WorldWideScience

Sample records for poloidal beta discharges

  1. Ion transport analysis of a high beta-poloidal JT-60U discharge

    International Nuclear Information System (INIS)

    Horton, W.; Tajima, T.; Dong, J.-Q.; Kim, J.-Y.; Kishimoto, Y.

    1997-01-01

    The high beta-poloidal discharge number 17110 in JT-60U (JT-60 Team, IAEA, Vienna, 1993) that developes an internal transport barrier is analysed for the transport of ion energy and momentum. First, the classical ion temperature gradient stability properties are calculated in the absence of sheared plasma flows to establish the L-mode transport level prior to the emergence of the transport barrier. Then the evolving toroidal and poloidal velocity profiles reported by Koide et al (1994 Phys. Rev. Lett. 72 3662) are used to show how the sheared mass flows control the stability and transport. Coupled energy-momentum transport equations predict the creation of a transport barrier. The balance of the steep ion temperature gradient against the magnetic shear and sheared mass flow is calculated for the profiles in the 17110 discharge. (Author)

  2. Achieving high fusion reactivity in high poloidal beta discharges in TFTR

    International Nuclear Information System (INIS)

    Manuel, M.E.; Navratil, G.A.; Sabbagh, S.A.; Batha, S.; Bell, M.G.; Bell, R.; Budny, R.V.; Bush, C.E.; Cavallo, A.; Chance, M.S.; Cheng, C.Z.; Efthimion, P.C.; Fredrickson, E.D.; Fu, G.Y.; Hawryluk, R.J.; Janos, A.C.; Jassby, D.L.; Levinton, F.; Mikkelsen, D.R.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Yamada, M.; Zarnstorff, M.C.: Zweben, S.; Kesner, J.; Marmar, E.; Snipes, J.; Terry, J.

    1993-04-01

    High poloidal beta discharges have been produced in TFTR that achieved high fusion reactivities at low plasma currents. By rapidly decreasing the plasma current just prior to high-power neutral beam injection, relatively peaked current profiles were created having high l i > 2, high Troyon-normalized beta, βN > 3, and high poloidal beta. β p ≥ 0.7 R/a. The global energy confinement time after the current ramp was comparable to supershots, and the combination of improved MHD stability and good confinement produced a new high εβ p high Q DD operating mode for TFTR. Without steady-state current profile control, as the pulse lengths of high βp discharges were extended, l i decreased, and the improved stability produced immediately after by the current ramp deteriorated. In four second, high εβ p discharges, the current profile broadened under the influence of bootstrap and beam-drive currents. When the calculated voltage throughout the plasma nearly vanished, MHD instabilities were observed with β N as low as 1.4. Ideal MHD stability calculations showed this lower beta limit to be consistent with theoretical expectations

  3. Ideal MHD beta-limits of poloidally asymmetric equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in ..beta../sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is ..beta../sub critical/ approx. = 6.5%.

  4. Equilibrium poloidal-field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1983-01-01

    A comparison between the approximate analytic formulae of Shafranov for equilibrium in axisymmetric toroidal systems and fully toroidal numerical solutions of the Grad-Shafranov equation for reversed-field-pinch (RFP) configurations is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal-field distribution at the conducting shell that surrounds the plasma is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one third of the minor toroidal radius. The analytic description for the centre shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one tenth of the minor conducting boundary radius. The Shafranov formulae provide a convenient method for describing the gross equilibrium behaviour of an axisymmetric RFP discharge, as well as an effective tool for designing the poloidal-field systems of RFP experiments. (author)

  5. Equilibrium poloidal field distributions in reversed-field-pinch toroidal discharges

    International Nuclear Information System (INIS)

    Baker, D.A.; Mann, L.W.; Schoenberg, K.F.

    1982-04-01

    A comparison between the analytic formulae of Shafranov for equilibrium in axisymmetric toroidal reversed field pinch (RFP) systems and fully toroidal numerical solutions of the Grad-Shafranov equation is presented as a function of poloidal beta, internal plasma inductance, and aspect ratio. The Shafranov formula for the equilibrium poloidal field distribution is accurate to within 5% for aspect ratios greater than 2, poloidal betas less than 50%, and for plasma current channels that exceed one-third of the minor toroidal radius. The analytic description for the center shift of the innermost flux surface that encloses the plasma current (the Shafranov shift) is accurate to within 15% for aspect ratios greater than 2 and poloidal betas below 50%, provided the shift does not exceed one-tenth of the minor conducting boundary radius. The behavior of the magnetic axis shift as a function of plasma parameters is included. The Shafranov formulae provide a convenient method for describing the equilibrium behavior of an RFP discharge. Examples illustrating the application of the analytic formulae to the Los Alamos ZT-40M RFP experiment are given

  6. Axisymmetric stability of vertically asymmetric Tokamaks at large beta poloidal

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, K.; Fishman, H.; Okabayashi, M. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1983-11-01

    The rigid-mode stability of high-..beta.. vertically asymmetric Tokamak equilibria with quasi-uniform current profile is investigated analytically using toroidicity-shaping double expansion method. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high-..beta.. Tokamak expansion leads to further destabilization. These analytic insights are qualitatively confirmed by numerical stability calculations using the PEST code with parabolic safety-factor profile.

  7. Axisymmetric stability of vertically asymmetric tokamaks at large beta poloidal

    International Nuclear Information System (INIS)

    Yamazaki, K.; Fishman, H.; Okabayashi, M.; Todd, A.M.M.

    1981-09-01

    The stability of high-β vertically asymmetric tokamak equilibria to rigid displacements is investigated analytically. It is found that vertical stability at large beta poloidal is mainly determined by a coupling between the shape of the plasma surface and the Shafranov shift of the magnetic axis. To the lowest order, symmetric components of the plasma surface shape are found to be the critical destabilizing elements. Asymmetric components have little effect. The inclusion of higher order terms in the high β tokamak expansion leads to further destabilization. Qualitative agreement between these analytic results and numerical stability calculations using the PEST code is demonstrated

  8. High poloidal beta equilibria in TFTR limited by a natural inboard poloidal field null

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Gross, R.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Bell, R.; Bitter, M.; Bretz, N.L.; Budny, R.V.; Bush, C.E.; Chance, M.S.; Efthimion, P.C.; Fredrickson, E.D.; Hatcher, R.; Hawryluk, R.J.; Hirshman, S.P.; Janos, A.C.; Jardin, S.C.; Jassby, D.L.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Okabayashi, M.; Park, H.K.; Ramsey, A.T.; Stratton, B.C.; Synakowski, E.J.; Taylor, G.; Wieland, R.M.; Zarnstorff, M.C.; Kesner, J.; Marmar, E.S.; Terry, J.L.

    1991-07-01

    Recent operation of the Tokamak Fusion Test Reactor TFTR, has produced plasma equilibria with values of Λ triple-bond β p eq + l i /2 as large as 7, εβ p dia triple-bond 2μ 0 ε /much-lt B p much-gt 2 as large as 1.6, and Troyon normalized diamagnetic beta, β N dia triple-bond 10 8 t perpendicular>aB 0 /I p as large as 4.7. When εβ p dia approx-gt 1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge which was sustained for many energy confinement times, τ E . The largest values of εβ p and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 keV and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τ E greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L-mode predictions have been achieved. The fusion power gain. Q DD , reached a values of 1.3 x 10 -3 in a discharge with I p = 1 MA and εβ p dia = 0.85. A large, sustained negative loop voltage during the steady state portion of the discharge indicates that a substantial non-inductive component of I p exists in these plasmas. Transport code analysis indicates that the bootstrap current constitutes up to 65% of I p . Magnetohydrodynamic (MHD) ballooning stability analysis shows that while these plasmas are near, or at the β p limit, the pressure gradient in the plasma core is in the first region of stability to high-n modes. 24 refs., 10 figs

  9. Ideal MHD beta-limits of poloidally asymmetric equilibria

    International Nuclear Information System (INIS)

    Todd, A.M.M.; Miller, A.E.; Grimm, R.C.; Okabayashi, M.; Dalhed, H.E. Jr.

    1981-05-01

    The ideal MHD stability of poloidally asymmetric equilibria, which are typical of a tokamak reactor design with a single-null poloidal divertor is examined. As with symmetric equilibria, stability to non-axisymmetric modes improves with increasing triangularity and ellipticity, and with lower edge safety factor. Pressure profiles optimized with respect to ballooning stability are obtained for an asymmetric shape, resulting in β/sub critical/ approx. = 5.7%. The corresponding value for an equivalent symmetric shape is β/sub critical/ approx. = 6.5%

  10. Ideal MHD stability of high poloidal beta equilibria in TFTR

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.; Bell, M.G.; Budny, R.V.; Chance, M.S.; Fredrickson, E.D.; Jardin, S.C.; Manickam, J.; McCune, D.C.; McGuire, K.M.; Wieland, R.M.; Zarnstorff, M.C.; Phillips, M.W.; Hughes, M.H.; Kesner, J.

    1991-01-01

    Recent experiments in TFTR have expanded the operating space of the device to include plasmas with values of var-epsilon β p dia ≡ 2μ 0 var-epsilon perpendicular >/ p >> 2 as large as 1.6, and Troyon normalized diamagnetic beta β N dia ≡ β t perpendicular aB t /10 -8 I p as large as 4.7. At values of var-epsilon β p dia ≥ 1.3, a separatrix was observed to enter the vacuum vessel, producing a naturally diverted discharge. Plasmas with large values of var-epsilon β p dia were created with both the plasma current, I p , held constant and with I p decreased, or ramped down, before the start of neutral beam injection. A convenient characterization of the change in I p using experimental parameters can be defined by the ratio of I p before the ramp down, to I p during the neutral beam heating phase, F I p . The ideal MHD stability of these equilibria is investigated to determine their location in stability space, and to study the role of plasma current and pressure profile modification in the creation of these high var-epsilon β p and β N plasmas. The evolution of these plasmas is modelled from experimental data using the TRANSP code. Two-dimensional equilibria are computed from the TRANSP results and used as input to both high and low-n stability codes including PEST. The high var-epsilon β p equilibria, which generally have an oblate cross-sectional shape, are in the first stability region to high-n ballooning modes. At constant I p , these equilibria generally have maximum pressure gradients near the magnetic axis and are stable to n=1 modes without a stabilizing conducting wall. The effect of the current profile shape on the stability of low-n kink/ballooning modes and the requirements for these plasmas to access the second stability region are examined. 6 refs

  11. Demonstration of real-time control for poloidal beta in KSTAR

    International Nuclear Information System (INIS)

    Han, Hyunsun; Hahn, S.H.; Bak, J.G.; Hyatt, A.; Johnson, R.; Woo, M.H.; Kim, J.S.; Bae, Y.S.

    2015-01-01

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β p ) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β p is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β p control, the β p estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results

  12. Demonstration of real-time control for poloidal beta in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyunsun, E-mail: hyunsun@nfri.re.kr [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hahn, S.H.; Bak, J.G. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Hyatt, A.; Johnson, R. [General Atomics, San Diego, CA (United States); Woo, M.H.; Kim, J.S.; Bae, Y.S. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2015-06-15

    Highlights: • Real time control system for poloidal beta has been designed in KSTAR. • Poloidal beta has been calculated based on the diamagnetic loop signals. • The neutral beam Injector plays a role as the actuator. • The control system has been validated in the KSTAR experiments. - Abstract: Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (β{sub p}) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the β{sub p} is calculated in real time using the measured diamagnetic loop signal, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the requested power of NB which is operated with constant voltage, the on-time periods of the intervals were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the β{sub p} control, the β{sub p} estimation process and NB operation scheme implemented in the plasma control system (PCS), and the analysis on the preliminary experimental results.

  13. Observations of toroidal and poloidal rotation in the high beta tokamak Torus II

    International Nuclear Information System (INIS)

    Kostek, C.A.

    1983-01-01

    The macroscopic rotation of plasma in a toroidal containment device is an important feature of the equilibrium. Toroidal and poloidal rotation in the high beta tokamak Torus II is measured experimentally by examining the Doppler shift of the 4685.75 A He II line emitted from the plasma. The toroidal flow at an average velocity of 1.6 x 10 6 cm/sec, a small fraction of the ion thermal speed, moves in the same direction as the toroidal plasma current. The poloidal flow follows the ion diamagnetic current direction, also at an average speed of 1.6 x 10 6 cm/sec. In view of certain ordering parameters, the toroidal flow is compared with predictions from neoclassical theory in the collosional, Pfirsch-Schluter regime. The poloidal motion, however results from an E x B drift in a positive radial electric field, approaching a stable ambipolar state. This radial electric field is determined from theory by using the measured poloidal velocity. Mechanisms for the time evolution of rotation are also examined. It appears that the circulation damping is governed by a global decay of the temperature and density gradients which, in turn, may be functions of radiative cooling, loss of equilibrium due to external field decay, or the emergence of a growing instability, occasionally observed in CO 2 interferometry measurements

  14. Overview of the modification to the poloidal divertor experiment (PDX) to produce the Princeton beta experiment (PBX)

    International Nuclear Information System (INIS)

    Knutson, D.

    1984-01-01

    The Poloidal Divertor Experiment at the Princeton Plasma Physics Laboratory has been recently transformed into the Princeton Beta Experiment. The purpose of the modification is to produce a bean-shaped plasma with beta values in excess of 10%, which is substantially above those achieved with more conventional plasma shapes. (author)

  15. Deuterium-tritium TFTR plasmas in the high poloidal beta regime

    International Nuclear Information System (INIS)

    Sabbagh, S.A.; Mauel, M.E.; Navratil, G.A.

    1995-03-01

    Deuterium-tritium plasmas with enhanced energy confinement and stability have been produced in the high poloidal beta, advanced tokamak regime in TFTR. Confinement enhancement H triple-bond τ E /τ E ITER-89P > 4 has been obtained in a limiter H-mode configuration at moderate plasma current I p = 0.85 - 1.46 MA. By peaking the plasma current profile, β N dia triple-bond 10 8 tperpendicular > aB 0 /I p = 3 has been obtained in these plasma,s exceeding the β N limit for TFTR plasmas with lower internal inductance, l i . Fusion power exceeding 6.7 MW with a fusion power gain Q DT = 0.22 has been produced with reduced alpha particle first orbit loss provided by the increased l i

  16. First Trial of Real-time Poloidal Beta Control in KSTAR

    Science.gov (United States)

    Han, Hyunsun; Hahn, S. H.; Bak, J. G.; Walker, M. L.; Woo, M. H.; Kim, J. S.; Kim, Y. J.; Bae, Y. S.; KSTAR Team

    2014-10-01

    Sustaining the plasma in a stable and a high performance condition is one of the important control issues for future steady state tokamaks. In the 2014 KSTAR campaign, we have developed a real-time poloidal beta (βp) control technique and carried out preliminary experiments to identify its feasibility. In the control system, the βp is calculated in real time using the measured diamagnetic loop signal (DLM03) with coil pickup corrections, and compared with the target value leading to the change of the neutral beam (NB) heating power using a feedback PID control algorithm. To match the required power of NB which is operated with constant voltage, the duty cycles of the modulation were adjusted as the ratio of the required power to the maximum achievable one. This paper will present the overall procedures of the βp control, the βp estimation process implemented in the plasma control system, and the analysis on the preliminary experimental results. This work is supported by the KSTAR research project funded by the Ministry of Science, ICT & Future Planning of Korea.

  17. MHD activity and energy loss during beta saturation and collapse at high beta poloidal in PBX

    International Nuclear Information System (INIS)

    Kugel, H.W.; Sesnic, S.; Bol, K.

    1987-10-01

    High-β experiments, in medium to high-q tokamak plasmas, exhibit a temporal β saturation and collapse. This behavior has been attributed to ballooning, ideal kink, or tearing modes. In PBX, a unique diagnostic capability allowed studies of the relation between MHD and energy loss for neutral-beam-heated (<6 MW), mildly indented (10 to 15%), nearly steady I/sub p/ discharges that approached the Troyon-Gruber limit. Under these conditions, correlations between MHD activity and energy losses have shown that the latter can be almost fully accounted for by various long wavelength MHD instabilities and that there is no need to invoke high-n ballooning modes in PBX. 6 refs., 4 figs

  18. Overview of the modification to the Poloidal Divertor Experiment (PDX) to produce the Princeton Beta Experiment (PBX)

    International Nuclear Information System (INIS)

    Kuntson, D.

    1985-01-01

    The Poloidal Divertor Experiment at the Princeton Plasma Physics Laboratory has been recently transformed into the Princeton Beta Experiment. The purpose of the modification is to produce a bean-shaped plasma with beta values in excess of 10%, which is substantially above those achieved with more conventional plasma shapes. This transformation is accomplished by relocating several of the existing coils within the vacuum vessel, without a major disassembly of the device. One of the former PDX divertor coils is relocated on the mid-plane to be used as a ''pusher'' coil to create the plasma indentation. The ''pusher'' coil is protected from neutral beam impingement by watercooled graphite armor. The remaining internal PDX poloidal field coils are moved vertically to optimize the new configuration. The major new component is the set of passive stabilization coils. These coils are fabricated in segments and installed inside of the vacuum vessel. The purpose of the passive coils is to dampen the vertical instability of the bean-shaped plasma. The conversion to PBX also required reworking of internal and external poloidal coil bus leads, and the fabrication of new mechanical support structure

  19. Equilibrium and stability of high-beta toroidal plasmas with toroidal and poloidal flow in reduced magnetohydrodynamic models

    International Nuclear Information System (INIS)

    Ito, A.; Nakajima, N.

    2010-11-01

    Effects of flow, finite ion temperature and pressure anisotropy on equilibrium and stability of a high-beta toroidal plasma are studied in the framework of reduced magnetohydrodynamics (MHD). A set of reduced equilibrium equations for high-beta tokamaks with toroidal and poloidal flow comparable to the poloidal sound velocity is derived in a unified form of single-fluid and Hall MHD models and a two-fluid MHD model with ion finite Larmor radius (FLR) terms. Pressure anisotropy is introduced with equations for the parallel heat flux which are closed by a fluid closure model. It is solved analytically for the single-fluid model and the solutions shows complicated characteristics in the region around the poloidal sound velocity due to pressure anisotropy and the parallel heat flux. Numerical solutions are found by using the finite element method for the two-fluid model with FLR effects in the case of isotropic, adiabatic pressure and indicate the following features of two-fluid equilibria: the isosurfaces of the magnetic flux, the pressure and the ion stream function do not coincide with each other, and the solutions depend on the sign of the radial electric field. Reduced single-fluid MHD equations with time evolution that are consistent with the above equilibria are also derived in order to study their stability. They conserve the energy up to the order required by the equilibria. (author)

  20. Modeling of stochastic broadening in a poloidally diverted discharge with piecewise analytic symplectic mapping flux functions

    International Nuclear Information System (INIS)

    Punjabi, Alkesh; Ali, Halima; Evans, Todd; Boozer, Allen

    2008-01-01

    A highly accurate calculation of the magnetic field line Hamiltonian in DIII-D [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)] is made from piecewise analytic equilibrium fit data for shot 115467 3000 ms. The safety factor calculated from this Hamiltonian has a logarithmic singularity at an ideal separatrix. The logarithmic region inside the ideal separatrix contains 2.5% of toroidal flux inside the separatrix. The logarithmic region is symmetric about the separatrix. An area-preserving map for the field line trajectories is obtained in magnetic coordinates from the Hamiltonian equations of motion for the lines and a canonical transformation. This map is used to calculate trajectories of magnetic field lines in DIII-D. The field line Hamiltonian in DIII-D is used as the generating function for the map and to calculate stochastic broadening from field-errors and spatial noise near the separatrix. A very negligible amount (0.03%) of magnetic flux is lost from inside the separatrix due to these nonaxisymmetric fields. It is quite easy to add magnetic perturbations to generating functions and calculate trajectories for maps in magnetic coordinates. However, it is not possible to integrate across the separatrix. It is also difficult to find the physical position corresponding to magnetic coordinates. For open field lines, periodicity in the poloidal angle is assumed, which is not satisfactory. The goal of this paper is to demonstrate the efficacy of the symplectic mapping approach rather than using realistic DIII-D parameters or modeling specific experimental results

  1. Extension of high poloidal beta scenario in DIII-D to lower q95 for steady state fusion reactor

    Science.gov (United States)

    Huang, J.; Gong, X.; Qian, J.; Ding, S.; Ren, Q.; Guo, W.; Pan, C.; Li, G.; Xia, T.; Garofalo, A.; Lao, L.; Hyatt, A.; Ferron, J.; Collins, C.; Lin, D.; McKee, G.; Rhode, T.; McClenaghan, J.; Holcomb, C.; Cui, L.; Heidbrink, W.; Zhu, Y.; Diiid Team; East Team

    2017-10-01

    DIII-D/EAST joint experiments have improved the high poloidal beta scenario with sustained large-radius internal transport barrier (ITB) extended to high plasma current Ip 1MA with q95 6.0. Slight off-axis NBCD is applied to obtain broader current density profile, ITBs can now be sustained below the previously observed βp threshold with excellent confinement (H98y2 1.8). The scenario also exhibits a local negative shear appearing with q increased at rho 0.4, which helps ITB formation and sustainment. This confirms TGLF prediction that negative magnetic shear can help recover ITB and achieve high confinement with reduced q95. Detailed analysis shows that the Shafranov shift and q profile is critical in the ITB formation at high βp regime. Supported in part by National Magnetic Confinement Fusion Program of China 2015GB102000, 2015GB110005, and US Department of Energy under DE-FC02-04ER54698.

  2. ZEPHYR - poloidal field system

    International Nuclear Information System (INIS)

    Seidel, U.

    1982-04-01

    The basics of the poloidal field system of the ZEPHYR experiment are considered. From the physical data the requirements for the poloidal field are derived. Hence an appropriate coil configuration consisting of coil locations and corresponding currents is obtained. A suitable electrical circuit feeding the coils is described. A preliminary assessment of the dynamic control of the poloidal field system is given. (orig.)

  3. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    Science.gov (United States)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion

  4. Models for poloidal divertors

    International Nuclear Information System (INIS)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done

  5. Models for poloidal divertors

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.E.; Heifetz, D.; Petravic, M.

    1982-07-01

    Recent progress in models for poloidal divertors has both helped to explain current divertor experiments and contributed significantly to design efforts for future large tokamak (INTOR, etc.) divertor systems. These models range in sophistication from zero-dimensional treatments and dimensional analysis to two-dimensional models for plasma and neutral particle transport which include a wide variety of atomic and molecular processes as well as detailed treatments of the plasma-wall interaction. This paper presents a brief review of some of these models, describing the physics and approximations involved in each model. We discuss the wide variety of physics necessary for a comprehensive description of poloidal divertors. To illustrate the progress in models for poloidal divertors, we discuss some of our recent work as typical examples of the kinds of calculations being done.

  6. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  7. On steady poloidal and toroidal flows in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  8. Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs

    Science.gov (United States)

    Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq

    2015-11-01

    The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.

  9. Poloidal field equilibrium calculations for JET

    International Nuclear Information System (INIS)

    Khalafallah, A.K.

    1976-01-01

    The structure of the JET 2D Poloidal Field Analysis Package is discussed. The ability to cope with different plasma current density distributions (skin, flat or peaked), each with a range of Beta poloidal values and varying plasma shapes is a new feature of these calculations. It is possible to construct instant-by-instant pictures of equilibrium configurations for various plasma build up scenarios taking into account the level of flux in the iron core and return limbs. The equilibrium configurations are calculated for two possible sequences of plasma build up. Examples of the magnetic field calculations being carried out under contract to JET at the Rutherford Laboratory, using a 3D code, are also given

  10. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    Science.gov (United States)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  11. Experimental result of poloidal limiter baking of Aditya tokamak

    International Nuclear Information System (INIS)

    Jadeja, K.A.; Arambhadiya, B.G.; Bhatt, S.B.; Bora, D.

    2005-01-01

    In tokamak Aditya, Poloidal limiter function as the operational limiter and are subjected to very high particles load and heat flux during plasma discharge. In addition, Poloidal limiter is the first material surface to come in contact with the hot plasma. In plasma discharge, the impurity generations from limiter are mostly by adsorbed particles. The baking of limiter provides high degassing rate and thermal desorption of adsorbed particles of limiter to reduce impurities from the limiter tiles. The series of experiments are done with different conditions like, Baking of limiter SS ring by heating element with and without limiter tiles in atmosphere and vacuum. Than Poloidal limiter is structured with 14 numbers of graphite tiles and electrical isolated to the vessel and support structure. As a heating element and for electrical isolation, Nychrome wire and ceramic block with ceramic tubes are used. In addition, Thermo couple and two DC power supply (0-10 Ampere) are used for limiter baking. Mass analyzer gives partial pressures of different species to observe effect of limiter baking. For the period of Poloidal limiter baking in Aditya, the partial pressures of different species like hydrogen, water vapor, and oxygen are extremely increased with time duration. This paper presents series of experimental results of poloidal limiter baking. (author)

  12. Physics issues for a very-low-aspect-ratio Quasi-Poloidal Stellarator (QPS)

    International Nuclear Information System (INIS)

    Lyon, J.F.; Berry, L.A.; Hirshman, S.P.

    2003-01-01

    A quasi-poloidal stellarator with very low plasma aspect ratio (R/a ∼ 2.7, 1/2-1/4 that of existing stellarators) is a new confinement approach that could ultimately lead to a high-beta compact stellarator reactor. The Quasi-Poloidal Stellarator (QPS) experiment is being developed to test key features of this approach. The QPS will study neoclassical and anomalous transport, stability limits at beta up to 2.5%, the configuration dependence of the bootstrap current, and equilibrium robustness. The quasi-poloidal symmetry leads to neoclassical transport that is much smaller than the anomalous transport. The reduced effective field ripple may also produce reduced poloidal viscosity, enhancing the ambipolar E x B poloidal drift and allowing larger poloidal flows for reduction of anomalous transport. A region of second stability exists in the QPS experiment at higher beta. Very-high-beta configurations with a tokamak-like transform profile have also been obtained with a bootstrap current 1/3-1/5 that in an equivalent tokamak. These configurations are stable to low-n ideal MHD kink and vertical instabilities for beta up to 11%. Ballooning-stable configurations are found for beta in the range 2% to 23%. (author)

  13. Neoclassical impurity transport and observations of poloidal asymmetries in JET

    International Nuclear Information System (INIS)

    Feneberg, W.; Mast, F.K.; Martin, P.; Gottardi, N.

    1986-01-01

    Bolometrically measured asymmetries of emissivity for some characteristic JET discharges are presented and are in good agreement with theoretical results of calculations worked out in the frame of neoclassical theory. Application of theory to the case of strong toroidal rotation as induced with neutral injection shows a sensitive dependance of the impurity transport perpendicular to the magnetic surfaces from the parameter of poloidal rotation. The main result is the existence of a classical flow reversal. Without any poloidal rotation of the background ions, a large inward flow of impurities for co- and counter-injection is always predicted, while poloidal rotation in the direction of the ion diamagnetic drift motion leads to a strong outward drift. (author)

  14. Poloidal asymmetries in the scrape-off layer plasma of the Alcator C tokamak

    International Nuclear Information System (INIS)

    LaBombard, B.; Lipschultz, B.

    1987-01-01

    Large poloidal asymmetries in density, electron temperature, radial density e-folding length and floating potential have been measured in the plasma existing between the limiter radius and the wall of the Alcator C tokamak. Typically, variations in density by factors of about 4-20 and variations in radial density e-folding length by factors of about 3-8 are recorded in discharges which are bounded by poloidally symmetric ring limiters. These poloidal asymmetries show that pressure is a function of poloidal angle on open magnetic flux surfaces in this region of the plasma. Observations of toroidally symmetric MARFE (multifaceted asymmetric radiation from the edge) phenomena further imply that density and perhaps pressure are also a function of poloidal angle on closed flux surfaces existing just inside the limiter radius. The magnitude of these poloidal asymmetries and their dependence on poloidal angle persists independent of machine parameters (central plasma density, plasma current, toroidal field, MARFE versus non-MARFE discharges). Analysis of the data indicates that these asymmetries are caused by poloidal variations in perpendicular particle and heat transport in both the main plasma and the scrape-off layer. A number of possible asymmetric perpendicular transport processes in the scrape-off layer plasma are examined, including diffusion and E-vectorxB-vector plasma convection. (author)

  15. The ITER poloidal field system: control and power supplies

    International Nuclear Information System (INIS)

    Mondino, P.L.; Benfatto, I.; Gribov, Y.; Matsukawa, M.; Odajima, K.; Portone, A.; Roshal, A.; Bareyt, B.; Bertolini, E.; Bottereau, J.M.; Huart, M.; Maschio, A.; Bulgakov, S.; Kuchinski, V.

    1995-01-01

    The paper reports the preliminary scenario of the ITER Poloidal Field (PF) system operation, the method used to evaluate the installed power, the basic structure of the circuits and finally the concepts of the preliminary design of control and power supply. The superconducting coils are energized from the HV Grid with conventional AC/DC converters. R and D is required for circuit breakers, make switches and resistors, the basic components of both the switching networks and the discharge circuits. (orig.)

  16. Simulation of a discharge for the NCSX stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Zarnstorff, M.C.; Hudson, S.R.; Ku, L.P.; McCune, D.C.; Mikkelsen, D.; Monticello, D.A.; Pomphrey, N.; Reiman, A.H. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2003-07-01

    We demonstrate that there exists a plausible evolution of the discharge from the vacuum state to the desired high beta state with the self-consistent bootstrap current profile. The discharge evolution preserves stability and has adequate quasi-axisymmetry along this trajectory. The study takes advantage of the quasiaxisymmetric nature of the device to model the evolution of flux and energy in 2D. The plasma confinement is modeled to be consistent with empirical scaling. The ohmic circuit, the plasma density, and the timing of the neutral beam heating control the poloidal flux evolution. The resulting pressure and current density profiles are then used in a 3D optimization to find the desired sequence of equilibria. In order to obtain this sequence active control of the helical and poloidal fields is required. These results are consistent with the planned power systems for the magnets. (orig.)

  17. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  18. Predictions of the poloidal asymmetries and transport frequencies in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bae, C., E-mail: cbae@nfri.re.kr; Lee, S. G.; Terzolo, L. [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Stacey, W. M. [Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-01-15

    The extended neoclassical rotation theory formulated in Miller flux surface geometry enables unprecedented neoclassical calculations of the poloidal asymmetries in density, rotation velocities, electrostatic potential along the flux surfaces, and of the inertial (Reynolds stress) and gyroviscous transport frequencies, which are strong functions of these asymmetries. This paper presents such calculations of the poloidal asymmetries and non-negligible inertial and gyroviscous transport frequencies in two KSTAR (Korea Superconducting Tokamak Advanced Research) [Kwon et al., Nucl. Fusion 51, 094006 (2011)] Neutral Beam Injection H-mode discharges. The in-out asymmetries in the velocities are an order of magnitude larger than their up-down asymmetries. The magnitudes of the predicted inertial and gyroviscous transport frequencies depend on the magnitudes of the density and velocity asymmetries. The neoclassically predicted density asymmetries are shown to correspond with the reported measurements in tokamaks and the predicted carbon toroidal velocities agree very well with the measurements in KSTAR.

  19. Poloidal field distribution studies in tokamak reactor

    International Nuclear Information System (INIS)

    Ueda, Kojyu; Nishio, Satoshi; Fujisawa, Noboru; Sugihara, Masayoshi; Saito, Seiji

    1983-01-01

    On the design studies with the INTOR plasma equilibrium and poloidal field coil configuration (PFCC) from the Phase I to the Phase II A have been obtained the following main results. Three optimized PFCCs have been obtained: the INTOR-J ''Universal'' with the optimized PFCC for the divertor configuration, the optimized PFCC for the pump limiter, and the INTOR ''Universal'' with the PFCC defined as the INTOR reference. These PFCCs satisfy with the requirements for the porthole size for the remote assembly and maintenance of the device, and the maximum flux swing and current densities of the solenoidal coils. The INTOR-J ''Universal'' will be almost the same as the INTOR ''Universal'' in the reactor size. But the optimized PFCC for the pump limiter will be a little larger than the above two configuration because of being in need of slightly larger radii on the two large coils if the plasma with 1.5 in elongation is unconditionally necessary. The total sum of absolute currents with PFCC, which is used as a parameter for its figure of merit, is found to be given in a range of 80 -- 90 MAT at high beta for the divertor configuration for both of the INTOR-J ''Universal'' and the INTOR ''Universal''. The optimized PFCC for pump limiter has 70 -- 80 MAT in its range. The INTOR-J ''Universal'' and the INTOR ''Universal'' for the pump limiter will have its larger sum than one optimized for pump limiter by several MAT. The ''EF only'' method, where the flux, psi sub(P), necessary for maintaining the plasma current on high beta is provided only by EF coils, seems to give the total sum a little less than the ''EF + OH'' method using EF and OH coils for psi sub(P). (J.P.N.)

  20. The ITER poloidal field system

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, J [General Atomics, San Diego, CA (USA); Beljakov, V; Kavin, A; Korshakov, V; Kostenko, A; Roshal, A; Zakharov, L [Kurchatov Inst. of Atomic Energy, Moscow (USSR); Bulmer, R; Kaiser, T; Miller, J R; Pearlstein, L D [Lawrence Livermore National Lab., CA (USA); Hogan, J [Oak Ridge National Lab., TN (USA); Kurihara, K; Shimomura, Y; Sugihara, M; Yoshino, R [Japan Atomic Energy Resea

    1990-12-15

    The ITER poloidal field (PF) system uses superconducting coils to provide the plasma equilibrium fields, slow equilibrium control and plasma flux linkage (V-s) needed for the ITER Operations and Research Program. Double-null (DN) divertor plasmas and operation scenarios for 22 MA Physics (high-Q/ignition) and 15 MA Technology (high-fluence testing) phases are provided. For 22 MA plasmas, total PF flux swing is 333 V-s. This provides inductive current drive (CD) for start-up with 66 V-s of resistive loss and 440-s (330-s minimum) sustained burn. The PF system also allows plasma start-up and shutdown scenarios, and can maintain the plasma configuration during burn over a range of current and pressure profiles. Other capabilities include increased plasma current (25 MA with inductive CD; 28 MA with non-inductive CD assist), divertor separatrix sweeping, and semi-DN and single-null plasmas.

  1. High beta and confinement studies on TFTR

    International Nuclear Information System (INIS)

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A.; Kesner, J.

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run

  2. Role of advanced refuelling and heating on edge Reynolds stress-induced poloidal flow in HL-1M

    International Nuclear Information System (INIS)

    Hong Wenyu; Wang Enyao; Li Qiang; Cao Jianyong; Yan Longwen

    2002-01-01

    The radial profile of electrostatic Reynolds stress, plasma poloidal rotations, radial and poloidal electric fields have been measured in the plasma boundary region of the HL-1M tokamak using a multi-array of Mach/Langmuir probes. In the experiments of ohmic discharge, lower hybrid current drive, supersonic molecular beam injection (SMBI) and multi-shot pellet injection, the correlation between the Reynolds stress and poloidal flow in the edge plasma is presented. The radial profile changes of the Reynolds stress and poloidal flow velocity V pol with lower hybrid wave injection power and SMBI injection are obtained. The results indicate that the sheared poloidal flow can be generated in tokamak plasma due to the radially varying Reynolds stress

  3. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  4. Stochasticity about a poloidal divertor separatrix

    International Nuclear Information System (INIS)

    Skinner, D.A.; Osborne, T.H.; Prager, S.C.; Park, W.

    1986-10-01

    The stochasticization of the magnetic separatrix due to the presence of a helical perturbation in a poloidal divertor tokamak is illustrated by a numerical computation which traces magnetic field lines

  5. PROGRESS TOWARD FULLY NONINDUCTIVE, HIGH BETA DISCHARGES IN DIII-D

    International Nuclear Information System (INIS)

    GREENFIELD, CM; FERRON, JR; MURAKAMI, M; WADE, MR; BUDNY, RV; BURRELL, KH; CASPER, TA; DeBOO, JC; DOYLE, EJ; GAROFALO, AM; JAYAKUMAR, RJ; KESSEL, C; LAO, LL; LOHR, J; LUCE, TC; MAKOWSKI, MA; MENARD, JE; PETRIE, TW; PETTY, CC; PINSKER, RI; PRATER, R; POLITZER, PA; St JOHN, HE; TAYLOR, TS; WEST, WP; DIII-D NATIONAL TEAM

    2003-01-01

    OAK-B135 Advanced Tokamak (AT) research in DIII-D focuses on developing a scientific basis for steady-state, high performance operation. For optimal performance, these experiments routinely operate with β above the n = 1 no-wall limit, enabled by active feed-back control. The ideal wall β limit is optimized by modifying the plasma shape, current and pressure profile. Present DIII-D AT experiments operate with f BS ∼ 50%-60%, with a long-term goal of ∼ 90%. Additional current is provided by neutral beam and electron cyclotron current drive, the latter being localized well away from the magnetic axis (ρ ∼ 0.4-0.5). Guided by integrated modeling, recent experiments have produced discharges with β ∼ 3%, β N ∼ 3, f BS ∼ 55% and noninductive fraction f NI ∼ 90%. Additional control is anticipated using fast wave current drive to control the central current density

  6. Proposed tokamak poloidal field system development program

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Vogel, H.F.; Warren, R.W.; Weldon, D.M.

    1977-05-01

    A program is proposed to develop poloidal field components for TNS and EPR size tokamak devices and to test these components in realistic circuits. Emphasis is placed upon the development of the most difficult component, the superconducting ohmic-heating coil. Switches must also be developed for testing the coils, and this switching technology is to be extended to meet the requirements for the large scale tokamaks. Test facilities are discussed; power supplies, including a homopolar to drive the coils, are considered; and poloidal field systems studies are proposed.

  7. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1991-01-01

    This document describes ideal and resistive MHD studies of high-beta plasmas and of the second stability region. Significant progress is reported on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies initial profiles were taken from the TRANSP code which is used extensively to analyze experimental data. When an ad hoc method of removing the finite pressure stabilization of tearing modes is implemented it is shown that there is substantial agreement between MHD stability computation and experiment. In particular, the mode structures observed experimentally are consistent with the predictions of the resistive MHD model. We also report on resistive stability near the transition to the second region in TFTR. Tearing modes associated with a nearby infernal mode may explain the increase in MHD activity seen in high beta supershots and which impede the realization of Q∼1. We also report on a collaborative study with PPPL involving sawtooth stabilization with ICRF

  8. Equilibrium modeling of the TFCX poloidal field coil system

    International Nuclear Information System (INIS)

    Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.

    1984-04-01

    The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed

  9. Review of the beta situation

    International Nuclear Information System (INIS)

    Sheffield, J.

    1982-01-01

    This note lists some of the possible causes of beta limitation in tokamak and discusses what is known and what is involved in investigating them. The motivation for preparing this note is the observed degradation of confinement with increasing beta poloidal β/sub p/ and beam power P/sub b/ in ISX-B

  10. Poloidal variation of viscous forces in the banana collisionality regime

    International Nuclear Information System (INIS)

    Wang, J.P.; Callen, J.D.

    1992-12-01

    The poloidal variation of the parallel viscous and heat viscous forces are determined for the first time using a rigorous Chapman- Enskog-like approach that has been developed recently. It is shown that the poloidal variation is approximately proportional to the poloidal distribution of the trapped particles, which are concentrated on the outer edge (large major radius side) of the tokamak

  11. Stability and heating of a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Holly, D.T.; Lipschultz, B.; Osborne, T.H.; Prager, S.C.; Shepard, D.A.; Sprott, J.C.; Witherspoon, F.D.

    1981-01-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a tokamak with a four-node poloidal divertor. After a brief description of the machine, discharges are described with q approximately 0.6 over most of the cross-section without degradation of confinement, observation of axisymmetric instability in dee, inverse-dee and square equilibria, high-power fast-wave ion-cyclotron resonance heating, studies of spatial shear Alfven wave resonances for heating, and reduction of the start-up loop voltage by approximately 60% by microwave pre-ionization at electron-cyclotron resonance. Work on axisymmetric instability and studies of pre-ionization have been described in detail elsewhere and are therefore only briefly mentioned. (author)

  12. Power transport to the poloidal divertor experiment scoop limiter

    International Nuclear Information System (INIS)

    Kugel, H.W.; Budny, R.; Fonck, R.

    1987-01-01

    Power transport to the Poloidal Divertor Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of a plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50%. of the total plasma heating power. The measured peak front face midplane temperature was 1500 0 C, corresponding to a peak surface power density of 3 kW/cm/sup 2/. This power density implies an effective parallel power flow of 54 kW/cm/sup 2/ in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements

  13. Extraction of Poloidal Velocity from Charge Exchange Recombination Spectroscopy Measurements

    International Nuclear Information System (INIS)

    Solomon, W.M.; Burrell, K.H.; Gohil, P.; Groebner, R.J.; Baylor, L.R.

