WorldWideScience

Sample records for pollutants removal process

  1. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  2. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  3. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  4. Relationships between removal processes and residence times for atmospheric pollutants

    International Nuclear Information System (INIS)

    Slinn, W.G.N.

    1978-01-01

    This report is concerned with improving estimates for the residence times of atmospheric trace constituents in various atmospheric reservoirs. Residence times are defined only for steady-state conditions; i.e., when the net growth rate vanishes. The most useful case of vanishing net growth rate is when the total growth rate is equal to the decay rate. It is demonstrated that the most important advance towards improving estimates of pollutant residence times is through proper choices of reservoirs. Chosen reservoirs should possess the following features: steady-state conditions, uniform mixing ratio throughout or throughout specified subreservoirs, and subreservoirs chosen in which removal rates can be treated as approximate constants. An example of a poorly mixed reservoir, the stratosphere, is discussed. In another example, it is suggested that commonly used reservoirs for atmospheric CO 2 have been chosen poorly and that a substantial portion of the anthropogenic CO 2 released during the past 50 years may still be mixing into the stratosphere. In another example, it is suggested that determination of the dry deposition velocity for accumulation-mode aerosol particles may not be so important as previously thought. To improve estimates for the atmospheric residence times of these particles, it is important to increase knowledge of what is called the ascension velocity

  5. Treatment of highly polluted groundwater by novel iron removal process.

    Science.gov (United States)

    Sim, S J; Kang, C D; Lee, J W; Kim, W S

    2001-01-01

    The removal of ferrous iron (Fe(II)) in groundwater has been generally achieved by simple aeration, or the addition of an oxidizing agent. Aeration has been shown to be very efficient in insolubilization ferrous iron at a pH level greater than 6.5. In this study, pH was maintained over 6.5 using limestone granules under constant aeration to oxidize ferrous iron in groundwater in a limestone packed column. A sedimentation unit coupled with a membrane filtration was also developed to precipitate and filtrate the oxidized ferric compound simultaneously. Several bench-scale studies, including the effects of the limestone granule sizes, amounts and hydraulic retention time on iron removal in the limestone packed column were investigated. It was found that 550 g/L of the 7-8 mesh size limestone granules, and 20 min of hydraulic retention time in the limestone packed column, were necessary for the sufficient oxidation of 40 mg/L of iron(II) in groundwater. Long-term operation was successfully achieved in contaminated waters by removing the iron deposits on the surface of the limestone granule by continuous aeration from the bottom of the column. Periodic reverse flow helped to remove caking and fouling of membrane surface caused by the continuous filtration. Recycling of the treated water from the membrane right after reverse flow operation made possible an admissible limit of iron concentration of the treated water for drinking. The pilot-scale process was constructed and has been tested in the rural area of Korea.

  6. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  7. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jian; Nishijima, Wataru; Baes, Aloysius U.; Okada, Mitsumasa [Hiroshima Univ., Environmental Science Dept., Hiroshima (Japan); Kitanaka, Atsushi [Fuji-Electric Corporate Research and Development Ltd., Yokosuka, Kanagawa (Japan)

    1999-11-01

    Weathered oil contaminated seawater (WOCS) was used to investigate the behaviour of soluble oil components in seawater in various pretreatment processes for removal of oil pollutants in seawater. The various pretreatment processes were a reverse osmosis desalination process in combination with advanced oxidation processes, ultrafiltration, coagulation, GAC adsorption, biological treatment and separation with a low pressure RO membrane. WOCS was prepared by mixing oil, nutrients and fresh seawater which was exposed to sunlight to simulate photooxidation and microbial degradation of oil in the marine environment. It was found that WOCS contained soluble components with relatively small molecular size, which are refractory to biodegradation and difficult to remove by advanced oxidation processes (AOPs), UF membrane or coagulation using FeCl{sub 3} or PAC as flocculants. However, DOC in WOCS (OCWOCS) was easily adsorbed to GAC. Low pressure RO membranes with higher salt rejection rate could remove more OCWOCS compared to those of lower salt rejection rate. (Author)

  8. Removal of oil pollutants in seawater as pretreatment of reverse osmosis desalination process

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jian; Nishijima, Wataru; Baes, Aloysius U.; Okada, Mitsumasa [Hiroshima Univ., Environmental Science Dept., Hiroshima (Japan); Kitanaka, Atsushi [Fuji-Electric Corporate Research and Development Ltd., Yokosuka, Kanagawa (Japan)

    1999-07-01

    Weathered oil contaminated seawater (WOCS) was used to investigate the behaviour of soluble oil components in seawater in various pretreatment processes for removal of oil pollutants in seawater. The various pretreatment processes were a reverse osmosis desalination process in combination with advanced oxidation processes, ultrafiltration, coagulation, GAC adsorption, biological treatment and separation with a low pressure RO membrane. WOCS was prepared by mixing oil, nutrients and fresh seawater which was exposed to sunlight to simulate photooxidation and microbial degradation of oil in the marine environment. It was found that WOCS contained soluble components with relatively small molecular size, which are refractory to biodegradation and difficult to remove by advanced oxidation processes (AOPs), UF membrane or coagulation using FeCl{sub 3} or PAC as flocculants. However, DOC in WOCS (OCWOCS) was easily adsorbed to GAC. Low pressure RO membranes with higher salt rejection rate could remove more OCWOCS compared to those of lower salt rejection rate. (Author)

  9. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    Science.gov (United States)

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangeemerging pollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100%) and for assuring high quality of treated water. Copyright © 2016 Elsevier B

  10. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    Science.gov (United States)

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  11. Removal Efficiency of Nitrite and Sulfide Pollutants by Electrochemical Process by Using Ti/RuIrO2 Anode

    Directory of Open Access Journals (Sweden)

    Aris Mukimin

    2018-05-01

    Full Text Available In general, wastewater treatment by physical, chemical and biological methods are only focused on TSS, BOD and COD removals that the effluent still contains anion pollutant as NO2- and S2-. Electrochemical technology is a proper method for those pollutants treatment due to its fast process, easy operation and minimum amount of sludge. Electrocatalytic reactor with 8 L capacity using Ti/RuIrO2 cylinder as anode and Fe plate as cathode was arranged and applied to treat anion pollutants. Hydraulic retention time (30, 60, 90 and 120 min, salt concentration (250, 500 and 750 mg/L and voltage (4, 5, and 6 V were chosen as operation variables and NO2- and S2- concentrations as parameter indicators. Nitrite removal efficiency reached 75 and 99.7% after 60 and 120 min of electrolysis, respectively, while sulfide could obtain higher efficiency, i.e., 97 and 99.9% after 60 and 90 min, respectively, at operation variables of potential of 5 V and salt of 500 mg/L. Removal process is dominated by indirect oxidation mechanism by HClO/ClO- oxidators generated at anode surface as intermediate products. The lifespan of electrode and electric consumption are two main factors of operation cost. Electric consumed was 0.452 kWh per 1 g nitrite removed.

  12. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  13. Coliphages as fecal pollution and removal bacterial indicators in the drinking water process

    Directory of Open Access Journals (Sweden)

    Marco Paz-y-Miño

    2013-06-01

    Full Text Available This work compare the efficiency of water treatment from Rimac river. Samples from different phases of water treatment (decanted, filtered and chlorinated were compared with not treated samples. Coliphages quantification was made by Simple Layer and Membrane Filter methods. Most Probable Number (NMP and Membrane Filter methods were used to assessment of Total Coliforms, Coliforms Thermotolerants and Heterotrophic Bacteria. The standard strain of E. coli C ATCC 13706 was used as coliphages host. The averages of quantified coliphages were of 2267,25 UFP/100 mL in samples with out treatment; 2,11, 2,04 and 1,07 UFP/100 mL in the water samples from decanted, filtered and chlorinated treatment respectively. Total Coliforms and Coliforms Thermotolerants were not detected in samples of chlorinated water. The correlation between coliphages and Total Coliforms in samples of decanted and filtered water (r = 0,3793 and r = 0,3629 respectively were significant (p <0,05 Samples with out treatment don’t were significant (r = 0,3048, p>0,05. Correlations between coliphages and the Coliforms Thermotolerants were significant with water samples from treatment decanted, filtered and chlorinated (r = 0,7129; 0,5326 and 0,4612, p <0,05. The microbial removal percentages were 99,95 % for the coliphages, 99,99 % for the BH and >99,99 % for the CT and CTT.

  14. Removal of organic pollutants in tannery wastewater from wet-blue fur processing by integrated Anoxic/Oxic (A/O) and Fenton: Process optimization

    DEFF Research Database (Denmark)

    Wang, Yong; Li, Weiguang; Angelidaki, Irini

    2014-01-01

    Treatment of tannery wastewater has been a challenge in remediation of aquatic environment in developing countries. Removal of organic pollutants in tannery wastewater from wet-blue fur processing was studied using integrated processes of Anoxic/Oxic and Fenton. Analysis of COD composition based...... 80%. In the subsequent Fenton oxidation, effects of initial pH and H2O2 dose on COD removal were investigated, and response surface methodology was adopted to obtain the optimal conditions as initial pH of 4.0, H2O2 dose of 14.0mM, H2O2:Fe2+ molar ratio of 10.6, and reaction time of 3h to achieve...... the highest COD removal of 55.87%. GC-MS analysis was carried out to observe the change of organic composition during Fenton oxidation, and most of the residual organic pollutants resistant to Fenton treatment belonged to organosilanes and saturated alkanes. This study will provide useful information...

  15. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater.

    Science.gov (United States)

    Antwi, Philip; Li, Jianzheng; Meng, Jia; Deng, Kaiwen; Koblah Quashie, Frank; Li, Jiuling; Opoku Boadi, Portia

    2018-06-01

    In this a, three-layered feedforward-backpropagation artificial neural network (BPANN) model was developed and employed to evaluate COD removal an upflow anaerobic sludge blanket (UASB) reactor treating industrial starch processing wastewater. At the end of UASB operation, microbial community characterization revealed satisfactory composition of microbes whereas morphology depicted rod-shaped archaea. pH, COD, NH 4 + , VFA, OLR and biogas yield were selected by principal component analysis and used as input variables. Whilst tangent sigmoid function (tansig) and linear function (purelin) were assigned as activation functions at the hidden-layer and output-layer, respectively, optimum BPANN architecture was achieved with Levenberg-Marquardt algorithm (trainlm) after eleven training algorithms had been tested. Based on performance indicators such the mean squared errors, fractional variance, index of agreement and coefficient of determination (R 2 ), the BPANN model demonstrated significant performance with R 2 reaching 87%. The study revealed that, control and optimization of an anaerobic digestion process with BPANN model was feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM)

    Science.gov (United States)

    Asaithambi, Perumal; Beyene, Dejene; Aziz, Abdul Raman Abdul; Alemayehu, Esayas

    2018-05-01

    Treatment of landfill leachate wastewater by electrocoagulation process using an aluminium electrode was investigated in a batch electrochemical cell reactor. Response surface methodology based on central composite design was used to optimize the operating parameters for the removal of % color and % total organic carbon (TOC) together with power consumption from landfill leachate. Effects of three important independent parameters such as current density ( X 1), inter-electrode distance ( X 2) and solution pH ( X 3) of the landfill leachate sample on the % color and % TOC removal with power consumption were investigated. A quadratic model was used to predict the % color and % TOC removal with power consumption in different experimental conditions. The significance of each independent variable was calculated by analysis of variance. In order to achieve the maximum % color and % TOC removal with minimum of power consumption, the optimum conditions were about current density ( X 1)—5.25 A/dm2, inter-electrode distance ( X 2)—1 cm and initial solution of effluent pH ( X 3)—7.83, with the yield of color removal of 74.57%, and TOC removal of 51.75% with the power consumption of 14.80 kWh/m3. Electrocoagulation process could be applied to remove pollutants from industrial effluents and wastewater.

