and inorganic materials for designing nanostructured films has demonstrated their versatility for various applications, including optoelectronic devices and chemical sensors. In this study, we reported the synthesis and characterization of gold nanoparticles stabilized with poly(allylamine hydrochloride (Au@PAH NPs, as well as the capability of this material to form multilayer Layer-by-Layer (LbL nanostructured films with metal tetrasulfonated phthalocyanines (MTsPc. Film growth was monitored by UV-Vis absorption spectroscopy, atomic force microscopy (AFM, and Fourier transform infrared spectroscopy (FTIR. Once LbL films have been applied as active layers in chemical sensors, Au@PAH/MTsPc and PAH/MTsPc LbL films were used in an electronic tongue system for milk analysis regarding fat content. The capacitance data were treated using Principal Component Analysis (PCA, revealing the role played by the gold nanoparticles on the LbL films electrical properties, enabling this kind of system to be used for analyzing complex matrices such as milk without any prior pretreatment.

  19. Capacitive electrolyte-insulator-semiconductor structures functionalised with a polyelectrolyte/enzyme multilayer: New strategy for enhanced field-effect biosensing

    Energy Technology Data Exchange (ETDEWEB)

    Abouzar, Maryam H.; Poghossian, Arshak; Schoening, Michael J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Juelich (Germany); Institute of Bio- and Nanosystems (IBN-2), Research Centre Juelich GmbH, Juelich (Germany); Siqueira, Jose R. Jr.; Oliveira, Osvaldo N. Jr. [Physics Institute of Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil); Moritz, Werner [Institute of Chemistry, Humboldt University Berlin (Germany)

    2010-04-15

    A novel strategy for enhanced field-effect biosensing using capacitive electrolyte-insulator-semiconductor (EIS) structures functionalised with pH-responsive weak polyelectrolyte/enzyme or dendrimer/enzyme multilayers is presented. The feasibility of the proposed approach is exemplarily demonstrated by realising a penicillin biosensor based on a capacitive p-Si-SiO{sub 2} EIS structure functionalised with a poly(allylamine hydrochloride) (PAH)/penicillinase and a poly(amidoamine) dendrimer/penicillinase multilayer. The developed sensors response to changes in both the local pH value near the gate surface and the charge of macromolecules induced via enzymatic reaction, resulting in a higher sensitivity. For comparison, an EIS penicillin biosensor with adsorptively immobilised penicillinase has been also studied. The highest penicillin sensitivity of 100 mV/dec has been observed for the EIS sensor functionalised with the PAH/penicillinase multilayer. The lower and upper detection limit was around 20 {mu}M and 10 mM, respectively. In addition, an incorporation of enzymes in a multilayer prepared by layer-by-layer technique provides a larger amount of immobilised enzymes per sensor area, reduces enzyme leaching effects and thus, enhances the biosensor lifetime (the loss of penicillin sensitivity after 2 months was 10-12%). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. ParaCEST agents encapsulated in Reverse nano-Assembled Capsules (RACs): How slow molecular tumbling can quench CEST

    Science.gov (United States)

    Farashishiko, Annah; Slack, Jacqueline R.; Botta, Mauro; Woods, Mark

    2018-04-01

    Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the series the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. A significant proportion of the quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  1. Photoinduced Electron Transfer of PAMAM Dendrimer-Zinc(II) Porphyrin Associates at Polarized Liquid|Liquid Interfaces.

    Science.gov (United States)

    Nagatani, Hirohisa; Sakae, Hiroki; Torikai, Taishi; Sagara, Takamasa; Imura, Hisanori

    2015-06-09

    The heterogeneous photoinduced electron-transfer reaction of the ion associates between NH2-terminated polyamidoamine (PAMAM) dendrimers and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato zinc(II) (ZnTPPS(4-)) was studied at the polarized water|1,2-dichloroethane (DCE) interface. The positive photocurrent arising from the photoreduction of ZnTPPS(4-) by a lipophilic quencher, decamethylferrocene, in the interfacial region was significantly enhanced by the ion association with the PAMAM dendrimers. The photocurrent response of the dendrimer-ZnTPPS(4-) associates was dependent on the pH condition and on the generation of dendrimer. A few cationic additives such as polyallylamine and n-octyltrimethyammonium were also examined as alternatives to the PAMAM dendrimer, but the magnitude of the photocurrent enhancement was rather small. The high photoreactivity of the dendrimer-ZnTPPS(4-) associates was interpreted mainly as a result of the high interfacial concentration of photoreactive porphyrin units associated stably with the dendrimer which was preferably adsorbed at the polarized water|DCE interface. The photochemical data observed in the second and fourth generation PAMAM dendrimer systems demonstrated that the higher generation dendrimer which can incorporate a porphyrin molecule more completely in the interior is less efficient for the photocurrent enhancement at the interface. These results indicated that the photoreactivity of ionic reactant at a polarized liquid|liquid interface can readily be modified via ion association with the charged dendrimer.

  2. Novel Highly Sensitive Protein Sensors Based on Tapered Optical Fibres Modified with Au-Based Nanocoatings

    Directory of Open Access Journals (Sweden)

    Aitor Urrutia

    2016-01-01

    Full Text Available Novel protein sensors based on tapered optical fibres modified with Au coatings deposited using two different procedures are proposed. Au-based coatings are deposited onto a nonadiabatic tapered optical fibre using (i a novel facile method composed of layer-by-layer deposition consisting of polycation (poly(allylamine hydrochloride, PAH and negatively charged SiO2 nanoparticles (NPs followed by the deposition of the charged Au NPs and (ii the sputtering technique. The Au NPs and Au thin film surfaces are then modified with biotin in order to bind streptavidin (SV molecules and detect them. The sensing principle is based on the sensitivity of the transmission spectrum of the device to changes in the refractive index of the coatings induced by the SV binding to the biotin. Both sensors showed high sensitivity to SV, with the lowest measured concentration levels below 2.5 nM. The calculated binding constant for the biotin-SV pair was 2.2×10-11 M−1 when a tapered fibre modified with the LbL method was used, with a limit of detection (LoD of 271 pM. The sensor formed using sputtering had a binding constant of 1.01×10-10 M−1 with a LoD of 806 pM. These new structures and their simple fabrication technique could be used to develop other biosensors.

  3. Smooth model surfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D.

    Science.gov (United States)

    Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars

    2007-03-27

    For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.

  4. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  5. Fabrication of complex free-standing nanostructures with concave and convex curvature via the layer-by-layer approach.

    Science.gov (United States)

    Raoufi, Mohammad; Schönherr, Holger

    2014-02-18

    We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.

  6. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  7. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    Science.gov (United States)

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity. © 2013 Wiley Periodicals, Inc.

  8. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics

    International Nuclear Information System (INIS)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-01-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 −2 M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3–10, assuming −50 e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  9. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

    Directory of Open Access Journals (Sweden)

    Joseba Irigoyen

    2015-12-01

    Full Text Available A novel and facile method was developed to produce hybrid graphene oxide (GO–polyelectrolyte (PE capsules using erythrocyte cells as templates. The capsules are easily produced through the layer-by-layer technique using alternating polyelectrolyte layers and GO sheets. The amount of GO and therefore its coverage in the resulting capsules can be tuned by adjusting the concentration of the GO dispersion during the assembly. The capsules retain the approximate shape and size of the erythrocyte template after the latter is totally removed by oxidation with NaOCl in water. The PE/GO capsules maintain their integrity and can be placed or located on other surfaces such as in a device. When the capsules are dried in air, they collapse to form a film that is approximately twice the thickness of the capsule membrane. AFM images in the present study suggest a film thickness of approx. 30 nm for the capsules in the collapsed state implying a thickness of approx. 15 nm for the layers in the collapsed capsule membrane. The polyelectrolytes used in the present study were polyallylamine hydrochloride (PAH and polystyrenesulfonate sodium salt (PSS. Capsules where characterized by transmission electron microscopy (TEM, atomic force microscopy (AFM, dynamic light scattering (DLS and Raman microscopy, the constituent layers by zeta potential and GO by TEM, XRD, and Raman and FTIR spectroscopies.

  10. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs

    Directory of Open Access Journals (Sweden)

    Bahmani B

    2013-04-01

    Full Text Available Baharak Bahmani,1 Christian Y Lytle,2 Ameae M Walker,2 Sharad Gupta,1 Valentine I Vullev,1 Bahman Anvari1 1Department of Bioengineering, 2Division of Biomedical Sciences, University of California, Riverside, CA, USA Abstract: Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH chains cross-linked with sodium phosphate and doped with indocyanine green (ICG toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs are not cytotoxic at the levels used in this study. Keywords: cancer, fluorescent imaging, nanoprobes, near infrared, pharmacokinetics, phototherapy, vascular imaging

  11. Layer-by-layer self-assembled multilayers on PEEK implants improve osseointegration in an osteoporosis rabbit model.

    Science.gov (United States)

    Liu, Xilin; Han, Fei; Zhao, Peng; Lin, Chao; Wen, Xuejun; Ye, Xiaojian

    2017-05-01

    This study aims to fabricate and deposit nanoscale multilayers on polyetheretherketone (PEEK) to improve cell adhesion and osseointegration. Bio-activated PEEK constructs were designed with prepared surface of different layers of polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) multilayers. Irregular morphology was found on the 5 and 10-layer PEEK surfaces, while "island-like" clusters were observed for 20-layer (20 L) multilayers. Besides, the 20 L PEEK showed more hydrophilic feature than native PEEK, and the surface contact angle reduced from 39.7° to 21.7° as layers increased from 5 to 20. In vitro, modified PEEK allowed excellent adhesion and proliferation of bone marrow stromal cells, and induced higher cell growth rate and alkaline phosphatase level. In vivo, this bio-active PEEK exhibited significantly enhanced integration with bone tissue in an osteoporosis rabbit model. This work highlights layer-by-layer self-assembly as a practical method to construct bio-active PEEK implants for enhanced osseointegration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics.