    2004-01-01

    A novel approach has been implemented on DIII-D to allow the correct determination of the plasma poloidal velocity from charge exchange spectroscopy measurements. Unlike usual techniques, the need for detailed atomic physics calculations to properly interpret the results is alleviated. Instead, the needed atomic physics corrections are self-consistently determined directly from the measurements, by making use of specially chosen viewing chords. Modeling results are presented that were used to determine a set of views capable of measuring the correction terms. We present the analysis of a quiescent H-mode discharge, illustrating that significant modifications to the velocity profiles are required in these high ion temperature conditions. We also present preliminary measurements providing the first direct comparison of the standard cross-section correction to the atomic physics calculations

  14. Stability and heating of a poloidal divertor tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.

    1980-06-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.

  15. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  16. Westinghouse compact poloidal divertor reference design

    International Nuclear Information System (INIS)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.

    1977-08-01

    A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap between the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m 2 and for the latter 0.5 MW/m 2 . The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented

  17. Poloidal profiles and transport during turbulent heating

    International Nuclear Information System (INIS)

    Mascheroni, P.L.

    1977-01-01

    The current penetration stage of a turbulently heated tokamak is modeled. The basic formulae are written in slab geometry since the dominant anomalous transport has a characteristic frequency much larger than the bounce frequency. Thus, the basic framework is provided by the Maxwell and fluid equations, with classical and anomalous transport. Quasi-neutrality is used. It is shown that the anomalous collision frequency dominates the anomalous viscosity and thermal conductivity, and that the convective wave transport can be neglected. For these numerical estimates, the leading term in the quasi-linear series is used. During the current penetration stage the distribution function for the particles will depart from a single Maxwellian type. Hence, the first objective was to numerically compare calculated poloidal magnetic field profiles with measured, published poloidal profiles. The poloidal magnetic field has been calculated using a code which handles the anomalous collision frequency self-consistently. The agreement is good, and it is concluded that the current penetration stage can be satisfactorily described by this model

  18. A method for determining poloidal rotation from poloidal asymmetry in toroidal rotation (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C., E-mail: chrystal@fusion.gat.com [Department of Physics, University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093 (United States); Burrell, K. H.; Lao, L. L.; Pace, D. C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A new diagnostic has been developed on DIII-D that determines the impurity poloidal rotation from the poloidal asymmetry in the toroidal angular rotation velocity. This asymmetry is measured with recently added tangential charge exchange viewchords on the high-field side of the tokamak midplane. Measurements are made on co- and counter-current neutral beams, allowing the charge exchange cross section effect to be measured and eliminating the need for atomic physics calculations. The diagnostic implementation on DIII-D restricts the measurement range to the core (r/a < 0.6) where, relative to measurements made with the vertical charge exchange system, the spatial resolution is improved. Significant physics results have been obtained with this new diagnostic; for example, poloidal rotation measurements that significantly exceed neoclassical predictions.

  19. Calibration of the charge exchange recombination spectroscopy diagnostic for core poloidal rotation velocity measurements on JET

    International Nuclear Information System (INIS)

    Crombe, K.; Andrew, Y.; Giroud, C.; Hawkes, N.C.; Murari, A.; Valisa, M.; Oost, G. van; Zastrow, K.-D.

    2004-01-01

    This article describes recent improvements in the measurement of C 6+ impurity ion poloidal rotation velocities in the core plasma of JET using charge exchange recombination spectroscopy. Two independent techniques are used to provide an accurate line calibration. The first method uses a Perkin-Elmer type 303-306 samarium hollow cathode discharge lamp, with a Sm I line at 528.291 nm close to the C VI line at 529.1 nm. The second method uses the Be II at 527.06 nm and C III at 530.47 nm in the plasma spectrum as two marker lines on either side of the C VI line. Since the viewing chords have both a toroidal and poloidal component, it is important to determine the contribution of the toroidal rotation velocity component separately. The toroidal rotation velocity in the plasma core is measured with an independent charge exchange recombination spectroscopy diagnostic, looking tangentially at the plasma core. The contribution of this velocity along the lines of sight of the poloidal rotation diagnostic has been determined experimentally in L-mode plasmas keeping the poloidal component constant (K. Crombe et al., Proc. 30th EPS Conference, St. Petersburg, Russia, 7-11 July 2003, p. 1.55). The results from these experiments are compared with calculations of the toroidal contribution that take into account the original design parameters of the diagnostic and magnetic geometry of individual shots

  20. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    1990-01-01

    This document summarizes progress made on the research of high beta and second region transport and stability. In the area second stability region studies we report on an investigation of the possibility of second region access in the center of TFTR ''supershots.'' The instabilities found may coincide with experimental observation. Significant progress has been made on the resistive stability properties of high beta poloidal ''supershot'' discharges. For these studies profiles were taken from the TRANSP transport analysis code which analyzes experimental data. Invoking flattening of the pressure profile on mode rational surfaces causes tearing modes to persist into the experimental range of interest. Further, the experimental observation of the modes seems to be consistent with the predictions of the MHD model. In addition, code development in several areas has proceeded

  1. High-beta studies with beam-heated, non-circular plasmas in ISX-B

    International Nuclear Information System (INIS)

    Lazarus, E.A.; Bates, S.C.; Bush, C.E.

    1981-01-01

    In this paper we describe some preliminary results of high beta studies on ISX-B for mildly D shaped discharges. ISX-B is a modest size tokamak (R 0 = 93 cm, a = 27 cm) equipped with two tangantially-aligned neutral beam injectors giving a total power up to 3 MW. The poloidal coil system allows choice of plasma boundary shapes from circular to elongated (kappa less than or equal to 1.8), with D, elliptical, or inverse D cross sections. The non-circular work discussed here is for kappa approx. = 1.5

  2. TPX Poloidal Field (PF) power systems simulation

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1993-01-01

    This paper describes the modeling and simulation of the PF power system for the Tokamak Physics Experiment (TPX), which is required to supply pulsed DC current to the Poloidal Field (PF) superconducting coil system. An analytical model was developed to simulate the dynamics of the PF power system for any PF current scenario and thereby provide the basis for selection of PF circuit topology, in support of the major design goal of optimizing the use of the existing Tokamak Fusion Test Reactor (TFTR) facilities at the Princeton Plasma Physics Lab (PPPL)

  3. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  4. Toroidal and poloidal momentum transport studies in JET

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Crombe, K.

    2007-01-01

    that the carbon poloidal velocity can be an order of magnitude above the neo-classical estimate within the ITB. This significantly affects the calculated radial electric field and therefore, the E x B flow shear used for example in transport simulations. Both the Weiland model and GLF23 reproduce the onset......, location and strength of the ITB well when the experimental poloidal velocity is used while they do not predict the formation of the ITB using the neo-classical poloidal velocity in time-dependent transport simulation. The most plausible explanation for the generation of the anomalous poloidal velocity...... is the turbulence driven flow through the Reynolds stress. Both CUTIE and TRB turbulence codes show the existence of an anomalous poloidal velocity, being significantly larger than the neo-classical values. And similarly to experiments, the poloidal velocity profiles peak in the vicinity of the ITB and seem...

  5. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  6. Bounds on poloidal kinetic energy in plane layer convection

    Science.gov (United States)

    Tilgner, A.

    2017-12-01

    A numerical method is presented that conveniently computes upper bounds on heat transport and poloidal energy in plane layer convection for infinite and finite Prandtl numbers. The bounds obtained for the heat transport coincide with earlier results. These bounds imply upper bounds for the poloidal energy, which follow directly from the definitions of dissipation and energy. The same constraints used for computing upper bounds on the heat transport lead to improved bounds for the poloidal energy.

  7. The poloidal distribution of turbulent fluctuations in the Mega-Ampere Spherical Tokamak

    International Nuclear Information System (INIS)

    Antar, G.Y.; Counsell, G.; Ahn, J.-W.; Yang, Y.; Price, M.; Tabasso, A.; Kirk, A.

    2005-01-01

    Recently, it was shown that intermittency observed in magnetic fusion devices is caused by large-scales events with high radial velocity reaching about 1/10th of the sound speed (called avaloids or blobs) [G. Antar et al., Phys. Rev. Lett. 87 065001 (2001)]. In the present paper, the poloidal distribution of turbulence is investigated on the Mega-Ampere Spherical Tokamak [A. Sykes et al., Phys. Plasmas 8 2101 (2001)]. To achieve our goal, target probes that span the divertor strike points are used and one reciprocating probe at the midplane. Moreover, a fast imaging camera that can reach 10 μs exposure time looks tangentially at the plasma allowing us to view a poloidal cut of the plasma. The two diagnostics allow us to have a rather accurate description of the particle transport in the poloidal plane for L-mode discharges. Turbulence properties at the low-field midplane scrape-off layer are discussed and compared to other poloidal positions. On the low-field target divertor plates, avaloids bursty signature is not detected but still intermittency is observed far from the strike point. This is a consequence of the field line expansion which transforms a structure localized in the poloidal plane into a structure which expands over several tens of centimeters at the divertor target plates. Around the X point and in the high-field side, however, different phenomena enter into play suppressing the onset of convective transport generation. No signs of intermittency are observed in these regions. Accordingly, like 'normal' turbulence, the onset of convective transport is affected by the local magnetic curvature and shear

  8. Beta-limiting MHD instabilities in improved performance NSTX spherical torus plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.

    2003-01-01

    Global magnetohydrodynamic stability limits in the National Spherical Torus Experiment (NSTX) have increased significantly recently due to a combination of device and operational improvements. First, more routine H-mode operation with broadened pressure profiles allows access to higher normalized beta and lower internal inductance. Second, the correction of a poloidal field coil induced error-field has largely eliminated locked tearing modes during nor- mal operation and increased the maximum achievable beta. As a result of these improvements, peak beta values have reached (not simultaneously) β t = 35%, β N 6.5, N > = 4.5, β / l i =10, and β= 1.4. High β P operation with reduced tearing activity has allowed a doubling of discharge pulse-length to just over 1 second with sustained periods of β N ∼ 6. Details of the β limit scalings and β-limiting instabilities in various operating regimes are described. (author)

  9. Plasma residual poloidal rotation in TCABR tokamak

    International Nuclear Information System (INIS)

    Severo, J.H.F.; Nascimento, I.C.; Tsypin, V.S.; Galvao, R.M.O.

    2003-01-01

    This paper reports the first measurement of the radial profiles of plasma poloidal and toroidal rotation performed on the TCABR tokamak for a collisional plasma (Pfirsch-Schluter regime), using Doppler shift of carbon spectral lines, measured with a high precision optical spectrometer. The results for poloidal rotation show a maximum velocity of (4.5±1.0)·10 3 m/s at r ∼ 2/3a, (a - limiter radius), in the direction of the diamagnetic electron drift. Within the error limits, reasonable agreement is obtained with calculations using the neoclassical theory for a collisional plasma, except near the plasma edge, as expected. For toroidal rotation, the radial profile shows that the velocity decreases from a counter-current value of (20 ± 1) · 10 3 m/s for the plasma core to a co-current value of (2.0 ± 1.0) · 10 3 m/s near the limiter. An agreement within a factor 2, for the plasma core rotation, is obtained with calculations using the model proposed by Kim, Diamond and Groebner. (author)

  10. Compact poloidal divertor reference design for TNS

    International Nuclear Information System (INIS)

    Yang, T.F.; Lee, A.Y.; Ruck, G.W.; Lange, W.J.

    1977-01-01

    A compact poloidal divertor concept has been developed for TNS tokamaks and its feasibility has been demonstrated by sufficient detailed magnetic, thermal, mechanical and vacuum analyses. This particular divertor is formed by a pair of opposing coil sets which define a magnetic flux slot where the particle burial chamber is located. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. Large collecting surface areas can be obtained so that the thermal load and particle flux are reduced to a practical level. Flowing lithium film and solid metal panels have been considered as the particle collector and the latter is preferred. This divertor allows for most economical use of the available space inside the TF coils and thus has minor impact on the overall size of the tokamak. The divertor design is essentially independent of the tokamak system, although analyses were performed based on TNS

  11. Optimization of the poloidal transformer of ignitor

    International Nuclear Information System (INIS)

    Andritsos, F.; Angelini, A.

    1989-01-01

    One of the most critical parts of the high field Tokamak IGNITOR, is the inner poloidal transformer coil. This is due not only to the high stresses developed there but also to the large quantities of energy released and the resulting high temperature. It determines the overall cooling time of the machine and thus the maximum attainable number of pulses per year. An optimization, based on a parametric study of the transformer, was performed and configuration parameters were defined. Cooling time was the quantity to be minimized, with main constraints the maximum coil temperatures and the maximum coolant outlet velocities. The cost of the cooling plant was also taken into account. The row of the conductors adjacent to the equatorial plane, which presents the highest stresses, was modeled and checked for maximum stresses. Thermal and magnetic loading, contact nonlinearity and pretensioning were considered. 8 refs., 4 figs., 12 tabs

  12. Poloidal ohmic heating in a multipole

    International Nuclear Information System (INIS)

    Holly, D.J.; Prager, S.C.; Sprott, J.C.

    1982-07-01

    The feasibility of using poloidal currents to heat plasmas confined by a multipole field has been examined experimentally in Tokapole II, operating the machine as a toroidal octupole. The plasma resistivity ranges from Spitzer to about 1500 times Spitzer resistivity, as predicted by mirror-enhanced resistivity theory. This allows large powers (approx. 2 MW) to be coupled to the plasma at modest current levels. However, the confinement time is reduced by the heating, apparently due to a combination of the input power location (near the walls of the vacuum tank) and fluctuation-enhanced transport. Current-driven drift instabilities and resistive MHD instabilities appear to be the most likely causes for the fluctuations

  13. Preliminary design of HL-2A discharge control system

    International Nuclear Information System (INIS)

    Jiang Chao; Song Xianming; Li Qiang

    2001-01-01

    HL-2A Discharge Control System consists of one or more VXI work stations so as to compose an all digital control system. The DCS are used to measure and control the poloidal coils, the main tasks of the poloidal coils are exploding, keeping and controlling the current of plasma. These coils explode plasma and keep it in the determined position

  14. Induction of poloidal rotation by mean of a ponderomotive force

    International Nuclear Information System (INIS)

    Gutierrez T, C.; Martinell, J.

    1999-01-01

    When a plasma is radiated with a radiofrequency wave (RF) with fluxes of energy at hundred megawatts order (MW) the effect the of ponderomotive force (PM) is very important. This force applied to the plasma column can generate a rotation movement by a non-resonant mechanism. Particularly, it is known that the poloidal rotation can be induced by direct action of the PM force poloidal moment. This poloidal rotation of the plasma column can to explain the appearance of high confinement regime (H) in Tokamaks. In this work, it is analysed this mechanism, showing that if it is operated efficiently with the poloidal and parallel components of PM force then could be intensified the poloidal rotation moreover it is showed the form in which the asymptotic value of this rotation is established. (Author)

  15. Poloidal and toroidal heat flux distribution in the CCT tokamak

    International Nuclear Information System (INIS)

    Brown, M.L.; Dhir, V.K.; Taylor, R.J.

    1990-01-01

    Plasma heat flux to the Faraday shield panels of the UCLA Continuous Current Tokamak (CCT) has been measured calorimetrically in order to identify the dominant parameters affecting the spatial distribution of heat deposition. Three heating methods were investigated: audio frequency discharge cleaning, RF heating, and AC ohmic. Significant poloidal asymmetry is present in the heat flux distribution. On the average, the outer panels received 25-30% greater heat flux than the inner ones, with the ratio of maximum to minimum values attaining a difference of more than a factor of 2. As a diagnostic experiment the current to a selected toroidal field coil was reduced in order to locally deflect the toroidal field lines outward in a ripple-like fashion. Greatly enhanced heat deposition (up to a factor of 4) was observed at this location on the outside Faraday panels. The enhancement was greatest for conditions of low toroidal field and low neutral pressure, leading to low plasma densities, for which Coulomb collisions are the smallest. An exponential model based on a heat flux e-folding length describes the experimentally found localization of thermal energy quite adequately. (orig.)

  16. Induction of poloidal rotation by mean of a ponderomotive force; Induccion de rotacion poloidal por medio de una fuerza ponderomotriz

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez T, C. [Instituto Nacional de Investigaciones Nucleares, Departamento de Fisica, Salazar, Estado de Mexico, C.P. 52045 (Mexico); Martinell, J. [Instituto de Ciencias Nucleares, UNAM, C.P. 04510, Mexico D.F. (Mexico)

    1999-07-01

    When a plasma is radiated with a radiofrequency wave (RF) with fluxes of energy at hundred megawatts order (MW) the effect the of ponderomotive force (PM) is very important. This force applied to the plasma column can generate a rotation movement by a non-resonant mechanism. Particularly, it is known that the poloidal rotation can be induced by direct action of the PM force poloidal moment. This poloidal rotation of the plasma column can to explain the appearance of high confinement regime (H) in Tokamaks. In this work, it is analysed this mechanism, showing that if it is operated efficiently with the poloidal and parallel components of PM force then could be intensified the poloidal rotation moreover it is showed the form in which the asymptotic value of this rotation is established. (Author)

  17. Ideal-MHD beta limits: scaling laws and comparison with Doublet III high-beta plasmas

    International Nuclear Information System (INIS)

    Bernard, L.C.; Bhadra, D.K.; Helton, F.J.; Lao, L.L.; Todd, T.N.

    1983-06-01

    Doublet III (DIII) recently has achieved a value for #betta#, the ratio of volume averaged plasma to magnetic pressure, of 4.5%. This #betta# value is in the range required for an economically attractive tokamak reactor, and also close to the relevant limit predicted by ideal-MHD theory. It is therefore of great interest to assess the validity of the theory by comparison with experiment and thus to have a basis for the prediction of future reactor performance. A large variety of plasma shapes have been obtained in DIII. These shapes can be divided into two classes: (1) limiter discharges, and (2) diverted discharges, which are of great interest because of their good confinement in the H-mode operation. We derive simple scaling laws from the variation of optimized ideal-MHD beta limits (#betta#/sub c/) with plasma shape parameters. The current profile is optimized for fixed plasma shapes, separately for the high-n (ballooning) and the low-n (kink) modes. Results are presented in the form of suitability normalized curves of #betta# versus poloidal beta, #betta#/sub p/, for both ballooning and kink modes in order to simultaneously compare all the DIII experimental data

  18. Nonambipolarity, orthogonal conductivity, poloidal flow, and torque

    International Nuclear Information System (INIS)

    Hulbert, G.W.; Perkins, F.W.

    1989-02-01

    Nonambipolar processes, such as neutral injection onto trapped orbits or ripple-diffusion loss of α-particles, act to charge a plasma. A current j/sub r/ across magnetic surfaces must arise in the bulk plasma to maintain charge neutrality. An axisymmetric, neoclassical model of the bulk plasma shows that these currents are carried by the ions and exert a j/sub r/B/sub θ/R/c torque in the toroidal direction. A driven poloidal flow V/sub θ/ = E/sub r/'c/B must also develop. The average current density is related to the radial electric field E/sub r/' = E/sub r/ + v/sub /phi//B/sub θ//c in a frame moving with the plasma via the orthogonal conductivity = σ/sub /perpendicular//E/sub r/', which has the value σ/sub /perpendicular// = (1.65ε/sup 1/2/)(ne 2 ν/sub ii//MΩ/sub θ/ 2 ) in the banana regime. If an ignited plasma loses an appreciable fraction Δ of its thermonuclear α-particles by banana ripple diffusion, then the torque will spin the plasma to sonic rotation in a time /tau//sub s/ ∼ 2/tau//sub E//Δ, /tau//sub E/ being the energy confinement time. 10 refs., 1 fig

  19. Development of a Closed Loop Simulator for Poloidal Field Control in DIII-D

    International Nuclear Information System (INIS)

    J.A. Leuer; M.L. Walker; D.A. Humphreys; J.R. Ferron; A. Nerem; B.G. Penaflor

    1999-01-01

    The design of a model-based simulator of the DIII-D poloidal field system is presented. The simulator is automatically configured to match a particular DIII-D discharge circuit. The simulator can be run in a data input mode, in which prior acquired DIII-D shot data is input to the simulator, or in a stand-alone predictive mode, in which the model operates in closed loop with the plasma control system. The simulator is used to design and validate a multi-input-multi-output controller which has been implemented on DIII-D to control plasma shape. Preliminary experimental controller results are presented

  20. Fast time resolution charge-exchange measurements during the fishbone instability in the poloidal divertor experiment

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Kaita, R.; Goldston, R.J.

    1984-01-01

    Measurements of fast ion losses due to the fishbone instability during high β/sub T/q neutral beam heated discharges in the Poloidal Divertor Experiment have been made using two new vertical-viewing charge-exchange analyzers. The measurements show that the instability has an n=1 toroidal mode number, and that it ejects beam ions in a toroidally rotating beacon directed outward along a major radius. Observations of ejected ions with energies up to twice the beam injection energy at R approx. = R 0 + a indicate the presence of a non-μ-conserving acceleration mechanism

  1. Measurements of poloidal and toroidal energy deposition asymmetries in the ASDEX divertors

    International Nuclear Information System (INIS)

    Evans, T.E.

    1991-03-01

    Energy deposition characteristics in the ASDEX divertors have been analyzed over a wide range of discharges and wall conditions during ohmically heated, additionally heated, or lower hybrid current drive experiments. Changes in discharge operating parameters with high power additional heating produce a diversity of effects on the magnitudes and distributions of the energy absorbed in the divertors. Poloidally and toroidally resolved energy deposition patterns are particularly sensitive to changes in the edge safety factor, the type and power level of additional heating used, and the vertical position of the plasma. In most additionally heated discharges, a large fraction of the incremental divertor loading is found on only one or two target rings. Poloidal in-out asymmetries, which typically favor the low-field side by a factor of 2.5 in ohmic discharges, commonly range between a factor of 2.5 and 4.5 in additionally heated experiments and in extreme cases can be as large as a factor of 5.6. At the same time, toroidal asymmetries on individual target rings are found to range between a factor of 1.4 and 3.8 in typical ICRH and NBI cases with extreme LHCD cases of 4.3. A model, proposed to explain the cause of discharge asymmetries, is compared with the experimental observations. Under some conditions, for example during LHCD experiments, the model is in good agreement with the data. A method is proposed for supressing discharge asymmetries which may generally improve the divertor performance as well. (orig./AH)

  2. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California-San Diego, La Jolla, California 92186-5608 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, San Diego, California 92186-5608 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

    2012-10-15

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  3. Calculation of impurity poloidal rotation from measured poloidal asymmetries in the toroidal rotation of a tokamak plasma.

    Science.gov (United States)

    Chrystal, C; Burrell, K H; Grierson, B A; Groebner, R J; Kaplan, D H

    2012-10-01

    To improve poloidal rotation measurement capabilities on the DIII-D tokamak, new chords for the charge exchange recombination spectroscopy (CER) diagnostic have been installed. CER is a common method for measuring impurity rotation in tokamak plasmas. These new chords make measurements on the high-field side of the plasma. They are designed so that they can measure toroidal rotation without the need for the calculation of atomic physics corrections. Asymmetry between toroidal rotation on the high- and low-field sides of the plasma is used to calculate poloidal rotation. Results for the main impurity in the plasma are shown and compared with a neoclassical calculation of poloidal rotation.

  4. Poloidal flux loss in a field-reversed theta pinch

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Milroy, R.D.; Steinhauer, L.C.

    1981-01-01

    Poloidal flux loss has been measured in field-reversed configurations and related to anomalous resistivity near the magnetic field null. The results indicate that mechanisms in addition to the lower-hybrid drift instability are affecting transport

  5. Toroidal and poloidal momentum transport studies in Tokamaks

    DEFF Research Database (Denmark)

    Tala, T.; Andrew, Y.; Giroud, C.

    2007-01-01

    to be neo-classical. However, experimental measurements on JET show that the carbon poloidal velocity can be an order of magnitude above the predicted value by the neo-classical theory within the ITB. These large measured poloidal velocities, employed for example in transport simulations, significantly...... codes and also the Weiland model predict the existence of an anomalous poloidal velocity, peaking in the vicinity of the ITB and driven dominantly by the flow due to the Reynold's stress. It is worth noting that these codes and models treat the equilibrium in a simplified way and this affects...... the geodesic curvature effects and geodesic acoustic modes. The neo-classical equilibrium is calculated more accurately in the GEM code and the simulations suggest that the spin-up of poloidal velocity is a consequence of the plasma profiles steepening when the ITB grows, following in particular the growth...

  6. Power supply for coil of poloidal field in a tokamak

    International Nuclear Information System (INIS)

    Kirpichev, I.V.; Spevakova, F.M.

    1984-01-01

    The invention refers to power supply systems of poloidal field winding in tokamaks. The purpose of the invention is the extension of functional capabilities of the circuit by means of use of thyristor and diode keys mounted between convertor sections

  7. Poloidal asymmetries of flows in the Tore Supra tokamak

    Science.gov (United States)

    Vermare, L.; Hennequin, P.; Gürcan, Ö. D.; Garbet, X.; Honoré, C.; Clairet, F.; Giacalone, J. C.; Morel, P.; Storelli, A.; Tore Supra Team

    2018-02-01

    Simultaneous measurements of binormal velocity of density fluctuations using two separate Doppler backscattering systems at the low field side and at the top of the plasma show significant poloidal asymmetry. The measurements are performed in the core region between the radii 0.7 Supra tokamak. A possible generation mechanism by the ballooned structure of the underlying turbulence, in the form of convective cells, is proposed for explaining the observation of these poloidally asymmetric mean flows.

  8. High beta experiments in CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Matsuoka, K.; Nishimura, K.

    1994-09-01

    High beta experiments were performed in the low-aspect-ratio helical device CHS with the volume-averaged equilibrium beta up to 2.1 %. These values (highest for helical systems) are obtained for high density plasmas in low magnetic field heated with two tangential neutral beams. Confinement improvement given by means of turning off gas puffing helped significantly to make high betas. Magnetic fluctuations increased with increasing beta, but finally stopped to increase in the beta range > 1 %. The coherent modes appearing in the magnetic hill region showed strong dependence on the beta values. The dynamic poloidal field control was applied to suppress the outward plasma movement with the plasma pressure. Such an operation gave fixed boundary operations of high beta plasmas in helical systems. (author)

  9. Poloidal flux requirement: Analysis and application to the Ignitor configuration

    International Nuclear Information System (INIS)

    Nassi, M.

    1993-01-01

    The definitions and correlations existing between different terms used by physicists and engineers are clarified in order to deal with the assessment of the poloidal flux requirement in a fusion experiment. The theoretical formulation of both the Faraday and the Poynting methods, for the internal flux evaluation, is briefly reviewed. Heuristic expressions that allow estimates of internal flux consumption are reported for the specific case of an ignition experiment represented by the Ignitor configuration. The analytical and heuristic results for both internal and external poloidal flux requirements are checked against numerical evaluations carried out by using the TSC transport and magnetohydrodynamics code and the TEQ equilibrium code. A fairly good agreement between the different estimates is found. This suggests that simple heuristic expressions can be used to evaluate the poloidal flux requirement of future experiments, even if a detailed simulation of the plasma current penetration process is strongly recommended to correctly assess and optimize the resistive poloidal flux consumption. Finally, the poloidal flux requirement for different plasma scenarios in the Ignitor experiment is compared with the magnetic flux variation that can be delivered by the poloidal field system. 28 refs., 4 figs., 10 tabs

  10. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  11. Dependence of CIT [Compact Ignition Tokamak] PF [poloidal field] coil currents on profile and shape parameters using the Control Matrix

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y-K.M.; Jardin, S.C.; Pomphrey, N.

    1990-01-01

    The plasma shaping flexibility of the Compact Ignition Tokamak (CIT) poloidal field (PF) coil set is demonstrated through MHD equilibrium calculations of optimal PF coil current distributions and their variation with poloidal beta, internal inductance, plasma 95% elongation, and 95% triangularity. Calculations of the magnetic stored energy are used to compare solutions associated with various plasma parameters. The Control Matrix (CM) equilibrium code, together with the nonlinear equation and numerical optimization software packages HYBRD, and VMCON, respectively, are used to find equilibrium coil current distributions for fixed divertor geometry, volt-seconds, and plasma profiles in order to isolate the dependence on individual parameters. A reference equilibrium and coil current distribution are chosen, and correction currents dI are determined using the CM equilibrium method to obtain other specified plasma shapes. The reference equilibrium is the κ = 2 divertor at beginning of flattop (BOFT) with a minimum stored energy solution for the coil current distribution. The pressure profile function is fixed

  12. Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector

    International Nuclear Information System (INIS)

    Min, Kyungguk; Takahashi, Kazue; Ukhorskiy, Aleksandr Y.; Manweiler, Jerry W.; Spence, Harlan E.

    2017-01-01

    This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ~100; the magnetic field fluctuations have a finite compressional component due to small but finite plasma beta (~0.1); the energetic proton fluxes in the energy ranging from above 10 keV to about 100 keV exhibit pulsations with the same frequency as the poloidal mode and energy-dependent phase delays relative to the azimuthal component of the electric field, providing evidence for drift-bounce resonance; and the second harmonic poloidal mode may have been excited via the drift-bounce resonance mechanism with free energy fed by the inward radial gradient of ~80 keV protons. Here, we show that the wave active region is where the plume overlaps the outer edge of ring current and suggest that this region can have a wide longitudinal extent near geosynchronous orbit.

  13. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  14. Doppler reflectometry for the investigation of poloidally propagating density perturbations

    International Nuclear Information System (INIS)

    Hirsch, M.; Baldzuhn, J.; Kurzan, B.; Holzhauer, E.

    1999-01-01

    A modification of microwave reflectometry is discussed where the direction of observation is tilted with respect to the normal onto the reflecting surface. The experiment is similar to scattering where a finite resolution in k-space exists but keeps the radial localization of reflectometry. The observed poloidal wavenumber is chosen by Bragg's condition via the tilt angle and the resolution in k-space is determined by the antenna pattern. From the Doppler shift of the reflected wave the poloidal propagation velocity of density perturbations is obtained. The diagnostic capabilities of Doppler reflectometry are investigated using full wave code calculations. The method offers the possibility to observe changes in the poloidal propagation velocity of density perturbations and their radial shear with a temporal resolution of about 10μs. (authors)

  15. Ceramic BOT type blanket with poloidal helium cooling

    International Nuclear Information System (INIS)

    Cardella, A.; Daenenr, W.; Iseli, M.; Ferrari, M.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.

    1989-01-01

    This paper briefly describes the work done and results achieved over the past two years on the ceramic breeder BOT blanket with poloidal helium cooling. A conclusive remark on the brick/plate option described previously is followed by short descriptions of the low and high performance pebble bed options elaborated as alternatives for both NET and DEMO. The results show, togethre with those about the poloidal cooling of the First Wall, good prospects for this blanket type provided that the questions connected wiht an extensive use of beryllium find a satisfactor answer. (author). 5 refs.; 7 figs.; 1 tab

  16. On the interplay between turbulence and poloidal flows in plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Garcia-Cortes, I.

    1999-01-01

    The radial profile of Reynolds stress has been measured in the plasma boundary region of tokamaks and stellarator plasmas. The electrostatic Reynolds stress (proportional to r E-tilde θ >) shows a radial gradient close to the velocity shear layer location, showing that this mechanism can drive significant poloidal flows in the plasma boundary region of fusion plasmas. The generation of poloidal flows by Ion Bernstein Wave (IBW) is under investigation in toroidal plasmas. The radial gradient in the Reynolds stress increases with RF power and radial electric fields are modified at the RF resonance layer. (author)

  17. Magnetohydrodynamic stability of tokamak plasmas with poloidal mode coupling

    International Nuclear Information System (INIS)

    Shigueoka, H.; Sakanaka, P.H.

    1987-01-01

    The stability behavior with respect to internal modes is examined for a class of tokamak equilibria with non-circular cross sections. The surfaces of the constant poloidal magnetic flux ψ (R,Z) are obtained numerically by solving the Grad-Shafranov's equation with a specified shape for the outmost plasma surface. The equation of motion for ideal MHD stability is written in a ortogonal coordinate system (ψ, χ, φ). Th e stability analysis is performance numerically in a truncated set of coupled m (poloidal wave number) equations. The calculations involve no approximations, and so all parameters of the equilibrium solution can be arbitrarily varied. (author) [pt

  18. TEXT poloidal coil systems power supplies

    International Nuclear Information System (INIS)

    Hutchins, S.H.; Brower, D.F.

    1977-01-01

    TEXT is a convertional iron core tokamak which will have a toroidal field of 3.0 Tesla produced by room temperature copper coils and a maximum plasma current pulse of 400 kA induced by a 40 turn Ohmic Heating coil. The major radius is 100 cm and the minor radius of the plasma is 28 cm. The machine is intended for basic research in tokamak plasma physics and atomic physics and is designed primarily to provide a stable hot plasma, extremely good diagnostic access, and reliable operation. The discharge pulse length will be 300 msec and the repetition period 120 seconds. Power for the toroidal field coils and for the ohmic heating supply is provided by a 100 MVA energy storage alternator. The vertical field, horizontal field, fast positioning, and discharge cleaning power supply systems are powered from the Tokamak Laboratory power mains. The ohmic heating power system consists of an SCR controlled premagnetizing supply and commutation circuit, the main ohmic heating capacitor bank to provide plasma breakdown and current rise, and an SCR controlled power supply which sustains plasma current during the 300 ms pulse. The vertical field power system uses a small capacitor bank and an SCR controlled supply. The horizontal field has a reversible SCR controlled supply, and the fast positioning coils are powered by bipolar output transistor controlled supplies. This paper describes the loads, required wave forms, and the specifications for these power supply systems

  19. Average beta measurement in EXTRAP T1

    International Nuclear Information System (INIS)

    Hedin, E.R.

    1988-12-01

    Beginning with the ideal MHD pressure balance equation, an expression for the average poloidal beta, Β Θ , is derived. A method for unobtrusively measuring the quantities used to evaluate Β Θ in Extrap T1 is described. The results if a series of measurements yielding Β Θ as a function of externally applied toroidal field are presented. (author)

  20. Poloidal magnetic field profile measurements on the microwave tokamak experiment using far-infrared polarimetry

    International Nuclear Information System (INIS)

    Rice, B.W.

    1992-09-01

    The measurement of plasma poloidal magnetic field (B) profiles in tokamaks with good temporal and spatial resolution has proven to be a difficult but important measurement. A large range of toroidal confinement phenomena is expected to depend sensitively on the radial variation of B including the tearing instability, sawtooth oscillations, disruptions, and transport. Experimental confirmation of theoretical models describing these phenomena has been hampered by the lack of detailed B measurements. A fifteen chord far-infrared (FIR) polarimeter has been developed to measure B in the Microwave Tokamak, Experiment (MTX). Polarimetry utilizes the well known Faraday rotation effect, which causes a rotation of the polarization of an FIR beam propagating in the poloidal plane. The rotation angle is proportional to the component of B parallel to the beam. A new technique for determining the Faraday rotation angle is introduced, based on phase measurements of a rotating polarization ellipse. This instrument has been used successfully to measure B profiles for a wide range of experiments on MTX. For ohmic discharges, measurements of the safety factor on axis give q 0 ∼ 0.75 during sawteeth and q 0 > 1 without sawteeth. Large perturbations to the polarimeter signals correlated with the sawtooth crash are observed during some discharges. Measurements in discharges with electron cyclotron heating (ECH) show a transition from a hollow to peaked J profile that is triggered by the ECH pulse. Current-ramp experiments were done to perturb the J profile from the nominal Spitzer conductivity profile. Profiles for initial current ramps and ramps starting from a stable equilibrium have been measured and are compared with a cylindrical diffusion model. Finally, the tearing mode stability equation is solved using measured J profiles. Stability predictions are in good agreement with the existence of oscillations observed on the magnetic loops

  1. The production of high poloidal tokamak equilibria in Versator II by means of RF current drive

    International Nuclear Information System (INIS)

    Luckhardt, S.C.; Chen, K.-I.; Kesner, J.; Kirkwood, R.; Lane, B.; Porkolab, M.; Squire, J.

    1989-01-01

    Experiments on the Versator II device have been carried out in a regime of low plasma current with the aim of reaching high poloidal beta, β p . Lower-Hybrid RF current drive is used to produce an energetic electron population which carries the plasma current and pressure. In this mode of operation, plasmas with εβ p approaching unity appear attainable. Data from equilibrium magnetic analysis, hard x-ray, and density profiles display an outward magnetic axis shift in agreement with equilibrium theory, and further indicate that q(O) is in the range of 4-6. PEST code modeling of these experiments suggests that some of these plasmas may be near or beyond the transition to the second stability region for ballooning modes. (author)

  2. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.; Sarff, J.S.; Sinitsyn, D.

    1997-01-01

    Current profile control is employed in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric-field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% and the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch. copyright 1997 American Institute of Physics

  3. Poloidal rotation velocity measurement in toroidal plasmas via microwave reflectometry

    International Nuclear Information System (INIS)

    Pavlichenko, O.S.; Skibenko, A.I.; Fomin, I.P.; Pinos, I.B.; Ocheretenko, V.L.; Berezhniy, V.L.

    2001-01-01

    Results of experiment modeling backscattering of microwaves from rotating plasma layer perturbed by fluctuations are presented. It was shown that auto- and crosscorrelation of reflected power have a periodicity equal to rotation period. Such periodicity was observed by microwave reflectometry in experiments on RF plasma production on U-3M torsatron and was used for measurement of plasma poloidal rotation velocity. (author)

  4. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, S.; Imai, T.; Seki, M.; Suganuma, K.; Goniche, M.; Bibet, Ph.; Berio, S.; Brossaud, J.; Rey, G.; Tonon, G.

    1997-03-01

    A realistic antenna module using a poloidal divider for lower hybrid current drive (LHCD) experiment, is modelled and fabricated. In this antenna module test II, three types of poloidal dividers, which split the power in 3, are tested. (author)

  5. Poloidal rotation driven by electron cyclotron resonance wave in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    2017-10-01

    Full Text Available The poloidal electric filed, which is the drive field of poloidal rotation, has been observed and increases obviously after the injection of electron cyclotron resonance wave in HL-2A experiment, and the amplitude of the poloidal electric field is in the order of 103 V/m. Through theoretical analysis using Stringer rotation model, the observed poloidal electric field is of the same order as the theoretical calculation value. In addition, the magnetic pump damping which would damp the poloidal rotation is calculated numerically and the calculation results show that the closer to the core plasmas, the stronger the magnetic pump damping will be. Meanwhile, according to the value of the calculated magnetic pump damping, the threshold of the poloidal electric field which could overcome magnetic pump damping and drive poloidal rotation in tokamak plasmas is given out. Finally, the poloidal rotation velocity over time at different minor radius is studied theoretically.

  6. Extension and comparison of neoclassical models for poloidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Stacey, W. M.

    2008-01-01

    Several neoclassical models for the calculation of poloidal rotation in tokamaks were rederived within a common framework, extended to include additional physics and numerically compared. The importance of new physics phenomena not usually included in poloidal rotation calculations (e.g., poloidal electric field, VxB force resulting from enhanced radial particle flow arising from the ionization of recycling neutrals) was examined. Extensions of the Hirshman-Sigmar, Kim-Diamond-Groebner, and Stacey-Sigmar poloidal rotation models are presented

  7. Mechanical impacts of poloidal eddy currents on the continuous vacuum vessel of a tokamak

    International Nuclear Information System (INIS)

    In, Sang Ryul; Yoon, Byung Joo.

    1996-11-01

    Poloidal eddy currents are induced on the continuous torus vacuum vessel by changes of the toroidal field during the machine start-up (toroidal field coil charge), shut-down (toroidal field coil discharge) and plasma disruption (plasma diamagnetism change). Analytic forms for the eddy currents flowing on the vessel, consequent pressures and forces acting on it are presented in this report. The results are applied to typical operation modes of the KT-2 tokamak. Stress analysis for two typical operation modes of toroidal field damping during a machine shut-gown and plasma energy quench during a plasma disruption were carried out using 3D FEM code (ANSYS 5.2). (author). 5 tabs., 22 figs., 9 refs

  8. Interaction of a spheromak-like compact toroid with a high beta spherical tokamak plasma

    International Nuclear Information System (INIS)

    Hwang, D.Q.; McLean, H.S.; Baker, K.L.; Evans, R.W.; Horton, R.D.; Terry, S.D.; Howard, S.; Schmidt, G.L.