  17. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through (a) process modifications, (b) use of alternative chemicals and sorbents for residue removal, (c) acid recycling, and (d) judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor, not only for Los Alamos, but for the Nuclear Complex of the future

  18. Preventing pollution from plutonium processing

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1995-01-01

    The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through process modifications, use of alternative chemicals and sorbents for residue removal, acid recycling, and judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor , not only for Los Alamos, but for the Nuclear Complex of the future. (author) 12 refs.; 2 figs

  19. Removal of cationic pollutants from water by xanthated corn cob: optimization, kinetics, thermodynamics, and prediction of purification process.

    Science.gov (United States)

    Kostić, Miloš; Đorđević, Miloš; Mitrović, Jelena; Velinov, Nena; Bojić, Danijela; Antonijević, Milan; Bojić, Aleksandar

    2017-07-01

    The removal of Cr(III) ions and methylene blue (MB) from aqueous solutions by xanthated corn cob (xCC) in batch conditions was investigated. The sorption capacity of xCC strongly depended of the pH, and increase when the pH rises. The kinetics was well fitted by pseudo-second-order and Chrastil's model. Sorption of Cr(III) ions and MB on xCC was rapid during the first 20 min of contact time and, thereafter, the biosorption rate decrease gradually until reaching equilibrium. The maximum sorption capacity of 17.13 and 83.89 mg g -1 for Cr(III) ions and MB, respectively, was obtained at 40 °C, pH 5, and sorbent dose 4 g dm -3 for removal of Cr(III) ions and 1 g dm -3 for removal of MB. The prediction of purification process was successfully carried out, and the verification of theoretically calculated amounts of sorbent was confirmed by using packed-bed column laboratory system with recirculation of the aqueous phase. The wastewater from chrome plating industry was successfully purified, i.e., after 40 min concentration of Cr(III) ions was decreased lower than 0.1 mg dm -3 . Also, removal of MB from the river water was successfully carried out and after 40 min, removal efficiency was about 94%.

  20. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO).

    Science.gov (United States)

    Cui, Yue; Liu, Xiang-Yang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-03-15

    In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO)

    KAUST Repository

    Cui, Yue

    2016-01-05

    In this study, we have explored and compared the effectiveness of using (1) lab-fabricated forward osmosis (FO) membranes under both FO and reverse osmosis (RO) modes and (2) commercially available RO membranes under the RO mode for the removal of organic micro-pollutants. The lab-fabricated FO membranes are thin film composite (TFC) membranes consisting of a polyamide layer and a porous substrate cast from three different materials; namely, Matrimid, polyethersulfone (PESU) and sulfonated polyphenylene sulfone (sPPSU). The results show that the FO mode is superior to the RO mode in the removal of phenol, aniline and nitrobenzene from wastewater. The rejections of all three TFC membranes to all the three organic micro-pollutants under the FO processes are higher than 72% and can be even higher than 90% for aniline when a 1000 ppm aromatic aqueous solution and 1 M NaCl are employed as feeds. These performances outperform the results obtained from themselves and commercially available RO membranes under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost doubled, and the rejection increment can reach up to 17%. Moreover, it was observed that annealing as a post-treatment would help compact the membrane selective layer and further enhance the separating efficiency. The obtained organic micro-pollutant rejections and water fluxes under various feasible operating conditions indicate that the FO process has potential to be a viable treatment for wastewater containing organic micro-pollutants.

  2. Multi-Level Contact Oxidation Process Performance When Treating Automobile Painting Wastewater: Pollutant Removal Efficiency and Microbial Community Structures

    Directory of Open Access Journals (Sweden)

    Yufang Zhu

    2017-11-01

    Full Text Available This study applied a multi-level contact oxidation process system in a pilot-scale experiment to treat automobile painting wastewater. The experimental wastewater had been pre-treated through a series of physicochemical methods, but the water still contained a high concentration of chemical oxygen demand (COD and had poor biodegradability. After the biological treatment, the COD concentration of effluent could stay below 300 mg/L. The study analyzed the effects of hydraulic residence time (HRT on COD, ammonia nitrogen (NH4+-N, and total nitrogen (TN. The optimal HRT was 8 h; at that time, removal efficiencies of COD, ammonia nitrogen, and total nitrogen were 83.8%, 86.3%, and 65%, respectively. The system also greatly reduced excess sludge production; the removal efficiency was 82.8% with a HRT of 8 h. The study applied high-throughput pyrosequencing technology to evaluate the microbial diversity and community structures in distinct stages of the biological reactor. The relevance between process performance and microbial community structure was analyzed at the phylum and class level. The abundant Firmicutes made a large contribution to improving the biodegradability of painting wastewater through hydrolysis acidification and reducing sludge production through fermentation in the biological reactor.

  3. Pollutants removal from syngas using carbon materials

    International Nuclear Information System (INIS)

    Al-Dury, S.S.

    2009-01-01

    The incomplete combustion of biomass can cause the production of combustible gases including carbon monoxide (CO), hydrogen and methane. This study discussed a method of removing pollutants from syngas. Experiments were conducted using a fluidized bed atmospheric gasifier. The aim of the study was to characterize the solid waste pyrolysis and gasification process while developing a syngas cleanup and conditioning system. The unit was operated in both gasifying and combustion modes in order to compare traditional and alternative energy production values and environmental impacts. Active carbon, black cook and char coal samples were used as filters at temperatures ranging between 120 and 200 degrees C. Dolomite was used as a bed material. Results of the study showed that carbon materials can be used as a cheap and effective method of cleaning syngas during biomass gasifications conducted at low temperatures. 6 refs., 2 tabs., 5 figs.

  4. ARSENIC REMOVAL BY IRON REMOVAL PROCESSES

    Science.gov (United States)

    Presentation will discuss the removal of arsenic from drinking water using iron removal processes that include oxidation/filtration and the manganese greensand processes. Presentation includes results of U.S. EPA field studies conducted in Michigan and Ohio on existing iron remo...

  5. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-09

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  6. The color removal and fate of organic pollutants in a pilot-scale MBR-NF combined process treating textile wastewater with high water recovery.

    Science.gov (United States)

    Li, Kun; Jiang, Chao; Wang, Jianxing; Wei, Yuansong

    2016-01-01

    A combination of membrane bioreactor (MBR) and nanofiltration (NF) was tested at pilot-scale treating textile wastewater from the wastewater treatment station of a textile mill in Wuqing District of Tianjin (China). The MBR-NF process showed a much better treatment efficiency on the removal of the chemical oxygen demand, total organic carbon, color and turbidity in comparison with the conventional processes. The water recovery rate was enhanced to over 90% through the recycling of NF concentrate to the MBR, while the MBR-NF showed a stable permeate water quality that met with standards and could be directly discharged or further reused. The recycled NF concentrate caused an accumulation of refractory compounds in the MBR, which significantly influenced the treatment efficiency of the MBR. However, the sludge characteristics showed that the activated sludge activity was not obviously inhibited. The results of fluorescence spectra and molecular weight distribution indicated that those recalcitrant pollutants were mostly protein-like substances and a small amount of humic acid-like substances (650-6,000 Da), which contributed to membrane fouling of NF. Although the penetrated protein-like substances caused the residual color in NF permeate, the MBR-NF process was suitable for the advanced treatment and reclamation of textile wastewater under high water yield.

  7. Removing environmental organic pollutants with bioremediation and phytoremediation.

    Science.gov (United States)

    Kang, Jun Won

    2014-06-01

    Hazardous organic pollutants represent a threat to human, animal, and environmental health. If left unmanaged, these pollutants could cause concern. Many researchers have stepped up efforts to find more sustainable and cost-effective alternatives to using hazardous chemicals and treatments to remove existing harmful pollutants. Environmental biotechnology, such as bioremediation and phytoremediation, is a promising field that utilizes natural resources including microbes and plants to eliminate toxic organic contaminants. This technology offers an attractive alternative to other conventional remediation processes because of its relatively low cost and environmentally-friendly method. This review discusses current biological technologies for the removal of organic contaminants, including chlorinated hydrocarbons, focusing on their limitation and recent efforts to correct the drawbacks.

  8. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  9. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    Science.gov (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  10. Studying the removal of the pollutants from wetlands

    Directory of Open Access Journals (Sweden)

    Nevzorov Aleksandr Leonidovich

    2015-04-01

    Full Text Available Wetlands, considered as the territories unfit for agriculture and building, in the recent past served as the places for the industrial and municipal waste accommodation. That’s why the problems, connected with the studies of pollution and recovery duration of bogs, are rather current nowadays. The aim of this research is studying carrying out of pollutants from the polluted marsh massif. The object of the research is the Konnick bog, where the discharge of waste water from the hydrolysis plant and dumping of ash and sawmilling waste started in the fifties. The emission of waste water from the city’s treatment facilities also took place there. The Konnick bog is situated in the Arkhangelsk region. The network of stations for the ground and surface water monitoring was organized on the territory of the bog in 2004. The monitoring showed that the ground water composition has the excess of ammonium salt, phosphates, petroleum products, lignin substances, phenols, etc. Since 2004 there is a gradual decrease in concentration of the majority of pollutant, which is connected with the end of dumping of waste and discharge of waste water from the hydrolysis. In our opinion the decrease in the polluting substances concentration in marsh waters (self-cleaning happens due to dilution of ground waters. The process of the pollutants removal from the peat was investigated with the help of a specially constructed device. The researches offered an equation, which describes the relation between the relative concentration of pollutants and the ground water flow. The analysis of the results of the peat ablution showed that in order to reduce the concentration of most pollutants the water should be filtered through the peat (at least 1 liter per 1 gram of dry peat. Using the received equation the settlement curves of pollutant concentration reduction in a bog were obtained. The curves obtained according to laboratory researches correlate rather well with the data

  11. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  12. Spatial heterogeneity and air pollution removal by an urban forest

    Science.gov (United States)

    Francisco J. Escobedo; David J. Nowak

    2009-01-01

    Estimates of air pollution removal by the urban forest have mostly been based on mean values of forest structure variables for an entire city. However, the urban forest is not uniformly distributed across a city because of biophysical and social factors. Consequently, air pollution removal function by urban vegetation should vary because of this spatial heterogeneity....

  13. Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.

    Science.gov (United States)

    Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai

    2017-09-01

    To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.

  14. Application of agricultural fibers in pollution removal from aqueous solution

    International Nuclear Information System (INIS)

    Mahvi, A. H.

    2008-01-01

    Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage, Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as bio sorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed

  15. Optimizing removal of arsenic, chromium, copper, pentachlorophenol and polychlorodibenzo-dioxins/furans from the 1-4 mm fraction of polluted soil using an attrition process.

    Science.gov (United States)

    Guemiza, Karima; Coudert, Lucie; Tran, Lan Huong; Metahni, Sabrine; Blais, Jean-François; Besner, Simon; Mercier, Guy

    2017-08-01

    The objective of this study was to evaluate, at a pilot scale, the performance of an attrition process for removing As, Cr, Cu, pentachlorophenol (PCP) and polychlorodibenzodioxins and furans (PCDDF) from a 1-4 mm soil fraction. A Box-Behnken experimental design was utilized to evaluate the influence of several parameters (temperature, surfactant concentration and pulp density) and to optimize the main operating parameters of this attrition process. According to the results, the concentration of surfactant (cocamidopropylbetaine-BW) was the main parameter influencing both PCP and PCDDF removal from the 1-4 mm soil fraction by attrition. The behavior of each 2,3,7,8-PCDD/F congener during the attrition process was studied. The results indicated that the concentration of surfactant had a significant and positive effect on the removal of almost all of the dioxin and furan. The removal of 56%, 55%, 50%, 67% and 62% of the contaminants were obtained for As, Cr, Cu, PCP and PCDDF, respectively, using the optimized conditions ([BW]= 2% (w.w-1), T = 25°C and PD = 40% (w.w-1)). These results showed that attrition in the presence of a surfactant can be efficiently used to remediate the coarse fractions of soil contaminated by As, Cr, Cu, PCP and PCDDF.