    Science.gov (United States)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-03-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 -2  M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3-10, assuming -50  e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  13. Low-magnetization magnetic microcapsules: A synergistic theranostic platform for remote cancer cells therapy and imaging

    KAUST Repository

    Zhang, Wei

    2014-04-02

    Multifunctional magnetic microcapsules (MMCs) for the combined cancer cells hyperthermia and chemotherapy in addition to MR imaging are successfully developed. A classical layer-by-layer technique of oppositely charged polyelectrolytes (poly(allylamine hydrochloride) (PAH) and poly(4-styrene sulfonate sodium) (PSS)) is used as it affords great controllability over the preparation together with enhanced loading of the chemotherapeutic drug (doxorubicin, DOX) in the microcapsules. Superparamagnetic iron oxide (SPIOs) nanoparticles are layered in the system to afford MMC1 (one SPIOs layer) and MMC2 (two SPIOs layers). Most interestingly, MMC1 and MMC2 show efficient hyperthermia cell death and controlled DOX release although their magnetic saturation value falls below 2.5 emu g-1, which is lower than the 7-22 emu g-1 reported to be the minimum value needed for biomedical applications. Moreover, MMCs are pH responsive where a pH 5.5 (often reported for cancer cells) combined with hyperthermia increases DOX release predictably. Both systems prove viable when used as T2 contrast agents for MR imaging in HeLa cells with high biocompatibility. Thus, MMCs hold a great promise to be used commercially as a theranostic platform as they are controllably prepared, reproducibly enhanced, and serve as drug delivery, hyperthermia, and MRI contrast agents at the same time.

  14. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating

    Directory of Open Access Journals (Sweden)

    Jiri Hromadka

    2017-02-01

    Full Text Available A long period grating (LPG modified with a mesoporous film infused with a calixarene as a functional compound was employed for the detection of individual volatile organic compounds (VOCs and their mixtures. The mesoporous film consisted of an inorganic part, SiO2 nanoparticles (NPs, along with an organic moiety of poly(allylamine hydrochloride polycation PAH, which was finally infused with the functional compound, p-sulphanato calix[4]arene (CA[4] or p-sulphanato calix[8]arene (CA[8]. The LPG sensor was designed to operate at the phase matching turning point to provide the highest sensitivity. The sensing mechanism is based on the measurement of the refractive index (RI change induced by a complex of the VOCs with calixarene. The LPG, modified with a coating of 5 cycles of (SiO2 NPs/PAH and infused with CA[4] or CA[8], was exposed to chloroform, benzene, toluene and acetone vapours. The British Standards test of the VOCs emissions from material (BS EN ISO 16000-9:2006 was used to test the LPG sensor performance.

  15. Influence of the Internalization Pathway on the Efficacy of siRNA Delivery by Cationic Fluorescent Nanodiamonds in the Ewing Sarcoma Cell Model

    Science.gov (United States)

    Alhaddad, Anna; Durieu, Catherine; Dantelle, Géraldine; Le Cam, Eric; Malvy, Claude; Treussart, François; Bertrand, Jean-Rémi

    2012-01-01

    Small interfering RNAs (siRNAs) are powerful tools commonly used for the specific inhibition of gene expression. However, vectorization is required to facilitate cell penetration and to prevent siRNA degradation by nucleases. We have shown that diamond nanocrystals coated with cationic polymer can be used to carry siRNAs into Ewing sarcoma cells, in which they remain traceable over long periods, due to their intrinsic stable fluorescence. We tested two cationic polymers, polyallylamine and polyethylenimine. The release of siRNA, accompanied by Ewing sarcoma EWS-Fli1 oncogene silencing, was observed only with polyethylenimine. We investigated cell penetration and found that the underlying mechanisms accounted for these differences in behavior. Using drugs selectively inhibiting particular pathways and a combination of fluorescence and electronic microscopy, we showed that siRNA gene silencing occurred only if the siRNA:cationic nanodiamond complex followed the macropinocytosis route. These results have potential implications for the design of efficient drug-delivery vectors. PMID:23284935

  16. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  17. A Preliminary Test for Skin Gas Assessment Using a Porphyrin Based Evanescent Wave Optical Fiber Sensor

    Directory of Open Access Journals (Sweden)

    Roman SELYANCHYN

    2011-02-01

    Full Text Available An evanescent-wave optical fibre sensor modified with tetrakis-(4-sulfophenyl porphine (TSPP and poly(allylamine hydrochloride (PAH bilayers using layer-by-layer (LbL electrostatic self-assembly was tested to measure the gas emitted from human skin. Optical intensity changes at different wavelengths in the transmission spectrum of the porphyrin-based film were induced by the human skin gas and measured as sensor response. Influence of relative humidity, which can be a major interference to sensor response, was thoroughly studied and shown to be significantly different when compared to the influence of skin emanations. Responses of the current optical sensor system could be considered as composite sensor array, where different optical wavelengths act as channels that have selective response to specific volatile compounds. Data obtained from the sensor system was analyzed using principal component analysis (PCA. This approach enabled to distinguish skin odors of different people and their altered physiological conditions after alcohol consumption.

  18. ParaCEST Agents Encapsulated in Reverse Nano-Assembled Capsules (RACs: How Slow Molecular Tumbling Can Quench CEST Contrast

    Directory of Open Access Journals (Sweden)

    Annah Farashishiko

    2018-04-01

    Full Text Available Although paraCEST is a method with immense scope for generating image contrast in MRI, it suffers from the serious drawback of high detection limits. For a typical discrete paraCEST agent the detection limit is roughly an order of magnitude higher than that of a clinically used relaxation agent. One solution to this problem may be the incorporation of a large payload of paraCEST agents into a single macromolecular agent. Here we report a new synthetic method for accomplishing this goal: incorporating a large payload of the paraCEST agent DyDOTAM3+ into a Reverse Assembled nano-Capsule. An aggregate can be generated between this chelate and polyacrylic acid (PAA after the addition of ethylene diamine. Subsequent addition of polyallylamine hydrochloride (PAH followed by silica nanoparticles generated a robust encapsulating shell and afforded capsule with a mean hydrodynamic diameter of 650 ± 250 nm. Unfortunately this encapsulation did not have the effect of amplifying the CEST effect per agent, but quenched the CEST altogether. The quenching effect of encapsulation could be attributed to the effect of slowing molecular tumbling, which is inevitable when the chelate is incorporated into a nano-scale material. This increases the transverse relaxation rate of chelate protons and a theoretical examination using Solomon Bloembergen Morgan theory and the Bloch equations shows that the increase in the transverse relaxation rate constant for the amide protons, in even modestly sized nano-materials, is sufficient to significantly quench CEST.

  19. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.

  20. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells.

    Science.gov (United States)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-07-02

    Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10(6) cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells. Copyright © 2015. Published by Elsevier B.V.

  1. Immobilization of cholesterol oxidase in LbL films and detection of cholesterol using ac measurements

    International Nuclear Information System (INIS)

    Moraes, Marli L.; Souza, Nara C. de; Hayasaka, Caio O.; Ferreira, Marystela; Rodrigues Filho, Ubirajara P.; Riul, Antonio; Zucolotto, Valtencir; Oliveira, Osvaldo N.

    2009-01-01

    The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications, including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function, with exponent ∼ 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAH/PVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10 -6 M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost, fast experimental procedures

  2. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    Science.gov (United States)

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  3. Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

    Science.gov (United States)

    Luo, Rongcong; Venkatraman, Subbu S; Neu, Björn

    2013-07-08

    A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.

  4. pH-Dependent Release of Insulin from Layer-by-Layer-Deposited Polyelectrolyte Microcapsules

    Directory of Open Access Journals (Sweden)

    Kentaro Yoshida

    2015-07-01

    Full Text Available Insulin-containing microcapsules were prepared by a layer-by-layer (LbL deposition of poly(allylamine hydrochloride (PAH and polyanions, such as poly(styrenesulfonate (PSS, poly(vinyl sulfate (PVS, and dextran sulfate (DS on insulin-containing calcium carbonate (CaCO3 microparticles. The CaCO3 core was dissolved in diluted HCl solution to obtain insulin-containing hollow microcapsules. The microcapsules were characterized by scanning electron microscope (SEM and atomic force microscope (AFM images and ζ-potential. The release of insulin from the microcapsules was faster at pH 9.0 and 7.4 than in acidic solutions due to the different charge density of PAH. In addition, insulin release was suppressed when the microcapsules were constructed using PAH with a lower molecular weight, probably owing to a thicker shell of the microcapsules. The results suggested a potential use of the insulin-containing microcapsules for developing insulin delivery systems.