    2000-01-01

    Recent experiments using accelerated spheromak-like compact toroids (SCTs) to fuel tokamak plasmas have quantified the penetration mechanism in the low beta regime; i.e. external magnetic field pressure dominates plasma thermal pressure. However, fusion reactor designs require high beta plasma and, more importantly, the proper plasma pressure profile. Here, the effect of the plasma pressure profile on SCT penetration, specifically, the effect of diamagnetism, is addressed. It is estimated that magnetic field pressure dominates penetration even up to 50% local beta. The combination of the diamagnetic effect on the toroidal magnetic field and the strong poloidal field at the outer major radius of a spherical tokamak will result in a diamagnetic well in the total magnetic field. Therefore, the spherical tokamak is a good candidate to test the potential trapping of an SCT in a high beta diamagnetic well. The diamagnetic effects of a high beta spherical tokamak discharge (low aspect ratio) are computed. To test the penetration of an SCT into such a diamagnetic well, experiments have been conducted of SCT injection into a vacuum field structure which simulates the diamagnetic field effect of a high beta tokamak. The diamagnetic field gradient length is substantially shorter than that of the toroidal field of the tokamak, and the results show that it can still improve the penetration of the SCT. Finally, analytic results have been used to estimate the effect of plasma pressure on penetration, and the effect of plasma pressure was found to be small in comparison with the magnetic field pressure. The penetration condition for a vacuum field only is reported. To study the diamagnetic effect in a high beta plasma, additional experiments need to be carried out on a high beta spherical tokamak. (author)

  9. Calculation of edge ion temperature and poloidal rotation velocity from carbon III triplet measurements on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Tomeš, Matěj; Weinzettl, Vladimír; Pereira, T.; Imríšek, Martin; Seidl, Jakub

    2016-01-01

    Roč. 61, č. 4 (2016), s. 443-451 ISSN 0029-5922. [Summer School of Plasma Diagnostics Phdiafusion - Soft X-Ray Diagnostics for Fusion Plasma. Bezmiechowa, 16.06.2015-20.06.2015] Institutional support: RVO:61389021 Keywords : high-resolution spectroscopy * spectra processing * peak detection * line detection * line fi tting * poloidal plasma rotation * ion temperature * C III * impurity temperature Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016 https://www.degruyter.com/view/j/nuka.2016.61.issue-4/nuka-2016-0073/nuka-2016-0073.xml

  10. Superconducting poloidal field magnet engineering for the ARIES-ST

    International Nuclear Information System (INIS)

    Bromberg, Leslie; Pourrahimi, S.; Schultz, J.H.; Titus, P.; Jardin, S.; Kessel, C.; Reiersen, W.

    2003-01-01

    The critical issues of the poloidal systems for the ARIES-ST design have been presented in this paper. Because of the large plasma current and the need of highly shaped plasmas, the poloidal field (PF) coils should be located inside the toroidal field in order to reduce their current. Even then, the divertor coils carry large currents. The ARIES-ST PF coils are superconducting using the internally cooled cable-in-conduit conductor. The peak self field in the divertor coils is about 15 T and the highest field in the non-divertor coils is about 6 T. The PF magnets have built-in margins that are sufficient to survive disruptions without quenching. The costing study indicates that the specific cost of the PF system is $80/kg. Detailed design and trade-off studies of ARIES-ST are presented and remaining R and D issues are identified

  11. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  12. KT-2 poloidal-field(PF) system design

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jang Min; Hong, Bong Keun; Hwang, Chul Kyu; Song, Woo Sub; Kim, Sung Kyu; Lee, Kwang Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    KT-2 poloidal-field (PF) system design is described. The PF coil system is designed for both up-down symmetric double-null (DN) and up-down asymmetric single-null (SN) configurations. Three sets of `design-basis` scenarios, which describe the ohmic heating (OH), the 5MW and the high bootstrap (HIBS) baseline modes, are represented. In these cases, the power and energy required from external power supplies are calculated. 8 tabs., 54 figs., 14 refs. (Author).

  13. Disruption-induced poloidal currents in the tokamak wall

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2017-01-01

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  14. Initial results from the Tokapole-II poloidal divertor device

    International Nuclear Information System (INIS)

    Biddle, A.P.; Dexter, R.N.; Groebner, R.J.; Holly, D.J.; Lipschultz, B.; Phillips, M.W.; Prager, S.C.; Sprott, J.C.

    1979-01-01

    The latest in a series of internal-ring devices, called Tokapole II, has recently begun operation at the University of Wisconsin. Its purpose is to permit the study of the production and confinement of hot, dense plasmas in either a toroidal octupole (with or without toroidal field) or a tokamak with a four-node poloidal divertor. The characteristics of the device and the results of its initial operation are described here. Quantitative measurements of impurity concentration and radiated power have been made. Poloidal divertor equilibria of square and dee shapes have been produced, and an axisymmetric instability has been observed with the inverse dee. Electron cyclotron resonance heating is used to initiate the breakdown near the axis and to control the initial influx of impurities. A 2-MW RF source at the second harmonic of the ion cyclotron frequency is available and has been used to double the ion temperature when operated at low power with an unoptimized antenna. Initial results of operation as a pure octupole with poloidal Ohmic heating suggest a tokamak-like scaling of density (n proportional to Bsub(p)) and confinement time (tau proportional to n). (author)

  15. Disruption-induced poloidal currents in the tokamak wall

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D., E-mail: Pustovitov_VD@nrcki.ru [National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia (Russian Federation)

    2017-04-15

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  16. PC-based package for interactive assessment of MHD equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.

    1987-01-01

    In the assessment of Magnetohydrodynamic (MHD) equilibrium and Poloidal Field Coil (PFC) arrangement for toroidal axisymmetric geometry, the Grad-Shafranov equation must be solved, either analytically or numerically. Existing numerical tools have been developed primarily for mainframe usage and can prove cumbersome for screening assessments and parametric evaluations. The objective of this thesis was to develop a personal computer (PC)-based calculational tool for assessing MHD/PFC problems in a highly interactive mode, well suited for scoping studies. The approach adopted involves a two-step process: first the MHD equilibrium is calculated and then the PFC arrangement, consistent with the equilibrium, is determined in an interactive design environment. The PC-based system developed consists of two programs: (1) PCEQ, which solve the MHD equilibrium problem and (2) PFDE-SIGN, which is employed to arrive at a PFC arrangement. PCEQ provides an output file including, but not limited to, the following: poloidal beta, total beta, safety factors, q, on axis and on edge. PCEQ plots the following contours and/or profiles: flux, pressure and toroidal current density, safety factor, and ratio of plasma toroidal field to vacuum field

  17. High beta plasma operation in a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1978-01-01

    A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results

  18. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)

  19. Non-inductive current start-up and plasma equilibrium with an inboard poloidal field null by means of electron cyclotron waves in QUEST

    International Nuclear Information System (INIS)

    Zushi, H.; Hasegawa, M.; Hanada, K.; Idei, H.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Matsuoka, K.; Tashima, S.; Ishiguro, M.; Banerjee, S.; Sharma, S.K.; Liu, H.; Nishino, N.; Isobe, M.; Toi, K.; Okamura, S.; Maekawa, T.; Fukuyama, A.; Ejiri, A.; Yamaguchi, T.; Hiratsuka, J.; Takase, Y.; Kikuchi, Mitsuru; Ueda, Y.; Mitarai, O.

    2012-11-01

    Non-inductive current start-up via relativistic electron cyclotron resonance interaction is investigated for the high ratio (∼10%) of vertical B v to toroidal B t fields and the concave field lines in the QUEST spherical tokamak. In the start-up scenario with an internal poloidal field null (IPN), the fast current start-up rate of 0.3-0.5 MA/sec and correlation with mildly relativistic electrons accelerated due to multiple ECR interaction are observed. In steady state high β p equilibrium characterized by the inboard null (R s ∼ 0.7×R 0 ) and εβ p of 1.5 is achieved, where ε, β p are the inverse aspect ratio and poloidal beta, respectively. Relaxation oscillations in this equilibrium and confinement of the energetic electrons are discussed. (author)

  20. Energy deposition on the FTU poloidal limiter during disruptions

    International Nuclear Information System (INIS)

    Ciotti, M.; Franzoni, G.; Maddaluno, G.

    1994-01-01

    The first results of the program for the characterization of the thermal flux on the FTU poloidal limiter during disruptions are presented. Data on power fluxes are obtained by using an infrared detector and a set of thermocouples. Two peaks in the limiter thermal load, corresponding to the thermal (up to 500 MW/m2) and magnetic quenches, are well resolved by the infrared detector allowing the time correlation with other first diagnostic measurements. The dependence on the main plasma parameters of the intensity and time evolution of the thermal flux to the limiter is discussed

  1. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  2. Poloidal polarimeter for current density measurements in ITER

    International Nuclear Information System (INIS)

    Donne, A.J.H.; Graswinckel, M.F.; Cavinato, M.; Giudicotti, L.; Zilli, E.; Gil, C.; Koslowski, H.R.; McCarthy, P.; Nyhan, C.; Prunty, S.; Spillane, M.; Walker, C.

    2004-01-01

    One of the systems envisaged for measuring the current density profile in the ITER is a 118 μm poloidal polarimeter system. The proposed system has two independent views: one fan of chords observes the plasma via an equatorial port and a second fan views down from an upper port. This article will present the status of the on-going work and will address issues as sensitivity and accuracy, refraction, Gaussian beam ray-tracing, alignment, and calibration as well as some specific design details

  3. The poloidal OHM's law and a profile constraint in tokamaks

    International Nuclear Information System (INIS)

    Segre, S.E.; Zanza, V.

    1991-01-01

    Explicit use of the poloidal Ohm's law, together with the radial plasma velocity (obtained from the distribution of plasma sources), leads to a very general constraint on the possible radial profiles of plasma density and temperature. The constraint does not require any ad hoc assumption; it can place severe restrictions on the allowed profiles and is independent of energy and particle transport; also, it may be the underlying principle of profile consistency. The constraint is discussed in the framework of neoclassical theory, using results from the Frascati tokamak. (author). 23 refs, 7 figs

  4. Experimental study of poloidal flow effect on magnetic island dynamics in LHD and TJ-II

    International Nuclear Information System (INIS)

    Narushima, Y.; Sakakibara, S.; Castejon, F.

    2010-11-01

    The dynamics of a magnetic island are studied by focusing on the poloidal flows in the helical devices LHD and TJ-II. The temporal increment of the ExB poloidal flow prior to the magnetic island transition from growth to healing is observed. The direction of the poloidal flow is in the electron-diamagnetic direction in LHD and in the ion-diamagnetic direction in TJ-II. From the magnetic diagnostics, it is observed that a current structure flowing in the plasma moves ∼π rad poloidally in the electron-diamagnetic direction during the transition in LHD experiments. These experimental observations from LHD and TJ-II show that the temporal increment of the poloidal flow is followed by the transition (growth to healing) of the magnetic island regardless of the flow direction and clarify the fact that significant poloidal flow affects the magnetic island dynamics. (author)

  5. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  6. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries.

  7. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    International Nuclear Information System (INIS)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries

  8. Measurement of toroidal and poloidal plasma rotation in TCA

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-01-01

    With optimal observation geometry we have measured both the toroidal and poloidal rotation velocities in the edge and in the bulk of the TCA plasma. Regular calibration and correction for variations in the spectrometer temperature permitted a measurement with an error of ∼0.5 km/s which is an order of magnitude smaller than the range of measured velocities. In general, changes in the velocities are observed to be stronger and faster in the plasma edge than in the plasma bulk. With increasing density, the toroidal velocity is observed to change sign and follow the plasma density, while the poloidal velocity increases. These two effects lead to an increase in the absolute value of the radial electric field. With very strong gas puffing, the toroidal velocity is observed to again reverse and tend to zero, an effect which is stronger as the gradient of the density ramp is increased. Comparison between gas puffing and high power AWH does not show a significant difference in the radial electric field that could be responsible for the large associated density rise, which still remains unexplained. (author) 4 figs., 2 refs

  9. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  10. Studies of a poloidal divertor reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J.S.; Almagri, A.F.; Assadi, S.; Den Hartog, D.J.; Dexter, R.N.; Prager, S.C.; Sprott, J.C.

    1988-07-01

    An attempt has been made to form a reversed field pinch (RFP) in a poloidal divertor configuration which position the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four internal aluminum rings. Plasmas were formed with plasma current /approximately/135 kA, toroidal field reversal lasting /approximately/1 msec, line-averaged density /approximately/1--2 /times/ 10 13 cm/sup /minus/3/ and central electron temperature /approximately/55 eV, but a large asymmetry in the magnetic field (δB/B /approximately/40%) onset at about the time the toroidal field reversed at the wall. Symmetric, poloidal divertor RFP equilibria were not formed. This behavior might be expected based on linear MHD stability analysis of a cylindrical plasma bounded by a large vacuum region and distant conducting wall. The symmetric equilibrium before the asymmetry develops and the asymmetry itself are described. 15 refs., 3 figs

  11. Characterisation of the core poloidal flow at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lebschy, Alexander [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, D-85748 Garching (Germany); McDermott, Rachael M.; Geiger, Benedikt; Cavedon, Marco; Dunne, Michael G.; Dux, Ralph; Fischer, Rainer; Kappatou, Athina; McCarthy, Patrick J.; Viezzer, Eleonora [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Plasma rotation has a strong influence on the transport of heat, particles, and momentum in fusion plasmas via a variety of mechanisms, for example, by the stabilization of modes and the suppression of plasma turbulence. In tokamaks, the toroidal rotation (u{sub tor}) is essentially a free parameter that is usually dominated by the external momentum input from neutral beams used to heat the plasma. The poloidal rotation (u{sub pol}), on the other hand, is strongly damped and is predicted to remain at Neoclassical (NC) levels of a few km/s. Measuring the inboard-outboard asymmetry of u{sub tor} with charge exchange recombination spectroscopy enables an indirect measurement of u{sub pol} and, hence, the measurement of the complete plasma flow on a flux surface. In order to characterise the nature of u{sub pol} at ASDEX Upgrade a poloidal rotation database has been built that contains a large variation in the parameters that, according to NC theory, drive u{sub pol}; namely, the main ion temperature and density gradients and collisionality. Initial results from this database and a detailed comparison of u{sub pol} to NC theory in interesting plasma scenarios, are presented in this poster.

  12. Stability analysis of ELMs in long-pulse discharges with ELITE code on EAST tokamak

    Science.gov (United States)

    Wang, Y. F.; Xu, G. S.; Wan, B. N.; Li, G. Q.; Yan, N.; Li, Y. L.; Wang, H. Q.; Peng, Y.-K. Martin; Xia, T. Y.; Ding, S. Y.; Chen, R.; Yang, Q. Q.; Liu, H. Q.; Zang, Q.; Zhang, T.; Lyu, B.; Xu, J. C.; Feng, W.; Wang, L.; Chen, Y. J.; Luo, Z. P.; Hu, G. H.; Zhang, W.; Shao, L. M.; Ye, Y.; Lan, H.; Chen, L.; Li, J.; Zhao, N.; Wang, Q.; Snyder, P. B.; Liang, Y.; Qian, J. P.; Gong, X. Z.; EAST team

    2018-05-01

    One challenge in long-pulse and high performance tokamak operation is to control the edge localized modes (ELMs) to reduce the transient heat load on plasma facing components. Minute-scale discharges in H-mode have been achieved repeatedly on Experimental Advanced Superconducting Tokamak (EAST) since the 2016 campaign and understanding the characteristics of the ELMs in these discharges can be helpful for effective ELM control in long-pulse discharges. The kinetic profile diagnostics recently developed on EAST make it possible to perform the pedestal stability analysis quantitatively. Pedestal stability calculation of a typical long-pulse discharge with ELITE code is presented. The ideal linear stability results show that the ELM is dominated by toroidal mode number n around 10–15 and the most unstable mode structure is mainly localized in the steep pressure gradient region, which is consistent with experimental results. Compared with a typical type-I ELM discharge with larger total plasma current (I p = 600 kA), pedestal in the long-pulse H-mode discharge (I p = 450 kA) is more stable in peeling-ballooning instability and its critical peak pressure gradient is evaluated to be 65% of the former. Two important features of EAST tokamak in the long-pulse discharge are presented by comparison with other tokamaks, including a wider pedestal correlated with the poloidal pedestal beta and a smaller inverse aspect ratio and their effects on the pedestal stability are discussed. The effects of uncertainties in measurements on the linear stability results are also analyzed, including the edge electron density profile position, the separatrix position and the line-averaged effective ion charge {Z}{{e}{{f}}{{f}}} value.

  13. Beta-limiting MHD Instabilities in Improved-performance NSTX Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    J.E. Menard; M.G. Bell; R.E. Bell; E.D. Fredrickson D.A. Gates: S.M. Kaye; B.P. LeBlanc; R. Maingi; D. Mueller; S.A. Sabbagh; D. Stutman; C.E. Bush; D.W. Johnson; R. Kaita; H.W. Kugel; R.J. Maqueda; F. Paoletti; S.F Paul; M. Ono; Y.-K.M. Peng; C.H. Skinner; E.J. Synakowski; the NSTX Research Team

    2003-01-01

    Global magnetohydrodynamic stability limits in the National Spherical Torus Experiment (NSTX) have increased significantly recently due to a combination of device and operational improvements. First, more routine H-mode operation with broadened pressure profiles allows access to higher normalized beta and lower internal inductance. Second, the correction of a poloidal field coil induced error-field has largely eliminated locked tearing modes during normal operation and increased the maximum achievable beta. As a result of these improvements, peak beta values have reached (not simultaneously) β t = 35%, β N = 6.4, N > = 4.5, β N /l i = 10, and β P = 1.4. High β P operation with reduced tearing activity has allowed a doubling of discharge pulse-length to just over 1 second with sustained periods of β N ∼ 6 above the ideal no-wall limit and near the with-wall limit. Details of the β limit scalings and β-limiting instabilities in various operating regimes are described

  14. Variation of the poloidal field during a disruption and consequences on the vacuum chamber, the poloidal system and the toroidal magnet (Tore II)

    International Nuclear Information System (INIS)

    Gatineau, F.; Leloup, C.; Pariente, M.

    1977-12-01

    The currents induced into the vacuum vessel and into the poloidal field coils and the overvoltages on the generators during a plasma current disruption are calculated. The subsequent applied mechanical forces and the poloidal field variations at the toroidal field conductor are deduced. The current decrease rate considered, during a disruption, ranges from d Ip/dt=0.810 9 A/s to 0.410 11 A/s [fr

  15. Poloidal asymmetries of the heavy ions in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Mazon, Didier [CEA, IRFM, Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Poloidal asymmetries of heavy ions in the tokamak plasma are caused by the presence of forces parallel with field-lines which have comparable magnitude to the thermal pressure. The most important examples are the centrifugal force (CF) and the electric force (EF). The CF is caused by fast toroidal rotation of the plasma column which is pushing impurity ions, that have a substantially higher mass than the main ions, on the outer-side of the plasma. And the EF can be produced by ion cyclotron heated fast particles with high pitch angle that are trapped by the mirror force on the low field side of the plasma. The excessive charge produced by these particles is affecting highly charged impurities and pushing them to the high field side of the plasma. From predictions based on neoclassical and turbulent theory, it follows that the radial flux of heavy ions will be significantly changed by the presence of these asymmetries. The purpose of this study is to investigate the presence of these asymmetries in ASDEX Upgrade and verify the predicted consequences on the particles flux. High intrinsic content of the tungsten in AUG plasma makes this device well suitable for such studies. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. Poloidal asymmetry should than lead to the significant change in the neoclassical and turbulent radial transport of these heavy ions. High intrinsic content of the tungsten in Asdex plasma makes this device well suitable for studying these asymmetries. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. For heavy and highly charged impurities multiple mechanisms exist that produce non-constant impurities densities on the flux surfaces. As for neoclassical and turbulent transport models such an asymmetry is of highly importance an effort is

  16. The ITER poloidal field configuration and operation scenario

    International Nuclear Information System (INIS)

    Gribov, Y.; Portone, A.; Mondino, P.L.

    1995-01-01

    The ITER Poloidal Field (PF) system must satisfy the following requirements. (1) ITER must have a well-controlled, single null divertor magnetic configuration with nominal plasma current 21MA and moderate plasma elongation k95 < 1.65. (2) For a variety of plasma scenarios the ITER PF system must provide: inductive breakdown and start-up in an expanding-aperture limiter configuration near the outboard first wall; an inductive current ramp-up to the nominal plasma current with a reasonable assumption of resistive loss during current ramp-up; a pulse length of 1,000s for ignition and inductively-sustained burn at nominal plasma current; plasma shutdown (following fusion power termination) in a similar contracting-aperture limiter configuration. The present design of the PF system can satisfy the ITER requirements within specified limitations

  17. Stability of tokamak magnetic configuration with a poloidal divertor

    International Nuclear Information System (INIS)

    Bazaeva, A.V.; Bykov, V.E.; Georgievskii, A.V.; Kaminskii, A.O.; Peletminskaya, V.G.; Pyatov, V.H.

    1979-02-01

    This paper investigates instabilities in the preseparatrix region of a tokamak magnetic configuration with a poloidal divertor with respect to perturbations produced by various irregularities in the manufacturing of tokamak magnetic systems. A computer solution, a system of differential equations describing the behavior of a force line, showed that small perturbation amplitudes may be the cause of the stochastic instability of force lines in the preseparatrix region. This instability is responsible for a number of demands on the accuracy in the manufacturing of tokamak magnetic systems. In particular, the misalignment in the divertor ring must not be larger than 0.5 0 , its displacement must be less than Δ/R = 10 -2 (Δ/R -2 ). This study can be used in the design of large thermonuclear installations

  18. Poloidal field electromagnetic engineering design for the TEXT upgrade

    International Nuclear Information System (INIS)

    Li, G.; Zhu, W.; Edmonds, P.H.; Solano, E.R.

    1989-01-01

    The overall design is a compromise between the requirement of maximum flexibility for plasma configuration, the technological limitations of materials and fabrication techniques, protection against failure by disruption, and the inevitable requirement of minimum cost and early completion schedules. Highlights of the design include the use of a pinned and clamped multi-turn toroidal joint, the use of an alumina dispersed high strength copper alloy and protection against the very high mechanical forces. The overall structure consists of the poloidal half windings clamped and fiber-glass epoxy glued to fiber-glass half cylinders, which are attached to the torque frame structure by vertical studs. The diverter coils require water cooling, and because of the small cross-section area available for these cooling tubes and for the coil feeds, and intricate assembly procedure has been developed

  19. Poloidal magnetics of a divertor compact ignition tokamak

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Jardin, S.C.

    1987-10-01

    A technique is presented for calculating bounds on the poloidal field (PF) coil currents required to constrain critical plasma shape parameters when plasma pressure and current density profiles are changed. Such considerations are important in the conceptual design of the PF coils for the Compact Ignition Tokamak (CIT) and their electrical power systems in view of the uncertainty in plasma profiles and operating scenarios. Four relatively independent coil groups are sufficient to find a coil current distribution and equilibrium satisfying a prescribed plasma major radius, minor radius, and divertor strike point coordinates. The variation in the coil current distribution with plasma profiles tends to be large for external PF systems and provides a measure by which coil configurations may be compared. 6 refs., 7 figs., 4 tabs

  20. A computational study of operating regimes for poloidal divertors

    International Nuclear Information System (INIS)

    Petravic, M.; Heifetz, D.; Post, D.

    1982-01-01

    We have identified three theoretical operating regimes for poloidal divertors. These regimes are determined by the geometry of the divertor and the input energy and particle fluxes, and are characterized by the divertor plasma density and temperature. A fully self-consistent two-dimensional model for the plasma and neutral atom and molecule transport was used to study poloidal divertor operation. Extensions of our previous calculations important to this study were the inclusion of parallel electron and ion thermal conduction. We find that the key physics in divertor operation is the neutral recycling near the neutralizer plate. This can be parametrized by R = GAMMAsub(P)/GAMMAsub(O), the ratio of particle flux striking the neutralizer plate to the particle flux entering the divertor. Values of R approx. equal to 1 can be produced by large pumping rates near the neutralizer plates resulting in low neutral recycling and a high temperature, low density divertor plasma. By decreasing the pumping near the neutralizer plate, R can be raised to an intermediate value of 5-10, the plasma temperature lowered by the same factor, and the density raised by a factor of 10-30. In this regime, escape of the neutrals back to the main plasma is virtually blocked. By further restricting the pumping, R can be raised to twenty or more, thereby lowering the temperature by a factor of twenty or more and raising the density by a factor of ninety or more. Such high density regimes have been observed on D-III and appear to offer the most promise for impurity control and particle control on large reactor experiments such as INTOR or FED. In this paper, we explore the range 3 < R < 16. (orig.)

  1. Scaling of energy confinement and poloidal beta in high density tokamaks

    NARCIS (Netherlands)

    Schram, D.C.; Schüller, F.C.

    1980-01-01

    A semi-empirical analysis of the heat balance of ohmically heated, high density Tokamak plasmas, shows that the observed heat transport can be explained by neoclassical (plateau) ion heat conduction in the central part of the plasma. Experimental values for Te, ß¿e, and tEe and the variation of

  2. Beta and current limits in the Doublet III tokamak

    International Nuclear Information System (INIS)

    Strait, E.J.; Chu, M.S.; Jahns, G.L.

    1986-04-01

    Neutral-beam heated discharges in Doublet III exhibit an operational beta limit, β/sub T/(%) less than or equal to 3.5 I(MA)/a(m)B(T), in good agreement with several theoretical predictions for ideal external kink or ballooning modes. These theories predict that the β limit has no explicit dependence on plasma shape (for nominal dee shapes). This aspect of the theory was confirmed in Doublet III by varying the elongation (kappa) from 1.0 to 1.6 and the triangularity (delta) from -0.1 to 0.9 and finding in all cases the same β limit. The maximum achievable beta thus depends on the minimum achievable value of the safety factor q. In Doublet III, the operational current limit is given by q greater than or equal to 1.7 for limiter-defined discharges and q greater than or equal to 2.7 for separatrix-defined discharges. Operation with q approx.2 was achieved for 1.0 less than or equal to kappa less than or equal to 1.6. Both β and q limits are characterized by major disruptions which usually terminate the discharge. In both cases, the disruptions often have a precursor oscillation with toroidal mode number n = 1, poloidal mode number m = 2 or 3, a frequency of zero to a few kHz, and a growth time on the order of a millisecond. These observations suggest that the proximate cause of these disruptions is a kink or tearing mode, pressure-driven in one case and current-driven in the other. Theoretical analyses of discharges at both limits will be compared. Modes with a high toroidal mode number, 3 less than or equal to n less than or equal to 5, and ballooning character have been observed near the β/sub T/ limit. These modes do not appear to be closely connected with the disruptions. Heating efficiency, ΔW/ΔP, remains constant up to the limiting disruption. Fishbone modes appear to be mainly a feature of high β/sub p/ operation and not connected to the β/sub T/ limit

  3. Far-infrared polarimetry/interferometry for poloidal magnetic field measurement on ZT-40M

    International Nuclear Information System (INIS)

    Erickson, R.M.

    1986-06-01

    The measurement of internal magnetic field profiles may be a very important step in the understanding of magnetic confinement physics issues. The measurement of plasma-induced Faraday rotation is one of the more promising internal magnetic field diagnostics. This thesis describes the development of a heterodyne polarimeter/interferometer for internal poloidal magnetic field measurement on ZT-40M. Heterodyne techniques were employed because of the insensitivity to spurious signal amplitude changes that cause errors in other methods. Initial problems in polarimetric sensitivity were observed that were ultimately found to be related to discharge-induced motions of the constrained diagnostic access on ZT-40M. Grazing incidence motions of the constrained diagnostic access on ZT-40M. Grazing incidence reflections on metallic surfaces of the diagnostic ports caused polarization changes that affected the measurement accuracy. Installation of internally threaded sleeves to baffle the reflections eliminated the sensitivity problem, and allowed useful Faraday rotation measurements to be made. Simultaneous polarimetric and interferometric measurements have also been demonstrated. The ability to assemble a working heterodyne polarimeter/interferometer is no longer in question. The extension of the present system to multichord operation requires increased laser power and efficiency

  4. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.

    1989-01-01

    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  5. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  6. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  7. Poloidal rotation induced by injecting lower hybrid waves in tokamak plasma edge

    International Nuclear Information System (INIS)

    Jiao Yiming; Gao Qingdi; Shi Bingren

    2001-01-01

    The poloidal rotation of the magnetized edge plasma in tokamak driven by the ponderomotive force which is generated by injecting lower hybrid wave (LHW) electric field has been studied. The LHW is launched from a waveguide in the plasma edge, and by Brambilla's grill theory, analytic expressions for the wave electric field in the slab model of an inhomogeneous cold plasma have been derived. It is shown that a strong wave electric field will be generated in the plasma edge by injecting LH wave of the power in MW magnitude, and this electric field will induce a poloidal rotation with a sheared poloidal velocity

  8. Poloidal field system for the ITER hard design option

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pillsbury, R.D.

    1992-01-01

    This paper reports on ITER, the International Thermonuclear Experimental Reactor, a collaborative design by the US, EC, Japan, and the USSR of a tokamak fusion reactor that will demonstrate the physics and test the technology needed for commercial fusion reactors. In 1990, the ITER team completed a Conceptual Design Activity (CDA) in which a candidate design was shown to meet the specified goals of the ITER activity at a conceptual level. The four parties have agreed to an Engineering Design Activity (EDA) that includes the necessary additional design and analysis, along with the R and D needed to construct ITER with confidence. The CDA design includes a toroidal field (TF) magnet system that provides the main containment field and a poloidal field (PF) system used to control plasma current and position. The PF system is also used as transformer primary to induce and sustain current in the plasma. Since the volt-seconds available for full-current plasma burn are less than 10% of the total available volt-seconds from the PF system, an area of concern in the CDA design is that unfavorable plasma conditions could compromise the ability of the physics base case design to achieve long pulse burns. A High Aspect Ratio Design (HARD) was conceived as an alternative design option with a much larger bore in the central solenoid to enhance ITER's capabilities for long-burn operation

  9. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  10. Characterization of the core poloidal flow at ASDEX Upgrade

    Science.gov (United States)

    Lebschy, Alexander

    2017-10-01

    An essential result from neoclassical (NC) theory is that the fluid poloidal rotation (upol) of the main ions is strongly damped by magnetic pumping and, therefore, expected to be small (theory has been found at both DIII-D and TCV. This is qualitatively consistent with the edge results from both Alcator C-Mod and ASDEX Upgrade (AUG). At AUG thanks to an upgrade of the core charge exchange recombination spectroscopy (CXRS) diagnostics, the core upol can be evaluated through the inboard-outboard asymmetry of the toroidal rotation with an accuracy of 0.5 - 1 km / s . This measurement also provides the missing ingredient to evaluate the core (E-> × B->) velocity (uE-> × B->) via the radial force balance equation. At AUG the core upol (0.35 × B-> determined from CXRS and the perpendicular velocity measured from turbulence propagation. The difference between these two quantities is the turbulent phase velocity. The gathered dataset indicates that the transition in the turbulence regime occurs after the saturation of the energy confinement time. The author thankfully acknowledges the financial support from the Helmholtz Association of German Research Centers through the Helmholtz Young Investigators Group program.

  11. Poloidal ULF oscillations in the dayside magnetosphere: a Cluster study

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2005-10-01

    Full Text Available Three ULF wave events, all occurring in the dayside magnetopshere during magnetically quiet times, are studied using the Cluster satellites. The multi-point measurements obtained from Cluster are used to determine the azimuthal wave number for the events by means of the phase shift and the azimuthal separation between the satellites. Also, the polarisation of the electric and magnetic fields is examined in a field-aligned coordinate system, which, in turn, gives the mode of the oscillations. The large-inclination orbits of Cluster allow us to examine the phase relationship between the electric and magnetic fields along the field lines. The events studied have large azimuthal wave numbers (m~100, two of them have eastward propagation and all are in the poloidal mode, consistent with the large wave numbers. We also use particle data from geosynchronous satellites to look for signatures of proton injections, but none of the events show any sign of enhanced proton flux. Thus, the drift-bounce resonance instability seems unlikely to have played any part in the excitation of these pulsations. As for the drift-mirror instability we conclude that it would require an unreasonably high plasma pressure for the instability criterion to be satisfied.

    Keywords. Ionosphere (Wave propagation – Magnetospheric physics (Plasma waves and instabilities; Instruments and techniques

  12. Poloidal field coil design for known plasma equilibrium states

    International Nuclear Information System (INIS)

    Paulson, C.C.; Todd, A.M.M.; Reusch, M.F.

    1986-01-01

    The technique for obtaining plasma equilibria with given boundary conditions has long been known and understood. The inverse problem of obtaining a poloidal field (PF) coil system from a given plasma equilibrium has been widely studied, however its solution has remained largely an art form. An investigation, by the writers, of this fundamentally ill-posed inverse problem has resulted in a new understanding of the requirements that solutions must satisfy. A set of interacting computer codes has been written which may be used to successfully design PF coil systems capable of supporting given plasma equilibria. It is shown that for discrete coil systems with a reasonable number of elements the standard minimization of the R M S flux error can lead to undesirable results. Examples are given to show that an additional stability requirement must be imposed on the regularization parameter to obtain correct solutions. For some equilibria, the authors find that the inverse problem admits dual solutions corresponding to two possible magnetic field configurations that fit the constraining relations on the plasma surface equally well. An additional minimization of the absolute value of the limiter flux is required to discriminate between these solutions

  13. PHASE RELATIONSHIPS OF SOLAR HEMISPHERIC TOROIDAL AND POLOIDAL CYCLES

    Energy Technology Data Exchange (ETDEWEB)

    Muraközy, J., E-mail: murakozy.judit@csfk.mta.hu [Debrecen Heliophysical Observatory (DHO), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences H-4010 Debrecen P.O.B. 30, H-4010 (Hungary)

    2016-08-01

    The solar northern and southern hemispheres exhibit differences in their intensities and time profiles of the activity cycles. The time variation of these properties was studied in a previous article covering the data from Cycles 12–23. The hemispheric phase lags exhibited a characteristic variation: the leading role was exchanged between hemispheres every four cycles. The present work extends the investigation of this variation using the data of Staudacher and Schwabe in Cycles 1–4 and 7–10 as well as Spörer’s data in Cycle 11. The previously observed variation cannot be clearly recognized using the data of Staudacher, Schwabe, and Spörer. However, it is more interesting that the phase lags of the reversals of the magnetic fields at the poles follow the same variations as those of the hemispheric cycles in Cycles 12–23, i.e., one of the hemispheres leads in four cyles and the leading role jumps to the opposite hemisphere in the next four cycles. This means that this variation is a long-term property of the entire solar dynamo mechanism, for both the toroidal and poloidal fields, which hints at an unidentified component of the process responsible for the long-term memory.

  14. Poloidal and toroidal plasmons and fields of multilayer nanorings

    International Nuclear Information System (INIS)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.

    2017-01-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  15. Poloidal and toroidal plasmons and fields of multilayer nanorings

    Science.gov (United States)

    Garapati, K. V.; Salhi, M.; Kouchekian, S.; Siopsis, G.; Passian, A.

    2017-04-01

    Composite and janus type metallodielectric nanoparticles are increasingly considered as a means to control the spatial and temporal behavior of electromagnetic fields in diverse applications such as coupling to quantum emitters, achieving invisibility cloaks, and obtaining quantum correlations between qubits. We investigate the surface modes of a toroidal nanostructure and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. Unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We present the plasmon dispersion relations for several relevant toroidal configurations in the quasistatic limit and obtain the dominant retarded dispersion relations of a single ring for comparison, discuss mode complementarity and hybridization, and introduce two new types of toroidal particles in the form of janus nanorings. The resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. A generalized Green's function is obtained for multilayer tori allowing for calculation of the scattering response to interacting fields. Employing the Green's function, the scalar electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus.

  16. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  17. Resonance parallel viscosity in the banana regime in poloidally rotating tokamak plasmas

    International Nuclear Information System (INIS)

    Shaing, K.C.; Hsu, C.T.; Dominguez, N.

    1994-01-01

    Parallel viscosity in the banana regime in a poloidally (ExB) rotating tokamak plasma is calculated to include the effects of orbit squeezing and to allow the poloidal ExB Mach number M p to have a value of order unity. Here, E is the electric field and B is the magnetic field. The effects of orbit squeezing not only modify the size of the particle orbit, but also change the fraction of poloidally trapped particles. Resonance between the particle parallel (to B) speed u and the poloidal component of the ExB velocity can only occur for those particles with energy (v/v t ) 2 >M 2 p (with v the particle speed and v t the thermal speed). Thus, the resonance parallel plasma viscosity in the banana regime decreases exponentially with M 2 p when M 2 p ≥1, and has a local maximum of M 2 p ∼1

  18. High beta plasmas in the PBX tokamak

    International Nuclear Information System (INIS)

    Bol, K.; Buchenauer, D.; Chance, M.

    1986-04-01

    Bean-shaped configurations favorable for high β discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present β limit

  19. Toroidal field magnet and poloidal divertor field coil systems adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.

    1985-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils, that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization requires a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  20. The ASDEX upgrade toroidal field magnet and poloidal divertor field coil system adapted to reactor requirements

    International Nuclear Information System (INIS)

    Koeppendoerfer, W.; Blaumoser, M.; Ennen, K.; Gruber, J.; Gruber, O.; Jandl, O.; Kaufmann, M.; Kollotzek, H.; Kotzlowski, H.; Lackner, E.; Lackner, K.; Larcher, T. von; Noterdaeme, J.M.; Pillsticker, M.; Poehlchen, R.; Preis, H.; Schneider, H.; Seidel, U.; Sombach, B.; Speth, E.; Streibl, B.; Vernickel, H.; Werner, F.; Wesner, F.; Wieczorek, A.

    1986-01-01

    ASDEX Upgrade is a tokamak experiment with external poloidal field coils that is now under construction at IPP Garching. It can produce elongated single-null (SN), double-null (DN) , and limiter (L) configurations. The SN is the reference configuration with asymmetric load distributions in the poloidal field (PF) system and the toroidal field (TF) magnet. Plasma control and stabilization require a rigid passive conductor close to the plasma. The design principles of the coils and support structure are described. (orig.)

  1. Magnetohydrodynamic stability of a plasma confined in a convex poloidal magnetic field

    International Nuclear Information System (INIS)

    Hellsten, T.

    1976-11-01

    A plasma confined in a purely poloidal magnetic field with a finite pressure at the boundary and surrounded by a conducting wall can be stabilized against magnetohydrodynamic perturbations even in absence of shear and minimum-average-B properties. To achieve large pressure gradients the average magnetic field has to decrease rapidly outwards. The theory is applied to a 'Spherator' configuration with a purely poloidal magnetic field. (Auth.)

  2. First measurement of poloidal-field-induced Faraday rotation in a tokamak plasma

    International Nuclear Information System (INIS)

    Kunz, W.; Association Euratom-CEA sur la Fusion, Centre d'Etudes Nucleaires de Fontenay-aux-Roses, 92

    1978-01-01

    Faraday rotation measurements using a ferrite modulation technique were performed on one channel of the 337 μm-interferometer on TFR. The experiment is intended as a preparatory step towards poloidal-field determination on the basis of the Faraday effect in a multi-channel configuration. The technical feasibility of precise Faraday rotation measurements under machine conditions is demonstrated. The measured rotation is unambiguously due to the poloidal magnetic field and agrees fairly with what can be estimated. (author)

  3. Coil development for the quasi-poloidal stellarator project

    International Nuclear Information System (INIS)

    Nelson, B.E.; Berry, L.A.; Cole, M.J.; Fogarty, P.J.; Freudenberg, K.; Hirshman, S.P.; Lyon, J.F.; Spong, D.A.; Strickler, D.J.; Williamson, D.; Benson, R.D.; Lumsdaine, A.; Madhukar, M.; Parang, M.; Shannon, T.; Dahlgren, F.; Heitzenroeder, P.; Neilson, G.H.; Goranson, P.; Hargrove, T.; Jones, G.; Lovett, G.

    2005-01-01

    The Quasi-Poloidal Stellarator (QPS), currently in the R and D and prototyping stage, is a low-aspect-ratio (R/a ≥ 2.3), compact stellarator experiment with a non-axisymmetric, near- poloidally-symmetric magnetic field. The QPS design parameters are = 0.95 m, = 0.3-0.4 m, B = 1 T, and a 1.5-s pulse length with 3-5 MW of ECH and ICRF heating power. The most challenging component to design and fabricate is the set of 20 nonplanar modular coils located inside the QPS vacuum tank. There are five distinct coil winding shapes, but only three types of winding forms are needed because each supports two distinct windings and both windings on the most complex coil form are the same shape. The stainless steel winding forms are machined to the required high tolerance and stranded copper cable conductor is wound on the winding forms to the highly precise shape required (to an accuracy of less than 1 mm). The windings are enclosed in a welded, stainless steel cover with stiffeners for compatibility with the QPS vacuum requirements, and the cans are then vacuum pressure impregnated with cynate ester resin to form the finished coil winding pack. Computer modeling and experimental measurements of the welding process indicate that distortion and thermal stress should be acceptable. A prototype coil using the most complex of the three winding forms is being fabricated. The coil winding form has been cast and is being machined to the required tolerance prior to winding with conductor. The machined modular coil forms will be shipped to the winding facility mounted on carts, which provide a work platform for preparing, winding, welding, and potting of the coils. The carts allow rotating the coils for optimum positioning during winding and fabrication. An overhead fixture allows supporting the spools of conductor and feeding the conductor in the correct orientation, groupings, and tensioning. An R and D program is underway that includes extensive conductor characterization and testing

  4. Manufacture of the Poloidal Field Conductor Insert Coil (PFCI)

    International Nuclear Information System (INIS)

    Baker, W.; Rajainmaeki, H.; Salpietro, E.; Keefe, C.