  16. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Ninety-five per cent of decentralized wastewater around the ... Organic pollutant and nitrogen removal performance of SWISs ... a rubber hose with flow rate control valves. .... the limitation of oxygen became more obvious, and resulted in. 4. 3.

  17. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Pollutant removal in subsurface wastewater infiltration systems with/without intermittent ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... wastewater infiltration systems (SWISs) with and without intermittent aeration, ...

  18. Analysis of pollution removal from wastewater by Ceratophyllum ...

    African Journals Online (AJOL)

    Water is one of the most stable and abundant complexes on nature that can be polluted with natural and human factors. Polluted water is harmful to human health and need to purify. One of the economic and rapid methods for elements removal is displacement of metals by biosorption. Two treatments in four replications for ...

  19. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  20. Application of cyclodextrin nanoporous polymers in the removal of organic pollutants from water

    OpenAIRE

    2009-01-01

    M.Sc. The removal of organic pollutants from industrial and municipal water is a great challenge to water providers worldwide. Some of these pollutants are very toxic and pose serious health risks to both humans and animals. Additionally, the presence of organic pollutants in the water often leads to the corrosion of turbines used for power generation at power stations. This obviously makes the power generation process less efficient and thus has cost implications, especially for the end u...

  1. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    Ighigeanu, D.; Martin, D.; Manaila, E.; Craciun, G.; Calinescu, I.

    2009-01-01

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO 2 , NOx and VOCs

  2. Air pollution with gaseous emissions and methods for their removal

    International Nuclear Information System (INIS)

    Vassilev, Venceslav; Boycheva, Sylvia; Fidancevska, Emilija

    2009-01-01

    Information concerning gaseous pollutants generated in the atmosphere, as a result of fuel incineration processes in thermal power and industrial plants, was summarized. The main methods and technologies for flue gases purification from the most ecologically hazardous pollutants are comparatively discussed. Keywords: gaseous pollutants, aerosols, flue gas purification systems and technologies, air ecology control

  3. Removal of selected pollutants from aqueous media by hardwood mulch

    International Nuclear Information System (INIS)

    Ray, Asim B.; Selvakumar, Ariamalar; Tafuri, Anthony N.

    2006-01-01

    Generic hardwood mulch, usually used for landscaping, was utilized to remove several selected pollutants (heavy metals and toxic organic compounds) typically found in urban stormwater (SW) runoff. The hardwood mulch sorbed all the selected pollutants from a spiked stormwater mixture, including copper (Cu 2+ ), cadmium (Cd 2+ ), chromium (Cr 6+ ), lead (Pb 2+ ), zinc (Zn 2+ ), 1,3 dichlorobenzene (DCB), naphthalene (NP), fluoranthene (FA), butylbenzylphthalate (BBP), and benzo(a)pyrene (B[a]P). Masses of the pollutants sorbed depended upon the pollutant species, contact time, and initial concentration which varied from 20 to 100%. Sorption rates of the metals, in general, were more rapid than those of the organics; however, mass removals (percent) of the organics, in contrast to those of the metals, were independent of their initial concentrations. With the exception of Cd, percentages (weight) of the metals removed declined as their initial concentrations decreased. None of the sorbed pollutants desorbed to any significant extent upon extended washing with water. It is quite feasible that in the presence of mulch the uptake of these pollutants by the aquatic species will be reduced significantly

  4. HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Clifford E. Raleigh

    1998-03-16

    CQ Inc. and its project team members--Howard University, PrepTech Inc., Fossil Fuel Sciences, the United States Geological Survey (USGS), and industry advisors--are applying mature coal cleaning and scientific principles to the new purpose of removing potentially hazardous air pollutants from coal. The team uniquely combines mineral processing, chemical engineering, and geochemical expertise. This project meets more than 11 goals of the U.S. Department of Energy (DOE), the National Energy Strategy, and the 1993 Climate Change Action Plan. During this project: (1) Equations were developed to predict the concentration of trace elements in as-mined and cleaned coals. These equations, which address both conventional and advanced cleaning processes, can be used to increase the removal of hazardous air pollutant precursors (HAPs) by existing cleaning plants and to improve the design of new cleaning plants. (2) A promising chemical method of removing mercury and other HAPs was developed. At bench-scale, mercury reductions of over 50 percent were achieved on coal that had already been cleaned by froth flotation. The processing cost of this technology is projected to be less than $3.00 per ton ($3.30 per tonne). (3) Projections were made of the average trace element concentration in cleaning plant solid waste streams from individual states. Average concentrations were found to be highly variable. (4) A significantly improved understanding of how trace elements occur in coal was gained, primarily through work at the USGS during the first systematic development of semiquantitative data for mode of occurrence. In addition, significant improvement was made in the laboratory protocol for mode of occurrence determination. (5) Team members developed a high-quality trace element washability database. For example, the poorest mass balance closure for the uncrushed size and washability data for mercury on all four coals is 8.44 percent and the best is 0.46 percent. This indicates an

  5. Air pollution removal and temperature reduction by Gainesville's urban forest

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Poor air quality is a common problem in many urban areas. It can lead to human health problems and reduced visibility, and it can impair the health of plants and wildlife. The urban forest can help improve air quality by removing pollutants and by reducing air temperature through shading and transpiration. Trees also emit volatile...

  6. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO)

    KAUST Repository

    Cui, Yue; Liu, Xiang-Yang; Chung, Neal Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-01-01

    under the RO mode. In addition, the rejection can be maintained even when treating a more concentrated feed solution (2000 ppm). The removal performance can be further enhanced by using a more concentrated draw solution (2 M). The water flux is almost

  7. TESTING OF CARBONACEOUS ADSORBENTS FOR REMOVAL OF POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2012-03-01

    Full Text Available Testing of carbonaceous adsorbents for removal of pollutants from water. Relevant direction for improving of quality of potable water is application of active carbons at various stages of water treatments. This work includes complex research dealing with testing of a broad spectrum of carbonaceous adsorbents for removal of hydrogen sulfide and nitrite ions from water. The role of the surface functional groups of carbonaceous adsorbents, their acid-basic properties, and the influence of the type of impregnated heteroatom (N, O, or metals (Fe, Cu, Ni, on removal of hydrogen sulfide species and nitrite ions have been researched. The efficiency of the catalyst obtained from peach stones by impregnation with Cu2+ ions of oxidized active carbon was established, being recommended for practical purposes to remove the hydrogen sulfide species from the sulfurous ground waters. Comparative analysis of carbonaceous adsorbents reveals the importance of surface chemistry for oxidation of nitrite ions.

  8. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved

  9. Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China).

    Science.gov (United States)

    Jim, C Y; Chen, Wendy Y

    2008-09-01

    In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Besides technical solutions to abate air pollution, urban vegetation is increasingly recognized as an alternative ameliorative method by removing some pollutants mainly through dry deposition process. This paper assesses the capability and monetary value of this ecosystem service in Guangzhou city in South China. The results indicated an annual removal of SO(2), NO(2) and total suspended particulates at about 312.03 Mg, and the benefits were valued at RMB90.19 thousand (US$1.00=RMB8.26). More removal was realized by recreational land use due to a higher tree cover. Higher concentration of pollutants in the dry winter months induced more removal. The lower cost of pollution abatement in China generated a relatively subdued monetary value of this environmental benefit in comparison with developed countries. Younger districts with more extensive urban trees stripped more pollutants from the air, and this capacity was anticipated to increase further as their trees gradually reach final dimensions and establish a greater tree cover. Tree cover and pollutant concentration constitute the main factors in pollutant removal by urban trees. The efficiency of atmospheric cleansing by trees in congested Chinese cities could be improved by planting more trees other than shrubs or grass, diversifying species composition and biomass structure, and providing sound green space management. The implications for greenery design were discussed with a view to maximizing this ecosystem service in Chinese cities and other developing metropolises.

  10. Pollutants in drinking water - sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2005-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemicals and radionuclide etc. This is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  11. Wastewater centrate ammonia removal by chemisorption processes

    International Nuclear Information System (INIS)

    Barbachem, M.J.

    2002-01-01

    'Full text:' This presentation will describe the nature, scope, and findings of a third-party evaluation of a patent-protected wastewater treatment technology identified as the ThermoEnergy Ammonia Recovery Process TM (ARP). The ARP is a reversible chemisorption process using a zinc-impregnated ion exchange resin, and it is unique in that it removes/reduces the ammonia-nitrogen load in the solids processing liquor of municipal sewage treatment plants and recycles the recovered product into a pelletized ammonium salt that can be used as an agricultural fertilizer. The primary objective of the ARP evaluation was to perform well-defined field and laboratory tests to provide data on process performance. The evaluation process was overseen and coordinated by the Environmental Technology Evaluation Center (EvTEC), a program of the Civil Engineering Research Foundation (CERF), the research and technology transfer arm of the American Society of Civil Engineers (ASCE). EvTEC is a pilot program evaluating innovative environmental technologies under the US Environmental Protection Agency's (USEPA) Environmental Technology Verification (ETV) Program. A pilot scale ARP treatment facility was constructed and tested at the Oakwood Beach Water Pollution Control Plant (WPCP) in Staten Island, New York, from September through December of 1998. While operating during the 3 month period using the anaerobically digested centrate normally produced at the WPCP, the pilot study demonstrated that the ARP process was capable of removing/recovering ammonia with efficiencies ranging from 75-99+ % at influent concentrations exceeding 400 mg/L. During the pilot plant operations, forty-eight (48) complete validated runs of centrate processing were performed. The plant processed the centrate under normal day-to-day conditions at the WPCP, and no special operational considerations were given to the centrifuge operation to accommodate the ARP pilot plant. The Oakwood WPCP operated exactly the way

  12. Simultaneous Removal of Thallium and EDTA by Fenton Process

    Science.gov (United States)

    Xu, Ruibing; Huang, Xuexia; Li, Huosheng; Su, Minhua; Chen, Diyun

    2018-01-01

    The wastewater containing heavy metals and organic pollutants is widely discharged from industries. Because of the coexistence of heavy metals and organic pollutants, the treatment of such wastewater is very difficult. Fenton process is considered to be one of the most effective approaches for the degradation of organic pollutants in aqueous solution due to the strong oxidative ability of hydroxyl radical which generated from the Fenton process. Apart from this, heavy metals are able to be removed during Fenton process owning to the synergic effect of coagulation and precipitation. In this work, pollutants of thallium and EDTA were successfully removed via the Fenton process. A series of single-factor experiments were designed and performed to achieve an optimal reaction conditions for the removal of both thallium and EDTA. Results showed that the removal efficiencies of thallium and TOC could be as high as 96.54% and 70.42%, respectively. The outcomes from our study demonstrate that Fenton process is a promising method for the purification of wastewater containing thallium and EDTA.