  5. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05). Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.

  6. Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model.

    Science.gov (United States)

    Alhaddad, Anna; Durieu, Catherine; Dantelle, Géraldine; Le Cam, Eric; Malvy, Claude; Treussart, François; Bertrand, Jean-Rémi

    2012-01-01

    Small interfering RNAs (siRNAs) are powerful tools commonly used for the specific inhibition of gene expression. However, vectorization is required to facilitate cell penetration and to prevent siRNA degradation by nucleases. We have shown that diamond nanocrystals coated with cationic polymer can be used to carry siRNAs into Ewing sarcoma cells, in which they remain traceable over long periods, due to their intrinsic stable fluorescence. We tested two cationic polymers, polyallylamine and polyethylenimine. The release of siRNA, accompanied by Ewing sarcoma EWS-Fli1 oncogene silencing, was observed only with polyethylenimine. We investigated cell penetration and found that the underlying mechanisms accounted for these differences in behavior. Using drugs selectively inhibiting particular pathways and a combination of fluorescence and electronic microscopy, we showed that siRNA gene silencing occurred only if the siRNA:cationic nanodiamond complex followed the macropinocytosis route. These results have potential implications for the design of efficient drug-delivery vectors.

  7. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  8. Polymer-Induced Swelling of Solid-Supported Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Kreuzer

    2015-12-01

    Full Text Available In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride (PAH in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.

  9. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach.

    Science.gov (United States)

    Dochter, Alexandre; Garnier, Tony; Pardieu, Elodie; Chau, Nguyet Trang Thanh; Maerten, Clément; Senger, Bernard; Schaaf, Pierre; Jierry, Loïc; Boulmedais, Fouzia

    2015-09-22

    The development of new surface functionalization methods that are easy to use, versatile, and allow local deposition represents a real scientific challenge. Overcoming this challenge, we present here a one-pot process that consists in self-assembling, by electrochemistry on an electrode, films made of oppositely charged macromolecules. This method relies on a charge-shifting polyanion, dimethylmaleic-modified poly(allylamine) (PAHd), that undergoes hydrolysis at acidic pH, leading to an overall switching of its charge. When a mixture of the two polyanions, PAHd and poly(styrenesulfonate) (PSS), is placed in contact with an electrode, where the pH is decreased locally by electrochemistry, the transformation of PAHd into a polycation (PAH) leads to the continuous self-assembly of a nanometric PAH/PSS film by electrostatic interactions. The pH decrease is obtained by the electrochemical oxidation of hydroquinone, which produces protons locally over nanometric distances. Using a negatively charged enzyme, alkaline phosphatase (AP), instead of PSS, this one-pot process allows the creation of enzymatically active films. Under mild conditions, self-assembled PAH/AP films have an enzymatic activity which is adjustable simply by controlling the self-assembly time. The selective functionalization of microelectrode arrays by PAH/AP was achieved, opening the route toward miniaturized biosensors.

  10. Effect of thiol pendant conjugates on plasmid DNA binding, release, and stability of polymeric delivery vectors.

    Science.gov (United States)

    Bacalocostantis, Irene; Mane, Viraj P; Kang, Michael S; Goodley, Addison S; Muro, Silvia; Kofinas, Peter

    2012-05-14

    Polymers have attracted much attention as potential gene delivery vectors due to their chemical and structural versatility. However, several challenges associated with polymeric carriers, including low transfection efficiencies, insufficient cargo release, and high cytotoxicity levels have prevented clinical implementation. Strong electrostatic interactions between polymeric carriers and DNA cargo can prohibit complete cargo release within the cell. As a result, cargo DNA never reaches the cell's nucleus where gene expression takes place. In addition, highly charged cationic polymers have been correlated with high cytotoxicity levels, making them unsuitable carriers in vivo. Using poly(allylamine) (PAA) as a model, we investigated how pH-sensitive disulfide cross-linked polymer networks can improve the delivery potential of cationic polymer carriers. To accomplish this, we conjugated thiol-terminated pendant chains onto the primary amines of PAA using 2-iminothiolane, developing three new polymer vectors with 5, 13, or 20% thiol modification. Unmodified PAA and thiol-conjugated polymers were tested for their ability to bind and release plasmid DNA, their capacity to protect genetic cargo from enzymatic degradation, and their potential for endolysosomal escape. Our results demonstrate that polymer-plasmid complexes (polyplexes) formed by the 13% thiolated polymer demonstrate the greatest delivery potential. At high N/P ratios, all thiolated polymers (but not unmodified counterparts) were able to resist decomplexation in the presence of heparin, a negatively charged polysaccharide used to mimic in vivo polyplex-protein interactions. Further, all thiolated polymers exhibited higher buffering capacities than unmodified PAA and, therefore, have a greater potential for endolysosomal escape. However, 5 and 20% thiolated polymers exhibited poor DNA binding-release kinetics, making them unsuitable carriers for gene delivery. The 13% thiolated polymers, on the other hand

  11. Identification and quality assessment of beverages using a long period grating fibre-optic sensor modified with a mesoporous thin film

    Directory of Open Access Journals (Sweden)

    Sergiy Korposh

    2014-08-01

    Full Text Available In this study, an optical fibre long period grating (LPG sensor functionalised with a mesoporous thin film was employed for the identification and quality assessment of beverages. The principle of the discrimination of beverages using an LPG sensor is based on the measurement of the change in refractive index of a sensitive film, induced by the binding of the chemical compounds present in the beverage. The sensitive film deposited onto the LPG consisted of poly(allylamine hydrochloride (PAH and silica nanospheres (SiO2 NPs with diameters ranging from 40 nm to 50 nm. PAH imparts selectivity, while the SiO2 NPs endow the film with high porosity and enhanced sensitivity. In this study, five different types of beverages, red and white wines, brandy, nihonshyu (sake, a Japanese rice wine, and shochu (a Japanese distilled beverage, prepared via distillation and fermentation, were used to assess the capability of the sensor to identify the origin of the beverages. In addition, a selection of red wines was used to evaluate the use of the sensor in the assessment of the quality of beverages. The results obtained were benchmarked against those obtained using gas chromatography–mass spectrometry for the determination of volatile compounds contributing to the flavours of a set of red wines. Principal component analysis (PCA was employed for data analysis. This approach enabled both quality assessment of beverages and identification of the methods and materials used for their preparation. Keywords: Long period grating, Mesoporous thin film, Layer-by-layer, Quality assessment, Beverages

  12. Stability of silver nanoparticle monolayers determined by in situ streaming potential measurements

    International Nuclear Information System (INIS)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena

    2013-01-01

    A silver particle suspension obtained by a chemical reduction was used in this work. Monolayers of these particles (average size 28 nm) on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverages, quantitatively determined by atomic force microscopy (AFM) and SEM, was regulated by adjusting the nanoparticle deposition time and the suspension concentration. The zeta potential of the monolayers was determined by streaming potential measurements carried out under in situ (wet) conditions. These measurements performed for various ionic strengths and pH were interpreted in terms of the three-dimensional (3D) electrokinetic model. The stability of silver monolayers was also investigated using streaming potential and the AFM methods. The decrease in the surface coverage of particles as a function of time and ionic strength varied between 10 −1 and 10 −4  M was investigated. This allowed one to determine the equilibrium adsorption constant K a and the binding energy of silver particles (energy minima depth). Energy minima depth were calculated that varied between −18 kT for I = 10 −1  M and −19 kT for I = 10 −4 for pH 5.5 and T = 298 K. Our investigations suggest that the interactions between surface and nanoparticles are controlled by the electrostatic interactions among ion pairs. It was also shown that the in situ electrokinetic measurements are in accordance with those obtained by more tedious ex situ AFM measurements. This confirmed the utility of the streaming potential method for direct kinetic studies of nanoparticle deposition/release processes.Graphical Abstract

  13. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Bryce W.; Linman, Matthew J.; Linley, Kamara S.; Hare, Christopher D. [Department of Chemistry, University of California, Riverside, CA 92521 (United States); Cheng Quan, E-mail: quan.cheng@ucr.ed [Department of Chemistry, University of California, Riverside, CA 92521 (United States)

    2010-06-01

    Thin organic films with desirable redox properties have long been sought in biosensor research. We report here the development of a polymer thin film interface with well-defined hierarchical nanostructure and electrochemical behavior, and its characterization by electrochemical surface plasmon resonance (ESPR) spectroscopy. The nano-architecture build-up is monitored in real time with SPR, while the redox response is characterized by cyclic voltammetry in the same flow cell. The multilayer assembly is built on a self-assembled monolayer (SAM) of 1:1 (molar ratio) 11-ferrocenyl-1-undecanethiolate (FUT) and mercaptoundecanoic acid (MUA), and constructed using a layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrenesulfonate) (PSS). Electron transfer (ET) on the mixed surface and the effect of the layer structures on ET are systematically studied. Under careful control, multiple layers can be deposited onto the 1:1 FUT/MUA SAM that presents unobstructed redox chemistry, indicating a highly ordered, extensively porous structure obtained under this condition. The use of SPR to trace the minute change during the electrochemical process offers neat characterization of local environment at the interface, in particular double layer region, allowing for better control over the redox functionality of the multilayers. The 1:1 SAM has a surface coverage of 4.1 +- 0.3 x 10{sup -10} mol cm{sup -2} for ferrocene molecules and demonstrates unperturbed electrochemistry activity even in the presence of a 13 nm polymer film adhered to the electrode surface. This thin layer possesses some desirable properties similar to those on a SAM while presenting approx15 nm exceedingly porous structure for high loading capacity. The high porosity allows perchlorate to freely partition into the film, leading to high current density that is useful for sensitive electrochemical measurements.