    2006-01-01

    Within the framework of the R(and)D programme for ITER (International Thermonuclear Experimental Reactor) the European team EFDA (European Fusion Development Agreement) have been charged with the design and manufacture of the Poloidal Field Conductor Insert Coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long length full scale NbTi conductors in ITER relevant conditions. The PFCI will be tested in the Central Solenoid Model Coil test facility at the JAEA Naka Japan. This paper details the complete manufacturing details of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single layer wound solenoid of 9 turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, pre-formed and machined glass resin composite filler pieces are assembled with the winding and finally Vacuum Pressure Impregnated to create a single assembly unit. The PFCI is enclosed for assembly in a support structure which consist of an upper and lower flange that each are made up by 4 machined stainless steel castings which are electrically insulated by epoxy glass sheet material and 12 tie rods which preload the complete assembly in the vertical direction while the upper flange is equipped with 4 radial restraining jacks and the lower flange is equipped with 4 sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil is in the process of final impregnation and should be completed and delivered before the summer of this year. (author)

  5. Manufacture of the poloidal field conductor insert coil (PFCI)

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany); Keefe, C. [Tesla Engineering, Storrington, Sussex (United Kingdom); Rajainmaeki, H. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)], E-mail: hannu.rajainmaki@tech.efda.org; Salpietro, E. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching bei Muenchen (Germany)

    2007-10-15

    Within the framework of the R and D programme for international thermonuclear experimental reactor (ITER) the European team European Fusion Development Agreement (EFDA) has been charged with the design and manufacture of the poloidal field conductor insert coil (PFCI). The purpose of the PFCI is to test and demonstrate the performance of long-length full-scale NbTi conductors in ITER-relevant conditions. The PFCI will be tested in the central solenoid model coil test facility at the JAEA, Naka, Japan. This paper details the complete manufacturing of the PFCI including development, forming machining, pre-assembly, impregnation, final assembly and testing. The PFCI is a single-layered wound solenoid of nine turns with a transition joggle in the centre section of the winding and an intermediate joint connection between the upper termination and the main coil winding. To give the required overall dimensions to fit in the testing facility, preformed and machined glass resin composite filler pieces are assembled with the winding and is finally vacuum pressure impregnated (VPI) to create a single assembly unit. The PFCI is enclosed for assembly in a support structure, which consists of an upper and lower flange, each made up of four electrically insulated machined stainless steel castings, and 12 tie rods preloading the complete assembly in the vertical direction. The upper flange is equipped with four radial restraining jacks and the lower flange is equipped with four sets of studs and shear keys to withstand the net vertical and lateral electromagnetic forces. The PFCI is equipped with inductive heaters, voltage taps, temperature transducers, strain gauges and other instrumentation as diagnostics to monitor the performance. The current status of the manufacture is that the coil has passed the final acceptance tests and it is in the support structure assembly stage.

  6. Design of the outer poloidal field coils for ITER

    International Nuclear Information System (INIS)

    Sborchia, C.; Mitchell, N.; Yoshida, K.

    1995-01-01

    The ITER poloidal field (PF) system consists of a central solenoid (CS or PF-1), which is not subject of this paper, and six ring coils using a 40 kA forced flow cooled superconductor. The coils, placed around the toroidal field (TF) system, are used to start-up the plasma with typical ramp-up times of 100 s and burn duration of 1000 s. They also provide control and shaping of the plasma, with small, frequent current variations on a 1-5 s time scale. The magnetic field produced by the coils ranges from about 4.5 to 8 T and the AC losses in the conductor are significant: the largest coils require cooling path lengths up to 1000 m as well as the use of 2 in-hand winding. The field level and high thermal loads make the use of Nb 3 Sn strand attractive. This paper describes the basic design of the six ring (outer) coils developed by the ITER Joint Central Team in collaboration with the four Home Teams. The coil structural material is provided by a thick conductor jacket and by a bonded insulation system. The forces acting on the coils during typical operational scenarios and plasma disruption/vertical instabilities have been evaluated: radial forces are self-reacted by hoop stresses in the ring coil, with tensile stresses up to 300 MPa in the conductor jacket, and the vertical forces are resisted by a discrete support system, with shear stresses up to 10 MPa in the insulation. (orig./WL)

  7. Preparation of the ITER Poloidal Field Conductor Insert (PFCI) test

    International Nuclear Information System (INIS)

    Zanino, R.; Egorov, S.; Kim, K.; Martovetsky, N.; Nunoya, Y.; Okuno, K.; Salpietro, E.; Sborchia, C.; Takahashi, Y.; Weng, P.; Bangasco, M.; Savoldi Richard, L.; Polak, M.; Formisano, A.; Zapretilina, E.; Shikov, A.; Vedernikov, G.; Ciazynski, D.; Zani, L.; Muzzi, L.; Ricci, M.; Deela Corte, A.; Sugimoto, M.; Hamada, K.; Portone, A.; Hurd, F.; Mitchell, N.; Nijhuis, A.; Ilyin, Y.

    2004-01-01

    The Poloidal Field Conductor Insert (PFCI) of the International Thermonuclear Experimental Reactor (ITER) has been designed in Europe and is being manufactured at Tesla Engineering, UK, in the frame of a Task Agreement with the ITER International Team. Completion of the PFCI is expected at the beginning of 2005. Then, the coil shall be shipped to JAERI Naka, Japan, and inserted into the bore of the ITER Central Solenoid Model Coil, where it should be tested in 2005 to 2006. The PFCI consists of a NbTi dual-channel conductor, almost identical to the ITER PF1 and PF6 design, about 45 m long, with a 50 mm thick square stainless steel jacket, wound in a single-layer solenoid. It should carry up to 50 kA in a field of about 6 T, and it will be cooled by supercritical He at around 4.5 K and 0.6 MPa. An intermediate joint, representative of the ITER PF joints and located at relatively high field, will be an important new item in the test configuration with respect to the previous ITER Insert Coils. The PFCI will be fully instrumented with inductive and resistive heaters, as well as with voltage taps, Hall probes, pick-up coils, temperature sensors, pressure taps, strain and displacement sensors. The test program shall be aimed at DC and pulsed performance assessment of conductor and intermediate joint, AC loss measurement, stability and quench propagation, thermalhydraulic characterization. Here we give an overview of the preparatory work towards the test, including a review of the coil manufacturing and of the available instrumentation, a discussion of the most likely test program items, and a presentation of the supporting modeling and characterization work performed so far. (authors)

  8. The Effects of Radial and Poloidal ExB Drifts in the Tokamak SOL

    International Nuclear Information System (INIS)

    Ou Jing; Zhu Sizheng

    2006-01-01

    The effects of radial and poloidal ExB drifts in the scrape-off layer (SOL) of a limiter tokamak are studied with a one-dimensional fluid code. The transport equations are solved in the poloidal direction with the radial influxes as the source terms. The simulation results show that in the high recycling regime, the effect of the radial ExB drift on plasma density tends to be stronger than that of the poloidal ExB drift. In the sheath-limited regime, the effects of the radial ExB drift and poloidal ExB drift on plasma density are almost equally important. Considering the influence on the electron temperature, the poloidal ExB drift tends to be more important than the radial ExB drift in both the high recycling regime and sheath-limited regime. For the normal B φ , the poloidal ExB drift tends to raise the pressure at the low field side while the radial ExB drift favours the high field side. The simulation results also show that the ExB drift influences the asymmetries on the parameter distributions at the high field side and low field side, and the distributions are much more symmetric with the field reversal

  9. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  10. Ballooning stability of JET discharges

    International Nuclear Information System (INIS)

    Huysmans, G.T.A.; Goedbloed, J.P.; Galvao, R.M.O.; Lazzaro, E.; Smeulders, P.

    1989-01-01

    Conditions under which ballooning modes are expected to be excited have recently been obtained in two different types of discharges in JET. In the first type, extremely large pressure gradients have been produced in the plasma core through pellet injections in the current rise phase followed by strong additional heating. In the second type, the total pressure of the discharge is approaching the Troyon limit. The stability of these discharges with respect to the ideal MHD ballooning modes has been studied with the stability code HBT. The equilibria are reconstructed with the IDENTC code using the external magnetic measurements and the experimental pressure profile. The results show that the evaluated high beta discharge is unstable in the central region of the plasma. This instability is related to the low shear and not to a large pressure gradient, as expected at the Troyon limit. In the pellet discharges the regions with the large pressure gradients are unstable to ballooning modes at the time of the beta decay, which ends the period of enhanced performance. The maximum pressure gradient in these discharges is limited by the boundary of the first region of stability. The observed phenomena at the beta decay are similar to those observed at the beta limit in DIII-D and TFTR. (author)

  11. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, R.E.; Andre, R.; Kaye, S.M.; Kolesnikov, R.A.; LeBlance, B.P.; Rewolldt, G.; Wang, W.X.; Sabbagh, S.A.

    2010-01-01

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus (S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)) are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS (W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)) and GTC-Neo (W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)), which has been updated to handle impurities.

  12. Speculative Betas

    OpenAIRE

    Harrison Hong; David Sraer

    2012-01-01

    We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...

  13. Neoclassical transport, poloidal rotation and radial electric field at the L-H transition

    International Nuclear Information System (INIS)

    Minardi, E.; Gervasini, G.; Lazzaro, E.

    1993-01-01

    The transition to a high confinement regime in tokamaks operating with a magnetic divertor configuration is accompanied by the strong steepening of the edge temperature profile and the onset of a large positive poloidal mass rotation associated with a negative radial electric field. The latter phenomena are signatures of a neoclassical transport mechanism. We address the question of establishing whether neoclassical transport is indeed sufficient to establish high edge gradients and drive poloidal rotation under strong auxiliary heating. The heat transport equation is solved numerically in a narrow edge layer interfaced to the plasma body through heat flux continuity, but allowing for heat conductivity discontinuity. The results compared with recent experimental measurements support the assumption that a highly sheared neoclassical poloidal velocity profile can suppress the anomalous part of the heat transport, and that the neoclassical residual transport, characterizes the plasma behaviour at the edge during H modes. (author) 3 refs., 4 figs

  14. Poloidal field effects on fundamental minority ion cyclotron resonance heating in a tokamak plasma

    International Nuclear Information System (INIS)

    Jun, S. C.; Imre, Kaya; Stevens, D. C.; Weitzner, Harold; Chang, C. S.

    2000-01-01

    Minority ion fundamental cyclotron resonance is studied in a large tokamak in which the geometrical optics approximation applies off resonance and the minority average speed is less than the wave phase speeds. Poloidal equilibrium magnetic field effects are included, which lead to nontrivially nonlocal integrodifferential equations for the wave fields. Exact reciprocity relation is given as well as explicit analytic solutions for the transmission coefficients for both the high and low field side incidences. Numerical solutions are needed only for the high field side incident reflection coefficient. Numerical schemes are described and numerical results are presented together with a reliable error bound. Typically, energy absorption increases with poloidal field. The energy absorption increases with minority density at low values of minority density. However, it decreases at high minority density. Poloidal field effects weaken the dependence of energy absorption on the toroidal wave number. (c) 2000 American Institute of Physics

  15. Development of a measuring system for poloidal field profile in JIPP T-IIU plasmas

    International Nuclear Information System (INIS)

    Kuramoto, Hideharu; Hiraki, Naoji; Moriyama, Shin-ichi; Toi, Kazuo; Sato, Kuninori.

    1995-01-01

    A Zeeman polarimeter has been developed to measure the poloidal magnetic field profile in the plasma edge of the JIPP T-IIU tokamak. The poloidal field strength is determined from the analysis of circular polarization of a HeII 4686A spectral lines emitted from a plasma. The polarization modulation rate, which is proportional to the magnetic field strength along a line of sight, is estimated as a ratio of the difference between the left-hand circular polarized line intensity and right-hand one to the sum of them. A newly developed fast scanning Fabry-Perot interferometer allows us to improve a time resolution up to 1.5 ms. The poloidal magnetic field profile in He-doped deuterium plasmas of JIPP T-IIU has been successfully obtained with this polarimeter system. (author)

  16. Spatial Variations of Poloidal and Toroidal Mode Field Line Resonances Observed by MMS

    Science.gov (United States)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Anderson, B. J.; Kepko, L.; Nakamura, R.; Plaschke, F.; Torbert, R. B.

    2017-12-01

    Field line resonances (FLRs) are magnetosphere's responses to solar wind forcing and internal instabilities generated by solar wind-magnetospheric interactions. They are standing waves along the Earth's magnetic field lines oscillating in either poloidal or toroidal modes. The two types of waves have their unique frequency characteristics. The eigenfrequency of FLRs is determined by the length of the field line and the plasma density, and thus gradually changes with L. For toroidal mode oscillations with magnetic field perturbations in the azimuthal direction, ideal MHD predicts that each field line oscillates independently with its own eigenfrequency. For poloidal mode waves with field lines oscillating radially, their frequency cannot change with L easily as L shells need to oscillate in sync to avoid efficient damping due to phase mixing. Observations, mainly during quiet times, indeed show that poloidal mode waves often exhibit nearly constant frequency across L shells. Our recent observations, on the other hand, reveal a clear L-dependent frequency trend for a long lasting storm-time poloidal wave event, indicating the wave can maintain its power with changing frequencies for an extended period [Le et al., 2017]. The spatial variation of the frequency shows discrete spatial structures. The frequency remains constant within each discrete structure that spans about 1 REalong L, and changes discretely. We present a follow-up study to investigate spatial variations of wave frequencies using the Wigner-Ville distribution. We examine both poloidal and toroidal waves under different geomagnetic conditions using multipoint observations from MMS, and compare their frequency and occurrence characteristics for insights into their generation mechanisms. Reference: Le, G., et al. (2017), Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456-3464, doi:10.1002/2017GL073048.

  17. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  18. Far infrared polarimetry with tokamak plasmas for determination of the poloidal magnetic field distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W

    1979-01-01

    This study examines the poloidal magnetic field distribution of tokamak plasma, and the elucidation of the radial distribution of the toroidal plasma flow. A numerical and experimental determination of the poloidal field based on the Faraday effect is presented. A method is discussed for measuring the rotation of the polarization plane linear polarized electromagnetic radiation, by passing through a plasma magnetized in the direction of the radiation. The polarization behavior of a linear polarized wave passing through a tokamak plasma is presented theoretically for various wavelengths, along with the experimental investigation of a ferrite modulation procedure through the use of different far infrared detectors.

  19. Tokamak ion temperature and poloidal field diagnostics using 3 MeV protons

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Strachan, J.D.

    1984-10-01

    The 3 MeV protons created by d(d,p)t fusion reactions in a moderately sized tokamak leave the plasma on trajectories determined by the position of their birth and by the poloidal magnetic field. Pitch-angle resolution of the escaping 3 MeV protons can separately resolve the spatial distribution of the d(d,p)t fusion reactions and the poloidal field distribution inside the tokamak. These diagnostic techniques have been demonstrated on PLT with an array of collimated surface barrier detectors

  20. Poloidal plasma rotation in the presence of RF waves in tokamaks

    International Nuclear Information System (INIS)

    Weyssow, B.; Liu, Caigen

    2001-01-01

    It is well known that one of the consequences of strong RF heating is the deformation of the equilibrium distribution function that induces a change in plasma transport and plasma rotation. The poloidal plasma rotation during RF wave heating in tokamaks is investigated using a moment approach. A set of closed, self-consistent transport and rotation equations is derived and reduced to a single equation for the poloidal particle flux. The formulas are sufficiently general to apply to heating schemes that can be represented by a quasilinear operator. (author)

  1. Design and fabrication of forced-flow superconducting poloidal coils for the Large Helical Device

    International Nuclear Information System (INIS)

    Nakamoto, K.; Yamamoto, T.; Mizumaki, S.; Yamakoshi, T.; Kanai, Y.; Yamamoto, K.; Wachi, Y.; Ushijima, M.; Yoshida, T.; Kai, T.; Takahata, K.; Yamamoto, J.; Satow, T.; Motojima, O.

    1995-01-01

    Three pairs of superconducting poloidal coils for the LHD (Large Helical Device) have been designed and fabricated using NbTi/Cu cable-in-conduit (CIC) conductors cooled with forced-flow supercritical helium (SHE). In the LHD poloidal coils, high field accuracy as well as high reliability are required. To meet these requirements, detailed field and structural analyses have been performed and key parameters including winding pattern and size and locations of conductor joints have been determined. Compact conductor joint, where NbTi filaments are directly bonded, has also been developed using the solid state bonding technique. (orig.)

  2. Temperature anisotropy in a cyclotron resonance heated tokamak plasma and the generation of poloidal electric field

    International Nuclear Information System (INIS)

    Choe, W.; Ono, M.; Chang, C.S.

    1994-11-01

    The temperature anisotropy generated by cyclotron resonance heating of tokamak plasmas is calculated and the poloidal equilibrium electric field due to the anisotropy is studied. For the calculation of anisotropic temperatures, bounce-averaged Fokker-Planck equation with a bi-Maxwellian distribution function of heated particles is solved, assuming a moderate wave power and a constant quasilinear cyclotron resonance diffusion coefficient. The poloidal electrostatic potential variation is found to be proportional to the particle density and the degree of temperature anisotropy of warm species created by cyclotron resonance heating

  3. Charge exchange measurements of MHD activity during neutral beam injection in the Princeton Large Torus and the Poloidal Divertor Experiment

    International Nuclear Information System (INIS)

    Goldston, R.J.; Kaita, R.; Beiersdorfer, P.; Gammel, G.; Herndon, D.L.; McCune, D.C.; Meyerhofer, D.D.

    1987-01-01

    The horizontally scanning, multi-angle charge exchange analysers on the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) were used to study the effects of MHD activity on the background ion distribution function and on the beam ion slowing-down process during high power neutral injection. Sawtooth oscillations were observed in the fast ion flux on PLT and PDX, and measurements with neutral beams providing local neutral density enhancement indicated that the ions were transported radially when these events occurred. With near-perpendicular injection in PDX, at the lower toroidal fields necessary to maximize the plasma beta, repetitive bursts of greatly enhanced charge exchange flux were observed. These were associated with the 'fishbone' MHD instability, and a substantial depletion of the perpendicular slowing-down spectrum below the injection energy was seen. A simple phenomenological model for this loss mechanism was developed, and its use in simulation codes has been successful in providing good agreement with the experimental data. The behaviour and characteristics of this model are well matched by direct theoretical calculations. (author)

  4. Theoretical considerations and preparatory experiments for poloidal field measurements in tokamaks by far-infrared polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W; Dodel, G [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Plasmaforschung

    1978-12-01

    Numerical calculations give an optimum wavelength and show the precision requirements for determining poloidal field profiles in tokamaks on the basis of the Faraday effect. The required precision of the polarimetric measurements can be achieved in the far-infrared as is verified in a model experiment using a ferrite modulated HCN laser beam.

  5. Poloidal rotation and the evolution of H-mode and VH-mode profiles

    International Nuclear Information System (INIS)

    Hinton, F.L.; Staebler, G.M.; Kim, Y.B.

    1993-12-01

    The physics which determines poloidal rotation, and its role in the development of profiles during H- and VH-modes, is discussed. A simple phenomenological transport model, which incorporates the rvec E x rvec B flow shear suppression of turbulence, is shown to predict profile evolution similar to that observed experimentally during H-mode and VH-mode

  6. Active transfer of poloidal magnetic energy during plasma disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Zhang, Ming; Zhang, Jun; Rao, Bo; Chen, Zhongyong; Li, Xiaolong; Xu, Wendi; Pan, Yuan; Yu, Kexun

    2016-01-01

    Highlights: • An alternative plasma disruption mitigation method by transferring partial poloidal magnetic energy out of the vacuum vessel has been presented in this paper. • This method can reduced the magnetic energy dissipated inside the vacuum vessel during disruption and mitigated the disruption damage. • This method has been experimentally verified in J-TEXT with an experiment system set up. • According to the experimental results, the magnetic energy dissipated inside the vacuum vessel during disruption can be reduced by 20% or more and the loop voltage can be reduced by 58%. - Abstract: The magnitude of the damaging effects of plasma disruptions on vacuum vessel (VV) components increases with the thermal energy and poloidal magnetic energy dissipated inside the VV. This study focuses on an alternative method, by which partial poloidal magnetic energy is transferred out of the VV. The quantity of the poloidal magnetic energy dissipated inside the VV (W_d_i_s) can be reduced with this method, and the damaging effects can be mitigated. Partial magnetic energy is transferred based on magnetic coupling by a group of energy transfer coils (ETCs) that are coupled with the plasma current. This method, which is called magnetic energy transfer (MET), has been experimentally verified in J-TEXT. W_d_i_s can be reduced by approximately 20%, and the loop voltage can be reduced by 58%. MET is established as a novel, promising, and effective plasma disruption mitigation method.

  7. Poloidal asymmetries in the limiter shadow plasma of the Alcator C tokamak. Volume 1

    International Nuclear Information System (INIS)

    LaBombard, B.

    1986-05-01

    This thesis investigates conditions which exist in the limiter shadow plasma of the Alcator C tokamak. The understanding of this edge plasma region is approached from both experimental and theoretical points of view. First, a general overview of edge plasma physical processes is presented. Simple edge plasma models and conditions which can theoretically result in a poloidally asymmetric edge plasma are discussed. A review of data obtained from previous diagnostics in the Alcator C edge plasma is then used to motivate the development of a new edge plasma diagnostic system (DENSEPACK) to experimentally investigate poloidal asymmetries in this region. The bulk of this thesis focuses on the marked poloidal asymmetries detected by this poloidal probe array and possible mechanisms which might support such asymmetries on a magnetic flux surface. In processing the probe data, some important considerations on fitting Langmuir probe characteristics are identified. The remainder of this thesis catalogues edge versus central plasma parameter dependences. Regression analysis techniques are applied to characterize edge density for various central plasma parameters. Edge plasma conditions during lower hybrid radio frequency heating and pellet injection are also discussed

  8. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A.; Solomon, W. M.; Wang, W. X. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Rhodes, T. L.; Schmitz, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Mordijck, S. [College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795 (United States); Meneghini, O. [Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Bldg SC-200, Oak Ridge, Tennessee 37830 (United States)

    2014-07-15

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E{sup →}×B{sup →} shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.

  9. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    International Nuclear Information System (INIS)

    Chrystal, C.; Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de; Grierson, B. A.; Solomon, W. M.; Wang, W. X.; Rhodes, T. L.; Schmitz, L.; Mordijck, S.; Meneghini, O.

    2014-01-01

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E → ×B → shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain

  10. Three-dimensional plasma equilibrium model based on the poloidal representation of the magnetic field

    International Nuclear Information System (INIS)

    Gruber, R.; Degtyarev, L.M.; Kuper, A.; Martynov, A.A.; Medvedev, S.Yu.; Shafranov, V.D.

    1996-01-01

    Equations for the three-dimensional equilibrium of a plasma are formulated in the poloidal representation. The magnetic field is expressed in terms of the poloidal magnetic flux Ψ and the poloidal electric current F. As a result, three-dimensional equilibrium configurations are analyzed with the help of a set of equations including the elliptical equation for the poloidal flux, the magnetic differential equation for the parallel current, and the equations for the basis vector field b. To overcome the difficulties associated with peculiarities that can arise in solving the magnetic differential equation at rational toroidal magnetic surfaces, small regulating corrections are introduced into the proposed set of equations. In this case, second-order differential terms with a small parameter appear in the magnetic differential equations. As a result, these equations take the form of elliptical equations. Three versions of regulating corrections are proposed. The equations obtained can be used to develop numerical codes for calculating three-dimensional equilibrium plasma configurations with an island structure

  11. Poloidal field system design for the ZT-H reversed field pinch experiment

    International Nuclear Information System (INIS)

    Schoenberg, K.F.; Gribble, R.F.; Linton, T.W.; Reass, W.R.

    1983-01-01

    This report discusses each of the following areas: (1) equilibrium specification, (2) the equilibrium winding, (3) the magnetizing winding, (4) numerical poloidal field system analysis, (5) coil cross section, turns, minimum field error, (6) coil stresses and cooling, (7) the upper structure, (8) the loads, (9) boundary conditions and method of analysis, and (10) design description

  12. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  13. Neoclassical impurity transport in the presence of toroidal and poloidal rotation

    International Nuclear Information System (INIS)

    Feneberg, W.

    1988-06-01

    This paper presents an extended theory of neoclassical impurity transport, starting from the parameters of bulk plasma toroidal and poloidal rotation. Analytic expressions resulting from the influence of a compressible flow on the perpendicular momentum balance and on the neoclassical Braginskii parallel viscosity are derived. The predicted impurity transport is extensively compared with that in earlier papers. (orig.)

  14. Control of tokamak plasma current and equilibrium with hybrid poloidal field coils

    International Nuclear Information System (INIS)

    Shimada, Ryuichi

    1982-01-01

    A control method with hybrid poloidal field system is considered, which comprehensively implements the control of plasma equilibrium and plasma current, those have been treated independently in Tokamak divices. Tokamak equilibrium requires the condition that the magnetic flux function value on plasma surface must be constant. From this, the current to be supplied to each coil is determined. Therefore, each coil current is the resultant of the component related to plasma current excitation and the component required for holding equilibrium. Here, it is intended to show a method by which the current to be supplied to each coil can easily be calculated by the introduction of hybrid control matrix. The text first considers the equilibrium of axi-symmetrical plasma and the equilibrium magnetic field outside plasma, next describes the determination of current using the above hybrid control matrix, and indicates an example of controlling Tokamak plasma current and equilibrium by the hybrid poloidal field coils. It also shows that the excitation of plasma current and the maintenance of plasma equilibrium can basically be available with a single power supply by the appropriate selection of the number of turns of each coil. These considerations determine the basic system configuration as well as decrease the installed capacity of power source for the poloidal field of a Tokamak fusion reactor. Finally, the actual configuration of the power source for hybrid poloidal field coils is shown for the above system. (Wakatsuki, Y.)

  15. Stability of high-beta tokamak equilibria and transport in Belt-Pinch IIa

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G; Gruber, O; Krause, H; Mast, F; Wilhelm, R [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany, F.R.)

    1978-01-01

    In Belt-Pinch IIa, highly elongated equilibria with poloidal beta values up to the aspect ratio have been achieved. In these tokamak-like configurations, no fast-growing MHD instabilities such as external kink and ballooning modes have been observed. Rigid displacement instabilities have been stabilized by an appropriate poloidal magnetic field configuration and by a conducting shell. By comparing simulation experiments using the Garching high-beta transport code with measurements, it has been found that in the collision-dominated plasma no anomalously enhanced transport occurs. Transport theory in the Pfirsch-Schlueter regime, which includes elongation and high-beta effects, has been confirmed by the experiment. In particular, it has been shown that the perpendicular electrical conductivity is also classical. Detailed investigations of oxygen and carbon impurity losses demonstrated that the impurity subprograms commonly used for tokamaks underestimate the radiation losses in the range Tsub(e)=10 to 30 eV.

  16. Development of a new lower hybrid antenna module using a poloidal power divider

    International Nuclear Information System (INIS)

    Maebara, Sunao; Seki, Masami; Suganuma, Kazuaki

    1996-07-01

    The antenna using poloidal power divider is an effective method for simplification of Lower Hybrid Current Drive (LHCD) antenna system. This method should allow to reduce the power density in the antenna while maintaining a good flexibility of N parallel spectrum of waves. For this purpose, three types of poloidal power divider which split the power in three, and the 3 x 6 multi-junction module were developed. r.f. properties and outgassing of these components were evaluated using the CEA Cadarache RF Test Facility. A good power dividing ratio of 33 ± 4% was obtained for each of these poloidal dividers, and the reflection coefficient was lower value than 1.5%. For the 3 x 6 multi-junction, reflection coefficient was less than 1.3% and r.f. losses lower than 1.0% were measured. On the other hand, it was found in the scattering matrix analysis that reflection coefficient at plasma has to be less than a few % in order to operate these components under available conditions. In combination with two poloidal power dividers connected to the 3 x 6 multi-junction module, quasi stationary operation for r.f. injection time of 1000 sec at 300 kW was demonstrated under water cooling. In this case, it was found that the outgassing rate is in the lower range of 10 -7 Pam 3 s -1 m -2 within the maximum module temperature of ∼100degC. This report describes the experimental and analytical results of a new lower hybrid (LH) antenna module using the poloidal power divider. (author)

  17. Calculation of the form of an equilibrium poloidal magnetic field contained in a polytropic star

    International Nuclear Information System (INIS)

    Brundrit, G.B.; Miketinac, M.J.

    1976-01-01

    This program is designed to integrate the exact equations which determine the distribution of the density of a self-gravitating, axisymmetric polytrope of infinite conductivity containing a poloidal magnetic field. In addition, other properties of an equilibrium configuration such as mass, volume and radius are calculated. The program can also provide at very small extra cost the rates of change of the density with respect to changes of the polytropic index n and the parameter lambda which characterizes the poloidal magnetic field. Mathematically, the problem can be formulated as a boundary value problem for three coupled equations, two of which are second order, non-linear, two-dimensional partial differential equations. The solution is obtained numerically by an adaptation of the Stoeckl's finite difference-finite expansion method. In fact, the present program is a major modification of the program TOROID. The numerical scheme developed in the program is valid for all polytropes whose polytropic index n is greater than or equal to one. The other parameter of the theory, lambda, is unrestricted, i.e. the program permits the study of stars whose matnetic energy is a 'sizeable' percentage of their gravitational energy. Also, the program, with minor modifications, could be used for calculating equilibrium configurations of (a) (uniformly or non-uniformly) rotating polytropes pervaded by poloidal magnetic fields or (b) (rotation) polytropes containing poloidal magnetic fields. However, the greatest use of the present program is expected to arise in attempts to construct equilibrium configurations of polytropes containing mixed poloidal toroidal magnetic fields. (Auth.)

  18. Magnetic Fluctuations during plasma current rise of divertor discharge in JT-60

    International Nuclear Information System (INIS)

    Ushigusa, Kenkichi; Kikuchi, Mitsuru; Hosogane, Nobuyuki; Tsuji, Syunji; Hayashi, Kazuo.

    1986-03-01

    During a current rise phase in the JT-60 divertor discharge, a series of magnetic fluctuations which do not rotate poloidally (phase-locking) is observed. They cause a cooling of plasma periphery and an enhancement of H α emission in the divertor chamber. A significant increase in β P + 1 i /2 with minor disruptions during the phase-locked magnetic fluctuation suggests a relaxation of the current profile in the current rise phase of the divertor discharge. (author)

  19. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  20. Studies on limiter confined toroidal plasma in BETA

    International Nuclear Information System (INIS)

    Bera, D.; Reddy, C.; Jayakumar, R.; Kaw, P.K.

    1984-01-01

    Plasma equilibrium and stability in the presence of a toroidal magnetic field and a poloidal limiter is being studied experimentally in the BETA experiment. In a simple toroidal magnetic field, plasma cannot be in equilibrium because of the effect of the magnetic field curvature, which tends to expand the plasma. The electric field, which causes this expansion, is short circuited if a poloidal conducting limiter is placed and this brings about a quasi-equilibrium. In the model the charge separation current flows on the surface of the plasma and closes the path by flowing parallel to the magnetic field away from the limiter and transverse to the field at the limiter. For such an equilibrium, the vertical pressure profile is expected to be uniform, while the radial pressure profile is determined by transport. Such a profile is unstable to Rayleigh-Taylor instabilities, if the magnetic field gradient and the pressure gradient have the same sense

  1. Beta spectrometry

    International Nuclear Information System (INIS)

    Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.

    1977-01-01

    For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)

  2. Beta Blockers

    Science.gov (United States)

    ... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...

  3. Calculation of poloidal rotation in the edge plasma of limiter tokamaks

    International Nuclear Information System (INIS)

    Gerhauser, H.; Claassen, H.A.

    1987-05-01

    The existing 2-d two-fluid code for computing the plasma profiles in the scrape-off layer of limiter tokamaks has been further developed to include the effect of poloidal rotation in the basic equations. This rotation is produced by radial electric fields which arise in the limiter shadow due to radial gradients in the Langmuir sheath potential in front of the limiter. As a consequence slight deviations from ambipolar motion must occur. A strong increase of rotation near the separatrix is connected with an electric current circuit closed via the limiter edge. The 2-d profiles of all relevant quantities are calculated and discussed for TEXTOR-typical parameters including also the effect of limiter recycled neutrals. The results agree well with the known experimental evidence on poloidal rotation and should be transferable to all limiter tokamaks. (orig.)

  4. Generation of sheared poloidal flows via Reynolds stress and transport barrier physics

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Sanchez, E.; Balbin, R.; Lopez-Fraguas, A.; Milligen, B. van; Silva, C.; Fernandes, H.; Varandas, C.A.F.; Riccardi, C.; Carrozza, R.; Fontanesi, M.; Carreras, B.A.; Garcia, L.

    2000-01-01

    A view of the latest experimental results and progress in the understanding of the role of poloidal flows driven by fluctuations via Reynolds stress is given. Reynolds stress shows a radial gradient close to the velocity shear layer location in tokamaks and stellarators, indicating that this mechanism may drive significant poloidal flows in the plasma boundary. Observation of the generation of ExB sheared flows via Reynolds stress at the ion Bernstein resonance layer has been noticed in toroidal magnetized plasmas. The experimental evidence of sheared ExB flows linked to the location of rational surfaces in stellarator plasmas might be interpreted in terms of Reynolds stress sheared driven flows. These results show that ExB sheared flows driven by fluctuations can play an important role in the generation of transport barriers. (author)

  5. Estimate of thermoelastic heat production from superconducting composites in pulsed poloidal coil systems

    International Nuclear Information System (INIS)

    Ballou, J.K.; Gray, W.H.

    1976-01-01

    In the design of the cryogenic system and superconducting magnets for the poloidal field system in a tokamak, it is important to have an accurate estimate of the heat produced in superconducting magnets as a result of rapidly changing magnetic fields. A computer code, PLASS (Pulsed Losses in Axisymmetric Superconducting Solenoids), was written to estimate the contributions to the heat production from superconductor hysteresis losses, superconductor coupling losses, stabilizing material eddy current losses, and structural material eddy current losses. Recently, it has been shown that thermoelastic dissipation in superconducting composites can contribute as much to heat production as the other loss mechanisms mentioned above. A modification of PLASS which takes into consideration thermoelastic dissipation in superconducting composites is discussed. A comparison between superconductor thermoelastic dissipation and the other superconductor loss mechanisms is presented in terms of the poloidal coil system of the ORNL Experimental Power Reactor design

  6. Thermal-hydraulic investigations on the CEA-ENEA DEMO relevant helium cooled poloidal blanket

    International Nuclear Information System (INIS)

    Dell'Orco, G.; Polazzi, G.; Vallette, F.; Proust, E.; Eid, M.

    1994-01-01

    The CEA-ENEA design of an Helium Cooled Solid Breeder Blanket (HCSBB) for the DEMO reactor, with a breeder in tube (BIT) poloidal arrangement, is based on the use of lithium ceramic pellets, the ENEA γ-LiAlO 2 or the CEA Li 2 ZrO 3 . Due to the geometry of the DEMO reactor plasma chamber, these breeder bundles are adapted to the Vacuum Vessel with a strong poloidal curvature. This curvature influences the thermal-hydraulic behaviour of the coolant flowing inside the bundle. The paper presents the CEA-ENEA first results of the experimental and theoretical programme, aiming at optimizing the breeder module thermal hydraulic design. (author) 6 refs.; 7 figs.; 1 tab

  7. Confinement improvement with rf poloidal current drive in the reversed-field pinch

    International Nuclear Information System (INIS)

    Hokin, S.; Sarff, J.; Sovinec, C.; Uchimoto, E.

    1994-01-01

    External control of the current profile in a reversed-field pinch (RFP), by means such as rf poloidal current drive, may have beneficial effects well beyond the direct reduction of Ohmic input power due to auxiliary heating. Reduction of magnetic turbulence associated with the dynamo, which drives poloidal current in a conventional RFP, may allow operation at lower density and higher electron temperature, for which rf current drive becomes efficient and the RFP operates in a more favorable regime on the nτ vs T diagram. Projected parameters for RFX at 2 MA axe studied as a concrete example. If rf current drive allows RFX to operate with β = 10% (plasma energy/magnetic energy) at low density (3 x 10 19 m -3 ) with classical resistivity (i.e. without dynamo-enhanced power input), 40 ms energy confinement times and 3 keV temperatures will result, matching the performance of tokamaks of similar size

  8. Effect of limiter recycling on measured poloidal impurity emission profiles in Tore Supra

    International Nuclear Information System (INIS)

    Hogan, J.; DeMichelis, C.; Monier-Garbet, P.; Becoulet, M.; Bush, C.; Ghendrih, P.; Guirlet, R.; Hess, W.; Mattioli, M.; Vallet, J.C.

    2001-01-01

    Poloidal impurity emission profiles measured with the Tore Supra grazing incidence duochromator exhibit a complex spatial structure during ergodic divertor operation with an outboard poloidal guard limiter. As previous measurements with inboard-wall limited plasmas have shown that these profiles give important information about the ergodic field structure, so the contribution of local neon recycling from the limiter-induced plume has been modeled. This permits a discrimination of edge and core transport effects. The BBQ 3D scrape-off layer code calculates the asymmetric contribution to the emission and MIST 1D simulation gives the symmetric part. A systematic increase is observed in the decay rate of neon emission after injection as the ergodic divertor strength is increased. The calculations permit identification of the limiter plume contribution to the profile structure, and, with this identification, the effect of the divertor to enhance impurity efflux can be seen from the decay data

  9. Tokamak poloidal-field systems. Progress report, January 1-December 31, 1982

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1983-05-01

    The work performed in support of the FED and INTOR tokamak studies is reported at length and covers almost all the aspects of poloidal field (PF) design that were considered. The design work included magnetics, forces and fields, superconductor design, superconductor loss calculations, high field tokamak central solenoid parametric analysis, helium vapor release with bubble clearing and entrainment analysis, eddy current losses in dewars, structural support design for internally cooled cable superconductor (ICCS), research and technology development and manufacturing plans and milestones for poloidal field (PF) coils, fault conditions for shorted PF coils, design of 50 kA vapor cooled leads, and structural design of PF ring coils box frame dewars. Eddy current calculations in tokamak structure are being calculated. A computer code to perform stability analysis of ICCS is being written. Two water cooled switches, a vacuum interrupter and a bypass switch, were tested to develop improved higher current carrying capacities

  10. Measurement of poloidal field distributions in Tokamaks by far-infrared polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, W [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Physikalische Elektronik; Dodel, G

    1978-02-01

    A sufficiently precise measurement of small Faraday rotation angles in a Tokamak experiment should be possible. Besides the precision with which the Faraday rotation angles can be measured, the precision with which the poloidal field can finally be deduced from such measurements, depends on other factors such as the measuring precision of the electron density profile, the diameter of the probing beam and the deviation of the plasma from circular symmetry.

  11. Poloidally asymmetric potential increases in tokamak scrape-off layer plasmas by radiofrequency power

    International Nuclear Information System (INIS)

    Diebold, D.A.; Majeski, R.; Tanaka, T.

    1992-01-01

    Langmuir probe data are presented which show poloidally asymmetric increases in floating potential, electron temperature and, hence, plasma potential on magnetic field lines which map to the Faraday shield of an ICRF antenna in a medium size tokamak, Phaedrus-T, during radiofrequency power injection. These data are consistent with and suggestive of the existence of radiofrequency generated sheath voltages on those field lines. (author). Letter-to-the-editor. 20 refs, 3 figs

  12. Resonance localization and poloidal electric field due to cyclo- tron wave heating in tokamak plasmas

    International Nuclear Information System (INIS)

    Hsu, J.Y.; Chan, V.S.; Harvey, R.W.; Prater, R.; Wong, S.K.

    1984-01-01

    The perpendicular heating in cyclotron waves tends to pile up the resonant particles toward the low magnetic field side with their banana tips localized to the resonant surface. A poloidal electric field with an E x B drift comparable to the ion vertical drift in a toroidal magnetic field may result. With the assumption of anomalous electron and neoclassical ion transport, density variations due to wave heating are discussed

  13. Reference data for plasma shaping and magnetic separatrix formation in the JET poloidal field system

    International Nuclear Information System (INIS)

    Lazzaro, E.; Keegan, B.