  13. Hybrid biosorbents for removal of pollutants and remediation

    Science.gov (United States)

    Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda

    2014-05-01

    For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of

  14. Role of fly ash in the removal of organic pollutants from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    M. Ahmaruzzaman [National Institute of Technology, Silchar (India). Department of Chemistry

    2009-03-15

    Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

  15. Removal of organic pollutants from produced water using Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Afzal Talia

    2018-01-01

    Full Text Available Produced water (PW is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L, [H2O2]/[Fe2+] molar ratio (2 to 75, and reaction time (30 to 200 minutes, on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O and hydrogen peroxide (H2O2 were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  16. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  17. Removal of pollutants from poor quality coals by pyrolysis

    Directory of Open Access Journals (Sweden)

    Natas Panagiotis

    2006-01-01

    Full Text Available Combustion of poor quality coals and wastes is used today worldwide for energy production. However, this entails significant environmental risks due to the presence of polluting compounds in them, i. e. S, N, Hg, and Cl. In the complex environment of combustion these substances are forming conventional (i. e. SOx, NOx and toxic (PCDD/Fs pollutants, while, the highly toxic Hg is volatilized in the gas phase mainly as elemental mercury. Aiming to meet the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique, based on low temperature carbonization, has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900 °C and residence time (5-120 minutes on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg, and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermo gravimetric analyzer. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury, and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600 °C. More-over, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600 °C for ~20 minutes may be considered sufficient for clean

  18. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J Y; Kim, Y S [Hanyang Univ., Seoul (Korea, Republic of); Bae, K K; Yang, M S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  19. Multiple pollutant removal using the condensing heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jankura, B. J. [McDermott Technology Inc., Alliance, OH (United States); Kudlac, G. A. [McDermott Technology Inc., Alliance, OH (United States); Bailey, R. T. [McDermott Technology Inc., Alliance, OH (United States)

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the

  20. A Targeted "Capture" and "Removal" Scavenger toward Multiple Pollutants for Water Remediation based on Molecular Recognition.

    Science.gov (United States)

    Wang, Jie; Shen, Haijing; Hu, Xiaoxia; Li, Yan; Li, Zhihao; Xu, Jinfan; Song, Xiufeng; Zeng, Haibo; Yuan, Quan

    2016-03-01

    For the water remediation techniques based on adsorption, the long-standing contradictories between selectivity and multiple adsorbability, as well as between affinity and recyclability, have put it on weak defense amid more and more severe environment crisis. Here, a pollutant-targeting hydrogel scavenger is reported for water remediation with both high selectivity and multiple adsorbability for several pollutants, and with strong affinity and good recyclability through rationally integrating the advantages of multiple functional materials. In the scavenger, aptamers fold into binding pockets to accommodate the molecular structure of pollutants to afford perfect selectivity, and Janus nanoparticles with antibacterial function as well as anisotropic surfaces to immobilize multiple aptamers allow for simultaneously handling different kinds of pollutants. The scavenger exhibits high efficiencies in removing pollutants from water and it can be easily recycled for many times without significant loss of loading capacities. Moreover, the residual concentrations of each contaminant are well below the drinking water standards. Thermodynamic behavior of the adsorption process is investigated and the rate-controlling process is determined. Furthermore, a point of use device is constructed and it displays high efficiency in removing pollutants from environmental water. The scavenger exhibits great promise to be applied in the next generation of water purification systems.

  1. Removal of heavy metals and pollutants by membrane adsorption techniques

    Science.gov (United States)

    Khulbe, K. C.; Matsuura, T.

    2018-03-01

    Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

  2. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  3. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  4. Efficiency of WWTP to remove emerging pollutants in wastewater

    Science.gov (United States)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Recently some compounds that are extensively used are considered emerging pollutants since are at low concentrations and have been little studied. Pharmaceuticals and personal care products are classified as this kind of pollutants and most of these are excreted through urine or feces and come to end up to treatment plants. Recent studies indicates that pharmaceuticals, personal care products or illicit drugs from Waste Water Treatment Plants (WWTP) are a considerable chemical pollution in surface [1, 2]. The purpose of this study is to determine the removal efficiency for two WWT of Pinedo I and II, Valencia (Spain). After obtaining the results of analysis by an Agilent 1260 HPLC in tandem with a 6410 MS/MS triple quad, a simple mathematical operation with the influents and effluents is performed. This operation consists in subtracted from the influent, the effluent, divided by the result of the influent and this multiply by 100. Results are expressed as a percentage with its 95 % confidence interval (CI). The influent and effluent of the samples were filtered with a 0.50 μm glass fiber filter of 90 mm by Advantec (Minato-ku, Tokyo, Japan). After filtration, 250ml of this water is extracted through a SPE. SPE was performed with Strata-X 33U Polymeric Reversed Phase (200 mg/6 mL) from Phenomenex. These cartridges were conditioned with 6 mL of methanol and 6 mL of distilled water. Extracts were eluted with 6mL of Methanol and evaporated with compressed air. The residue was reconstituted with 1 mL of methanol-water (30:70, v/v). The removal efficiencies depend on the type of the compound, these rates remain between 23% and 100%. In some cases, removal efficiency is negative since some compounds are accumulated in the sludge and these have more concentration. Tertiary treatment including UV disinfection could efficiently reduce most of the residual pharmaceuticals below their quantification limits. Acknowledgments This work has been supported by the Spanish Ministry

  5. Drugs in Your Drinking Water: Removing Pharmaceutical Pollution

    Science.gov (United States)

    Richardson, K.

    2017-12-01

    Pharmaceuticals, mostly estrogen-based hormones and antibiotics, are increasingly polluting waterways and contaminating municipal drinking water sources. A 2008 study funded by the American Water Works Association Research Foundation and the WateReuse Foundation tested 19 drinking water treatment plants across the United States. The study found pharmaceuticals and metabolites at all of the locations tested. These plants provide drinking water for over 28 million Americans - yet only five states test for pharmaceuticals. A 2007 US Government Accountability Office study of male smallmouth bass showed ovarian tissue in their gonads and concluded the combination of EDCs (Endocrine Disrupting Chemicals) likely caused the feminization of the male fish. The purpose of this project is to determine whether bivalves can effectively remove pharmaceuticals as well as other CECs (Contaminants of Emerging Concern).Pharmaceuticals, specifically ibuprofen, were found to be resistant to chemical and mechanical filtration methods, such as coffee grounds and activated carbon, so biological filtration methods are used. Three types of common mollusks (Sphaeriidae `fingernail clams', freshwater mussels, scallops) will be used to assess the potential for biological remediation of the chemical pollutants. Fifteen specimens of each species will be used - a total of 45 individuals. Each group of five will be introduced to either an NSAID (ibuprofen), oil (vegetable) or hormone (estrogen, pending approval). This creates an array of 3 species and 3 contaminants, for a 3x3 grid of nine sample groups. Water is contaminated with pollutant levels similar to EPA measurements. The concentration will be measured before and after the introduction of the specimens using a UV spectrophotometer, at regular time intervals. As mollusks are capable of filtering up to two liters of water a day, the 37.8 liter tanks are filtered at a rate of 10 liters a day. A successful trial of bivalves reducing and

  6. Air pollution removal by urban trees and shrubs in the United States

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane; Jack C. Stevens

    2006-01-01

    A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality. Pollution removal (03, PM10, NO2, SO2, CO)...

  7. Study of the removal of metronidazole from aqueous solutions using Electro/ Fenton process and graphite and iron electrodes

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2018-04-01

    Conclusion: The Electro-Fenton process can effectively remove metronidazole from aquatic solutions in environmentally convenient conditions. This process can be used as an efficient method for removing other persistent pollutants from the environment.

  8. Microbial processes in coastal pollution

    International Nuclear Information System (INIS)

    Capone, D.G.; Bauer, J.E.

    1992-01-01

    In this chapter, the authors describe the nature and range of some of the interactions that can occur between the microbiota and environmental contaminants in coastal areas. The implications of such interactions are also discussed. Pollutant types include inorganic nutrients, heavy metals, bulk organics, organic contaminants, pathogenic microorganisms and microbial pollutants. Both the effects of pollutants such as petroleum hydrocarbons on natural microbial populations and the mitigation of contaminant effects by complexation and biodegradation are considered. Finally, several areas of emerging concerns are presented that involve a confluence of biogeochemistry, microbial ecology and applied and public health microbiology. These concerns range in relevance from local/regional to oceanic/global scales. 308 ref

  9. Method for removing trihalomethanes and/or emerging pollutants using plasma

    OpenAIRE

    Bayona Termens, Josep María; Molina, Ricardo; Erra Serrabasa, Pilar; Bertrán, Enric; Jover Comas, Eric; Reyes Contreras, Carolina

    2009-01-01

    [EN] The invention relates to a method for removing trihalomethanes and refractory pollutants from aqueous environments by the direct application ofplasma in order to break down the polluting compounds in the water.

  10. Investigation on the efficiency of treated Palm Tree waste for removal of organic pollutants

    Science.gov (United States)

    Azoulay, Karima; El HajjajiI, Souad; Dahchour, Abdelmalek

    2017-04-01

    Development of the industrial sector generates several problems of environmental pollution. This issue rises concern among scientific community and decision makers, in this work; we e interested in water resources polluted by the chemical substances, which can cause various problems of health. As an example, dyes generated by different industrial activities such as textile, cosmetic, metal plating, leather, paper and plastic sectors, constitute an important source of pollution. In this work, we aim at investigating the efficiency of palm tree waste for removal of dyes from polluted solution. Our work presents a double environmental aspect, on one hand it constitutes an attempt for valorization of Palm Tree waste, and on the other hand it provides natural adsorbent. The study focuses on the effectiveness of the waste in removing Methylene Bleu and Methyl Orange taken as models of pollutants from aqueous solution. Kinetics and isotherm experiments were conducted in order to determine the sorption behavior of the examined dye. The effects of initial dye and adsorbent concentrations are considered. The results indicate that the correlation coefficient calculated from pseudo-second order equation was higher than the other kinetic equations, indicating that equilibrium data fitted well with pseudo-second order model where adsorption process was chemisorption. The adsorption equilibrium was well described by Langmuir isotherm model.

  11. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.

    Science.gov (United States)

    Nidheesh, P V; Singh, T S Anantha

    2017-08-01

    Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Removal of heavy-metal pollutants from ground water using a reverse-osmosis/coupled-transport hybrid system

    International Nuclear Information System (INIS)

    Edlund, D.J.; Friesen, D.T.; Ray, R.J.; Scholfield, R.W.

    1993-01-01

    Two membrane processes - reverse osmosis (RO) and coupled transport (CT) - are useful in removing heavy metals from aqueous solutions and producing purified water. Each process has advantages. RO produces clean water reliably and relatively inexpensively. However, the pollutants are removed nonselectively and cannot be appreciably concentrated. CT removes pollutants selectively and can concentrate them by several orders of magnitude, but CT suffers from limited reliability and performs poorly at low pollutant concentrations. By combining these two unit processes in a hybrid process, it is possible to capitalize on the advantages of each process and to minimize their disadvantages. The RO/CT hybrid process the authors are developing removes more than 98% of the uranium and chromium in a contaminated groundwater stream - reducing concentrations of each pollutant to less than 100 ppb. These pollutants are simultaneously recovered as a concentrate at metal-ion concentrations greater than 1 wt% in relatively pure form. The hybrid process promises to be reliable and to reduce treatment costs below that for costs if either CT or RO were used alone. Even more importantly, the high selectivity of the hybrid process minimizes the volume of waste requiring disposal

  13. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  14. Linking phytoremediated pollutant removal to biomass economic opportunities

    International Nuclear Information System (INIS)

    Licht, Louis A.; Isebrands, J.G.