  14. Synergistic interaction between gold nanoparticles and nickel phthalocyanine in layer-by-layer (LbL) films: evidence of constitutional dynamic chemistry (CDC).

    Science.gov (United States)

    Alencar, Wagner S; Crespilho, Frank N; Martins, Marccus V A; Zucolotto, Valtencir; Oliveira, Osvaldo N; Silva, Welter C

    2009-07-07

    The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

  15. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    International Nuclear Information System (INIS)

    Raposo, Maria; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A.; Ferreira, Quirina; Botelho do Rego, Ana Maria

    2015-01-01

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior

  16. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy

    Directory of Open Access Journals (Sweden)

    Gao X

    2012-07-01

    Full Text Available Xin Gao,1,* Yun Luo,1,* Yuanyuan Wang,1,* Jun Pang,1 Chengde Liao,2 Hanlun Lu,3 Youqiang Fang11Department of Urology, The Third Affiliated Hospital, 2Department of Radiology, The Second Affiliated Hospital, Sun Yat-Sen University, 3Materials Science Institute of Zhongshan University, Guangzhou, China*These authors contributed equally to this workBackground: We designed dual-functional nanoparticles for in vivo application using a modified electrostatic and covalent layer-by-layer assembly strategy to address the challenge of assessment and treatment of hormone-refractory prostate cancer.Methods: Core-shell nanoparticles were formulated by integrating three distinct functional components, ie, a core constituted by poly(D,L-lactic-co-glycolic acid, docetaxel, and hydrophobic superparamagnetic iron oxide nanocrystals (SPIONs, a multilayer shell formed by poly(allylamine hydrochloride and two different sized poly(ethylene glycol molecules, and a single-chain prostate stem cell antigen antibody conjugated to the nanoparticle surface for targeted delivery.Results: Drug release profiles indicated that the dual-function nanoparticles had a sustained release pattern over 764 hours, and SPIONs could facilitate the controlled release of the drug in vitro. The nanoparticles showed increased antitumor efficiency and enhanced magnetic resonance imaging in vitro through targeted delivery of docetaxel and SPIONs to PC3M cells. Moreover, in nude mice bearing PC3M xenografts, the nanoparticles provided MRI negative contrast enhancement, as well as halting and even reversing tumor growth during the 76-day study duration, and without significant systemic toxicity. The lifespan of the mice treated with these targeted dual-function nanoparticles was significantly increased (Chi-square = 22.514, P < 0.0001.Conclusion: This dual-function nanomedical platform may be a promising candidate for tumor imaging and targeted delivery of chemotherapeutic agents in vivo

  17. [Interaction of protein with charged colloidal particles].

    Science.gov (United States)

    Durdenko, E V; Kuznetsova, S M; Basova, L V; Tikhonenko, S A; Saburova, E A

    2011-01-01

    The functional state of three proteins of different molecular weight (urease, lactate dehydrogenase, and hemoglobin) in the presence of the linear polyelectrolytes poly(allylamine hydrochloride) (PAA) and sodium poly(styrenesulfonate) (PSS) in the dissolved state and of the same polyelectrolytes bound to the surface of microspheres has been investigated. Microspheres were prepared by consecutive absorption of oppositely charged polyelectrolytes so that the outer layer of the shell was PAA for the acidic protein urease, and PSS for the alkaline proteins LDH and hemoglobin. It was shown that the dissolved polyelectrolyte completely inactivates all three proteins within one minute with a slight difference in the time constant. (By Hb inactivation are conventionally meant changes in the heme environment observed from the spectrum in the Soret band.) In the presence of microspheres, the proteins were adsorbed on their surface; in this case, more than 95% of the activity was retained within two hours. The proportion of the protein adsorbed on microspheres accounted for about 98% for urease, 72% for Hb, and 35% for LDH, as determined from the tryptophan fluorescence data. The interaction of hemoglobin with another type of charged colloidal particles, phospholipid vesicles, leads to the destruction of the tertiary structure of the protein, which made itself evident in the optical absorption spectra in the Soret band, as well as the spectra of tryptophan fluorescence and circular dichroism. In this case, according to circular dichroism, the percentage of alpha-helical structure of Hb was maintained. The differences in the physical and chemical mechanisms of interaction of proteins with these two types of charged colloidal particles that leads to differences in the degree of denaturing effects are discussed.

  18. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles.

    Science.gov (United States)

    Yang, Guangbin; Ma, Hongxia; Yu, Laigui; Zhang, Pingyu

    2009-05-15

    SiO(2) nanoparticles capped with gamma-aminopropyltrimethoxysilane were doped into polyelectrolyte (poly(allylamine hydrochloride), PAH, and poly(acrylic acid), PAA) multilayer films via spin-assisted layer-by-layer self-assembly. The resulting as-prepared multilayer films were heated at a proper temperature to generate cross-linked composite films with increased adhesion to substrates. The tribological behavior of the multilayer films was evaluated on a microtribometer. It was found that SiO(2)-doped composite films had better wear resistance than pure polyelectrolyte multilayers, possibly because doped SiO(2) nanoparticles were capable of enhancing load-carrying capacity and had "miniature ball bearings" effect. Moreover, heat-treatment had significant effect on the morphology of the composite films. Namely, heat-treated (SiO(2)/PAA)(9) film had a larger roughness than the as-prepared one, due to heat-treatment-induced agglomeration of SiO(2) nanoparticles and initiation of defects. However, heat-treated (PAH/PAA)(3)/(SiO(2)/PAA)(3)(PAH/PAA)(3) film had greatly reduced roughness than the as-prepared one, and it showed considerably improved wear resistance as well. This could be closely related to the "sandwich-like" structure of the composite multilayer film. Namely, the outermost strata of composite multilayer film were able to eliminate defects associated with the middle strata, allowing nanoparticles therein to maintain strength and robustness while keeping soft and fluid-like exposed surface. And the inner strata were well anchored to substrate and acted as an initial "bed" for SiO(2) nanoparticles to be inhabited, resulting in good antiwear ability.

  19. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    International Nuclear Information System (INIS)

    Wang, Tianshu; Liu, Jiyang; Gu, Xiaoxiao; Li, Dan; Wang, Jin; Wang, Erkang

    2015-01-01

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10 6 cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10 6 cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells

  20. Contribution of counterions and degree of ionization for birefringence creation and relaxation kinetics parameters of PAH/PAZO films

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, Maria, E-mail: mfr@fct.unl.pt; Monteiro Timóteo, Ana Rita; Ribeiro, Paulo A. [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, UNL, Campus de Caparica, 2829-516 Caparica (Portugal); Ferreira, Quirina [CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, UNL, Campus de Caparica, 2829-516 Caparica (Portugal); Instituto de Telecomunicações, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Botelho do Rego, Ana Maria [Centro de Química-Física Molecular and IN, Complexo Interdisciplinar, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa (Portugal)

    2015-09-21

    Photo induced birefringent materials can be used to develop optical and conversion energy devices, and consequently, the study of the variables that influences the creation and relaxation of birefringence should be carefully analyzed. In this work, the parameters of birefringence creation and relaxation kinetics curves obtained on layer-by-layer (LBL) films, prepared from azo-polyectrolyte poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and poly(allylamine hydrochloride)(PAH), are related with the presence of counterions and the degree of ionization of the polyelectrolytes. Those kinetics curves obtained on PAH/PAZO LBL films, prepared from PAH solutions with different pHs and maintaining the pH of PAZO solution constant at pH = 9, were analyzed taking into account the films composition which was characterized by X-ray photoelectron spectroscopy. The creation and relaxation birefringence curves are justified by two processes: one associated to local mobility of the azobenzene with a characteristic time 30 s and intensity constant and other associated with polymeric chains mobility with the characteristic time and intensity decreasing with pH. These results allow us to conclude that the birefringence creation process, associated to local mobility of azobenzenes is independent of the degree of ionization and of number of counterions or co-ions present while the birefringence creation process associated to mobility of chains have its characteristic time and intensity dependent of both degree of ionization and number of counterions. The birefringence relaxation processes are dependent of the degree of ionization. The analysis of the films composition revealed, in addition, the presence of a protonated secondary or tertiary amine revealing that PAZO may have positive charges and consequently a zwitterionic behavior.