    1986-01-01

    The analysis and the design of special equilibrium configurations (plasma with separatrix boundary) can be greatly simplified by a chart of the response of the plasma to currents in the poloidal field coils. This note presents this information for some interesting cases, namely for elongated plasmas eventually transformed into double null or in single null separatrix configurations. The calculations are made using the latest edition of the JET equilibrium code ''INVERSX'' including the detailed permeability characteristics of the iron core. (author)

  14. Design and manufacture of the large poloidal coils for TORE SUPRA

    International Nuclear Information System (INIS)

    Calmels, C.; Leloup, C.; Rijnoudt, E.; Ane, J.M.; Chassain, P.; Giaccheto, A.

    1984-01-01

    After a short summary of the main features of the TORE SUPRA long pulse Tokamak poloidal field system, the manufacture process of the six larger coils is described. The hollow conductor copper cross section is almost equal to the water channel one so that the coils can withstand more than 30 s pulses at full power. The main difficulties arise from the exceptional size of these one piece coils which are up to 9 meters in diameter. (author)

  15. The Role of Viscosity in Causing the Plasma Poloidal Motion in Magnetic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ake; Wang, Yuming; Liu, Jiajia; Zhou, Zhenjun; Shen, Chenglong; Liu, Rui; Zhuang, Bin; Zhang, Quanhao, E-mail: ymwang@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-08-20

    An interesting phenomenon, plasma poloidal motion, has been found in many magnetic clouds (MCs), and viscosity has been proposed as a possible mechanism. However, it is not clear how significant the role of viscosity is in generating such motion. In this paper, we conduct a statistical study of the MCs detected by the Wind spacecraft during 1995–2012. It is found that, for 19% of all the studied MCs (186), the poloidal velocities of the MC plasma near the MC boundaries are well correlated with those of the corresponding ambient solar wind plasma. A non-monotonic increase from inner to outer MCs suggests that the viscosity does play a role, albeit weak, on the poloidal motion in the MC statistically. The possible dependence on the solar wind parameters is then studied in detail for the nine selected crossings, which represent the viscosity characteristic. There is an evident negative correlation between the viscosity and the density, a weak negative correlation between the viscosity and the turbulence strength, and no clear correlation between the viscosity and the temperature.

  16. Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUSTER case study

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2007-05-01

    Full Text Available Oscillating magnetic field lines are frequently observed by spacecraft in the terrestrial and other planetary magnetospheres. The CLUSTER mission is a very suitable tool to further study these Alfvén waves as the four CLUSTER spacecraft provide for an opportunity to separate spatial and temporal structures in the terrestrial magnetosphere. Using a large scaled configuration formed by the four spacecraft we are able to detect a poloidal Ultra-Low-Frequency (ULF pulsation of the magnetic and electric field in order to analyze its temporal and spatial structures. For this purpose the measurements are transformed into a specific field line related coordinate system to investigate their specific amplitude pattern depending on the path of the CLUSTER spacecraft across oscillating field lines. These measurements are then compared with modeled spacecraft observations across a localized poloidal wave resonator in the dayside plasmasphere. A detailed investigation of theoretically expected poloidal eigenfrequencies allows us to specify the observed 16 mHz pulsation as a third harmonic oscillation. Based on this we perform a case study providing a clear identification of wave properties such as an spatial scale structure of about 0.67 RE, the azimuthal wave number m≈30, temporal evolution, and energy transport in the detected ULF pulsations.

  17. Ileostomy - discharge

    Science.gov (United States)

    ... dried fruits (such as raisins), mushrooms, chunky relishes, coconut, and some Chinese vegetables. Tips for when no ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  18. Gyrokinetic full f analysis of electric field dynamics and poloidal velocity in the FT2-tokamak configuration

    International Nuclear Information System (INIS)

    Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.

    2008-01-01

    The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.

  19. Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition

    International Nuclear Information System (INIS)

    Yu, C.X.; Xu, Y.H.; Luo, J.R.; Mao, J.S.; Liu, B.H.; Li, J.G.; Wan, B.N.; Wan, Y.X.

    2000-01-01

    This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υ θ plays a key role in developing the electric field E r and triggering the transition. The acceleration of υ θ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient. (author)

  20. Poloidal electric field and variation of radial transport during ICRF heating in the JET scrape-off layer

    International Nuclear Information System (INIS)

    Clement, S.; Tagle, J.A.; Bures, M.; Vince, J.; Kock, L. de; Stangeby, P.C.

    1989-01-01

    The highly anomalous perpendicular transport in the plasma edge of a tokamak is generally attributed to plasma turbulence, primarily to density and electrostatic potential fluctuations. The edge transport could be modified by changing the geometry of objects in contact with the plasma (limiters, radio frequency antennae ...) and during additional heating experiments. Poloidal asymmetries in the scrape-off layer (SOL) in tokamaks using poloidal limiters (eg. ALCATOR-C) have been recently reported, indicating a poloidal asymmetry in cross-field transport. A poloidal ring limiter obstructs communications between different flux tubes in the SOL, thus permitting poloidal asymmetries in n e and T e to develop if D perpendicular is θ-dependent. When JET was operated with discrete limiters, equivalent to a single toroidal limiter at the outside mid-plane, little poloidal variation in the SOL plasma properties was observed. Currently JET is operated with two complete toroidal belt limiters located approximately one meter above and below the outside mid-plane. This configuration breaks the SOL into two regions: the low field side SOL (LFS), between the limiters, and the rest of the SOL on the high field side (HFS). Differences on the scrape-off lengths in the two SOLs are reported here, indicating that cross-field transport is faster on the LFS-SOL, in agreement with observations made on ASDEX and T-10. (author) 8 refs., 6 figs

  1. Real time equilibrium reconstruction for tokamak discharge control

    International Nuclear Information System (INIS)

    Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.

    1998-01-01

    A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)

  2. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...... how the home context provides different resources for identification of patient needs and mutual decision making....

  3. Heat loads on poloidal and toroidal edges of castellated plasma-facing components in COMPASS

    Science.gov (United States)

    Dejarnac, R.; Corre, Y.; Vondracek, P.; Gaspar, J.; Gauthier, E.; Gunn, J. P.; Komm, M.; Gardarein, J.-L.; Horacek, J.; Hron, M.; Matejicek, J.; Pitts, R. A.; Panek, R.

    2018-06-01

    Dedicated experiments have been performed in the COMPASS tokamak to thoroughly study the power deposition processes occurring on poloidal and toroidal edges of castellated plasma-facing components in tokamaks during steady-state L-mode conditions. Surface temperatures measured by a high resolution infra-red camera are compared with reconstructed synthetic data from a 2D thermal model using heat flux profiles derived from both the optical approximation and 2D particle-in-cell (PIC) simulations. In the case of poloidal leading edges, when the contribution from local radiation is taken into account, the parallel heat flux deduced from unperturbed, upstream measurements is fully consistent with the observed temperature increase at the leading edges of various heights, respecting power balance assuming simple projection of the parallel flux density. Smoothing of the heat flux deposition profile due to finite ion Larmor radius predicted by the PIC simulations is found to be weak and the power deposition on misaligned poloidal edges is better described by the optical approximation. This is consistent with an electron-dominated regime associated with a non-ambipolar parallel current flow. In the case of toroidal gap edges, the different contributions of the total incoming flux along the gap have been observed experimentally for the first time. They confirm the results of recent numerical studies performed for ITER showing that in specific cases the heat deposition does not necessarily follow the optical approximation. Indeed, ions can spiral onto the magnetically shadowed toroidal edge. Particle-in-cell simulations emphasize again the role played by local non-ambipolarity in the deposition pattern.

  4. Development of two color laser diagnostics for the ITER poloidal polarimeter.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2010-10-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH(3)OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  5. Development of two color laser diagnostics for the ITER poloidal polarimeter

    International Nuclear Information System (INIS)

    Kawahata, K.; Akiyama, T.; Tanaka, K.; Nakayama, K.; Okajima, S.

    2010-01-01

    Two color laser diagnostics using terahertz laser sources are under development for a high performance operation of the Large Helical Device and for future fusion devices such as ITER. So far, we have achieved high power laser oscillation lines simultaneously oscillating at 57.2 and 47.7 μm by using a twin optically pumped CH 3 OD laser, and confirmed the original function, compensation of mechanical vibration, of the two color laser interferometer. In this article, application of the two color laser diagnostics to the ITER poloidal polarimeter and recent hardware developments will be described.

  6. Design and fabrication of the PDX poloidal field solenoid utilizing fiberglass reinforced epoxy

    International Nuclear Information System (INIS)

    Young, K.S.C.

    1975-11-01

    This paper discusses the basic design of the Poloidal Field Solenoid Coil. It will be mainly concerned with the more unique features of the Solenoid such as the copper coil windings and the design of the epoxy-glass structural support mandrels. The center solenoid coil of the PDX machine consists of five different coil systems (OH No. 8, No. 9; NF No. 11; DF No. 7; EF Solenoid and CF No. 9). Three concentric fiberglass reinforced epoxy cylinders fabricated in-house will act as mandrels to support and to house the coils that will result as an integral unit

  7. Self-similar solutions for poloidal magnetic field in turbulent jet

    International Nuclear Information System (INIS)

    Komissarov, S.S.; Ovchinnikov, I.L.

    1990-01-01

    Evolution of a large-scale magnetic field in a turbulent extragalactic source radio jets is considered. Self-similar solutions for a weak poloidal magnetic field transported by turbulent jet of incompressible fluid are found. It is shown that the radial profiles of the solutions are the eigenfunctions of a linear differential operator. In all the solutions, the strength of a large-scale field decreases more rapidly than that of a small-scale turbulent field. This can be understood as a decay of a large-scale field in the turbulent jet

  8. Fast particles confinement in stellarators with both poloidal-pseudo-symmetry and quasi-isodynamicity

    International Nuclear Information System (INIS)

    Mikhailov, M.I.; Yamazaki, K.

    2004-04-01

    By analytical and computational consideration it is shown that the condition of quasi-isodynamicity for the configurations with poloidal direction of the contours of the magnetic field strength on the magnetic surfaces can be fulfilled with high enough accuracy for compact configuration. It is shown that for the configurations with toroidal direction of these contours the condition of quasi-isodynamicity is equivalent to the condition of quasi-symmetry, so that there is no the gap between these two conditions. The further optimization is required to stabilize the ballooning modes in the considered configuration. (author)

  9. Tokamak poloidal field systems. Progress report, January 1-December 31, 1979

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1980-05-01

    Work is reported on the development of superconducting tokamak poloidal field systems (TPFS). Progress is discussed on the design of a 20 MJ, 50 kA, 7.5 T superconducting pulsed energy storage coil operated in a 1 to 2 s bipolar mode from +7.5 T to -7.5 T in 1982. Conductor development for the coil is presented. A facility that uses a traction motor energy transfer system to test coils in the 20 to 100 MJ energy range is discussed. Current interrupter development and testing for protection and energy transfer circuits are also presented. The 400 kJ METS coil test preparation is under way

  10. Mechanical stress analysis for the poloidal field coils of TORE SUPRA

    International Nuclear Information System (INIS)

    Ane, J.M.; Perin, J.P.

    1985-01-01

    Hoop stresses, up to 100 MPa, in the poloidal field coils of TORE SUPRA have to be reacted back to the main body of the coil where a conductor ends or is twisted for an interturn or an interlayer transition. The load is taken by shear stress through the insulation. Carefully designed configurations, based on 1D, 2D and 3D analysis results, limit the shear stress levels to 15 MPa. A fatigue test of a conductor termination has shown that the experimental results are in good agreement with the calculated stresses

  11. Development of superconducting poloidal field coils for medium and large size tokamaks

    International Nuclear Information System (INIS)

    Dittrich, H.-G.; Forster, S.; Hofmann, A.

    1983-01-01

    Large long pulse tokamak fusion experiments require the use of superconducting poloidal field (PF) coils. In the past not much attention has been paid to the development of such coils. Therefore a development programme has been initiated recently at KfK. In this report start with summarizing the relevant PF coil parameters of some medium and large size tokamaks presently under construction or design, respectively. The most important areas of research and development work are deduced from these parameters. Design considerations and first experimental results concerning low loss conductors, cooling concepts and structural components are given

  12. Effects of a poloidally asymmetric ionization source on toroidal drift wave stability and the generation of sheared parallel flow

    International Nuclear Information System (INIS)

    Ware, A.S.; Diamond, P.H.

    1993-01-01

    The effects of a poloidally asymmetric ionization source on both dissipative toroidal drift wave stability and the generation of mean sheared parallel flow are examined. The first part of this work extends the development of a local model of ionization-driven drift wave turbulence [Phys. Fluids B 4, 877 (1992)] to include the effects of magnetic shear and poloidal source asymmetry, as well as poloidal mode coupling due to both magnetic drifts and the source asymmetry. Numerical and analytic investigation confirm that ionization effects can destabilize collisional toroidal drift waves. However, the mode structure is determined primarily by the magnetic drifts, and is not overly effected by the poloidal source asymmetry. The ionization source drives a purely inward particle flux, which can explain the anomalously rapid uptake of particles which occurs in response to gas puffing. In the second part of this work, the role poloidal asymmetries in both the source and turbulent particle diffusion play in the generation of sheared mean parallel flow is examined. Analysis indicates that predictions of sonic parallel shear flow [v parallel (r)∼c s ] are an unphysical result of the assumption of purely parallel flow (i.e., v perpendicular =0) and the neglect of turbulent parallel momentum transport. Results indicate that the flow produced is subcritical to the parallel shear flow instability when diamagnetic effects are properly considered

  13. Angioplasty and stent - heart - discharge

    Science.gov (United States)

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  14. Radiological discharges

    International Nuclear Information System (INIS)

    Woodliffe, J.

    1990-01-01

    Current practice of North Sea States on the discharge and disposal of liquid radioactive wastes to the North Sea are based on the declaration issued at the Second International Conference on the Protection of the North Sea, known as the London Declaration. This has three main points the first of which emphasises the application of the Best Available Technology to protect the North Sea, the second provides a framework on which future controls on radioactive discharges should be based. The third identifies two parts of the framework; to take into account the recommendations of international organizations and that any repositories of radioactive waste which are built should not pollute the North Sea. This chapter looks at how the concensus based on the London Declaration is working, gauges the progress made in the implementation of the policy goal, identifies existing and future areas for concern and proposes ways of strengthening the control of radioactive discharges. The emphasis is on the United Kingdom practice and regulations for liquid wastes, most of which comes from the Sellafield Reprocessing Plant. (author)

  15. Tokamak poloidal-field systems. Progress report, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1982-03-01

    Work on the superconducting tokamak poloidal field system (TPFS) program is being redirected. The development of the 20 MJ, 50 kA, 7.5 T superconducting programmed energy storage coil is being terminated. The superconductor for the 20 MJ coil is being processed only to an intermediate state, and manufacture of the epoxy fiberglass dewar is being stopped. Further, development of the TPFS test facility is in abeyance. Change in program emphasis arises from prospective rf plasma current driven or beam heated tokamaks with programmed coil characteristics for the poloidal field being different from those to have been simulated by the 20 MJ coil and from budgetary constraints. Work is reported on the development of the coil, conductor, nonconducting dewar, and test facility to the recent time when the program change was instigated. Work in support of the Large Coil Test Facility (LCTF) and the Fusion Engineering Design (FED) Center is given. Analysis of the experiments on the 400 kJ METS coil test was completed

  16. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  17. Dynamos driven by poloidal flows in untwisted, curved and flat Riemannian diffusive flux tubes

    International Nuclear Information System (INIS)

    De Andrade, L.C.G.

    2010-01-01

    Recently Vishik anti-fast dynamo theorem has been tested against non-stretching flux tubes (Phys. Plasmas, 15 (2008)). In this paper, another anti dynamo theorem, called Cowling's theorem, which states that axisymmetric magnetic fields cannot support dynamo action, is carefully tested against thick tubular and curved Riemannian untwisted flows, as well as thin flux tubes in diffusive and diffusion less media. In the non-diffusive media Cowling's theorem is not violated in thin Riemann-flat untwisted flux tubes, where the Frenet curvature is negative. Nevertheless the diffusion action in the thin flux tube leads to a dynamo action driven by poloidal flows as shown by Love and Gubbins (Geophysical Res., 23 (1996) 857) in the context of geo dynamos. Actually it is shown that a slow dynamo action is obtained. In this case the Frenet and Riemann curvature still vanishes. In the case of magnetic filaments in diffusive media dynamo action is obtained when the Frenet scalar curvature is negative. Since the Riemann curvature tensor can be expressed in terms of the Frenet curvature of the magnetic flux tube axis, this result can be analogous to a recent result obtained by Chicone, Latushkin and Smith, which states that geodesic curvature in compact Riemannian manifolds can drive dynamo action in the manifold. It is also shown that in the absence of diffusion, magnetic energy does not grow but magnetic toroidal magnetic field can be generated by the poloidal field, what is called a plasma dynamo.

  18. Relaxation of plasma potential and poloidal flows in the boundary of tokamak plasmas

    International Nuclear Information System (INIS)

    Hron, M.; Duran, I.; Stoeckel, J.; Hidalgo, C.; Gunn, J.

    2003-01-01

    The relaxation times of plasma parameters after a sudden change of electrode voltage have been measured in the plasma boundary during polarization experiments on the CASTOR tokamak (R = 0.4 m, a = 75 mm, B t = 1 T, I p ∼ 9 kA, q a ∼ 10). The time evolution of the floating potential after the biasing voltage switch-off can be well fitted by an exponential decay with characteristic time in the range of 10 - 20 μs. The poloidal flow shows a transient behaviour with a time scale of about 10 - 30 μs. These time scales are smaller than the expected damping time based on neoclassical parallel viscosity (which is in the range of 100 νs) and atomic physics via charge exchange (in the range of 100 - 1000 νs). But, they are larger than the correlation time of plasma turbulence (about 5 μs). These findings suggest that anomalous damping rate mechanisms for radial electric fields and poloidal flows may play a role in the boundary of tokamak plasmas. (authors)

  19. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    International Nuclear Information System (INIS)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng; Zhu, Lili; Chen, Xiaojiao

    2016-01-01

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  20. Fault-tolerant design of local controller for the poloidal field converter control system on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jun; Fu, Peng; Gao, Ge; He, Shiying; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Zhu, Lili; Chen, Xiaojiao

    2016-11-15

    Highlights: • The requirements on the Local Control Cubicles (LCC) for ITER Poloidal Field Converter are analyzed. • Decoupled service-based software architecture is proposed to make control loops on LCC running at varying cycle-time. • Fault detection and recovery methods for the LCC are developed to enhance the system. • The performance of the LCC with or without fault-tolerant feature is tested and compared. - Abstract: The control system for the Poloidal Field (PF) on ITER is a synchronously networked control system, which has several kinds of computational controllers. The Local Control Cubicles (LCC) play a critical role in the networked control system for they are the interface to all input and output signals. Thus, some additional work must be done to guarantee the LCCs proper operation under influence of faults. This paper mainly analyzes the system demands of the LCCs and faults which have been encountered recently. In order to handle these faults, decoupled service-based software architecture has been proposed. Based on this architecture, fault detection and system recovery methods, such as redundancy and rejuvenation, have been incorporated to achieve a fault-tolerant private network with the aid of QNX operating system. Unlike the conventional method, this method requires no additional hardware and can be achieved relatively easily. To demonstrate effectiveness the LCCs have been successfully tested during the recent PF Converter Unit performance tests for ITER.

  1. Observations of plasma rotation in the high-beta tokamak Torus II

    International Nuclear Information System (INIS)

    Kostek, C.; Marshall, T.C.

    1982-01-01

    Toroidal and poloidal plasma rotation are measured in a high Beta tokamak device by studying the Doppler shift of the 4686 A He II line. The toroidal flow motion is in the same direction as the plasma current at an average velocity of 1.6 x 10 6 cm/sec, a small fraction of the ion thermal speed. The poloidal flow follows the ion diamagnetic direction, also at an average speed of 1.6 x 10 6 cm/sec. In view of certain ordering parameters, the toroidal flow is compared with the predictions of neoclassical transport theory in the collisional regime. For the poloidal motion, however, it appears that an (E/sub r/ x B)/B 2 drift in a positive radial electric field, approaching a stable ambipolar state (STRINGER, 1970) is responsible. Mechanisms for the time evolution of the rotation are also examined. The radial electric field responsible for the (E/sub r/ x B)/B 2 drift is determined from the theory using the measured poloidal velocity

  2. Beta limit of crescent and bean shaped tokamaks

    International Nuclear Information System (INIS)

    Naitou, H.; Yamazaki, K.

    1988-01-01

    The maximum attainable beta values which can be expected in tokamaks with crescent (BEAN 1) and rounded (BEAN 2) bean shaped cross-sections are obtained numerically by using the linear ideal MHD stability analysis code ERATO. The current profiles are optimized with a fixed pressure profile for high values of beta, keeping Mercier, high-n ballooning and n=1 kink modes stable. The poloidal plasma cross-sections are inscribed in a rectangle with an aspect ratio of three and an ellipticity of two. A confocal wall, the distance of which from the plasma surface is equal to the horizontal minor plasma radius, is present to stabilize against the kink mode. Depending on the shape and triangularity (indentation), a beta value of 10 to 17% is obtained. It is also shown that the coefficient of the Troyon-type beta scaling increases for an indented plasma. In the case of small indentation, the BEAN 1 type tokamaks show higher beta values than the BEAN 2 type. For strong indentation, the BEAN 2 type gives the highest beta value. (author). 29 refs, 15 figs

  3. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  4. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation

    International Nuclear Information System (INIS)

    Hsu, S.C.; Bellan, P.M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration

  5. Study of Heating and Fusion Power Production in ITER Discharges

    International Nuclear Information System (INIS)

    Rafiq, T.; Kritz, A. H.; Bateman, G.; Kessel, C.; McCune, D. C.; Budny, R. V.; Pankin, A. Y.

    2011-01-01

    ITER simulations, in which the temperatures, toroidal angular frequency and currents are evolved, are carried out using the PTRANSP code starting with initial profiles and boundary conditions obtained from TSC code studies. The dependence of heat deposition and current drive on ICRF frequency, number of poloidal modes, beam orientation, number of Monte Carlo particles and ECRH launch angles is studied in order to examine various possibilities and contingencies for ITER steady state and hybrid discharges. For the hybrid discharges, the fusion power production and fusion Q, computed using the Multi-Mode MMM v7.1 anomalous transport model, are compared with those predicted using the GLF23 model. The simulations of the hybrid scenario indicate that the fusion power production at 1000 sec will be approximately 500 MW corresponding to a fusion Q = 10.0. The discharge scenarios simulated aid in understanding the conditions for optimizing fusion power production and in examining measures of plasma performance.

  6. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  7. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.

    1999-09-01

    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  8. Behavior of impurity ion velocities during the pulsed poloidal current drive in the Madison symmetric torus reversed-field pinch

    International Nuclear Information System (INIS)

    Sakakita, Hajime; Craig, Darren; Anderson, Jay K.; Chapman, Brett E.; Den-Hartog, Daniel J.; Prager, Stewart C.; Biewer, Ted M.; Terry, Stephen D.

    2003-01-01

    We report on passive measurements of impurity ion velocities during the pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed-field pinch. During PPCD, the electron temperature increased and a sudden reduction of magnetic fluctuations was observed. For this change, we have studied whether plasma velocity is affected. Plasma rotation is observed to decrease during PPCD. From measurements of line intensities for several impurities at 10 poloidal chords, it is found that the impurity line emission shifts outward. The ion temperature of impurities is reasonably connected to that measured by charge exchange recombination spectroscopy from core to edge. (author)

  9. Hysterectomy - vaginal - discharge

    Science.gov (United States)

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  10. Charge-exchange measurements of MHD activity during neutral beam injection in the Princeton Large Torus and the Poloidal Divertor Experiment

    International Nuclear Information System (INIS)

    Goldston, R.J.; Kaita, R.; Beiersdorfer, P.; Gammel, G.; Herndon, D.L.; McCune, D.C.; Meyerhofer, D.D.

    1986-07-01

    The horizontally scanning, multiangle charge-exchange analyzers on the Princeton Large Torus (PLT) and the Poloidal Divertor Experiment (PDX) were used to study the effects of MHD activity on the background ion distribution function and on the beam ion slowing-down process during high-power neutral injection. Sawtooth oscillations were observed in the fast ion flux on PLT and PDX, and measurements with neutral beams providing local neutral density enhancement indicate that ions are transported radially when these events occur. With near-perpendicular injection in PDX, at the lower toroidal fields necessary to maximize beta, rapid, repetitive bursts of greatly enhanced charge-exchange flux were observed. These are associated with the ''fishbone'' MHD instability, and a substantial depletion of the perpendicular slowing-down spectrum below the injection energy was seen. A simple phenomenological model for this loss mechanism was developed, and its use in simulation codes has been successful in providing good agreement with the data. The behavior and characteristics of this model are well matched by the direct theoretical calculations

  11. Lung surgery - discharge

    Science.gov (United States)

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  12. Pediatric heart surgery - discharge

    Science.gov (United States)

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  13. Tokamak poloidal field systems. Progress report, January 1-December 31, 1980

    International Nuclear Information System (INIS)

    Rogers, J.D.

    1981-03-01

    Work is reported on the development of superconducting tokamak poloidal field system (TPFS) program. Progress is discussed on the design of the 20 MJ, 50 kA, 7.5 T superconducting pulsed energy storage coil to be operated in a bipolar mode from +7.5 T to -7.5 T in an energy transfer period of 1.5 to 5 s in 1982 followed by extensive cyclic testing. The facility to conduct the tests uses a traction motor energy transfer system and a nonconducting dewar. Status of the hardware development for the TPFS program is presented. Current interrupter development and testing for protection and energy transfer circuits are also presented. The 400 kJ METS coil test results are given

  14. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Takahashi, H.

    2012-11-01

    Electrode biasing experiments were tried in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition were compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outward. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (author)

  15. Transition of poloidal viscosity by electrode biasing in the Large Helical Device

    International Nuclear Information System (INIS)

    Kitajima, S.; Ishii, K.; Sato, Y.; Kanno, M.; Tachibana, J.; Okamoto, A.; Sasao, M.; Takahashi, H.; Masuzaki, S.; Shoji, M.; Ashikawa, N.; Tokitani, M.; Yokoyama, M.; Suzuki, Y.; Satake, S.; Ido, T.; Shimizu, A.; Suzuki, C.; Inagaki, S.; Takayama, M.

    2013-01-01

    Electrode biasing experiments were carried out in various magnetic configurations on the Large Helical Device (LHD). The transitions of poloidal viscosity, which were accompanied with bifurcation phenomena characterized by a negative resistance in an electrode characteristic, were clearly observed on LHD by the electrode biasing. The critical external driving force required for transition was compared with the local maximum in ion viscosity, and the radial resistivity before the transition also compared with the expected value from a neoclassical theory. The critical driving force increased and the radial resistivity decreased with the major radius of the magnetic axis R ax going outwards. The configuration dependence of the transition condition and the radial resistivity qualitatively agreed with neoclassical theories. The radial electric field and the viscosity were also evaluated by the neoclassical transport code for a non-axisymmetric system, and estimated electrode voltage required for the transition, which was consistent with the experimental results. (paper)

  16. Remote replacement of TF [toroidal field] and PF [poloidal field] coils for the compact ignition tokamak

    International Nuclear Information System (INIS)

    Macdonald, D.; Watkin, D.C.; Hollis, M.J.; DePew, R.E.; Kuban, D.P.

    1990-01-01

    The use of deuterium-tritium fuel in the Compact Ignition Tokamak will require applying remote handling technology for ex-vessel maintenance and replacement of machine components. Highly activated and contaminated components of the fusion devices auxiliary systems, such as diagnostics and RF heating, must be replaced using remotely operated maintenance equipment in the test cell. In-vessel remote maintenance included replacement of divertor and first wall hardware, faraday shields, and for an in-vessel inspection system. Provision for remote replacement of a vacuum vessel sector, toroidal field coil or poloidal field ring coil was not included in the project baseline. As a result of recent coil failures experienced at a number of facilities, the CIT project decided to reconsider the question of remote recovery from a coil failure and, in January of 1990, initiated a coil replacement study. This study focused on the technical requirements and impact on fusion machine design associated with remote recovery from any coil failure

  17. Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)

    2017-05-15

    Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.

  18. A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Romannikov, A.; Fenzi-Bonizec, C

    2005-07-01

    The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)

  19. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    International Nuclear Information System (INIS)

    Zhu, Lili; Huang, Liansheng; Fu, Peng; Gao, Ge; He, Shiying

    2016-01-01

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  20. Poloidal spin up and electric-field generation related to displacement current and neoclassical transport

    International Nuclear Information System (INIS)

    Gervasini, G.; Lazzaro, E.; Minardi, E.

    1996-01-01

    In accordance with the conventional ordering of neoclassical theory, poloidal and toroidal accelerations with constant parallel flow can be driven by heat transport in the absence of external momentum input and with vanishing parallel viscous stress. In a transient phase in which the heat transport is the primary source of the time dependence, the torque generating the rotation is provided at third order in the adiabatic expansion by the surface-averaged (non ambipolar) displacement current, which in also responsible for charge build-up and for the radial electric field. The heat transport equation has been solved in a narrow layer interfaced with the intensely heated plasma core through heat flux continuity, assuming neoclassical multi collisional coefficients with self-consistent suppression mechanism of anomalous transport. Starting from low temperature in the edge layer, a strong temperature gradient, a mass poloidal rotation in the ion direction and a strongly negative sheared radial electric field can be generated, in agreement with the observations, and reach a stationary state after a displacement current-dominated triggering phase (intrinsically non-ambipolar) lasting few milliseconds. Momentum input becomes important on longer time scale and is responsible for the toroidal rotation, decoupled from temperature gradient and for a further development of the radial electric field. The results show the ability of edge transport processes to adapt flexibly to a high temperature imposed on the inner side of the edge layer and support the view that the edge processes are a integral part of a more fundamental global process involving possibly an internal bifurcation of state

  1. Generation of poloidal magnetic field in a hot collisional plasma by inverse Faraday effect

    International Nuclear Information System (INIS)

    Srivastava, M.K.; Lawande, S.V.; Dutta, D.; Sarkar, S.; Khan, M.; Chakraborty, B.

    1996-01-01

    Generation of poloidal magnetic field in a hot and collisional plasma by an inverse Faraday effect is discussed. This field can either be induced by a circularly polarized laser beam (CPLB) or a plane-polarized laser beam (PPLB). For the CPLB, an average field left-angle Re x right-angle ∼I 0 λ∼11.6 MG could be produced in a DT plasma for a high intensity (I 0 =10 22 W/m 2 ) and shorter wavelength (λ=0.35 μm) laser. This field is essentially induced by the field inhomogeneity effect and dominates over that induced by the plasma inhomogeneity effect (left-angle Re x right-angle ∼I 2/3 0 λ 7/3 ∼2.42 MG). The collisional and thermal contribution to left-angle Re x right-angle is just negligible for the CPLB. However, in the case of PPLB the poloidal field is generated only for a hot and collisional plasma and can be quite large for a longer wavelength laser (e.g., CO 2 laser, λ=10.6 μm). The collisional effect induces a field left-angle Re x right-angle ∼0.08 kG, which dominates near the turning point and is independent of the laser parameters. However, in the outer cronal region the thermal pressure effect dominates (e.g., left-angle Re x right-angle ∼I 5/3 0 λ 4/3 ∼3.0 MG). Further, left-angle Re x right-angle for the p-polarized beam is, in general, relatively smaller than that for the s-polarized beam. Practical implications of these results and their limitations are discussed. copyright 1996 American Institute of Physics

  2. Upgrade of the synchronous data management system of the EAST poloidal field power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lili; Huang, Liansheng, E-mail: huangls@ipp.ac.cn; Fu, Peng; Gao, Ge; He, Shiying

    2016-11-15

    Highlights: • The upgraded synchronous data management system of EAST poloidal field power supply supports long-pulse data storage. • Slice storage mechanism on MDSplus has been adopted for quasi real-time data storage. • The state machine has been adopted for managing the system sequencer. • IEEE-1588 protocol via Ethernet for the synchronization of clock signal was detailed described. - Abstract: Poloidal field (PF) power supply is an important subsystem of the Experimental Advanced Superconducting Tokamak (EAST). The upgrade of the PF control system of EAST is a great improvement over the original data management system which could not meet the requirements necessary for experiments on synchronization, modularity and sampling rate. In order to better analyze the power operation performance, the Synchronization Data Management System (SDMS) needs to be upgraded as well. This upgrade is based on distributed data acquisition and an MDSPLUS database. It consists of three data acquisition nodes synchronized by an reference clock from the EAST central timing system that also provides the start trigger of the EAST pulse. After being processed by a signal conditioning unit, experimental signals are digitized and written into the database in MDSPLUS format. Multi-channel, multi-tasking and continuous data storage have been achieved by using multi-threading technology on a Linux operation system. The SDMS has been used on the server in PF control system for the entire 2015 EAST campaign. The SDMS has had good performance during experiments and convenient human-machine interface to satisfy the requirements of all the experiments.

  3. Study on poloidal field coil optimization and equilibrium control of ITER

    International Nuclear Information System (INIS)

    Shinya, Kichiro; Sugihara, Masayoshi; Nishio, Satoshi

    1989-03-01

    The purpose of this report is to present general features of the poloidal field coil optimization for the ITER plasma, flexibility analysis for various plasma options and some other aspect of the equilibrium control which is required for understanding plasma operation in more detail. Double null divertor plasma was selected as a main object of the optimization. Single null divertor plasma was assumed to be an alternative, because single null divertor plasma can be operational within the amounts of the total stored energy and ampere-turns of the double null divertor plasma, if it is shaped appropriately. Plasma parameters used in the present analysis are mainly those employed in the preliminary study by the Basic Device Engineering group of the ITER design team. The most part of the optimization study, however, utilizes the parameters proposed for discussion by the Japan team before starting joint design work at Garching. Plasma shape, and solenoid coil shape and size, which maximize available flux swing with reasonable amounts of the stored energy and ampere-turns, are discussed. Location and minimum number of the poloidal field coils with adequate shaping controllability were also discussed for various plasma options. Some other aspect of the equilibrium control, such as separatrix swing, moving null point operation during plasma heating and possible range of li, were evaluated and the guideline for the engineering design was proposed. Finally, fusion power output was estimated for the different pressure profiles and combinations of the average density and temperature, and the magnetic quantities of the scrape-off region was calculated to be available for the future divertor analysis. (author)

  4. Loss of beam ions to the inside of the PDX [Poloidal Divertor Experiment] tokamak during the fishbone instability

    International Nuclear Information System (INIS)

    Heidbrink, W.W.; Beiersdorfer, P.

    1986-11-01

    Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak

  5. Optimization of DIII-D discharges to avoid AE destabilization

    Science.gov (United States)

    Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori

    2017-10-01

    The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.

  6. Beta Emission and Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-13

    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  7. A web application for poloidal field analysis on HL-2M

    Energy Technology Data Exchange (ETDEWEB)

    Song, X.M., E-mail: songxm@swip.ac.cn; Pan, W.; Chen, L.Y.; Song, X.; Li, X.D.

    2014-05-15

    Highlights: • An original way to develop web application with a new framework (jQuery + PHP + Matlab) is introduced. • A convenient but powerful application for electromagnetic calculation is implemented. • The web application can run in any popular browser, on any hardware and in any operating system. • No any plugin is needed; no any maintenance is required. - Abstract: Recently, many web tools [1–3] in fusion society have been designed and demonstrated, which has been proved to be powerful and convenient to fusion researchers. Many physicists and engineers need a tool to compute the poloidal magnetic field for some purposes (for example, the calibration of magnetic probes for EFIT, the field null structure analysis for control, the design of some plasma diagnostic systems), so to develop a powerful and convenient web application for the calculation of magnetic field and magnetic flux produced by PF coils is very important. In this paper, a web application tool for poloidal field analysis on HL-2M with a totally original framework is presented. This web application is full of dynamic and interactive interface, and can run in any popular browser (IE, safari, firefox, opera), on any hardware (smart phone, PC, ipad, Mac) and operating system (ios, android, windows, linux, Mac OS). No any plugins is needed. The three layers (jQuery + PHP + Matlab) of this framework are introduced. The front top client layer is developed by jQuery code. The middle layer, which plays a role of a bridge to connect the server and client through socket communication, is developed by PHP code. The behind server layer is developed by Matlab, which compute the magnetic field or magnetic flux through a Special Function called Complete Elliptic Integral, and returns the results in the client favorite way, either by table or by JPG image. The field null structure and the vertical and radial field structure calculated by this tool are introduced with details. The idea to design a web

  8. A web application for poloidal field analysis on HL-2M

    International Nuclear Information System (INIS)

    Song, X.M.; Pan, W.; Chen, L.Y.; Song, X.; Li, X.D.

    2014-01-01

    Highlights: • An original way to develop web application with a new framework (jQuery + PHP + Matlab) is introduced. • A convenient but powerful application for electromagnetic calculation is implemented. • The web application can run in any popular browser, on any hardware and in any operating system. • No any plugin is needed; no any maintenance is required. - Abstract: Recently, many web tools [1–3] in fusion society have been designed and demonstrated, which has been proved to be powerful and convenient to fusion researchers. Many physicists and engineers need a tool to compute the poloidal magnetic field for some purposes (for example, the calibration of magnetic probes for EFIT, the field null structure analysis for control, the design of some plasma diagnostic systems), so to develop a powerful and convenient web application for the calculation of magnetic field and magnetic flux produced by PF coils is very important. In this paper, a web application tool for poloidal field analysis on HL-2M with a totally original framework is presented. This web application is full of dynamic and interactive interface, and can run in any popular browser (IE, safari, firefox, opera), on any hardware (smart phone, PC, ipad, Mac) and operating system (ios, android, windows, linux, Mac OS). No any plugins is needed. The three layers (jQuery + PHP + Matlab) of this framework are introduced. The front top client layer is developed by jQuery code. The middle layer, which plays a role of a bridge to connect the server and client through socket communication, is developed by PHP code. The behind server layer is developed by Matlab, which compute the magnetic field or magnetic flux through a Special Function called Complete Elliptic Integral, and returns the results in the client favorite way, either by table or by JPG image. The field null structure and the vertical and radial field structure calculated by this tool are introduced with details. The idea to design a web

  9. The design of the poloidal divertor experiment tokamak wall armor and inner limiter system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1982-01-01

    The inner wall protective plates for the Poloidal Divertor Experiment Tokamak are designed to absorb 8 MW of neutral deuterium beam power at maximum power densities of 3 kW/cm 2 for pulse lengths of 0.5 s. Preliminary studies indicate that the design could survive several pulses of l-s duration. The design consists of a tile and mounting plate structure. The mounting plates are water cooled to allow short duty cycles and beam calorimetry. The temperature and flow of the coolant are measured to obtain the injected power. A thermocouple array on the tiles provides beam position and power density profiles. Several material combinations for the tiles were subjected to thermal tests using both electron and neutral beams, and titanium-carbidecoated graphite was selected as the tile material. The heat transfer coefficient of the tile backing plate structure was measured to determine the maximum pulse rate allowable. The design of the armor system allows the structure to be used as a neutral beam power diagnostic and as an inner plasma limiter. The electrical and cooling systems external to the vacuum vessel are discussed

  10. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  11. Maximum entropy reconstruction of poloidal magnetic field and radial electric field profiles in tokamaks

    Science.gov (United States)

    Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang

    2017-10-01

    The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.

  12. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    International Nuclear Information System (INIS)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L.

    1989-01-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods (γLiAlO 2 ) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to γLiAlO 2 volume ratio is 4/1. The He inlet and outlet branches are cooling Be and γLiAlO 2 , respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m 2 ), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570 0 C; inlet He temperature=250 0 ; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum γLiAlO 2 temperature=400/900 0 C; maximum structural temperature=475 0 C; and maximum Be temperature=525 0 C. (orig.)

  13. Structural design of the superconducting Poloidal Field coils for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    O'Connor, T.G.; Zbasnik, J.P.