    2005-01-01

    Phytoremediation (phyto) strategies employ trees, shrubs, and/or grasses for treating contaminated air, soil, or water. These strategies include buffers, vegetation filters, in situ phytoremediation plantings, and percolation controlling vegetative caps. The design parameter that separates phytoremediation from landscaping is purposefully placing and growing a root-zone reactor volume with predictable pollutant removal performance. This phyto reactor integrates with other engineered systems to cover landfills, treat petrochemical spills in soils, intercept a soluble subsurface plume, and capture non-point surface sediment entrained in urban or field runoff. There are many potential economic opportunities for biomass associated with phytoremediation, including bioenergy and traditional industrial products such as solid wood products and reconstituted products (i.e., paper, chip board, laminated beams, extruded trim). More intangibly, phyto creates environmental benefits such as soil erosion control, carbon sequestration, and wildlife habitat. Phyto also creates socio-economic benefits by diversify regional manufacturing into new products that employs local labor, thus building value-added industry. Alternative crops develop a greater diversity of products from the farmland, making the regional economy less exposed to global commodity crop price fluctuations. Thus, a strategic phyto treatment of non-point agricultural runoff would help diversify land use from annually tilled crops (corn, soybeans, wheat) into perennial, untilled tree crops. A landscape rebuilt using phyto would create diversity represented in business potential, healthier air and water, wildlife habitat, and aesthetics. Moreover, phyto provides local and current pollutant treatment. Such timely treatment of pollutants that would otherwise move to our downstream or downwind neighbors is key to the environmental justice concept. We present four case study summaries to illustrate installed commercial

  15. Removal of mineral oil and wastewater pollutants using hard coal

    Directory of Open Access Journals (Sweden)

    BRANISLAV R. SIMONOVIĆ

    2009-05-01

    Full Text Available This study investigates the use of hard coal as an adsorbent for removal of mineral oil from wastewater. In order to determine the efficiency of hard coal as an adsorbent of mineral oil, process parameters such as sorption capacity (in static and dynamic conditions, temperature, pH, contact time, flow rate, and chemical pretreatment were evaluated in a series of batch and continuous flow experiments. There were significant differences in the mineral oil removal for various pH values examined. The adsorption of mineral oil increased as pH values diverged from 7 (neutral. At lower temperatures, the adsorption was notably higher. The wastewater flow rate was adjusted to achieve optimal water purification. Equilibrium was reached after 10 h in static conditions. At that time, more than 99% of mineral oil had been removed. At the beginning of the filtering process, the adsorption rate increased rapidly, only to show a minor decrease afterwards. Equilibrium data were fitted to Freundlich models to determine the water-hard coal partitioning coefficient. Physical adsorption caused by properties of the compounds was the predominant mechanism in the removal process.

  16. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  17. Process and system for removing tritium

    International Nuclear Information System (INIS)

    Ridgely, J.N.

    1976-01-01

    A process and system for removing tritium, particularly from high temperature gas cooled atomic reactors (HTGR), is disclosed. Portions of the reactor coolant, which is permeated with the pervasive tritium atom, are processed to remove the tritium. Under conditions of elevated temperature and pressure, the reactor coolant is combined with gaseous oxygen, resulting in the formation of tritiated water vapor from the tritium in the reactor coolant and the gaseous oxygen. The tritiated water vapor and the remaining gaseous oxygen are then successively removed by fractional liquefaction steps. The reactor coolant is then recirculated to the reactor

  18. The use of gamma radiation and polymeric materials in the removal of some toxic pollutants from polluted water

    International Nuclear Information System (INIS)

    Mohamed, M. E.M.

    2002-01-01

    Gamma radiation degradation of polluted water containing different anionic detergents (Texapon, Acyl Sarcoside, Diethanol Amide of Coconut Fatty Acid, Alkyl Sulfonate and Leonil UN-ET) and non-ionic detergents (Alkyl Polyglycol Ether, Hostapal SF-ET, Hostapal CV-ET and Tween-60) were studied as a function of the detergent Concentration, Ph, dose and dose rate. The synergistic effects resulting from adding different additives such as nitrogen, oxygen and hydrogen peroxide on the degradation process were investigated and showed that radiation degradation resulted in degrading the pollutants to a high extent (Between 80-95%). The ability of using Granular Activated Carbon, Agricultural By Products (Sugar Cane Bagasse and Rice Straw), Ion Exchange Resins (Merck II, III and IV) and the grafted polymeric membranes from Low Density Polyethylene were carried out. From the results, It can be concluded that, the gamma radiation coupled with adsorption was the best method for removing these pollutants and down their concentrations below the maximum permissible value according to the FAO regulations than the adsorption process alone and it was the most economic one

  19. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  20. Removal of silver nanoparticles by coagulation processes

    International Nuclear Information System (INIS)

    Sun, Qian; Li, Yan; Tang, Ting; Yuan, Zhihua; Yu, Chang-Ping

    2013-01-01

    Highlights: • This study investigated the removal of AgNP suspensions by four regular coagulants. • The optimal removal efficiencies for the four coagulants were achieved at pH 7.5. • The removal efficiency of AgNPs was affected by the natural water characteristics. • TEM and XRD showed that AgNPs or silver-containing NPs were adsorbed onto the flocs. -- Abstract: Commercial use of silver nanoparticles (AgNPs) will lead to a potential route for human exposure via potable water. Coagulation followed by sedimentation, as a conventional technique in the drinking water treatment facilities, may become an important barrier to prevent human from AgNP exposures. This study investigated the removal of AgNP suspensions by four regular coagulants. In the aluminum sulfate and ferric chloride coagulation systems, the water parameters slightly affected the AgNP removal. However, in the poly aluminum chloride and polyferric sulfate coagulation systems, the optimal removal efficiencies were achieved at pH 7.5, while higher or lower of pH could reduce the AgNP removal. Besides, the increasing natural organic matter (NOM) would reduce the AgNP removal, while Ca 2+ and suspended solids concentrations would also affect the AgNP removal. In addition, results from the transmission electron microscopy and X-ray diffraction showed AgNPs or silver-containing nanoparticles were adsorbed onto the flocs. Finally, natural water samples were used to validate AgNP removal by coagulation. This study suggests that in the case of release of AgNPs into the source water, the traditional water treatment process, coagulation/sedimentation, can remove AgNPs and minimize the silver ion concentration under the well-optimized conditions

  1. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    OpenAIRE

    Ebrahiem E. Ebrahiem; Mohammednoor N. Al-Maghrabi; Ahmed R. Mobarki

    2017-01-01

    The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process) for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2) dose, ferrous sulfate (FeSO4·7H2O) dose, Initial dye concentration, an...

  2. Estimating Air Pollution Removal Through an Analysis of Vegetation Communities in Government Canyon State Natural Area

    Science.gov (United States)

    Medrano, Nicolas W.

    Ambient air pollution is a major issue in urban environments, causing negative health impacts and increasing costs for metropolitan economies. Vegetation has been shown to remove these pollutants at a substantial rate. This study utilizes the i-Tree Eco (UFORE) and i-Tree Canopy models to estimate air pollution removal services provided by trees in Government Canyon State Natural Area (GCSNA), an approximately 4,700 hectare area in San Antonio, Texas. For i-Tree Eco, a stratified project of the five prominent vegetation types was completed. A comparison of removal services provided by vegetation communities indicated there was no significant difference in removal rates. Total pollution removal of GCSNA was estimated to be 239.52 metric tons/year at a rate of 64.42 kg/ha of tree cover/year. By applying this value to the area within Bexar County, Texas belonging to the Balcones Canyonlands ecoregion, it was determined that for 2013 an estimated 2,598.45 metric tons/year of air pollution was removed at a health value to society of 19.4 million. This is a reduction in pollution removal services since 2003, in which 3,050.35 metric tons/year were removed at a health value of 22.8 million. These results suggest urban sprawl taking place in San Antonio is reducing air pollution removal services provided by trees.

  3. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    Science.gov (United States)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  4. Influence of microbial community diversity and function on pollutant removal in ecological wastewater treatment.

    Science.gov (United States)

    Bai, Yaohui; Huo, Yang; Liao, Kailingli; Qu, Jiuhui

    2017-10-01

    Traditional wastewater treatments based on activated sludge often encounter the problems of bulking and foaming, as well as malodor. To solve these problems, new treatment technologies have emerged in recent decades, including the ecological wastewater treatment process, which introduces selected local plants into the treatment system. With a focus on the underlying mechanisms of the ecological treatment process, we explored the microbial community biomass, composition, and function in the treatment system to understand the microbial growth in this system and its role in pollutant removal. Flow cytometry analysis revealed that ecological treatment significantly decreased influent bacterial quantity, with around 80% removal. 16S rRNA gene sequencing showed that the ecological treatment also altered the bacterial community structure of the wastewater, leading to a significant change in Comamonadaceae in the effluent. In the internal ecological system, because most of microbes aggregate in the plant rhizosphere and the sludge under plant roots, we selected two plant species (Nerium oleander and Arundo donax) to study the characteristics of rhizosphere and sludge microbes. Metagenomic results showed that the microbial community composition and function differed between the two species, and the microbial communities of A. donax were more sensitive to seasonal effects. Combined with their greater biomass and abundance of metabolic genes, microbes associated with N. oleander showed a greater contribution to pollutant removal. Further, the biodegradation pathways of some micropollutants, e.g., atrazine, were estimated.

  5. A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence.

    Science.gov (United States)

    Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Ruan, Wenqian; Wei, Xionghui

    2018-06-01

    Water pollution occurs mainly due to inorganic and organic pollutants, such as nutrients, heavy metals and persistent organic pollutants. For the modeling and optimization of pollutants removal, artificial intelligence (AI) has been used as a major tool in the experimental design that can generate the optimal operational variables, since AI has recently gained a tremendous advance. The present review describes the fundamentals, advantages and limitations of AI tools. Artificial neural networks (ANNs) are the AI tools frequently adopted to predict the pollutants removal processes because of their capabilities of self-learning and self-adapting, while genetic algorithm (GA) and particle swarm optimization (PSO) are also useful AI methodologies in efficient search for the global optima. This article summarizes the modeling and optimization of pollutants removal processes in water treatment by using multilayer perception, fuzzy neural, radial basis function and self-organizing map networks. Furthermore, the results conclude that the hybrid models of ANNs with GA and PSO can be successfully applied in water treatment with satisfactory accuracies. Finally, the limitations of current AI tools and their new developments are also highlighted for prospective applications in the environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  7. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Geochemical processes controlling minewater pollution

    International Nuclear Information System (INIS)

    Banks, D.

    2004-01-01

    Minewater is a subset of groundwater, subject to broadly similar hydrochemical processes. In 'normal' groundwaters, access to oxidizing species is poor and acid-base reactions tend to dominate over oxidation reactions. Acid-base reactions such as carbonate dissolution and silicate hydrolysis consume protons and carbon dioxide, and release alkalinity and base cations. In mines, the atmospheric environment is rapidly introduced to the deep reducing geosphere (or vice versa in the case of mine waste deposits). This carries the possibility of intense and rapid oxidation of sulphide minerals such as pyrite, to such an extent that these acid-generating redox reactions may dominate over acid-base 'neutralization' reactions and result in the phenomenon of 'acid rock drainage' (ARD). In ARD, a negative correlation is typically observed between pH and concentrations of many metals and metalloids, base cations and sulphate. This correlation is due to genetic co-variation - generation of protons, sulphate and metals in sulphide weathering reactions, pH-dependent solubility of many ARD-related metals and low pH intensifying carbonate dissolution and silicate hydrolysis to release aluminium, silica and base cations. This paper examines the reactions involved in ARD generation and neutralization, and attempts to clarify key concepts such as pH, Eh, alkalinity, acidity and equilibrium constants. Refs. 42 (author)

  9. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining

  10. Bacteriophages as indicators of faecal pollution and enteric virus removal.

    Science.gov (United States)

    McMinn, B R; Ashbolt, N J; Korajkic, A

    2017-07-01

    Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal. © 2017 The Society for Applied Microbiology.