  1. Generic Delivery of Payload of Nanoparticles Intracellularly via Hybrid Polymer Capsules for Bioimaging Applications

    Science.gov (United States)

    Sami, Haider; Maparu, Auhin K.; Kumar, Ashok; Sivakumar, Sri

    2012-01-01

    Towards the goal of development of a generic nanomaterial delivery system and delivery of the ‘as prepared’ nanoparticles without ‘further surface modification’ in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM) capsules has been reported, where polystyrene sulfonate (PSS)/polyallylamine hydrochloride (PAH) polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles) in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells), without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb3+ was observed after internalization of LaF3:Tb3+(5%) nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery) without the need of individual cargo design/modification. PMID:22649489

  2. Generic delivery of payload of nanoparticles intracellularly via hybrid polymer capsules for bioimaging applications.

    Directory of Open Access Journals (Sweden)

    Haider Sami

    Full Text Available Towards the goal of development of a generic nanomaterial delivery system and delivery of the 'as prepared' nanoparticles without 'further surface modification' in a generic way, we have fabricated a hybrid polymer capsule as a delivery vehicle in which nanoparticles are loaded within their cavity. To this end, a generic approach to prepare nanomaterials-loaded polyelectrolyte multilayered (PEM capsules has been reported, where polystyrene sulfonate (PSS/polyallylamine hydrochloride (PAH polymer capsules were employed as nano/microreactors to synthesize variety of nanomaterials (metal nanoparticles; lanthanide doped inorganic nanoparticles; gadolinium based nanoparticles, cadmium based nanoparticles; different shapes of nanoparticles; co-loading of two types of nanoparticles in their hollow cavity. These nanoparticles-loaded capsules were employed to demonstrate generic delivery of payload of nanoparticles intracellularly (HeLa cells, without the need of individual nanoparticle surface modification. Validation of intracellular internalization of nanoparticles-loaded capsules by HeLa cells was ascertained by confocal laser scanning microscopy. The green emission from Tb(3+ was observed after internalization of LaF(3:Tb(3+(5% nanoparticles-loaded capsules by HeLa cells, which suggests that nanoparticles in hybrid capsules retain their functionality within the cells. In vitro cytotoxicity studies of these nanoparticles-loaded capsules showed less/no cytotoxicity in comparison to blank capsules or untreated cells, thus offering a way of evading direct contact of nanoparticles with cells because of the presence of biocompatible polymeric shell of capsules. The proposed hybrid delivery system can be potentially developed to avoid a series of biological barriers and deliver multiple cargoes (both simultaneous and individual delivery without the need of individual cargo design/modification.

  3. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  4. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly.

    Science.gov (United States)

    Costa, Eunice; Lloyd, Margaret M; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T

    2012-07-03

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.

  5. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-06-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  6. Core-shell diamond as a support for solid-phase extraction and high-performance liquid chromatography.

    Science.gov (United States)

    Saini, Gaurav; Jensen, David S; Wiest, Landon A; Vail, Michael A; Dadson, Andrew; Lee, Milton L; Shutthanandan, V; Linford, Matthew R

    2010-06-01

    We report the formation of core-shell diamond particles for solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO(2) surfaces, which were characterized by scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer-Emmett-Teller (BET) surface area and pore size measurements. Larger (ca. 50 microm) core-shell diamond particles have much higher surface areas and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 microm), normal and reversed-phase, core-shell diamond particles have been used for HPLC, with 36,300 plates/m for mesitylene in a separation of benzene and alkyl benzenes and 54,800 plates/m for diazinon in a similar separation of two pesticides on a C(18) adsorbent.

  7. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part I)

    Science.gov (United States)

    Fernandez, C. A.; Jung, H. B.; Shao, H.; Bonneville, A.; Heldebrant, D.; Hoyt, D.; Zhong, L.; Holladay, J.

    2014-12-01

    Cost-effective yet safe creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the viability of enhanced geothermal systems and unconventional oil/gas recovery. Current reservoir stimulation processes utilize brute force (hydraulic pressures in the order of hundreds of bar) to create/propagate fractures in the bedrock. Such stimulation processes entail substantial economic costs ($3.3 million per reservoir as of 2011). Furthermore, the environmental impacts of reservoir stimulation are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To reduce the costs and environmental impact of reservoir stimulation, we developed an environmentally friendly and recyclable hydraulic fracturing fluid that undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at temperatures relevant for reservoir stimulation in Enhanced Geothermal System (EGS). The volume expansion, which will specifically occurs at EGS depths of interest, generates an exceptionally large mechanical stress in fracture networks of highly impermeable rock propagating fractures at effective stress an order of magnitude lower than current technology. This paper will concentrate on the presentation of this CO2-triggered expanding hydrogel formed from diluted aqueous solutions of polyallylamine (PAA). Aqueous PAA-CO2 mixtures also show significantly higher viscosities than conventional rheology modifiers at similar pressures and temperatures due to the cross-linking reaction of PAA with CO2, which was demonstrated by chemical speciation studies using in situ HP-HT 13C MAS-NMR. In addtion, PAA shows shear-thinning behavior, a critical advantage for the use of this fluid system in EGS reservoir stimulation. The high pressure/temperature experiments and their results as well

  8. Functionalised nanoscale coatings using layer-by-layer assembly for imparting antibacterial properties to polylactide-co-glycolide surfaces.

    Science.gov (United States)

    Gentile, Piergiorgio; Frongia, Maria E; Cardellach, Mar; Miller, Cheryl A; Stafford, Graham P; Leggett, Graham J; Hatton, Paul V

    2015-07-01

    In order to achieve high local biological activity and reduce the risk of side effects of antibiotics in the treatment of periodontal and bone infections, a localised and temporally controlled delivery system is desirable. The aim of this research was to develop a functionalised and resorbable surface to contact soft tissues to improve the antibacterial behaviour during the first week after its implantation in the treatment of periodontal and bone infections. Solvent-cast poly(d,l-lactide-co-glycolide acid) (PLGA) films were aminolysed and then modified by Layer-by-Layer technique to obtain a nano-layered coating using poly(sodium4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) as polyelectrolytes. The water-soluble antibiotic, metronidazole (MET), was incorporated from the ninth layer. Infrared spectroscopy showed that the PSS and PAH absorption bands increased with the layer number. The contact angle values had a regular alternate behaviour from the ninth layer. X-ray Photoelectron Spectroscopy evidenced two distinct peaks, N1s and S2p, indicating PAH and PSS had been introduced. Atomic Force Microscopy showed the presence of polyelectrolytes on the surface with a measured roughness about 10nm after 20 layers' deposition. The drug release was monitored by Ultraviolet-visible spectroscopy showing 80% loaded-drug delivery in 14 days. Finally, the biocompatibility was evaluated in vitro with L929 mouse fibroblasts and the antibacterial properties were demonstrated successfully against the keystone periodontal bacteria Porphyromonas gingivalis, which has an influence on implant failure, without compromising in vitro biocompatibility. In this study, PLGA was successfully modified to obtain a localised and temporally controlled drug delivery system, demonstrating the potential value of LbL as a coating technology for the manufacture of medical devices with advanced functional properties. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd

  9. Surface analysis monitoring of polyelectrolyte deposition on Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Fachini, Estevao R.; Miranda, Felix A.; Cabrera, Carlos R.

    2007-01-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in . The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and

  10. Layer-by-layer polyelectrolyte films for contact electric energy harvesting

    International Nuclear Information System (INIS)

    Guo, X D; Helseth, L E

    2015-01-01

    We report how self-assembly of polyelectrolyte thin films alters the contact electrification of polyimide polymer films used in contact based triboelectric energy harvesting systems. Polyimide films of the same size do produce a very small current when brought into contact. However, by covering one of the polyimide films with a polyelectrolyte thin film terminated by positively charged poly(allylamine hydrochloride) (PAH), the current is reversed and a much larger current and voltage are generated upon contact with the other polyimide film. A similar increase in contact current is not seen for polyelectrolyte thin films terminated by the negatively charged poly(sodium 4-styrenesulfonate). The PAH-terminated Kapton films are used to create an energy harvesting system providing a voltage of about 60 V and a current of 10 μA. At an average power of 11 μW for a load resistance of 100 MΩ, the energy harvester is able to power several light emitting diodes. Further studies on the contact electrification of the polyelectrolyte demonstrate that nanostructuring of the polymer surface using reactive ion etching does not give rise to polarity reversal. This is explained as hidden pockets of charge not accessible to PAH molecules, but which become accessible when the polymer is put under stress. Although the current originating for a PAH-terminated multilayer film does initially have the opposite sign to that of bare polyimide, it is found that the polarity will switch after subjecting it to a periodical mechanical force. Characteristic changes in current signatures associated with the switch are found, and are interpreted as mechanical interpenetration of the charged layers. (paper)

  11. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate.