    1993-01-01

    The Tokamak Physics Experiment concept design uses superconducting coils made from cable-in-conduit conductor to accomplish both magnetic confinement and plasma initiation. The Poloidal Field (PF) magnet system is divided into two subsystems, the central solenoid and the outer ring coils, the latter is focus of this paper. The eddy current heating from the pulsed operation is excessive for a case type construction; therefore, a ''no case'' design has been chosen. This ''no case'' design uses the conductor conduit as the primary structure and the electrical insulation (fiberglass/epoxy wrap) as a structural adhesive. The model integrates electromagnetic analysis and structural analysis into the finite element code ANSYS to solve the problem. PF coil design is assessed by considering a variety of coil current wave forms, corresponding to various operating modes and conditions. The structural analysis shows that the outer ring coils are within the requirements of the fatigue life and fatigue crack growth requirements. The forces produced by the Toroidal Field coils on the PF coils have little effect on the maximum stresses in the PF coils. In addition in an effort to reduce the cost of the coils new elongated PF coils design was proposed which changes the aspect ratio of the outer ring coils to reduce the number of turns in the coils. The compressive stress in the outer ring coils is increased while the tensile stress is decreased

  14. R&D on high-power dc reactor prototype for ITER poloidal field converter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Song, Zhiquan; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031 (China); Zhang, Ming, E-mail: zhangming@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Kexun [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin, Xiuqi [School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009 (China)

    2015-10-15

    Highlights: • A new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented. • Theoretical analysis, finite-element simulation and prototype test verification are applied on the design. • The results of temperature rise and transient fault current test of prototypes are introduced and analyzed. • The success of tests demonstrates that the proposed structure is of high reliability and availability. - Abstract: This paper mainly introduces the research and development (R&D) of the high-power dc reactor prototype, whose functions are to limit the circulating current and ripple current in the ITER poloidal field (PF) converter. It needs to operate at rated large direct current 27.5 kA and withstand peak fault current up to 175 kA. Therefore, in order to meet the special requirements of the dynamic and thermal stability, a new prototype design structure of dry-type air-core water-cooling reactor with epoxy resin casting technique is presented, which is based on the theoretical analysis, finite-element simulation calculation and small prototype test verification. Now the full prototype has been fabricated by China industry, and the dynamic and thermal stability tests of the prototype have also been accomplished successfully. The test results are in compliance with the design and it shows the availability and feasibility of the proposed design, which may be a reference for relevant applications.

  15. Resolving the effects of toroidal and poloidal coupling on resistive modes in Heliotron E and LHD

    International Nuclear Information System (INIS)

    McMillan, B.F.; Dewar, R.L.; Storer, R.G.

    2003-01-01

    In general, stellarators are less subject than axisymmetric configurations to the most dangerous of instabilities, which lead to disruption of the plasma. For example, the LHD experiment has been shown to be remarkably stable to large scale instabilities, even where analysis suggests the presence of (unstable) ballooning modes. This may not be the case for configurations which contain large parallel currents, where possible kink and tearing modes might lead to unfavourable confinement or even disruptions. These effects can only be approximately modelled while averaging over poloidal and/or toroidal angles, so a complete study would include both a full 3D resistive linear stability analysis and a determination of the non-linear behaviour of the plasma. We have developed a linear, fully 3D resistive MHD code, Spector3D, to examine the stable and unstable wavemodes in a plasma. As verification of the applicability and correctness of the code, we have checked our results against resistive codes of lower dimensionality, and we present here a comparsion with published ideal MHD results for LHD and Heliotron E. As an application of the code, we then determine the stability of current-carrying Heliotron E plasmas against resistive tearing modes under the variation of plasma current and pressure. (orig.)

  16. The effect of partial poloidal wall sections on the wall stabilization of external kink modes

    International Nuclear Information System (INIS)

    Ward, D.J.

    1996-02-01

    An analysis of the effect on the wall stabilization of external kink modes due to toroidally continuous gaps in the resistive wall is performed. The effects with and without toroidal rotation are studied. For a high-β equilibrium, the mode structure is localized on the outboard side. Therefore, outboard gaps greatly increase the growth rate when there is no rotation. For resistive wall stabilization by toroidal rotation, the presence of gaps has the same effect as moving the wall farther away, i.e. destabilizing for the ideal plasma mode, and stabilizing for the resistive wall mode. The region of stability, in terms of wall position, is reduced in size and moved closer to the plasma. However, complete stabilization becomes possible at considerably reduced rotation frequencies. For a high-β, reverse-shear equilibrium both the resistive wall mode and the ideal plasma mode can be stabilized by close fitting discrete passive plates on the outboard side. The necessary toroidal rotation frequency to stabilize the resistive wall mode using these plates is reduced by a factor of three compared to that for a poloidally continuous and complete wall at the same plasma-wall separation. (author) 15 figs., 24 refs

  17. MSC/NASTRAN ''expert'' techniques developed and applied to the TFTR poloidal field coils

    International Nuclear Information System (INIS)

    O'Toole, J.A.

    1986-01-01

    The TFTR poloidal field (PF) coils are being analyzed by PPPL and Grumman using MSC/NASTRAN as a part of an overall effort to establish the absolute limiting conditions of operation for TFTR. Each of the PF coils will be analyzed in depth, using a detailed set of finite element models. Several of the models developed are quite large because each copper turn, as well as its surrounding insulation, was modeled using solid elements. Several of the finite element models proved large enough to tax the capabilities of the National Magnetic Fusion Energy Computer Center (NMFECC), specifically disk storage space. To allow the use of substructuring techniques with their associated data bases for the larger models, it became necessary to employ certain infrequently used MSC/NASTRAN ''expert'' techniques. The techniques developed used multiple data bases and data base sets to divide each problem into a series of computer runs. For each run, only the data required was kept on active disk space, the remainder being placed in inactive ''FILEM'' storage, thus, minimizing active disk space required at any time and permitting problem solution using the NMFECC. A representative problem using the TFTR OH-1 coil global model provides an example of the techniques developed. The special considerations necessary to obtain proper results are discussed

  18. Tennis elbow surgery - discharge

    Science.gov (United States)

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  19. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  20. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  1. Asthma - child - discharge

    Science.gov (United States)

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  2. The device for the poloidal profile measurement of H sub(α)-line emission by photodiode and its calibration

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Kasai, Satoshi; Tamai, Hiroshi; Hasegawa, Koichi

    1985-11-01

    The device for the poloidal profile measurement of H sub(α)-line emission has been equipped by photodiode (S1225-5BQ by HAMAMATSU PHOTONICS K.K.) and operational amplifier. The absolute efficiency was calibrated by using He-Ne laser. The device is constructed by 44 channels. The fast type of 8 channels is for the monitor of pellet abration profile. The slow type of 36 channels is for the poloidal profile measurement of H sub(α)-line emission from JFT-2M plasma. The rise time of the fast type and the slow type is about 2.8 μsec and about 350 μsec, respectively. The absolute efficiency of the fast type and the slow type is 72.7 V/mW and 18.2 V/μW, respectively. (author)

  3. The effect of alpha incident- and poloidal-angle distributions on blister-induced first-wall erosion

    International Nuclear Information System (INIS)

    Fenske, G.; Hively, L.; Miley, G.

    1979-01-01

    The incident velocity distribution of high-energy alpha particles bombarding the first wall of an axisymmetric tokamak is evaluated as a function of poloidal angle (theta). The resulting helium concentration profile as a function of the poloidal angle and the implant depth is calculated for a typical Experimental Power Reactor (EPR) design. The critical helium concentration for blistering is first exceeded at theta approx. 55 0 . Peak concentrations are reduced somewhat through continuous D-T sputtering which, dependent on theta, reduces the blister skin thicknesses. The blistering-induced impurity level is found to increase drastically (< approx. 50%), relative to sputtering-induced impurities, at periodic intervals corresponding to approx. 4000 hours operation when each generation of blister begins to exfoliate. (orig.)

  4. A thyristor breaker of 1.5 109 V.A. for the poloidal field system of TORUS SUPRA

    International Nuclear Information System (INIS)

    Bareyt, B.; Leloup, C.; Rijnoudt, E.

    1980-09-01

    The poloidal field system of Torus Supra has an inductive storage of approximately 38 MJ, which has conducted to research the best solution for a D.C. breaker (55 kA., 27 kV). A solid-state breaker has been chosen. The working principles have been tested on a small size model. The final circuit breaker will contain a large number of thyristors in series and in parallel; the critical problem lies in the series arrangement. A test unit for full tension has been constructed. In this unit the thyristors are submitted to the maximum current as well as to the maximum voltage. The surges measured during tests are not higher than the calculated values. A synthetic circuit of the poloidal field system has been used for test under the final working conditions

  5. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  6. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma...

  7. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  8. Thermal convection in a toroidal duct of a liquid metal blanket. Part I. Effect of poloidal magnetic field

    International Nuclear Information System (INIS)

    Zhang, Xuan; Zikanov, Oleg

    2017-01-01

    Highlights: • 2D convection flow develops with internal heating and strong axial magnetic field. • Poloidal magnetic field suppresses turbulence at high Hartmann number. • Flow structure is dominated by large-scale counter-rotation vortices. • Effective heat transfer is maintained by surviving convection structures. - Abstract: We explore the effect of poloidal magnetic field on the thermal convection flow in a toroidal duct of a generic liquid metal blanket. Non-uniform strong heating (the Grashof number up to 10 11 ) arising from the interaction of high-speed neutrons with the liquid breeder, and strong magnetic field (the Hartmann number up to 10 4 ) corresponding to the realistic reactor conditions are considered. The study continues our earlier work , where the problem was solved for a purely toroidal magnetic field and the convection was found to result in two-dimensional turbulence and strong mixing within the duct. Here, we find that the poloidal component of the magnetic field suppresses turbulence, reduces the flow's kinetic energy and high-amplitude temperature fluctuations, and, at high values of Hartmann number, leads to a steady-state flow. At the same time, the intense mixing by the surviving convection structures remains able to maintain effective heat transfer between the liquid metal and the walls.

  9. Evidence for a poloidally localized enhancement of radial transport in the scrape-off layer of the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Boucher, C.; Dionne, M.; Duran, I.; Fuchs, V.; Loarer, T.; Nanobashvili, I.; Panek, R.; Pascal, J.-Y.; Saint-Laurent, F.; Stoeckel, J.; Rompuy, T. van; Zagorski, R.; Adamek, J.; Bucalossi, J.; Dejarnac, R.; Devynck, P.; Hertout, P.; Hron, M.; Lebrun, G.; Moreau, P.; Rimini, F.; Sarkissian, A.; Oost, G. van

    2007-01-01

    Near-sonic parallel flows are systematically observed in the far scrape-off layer (SOL) of the limiter tokamak Tore Supra, as in many L-mode X-point divertor tokamak plasmas. The poloidal variation of the parallel flow has been measured by moving the contact point of a small circular plasma onto limiters at different poloidal angles. The resulting variations of flow are consistent with the existence of a poloidally localized enhancement of radial transport concentrated in a 30 deg. sector near the outboard midplane. If the plasma contact point is placed on the inboard limiters, then the SOL expands to fill all the space between the plasma and the outboard limiters, with density decay lengths between 10 and 20 cm. On the other hand, if the contact point lies on the outboard limiters, the localized plasma outflux is scraped off and the SOL is very thin with decay lengths around 2-3 cm. The outboard radial transport would have to be about two orders of magnitude stronger than inboard to explain these results

  10. Construction of a high beta plasma source

    International Nuclear Information System (INIS)

    Naraghi, M.; Torabi-Fard, A.

    1976-02-01

    A high beta plasma source has been designed and constructed. This source will serve as a means of developing and exercising different diagnostic techniques as required for ALVAND I, linear theta pinch experiment. Also, it will serve to acquaint the technicians with some of the techniques and safety rules of high voltage and capacitor discharge experiments. The operating parameters of the theta pinch and Z-pinch preionization is presented and the program of diagnostic measurements on the high beta plasma source is discussed

  11. Explosion of optimal high-beta operation regime by magnetic axis swing in the Large Helical Device

    International Nuclear Information System (INIS)

    Sakakibara, S.; Ohdachi, S.; Watanabe, K.Y.

    2010-11-01

    In Large Helical Device (LHD), the volume averaged beta value dia > as high as 5.1% was achieved in FY2007-2008 experiments. High beta operation regime was explorated by the programmed control of magnetic axis position, which characterizes MHD equilibrium, stability and transport. This control became enable by increasing capability of poloidal coil power supply. The experiments made clear the effect of magnetic hill on MHD activities in high-beta plasmas with more than 4%. Also it enabled to access the ideal stability boundary with keeping high-beta state. The strong m/n=2/1 mode leading minor collapse in core plasma appeared with the inward shift of the magnetic axis. (author)

  12. Approach to high stability beta limit and its control by fast wave current drive in reversed field pinch plasma

    International Nuclear Information System (INIS)

    Kusano, K.; Kondoh, Y.; Gesso, H.; Osanai, Y.; Saito, K.N.; Ukai, R.; Nanba, T.; Nagamine, Y.; Shiina, S.

    2001-01-01

    Before the generation of steady state, dynamo-free RFP configuration by rf current driving scheme, it is necessary to find an optimum configuration into high stability beta limit against m=1 resonant resistive MHD modes and reducing nonlinearly turbulent level with less rf power. As first step to the optimization study, we are interested in partially relaxed state model (PRSM) RFP configuration, which is considered to be closer to a relaxed state at finite beta since it has force-free fields for poloidal direction with a relatively shorter characteristic length of relaxation and a relatively higher stability beta limit to m=1 resonant ideal MHD modes. The stability beta limit to m=1 resonant resistive MHD modes can be predicted to be relatively high among other RFP models and to be enhanced by the current density profile control using fast magnetosonic waves (FMW), which are accessible to high density region with strong absorption rate. (author)

  13. Plasma edge physics in the TEXTOR tokamak with poloidal and toroidal limiters

    International Nuclear Information System (INIS)

    Samm, U.; Bogen, P.; Hartwig, H.; Hintz, E.; Hoethker, K.; Lie, Y.T.; Pospieszczyk, A.; Rusbueldt, D.; Schweer, B.; Yu, Y.J.

    1989-01-01

    Investigations of the plasma edge in TEXTOR are presented on the one hand by comparing results obtained with poloidal and toroidal limiters and on the other hand by discussing general problems of plasma edge physics which are independent of the limiter configuration. The characteristic properties of plasma flow to the different limiters are analyzed and show e.g. that the fraction of total ion flow to the limiter is much larger in the case of a toroidal limiter (80%). Density and heat flux profiles are presented which demonstrate that for both types of limiters a significant steepening of the scrape-off layer (SOL) occurs close to the limiter, leading to a small heat load e-folding length of 5-8 mm. The velocity distribution of recycled neutral hydrogen at a main limiter has been determined from the Doppler broadening of the H α line. The data clearly show that a large fraction of particles (30-50%) is reflected at the limiter surface having energies of about the sheath potential. Significant isotopic effects (H/D) concerning the plasma edge properties and the plasma core are presented and their relation to enhanced particle and energy transport in hydrogen compared to deuterium is discussed. A decrease of the cross field diffusion coefficient with increasing density can be deduced from density profile measurements in the SOL and a comparison with density fluctuations is given. The role of oxygen for impurity release is demonstrated. A new type of wall conditioning - boronization - is described, with two major improvements for quasi stationary conditions: reduction of oxygen and better density control. Best results with ICRH have been obtained under these conditions. (orig.)

  14. Modelling of the toroidal asymmetry of poloidal halo currents in conducting structures

    International Nuclear Information System (INIS)

    Pomphrey, N.; Bialek, J.M.; Part, W.

    1998-01-01

    During plasma disruptions, substantial toroidal and poloidal eddy currents are generated in the vacuum vessel and other plasma facing conducting structures. Eddy currents that conduct charge through paths which close through the plasma periphery are called halo currents, and these can be of substantial magnitude. Of particular concern for tokamak design and operation is the observed toroidal asymmetry of the halo current distribution: such an asymmetric distribution leads to problematic non-uniform forces on the conducting structures. The premise is adopted that the source of toroidal asymmetry is the plasma deformation resulting from the non-linear external kink instability that develops during the current quench phase of a disruption. A simple model is presented of the kinked plasma that allows an analytic calculation of the dependence of the toroidal peaking factor (TPF) on the ratio of the halo current to the total toroidal plasma current, I h /I p . Expressions for the TPF as a function of I h /I p are derived for m/n=2/1 and m/n=1/1 helical instabilities. The expressions depend on a single parameter, which measures the amplitude of the saturated state of the kink instability. A comparison with disruption data from experiments shows good agreement. Numerical experiments that simulate non-linear external kinks provide guidance on the values expected for the saturated amplitude. It is proposed that a simple plasma halo model is adequate for assessing the engineering impact of asymmetric halo currents, since the force distribution on the conducting structures depends mainly on the 'resistive distribution' of the eddy currents. A brief description is given of an electromagnetics code that calculates the time development of eddy currents in conducting structures, and the code is applied to two halo current disruption scenarios. These are used to emphasize the importance of having an accurate eddy current calculation to correctly estimate the engineering impact of

  15. Fabrication of the new poloidal field coils for DIII-D

    International Nuclear Information System (INIS)

    Heiberger, M.; Bott, R.J.; Gallix, R.; Street, R.W.

    1986-01-01

    The six new poloidal field coil assemblies manufactured by GA Technologies (GA) for DIII-D range in diameter from 3.4-5.3 m. Two of them are 55-turn field shaping coils. Each of the other four combines one turn of the ohmic heating coil and a 55-turn field shaping coil into a single unit encased in a stainless steel box beam. These four box beams, which provide support for the coils inside, are part of the overall coil and vacuum vessel support structure. They also serve as molds for vacuum impregnating the coils with epoxy. All coils are made of hollow, water-cooled copper conductor. The larger field shaping coils are designed for 20 kA, 3 sec rectangular current pulses with 40 0 C temperature rise. The ohmic heating coil turns are capable of currents of up to 110 kA. The conductor is wrapped with Kapton and fiberglass tape; Kapton provides 1000 V/turn and 28 kV coil-to-ground insulation. The fiberglass acts as wick and reinforcement for the vacuum impregnated epoxy resin which bonds the coil together. The fabrication process is described in detail and illustrated. Tools and setups used for special operations such as induction brazing, conductor winding, conductor bending, and vacuum impregnation are presented. The quality control procedures followed to guarantee sound brazed joints are explained. The electrical tests performed at several stages of fabrication, especially the 1000 V/turn impulse tests conducted before potting to facilitate fault detection and repair, are described

  16. Numerical simulations of resistive magnetohydrodynamic instabilities in a poloidal divertor tokamak

    International Nuclear Information System (INIS)

    Uchimoto, E.

    1988-03-01

    A new 3-D resistive MHD initial value code RPD has been successfully developed from scratch to study the linear and nonlinear evolution of long wavelength resistive MHD instabilities in a square cross-section tokamak with or without a poloidal divertor. The code numerically advances the full set of compressible resistive MHD equations in a toroidal geometry, with an important option of permitting the divertor separatrix and the region outside it to be in the computational domain. A severe temporal step size restriction for numerical stability imposed by the fast compressional waves was removed by developing and implementing a new, efficient semi-implicit scheme extending one first proposed by Harned and Kerner. As a result, the code typically runs faster than that with a mostly explicit scheme by a factor of about the aspect ratio. The equilibrium input for RPD is generated by a new 2-D code EQPD that is based on the Chodura-Schluter method. The RPD code, as well as the new semi-implicit scheme, has passed very extensive numerical tests in both divertor and divertorless geometries. Linear and nonlinear simulations in a divertorless geometry have reproduced the standard, previously known results. In a geometry with a four-node divertor the m = 2,n = 1 (2/1) tearing mode tends to be linearly stabilized as the q = 2 surface approaches the divertor separatrix. However, the m = 1,n = 1 (1/1) resistive kink mode remains relatively unaffected by the nearness of the q = 1 surface to the divertor separatrix. When plasma current is added to the region outside the divertor separatrix, the 2/1 tearing mode is linearly stabilized not by this current, but by the profile modifications induced near the q = 2 surface and the divertor separatrix. A similar stabilization effect is seen for the 1/1 resistive kink mode, but to a lesser extent. 77 refs., 91 figs

  17. Understanding of impurity poloidal distribution in the edge pedestal by modelling

    Science.gov (United States)

    Rozhansky, V.; Kaveeva, E.; Molchanov, P.; Veselova, I.; Voskoboynikov, S.; Coster, D.; Fable, E.; Puetterich, T.; Viezzer, E.; Kukushkin, A. S.; Kirk, A.; the ASDEX Upgrade Team

    2015-07-01

    Simulation of an H-mode ASDEX Upgrade shot with boron impurity was done with the B2SOLPS5.2 transport code. Simulation results were compared with the unique experimental data available for the chosen shot: radial density, electron and ion temperature profiles in the equatorial midplanes, radial electric field profile, radial profiles of the parallel velocity of impurities at the low-field side (LFS) and high-field side (HFS), radial density profiles of impurity ions at LHS and HFS. Simulation results reproduce all available experimental data simultaneously. In particular strong poloidal HFS-LFS asymmetry of B5+ ions was predicted in accordance with the experiment. The simulated HFS B5+ density inside the edge transport barrier is twice larger than that at LFS. This is consistent with the experimental observations where even larger impurity density asymmetry was observed. A similar effect was predicted in the simulation done for the MAST H-mode. Here the HFS density of He2+ is predicted to be 4 times larger than that at LHS. Such a large predicted asymmetry is connected with a larger ratio of HFS and LFS magnetic fields which is typical for spherical tokamaks. The HFS/LFS asymmetry was not measured in the experiment, however modelling qualitatively reproduces the observed change of sign of He+parallel velocity to the counter-current direction at LFS. The understanding of the asymmetry is based on neoclassical effects in plasma with strong gradients. It is demonstrated that simulation results obtained with account of sources of ionization, realistic geometry and turbulent transport are consistent with the simplified analytical approach. Difference from the standard neoclassical theory is emphasized.

  18. Levered and unlevered Beta

    OpenAIRE

    Fernandez, Pablo

    2003-01-01

    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  19. Pressure anisotropy in ohmic FTU discharges

    International Nuclear Information System (INIS)

    Alladio, F.; Buratti, P.; Grolli, M.; Marinucci, M.; Podda, S.; Zerbini, M.; Zoffoli, M.

    1991-01-01

    The diamagnetic measurements of the toroidal magnetic flux provides on tokamaks a direct evaluation of the perpendicular beta poloidal of the plasma. The diamagnetic measurement is performed on FTU by compensated diamagnetic loops that are mounted on the inside of the toroidal field magnet. The signal of the main loop that surrounds the plasma is compensated by the difference between the signals of two auxiliary loops (one external and the other internal to the main one) that just measures the vacuum toroidal flux. The most careful zeroing of the compensated signal in absence of the plasma has been performed by trimmering all the electronics that makes the analogue signal processing; however, due to the time evolution of the spatial ripple of the toroidal field, such zeroing does not produce a zero voltage signal. At the best regulation one has obtained a reproducible signal for a given toroidal field current waveform (in absence of any other machine current). The reproducibility of the signal was perfectly constant during months within the arbitrary addition of an offset and of a linear ramp both due to the minimal thermal drifts of the analogue electronics. This has allowed to obtain the real diamagnetic signal by a simple subtraction and allowing for an additional offset and ramp. This operation was performed on two independent sets of compensated diamagnetic loops, one sitting on the minimum and the other on the maximum of the toroidal field ripple. (author) 2 refs., 3 figs

  20. Beta Thalassemia (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Beta Thalassemia KidsHealth / For Parents / Beta Thalassemia What's in this ... Symptoms Diagnosis Treatment Print en español Beta talasemia Thalassemias Thalassemias are a group of blood disorders that ...

  1. Neoclassical current studies in high beta plasmas. Technical progress report, October 1, 1982-September 31, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    During the 12-month period, October 1, 1982 to September 30, 1983 the Levitated Octupole has been dedicated to a study of neoclassical currents. At beta values of a few percent, both the Pfirsch-Schlueter current and the bootstrap current have been observed and compared with theoretical predictions. The spatial variation of the current both radially and poloidally are found to agree with the prediction over a wide range of collisionality. A four megawatt ICRH capability exists for sustaining the current in steady state

  2. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  3. Updating the Design of the Poloidal Field Coils for the ITER Magnet System

    International Nuclear Information System (INIS)

    Yoshida, K.; Takahashi, Y.; Mitchell, N.; Jong, C.; Bessette, D.

    2006-01-01

    The ITER superconducting coil system consists of 18 Toroidal Field coils, six Poloidal Field (PF) coils, six Central Solenoid (CS) modules, 18 Correction Coils and their feeders. The six PF coils are attached to the TF coil cases through flexible plates or sliding supports allowing radial displacements. The PF coils and CS modules provide suitable magnetic fields for plasma shaping and position control. The PF coils use NbTi superconductor, cooled by supercritical helium. This gives a substantial cost saving compared to Nb 3 Sn and the elimination of a reaction heat treatment greatly simplifies the insulation of such large diameter coils. The cable configuration is 6 sub-cables arranged around a central cooling space. The conductors have a heavy square walled stainless steel jacket. The latest parameters of conductor design are evaluated by analysis of the minimum quench energy and hotspot temperature. The PF coils are self supporting as regards the radial magnetic loads. The vertical loads on each PF coil are transmitted to the TF coil cases. Load transmission is through flexible plates for the PF2 to PF5 coils or sliding supports for the PF1 and PF6 coils with fibreslip bearing surfaces. The supports for the PF winding consist of a set of clamping plates and stud bolts. The shape of the clamping plates has been designed to minimize stresses in the winding pack insulation. Bolts are pre-tensioned to keep pressure between the winding pack and clamping plate. Because of the difficulties in replacing the PF coils, the most unreliable component (the coil insulation) is designed with extra redundancy. There are two insulation layers with a thin metal screen in between. By monitoring the voltage of the intermediate screen, it is possible to detect an incipient short, defined as a short in only one of the two insulation layers. Adjustment of the screen voltage level may allow the shot growth to the stopped once it is detected. Alternately the faulty double pancake must

  4. Metastable beta limit in DIII-D

    International Nuclear Information System (INIS)

    La Haye, R.J.; Callen, J.D.; Gianakon, T.A.

    1997-06-01

    The long-pulse, slowly evolving single-null divertor (SND) discharges in DIII-D with H-mode, ELMs, and sawteeth are found to be limited significantly below (factor of 2) the predicted ideal limit β N = 4l i by the onset of tearing modes. The tearing modes are metastable in that they are explained by the neoclassical bootstrap current (high β θ ) destabilization of a seed island which occurs even if Δ' θ , there is a region of the modified Rutherford equation such that dw/dt > 0 for w larger than a threshold value; the plasma is metastable, awaiting the critical perturbation which is then amplified to the much larger saturated island. Experimental results from a large number of tokamaks indicate that the high beta operational envelope of the tokamak is well defined by ideal magnetohydrodynamic (MHD) theory. The highest beta values achieved have historically been obtained in fairly short pulse discharges, often <1-2 sawteeth periods and < 1-2 energy replacement times. The maximum operational beta in single-null divertor (SND), long-pulse discharges in DIII-D with a cross-sectional shape similar to the proposed ITER tokamak is found to be limited significantly below the threshold for ideal instabilities by the onset of resistive MHD instabilities

  5. MHD equilibrium methods for ITER [International Thermonuclear Experimental Reactor] PF [poloidal field] coil design and systems analysis

    International Nuclear Information System (INIS)

    Strickler, D.J.; Galambos, J.D.; Peng, Y.K.M.

    1989-03-01

    Two versions of the Fusion Engineering Design Center (FEDC) free-boundary equilibrium code designed to computer the poloidal field (PF) coil current distribution of elongated, magnetically limited tokamak plasmas are demonstrated and applied to the systems analysis of the impact of plasma elongation on the design point of the International Thermonuclear Experimental Reactor (ITER). These notes were presented at the ITER Specialists' Meeting on the PF Coil System and Operational Scenario, held at the Max Planck Institute for Plasma Physics in Garching, Federal Republic of Germany, May 24--27, 1988. 8 refs., 6 figs., 4 tabs

  6. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect

    International Nuclear Information System (INIS)

    Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.

    1989-05-01

    Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs

  7. Development and application of poloidal correlation reflectometry to study turbulent structures in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Prisiazhniuk, Dmitrii

    2017-06-05

    One of the key question of high temperature plasma confinement in a magnetic field is how plasma turbulence influences the radial transport of particles and energy. A better understanding of transport processes caused by turbulence would allow to improve the plasma confinement in fusion devices. To this end a deeper understanding of the mechanisms controlling the development, saturation and stabilization of turbulence is needed. From the experimental point of view a main challenge in these investigations is the measurement of plasma parameters on both small temporal (μs) and spatial (mm) scales. In this thesis a new microwave heterodyne poloidal correlation reflectometry diagnostic has been developed and installed at the ASDEX Upgrade tokamak to investigate the cross-correlation of turbulent density fluctuations. This diagnostic yields information on fundamental turbulence parameters such as the perpendicular propagation velocity v {sub perpendicular} {sub to}, the perpendicular correlation length l {sub perpendicular} {sub to} (characteristic size of the turbulent eddies) and the decorrelation time τ{sub d} (characteristic life time of the turbulent eddies) over a wide range of plasma densities. The inclination of the turbulent eddies α in the poloidal-toroidal plane spanned by the magnetic flux surfaces of a tokamak, being a measure of the magnetic field pitch angle, can also be obtained. The turbulence investigations were performed in low confinement mode (L-mode) plasmas for a range of plasma parameters. All measurements were interpreted taking into account the transfer function of reflectometry in the Born approximation. The results are compared with theoretical predictions and simulations. In the first part of this thesis the inclination and the propagation of turbulent structures are investigated. It is shown that eddies are nearly aligned to the magnetic field line and, therefore, the magnetic field pitch angle can be measured with a precision of about 1

  8. Characterization of the flowing afterglows of an N{sub 2}-O{sub 2} reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NO{sub {beta}} UV intensity variation with the N and O atom densities

    Energy Technology Data Exchange (ETDEWEB)

    Boudam, M K [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Saoudi, B [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Moisan, M [Groupe de Physique des Plasmas, Universite de Montreal, CP 6128, Succursale Centre-Ville, Montreal H3C 3J7, Quebec (Canada); Ricard, A [Centre de Physique Atomique de Toulouse (CPAT), 118, route de Narbonne, Universite Paul Sabatier, 31062-Toulouse (France)

    2007-03-21

    ) densities of N and O atoms in the discharge are determined by using the actinometry method: the density of N atoms decreases from its maximum value at 0% O{sub 2} as the percentage of O{sub 2} is increased while the density of O atoms increases, almost linearly, as a function of the percentage of O{sub 2}, as in the afterglow. The intensity variation of the NO{sub {beta}} UV emission as a function of the percentage of O{sub 2} is characterized by a maximum around 0.6% O{sub 2} (2 Torr) followed by an approximately exponential decay. We observe that, in the 0-1% O{sub 2} range, the UV emission is limited by the availability of O atoms. Beyond this point, the decrease of the UV intensity follows the decrease in the N atom density, while on the average, the O atom density keeps on increasing with O{sub 2}%. Erosion of polymer microspheres is found to be strongest at the chamber axis when no O{sub 2} is present, implying a dominant early afterglow. Adding even only 1% O{sub 2} causes a strong quenching of the N{sub 2} metastable species, leading to a dominant late afterglow and therefore considerably reducing the etching rate at the axis. In contrast, at 5 cm from the axis under the same operating conditions, a dominant late afterglow prevails; in the absence of oxygen, erosion is negligible, but it increases regularly as O{sub 2} is introduced, following approximately the increase in the O atom density.

  9. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  10. Early discharge following birth

    DEFF Research Database (Denmark)

    Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.

    2017-01-01

    .26–0.48) and primiparous compared to multiparous had an OR of 0.22 (CI 0.17–0.29) for early discharge. Other predictors for early discharge were: no induction of labour, no epidural painkiller, bleeding less than 500 ml during delivery, higher gestational age, early expected discharge and positive breastfeeding experience...

  11. Heart attack - discharge

    Science.gov (United States)

    ... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...

  12. Turbulence suppression in discharges with off-axis ECRH on the T-10 tokamak device

    International Nuclear Information System (INIS)

    Shelukhin, D.A.; Vershkov, V.A.; Razumova, K.A.

    2005-01-01

    A transient steep electron temperature gradient has been observed in T-10 tokamak plasmas at ρ=0.25 immediately after off-axis electron cyclotron resonance heating (ECRH) switch-off. The turbulence characteristics were investigated in these discharges by means of correlation reflectometry. It was found that the density fluctuation amplitude was two times lower than the ohmic level in a narrow region near ρ=0.25 after ECRH switch-off. The poloidal coherence of fluctuations is also decreased in this region. The suppression of quasi-coherent oscillations has been observed in discharges during the time when the strong temperature gradient exists. Measurements of turbulent poloidal rotation showed no velocity shear after ECRH switch-off. Analysis of the linear growth rates of instabilities shows that the ion temperature gradient (ITG) mode is unstable at ρ ∼ 0.25 during the whole discharge. A possible explanation for the observed phenomena is the rational surface density decrease near q=1 due to q profile transient flattening after off-axis ECRH switch-off. (author)

  13. Studies of transport phenomena in tokamaks with nonstationary intervention into the discharge

    International Nuclear Information System (INIS)

    Kalmykov, S.G.

    1993-01-01

    Together with detailed plasma parameter measurements, an experimental basis is provided to deduce radial profiles of local transport coefficients, to obtain their temporal evolution in the transient phase of the discharge. The equations of heat and particle balance were used as proper instrument to perform the coefficients calculation. The majority of the experiments deals with heat transport processes in the electron component of plasma. A problem in getting ohmic heat deposit radial distribution arise with use of the electron population heat balance equation. For its solution, numerical simulation of the plasma column loop voltage based on poloidal magnetic field classical diffusion supposition was used. (L.C.J.A.)

  14. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  15. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    -section. An investment strategy that goes long stocks with high jump betas and short stocks with low jump betas produces significant average excess returns. These higher risk premiums for the discontinuous and overnight market betas remain significant after controlling for a long list of other firm characteristics......Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross......-section of expected returns. Based on a novel highfrequency dataset of almost one-thousand individual stocks over two decades, we find that the two rough betas associated with intraday discontinuous and overnight returns entail significant risk premiums, while the intraday continuous beta is not priced in the cross...

  16. Magnetic field pitch angle and perpendicular velocity measurements from multi-point time-delay estimation of poloidal correlation reflectometry

    Science.gov (United States)

    Prisiazhniuk, D.; Krämer-Flecken, A.; Conway, G. D.; Happel, T.; Lebschy, A.; Manz, P.; Nikolaeva, V.; Stroth, U.; the ASDEX Upgrade Team

    2017-02-01

    In fusion machines, turbulent eddies are expected to be aligned with the direction of the magnetic field lines and to propagate in the perpendicular direction. Time delay measurements of density fluctuations can be used to calculate the magnetic field pitch angle α and perpendicular velocity {{v}\\bot} profiles. The method is applied to poloidal correlation reflectometry installed at ASDEX Upgrade and TEXTOR, which measure density fluctuations from poloidally and toroidally separated antennas. Validation of the method is achieved by comparing the perpendicular velocity (composed of the E× B drift and the phase velocity of turbulence {{v}\\bot}={{v}E× B}+{{v}\\text{ph}} ) with Doppler reflectometry measurements and with neoclassical {{v}E× B} calculations. An important condition for the application of the method is the presence of turbulence with a sufficiently long decorrelation time. It is shown that at the shear layer the decorrelation time is reduced, limiting the application of the method. The magnetic field pitch angle measured by this method shows the expected dependence on the magnetic field, plasma current and radial position. The profile of the pitch angle reproduces the expected shape and values. However, comparison with the equilibrium reconstruction code cliste suggests an additional inclination of turbulent eddies at the pedestal position (2-3°). This additional angle decreases towards the core and at the edge.

  17. Beta limits for ETF

    International Nuclear Information System (INIS)

    Helton, F.J.; Miller, R.L.

    1982-01-01

    ETF (Engineering Test Facility) one-dimensional transport simulations indicate that a volume-average beta of 4% is required for ignition. It is therefore important that theoretical beta limits, determined by requiring equilibria to be stable to all ideal modes, exceed 4%. This paper documents an ideal MHD analysis wherein it is shown that, with appropriate plasma cross-sectional shape and current profile optimization, operation near 5% is possible. The critical beta value, however, depends on the functional form used for ff', which suggests that higher critical betas could be achieved by directly optimizing the safety factor profile. (author)

  18. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.

    1976-07-01

    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  19. Electrets for beta radiation detection

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.V.E.; Mascarenhas, S.

    1983-01-01

    Electret dosimetry has been reviewed by Gross. A cylindrical electret ionization-chamber type dosimeter has been studied for X and gamma rays and neutrons. The principle of the dosimeter is electret charge compensation due to ionization in the chamber volume. Electret ionization chambers can be designed with one or more electrets and in various shapes. This study is concerned with a simple system, similar to a cylindrical ionization chamber (sensitive volume: 3,5 cm 3 ) using teflon electrets. Aluminum and lucite were used as wall-materials. Other experiences were performed using chambers without wall, i.e., without defined sensitive volume. The teflon electrets were obtained by Corona discharge in the gas surrounding them. The measurement of the electret charge was made by induction using a co-axial insulated metal chamber connected to an electrometer Keithley 610C. By measuring the charge before and after irradiation it is possible to obtain a calibration curve: charge (Q) versus absorbed dose (D) for the dosimeter. The irradiation setup used was the Beta Secondary Standard System of IPEN calibration laboratory with four beta sources: 90 Sr 90 Y (74 and 1850 MBq), 204 Tl (18,5 MBq) and 147 Pm (518 MBq). In some cases a 85 Kr source was also used. The electrets were tested in different radiation field geometries: electret axis parallel and perpendicular to the field. In conclusion, depending on the wall material and radiation field geometry, the teflon electret detector can be used for different dose interval determinations, using beta radiation

  20. Poloidal Asymmetry in the Narrow Heat Flux Feature in the TCV Scrape-Off Layer.

    Czech Academy of Sciences Publication Activity Database

    Tsui, C.K.; Boedo, J. A.; Halpern, F.D.; Loizu, J.; Nespoli, F.; Horáček, Jan; Labit, B.; Morales, J.; Reimerdes, H.; Ricci, P.; Theiler, C.; Coda, S.; Duval, B. P.; Furno, I.

    2017-01-01

    Roč. 24, č. 6 (2017), č. článku 062508. ISSN 1070-664X R&D Projects: GA ČR(CZ) GA15-10723S EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : Scrape-Off Layer * TCV * tokamak * plasma Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.115, year: 2016 http://dx.doi.org/10.1063/1.4985075

  1. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.

    1978-01-01

    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  2. Sorting out Downside Beta

    NARCIS (Netherlands)

    G.T. Post (Thierry); P. van Vliet (Pim); S.D. Lansdorp (Simon)

    2009-01-01

    textabstractDownside risk, when properly defined and estimated, helps to explain the cross-section of US stock returns. Sorting stocks by a proper estimate of downside market beta leads to a substantially larger cross-sectional spread in average returns than sorting on regular market beta. This

  3. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically...

  4. Discharge optimization and the control of edge stability

    International Nuclear Information System (INIS)

    Nave, M.F.F.; Lomas, P.J.; Huysmans, G.T.A.

    1999-01-01

    Discharge optimization for improving MHD stability of both core and edge was essential for the achievement of record fusion power discharges, in the ELM-free hot ion H mode regime, in the recent JET DT operation. The techniques used to increase edge stability are described. In particular the successful technique of current rampdown used to suppress the outer mode is reported. The increased stability of the outer mode by decreasing the edge current density confirms its identification as an n = 1 external kink. Decreasing the plasma current, however, decreases the ELM-free period, which is consistent with stability calculations that show an earlier onset of the ballooning limit. In order to increase external kink stability without causing a deterioration in the ELM-free period, a compromise was achieved by using plasma current rampdown, while working at the highest plasma current values possible. Results from a plasma current scan show that at the time of occurrence of the first giant ELM, the plasma stored energy, as well as the pressure measured at the top of the edge pedestal increase linearly with plasma current, for a given plasma configuration and power. This is consistent with models of the edge transport barrier, where the transport barrier width is proportional to the ion (or fast ion) poloidal Larmor radius. The MHD observations in DT and deuterium only discharges were found to be similar. Thus the experience gained on the control of MHD modes in deuterium plasmas could be fully exploited in the DT campaign. (author)

  5. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Beta thalassemia Beta thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Beta thalassemia is a blood disorder that reduces the production ...

  6. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  7. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    Science.gov (United States)

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  8. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    2001-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has sollicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  9. Direct measurement of the plasma equilibrium response to poloidal field changes and H∞ controller tests in TCV

    International Nuclear Information System (INIS)

    Lister, J.B.; Albanese, R.; Ambrosino, G.

    1999-01-01

    The control of ITER provides several challenges which can be met using existing techniques for the design of modern controllers. The specific case of the control of the Poloidal Field (PF) system has solicited considerable interest. One feature of the design of such controllers is their dependence on a sufficiently accurate model of the full system under control. To this end, experiments have been performed on the TCV tokamak to validate one plasma equilibrium response model, the CREATE-L model. Using a new technique, the open loop response of TCV has been directly measured in the frequency domain. These experimental results compare well with the CREATE-L model. This model was subsequently used to design a PF system controller, using methods proposed during the ITER EDA and the first test on TCV has been successful. (author)

  10. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  11. Generation of sheared poloidal flows by electrostatic and magnetic Reynolds stress in the boundary plasma of HT-7 tokamak

    International Nuclear Information System (INIS)

    Xu, G.S.; Wan, B.N.; Li, J.