  11. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials

    Directory of Open Access Journals (Sweden)

    M. T. Amin

    2014-01-01

    Full Text Available The rapidly increasing population, depleting water resources, and climate change resulting in prolonged droughts and floods have rendered drinking water a competitive resource in many parts of the world. The development of cost-effective and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Traditional water/wastewater treatment technologies remain ineffective for providing adequate safe water due to increasing demand of water coupled with stringent health guidelines and emerging contaminants. Nanotechnology-based multifunctional and highly efficient processes are providing affordable solutions to water/wastewater treatments that do not rely on large infrastructures or centralized systems. The aim of the present study is to review the possible applications of the nanoparticles/fibers for the removal of pollutants from water/wastewater. The paper will briefly overview the availability and practice of different nanomaterials (particles or fibers for removal of viruses, inorganic solutes, heavy metals, metal ions, complex organic compounds, natural organic matter, nitrate, and other pollutants present in surface water, ground water, and/or industrial water. Finally, recommendations are made based on the current practices of nanotechnology applications in water industry for a stand-alone water purification unit for removing all types of contaminants from wastewater.

  12. Calculation of pollutant removal during groundwater restoration with adsorption and ion exchange

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1982-01-01

    A technique is presented for calculating pollutant removal rates during groundwater restoration processes. The hydraulic information required by the method is obtained from the conservative tracer breakthrough curve for a flow system. The influence of adsorption and ion exchange chemistry on species transport is included through application of the method of characteristics. The combined result gives the effluent concentration at a production well as a function of time during a restoration project. The method is applicable for any well pattern and its economy is such that a pencil and paper calculation will suffice for yielding quantitative answers for complex flow problems. The method is applied to calculate ammonium removal rates for site restoration by recirculation with chemical sweeps following in situ leach mining of uranium

  13. Processes subject to integrated pollution control. Petroleum processes: oil refining and associated processes

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, (HMIP) focuses on petroleum processes such as oil refining and other associated processes. The various industrial processes used, their associated pollution release routes into the environment and techniques for controlling these releases are all discussed. Environmental quality standards are related to national and international agreements on pollution control and abatement. HMIP's work on air, water and land pollution monitoring is also reported. (UK)

  14. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  15. Air pollution removal by trees in public green spaces in Strasbourg city, France

    Science.gov (United States)

    Wissal Selmi; Christiane Weber; Emmanuel Riviere; Nadege Blond; Lotfi Mehdi; David Nowak

    2016-01-01

    This study integrates i-Tree Eco model in order to estimate air pollution removal by urban trees in Strasbourg city, France. Applied for the first time in a French city, the model shows that public trees, i.e., trees managed by the city, removed about 88 t of pollutants during one year period (from July 2012 to June 2013): about 1 ton for CO; 14 tons for NO2...

  16. Process for removing mercury from aqueous solutions

    Science.gov (United States)

    Googin, John M.; Napier, John M.; Makarewicz, Mark A.; Meredith, Paul F.

    1986-01-01

    A process for removing mercury from water to a level not greater than two parts per billion wherein an anion exchange material that is insoluble in water is contacted first with a sulfide containing compound and second with a compound containing a bivalent metal ion forming an insoluble metal sulfide. To this treated exchange material is contacted water containing mercury. The water containing not more than two parts per billion of mercury is separated from the exchange material.

  17. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    Science.gov (United States)

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  19. Oil palm biomass-based adsorbents for the removal of water pollutants--a review.

    Science.gov (United States)

    Ahmad, Tanweer; Rafatullah, Mohd; Ghazali, Arniza; Sulaiman, Othman; Hashim, Rokiah

    2011-07-01

    This article presents a review on the role of oil palm biomass (trunks, fronds, leaves, empty fruit bunches, shells, etc.) as adsorbents in the removal of water pollutants such as acid and basic dyes, heavy metals, phenolic compounds, various gaseous pollutants, and so on. Numerous studies on adsorption properties of various low-cost adsorbents, such as agricultural wastes and its based activated carbons, have been reported in recent years. Studies have shown that oil palm-based adsorbent, among the low-cost adsorbents mentioned, is the most promising adsorbent for removing water pollutants. Further, these bioadsorbents can be chemically modified for better efficiency and can undergo multiple reuses to enhance their applicability at an industrial scale. It is evident from a literature survey of more than 100 recent papers that low-cost adsorbents have demonstrated outstanding removal capabilities for various pollutants. The conclusion is been drawn from the reviewed literature, and suggestions for future research are proposed.

  20. Effects of dissolved oxygen concentration on photosynthetic bacteria wastewater treatment: Pollutants removal, cell growth and pigments production.

    Science.gov (United States)

    Meng, Fan; Yang, Anqi; Zhang, Guangming; Wang, Hangyao

    2017-10-01

    Dissolved oxygen (DO) is an important parameter in photosynthetic bacteria (PSB) wastewater treatment. This study set different DO levels and detected the pollutants removal, PSB growth and pigments production. Results showed that DO significantly influenced the performances of PSB wastewater treatment process. The highest COD (93%) and NH 3 -N removal (83%) was achieved under DO of 4-8mg/L, but DO of 2-4mg/L was recommended considering the aeration cost. PSB biomass reached 1645mg/L under DO of 4-8mg/L with satisfying co-enzyme Q10 content. The biomass yield was relatively stable at all DO levels. For bacteriochlorophyll and carotenoids, DO>1mg/L could satisfy their production. On the other hand, DOpigments production occurred at 24h; biomass reached peak at 48h; and the optimal time for pollutants removal was 72h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. REDUCING ARSENIC LEVELS IN DRINKING WATER DURING IRON REMOVAL PROCESSES

    Science.gov (United States)

    The presentation provides an overview of iron removal technology for the removal of arsenic from drinking water. The presentation is divided into several topic topics: Arsenic Chemistry, Treatment Selection, Treatment Options, Case Studies and Iron Removal Processes. Each topic i...

  2. Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants.

    Science.gov (United States)

    Tymczyna, Leszek; Chmielowiec-Korzeniowska, Anna; Drabik, Agata; Skórska, Czesława; Sitkowska, Jolanta; Cholewa, Grazyna; Dutkiewicz, Jacek

    2007-01-01

    The present research assessed the treatment efficiency of odorogenous pollutants in air from a hatchery hall vented on organic and organic-mineral beds of an enclosed-container biofilter. In this study, the following media were used: organic medium containing compost and peat (OM); organic-mineral medium containing bentonite, compost and peat (BM); organic-mineral medium containing halloysite, compost and peat (HM). The concentration of odorogenous gaseous pollutants (sulfur compounds and amines) in the hatching room air and in the air after biotreatment were determined by gas chromatography. In the hatchery hall among the typical odorogenous pollutants, there were determined 2 amines: 2-butanamine and 2-pentanamine, hydrogen sulfide, sulfur dioxide, carbon disulfide, sulfides and mercaptans. Ethyl mercaptan showed the highest levels as its mean concentration in the hatchery hall air exceeded 60 microg/m3 and in single samples even 800 microg/m3. A mean concentration of 2-butanamine and sulfur dioxide in the examined air also appeared to be relatively high--21.405 microg/m3 and 15.279 microg/m3, respectively. In each filter material, the air treatment process ran in a different mode. As the comparison reveals, the mean reduction of odorogenous contaminants recorded in the hall and subjected to biotreatment was satisfying as it surpassed 60% for most established pollutants. These high removal values were confirmed statistically only for single compounds. However, a low removal level was reported for hydrogen sulfide and sulfur dioxide. No reduction was recorded in the bentonite supplemented medium (BM) for sulfur dioxide and methyl mercaptan. In the organic medium (OM) no concentration fall was noted for dipropyl sulfide either. In all the media investigated, the highest removal rate (100%), not confirmed statistically, was observed for carbon disulfide. Very good results were obtained in the medium with a bentonite additive (BM) for both identified amines, whose

  3. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    Science.gov (United States)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  4. Sanitation of overburden dumps containing organic pollutants. Soil pollution obstructs removal of overburden dumps at Ronneburg

    International Nuclear Information System (INIS)

    Hammami, R.; Fischer, D.

    1999-01-01

    Contamination of mineral oil hydrocarbons is a common problem in soil sanitation, and classic methods are employed as a rule. In one case, radioactivity of the polluted rock material, a wide spectrum of pollutants and a high pollutant level necessitated adapted solutions. The task was tackled in a joint effort by builder-owners, authorities, sanitation experts and scientific experts in consideration of economic and ecological aspects [de

  5. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  6. Air pollution removal by urban forests in Canada and its effect on air quality and human health

    Science.gov (United States)

    David J. Nowak; Satoshi Hirabayashi; Marlene Doyle; Mark McGovern; Jon Pasher

    2018-01-01

    Urban trees perform a number of ecosystem services including air pollution removal, carbon sequestration, cooling air temperatures and providing aesthetic beauty to the urban landscape. Trees remove air pollution by intercepting particulate matter on plant surfaces and absorbing gaseous pollutants through the leaf stomata. Computer simulations with local environmental...

  7. USE OF SYNTHETIC ZEOLITES FOR ARSENATE REMOVAL FROM POLLUTANT WATER

    Science.gov (United States)

    Arsenic is known to be a hazardous contaminant in drinking water that causes arsenical dermatitis and skin cancer. In the present work, the potential use of a variety of synthetic zeolites for removal of arsenic from water below the current and proposed EPA MCL has been examined...

  8. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    International Nuclear Information System (INIS)

    Zhang, Shengxiao; Zhang, Yuanyuan; Bi, Guoming; Liu, Junshen; Wang, Zhigang; Xu, Qiang; Xu, Hui; Li, Xiaoyan

    2014-01-01

    Highlights: • The Fe 3 O 4 /PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe 3 O 4 /PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe 3 O 4 /PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe 3 O 4 /PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe 3 O 4 /PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe 3 O 4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe 3 O 4 /PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu 2+ , Ag + , and Hg 2+ were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g −1 , respectively. The Fe 3 O 4 /PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation

  9. Impact of carbon-dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola Casas, Monica; Torresi, Elena; Plósz, Benedek G.

    and indigenous micro-pollutants concentrations, different methanol and ethanol dosages were used to manipulate the carbon-to-nitrate ratio in two MBBRs. Atenolol, citalopram and trimethoprim were efficiently removed in both reactors. However, type or concentration of carbon did not correlate to micro......-pollutant removal rates. Second, an anoxic-batch test with spiked micropollutants was conducted. The batch test showed that acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily removed in both reactors. Ibuprofen, clarithromycin, iopromide, metoprolol, iohexol, iomeprol, venlafaxine......, erythromycin and sotalol were moderately removed while diatrizoic acid, iopamidol, carbamazepine and diclofenac showed to be hardly biodegradable. The fact that both reactors gave similar removal rate constants for easily degradable compounds, could suggest that diffusion through the biofilm determined...

  10. Solar photo-catalysis to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Lopez, F. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, EPSA-UPV, Paseo del Viaducto 1, E-03801 Alcoy (Spain); Miranda, M.A. [Departamento de Quimica, Instituto de Tecnologia Quimica, Universidad Politecnica de Valencia, UPV-CSIC, 46071 Valencia (Spain)

    2005-10-01

    Solar degradation of effluents in board paper industries has been studied using different photo-catalysts: Fenton reagent and TiO{sub 2}. p-Toluenesulfonic acid was chosen as a model compound for sulfonated pollutants already present in the incoming waters. The abatement of a 0.005M solution of this pollutant after 6h was found to be 47% for photo-Fenton and 27% for TiO{sub 2} (pseudo-first-order rate constants 0.002 and 0.001min{sup -1}, respectively). Eugenol and guaiacol were chosen as models for lignin degradation products. They were efficiently degraded by both photo-catalysts, and reaction rates were higher for eugenol (0.0024min{sup -1}) than for guaiacol (0.0018min{sup -1}). A solution of sodium acetate, sodium butyrate and d-glucose was chosen to study the effect of photo-catalysis towards volatile fatty acids and saccharides arising from starch degradation. In this case a clearly worse performance was observed: only 20% degradation was observed after 7h of treatment. When the real wastewater was treated with photo-catalytic methods, the best performance was obtained in closed circuits, when the COD values were higher. This fact can be explained by taking into account that closure of the circuits results in an accumulation of reluctant phenolic pollutants, while starch derivatives are continuously degraded by microorganisms in the circuits; as phenolic compounds are more easily degraded by photo-catalytic means, these methods are suitable for closed circuits. Finally, changes in the BOD{sub st} were determined by means of active sludges respirometry. A noticeable BOD{sub st} increase (30-50%) was observed in all cases, attributable to chemical oxidation of biodegradable species. (author)

  11. Process for removing polychlorinated biphenyls from soil

    Science.gov (United States)

    Hancher, C.W.; Saunders, M.B.; Googin, J.M.