    Science.gov (United States)

    Fan, Jinxin; Luo, Jianquan; Chen, Xiangrong; Wan, Yinhua

    2017-03-24

    In this study, a polyvinylidene fluoride (PVDF) hydrophobic membrane with high mechanical property was used as substrate to prepare salt-tolerant anion-exchange (STAE) membrane adsorber. Effective hydrophilization and functionalization of PVDF membrane was realized via polydopamine (PDA) deposition, thus overcoming the drawbacks of hydrophobic substrates including poor water permeability, inert property as well as severe non-specific adsorption. The following polyallylamine (PAH) coupling was carried out at pH 10.0, where unprotonated amine groups on PAH chains were more prone to couple with PDA. This membrane adsorber could remain 75% of protein binding capacity when NaCl concentration increased from 0 to 150mM, while its protein binding capacity was independent of flow rate from 10 to 100 membrane volume (MV)/min due to its high mechanical strength (tensile strength: 43.58±2.30MPa). With 200mM NaCl addition at pH 7.5, high purity (above 99%) and high recovery (almost 100%) of Immunoglobulin G (IgG) were obtained when using the STAE membrane adsorber to separate IgG/human serum albumin (HSA) mixture, being similar to that without NaCl at pH 6.0 (both under the flow rate of 10-100MV/min). Finally, the reliable reusability was confirmed by five reuse cycles of protein binding and elution operations. In comparison with commercial membrane adsorber, the new membrane adsorber exhibited a better mechanical property, higher IgG polishing efficiency and reusability, while the protein binding capacity was lower due to less NH 2 density on the membrane. The outcome of this work not only offers a facile and effective approach to prepare membrane adsorbers based on hydrophobic membranes, but also demonstrates great potential of this new designed STAE membrane adsorbers for efficient monoclonal antibody (mAb) polishing. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    Science.gov (United States)

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  13. Templated ultrathin polyelectrolyte microreservoir for delivery of bovine serum albumin: fabrication and performance evaluation.

    Science.gov (United States)

    Gupta, Girish K; Jain, Vikas; Mishra, Prabhat Ranjan

    2011-03-01

    The aim of the study was to develop ultrathin polyelectrolyte microreservoir (UPM) using two combinations of synthetic/synthetic (S/s; poly(allylamine hydrochloride) (PAH)/sodium poly(styrenesulfonate)) and synthetic/natural (S/n; PAH/sodium alginate) polyelectrolytes over spherical porous CaCO(3) core particles (CP) followed by core removal and to evaluate its biocompatibility and integrity of loaded model protein bovine serum albumin (BSA). A novel process for synthesis of CP was developed to obtain maximum yield of monodisperse vaterite (spherical) polymorph. The prepared UPM was characterized for surface morphology, layer-by-layer growth, pay load efficiency, integrity of BSA, as well as viability and cell adhesion using murine J 774 macrophages (Φ). In vitro release profile revealed that both S/s and S/n UPM were able to provide sufficient diffusion barrier to release protein at physiological pH. It has been observed that S/n UPM are fully biocompatible due to obvious reason of using natural polymer. In a separate experiment, the S/s UPM surface was modified with pluronic F-68 to tune biocompatibility which provides evidences for safety and tolerability of the S/s UPM as well. In nutshell, the proposed system could successfully be used for the delivery of proteins, and moreover, the system can be tailored to impart desired properties at any stage of layering especially in terms of drug release and to retain the integrity of proteins. © 2011 American Association of Pharmaceutical Scientists

  14. Label-free electrochemical aptasensor constructed by layer-by-layer technology for sensitive and selective detection of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianshu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Liu, Jiyang; Gu, Xiaoxiao; Li, Dan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [College of Physics, Jilin University, Changchun, Jilin 130012 (China); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China); Department of Chemistry, Physics and Applied Mathematics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Wang, Erkang, E-mail: ekwang@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2015-07-02

    Highlights: • Fc-PAH was modified on the surface of graphene to prepare hybid nanocomposite (Fc-PAH-G). • A cytosensor was constructed with Fc-PAH-G, PSS and aptamer AS1411 by LBL technology. • The sensing interface introduced more redox probe and enhanced current signal on electrode. • The sensor showed a detection range of 10–10{sup 6} cells/mL with a detection limit of 10 cells/mL. - Abstract: Here, a cytosensor was constructed with ferrocene-appended poly(allylamine hydrochloride) (Fc-PAH) functionalized graphene (Fc-PAH-G), poly(sodium-p-styrenesulfonate) (PSS) and aptamer (AS1411) by layer-by-layer assembly technology. The hybrid nanocomposite Fc-PAH-G not only brings probes on the electrode and also promotes electron transfer between the probes and the substrate electrode. Meanwhile, LBL technology provides more effective probes to enhance amplified signal for improving the sensitivity of the detection. While AS1411 forming G-quardruplex structure and binding cancer cells, the current response of the sensing electrode decreased due to the insulating properties of cellular membrane. Differential pulse voltammetry (DPV) was performed to investigate the electrochemical detection of HeLa cells attributing to its sensitivity of the current signal change. The as-prepared aptasensor showed a high sensitivity and good stability, a widely detection range from 10 to 10{sup 6} cells/mL with a detection limit as low as 10 cells/mL for the detection of cancer cells.

  15. Live celloidosome structures based on the assembly of individual cells by colloid interactions.

    Science.gov (United States)

    Fakhrullin, Rawil F; Brandy, Marie-Laure; Cayre, Olivier J; Velev, Orlin D; Paunov, Vesselin N

    2010-10-14

    A new class of colloid structures, celloidosomes, has been developed which represent hollow microcapsules whose membranes consist of a single monolayer of living cells. Two routes for producing these structures were designed based on templating of: (i) air bubbles and (ii) anisotropic microcrystals of calcium carbonate with living cells, which allowed us to fabricate celloidosomes of spherical, rhombohedral and needle-like morphologies. Air microbubbles were templated by yeast cells coated with poly(allylamine hydrochloride) (PAH), then coated with carboxymethylcellulose and rehydrated resulting in the formation of spherical multicellular structures. Similarly, calcium carbonate microcrystals of anisotropic shapes were coated with several consecutive layers of oppositely charged polyelectrolytes to obtain a positive surface charge which was used to immobilise yeast cells coated with anionic polyelectrolyte of their surfaces. After dissolving of sacrificial cores, hollow multicellular structures were obtained. The viability of the cells in the produced structures was confirmed by using fluorescein diacetate. In order to optimize the separation of celloidosomes from free cells magnetic nanoparticles were immobilised onto the surface of templates prior to the cells deposition, which greatly facilitated the separation using a permanent magnet. Two alternative approaches were developed to form celloidosome structures using magnetically functionalised core-shell microparticles which resulted in the formation of celloidosomes with needle-like and cubic-like geometries which follows the original morphology of the calcium carbonate microcrystals. Our methods for fabrication of celloidosomes may found applications in the development of novel symbiotic bio-structures, artificial multicellular organisms and in tissue engineering. The unusual structure of celloidosomes resembles the primitive forms of multicellular species, like Volvox, and other algae and could be regarded as

  16. Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.

    Science.gov (United States)

    Yoshida, Kentaro

    2017-01-01

    Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.

  17. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  18. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-01-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 ?m) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 ?m), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  19. Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Gaelle, E-mail: gaelle.aziz@ugent.be; Thukkaram, Monica; De Geyter, Nathalie; Morent, Rino

    2017-07-01

    Highlights: • Medium to atmospheric pressure DBD is used to deposit amino rich films. • Process parameters affect the films’ surface chemical and physical properties. • High deposition rates can be reached by varying the power and/or monomer flow rate. • High amino selectivity (NH{sub 2}/N in %) is obtained at low powers and high monomer concentration. • Aging and stability behaviors of the deposited coatings can be controlled by carefully choosing the plasma parameters. - Abstract: In this work, a dielectric barrier discharge (DBD) operated at medium to atmospheric pressure has been used for the deposition of thin polyallylamine (PAA) films on ultra-high molecular weight polyethylene (UHMWPE) substrates. The effect of treatment time (1–5 min), discharge power (5.7–24.0 W), monomer concentration (1–2 g/h) and pressure (10–100 kPa) on the films properties, aging and stability behaviors have been investigated. The used characterization techniques are X-ray photoelectron spectroscopy, water contact angle and optical reflectance spectroscopy. In this paper, it is shown that plasma treatment time does not affect the coatings chemistry; whereas plasma power, monomer concentration and pressure control the coatings properties. It is also shown that the deposition rate of the deposited films changes with varying W/FM values. At low W/FM values, high deposition rates of up to 2 nm/s are observed. Plasma treatments were also characterized by their amino efficiency ([NH{sub 2}]/[C] in %) and amino selectivity ([NH{sub 2}]/[N] in %). Depending on the used parameters, these varied between 12.3% and 20% and between 71.2% and 91.1%, respectively. For the aging study, coatings that preserved most of their hydrophilicity were obtained at power ≤11.3 W, monomer concentration ≥1.5 g/h and pressure ≥50 kPa. For the stability study, coatings that showed the highest [N] (%) and lowest percentage of thickness decrease were obtained at ≤2 min, 24.0 W, 1 g/h and