    2005-01-01

    The radial profiles of electrostatic and magnetic Reynolds stress (Maxwell stress) have been measured in the plasma boundary region of HT-7 tokamak. Experimental results show that the radial gradient of electrostatic Reynolds stress (ERS) changes sign across the last closed flux surface, and the neoclassical flow damping and the damping due to charge exchange processes are balanced by the radial gradient of ERS, which sustains the equilibrium sheared flow structure in a steady state. The contribution of magnetic Reynolds stress was found unimportant in a low β plasma. Detailed analyses indicate that the propagation properties of turbulence in radial and poloidal directions and the profiles of potential fluctuation level are responsible for the radial structure of ERS. (author)

  12. Paramagnetism and plasma beta in a screw-pinch

    International Nuclear Information System (INIS)

    Lehnert, B.; Scheffel, J.

    1991-02-01

    Anisotropic resistivity causes paramagnetic effects (B z ' (r) less then 0) in a screw pinch, being basically different to the self-relaxation described by Taylor. We compute, analytically and numerically, the resulting effect on equilibrium in a 1-D straight cylindrical plasma. In particular we compute paramagnetic effects on the plasma radius and on plasma beta. Ohm's law also contains diamagnetic terms; in this paper we consider radial particle diffusion and the Nernst effect. In a Tokamak or rector plasma these effects are shown to be negligible, whereas they may contribute in present ULQ, Extrap and RFP experiments. A basic result is an expression for the coupling between the poloidal and axial magnetic field components with the above effects included. A result of specific importance to the Extrap programme is that plasma current limitation can arise from lack of equilibrium when the plasma radius tends to exceed its upper limit, being defined by a magnetic or material limiter. The paramagnetic effect described in this work lowers the plasma beta further, making D-D reactor depending on safety factors q(a) bigger than 1 seems less attainable. (au)

  13. Beta particle measurement fundamentals

    International Nuclear Information System (INIS)

    Alvarez, J.L.

    1986-01-01

    The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected

  14. Glow discharging device

    International Nuclear Information System (INIS)

    Maeno, Katsuki; Kawasaki, Kozo; Hiratsuka, Hajime; Kawashima, Shuichi.

    1989-01-01

    In a thermonuclear device, etc. impurities adsorbed to inner walls of a vacuum vessel by glow discharge are released to clean the vacuum vessel for preventing intrusion of the impurities into plasmas. The object of the present invention is to minimize the capacity of a power source equipment for the glow discharge device to the least extent. That is, a stabilization resistance is connected in series between each of a plurality of anodes which are inserted and arranged at the inside of a vacuum vessel as a cathode and a power source respectively. The resistance value R is selected so as to satisfy the relation: R < (Vi - Vm)/Ii, in which Vi: glow discharge starting voltage, Vm: glow discharge keeping voltage, Ii: glow discharge starting current. Accordingly, if a voltage is applied from a power source to a plurality of anodes, scattering of electric discharge between the anodes can be suppressed and the effect of voltage drop during discharge by the stabilization resistance can be eliminated. As a result, it is possible to provide an economically advantageous glow discharge device with the capacity for the power source facility being to the least extent. (K.M.)

  15. CO-AXIAL DISCHARGES

    Science.gov (United States)

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  16. Modelling electric discharge chemistry

    International Nuclear Information System (INIS)

    McFarlane, J.; Wren, J.C.

    1991-07-01

    The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)

  17. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  18. Beta-Carotene

    Science.gov (United States)

    ... disease (COPD). It is also used to improve memory and muscle strength. Some people use beta-carotene ... to reduce the chance of death and night blindness during pregnancy, as well as diarrhea and fever ...

  19. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2006-01-01

    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  20. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  1. Discharge lamp technologies

    Science.gov (United States)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  2. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  3. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes

    used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...... was based on a polynomial regression predicting yearly tile drain discharge values using site specific parameters such as soil type, catchment topography, etc. as predictors. Values of calibrated model parameters from the dynamic modelling were compared to the same site specific parameter as used...

  4. Beta limits in H-modes and VH-modes in JET

    Energy Technology Data Exchange (ETDEWEB)

    Smeulders, P; Hender, T C; Huysmans, G; Marcus, F; Ali-Arshad, S; Alper, B; Balet, B; Bures, M; Deliyanakis, N; Esch, H de; Fshpool, G; Jarvis, O N; Jones, T T.C.; Ketner, W; Koenig, R; Lawson, K; Lomas, P; O` Brien, D; Sadler, G; Stok, D; Stubberfield, P; Thomas, P; Thomen, K; Wesson, J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Nave, M F [Universidade Tecnica, Lisbon (Portugal). Inst. Superior Tecnico

    1994-07-01

    In Hot-ion H- and VH-modes, the highest achieved beta was about 10% below the Troyon value in the best case of discharge 26087. The operational space of the high beta discharges obtained before March 1992 has been explored as function of the parameters H{sub ITER89P}, {beta}{sub n}, q{sub 95}, I{sub p}. Also, a limiting envelope on the fusion reactivity as a function of the average plasma pressure and beta has been observed with R{sub DD} related to {beta}{sub {phi}}{sup 2}.B{sub {phi}}{sup 4}. MHD stability analysis shows that the JET VH modes at the edge are in the second region for ballooning mode stability. The dependence of ballooning stability and the n=1 external kink on the edge current density is analyzed. (authors). 6 figs., 6 refs.

  5. Electric discharge during electrosurgery.

    Science.gov (United States)

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  6. Vaginal delivery - discharge

    Science.gov (United States)

    Pregnancy - discharge after vaginal delivery ... You may have bleeding from your vagina for up to 6 weeks. Early on, you may pass some small clots when you first get up. Bleeding will slowly become ...

  7. Prostate radiation - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000399.htm Prostate radiation - discharge To use the sharing features on ... keeping or getting an erection may occur after prostate radiation therapy. You may not notice this problem ...

  8. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  9. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  10. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  11. Atrial fibrillation - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000237.htm Atrial fibrillation - discharge To use the sharing features on this ... have been in the hospital because you have atrial fibrillation . This condition occurs when your heart beats faster ...

  12. Pneumonia - adults - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000017.htm Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...

  13. Knee arthroscopy - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000199.htm Knee arthroscopy - discharge To use the sharing features on this ... surgery to treat problems in your knee (knee arthroscopy). You may have been checked for: Torn meniscus. ...

  14. Cosmetic breast surgery - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000273.htm Cosmetic breast surgery - discharge To use the sharing features on this page, please enable JavaScript. You had cosmetic breast surgery to change the size or shape ...

  15. Shoulder surgery - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000179.htm Shoulder surgery - discharge To use the sharing features on this page, please enable JavaScript. You had shoulder surgery to repair the tissues inside or around your ...

  16. Discharges for lighting

    International Nuclear Information System (INIS)

    Stoffels, W W; Nimalasuriya, T; Flikweert, A J; Mulders, H C J

    2007-01-01

    The most common man-made discharge is a lamp. Even though lamps are often considered a mature technology, the discharge physics is often poorly understood. Two recent initiatives discussed here show that plasma research can help to make significant improvements. First we discuss color separation in metal halide lamps, which is a problem that prevents these highly efficient lamps from being used in more applications. Secondly a novel lamp concept is presented that may replace the current mercury based fluorescent lamps

  17. Discharge lamp technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, J. [GE Lighting, Cleveland, OH (United States)

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  18. Chaos in gas discharges

    International Nuclear Information System (INIS)

    Piel, A.

    1993-01-01

    Many gas discharges exhibit natural oscillations which undergo a transition from regular to chaotic behavior by changing an experimental parameter or by applying external modulation. Besides several isolated investigations, two classes of discharge phenomena have been studied in more detail: ionization waves in medium pressure discharges and potential relaxation oscillations in filament cathode discharges at very low pressure. The latter phenomenon will be discussed by comparing experimental results from different discharge arrangements with particle-in-cell simulations and with a model based on the van-der-Pol equation. The filament cathode discharge has two stable modes of operation: the low current anode-glow-mode and the high current temperature-limited-mode, which form the hysteresis curve in the I(U) characteristics. Close to the hysteresis point of the AGM periodic relaxation oscillations occur. The authors demonstrate that the AGM can be understood by ion production in the anode layer, stopping of ions by charge exchange, and trapping in the virtual cathode around the filament. The relaxation oscillations consist of a slow filling phase and a rapid phase that invokes formation of an unstable double-layer, current-spiking, and ion depletion from the cathodic plasma. The relaxation oscillations can be mode-locked by external modulation. Inside a mode-locked state, a period doubling cascade is observed at high modulation degree

  19. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  20. High performance experiments in JT-60U reversed shear discharges

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ishida, S.

    2001-01-01

    The operation of JT-60U reversed shear discharges has been extended to a high plasma current, low-q regime keeping a large radius of the internal transport barrier (ITB) and the record value of equivalent fusion multiplication factor in JT-60U, Q DT eq =1.25, has been achieved at 2.6 MA. Operational schemes to reach the low-q regime with good reproducibility have been developed. The reduction of Z eff was obtained in the newly installed W-shaped pumped divertor. The beta limit in the low-q min regime, which limited the performance of L-mode edge discharges, has been improved in H-mode edge discharges with a broader pressure profile, which was obtained by power flow control with ITB degradation. Sustainment of ITB and improved confinement for 5.5 seconds has been demonstrated in an ELMy H reversed shear discharge. (author)

  1. Labelling of. beta. -endorphin (. beta. -END) and. beta. -lipotropin (. beta. -LPH) by /sup 125/I

    Energy Technology Data Exchange (ETDEWEB)

    Deby-Dupont, G.; Joris, J.; Franchimont, P. (Universite de Liege (Belgique)); Reuter, A.M.; Vrindts-Gevaert, Y. (Institut des Radioelements, Fleurus (Belgique))

    1983-01-01

    5 ..mu..g of human ..beta..-endorphin were labelled with 2 mCi /sup 125/I by the chloramine T technique. After two gel filtrations on Sephadex G-15 and on Sephadex G-50 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer was obtained with a specific activity about 150 ..mu..Ci/..mu..g.Kept at + 4/sup 0/C, the tracer remained utilizable for 30 days without loss of immunoreactivity. The labelling with lactoperoxydase and the use of another gel filtration method (filtration on Aca 202) gave a /sup 125/I ..beta..-END tracer with the same immunoreactivity. The binding of this tracer to the antibody of an anti-..beta..-END antiserum diluted at 1/8000 was 32% with a non specific binding of 2%. 5 ..mu..g of human ..beta..-lipotropin were labelled with 0.5 mCi /sup 125/I by the lactoperoxydase method. After two gel filtrations on Sephadex G-25 and on Sephadex G-75 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer with a specific activity of 140 ..mu..Ci/..mu..g was obtained. It remained utilizable for 30 days when kept at + 4/sup 0/C. Gel filtration on Aca 202 did not give good purification, while gel filtration on Aca 54 was good but slower than on Sephadex G-75. The binding to antibody in absence of unlabelled ..beta..-LPH was 32% for an anti-..beta..-LPH antiserum diluted at 1/4000. The non specific binding was 2.5%.

  2. Plasma beta HCG determination

    International Nuclear Information System (INIS)

    Amaral, L.B.D.; Pinto, J.C.M.; Linhares, E.; Linhares, Estevao

    1981-01-01

    There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author) [pt

  3. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)

    2011-12-16

    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  4. Detailed electromagnetic numerical evaluation of eddy currents induced by toroidal and poloidal magnetic field variation and halo currents

    International Nuclear Information System (INIS)

    Roccella, M.; Marin, A.; Lucca, F.; Merola, M.

    2008-01-01

    A detailed evaluation of the EM loads in the ITER divertor during plasma disruptions is mandatory for the correct dimensioning of the divertor component. The EM loads during plasma disruptions are mainly produced by: (1) toroidal flux variation (TFV) during the thermal quench (TQ) and current quench (CQ); (2) halo currents (HC); and (3) poloidal flux variation (PFV) during TQ and CQ phase. The new ITER reference disruption and the last changes in the divertor design have been considered in the EM models created to calculate all the EM loads due to TFV, HC and PFV. All the analyses have been performed for the three different main design options of the divertor plasma facing units (PFU). The effects of PFV have been analyzed using an EM-zooming procedure that has allowed a good detail of the component model, while new numerical approaches have been developed for the evaluation of the effects due to TFV and HC maintaining the same detail for the divertor model. Separate models have been developed to evaluate the equivalent electrical resistivities of the various PFU options; this allows in the full 3D model a strong simplification of a geometry which would otherwise be very complex. The effect of an electrical surface bridging of the PFU castellation has also been taken into account

  5. Detailed electromagnetic numerical evaluation of eddy currents induced by toroidal and poloidal magnetic field variation and halo currents

    Energy Technology Data Exchange (ETDEWEB)

    Roccella, M. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate (Lecco) (Italy)], E-mail: massimo.roccella@ltcalcoli.it; Marin, A.; Lucca, F. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate (Lecco) (Italy); Merola, M. [ITER Team, Cadarache (France)

    2008-12-15

    A detailed evaluation of the EM loads in the ITER divertor during plasma disruptions is mandatory for the correct dimensioning of the divertor component. The EM loads during plasma disruptions are mainly produced by: (1) toroidal flux variation (TFV) during the thermal quench (TQ) and current quench (CQ); (2) halo currents (HC); and (3) poloidal flux variation (PFV) during TQ and CQ phase. The new ITER reference disruption and the last changes in the divertor design have been considered in the EM models created to calculate all the EM loads due to TFV, HC and PFV. All the analyses have been performed for the three different main design options of the divertor plasma facing units (PFU). The effects of PFV have been analyzed using an EM-zooming procedure that has allowed a good detail of the component model, while new numerical approaches have been developed for the evaluation of the effects due to TFV and HC maintaining the same detail for the divertor model. Separate models have been developed to evaluate the equivalent electrical resistivities of the various PFU options; this allows in the full 3D model a strong simplification of a geometry which would otherwise be very complex. The effect of an electrical surface bridging of the PFU castellation has also been taken into account.

  6. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  7. A 40 kA NbTi cable in conduit conductor for the large poloidal field coils of net

    International Nuclear Information System (INIS)

    Torossian, A.; Bessette, D.; Turck, B.; Kazimierzak, B.

    1990-01-01

    The main feature of this cable in conduit design is to separate the manufacture of the full length of the steel conduit (400 m) and of the cable in order to minimize the industrial risk and consequently the cost. A circular cross section for that cable seems to be the most suitable for that purpose: - axisymmetric cabling with full transposition of strands, - cable behaviour independent of the field orientation, - less deformation of subcables, - cross section remains circular when the cable is under tension and makes the slippage of the cable in the conduit easier, - butt welding of 8 m long tubes forming the conduit becomes simpler. The square external shape allows to minimize the amount of insulating material and consequently improves the overall current density of the coil. This conductor is aimed to large poloidal field coils for NET which do not require high field and in that case NbTi seems to be the best choice with regard to reliability and cost but Nb 3 Sn could be used as well. Stainless steel ribbons are inserted between subcables in order to reduce losses induced by the rapid field changes and also to improve the mechanical behaviour of the cable

  8. Boundary plasma heat flux width measurements for poloidal magnetic fields above 1 Tesla in the Alcator C-Mod tokamak

    Science.gov (United States)

    Brunner, Dan; Labombard, Brian; Kuang, Adam; Terry, Jim; Alcator C-Mod Team

    2017-10-01

    The boundary heat flux width, along with the total power flowing into the boundary, sets the power exhaust challenge for tokamaks. A multi-machine boundary heat flux width database found that the heat flux width in H-modes scaled inversely with poloidal magnetic field (Bp) and was independent of machine size. The maximum Bp in the database was 0.8 T, whereas the ITER 15 MA, Q =10 scenario will be 1.2 T. New measurements of the boundary heat flux width in Alcator C-Mod extend the international database to plasmas with Bp up to 1.3 T. C-Mod was the only experiment able to operate at ITER-level Bp. These new measurements are from over 300 plasma shots in L-, I-, and EDA H-modes spanning essentially the whole operating space in C-Mod. We find that the inverse-Bp dependence of the heat flux width in H-modes continues to ITER-level Bp, further reinforcing the empirical projection of 500 μm heat flux width for ITER. We find 50% scatter around the inverse-Bp scaling and are searching for the `hidden variables' causing this scatter. Supported by USDoE award DE-FC02-99ER54512.

  9. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  10. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  11. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  12. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  13. Applied Beta Dosimetry

    International Nuclear Information System (INIS)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements

  14. Beta thalassemia - a review

    Directory of Open Access Journals (Sweden)

    R Jha

    2014-09-01

    Full Text Available Thalassemia is a globin gene disorder that results in a diminished rate of synthesis of one or more of the globin chains. About 1.5% of the global population (80 to 90 million people are carriers of beta Thalassemia. More than 200 mutations are described in beta thalassemia. However not all mutations are common in different ethnic groups. The only effective way to reduce burden of thalassemia is to prevent birth of homozygotes. Diagnosis of beta thalassemia can be done by fetal DNA analysis for molecular defects of beta thalassemia or by fetal blood analysis. Hematopoietic stem cell transplantation is the only available curative approach for Thalassemia. Many patients with thalassemia in underdeveloped nations die in childhood or adolescence. Programs that provide acceptable care, including transfusion of safe blood and supportive therapy including chelation must be established.DOI: http://dx.doi.org/10.3126/jpn.v4i8.11609 Journal of Pathology of Nepal; Vol.4,No. 8 (2014 663-671

  15. Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Piepke, A.

    2005-01-01

    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  16. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....

  17. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  18. Red herring vaginal discharge.

    Science.gov (United States)

    Lee, Jun Hee; Pringle, Kirsty; Rajimwale, Ashok

    2013-09-18

    Labial hair tourniquet syndrome is a rare condition that can be easily misdiagnosed and ultimately lead to irreversible damage. An 11-year-old premenarche girl presented with a 5-day history of pain and swelling in the labia with associated vaginal discharge. The general practitioner treated her with clotrimazole without improvement. On examination, there was an oedematous swelling of the right labia with a proximal hair tourniquet. Local anaesthetic was applied and the hair removed with forceps. There was instant relief of pain and the discharge stopped within 24 h. The patient was sent home with a course of antibiotics.

  19. Travelling-wave-sustained discharges

    International Nuclear Information System (INIS)

    Schlueter, Hans; Shivarova, Antonia

    2007-01-01

    This review is on discharges maintained by travelling waves: new plasma sources, discovered in 1974 and considered as a prototype of the gas discharges according to their definition as nonlinear systems which unify in a self-consistent manner plasmas and fields. In the presentation here of the fluid-plasma models of the diffusion-controlled regime of the travelling-wave-sustained discharges (TWSDs), the basic features of the discharge maintenance-the discharge self-consistency and the electron heating in the high-frequency field-are stressed. Operation of stationary and pulsed discharges, discharge maintenance without and in external magnetic fields as well as discharge production in different gases (argon, helium, helium-argon gas mixtures and hydrogen) are covered. Modulation instability of diffusion-controlled discharges and discharge filamentation at higher gas pressures are also included in the review. Experimental findings which motivate aspects of the reported modelling are pointed out

  20. Misleading Betas: An Educational Example

    Science.gov (United States)

    Chong, James; Halcoussis, Dennis; Phillips, G. Michael

    2012-01-01

    The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…

  1. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  2. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors.

    Science.gov (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H

    2000-09-15

    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  3. Spectroscopic study of turbulent heating in the high beta tokamak - Torus II

    International Nuclear Information System (INIS)

    Georgiou, G.E.

    1979-01-01

    Visible spectroscopy, involving line profile and line intensity measurements, was used to study the turbulent heating of the rectangular cross-section high-beta tokamak Torus II. The spectroscopy was done in the visible wave-length region using a six channel polychrometer having 0.2 A resolution, which is capable of radial scans of the plasma. The plasma, obtained by ionizing helium, is heated by poloidal skin currents, induced by a rapid (tau/sub R/ approx. = 1.7 μsec) change of the toroidal magnetic field either parallel or anti-parallel to the initial toroidal bias magnetic field, which converts a cold toroidal Z-pinch plasma into a hot tokamak plasma

  4. The effect of plasma beta on high-n ballooning stability at low magnetic shear

    Science.gov (United States)

    Connor, J. W.; Ham, C. J.; Hastie, R. J.

    2016-08-01

    An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.

  5. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Science.gov (United States)

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  6. Low-beta investment strategies

    OpenAIRE

    Korn, Olaf; Kuntz, Laura-Chloé

    2015-01-01

    This paper investigates investment strategies that exploit the low-beta anomaly. Although the notion of buying low-beta stocks and selling high-beta stocks is natural, a choice is necessary with respect to the relative weighting of high-beta stocks and low-beta stocks in the investment portfolio. Our empirical results for US large-cap stocks show that this choice is very important for the risk-return characteristics of the resulting portfolios and their sensitivities to common risk factors. W...

  7. Dependence of the DIII-D beta limit on the current profile

    Energy Technology Data Exchange (ETDEWEB)

    Strait, E.J.; Chu, M.S.; Ferron, J.R.; Lao, L.L.; Osborne, T.H.; Taylor, T.S.; Turnbull, A.D. (General Atomics, San Diego, CA (United States)); Lazarus, E.A. (Oak Ridge National Lab., TN (United States))

    1991-01-01

    The maximum beta values achieved in DIII-D are not fully described by the simple scaling law [beta][sub max][proportional to]I/aB. There is, in addition, a dependence on the form of the current profile as parameterized by the safety factor q and internal inductance l[sub i]. The maximum experimentally achieved value of normalized beta [beta][sub N] = [beta]/(I/aB) varies from 3.5 at low safety factor q (q[sub 95]<3) to 5 at higher values of q. At low q, discharges are terminated by disruptions at high [beta][sub N] and at both the low and high l[sub i] boundaries of the stable range. These disruptions are attributed to external and global kink modes. At higher q, such disruptions are much less frequent, and beta is limited by slowly growing resistive modes, fishbones, and possibly by ballooning modes. At each value of q, the maximum beta tends to increase with internal inductance l[sub i]. A numerical study of kink mode stability has shown a similar trend for optimized pressure profiles. These observations have suggested a new scaling law for the operational beta limit: [beta][sub max]=4l[sub i](I/aB), which fits the DIII-D data well. (author) 13 refs., 4 figs.

  8. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  9. Neutrophil beta-2 microglobulin: an inflammatory mediator

    DEFF Research Database (Denmark)

    Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N

    1990-01-01

    Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed ...

  10. Controlled beta-quench treatment of fuel channels

    International Nuclear Information System (INIS)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk; Perkins, Richard A.

    2007-01-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. Beta-quenching of fuel channels has been applied by the nuclear industry to improve the dimensional stability of this component. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure in order to improve the dimensional behavior of fuel channels by randomizing the crystallographic texture, while maintaining the excellent corrosion behavior of the fuel channels by providing intermetallic phase particles of optimum average size. The first fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels will follow in 2007 to broaden in-pile experience and to receive irradiation feedback from two other nuclear power plants. (authors)

  11. Wall stabilization of high beta plasmas in DIII-D

    International Nuclear Information System (INIS)

    Taylor, T.S.; Strait, E.J.; Lao, L.L.; Turnbull, A.D.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Groebner, R.J.; La Haye, R.J.; Mauel, M.

    1995-02-01

    Detailed analysis of recent high beta discharges in the DIII-D tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to β T = 12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted open-quotes resistive wallclose quotes mode are observed. Through slowing of the plasma rotation between the q = 2 and q = 3 surfaces with the application of a non-axisymmetric field, the authors have determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π = 1 kHz

  12. Beta and muon decays

    International Nuclear Information System (INIS)

    Galindo, A.; Pascual, P.

    1967-01-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  13. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  14. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...... that the present practice of avoiding samples above a depth of 0.3 m may be over-cautious...

  15. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A; Pascual, P

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  16. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  17. Beta rays and neutrinos

    International Nuclear Information System (INIS)

    Adams, S.F.

    1992-01-01

    It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)

  18. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  19. COM Support in BETA

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    1999-01-01

    Component technologies based on binary units of independent production are some of the most important contributions to software architecture and reuse during recent years. Especially the COM technologies and the CORBA standard from the Object Management Group have contributed new and interesting...... principles for software architecture, and proven to be useful in parctice. In this paper ongoing work with component support in the BETA language is described....

  20. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  1. High beta and second stability region transport and stability analysis

    International Nuclear Information System (INIS)

    Hughes, M.H.; Phillps, M.W.; Todd, A.M.M.; Krishnaswami, J.; Hartley, R.

    1992-09-01

    This report describes ideal and resistive studies of high-beta plasmas and of the second stability region. Emphasis is focused on ''supershot'' plasmas in TFIR where MHD instabilities are frequently observed and which spoil their confinement properties. Substantial results are described from the analysis of these high beta poloidal plasmas. During these studies, initial pressure and safety factor profiles were obtained from the TRANSP code, which is used extensively to analyze experimental data. Resistive MBD stability studies of supershot equilibria show that finite pressure stabilization of tearing modes is very strong in these high βp plasmas. This has prompted a detailed re-examination of linear tearing mode theory in which we participated in collaboration with Columbia University and General Atomics. This finite pressure effect is shown to be highly sensitive to small scale details of the pressure profile. Even when an ad hoc method of removing this stabilizing mechanism is implemented, however, it is shown that there is only superficial agreement between resistive MBD stability computation and the experimental data. While the mode structures observed experimentally can be found computationally, there is no convincing correlation with the experimental observations when the computed results are compared with a large set of supershot data. We also describe both the ideal and resistive stability properties of TFIR equilibria near the transition to the second region. It is shown that the highest β plasmas, although stable to infinite-n ideal ballooning modes, can be unstable to the so called ''infernal'' modes associated with small shear. The sensitivity of these results to the assumed pressure and current density profiles is discussed. Finally, we describe results from two collaborative studies with PPPL. The first involves exploratory studies of the role of the 1/1 mode in tokamaks and, secondly, a study of sawtooth stabilization using ICRF

  2. Vessel Sewage Discharges: No-Discharge Zones (NDZs)

    Science.gov (United States)

    States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.

  3. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Laboratory

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  4. Monitoring of lightning discharge

    International Nuclear Information System (INIS)

    Grigor'ev, V.A.

    2001-01-01

    The paper presents a brief description of a lightning discharge recording system developed at the NPO 'Monitoring Techniques' under the direction of V.M. Moskolenko (Moscow). The system provides information about dangerous environmental occurrences such as tornados and hurricanes, making the forecast of extreme situations possible, especially in the areas of dangerous industries and objects. The created automatic system can be useful in solving the tasks relating to nuclear test monitoring. (author)

  5. Underwater Ship Husbandry Discharges

    Science.gov (United States)

    2011-11-01

    which entered into force in September of 2008, prohibits the use of harmful organotins such as tributyltin ( TBT ) in AFCs used on international...States. The use of TBT AFCs is explicitly prohibited under the VGP, and vessels must remove such coatings or paint over them to prevent toxic ...to hull husbandry include (1) the discharge of toxic chemicals used as biocides in AFCs and (2) biofouling as a vector for aquatic nuisance species

  6. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  7. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  8. Observation of magnetohydrodynamics instabilities in ion Bernstein wave and lower-hybrid-current driving synergetic discharges on HT-7 tokamak

    International Nuclear Information System (INIS)

    Mao Jianshan; Luo Jiarong; Shen Biao; Zhao Junyu; Hu Liqun; Zhu Yubao; Xu Guosheng; Asif, M.; Gao Xiang; Wan Baonian

    2004-01-01

    The normalized performance indicated by the product of β N H 89 >2 was achieved by a combination of the lower hybrid current driving (LHCD) and the ion Bernstein wave (IBW) heating in the HT-7 tokamak. More than 80% of the plasma current was sustained by the LHCD and the bootstrap current. Large edge pressure gradients were observed. The magnetohydrodynamic (MHD) instabilities were often driven to terminate the discharge or reduce the discharge performance, when the IBW resonant layer was near the rational surface. The resonant layer of the safety factor q=2 is located at 0.6 a with a=27 cm being the minor radius. The width of magnetic island (the poloidal mode number m=2) was about 2 cm. The plasma energy was reduced quickly by 30% by MHD instabilities. The behaviour of MHD instabilities is reported. A large sawtooth activity (m=1) was observed before inducing MHD (m=2)

  9. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M.; Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K.

    2004-01-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10 -3 Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  10. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M. [Kyushu Univ., Research Institute for Applied Mechanics (Japan); Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K. [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences (Japan)

    2004-07-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10{sup -3} Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  11. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P

    2003-10-01

    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  12. Beta measurement evaluation and upgrade

    International Nuclear Information System (INIS)

    Swinth, K.L.; Rathbun, L.A.; Roberson, P.L.; Endres, G.W.R.

    1986-01-01

    This program focuses on the resolution of problems associated with the field measurement of the beta dose component at Department of Energy (DOE) facilities. The change in DOE programs, including increased efforts in improved waste management and decontamination and decommissioning (D and D) of facilities, coupled with beta measurement problems identified at Three Mile Island has increased the need to improve beta measurements. In FY 1982, work was initiated to provide a continuing effort to identify problems associated with beta dose assessment at DOE facilities. The problems identified resulted in the development of this program. The investigation includes (1) an assessment of measurement systems now in use, (2) development of improved calibration systems and procedures, (3) application of innovative beta dosimetry concepts, (4) investigation of new instruments or concepts for monitoring and spectroscopy, and (5) development of recommendations to assure an adequate beta measurement program within DOE facilities

  13. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  14. Conditional Betas and Investor Uncertainty

    OpenAIRE

    Fernando D. Chague

    2013-01-01

    We derive theoretical expressions for market betas from a rational expectation equilibrium model where the representative investor does not observe if the economy is in a recession or an expansion. Market betas in this economy are time-varying and related to investor uncertainty about the state of the economy. The dynamics of betas will also vary across assets according to the assets' cash-flow structure. In a calibration exercise, we show that value and growth firms have cash-flow structures...

  15. Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    International Nuclear Information System (INIS)

    Lashkul, S.I.; Altukhov, A.B.; Gurchenko, A.D.; Gusakov, E.Z.; Dyachenko, V.V.; Esipov, L.A.; Kantor, M.Y.; Kouprienko, D.V.; Stepanov, A.Y.; Sharpeonok, A.P.; Shatalin, S.V.; Vekshina, E.O.

    2004-01-01

    This paper present our observations and conclusions about development of the transport process at the plasma periphery of the small tokamak FT-2 during additional Lower Hybrid Heating (LHH), when external (ETB) transport barrier followed by Internal (ITB) transport barrier is observed. The peculiarities of the variations of the fluctuation fluxes near periphery are measured by three moveable multi-electrode Langmuir probes (L-probe) located in the same poloidal cross-section of the chamber. So the observed L-H transition and ETB formation after LHH and the associated negative E r rise result mainly from the decrease of the electron temperature (T e ) near inner region of the LCFS (last close flux surface) by greater extent than in SOL (scrape-off layer). This effect is stimulated by decrease of the input power and decrease of the radial correlation coefficient (for r equals 74-77 mm) (and radial particle fluctuation-induced Γ(t)) resulted from ITB formation mechanism during LHH. T e variation in the SOL after LH heating pulse takes place to a lesser extent. Observed non-monotonic radial profile of T e near LCFS with positive δT e /δr rise is kept constant obviously by large longitudinal conductivity and poloidal fluxes from the hotter limiter shadow regions because of the poloidal inhomogeneity of the T e (SOL) and n e (SOL). Such induced negative E r after RF pulse gives fast rise to a quasi-steady-state Γ 0 (t) drift fluxes with reversed direction structure, like 'zonal flows', which may inhibit transport across the flow. Large rise of grad(n e ) after LHH near LCFS with L-H transition is observed after the end of LH pulse for a long time - about 10-15 ms

  16. Study of electromagnetic noise influence on quench detection system under different discharge conditions for EAST

    International Nuclear Information System (INIS)

    Hu, Yanlan; Li, Jiangang; Shen, Biao; Lv, Huanyu; Xiao, Y.Z.

    2013-01-01

    Highlights: ► Reliable quench detection in EAST is a key issue for steady-state operation. ► The electromagnet noise interference associated with detection signals under different discharge conditions are evaluated. ► The effective measures have been realized on detection systems. ► Recently upgrade work has been done, especially for the optimization of ACS and false FSDS were reduced greatly. -- Abstract: EAST is the first Tokamak device whose toroidal and poloidal magnet are superconducting. The enormous magnetic field energy stored in the magnet system will transfer into thermal energy and cause the damage of superconducting magnet, if a quench happened. Therefore, reliable quench detection is a key issue for steady-state operation. In addition to electromagnetic noise from poloidal magnet fields and plasma current which will experience fast current ramp rate, radio frequency noise from heating system also have some interference on quench detection system to a certain degree. The most difficult point for quench detection system is required to have more detail evaluation on electromagnetic noise interference. Recently experiments have been carried out successfully in EAST device. The steady-state operation with 1 MA of plasma current and more than 100-s plasma duration has been obtained. In the paper, the electromagnetic noise interference on quench detection system under different discharge conditions are analyzed and relative process methods are also introduced. The technological experience and experimental data are significant for the constructing ITER and similar superconducting device have been mentioned which will supply significant technological experience and experimental data for constructing ITER and similar superconducting device

  17. Stability of negative central magnetic shear discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Strait, E.J.; Chu, M.S.; Ferron, J.R.

    1996-12-01

    Discharges with negative central magnetic shear (NCS) hold the promise of enhanced fusion performance in advanced tokamaks. However, stability to long wavelength magnetohydrodynamic modes is needed to take advantage of the improved confinement found in NCS discharges. The stability limits seen in DIII-D experiments depend on the pressure and current density profiles and are in good agreement with stability calculations. Discharges with a strongly peaked pressure profile reach a disruptive limit at low beta, β N = β (I/aB) -1 ≤ 2.5 (% m T/MA), caused by an n = 1 ideal internal kink mode or a global resistive instability close to the ideal stability limit. Discharges with a broad pressure profile reach a soft beta limit at significantly higher beta, β N = 4 to 5, usually caused by instabilities with n > 1 and usually driven near the edge of the plasma. With broad pressure profiles, the experimental stability limit is independent of the magnitude of negative shear but improves with the internal inductance, corresponding to lower current density near the edge of the plasma. Understanding of the stability limits in NCS discharges has led to record DIII-D fusion performance in discharges with a broad pressure profile and low edge current density

  18. Compact Intracloud Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  19. Dynamic returns of beta arbitrage

    OpenAIRE

    Nascimento, Mafalda

    2017-01-01

    This thesis studies the patterns of the abnormal returns of the beta strategy. The topic can be helpful for professional investors, who intend to achieve a better performance in their portfolios. Following the methodology of Lou, Polk, & Huang (2016), the COBAR measure is computed in order to determine the levels of beta arbitrage in the market in each point in time. It is argued that beta arbitrage activity can have impact on the returns of the beta strategy. In fact, it is demonstrated that...

  20. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...

  1. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  2. Continuous pile discharging machine

    International Nuclear Information System (INIS)

    Smith, P.P.

    1976-01-01

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug. 7 claims, 10 drawing figures

  3. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  4. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  5. Continuous pile discharging machine

    Science.gov (United States)

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  6. Magnetic and material limiter discharges in Tokapole II

    International Nuclear Information System (INIS)

    Moyer, R.A.

    1988-01-01

    Disruptive instabilities have been studied in Tokapole II, a small poloidal divertor tokamak, in magnetic and material limiter configurations. In the magnetic limiter configuration, the divertor separatrix defines the tokamak current channel boundary. Limiters or neutralizer plates are not used to remove plasma in the scrape-off region. The relatively hot, dense plasma in the scrape-off region carries 5--20% of the current. In the material limiter configuration, limiter plates are inserted to the separatrix to remove plasma and current in the scrape-off region. The plates vary the tokamak current channel boundary condition in a controlled manner, and provide a benchmark for comparison with other tokamaks. Internal and external disruptions have been studied, and several unique features in the magnetic limiter configuration have been identified. The magnitic limiter configuration enables routine passing of the stability barriers at q(a) = 2 and q(a) = 1, where q(a) is the the edge safety factor, without a close fitting wall, external windings, or detailed profile control techniques. Passing the q(a) = 1 barrier permits operation in the q < 1 regime where total reconnection of the sawtooth does not occur. Discharges with q < 1 are also obtained in the material limiter configuration, suggesting that partial reconnection is characteristic of the sawteeth, and not the magnetic limiter configuration. The magnetic limiter configuration suppresses current termination in a major disruption. Current termination occurs in material limiter discharges due to enhanced interaction with the inboard limiter following the post-disruptive shift in major radius

  7. Identification of active anti-inflammatory principles of beta- beta ...

    African Journals Online (AJOL)

    chromatography. Components of the extracts were identified by thin layer chromatography (TLC) scanner and UV-visible spectroscopy, using scopoletin as standard. Results: ... basic coumarin skeleton ring structure reduce ... Figure 2: Thin-layer chromatogram: (1) Ethanol extract; (2) Dichloromethane fraction; (3) Beta-beta.

  8. Improved limits on beta(-) and beta(-) decays of Ca-48

    Czech Academy of Sciences Publication Activity Database

    Bakalyarov, A.; Balysh, A.; Barabash, AS.; Beneš, P.; Briancon, C.; Brudanin, V. B.; Čermák, P.; Egorov, V.; Hubert, F.; Hubert, P.; Korolev, NA.; Kosjakov, VN.; Kovalík, Alojz; Lebedev, NA.; Novgorodov, A. F.; Rukhadze, NI.; Štekl, NI.; Timkin, VV.; Veleshko, IE.; Vylov, T.; Umatov, VI.

    2002-01-01

    Roč. 76, č. 9 (2002), s. 545-547 ISSN 0021-3640 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta decay * double beta decay * Ca-48 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2002

  9. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  10. Conversion of beta-methylbutyric acid to beta-hydroxy-beta-methylbutyric acid by Galactomyces reessii.

    OpenAIRE

    Lee, I Y; Nissen, S L; Rosazza, J P

    1997-01-01

    beta-Hydroxy-beta-methylbutyric acid (HMB) has been shown to increase strength and lean mass gains in humans undergoing resistance-exercise training. HMB is currently marketed as a calcium salt of HMB, and thus, environmentally sound and inexpensive methods of manufacture are being sought. This study investigates the microbial conversion of beta-methylbutyric acid (MBA) to HMB by cultures of Galactomyces reessii. Optimal concentrations of MBA were in the range of 5 to 20 g/liter for HMB produ...

  11. Diagnostic method for measuring plasma-induced voltages on the PBX-M [Princeton Beta Experiment-Modified] stabilizing shell

    International Nuclear Information System (INIS)

    Kugel, H.W.; Okabayashi, M.; Schweitzer, S.

    1990-07-01

    The Princeton Beta Experiment-Modified (PBX-M) has a close-fitting conducting, passive plate, stabilizing shell which nearly surrounds highly indented, bean-shaped plasmas. The proximity of this electrically isolated shell to a large fraction of the plasma surface allows measurements similar to previous work on other tokamaks using floating probes and limiters. Measurements were performed to characterize the plasma-induced voltages on the PBX-M passive plate stabilizing shell during high-β plasmas. Voltage differences were measured between the respective passive plate toroidal and poloidal gaps, the respective passive plates and the vessel, and an outer poloidal graphite limiter and its passive plate. The calibration and qualification testing procedures are discussed. The initial measurements found that the largest voltages were observed at plasma start-up and at the plasma current disruption and exhibited characteristics depending on operating conditions. The highest voltages observed have been at disruption and were less than 2 kV. 9 refs., 5 figs

  12. The best-beta CAPM

    NARCIS (Netherlands)

    Zou, L.

    2006-01-01

    The issue of 'best-beta' arises as soon as potential errors in the Sharpe-Lintner-Black capital asset pricing model (CAPM) are acknowledged. By incorporating a target variable into the investor preferences, this study derives a best-beta CAPM (BCAPM) that maintains the CAPM's theoretical appeal and

  13. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the

  14. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  15. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  16. RAVEN Beta Release

    International Nuclear Information System (INIS)

    Rabiti, Cristian; Alfonsi, Andrea; Cogliati, Joshua Joseph; Mandelli, Diego; Kinoshita, Robert Arthur; Wang, Congjian; Maljovec, Daniel Patrick; Talbot, Paul William

    2016-01-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  17. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  18. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  19. Heart bypass surgery - minimally invasive - discharge

    Science.gov (United States)

    ... invasive direct coronary artery bypass - discharge; MIDCAB - discharge; Robot assisted coronary artery bypass - discharge; RACAB - discharge; Keyhole ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  20. Vaginal Discharge: What's Normal, What's Not

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Vaginal Discharge: What's Normal, What's Not KidsHealth / For Teens / ... Discharge: What's Normal, What's Not Print What Is Vaginal Discharge? Vaginal discharge is fluid that comes from ...