    1984-11-16

    The present invention relates to a method of removing polychlorinated biphenyls from soil. The polychlorinated biphenyls are extracted from the soil by employing a liquid organic solvent dispersed in water in the ratio of about 1:3 to 3:1. The organic solvent includes such materials as short-chain hydrocarbons including kerosene or gasoline which are immiscible with water and are nonpolar. The organic solvent has a greater affinity for the PCB's than the soil so as to extract the PCB's from the soil upon contact. The organic solvent phase is separated from the suspended soil and water phase and distilled for permitting the recycle of the organic solvent phase and the concentration of the PCB's in the remaining organic phase. The present process can be satisfactorily practiced with soil containing 10 to 20% petroleum-based oils and organic fluids such as used in transformers and cutting fluids, coolants and the like which contain PCB's. The subject method provides for the removal of a sufficient concentration of PCB's from the soil to provide the soil with a level of PCB's within the guidelines of the Environmental Protection Agency.

  12. Comparison of electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Lepkova, Katarina; Kubal, Martin

    2006-01-01

    Electrokinetic remediation methods for removal of heavy metals from polluted soils have been subjected for quite intense research during the past years since these methods are well suitable for fine-grained soils where other remediation methods fail. Electrodialytic remediation is an electrokinetic...... remediation method which is based on applying an electric DC field and the use of ion exchange membranes that ensures the main transport of heavy metals to be out of the pollutes soil. An experimental investigation was made with electrodialytic removal of Cu from spiked kaolinite, spiked soil and industrially...... polluted soil under the same operational conditions (constant current density 0.2 mA/cm2 and duration 28 days). The results of the present paper show that caution must be taken when generalising results obtained in spiked kaolinite to remediation of industrially polluted soils, as it was shown...

  13. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  14. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  15. Co3O4/reduced graphene oxide nanocomposite for removal of organic pollutants from aqueous medium

    Science.gov (United States)

    Mishra, Amodini; Kuanr, B. K.; Mohanty, T.

    2017-05-01

    The magnetic nanocomposite (MNC) of cobalt oxide/graphene oxide (Co3O4/rGO) has been synthesized by hydrothermal method to demonstrate its use as organic pollutants remover. The phase formation of the cobalt oxide magnetic nanoparticles (MNPs) has been confirmed by X-ray diffraction (XRD) analysis. The nanocomposite has been characterized by Raman spectroscopic technique and two Raman peaks associated with graphene oxide are observed. The morphological study of the nanocomposite has been done using scanning electron microscope (SEM). The nanocomposite has been used for removal of organic pollutants from aqueous medium by using ultra-violet spectroscopy.

  16. removal of hazardous pollutants from industrial waste solutions using membrane techniques

    International Nuclear Information System (INIS)

    Selim, Y.T.M.

    2001-01-01

    the removal of hazardous pollutants from industrial waste solutions is of essential demand field for both scientific and industrial work. the present work includes detailed studies on the possible use of membrane technology especially liquid emulsion membrane for the removal of hazardous pollutants such as; cadmium , cobalt , lead, copper and uranium from different industrial waste solution . this research can be applied for mixed waste problems. the work carried out in this thesis is presented in three main chapters, namely introduction, experimental and results and discussion

  17. Vehicle for removing pollutants, especially oil, from the surface of waters

    Energy Technology Data Exchange (ETDEWEB)

    Cornelissen, J

    1968-11-28

    A vessel for removing pollutants from the surface of water consists of wings extending transversally from the axis of the vessel. The wings are partially immersed in the water and are arranged at an angle, so that when the vessel is in motion, the oil is driven over the upper edge of the wing into a separation chamber. The chamber has a circular cross section and ends in an opening in the hull of the ship, where the polluting oil is collected. The opening and the channel have such a shape that the mixture of water and pollutant enters the opening in a turbulent stream. (8 claims)

  18. Non-biological removal of organic pollutants from water

    International Nuclear Information System (INIS)

    Mersmann, A.; Kutzer, S.; Kajszika, H.; Wintrich, H.

    1995-01-01

    Contaminants present in waste water, seepage water and ground water include salts, heavy metals and organic compounds of low biodegradability. This paper considers the wide range of physico-chemical processes available for separation of such compounds from water and points out their optimal and economic range of application. Main subjects are desorption processes (air/steam stripping), adsorption processes (activated carbon, polymeric resins) and membrane separation processes. Alternative water treatment technologies (evaporation, distillation, liquid-liquid-extraction, oxidation, flocculation and precipitation) and combined processes are presented and discussed. (orig.) [de

  19. Atmospheric pollution. From processes to modelling

    International Nuclear Information System (INIS)

    Sportisse, B.

    2008-01-01

    Air quality, greenhouse effect, ozone hole, chemical or nuclear accidents.. All these phenomena are tightly linked to the chemical composition of atmosphere and to the atmospheric dispersion of pollutants. This book aims at supplying the main elements of understanding of 'atmospheric pollutions': stakes, physical processes involved, role of scientific expertise in decision making. Content: 1 - classifications and scales: chemical composition of the atmosphere, vertical structure, time scales (transport, residence); 2 - matter/light interaction: notions of radiative transfer, application to the Earth's atmosphere; 3 - some elements about the atmospheric boundary layer: notion of scales in meteorology, atmospheric boundary layer (ABL), thermal stratification and stability, description of ABL turbulence, elements of atmospheric dynamics, some elements about the urban climate; 4 - notions of atmospheric chemistry: characteristics, ozone stratospheric chemistry, ozone tropospheric chemistry, brief introduction to indoor air quality; 5 - aerosols, clouds and rains: aerosols and particulates, aerosols and clouds, acid rains and leaching; 6 - towards numerical simulation: equation of reactive dispersion, numerical methods for chemistry-transport models, numerical resolution of the general equation of aerosols dynamics (GDE), modern simulation chains, perspectives. (J.S.)

  20. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    Science.gov (United States)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  1. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.

    Science.gov (United States)

    Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki

    2008-05-01

    Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.

  2. Nano-adsorbents for the removal of metallic pollutants from water and wastewater.

    Science.gov (United States)

    Sharma, Y C; Srivastava, V; Singh, V K; Kaul, S N; Weng, C H

    2009-05-01

    Of the variety of adsorbents available for the removal of heavy and toxic metals, activated carbon has been the most popular. A number of minerals, clays and waste materials have been regularly used for the removal of metallic pollutants from water and industrial effluents. Recently there has been emphasis on the application of nanoparticles and nanostructured materials as efficient and viable alternatives to activated carbon. Carbon nanotubes also have been proved effective alternatives for the removal of metallic pollutants from aqueous solutions. Because of their importance from an environmental viewpoint, special emphasis has been given to the removal of the metals Cr, Cd, Hg, Zn, As, and Cu. Separation of the used nanoparticles from aqueous solutions and the health aspects of the separated nanoparticles have also been discussed. A significant number of the latest articles have been critically scanned for the present review to give a vivid picture of these exotic materials for water remediation.

  3. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  4. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    Science.gov (United States)

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  5. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  6. Micro-pollutant removal from wastewater treatment plant effluent by activated carbon

    NARCIS (Netherlands)

    Hu, J.

    2016-01-01

    In the recent years, the removal of micro-pollutants from treated wastewater has been highly advocated throughout Europe and the rest of the world. The relevant regulations and the suitable techniques have been proposed accordingly, which promoted the innovation of the conventional wastewater

  7. Carbon dioxide removal in gas treating processes

    International Nuclear Information System (INIS)

    Lidal, H.

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO 2 in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140 o C, for CO 2 loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO 2 into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO 2 in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO 2 /TEG/MEA system for estimation of CO 2 partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs

  8. Carbon dioxide removal in gas treating processes

    Energy Technology Data Exchange (ETDEWEB)

    Lidal, H

    1992-06-01

    The main contribution of this work is the development of a simple and reliable modelling technique on carbon dioxide removal describing the vapor-liquid equilibria of CO{sub 2} in aqueous alkanolamine solutions. By making use of measured pH data, the author has circumvented the problem of estimating interaction parameters, activity coefficients, and equilibrium constants in the prediction of vapor-liquid equilibria. The applicability of the model is best demonstrated on the tertiary amine system using MDEA. For this system, the VLE is accurately represented for temperatures in the range 25 to 140{sup o}C, for CO{sub 2} loadings from 0.001 to 1 mol/mol, and for amine molarities usually encountered in acid gas treating processes. The absorption of CO{sub 2} into solutions containing the sterically hindered amine AMP, is also well described by the model. The equilibrium of CO{sub 2} in mixed solvents containing a glycol (TEG,DEG) and an alkonolamine (MEA,DEA) has been measured at temperatures encountered in the absorption units. An equilibrium model has been developed for the CO{sub 2}/TEG/MEA system for estimation of CO{sub 2} partial pressures, covering loadings and temperatures for both absorption and desorption conditions. An important spin-off of the work described is that two new experimental set-ups have been designed and built. 154 refs., 38 figs., 22 tabs.

  9. Removal of Oil and Grease as Emerging Pollutants of Concern (EPC in Wastewater Stream

    Directory of Open Access Journals (Sweden)

    Alade Abass O

    2011-12-01

    Full Text Available Wastewater characteristics, which depend on wastewater source, are increasingly becoming more toxic in recent times. The concentrations of oil and grease in wastewater streams have been observed to increase in wastewater stream with increasing adverse effects on the ecology. This results from the increasing use of oil and grease in high-demanded oil-processed foods, establishment and expansion of oil mills and refineries worldwide, as well as indiscriminate discharge of oil and grease into the water drains, domestically and industrially. This study reports the applications, efficiencies and challenges of the wastewater treatment techniques currently employed in the removal of oil and grease from the industrial wastewater and municipal water stream. The results shows that the concentrations of oil and grease injected into the ecosystem are of higher environmental impact and this needs to be given the desired attention. The desired development for effective removal of oil and grease as emerging pollutants of concern (EPC in wastewater stream are thus proposed. ABSTRAK: Ciri-ciri air sisa, bergantung kepada punca air sisa tersebut, menjadi semakin toksik akhir-akhir ini. Kepekatan minyak dan gris dalam air sisa anak sungai dilihat makin bertambah dalam air sisa anak sungai dengan bertambahnya kesan negatif ke atas ekologi. Ini disebabkan oleh peningkatan penggunaan minyak dan gris dalam makanan berproses yang tinggi permintaannya, penubuhan dan perkembangan kilang pertroleum dan loji penapisan di seluruh dunia. Minyak dan gris juga dibuang sewenang-wenangnya ke dalam parit air, dari kalangan domestik dan industry. Kajian ini membentangkan tentang aplikasi, keberkesanan dan teknik cabaran rawatan air buangan yang kini digunakan dalam pembuangan minyak dan gris dari air sisa industry dan air sungai perbandaran. Keputusan menunjukkan kepekatan minyak dan gris yang wujud dibuang ke dalam ekosistem mempunyai impak yang lebih tinggi terhadap persekitaran