  20. Synthesis and characterization of titania nanotubes and gold nanoparticles nanocomposites for hydrogen production improvement

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Rhauane Almeida, E-mail: rhaugalvao@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE(Brazil); Silva, Germana Michelle Medeiros e; Machado, Giovanna [Centro de Tecnologias Estrategicas do Nordeste, Recife, PE (Brazil)

    2016-07-01

    Full text: In the New Policies Scenario, world electricity demand increases by almost 80% over the period 2012-2040. According to this, the world will need to increase energy supply and cleanly-generated electricity. Besides renewable energy sources such as solar energy have a high cost, it can provide clean power. Because of this, it is of great interest to create new devices capable to absorb and convert solar into electrical energy. Titanium dioxide (TiO{sub 2}) is a great searched semiconductor for solar energy conversion because of its great stability and low cost, besides its low solar energy absorption (± 5% of solar spectrum). Sensitization with nanoparticles, such as gold (Au), is a good alternative to increase its efficiency. Using architectures such as nanotubes (NTs) and nanoparticles (NPs) is of interesting because of the unique properties achieved at these dimensions. To bind Au Nps into TiO{sub 2} NTs is a great challenge. Using self assembled thin films is a good option because of its operability. On this study, amorphous TiO{sub 2} NTs were synthesized by anodization of a Ti foil using an organic electrolyte with a set potential during 30 minutes. After this, the self-assembly method was used on the tubes using Poly(Allylamine Hydrochloride) (PAH) as polycation and Poly(Acrilic Acid) (PAA) as polyanion, completing 10 and 10.5. Then, the samples were immersed in a solution of Tetrachloroauric acid (HAuCl{sub 4}) at different pHs during 2 hours, lightly washed and submitted to UV-radiation during 24 hours. In order to make a comparison, it has been prepared samples without binds. At last, the samples were heat treated at 400°C during 3 hours to obtain TiO2 anatase phase. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Diffuse Reflectance Spectroscopy characterized the samples. Finally, the hydrogen production was evaluated using a solar simulator and gas chromatography. The results show that the use of a bind is greatly favorable to

  1. Processable Conducting Polyaniline, Carbon Nanotubes, Graphene and Their Composites

    Science.gov (United States)

    Wang, Kan

    novel water soluble synthetic mussel adhesive containing both catechol and amine groups are synthesized in a simple approach. A polyallylamine backbone is used to take the place of the polyamide chain. Catechol is appended to the backbone as the key cross-linking group. Compared to polyallyamine, poly[N-(3,4- dihydroxybenzylidene)allylamine] exhibits good adhesion under alkaline water due to moderate cross-linking. When exposed to cross-linkers, this synthetic mussel adhesive can form a hydrogel at a very low concentration. Various methods were tried to attach catechol group onto polyaniline and graphene to make synthetic conductive mussel adhesive. Although the chemistry proved to be successful, the material doesn't show great adhesion to selected substrates probably due the nature of the backbone and difficulties associated with its processability

  2. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    International Nuclear Information System (INIS)

    Martinez, Jessica S.; Schlenoff, Joseph B.; Keller, Thomas C.S.

    2016-01-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  3. Pellicular particles with spherical carbon cores and porous nanodiamond/polymer shells for reversed-phase HPLC.

    Science.gov (United States)

    Wiest, Landon A; Jensen, David S; Hung, Chuan-Hsi; Olsen, Rebecca E; Davis, Robert C; Vail, Michael A; Dadson, Andrew E; Nesterenko, Pavel N; Linford, Matthew R

    2011-07-15

    A new stationary phase for reversed-phase high performance liquid chromatography (RP HPLC) was created by coating spherical 3 μm carbon core particles in a layer-by-layer (LbL) fashion with poly(allylamine) (PAAm) and nanodiamond. Unfunctionalized core carbon particles were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and Raman spectroscopy. After LbL of PAAm and nanodiamond, which yields ca. 4 μm core-shell particles, the particles were simultaneously functionalized and cross-linked using a mixture of 1,2-epoxyoctadecane and 1,2,7,8-diepoxyoctane to obtain a mechanically stable C(18)/C(8) bonded outer layer. Core-shell particles were characterized by SEM, and their surface area, pore diameter, and volume were determined using the Brunauer-Emmett-Teller (BET) method. Short stainless steel columns (30 × 4.6 mm i.d.) were packed and the corresponding van Deemter plots obtained. The Supporting Information contains a MATLAB program used to fit the van Deemter data. The retentions of a suite of analytes were investigated on a conventional HPLC at various organic solvent compositions, pH values of mobile phases, including extreme pH values, and column temperatures. At 60 °C, a chromatogram of 2,6-diisopropylphenol showed 71,500 plates/m (N/m). Chromatograms obtained under acidic conditions (pH 2.7) of a mixture of acetaminophen, diazepam, and 2,6-diisopropylphenol and a mixture of phenol, 4-methylphenol, 2-chlorophenol, 4-chlorophenol, 4-bromophenol, and 1-tert-butyl-4-methylphenol are presented. Retention of amitriptyline, cholesterol, and diazinon at temperatures ranging from 35 to 80 °C and at pH 11.3 is reported. A series of five basic drugs was also separated at this pH. The stationary phase exhibits considerable hydrolytic stability at high pH (11.3) and even pH 13 over extended periods of time. An analysis run on a UHPLC with a "sandwich" injection

  4. Study of electrostatically self-assembled thin films of CdS and ZnS nanoparticle semiconductors

    Science.gov (United States)

    Suryajaya

    In this work, CdS and ZnS semiconducting colloid nanoparticles coated with organic shell, containing either SO[3-] or NH[2+] groups, were deposited as thin films using the technique of electrostatic self-assembly. The films produced were characterized with UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic force microscopy (AFM) - for morphology study; mercury probe - for electrical characterisation; and photon counter - for electroluminescence study. UV-vis spectra show a substantial blue shift of the main absorption band of both CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and ZnS.The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle layers of around 5 nm for both CdS and ZnS which corresponds well to the size of particles evaluated from UV-vis spectral data if an additional thickness of the organic shell is taken into account. The values of refractive index (n) and extinction coefficient (k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.Using total internal reflection (TIRE), the process of alternative deposition of poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in-situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gavethicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the suggestion of the formation of three-dimensional aggregates of semiconductor nanoparticles intercalated with polyelectrolyte.AFM images show the formation of large aggregates of nanoparticles, about 40-50 nm, for the films deposited from original colloid solutions, while smaller aggregates, about 12-20 nm, were obtained if the colloid solutions were diluted.Current-voltage (I-V) and capacitance

  5. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jessica S. [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States); Schlenoff, Joseph B. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 (United States); Keller, Thomas C.S., E-mail: tkeller@bio.fsu.edu [Department of Biological Science, Florida State University, Tallahassee, FL 32306 (United States)

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as ‘leader’ cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as ‘follower’ cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all

  6. pH-controlled desorption of silver nanoparticles from monolayers deposited on PAH-covered mica

    Energy Technology Data Exchange (ETDEWEB)

    Oćwieja, Magdalena, E-mail: ncocwiej@cyf-kr.edu.pl; Adamczyk, Zbigniew, E-mail: ncadamcz@cyf-kr.edu.pl; Morga, Maria, E-mail: ncmorga@cyf-kr.edu.pl [Polish Academy of Sciences, Jerzy Haber Institute of Catalysis and Surface Chemistry (Poland)

    2015-05-15

    Although the release of silver nanoparticles from various surfaces and coatings plays an important role in many practical applications, the mechanisms of these processes are not fully understood. Therefore, in this work, the charge-stabilized silver particles of well-defined surface properties, with average sizes of 15, 28, and 54 nm, were used to quantitatively study this problem. The silver nanoparticles were obtained by the chemical reduction method using trisodium citrate as the stabilizing agent. Their size distributions and stabilities were determined using dynamic light scattering and transmission electron microscopy. The electrophoretic mobility and zeta potential of nanoparticles were determined for controlled ionic strength as a function of pH. The monolayers were produced on poly(allylamine hydrochloride)-modified mica under diffusion-controlled conditions. The coverage was determined by a direct enumeration of deposited nanoparticles using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Using these well-defined monolayers, the kinetics of the release of nanoparticles was studied under controlled ionic strength and various pH values. The direct AFM and SEM measurements of the monolayer coverage, as a function of desorption time, allowed one to determine the kinetics of the release process. The equilibrium adsorption constant and the binding energy of particles were also determined using the random sequential adsorption model. The experimental results indicated that the release rate of particles is the fastest at lower pH values and for smaller particle sizes. This is confirmed by the binding energy values that at pH 3.5 varied between −15.9 and −18.1 kT for particles of the sizes 15 and 54 nm, respectively. These results were quantitatively interpreted in terms of the ion-pair concept where it was assumed that the binding energy between nanoparticles and the substrate was controlled by electrostatic interactions. Based on the