  1. Radioactivity in gaseous waste discharged from the separations facilities during 1978

    International Nuclear Information System (INIS)

    Anderson, J.D.; Poremba, B.E.

    1979-01-01

    This document is issued quarterly for the purpose of summarizing the radioactive gaseous wastes that are discharged from the facilities of the Rockwell Hanford Operations. Data on alpha and beta emissions during 1978 are presented where relevant to the gaseous effluent. Emission data are not included on gaseous wastes produced within the 200 Areas by other Hanford contractors

  2. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins.

    Science.gov (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A

    1986-04-20

    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  3. Analysis of Multipactor Discharge

    International Nuclear Information System (INIS)

    Lau, Y. Y.

    2005-01-01

    Several comprehensive studies of radio frequency (rf) breakdown and rf heating are reported. They are of general interest to magnetic confinement fusion, rf linac, and high power microwave source development. The major results include: (1) a ground-breaking theory of multipactor discharge on dielectric, including a successful proof-of-principle experiment that verified the newly developed scaling laws, (2) an in depth investigation of the failure mechanisms of diamond windows and ceramic windows, and of the roles of graphitization, thin films of coating and contaminants, and (3) a most comprehensive theory, to date, on the heating of particulates by an electromagnetic pulse, and on the roles of rf magnetic field heating and of rf electric field heating, including the construction of new scaling laws that govern them. The above form a valuable knowledge base for the general problem of heating phenomenology

  4. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  5. Derivatives of the Incomplete Beta Function

    Directory of Open Access Journals (Sweden)

    Robert J. Boik

    1998-03-01

    Full Text Available The incomplete beta function is defined as where Beta(p, q is the beta function. Dutka (1981 gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  6. Dicarboxylic acids from electric discharge

    Science.gov (United States)

    Zeitman, B.; Chang, S.; Lawless, J. G.

    1974-01-01

    An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.

  7. Particle-in-cell simulations of the plasma interaction with poloidal gaps in the ITER divertor outer vertical target.

    Czech Academy of Sciences Publication Activity Database

    Komm, Michael; Gunn, J. P.; Dejarnac, Renaud; Pánek, Radomír; Pitts, R.A.; Podolník, Aleš

    2017-01-01

    Roč. 57, č. 12 (2017), č. článku 126047. ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA16-14228S; GA MŠk(CZ) 8D15001 Grant - others:Ga MŠk(CZ) LM2015070 Institutional support: RVO:61389021 Keywords : tokamak * plasma * ITER * particle-in-cell * heat loads * monoblock Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa8a9a/meta

  8. Experiments close to the beta-limit in W7-AS

    International Nuclear Information System (INIS)

    Weller, A; Geiger, J; Werner, A; Zarnstorff, M C; Nuehrenberg, C; Sallander, E; Baldzuhn, J; Brakel, R; Burhenn, R; Dinklage, A; Fredrickson, E; Gadelmeier, F; Giannone, L; Grigull, P; Hartmann, D; Jaenicke, R; Klose, S; Knauer, J P; Koenies, A; Kolesnichenko, Ya I; Laqua, H P; Lutsenko, V V; McCormick, K; Monticello, D; Osakabe, M; Pasch, E; Reiman, A; Rust, N; Spong, D A; Wagner, F; Yakovenko, Yu V

    2003-01-01

    A major objective of the experimental program in the last phase of the W7-AS stellarator was to explore and demonstrate the high-beta performance of advanced stellarators. MHD-quiescent discharges at low impurity radiation levels with volume averaged beta-values of up to beta=3.4% have been achieved. A very important prerequisite was the attainment of the high density H-Mode (HDH) regime. This was made possible by the installation of extensive graphite plasma facing components designed for island divertor operation. The co-directed neutral beam injection provided increased absorbed heating power of up to 3.2 MW in high-beta plasmas with B<=1.25 T. The anticipated improved features concerning equilibrium and stability at high plasma beta could be verified experimentally by the comparison of x-ray data with free boundary equilibrium calculations. The maximum beta found in configurations with a rotational transform around t=0.5 is determined by the available heating power. No evidence of a stability limit has been found in the accessible configuration space, and the discharges are remarkably quiescent at maximum beta, most likely due the increase of the magnetic well depth. An increase in low m/n MHD activity is typically observed during the transition towards high beta. The beneficial stability properties of net-current-free configurations could be demonstrated by comparison with configurations where a significant inductive current drive was involved. Current driven instabilities such as tearing modes and soft disruptions can prevent access to beta-values as high as in the currentless case. The experimental results indicate that optimized stellarators such as W7-X can be considered as a viable option for an attractive stellarator fusion reactor

  9. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.

    Science.gov (United States)

    Trompette, Aurélien; Claustre, Jean; Caillon, Fabienne; Jourdan, Gérard; Chayvialle, Jean Alain; Plaisancié, Pascale

    2003-11-01

    Intestinal mucus is critically involved in the protection of the mucosa. An enzymatic casein hydrolysate and beta-casomorphin-7, a mu-opioid peptide generated in the intestine during bovine casein digestion, markedly induce mucus discharge. Because shorter mu-opioid peptides have been described, the effects of the opioid peptides in casein, beta-casomorphin-7, -6, -4, -4NH2 and -3, and of opioid neuropeptides met-enkephalin, dynorphin A and (D-Ala2,N-Me-Phe4,glycinol5)enkephalin (DAMGO) on intestinal mucus secretion were investigated. The experiments were conducted with isolated perfused rat jejunum. Mucus secretion under the influence of beta-casomorphins and opioid neuropeptides administered intraluminally or intra-arterially was evaluated using an ELISA for rat intestinal mucus. Luminal administration of beta-casomorphin-7 (1.2 x 10(-4) mol/L) provoked a mucus discharge (500% of controls) that was inhibited by naloxone, a specific opiate receptor antagonist. Luminal beta-casomorphin-6, -4 and -4NH2 did not modify basal mucus secretion, whereas intra-arterial administration of beta-casomorphin-4 (1.2 x 10(-6) mol/L) induced a mucus discharge. In contrast, intra-arterial administration of the nonopioid peptide beta-casomorphin-3 did not release mucus. Among the opioid neuropeptides, intra-arterial infusion of Met-enkephalin or dynorphin-A did not provoke mucus secretion. In contrast, beta-endorphin (1.2 x 10(-8) to 1.2 x 10(-6) mol/L) induced a dose-dependent release of mucus (maximal response at 500% of controls). DAMGO (1.2 x 10(-6) mol/L), a mu-receptor agonist, also evoked a potent mucus discharge. Our findings suggest that mu-opioid neuropeptides, as well as beta-casomorphins after absorption, modulate intestinal mucus discharge. Milk opioid-derived peptides may thus be involved in defense against noxious agents and could have dietary and health applications.

  10. Development of beta reference radiations

    International Nuclear Information System (INIS)

    Wan Zhaoyong; Cai Shanyu; Li Yanbo; Yin Wei; Feng Jiamin; Sun Yuhua; Li Yongqiang

    1997-09-01

    A system of beta reference radiation has been developed, that is composed of 740 MBq 147 Pm beta source, 74 MBq and 740 MBq 90 Sr + 90 Y β sources, compensation filters, a source handling tool, a source jig, spacing bars, a shutter, a control unit and a beta dose meter calibration stand. For 740 MBq 147 Pm and 74 MBq 90 Sr + 90 Y beta reference radiations with compensation filters and 740 MBq 90 Sr + 90 Y beta reference radiation without compensation filter, at 20 cm, 30 cm and 30 cm distance separately; the residual energy of maximum is 0.14 MeV, 1.98 MeV and 2.18 MeV separately; the absorbed dose to tissue D (0.07) is 1.547 mGy/h (1996-05-20), 5.037 mGy/h (1996-05-10) and 93.57 mGy/h (1996-05-15) separately; the total uncertainty is 3.0%, 1.7% and 1.7% separately. For the first and the second beta reference radiation, the dose rate variability in the area of 18 cm diameter in the plane perpendicular to the beta-ray beam axis is within +-6% and +-3% separately. (3 refs., 2 tabs., 8 figs.)

  11. A semiconductor beta ray spectrometer

    International Nuclear Information System (INIS)

    Bom, V.R.

    1987-01-01

    Measurement of energy spectra of beta particles emitted from nuclei in beta-decay processes provides information concerning the mass difference of these nuclei between initial and final state. Moreover, experimental beta spectra yield information on the feeding of the levels in the daughter nucleus. Such data are valuable in the construction and checking of the level schemes. This thesis describes the design, construction, testing and usage of a detector for the accurate measurement of the mentioned spectra. In ch. 2 the design and construction of the beta spectrometer, which uses a hyper-pure germanium crystal for energy determination, is described. A simple wire chamber is used to discriminate beta particles from gamma radiation. Disadvantages arise from the large amounts of scattered beta particles deforming the continua. A method is described to minimize the scattering. In ch. 3 some theoretical aspects of data analysis are described and the results of Monte-Carlo simulations of the summation of annihilation radiation are compared with experiments. Ch. 4 comprises the results of the measurements of the beta decay energies of 103-108 In. 87 refs.; 34 figs.; 7 tabs

  12. BETA (Bitter Electromagnet Testing Apparatus)

    Science.gov (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  13. Experimental observations of MHD instabilities in the high-beta tokamak Torus-II

    International Nuclear Information System (INIS)

    Machida, M.

    1982-01-01

    The CO 2 laser scattering and interferometry diagnostics have been used to study the MHD instabilities in the high-beta tokamak Torus-II. Detailed measurements of the density and density fluctuation profiles have been performed. In order to measure density fluctuations with wavelengths longer than 2 cm, an interferometric like, phase matching technique has been developed. The toroidal and poloidal mode numbers have been measured using a double-beam, two-position technique. Working at high-beta values, average β greater than or equal to 10%, we have found parameters where the growing instabilities are created or suppressed. The plasma lifetime for both cases is seen to be about the same and the loss of the plasma appears to be caused by the decay in the external fields. The growing instability parameters are within the MHD regime, and it only grows at the outer edge of the plasma. This is in agreement with the theoretical Ballooning mode instability. The frequency and mode number measurements also agree with the Kinetic theory description of Ballooning modes. The comparison with possible other modes, such as Tearing and Drift instabilities, is performed and the Ballooning growth rate is shown to be the best fit to the experimental values

  14. Limitation of radioactive discharges from NPP based on radionuclide specific monitoring

    International Nuclear Information System (INIS)

    Bucina, I.; Malatova, I.; Vidlakova, J.

    1998-01-01

    Monitoring of gaseous and liquid discharges from nuclear power plants based on particulate-iodine-gas measurements and gross beta or gamma plus tritium measurements is being improved by performing radionuclide specific measurements using semiconductor gamma and beta spectrometers and radiochemical methods. A new concept of regulatory effluent limits is being developed. The activities of all the relevant radionuclides discharged during a years, multiplied by the appropriate Sv/Bq conversion coefficient based on a standard multi-pathway model, are summed up, and the effective dose is compared with the new limit. Such limits should be laid down as the per capita collective commitment effective dose in the plant surroundings for atmospheric discharges, and as the committed effective dose to a critical group member for the hydrospheric releases

  15. High Beta Tokamak research

    International Nuclear Information System (INIS)

    Navratil, G.A.; Mauel, M.E.; Ivers, T.H.; Sankar, M.K.V.; Eisner, E.; Gates, D.; Garofalo, A.; Kombargi, R.; Maurer, D.; Nadle, D.; Xiao, Q.

    1993-01-01

    During the past 6 months, experiments have been conducted with the HBT-EP tokamak in order to (1) test and evaluate diagnostic systems, (2) establish basic machine operation, (3) document MHD behavior as a function of global discharge parameters, (4) investigate conditions leading to passive stabilization of MHD instabilities, and (5) quantify the external saddle coil current required for DC mode locking. In addition, the development and installation of new hardware systems has occurred. A prototype saddle coil was installed and tested. A five-position (n,m) = (1,2) external helical saddle coil was attached for mode-locking experiments. And, fabrication of the 32-channel UV tomography and the multipass Thomson scattering diagnostics have begun in preparation for installation later this year

  16. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  17. Preventive Effects of Beta-Hydroxy-Beta-Methyl Butyrate

    OpenAIRE

    N. Ravanbakhsh; N. Torabi; M. Foadoddini

    2016-01-01

    Aims: One of the major factors in sudden cardiac arrest is the initiation and continuation of deadly arrhythmias during ischemia. It is known that beta-hydroxy-beta-methylbutyrate (HMB) has useful effects such as anti-inflammatory and anti-apoptosis effects in the skeletal muscles. The aim of this study was to investigate the preventive effects of HMB on the ventricular arrhythmias due to the ischemia. Materials & Methods: In the experimental study, 30 Wistar male rats were randomly div...

  18. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2002-07-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  19. Sigma beta decay

    International Nuclear Information System (INIS)

    Newman, D.E.

    1975-01-01

    Describes an experiment to measure beta decays of the sigma particle. Sigmas produced by stopping a K - beam in a liquid hydrogen target decayed in the following reactions: Kp → Σπ; Σ → Neν. The electron and pion were detected by wire spark chambers in a magnetic spectrometer and by plastic scintillators, and were differentiated by a threshold gas Cherenkov counter. The neutron was detected by liquid scintillation counters. The data (n = 3) shell electrons or the highly excited electrons decay first. Instead, it is suggested that when there are two to five electrons in highly excited states immediately after a heavy ion--atom collision the first transitions to occur will be among highly excited Rydberg states in a cascade down to the 4s, 4p, and 3d-subshells. If one of the long lived states becomes occupied by electrons promoted during the collision or by electrons falling from higher levels, it will not decay until after the valence shell decays. LMM rates calculated to test the methods used are compared to previous works. The mixing coefficients are given in terms of the states 4s4p, 45sp+-, and 5s5p. The applicability of Cooper, Fano, and Prats' discussion of the energies and transition rates of doubly excited states is considered

  20. Double Beta Decay

    International Nuclear Information System (INIS)

    Fiorini, Ettore

    2008-01-01

    The importance of neutrinoless Double Beta Decay (DBD) is stressed in view of the recent results of experiments on neutrino oscillations which indicate that the difference between the squared masses of two neutrinos of different flavours is finite [For a recent review including neutrino properties and recent results see: Review of Particle Physics, J. of Phys. G: Nuclear and Particle Physics 33, 1]. As a consequence the mass of at least one neutrino has to be different from zero and it becomes imperative to determine its absolute value. The various experimental techniques to search for DBD are discussed together with the difficult problems of the evaluation of the corresponding nuclear matrix elements. The upper limits on neutrino mass coming from the results of the various experiments are reported together with the indication for a non zero value by one of them not confirmed so far. The two presently running experiments on neutrinoless DBD are briefly described together with the already approved or designed second generation searches aiming to reach the values on the absolute neutrino mass indicated by the results on neutrino oscillations

  1. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  2. Discharged of the nuclear wastes by health service centres

    International Nuclear Information System (INIS)

    Mazur, G.; Jednorog, S.

    1993-01-01

    In this paper Polish national regulation in radiation protection on nuclear medical domain was discussed. The method of utilized nuclear wastes in medical and science centres was deliberate. From many years activity of wastes from Nuclear Medicine Department of Central Clinical Hospital Armed Forces Medical Academy and Radiation Protection Department of Armed Forces Institute of Hygiene and Epidemiology was measured. In debate centres radiation monitoring was performed. In this purpose the beta global activity and gamma spectrometry measurement of discharged wastes occurred. From last year in discussed centres wastes activity do not increased permissible levels. (author). 3 refs, 5 tabs

  3. The practice of terminal discharge.

    Science.gov (United States)

    Radha Krishna, Lalit Kumar; Murugam, Vengadasalam; Quah, Daniel Song Chiek

    2017-01-01

    'Terminal discharges' are carried out in Singapore for patients who wish to die at home. However, if due diligence is not exercised, parallels may be drawn with euthanasia. We present a theoretical discussion beginning with the definition of terminal discharges and the reasons why they are carried out in Singapore. By considering the intention behind terminal discharges and utilising a multidisciplinary team to deliberate on the clinical, social and ethical intricacies with a patient- and context-specific approach, euthanasia is avoided. It is hoped that this will provide a platform for professionals in palliative medicine to negotiate challenging issues when arranging a terminal discharge, so as to avoid the pitfall of committing euthanasia in a country such as Singapore where euthanasia is illegal. It is hoped that a set of guidelines for terminal discharges may someday be realised to assist professionals in Singapore and around the world.

  4. The ASDEX Upgrade discharge schedule

    International Nuclear Information System (INIS)

    Neu, G.; Engelhardt, K.; Raupp, G.; Treutterer, W.; Zasche, D.; Zehetbauer, T.

    2007-01-01

    ASDEX Upgrade's recently commissioned discharge control system (DCS) marks the transition from a traditional programmed system to a highly flexible 'data driven' one. The allocation of application processes (APs) to controllers, the interconnection of APs through uniquely named signals, and AP control parameter values are all defined as data, and can easily be adapted to the requirements of a particular discharge. The data is laid down in a set of XML documents which APs request via HTTP from a configuration server before a discharge. The use of XML allows for easy parsing, and structural validation through (XSD) schemas. The central input to the configuration process is the discharge schedule (DS), which embodies the dynamic behaviour of a planned discharge as reference trajectories grouped in segments, concatenated through transition conditions. Editing, generation and validation tools, and version control through CVS allow for efficient management of DSs

  5. (beta-HC CG) in

    African Journals Online (AJOL)

    raoul

    Urothelial tumour samples were obtained from all the 86 patients requiring surgical ..... and/or urine beta HCG appears to be an efficient diagnostic marker for the ..... collected all urothelial tumour specimens for storage, cutting and staining.

  6. Beta-glucans and cholesterol

    Czech Academy of Sciences Publication Activity Database

    Šíma, Petr; Vannucci, Luca; Větvička, V.

    2017-01-01

    Roč. 41, č. 4 (2017), s. 1799-1808 ISSN 1107-3756 Institutional support: RVO:61388971 Keywords : cholesterol * beta-glucans * diet Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.341, year: 2016

  7. Radioisotope indicator, type BETA 2

    International Nuclear Information System (INIS)

    Duszanski, M.; Pankow, A.; Skwarczynski, B.

    1975-01-01

    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  8. Thermal degradation of {alpha}- and {beta}-PbO{sub 2} and its relationship to capacity loss

    Energy Technology Data Exchange (ETDEWEB)

    Fitas, R.; Zerroual, L.; Chelali, N.; Djellouli, B. [Univ. Ferhat ABBAS, Setif (Algeria). Inst. de Chimie Industrielle

    2000-01-01

    The thermal degradation of {alpha} and {beta} PbO{sub 2} and its relationship to capacity loss was studied using galvanostatic discharge and voltamperometry. The results clearly demonstrate the dramatic effect of the thermal treatment of the capacity of the PAM. The variation of proton diffusion with temperature was determined for both {alpha}- and {beta}-PbO{sub 2}. The two forms of PbO{sub 2} exhibit different behaviour with regard to water loss. (orig.)

  9. Beta-blocker therapy and cardiac events among patients with newly diagnosed coronary heart disease

    DEFF Research Database (Denmark)

    Andersson, Charlotte; Shilane, David; Go, Alan S

    2014-01-01

    BACKGROUND: The effectiveness of beta-blockers for preventing cardiac events has been questioned for patients who have coronary heart disease (CHD) without a prior myocardial infarction (MI). OBJECTIVES: The purpose of this study was to assess the association of beta-blockers with outcomes among...... patients with new-onset CHD. METHODS: We studied consecutive patients discharged after the first CHD event (acute coronary syndrome or coronary revascularization) between 2000 and 2008 in an integrated healthcare delivery system who did not use beta-blockers in the year before entry. We used time......-varying Cox regression models to determine the hazard ratio (HR) associated with beta-blocker treatment and used treatment-by-covariate interaction tests (pint) to determine whether the association differed for patients with or without a recent MI. RESULTS: A total of 26,793 patients were included, 19...

  10. Comparison of the clinical outcome of different beta-blockers in heart failure patients

    DEFF Research Database (Denmark)

    Bølling, Rasmus; Scheller, Nikolai Madrid; Køber, Lars

    2014-01-01

    AIM: To compare survival on different beta-blockers in heart failure. METHODS AND RESULTS: We identified all Danish patients ≥35 years of age who were hospitalized with a first admission for heart failure and who initiated treatment with a beta-blocker within 60 days of discharge. The study period....... In an unadjusted model carvedilol was associated with a lower mortality [hazard ratio (HR) 0.737, 0.714-0.761] compared with metoprolol (reference) while bisoprolol was not associated with an increased mortality (HR 1.020, 0.973-1.069). In a model adjusted for possible confounders and stratified according to beta-blocker...... receiving high-dose carvedilol (≥50 mg daily) showed significantly lower all-cause mortality risk and hospitalization risk, compared with other beta-blockers....

  11. Preliminary Study of Ideal Operational MHD Beta Limit in HL-2A Tokamak Plasmas

    International Nuclear Information System (INIS)

    Shen Yong; Dong Jiaqi; He Hongda; Turnbull, A. D.

    2009-01-01

    Magnetohydrodynamic (MHD) n = 1 kink mode with n the toroidal mode number is studied and the operational beta limit, constrained by the mode, is calculated for the equilibrium of HL-2A by using the GATO code. Approximately the same beta limit is obtained for configurations with a value of the axial safety factor q 0 both larger and less than 1. Without the stabilization of the conducting wall, the beta limit is found to be 0.821% corresponding to a normalized beta value of β c N = 2.56 for a typical HL-2A discharge with a plasma current I p = 0.245 MA, and the scaling of β c N ∼constant is confirmed. (magnetically confined plasma)

  12. A personal-computer-based package for interactive assessment of magnetohydrodynamic equilibrium and poloidal field coil design in axisymmetric toroidal geometry

    International Nuclear Information System (INIS)

    Kelleher, W.P.; Steiner, D.

    1989-01-01

    A personal-computer (PC)-based calculational approach assesses magnetohydrodynamic (MHD) equilibrium and poloidal field (PF) coil arrangement in a highly interactive mode, well suited for tokamak scoping studies. The system developed involves a two-step process: the MHD equilibrium is calculated and then a PF coil arrangement, consistent with the equilibrium is determined in an interactive design environment. In this paper the approach is used to examine four distinctly different toroidal configurations: the STARFIRE rector, a spherical torus (ST), the Big Dee, and an elongated tokamak. In these applications the PC-based results are benchmarked against those of a mainframe code for STARFIRE, ST, and Big Dee. The equilibrium and PF coil arrangement calculations obtained with the PC approach agree within a few percent with those obtained with the mainframe code

  13. Discharge Planning in Chronic Conditions

    Science.gov (United States)

    McMartin, K

    2013-01-01

    Background Chronically ill people experience frequent changes in health status accompanied by multiple transitions between care settings and care providers. Discharge planning provides support services, follow-up activities, and other interventions that span pre-hospital discharge to post-hospital settings. Objective To determine if discharge planning is effective at reducing health resource utilization and improving patient outcomes compared with standard care alone. Data Sources A standard systematic literature search was conducted for studies published from January 1, 2004, until December 13, 2011. Review Methods Reports, randomized controlled trials, systematic reviews, and meta-analyses with 1 month or more of follow-up and limited to specified chronic conditions were examined. Outcomes included mortality/survival, readmissions and emergency department (ED) visits, hospital length of stay (LOS), health-related quality of life (HRQOL), and patient satisfaction. Results One meta-analysis compared individualized discharge planning to usual care and found a significant reduction in readmissions favouring individualized discharge planning. A second meta-analysis compared comprehensive discharge planning with postdischarge support to usual care. There was a significant reduction in readmissions favouring discharge planning with postdischarge support. However, there was significant statistical heterogeneity. For both meta-analyses there was a nonsignificant reduction in mortality between the study arms. Limitations There was difficulty in distinguishing the relative contribution of each element within the terms “discharge planning” and “postdischarge support.” For most studies, “usual care” was not explicitly described. Conclusions Compared with usual care, there was moderate quality evidence that individualized discharge planning is more effective at reducing readmissions or hospital LOS but not mortality, and very low quality evidence that it is more

  14. Recurrent vaginal discharge in children.

    Science.gov (United States)

    McGreal, Sharon; Wood, Paul

    2013-08-01

    Childhood vaginal discharge remains a frequent reason for referral from primary to secondary care. The Pediatric and Adolescent Gynecology (PAG) service at Kettering General Hospital was established in 1993 and provides a specialized service that meets the needs of children with gynaecological conditions. To investigate recurrent vaginal discharge noting symptomatology, defining pathogens, common and rarer causes, exploring management regimes, and any changes in practice over time. Retrospective review spanning 15 years identifying prepubertal children attending the outpatient PAG clinic with recurrent vaginal discharge. We reviewed the medical notes individually. 110 patients were identified; 85% were referred from primary care. The age distribution was bimodal at four and eight years. Thirty-five percent of our patients were discharged after the initial consultation. The commonest cause of discharge was vulvovaginitis (82%). Other important causes included suspected sexual abuse (5%), foreign body (3%), labial adhesions (3%), vaginal agenesis (2%). 35% of patients were admitted for vaginoscopy. Vaginal discharge is the most common gynecological symptom in prepubertal girls and can cause repeated clinical episodes. Vulvovaginitis is the most common cause and often responds to simple hygiene measures. Awareness of the less common causes of vaginal discharge is essential. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  15. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)

    1995-12-31

    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  16. Beta Instability and Stochastic Market Weights

    OpenAIRE

    David H. Goldenberg

    1985-01-01

    An argument is given for individual firm beta instability based upon the stochastic character of the market weights defining the market portfolio and the constancy of its beta. This argument is generalized to market weighted portfolios and the form of the stochastic process generating betas is linked to that of the market return process. The implications of this analysis for adequacy of models of beta nonstationarity and estimation of betas are considered in light of the available empirical e...

  17. Legal aspects of thermal discharges

    International Nuclear Information System (INIS)

    Martin, A.J.

    1974-01-01

    An overview of those legal areas which directly affect technical and planning decisions is presented in the form of 2 legal approaches which constrain the indiscriminate release of thermal discharges to receiving waters. One takes the form of private remedies which have traditionally been available to aggrieved parties who are in some way damaged by the harmful discharge. The 2nd approach utilizes the various statutory constraints leading to direct governmental action. It appears that statutory law is playing the prominent role in restricting the temperature to which receiving waters may be raised as a result of such discharges by using effluent limitations and water quality standards. (Water Resour. Abstr.)

  18. An introduction to gas discharges

    CERN Document Server

    Howatson, A M

    2013-01-01

    An Introduction to Gas Discharges: Second Edition aims to provide a compact introduction to the subject of gas discharges, which continues to make both scientific and industrial progress. In this second edition, the author has made minor corrections, rewritten and expanded some sections, used SI units and modernized notions, in hopes of making the book more up to date. Included in the book is a short history of the subject, an introduction that enumerates the types of gas discharges, the fundamental processes, and then moves on to the more specific areas such as the breakdown, the self-sustai

  19. CQI project improves discharge process.

    Science.gov (United States)

    1998-08-01

    At Gibson Rehab Center in Williamsport, PA, a continuous quality improvement project to bolster the institution's discharge planning process has resulted in increased satisfaction and an award for quality. The 15-month project was spearheaded by a multidisciplinary team charged with identifying areas that had a significant impact on customer service and suggesting better ways of delivering that service. Among the changes the group suggested were establishing a weekly discharge planning group for new neuro patients, assigning a discharge coordinator for each treatment team, and creating an interdisciplinary communication sheet for the home health therapy staff.

  20. Kinetic neutral transport effects in the pedestal of H-mode discharges in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.W. [Oak Ridge National Laboratory, Building 5700, MS-6169, Oak Ridge, TN 37831-8072 (United States)]. E-mail: owenlw@ornl.gov; Groebner, R.J. [General Atomics, P.O. Box 85608, San Diego, CA 92186-9784 (United States); Mahdavi, M.A. [General Atomics, P.O. Box 85608, San Diego, CA 92186-9784 (United States)

    2005-03-01

    A series of hydrogen and deuterium discharges are analyzed with fluid plasma and Monte Carlo neutrals codes. Comparison of poloidally averaged radial distributions of core neutral density and ionization with analytic solutions of 1-D plasma and neutrals continuity equations support the hypothesis that the width of the density pedestal is largely determined by the neutral source. The increased neutral penetration depth that arises from multiple charge exchange can be included in the analytic model with radially dependent scale lengths. The scale length in the analytic model depends on the neutral fluid velocity which increases across the divertor and pedestal as the neutral atoms charge exchange with the higher temperature background ions. The neutral penetration depth and corresponding density pedestal width depend sensitively on the neutral temperature and the degree of ion-neutral temperature equilibration.

  1. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  2. Study of internal transport barriers in the initial phase of Ohmic discharges in TUMAN-3M

    International Nuclear Information System (INIS)

    Askinazi, L G; Bulanin, V V; Vildjunas, M I; Golant, V E; Gorokhov, M V; Kornev, V A; Krikunov, S V; Lebedev, S V; Petrov, A V; Rozhdestvensky, V V; Tukachinsky, A S; Zhubr, N A

    2004-01-01

    A regime with electron heat confinement improvement was recently found in the initial phase of discharges in the TUMAN-3M tokamak. An internal transport barrier (ITB) formation in this regime was confirmed by Thomson scattering measurements and by transport modelling. Two possible reasons for the ITB formation are discussed in the paper: by reduction of turbulent transport in the presence of low magnetic shear or by plasma sheared rotation. It is demonstrated that low magnetic shear formation is possible in the current ramp-up phase of the Ohmic discharge. The low magnetic shear does not seem to be the only reason for the transport reduction. Results of Doppler reflectometry measurements of poloidal rotation of density fluctuations are presented. It is found that core confinement improvement correlates with the appearance of sheared rotation of the density fluctuations and with a burst of the MHD activity. The ITB formation in the regime seems to be a result of a combined action of reduced magnetic shear and plasma sheared rotation

  3. Vaginal itching and discharge - child

    Science.gov (United States)

    Pruritus vulvae; Itching - vaginal area; Vulvar itching; Yeast infection - child ... Common causes of vaginal itching and discharge in young girls include: Chemicals such as perfumes and dyes in detergents, fabric softeners, creams, ointments, ...

  4. Microwave discharges in capillary tubes

    International Nuclear Information System (INIS)

    Dervisevic, Emil

    1984-01-01

    This research thesis aims at being a contribution to the study of microwave discharge by a surface wave, and more precisely focusses on the discharge in capillary tubes filled with argon. The author first present theoretical models which describe, on the one hand, the propagation of the surface wave along the plasma column, and, on the other hand, longitudinal and radial profiles of the main discharge characteristics. The second part addresses the study of the influence of parameters (gas pressure and tube radius) on discharge operation and characteristics. Laws of similitude as well as empirical relationships between argon I and argon II emission line intensities, electron density, and electric field in the plasma have been established [fr

  5. Ion source of discharge type

    Energy Technology Data Exchange (ETDEWEB)

    Enchevich, I.B. [TRIUMF, Cyclotron Div., Vancouver, British Columbia (Canada); Korenev, S.A. [JINR, Hihg Energy Physics Lab., Dubna, Moscow (Russian Federation)

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm{sup 2}; ions of Cl, F, C, H; residual gas pressure P = 10{sup -6} Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  6. Ion source of discharge type

    International Nuclear Information System (INIS)

    Enchevich, I.B.; Korenev, S.A.

    1992-07-01

    A new scheme of ion source based on a dielectric surface sliding discharge is described. The conditions to form this type of discharge are analyzed and experimental results are shown. The main parameters of this ion source are: accelerating voltage U = 1/20kV; continuous extracted ion beam; current density j = 0.01/0.5 A/cm 2 ; ions of Cl, F, C, H; residual gas pressure P = 10 -6 Torr. A magnetic system is used to separate the different types of ions. The dielectric material in the discharge circuit (anode plasma emitter) defines the type of ions. The emission characteristics of plasma emitter and the discharge parameters are presented. The ion current yield satisfies the Child-Langmuir law. (author)

  7. Radioactive discharges from Sellafield (UK)

    International Nuclear Information System (INIS)

    Pentreath, R.J.

    1985-01-01

    This study of low-level liquid radioactive discharges from the British Nuclear Fuels Ltd Sellafield site into the eastern basin of the Irish Sea, prepared on the basis of existing publications and documents, reviews chemical forms and rate of discharges, physical oceanography, sediment distribution and fisheries of the Irish Sea, behaviour of radionuclides in seawater, association with sedimentary materials, accumulation of radionuclides by biological materials, environmental monitoring, surveillance and assessment of radiation exposure of the public and impact on the environment

  8. Formation of toroidal pre-heat plasma without residual magnetic field for high-beta pinch experiments

    International Nuclear Information System (INIS)

    Ikeda, Nagayasu; Tamaru, Ken; Nagata, Akiyoshi.

    1979-01-01

    Formation of toroidal pre-heat plasma was studied. The pre-heat plasma without residual magnetic field was made by chopping the current for pre-heat, A small toroidal-pinch system was used for the experiment. The magnetic field was measured with a magnetic probe. One turn loop was used for the measurement of the toroidal one-turn electric field. A pair of Rogoski coil was used for the measurement of plasma current. The dependence of residual magnetic field on chopping time was measured. By fast chopping of the primary current in the pre-heating circuit, the poloidal magnetic field was reduced to several percent within 5 microsecond. After chopping, no instability was observed in the principal discharge plasma produced within several microsecond. As the conclusion, it can be said that the control of residual field can be made by current chopping. (Kato, T.)

  9. Chronic obstructive pulmonary disease - adults - discharge

    Science.gov (United States)

    ... coughing up dark mucus Your fingertips or the skin around your fingernails are blue Alternative Names COPD - adults - discharge; Chronic obstructive airways disease - adults - discharge; Chronic obstructive lung disease - adults - discharge; ...

  10. Filamentary and diffuse barrier discharges

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    2001-01-01

    Barrier discharges, sometimes also referred to as dielectric-barrier discharges or silent discharges, are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. The main advantage of this type of electrical discharge is, that non-equilibrium plasma conditions in atmospheric-pressure gases can be established in an economic and reliable way. This has led to a number of important applications including industrial ozone generation, surface modification of polymers, plasma chemical vapor deposition, excitation of CO 2 lasers, excimer lamps and, most recently, large-area flat plasma display panels. Depending on the application, the width of the discharge gap can range from less than 0.1 mm to about 100 mm and the applied frequency from below line frequency to several gigahertz. Typical materials used for the insulating layer (dielectric barrier) are glass, quartz, ceramics but also thin enamel or polymer layers

  11. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  12. Classification of electrical discharges in DC Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srutarshi, E-mail: sruban.stephens@gmail.com [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Deb, A.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Rajan, Rehim N. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kishore, N.K. [Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2016-08-11

    Controlled electrical discharge aids in conditioning of the system while uncontrolled discharges damage its electronic components. DC Accelerator being a high voltage system is no exception. It is useful to classify electrical discharges according to the severity. Experimental prototypes of the accelerator discharges are developed. Photomultiplier Tubes (PMTs) are used to detect the signals from these discharges. Time and Frequency domain characteristics of the detected discharges are used to extract features. Machine Learning approaches like Fuzzy Logic, Neural Network and Least Squares Support Vector Machine (LSSVM) are employed to classify the discharges. This aids in detecting the severity of the discharges.

  13. Study and optimization of magnetized ICRF discharges for tokamak wall conditioning and assessment of the applicability to ITER

    International Nuclear Information System (INIS)

    Wauters, T.

    2011-11-01

    This work is devoted to the study and optimization of the Ion Cyclotron Wall Conditioning (ICWC) technique. ICWC, operated in presence of the toroidal magnetic field, makes use of four main tokamak systems: the ICRF antennas to initiate and sustain the conditioning discharge, the gas injection valves to provide the discharge gas, the machine pumps to remove the wall desorbed particles, and the poloidal magnetic field system to optimize the discharge homogeneity. Additionally neutral gas and plasma diagnostics are required to monitor the discharge and the conditioning efficiency. In chapter 2 a general overview on ICWC is given. Chapter 3 treats the ICRF discharge homogeneity and the confinement properties of the employed magnetic field. In the first part we will discuss experimental facts on plasma homogeneity, and how experimental optimization led to its improvement. In the second part of the chapter the confinement properties of a partially ionized plasma in a toroidal magnetic field configuration with additional small vertical component are discussed. Chapter 4 gives an overview of experimental results on the efficiency of ICWC, obtained on TORE SUPRA, TEXTOR, JET and ASDEX Upgrade. In chapter 5 a 0D kinetic description of hydrogen-helium RF plasmas is outlined. The model, describing the evolution of ICRF plasmas from discharge initiation to the (quasi) steady state plasma stage, is developed to obtain insight on ICRF plasma parameters, particle fluxes to the walls and the main collisional processes. Chapter 6 presents a minimum structure for a 0D reservoir model of the wall to investigate in deeper detail the ICWC plasma wall interaction during isotopic exchange experiments. The hypothesis used to build up the wall model is that the same model structure should be able to describe the wall behavior during normal plasmas and conditioning procedures. Chapter 7 extrapolates the results to the envisaged application of ICWC on ITER

  14. Beta decay of 22O

    International Nuclear Information System (INIS)

    Hubert, F.; Dufour, J.P.; Moral, R. del; Fleury, A.; Jean, D.; Pravikoff, M.S.; Delagrange, H.; Geissel, H.; Schmidt, K.H.; Hanelt, E.

    1989-01-01

    The beta-gamma spectroscopic study of 22 O is presented. This nucleus, produced as a projectile-like fragment from the interaction of a 60 MeV/n 40 Ar beam with a Be target, has been separated by the LISE spectrometer. Several gamma rays from 22 O decay have been observed, from which a half-life of (2.25±0.15) s has been determined. Accurate excitation energies have been deduced for several states in 22 F. A partial beta decay scheme of 22 O has been established. Experimental results have been compared with shell model calculations. (orig.)

  15. Beta-hemolytic Streptococcal Bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Hans Ulrik; Kolmos, Hans Jørn; Frimodt-Møller, Niels

    2002-01-01

    Bacteremia with beta-hemolytic Streptococci groups A, B, C and G has a mortality rate of approximately 20%. In this study we analyzed the association of various patient risk factors with mortality. Records from 241 patients with beta-hemolytic streptococcal bacteremia were reviewed with particular...... attention to which predisposing factors were predictors of death. A logistic regression model found age, burns, immunosuppressive treatment and iatrogenic procedures prior to the infection to be significant predictors of death, with odds ratios of 1.7 (per decade), 19.7, 3.6 and 6.8, respectively...

  16. The Beta Transmuted Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Manisha Pal

    2014-06-01

    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  17. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.

    1975-01-01

    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  18. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, F

    1960-07-01

    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  19. N-Benzylhydroxylamine addition to beta-aryl enoates. Enantioselective synthesis of beta-aryl-beta-amino acid precursors

    Science.gov (United States)

    Sibi; Liu

    2000-10-19

    Chiral Lewis acid catalyzed N-benzylhydroxylamine addition to pyrrolidinone-derived enoates afforded beta-aryl-beta-amino acid derivatives in high enantiomeric purity with moderate to very good chemical efficiency.

  20. Estimating sediment discharge: Appendix D

    Science.gov (United States)

    Gray, John R.; Simões, Francisco J. M.

    2008-01-01

    Sediment-discharge measurements usually are available on a discrete or periodic basis. However, estimates of sediment transport often are needed for unmeasured periods, such as when daily or annual sediment-discharge values are sought, or when estimates of transport rates for unmeasured or hypothetical flows are required. Selected methods for estimating suspended-sediment, bed-load, bed- material-load, and total-load discharges have been presented in some detail elsewhere in this volume. The purposes of this contribution are to present some limitations and potential pitfalls associated with obtaining and using the requisite data and equations to estimate sediment discharges and to provide guidance for selecting appropriate estimating equations. Records of sediment discharge are derived from data collected with sufficient frequency to obtain reliable estimates for the computational interval and period. Most sediment- discharge records are computed at daily or annual intervals based on periodically collected data, although some partial records represent discrete or seasonal intervals such as those for flood periods. The method used to calculate sediment- discharge records is dependent on the types and frequency of available data. Records for suspended-sediment discharge computed by methods described by Porterfield (1972) are most prevalent, in part because measurement protocols and computational techniques are well established and because suspended sediment composes the bulk of sediment dis- charges for many rivers. Discharge records for bed load, total load, or in some cases bed-material load plus wash load are less common. Reliable estimation of sediment discharges presupposes that the data on which the estimates are based are comparable and reliable. Unfortunately, data describing a selected characteristic of sediment were not necessarily derived—collected, processed, analyzed, or interpreted—in a consistent manner. For example, bed-load data collected with