  7. Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers

    Science.gov (United States)

    White, Nicholas

    Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity

  8. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels

    Directory of Open Access Journals (Sweden)

    Zhou GC

    2013-02-01

    Full Text Available Guichen Zhou,1,2,* Ying Lu,1,* He Zhang,1,* Yan Chen,1 Yuan Yu,1 Jing Gao,1 Duxin Sun,3 Guoqing Zhang,2 Hao Zou,1 Yanqiang Zhong1 1Department of Pharmaceutical Science, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Pharmacy, East Hospital of Hepatobiliary Surgery, Shanghai, People's Republic of China; 3Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA*These authors contributed equally to this workPurpose: The aim of this report was to introduce a novel “core-membrane” microgel drug-delivery device for spontaneously pulsed release without any external trigger.Methods: The microgel core was prepared with alginate and chitosan. The semipermeable membrane outside the microgel was made of polyelectrolytes including polycation poly(allylamine hydrochloride and sodium polystyrene sulfonate. The drug release of this novel system was governed by the swelling pressure of the core and the rupture of the outer membrane.Results: The size of the core-membrane microgel drug-delivery device was 452.90 ± 2.71 µm. The surface charge depended on the layer-by-layer coating of polyelectrolytes, with zeta potential of 38.6 ± 1.4 mV. The confocal microscope exhibited the layer-by-layer outer membrane and inner core. The in vitro release profile showed that the content release remained low during the first 2.67 hours. After this lag time, the cumulative release increased to 80% in the next 0.95 hours, which suggested a pulsed drug release. The in vivo drug release in mice showed that the outer membrane was ruptured at approximately 3 to 4 hours, as drug was explosively released.Conclusion: These data suggest that the encapsulated substance in the core-membrane microgel delivery device can achieve a massive drug release after outer membrane rupture. This device was an effective system for pulsed drug delivery.Keywords: polyelectrolyte, chitosan–alginate, microgels, layer-by-layer, pulsed

  9. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  10. PEDOT:PSS self-assembled films to methanol crossover reduction in Nafion{sup ®} membranes

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Tiago P. [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Miyazaki, Celina M. [Universidade Estadual Paulista, POSMAT, SP (Brazil); Paganin, Valdecir A. [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Ferreira, Marystela [Universidade Federal de São Carlos, Sorocaba, SP (Brazil); Saeki, Margarida J. [Universidade Estadual Paulista, Instituto de Biociências, Botucatu, SP (Brazil); Perez, Joelma [Universidade de São Paulo, IQSC, São Carlos, SP (Brazil); Riul, Antonio, E-mail: riul@ifi.unicamp.br [Universidade Estadual de Campinas, IFGW, Campinas (Brazil)

    2014-12-30

    Highlights: • PAH/PEDOT:PSS LbL films were regularly multilayered onto Nafion. • The LbL modified membranes were succesfully applied to reduce methanol crossover in Nafion. • PAH/PEDO:PSS films also decreased the proton conduction, reducing in 15% the DMFC performance. - Abstract: Alternative energy sources are on a global demand, with fuel cells as promising devices from mobile to stationary applications. Nafion{sup ®} is at the heart of many of these appliances, being mostly used due to its high proton conduction and good chemical stability at ambient temperature in proton exchange membranes (PEM). Therefore, methanol permeation throughout Nafion{sup ®} films reduces drastically the performance of direct methanol fuel cells (DMFC). We present here the deposition of layer-by-layer (LbL) nanostructured thin films of poly(allylamine hydrochloride) (PAH) and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) onto commercial Nafion{sup ®} 212 membranes. It was observed a good adherence of the LbL films onto Nafion{sup ®} 212, with UV–vis results displaying a linear characteristic growth, indicative that the same amount of material was deposited at each deposition step during the layer-by-layer assembly. In addition, the LbL films also act as a good barrier to avoid methanol crossover, with an observed reduction in the methanol permeation from 5.5 × 10{sup −6} cm{sup 2} s{sup −1} to 3.2 × 10{sup −6} cm{sup 2} s{sup −1}, respectively to pristine Nafion{sup ®} 212 and a 5-bilayer PAH/PEDOT:PSS LbL film deposited on Nafion{sup ®}212. The measured power density in a DMFC set-up was not significantly changed (∼12 mW cm{sup −2}) due to the LbL films, since the PAH/PEDOT:PSS nanostructure is impeding water and ion transport, consequently affecting the proton conduction throughout the membrane.

  11. Encapsulation of albumin in self-assembled layer-by-layer microcapsules: comparison of co-precipitation and adsorption techniques.

    Science.gov (United States)

    Labala, Suman; Mandapalli, Praveen Kumar; Bhatnagar, Shubhmita; Venuganti, Venkata Vamsi Krishna

    2015-01-01

    The objective of this study is to prepare and characterize polymeric self-assembled layer-by-layer microcapsules (LbL-MC) to deliver a model protein, bovine serum albumin (BSA). The aim is to compare the BSA encapsulation in LbL-MC using co-precipitation and adsorption methods. In co-precipitation method, BSA was co-precipitated with growing calcium carbonate particles to form a core template. Later, poly(styrene sulfonate) and poly(allylamine hydrochloride) were sequentially adsorbed onto the CaCO3 templates. In adsorption method, preformed LbL-MC were incubated with BSA and encapsulation efficiency is optimized for pH and salt concentration. Free and BSA-encapsulated LbL-MC were characterized using Zetasizer, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy and differential scanning calorimeter. Later, in vitro release studies were performed using dialysis membrane method at pH 4, 7.4 and 9. Results from Zetasizer and SEM showed free LbL-MC with an average size and zeta-potential of 2.0 ± 0.6 μm and 8.1 ± 1.9 mV, respectively. Zeta-potential of BSA-loaded LbL-MC was (-)7.4 ± 0.7 mV and (-)5.7 ± 1.0 mV for co-precipitation and adsorption methods, respectively. In adsorption method, BSA encapsulation in LbL-MC was found to be greater at pH 6.0 and 0.2 M NaCl. Co-precipitation method provided four-fold greater encapsulation efficiency (%) of BSA in LbL-MC compared with adsorption method. At pH 4, the BSA release from LbL-MC was extended up to 120 h. Polyacrylamide gel electrophoresis showed that BSA encapsulated in LBL-MC through co-precipitation is stable toward trypsin treatment. In conclusion, co-precipitation method provided greater encapsulation of BSA in LbL-MC. Furthermore, LbL-MC can be developed as carriers for pH-controlled protein delivery.

  12. Spray layer-by-layer films based on phospholipid vesicles aiming sensing application via e-tongue system

    International Nuclear Information System (INIS)

    Aoki, P.H.B.; Volpati, D.; Cabrera, F.C.; Trombini, V.L.; Riul, A.; Constantino, C.J.L.

    2012-01-01

    The Layer-by-Layer (LbL) technique via spraying (spray-LbL) has been applied as new and alternative methodology to fabricate ultrathin films due to its versatility in relation to the conventional dipping-LbL method, mainly in terms of faster layer deposition and larger coated area. In this work, the possibility of immobilizing vesicles of dipalmitoyl phosphatidyl glycerol (DPPG) phospholipid onto alternating layers of the polyelectrolyte poly(allylamine hydrochloride) (PAH) using the spray-LbL method was investigated, being the results compared to the conventional dipping-LbL method. The growth of (PAH/DPPG) n spray-LbL films was systematically monitored by quartz crystal microbalance (QCM) and ultraviolet–visible (UV–vis) absorption spectroscopy, revealing a linear increase of the absorbance vs deposited layers. In relation to a possible electrostatic interaction between the groups PO 4 − (DPPG) and NH 3 + (PAH), it was observed through Fourier transform infrared (FTIR) absorption spectroscopy that the spectrum recorded for the spray-LbL film is basically a simple superposition of the FTIR spectra from PAH and DPPG casting films. The latter indicates a weak interaction between both materials, differently of the trend observed for (PAH/DPPG) n grown via dipping-LbL method. Atomic force microscopy (AFM) images of spray-LbL films showed evidences that the DPPG vesicles present in the aqueous dispersion are not destroyed when submitted to pressure conditions during the spray deposition. However, comparing to dipping-LbL, the DPPG vesicles do not cover completely the PAH layer for the spray-LbL film, which was further confirmed by surface-enhanced Raman scattering (SERS) measurements. Moreover, the AFM analysis showed that the spray-LbL deposition led to thicker PAH/DPPG bilayers in average than via dipping-LbL for the same concentrations of PAH solution and DPPG dispersion, which is consistent with QCM and UV–vis absorption results. PAH/DPPG films deposited by

  13. Catalytic micromotors and micropumps and their collective behavior

    Science.gov (United States)

    Ibele, Michael Edward

    unrelated project: the template synthesis of flexible nanowires, in which the silver sections of bimetallic nanorods are replaced with carbonaceous impurities or poly(allylamine hydrochloride).