  10. Effect of flooding waves on a removal of pollutants from underwater quarries

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Parshakova, Yanina; Tiunov, Alexey

    2013-04-01

    A characteristic feature of the effects of large-scale sandy gravel extruction from water bodies is the formation of a considerable underwater quarries, that strongly changes the hydrodynamical regimes of these water bodies. Traditionally, to estimate the consequences of the formation of the quarries researchers focus on lowering of the water level at limiting hydrological regimes which have fundamental importance for ensuring the sustainability of the different water intakes. Additionally, the changes in the velocity regimes of water body are estimated from the viewpoint of minimizing the possible erosion processes. There is the Verkhnekamskoye potassium and magnesium salts deposit (the largest in Russia and the second in the world) on Kama river (Kama Reservoir) within Berezniki-Solikamsk-industrial unit. For this deposit the consideration of the formation of quarries is much more complicated because of the presence of significant natural and technogenic output of brines into the Kama reservoir. In this case it is necessary to analyze the problem of estimating the accumulation of the brines in these underwater quarries and to calculate the intensity of the removal of pollutants at their washing due to the changes in the hydrological regime of the water body. The problem of changing the hydrodynamic regime, first of all the lowering of the water level and the calculation of the flow velocity can be solved very successfully in two-and even in one-dimensional approach and the problem of washing the underwater quarries is essentially three-dimensional. In this paper we simulate the removal of contaminants from the underwater quarry. The problem is solved in the framework of unsteady approach. The calculations show that in the flow near the bottom of quarry the vortex is formed whose direction is such that the front edge of the quarry is eroded. The computations and field observations show that, the upper, rather thin (water supply of Kirov city, arises when the

  11. Use of zeolite type for the removal of air pollutants employing Cahn-1000 electro balance

    International Nuclear Information System (INIS)

    Ahmed, H.; Multani, S.K.S.

    2002-01-01

    Beside having offensive odour, organic solvents act as pollutants when present in air, and cause a number of health problems. To remove these compounds from air requires pure component equilibrium data as function of temperature and pressure. The sorption of methanol acetaldehyde, acetone and methyl acetate in zeolite X was carried out at different temperatures employing Cahn-1000 electro balance sensitivity of - + 1 micro g. The data fitted in Langmuir and BET equations and monolayer capacity of the surface areas of zeolite X was calculated. Thermodynamic parameters indicated that the sorption of all the four pollutants are endothermic and sorbed amount decreases with increase in temperature. The advantage of using zeolites for the removal of air pollutants is that heating under vacuum at 800 degree C for the hour can regenerate it. (author)

  12. Pollutant in palm oil production process.

    Science.gov (United States)

    Hosseini, Seyed Ehsan; Abdul Wahid, Mazlan

    2015-07-01

    Palm oil mill effluent (POME) is a by-product of the palm industry and it releases large amounts of greenhouse gases (GHGs). Water systems are also contaminated by POME if it is released into nonstandard ponds or rivers where it endangers the lives of fish and water fowl. In this paper, the environmental bottlenecks faced by palm oil production were investigated by analyzing the data collected from wet extraction palm oil mills (POMs) located in Malaysia. Strategies for reducing pollution and technologies for GHG reduction from the wet extraction POMs were also proposed. Average GHG emissions produced from processing 1 ton of crude palm oil (CPO) was 1100 kg CO2eq. This amount can be reduced to 200 kg CO2eq by capturing biogases. The amount of GHG emissions from open ponds could be decreased from 225 to 25 kg CO2eq/MT CPO by covering the ponds. Installation of biogas capturing system can decrease the average of chemical oxygen demand (COD) to about 17,100 mg/L and stabilizing ponds in the final step could decrease COD to 5220 mg/L. Using a biogas capturing system allows for the reduction of COD by 80% and simultaneously using a biogas capturing system and by stabilizing ponds can mitigate COD by 96%. Other ways to reduce the pollution caused by POME, including the installation of wet scrubber vessels and increasing the performance of biogas recovery and biogas upgrading systems, are studied in this paper. Around 0.87 m3 POME is produced per 1 ton palm fruit milled. POME consists of around 2% oil, 2-4% suspended solid, 94-96% water. In palm oil mills, more than 90% of GHGs were emitted from POME. From 1 ton crude palm oil, 1100 kg CO2eq GHGs are generated, which can be reduced to 200 kg CO2eq by installation of biogas capturing equipment.

  13. Process for selected gas oxide removal by radiofrequency catalysts

    Science.gov (United States)

    Cha, Chang Y.

    1993-01-01

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  14. Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

    2012-09-30

    A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

  15. Effectiveness of pollutants removal in hybrid constructed wetlands – different configurations case study

    Directory of Open Access Journals (Sweden)

    Gajewska Magdalena

    2017-01-01

    Full Text Available In recent years, an increase in interest in hybrid constructed wetland systems (HCWs has been observed. The aim of the paper is to compare different HCW configurations in terms of mass removal rates and efficiency of pollutants removal. Analysed data have been collected at multistage constructed wetlands in Poland, which are composed by at least two beds: horizontal subsurface flow (SSHF and vertical subsurface flow (SSVF. The evaluation was focused on hybrid constructed wetlands performance with HF+VF vs. VF+HF configuration, where influent wastewater of the same composition was treated. In analysed HCWs, the effective removal of organic matter from 75.2 to 91.6% COD was confirmed. Efficiency of total nitrogen removal varied from 47.3 to 91.7%. The most effective removal of TN (8.3 g m−2 d−1 occurred in the system with VF+VF+HF configuration.

  16. Gas pollutants removal in a single- and two-stage ejector-venturi scrubber.

    Science.gov (United States)

    Gamisans, Xavier; Sarrà, Montserrrat; Lafuente, F Javier

    2002-03-29

    The absorption of SO(2) and NH(3) from the flue gas into NaOH and H(2)SO(4) solutions, respectively has been studied using an industrial scale ejector-venturi scrubber. A statistical methodology is presented to characterise the performance of the scrubber by varying several factors such as gas pollutant concentration, air flowrate and absorbing solution flowrate. Some types of venturi tube constructions were assessed, including the use of a two-stage venturi tube. The results showed a strong influence of the liquid scrubbing flowrate on pollutant removal efficiency. The initial pollutant concentration and the gas flowrate had a slight influence. The use of a two-stage venturi tube considerably improved the absorption efficiency, although it increased energy consumption. The results of this study will be applicable to the optimal design of venturi-based absorbers for gaseous pollution control or chemical reactors.

  17. Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengxiao, E-mail: beijingzsx@163.com [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Zhang, Yuanyuan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Bi, Guoming [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Liu, Junshen [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China); Wang, Zhigang [Yantai Enironmental Monitoring Center, Yantai 264025, Shandong Province (China); Xu, Qiang; Xu, Hui; Li, Xiaoyan [School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong Province (China)

    2014-04-01

    Highlights: • The Fe{sub 3}O{sub 4}/PDA hybrid material was synthesized and characterized. • The PDA polymer was firstly applied in environmental remediation. • The Fe{sub 3}O{sub 4}/PDA exhibited high adsorption capacity for multiple pollutants. • Removal efficiencies of pollutants with Fe{sub 3}O{sub 4}/PDA were pH dependent. - Abstract: The polydopamine polymer decorated with magnetic nanoparticles (Fe{sub 3}O{sub 4}/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe{sub 3}O{sub 4}/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8 h, and Fe{sub 3}O{sub 4} nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe{sub 3}O{sub 4}/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu{sup 2+}, Ag{sup +}, and Hg{sup 2+} were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g{sup −1}, respectively. The Fe{sub 3}O{sub 4}/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.

  18. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    Science.gov (United States)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  19. Multilayer Substrate Configuration Enhances Removal Efficiency of Pollutants in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Shaoyuan Bai

    2016-11-01

    Full Text Available This study aimed at optimizing horizontal subsurface flow constructed wetlands (CWs to improve hydraulic performance and pollutant removal efficiency. A groundwater modeling package (MODFLOW was used to optimize three design parameters (length-to-width ratio, inlet/outlet-to-length ratio, and substrate size configuration. Using the optimized parameters, three pilot-scale CWs were built to treat actual wastewater. For model validation, we used a tracer test to evaluate hydraulic performance, and investigated the pollutant spatial distributions and removal efficiencies. We conclude that MODFLOW is suitable for designing CWs, accurately predicting that increasing hydraulic conductivity from surface to bottom layers could improve performance. However, the effect of vegetation, which decreased the hydraulic conductivity of the surface layer, should be considered to improve simulation results. Multilayer substrate configuration, with increasing hydraulic conductivity from the surface to bottom layers, significantly increased pollutant removal compared with monolayer configuration. The spatial variation in pollutant transport and degradation through the filling substrate showed that the multilayer configuration was able to increase use of the available space and moderately reduced short-circuiting and dead zones. Thus, multilayer CWs had higher experimental retention times, effective volume fractions and hydraulic efficiencies, and lower short-circuiting compared with monolayer CWs operating under similar conditions.

  20. On-site phytoremediation applicability assessment in Alur Ilmu, Universiti Kebangsaan Malaysia based on spatial and pollution removal analyses.

    Science.gov (United States)

    Mahmud, Mohd Hafiyyan; Lee, Khai Ern; Goh, Thian Lai

    2017-10-01

    The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH 3 -N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable

  1. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    Science.gov (United States)

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  2. New methods for removal of pollutants from exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Braestrup, F.

    2009-06-15

    Different spinel-type oxides were investigated as possible cathode materials for the electrochemical reduction of NO{sub x} gases (NO and NO{sub 2}) in an all solid oxide electrochemical cell. Three different series of spinel-type oxides, with the following composition, were analyzed: Ni{sub 1-x}Mg{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.3, 0.5, 0.6, 1.0), NiCr{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0, 0.5, 1.0, 1.5, 2.0) and MgMn{sub x}Fe{sub 2-x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Furthermore were spinel-type oxides of ZnFe{sub 2}O{sub 4}, NiMn{sub 2}O{sub 4} and MnCo{sub 2}O{sub 4} also analyzed. The compounds were characterized with X-ray diffraction, dilatometry and resistivity measurements. Selected ones were also characterized with X-ray adsorption spectroscopy, thermogravimetry and neutron diffraction. Cone-shaped electrodes were fabricated for all of the materials and measurements were performed in different gases of NO, NO{sub 2}, O{sub 2} and mixtures of these. Cyclic voltammetry and electrochemical impedance spectroscopy were measured in the temperature range from 300 deg. C to 600 deg. C depending on materials. Current ratios of NO over O{sub 2} and NO{sub 2} over O{sub 2} showed that a number of spinels have high apparent selectivities with ratios of 20 or more. Electrodes having the highest cathodic activity were used to fabricate symmetrical cells and 3-electrode pellets. These were used for further characterization and measurements on gas conversion. The materials used for this purpose were MgFe{sub 2}O{sub 4} and ZnFe{sub 2}O{sub 4} and results show that both materials can convert NO to NO{sub 2} and back again during polarization. However, the overall NO{sub x} level stayed almost unchanged during that process. A 3-electrode pellet with a ZnFe{sub 2}O{sub 4} electrode, was infiltrated with BaO improve the activity in NO, however, the gas conversion was still very low. The effect of BaO in NiMn{sub 2}O{sub 4} could not be determined as BaO reacted

  3. Particulate removal processes and hydraulics of porous gravel media filters

    Science.gov (United States)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal

  4. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.

  5. Process to remove rare earth from IFR electrolyte

    International Nuclear Information System (INIS)

    Ackerman, J.P.; Johnson, T.R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig

  6. Effects of Misgurnus anguillicaudatus and Cipangopaludina cathayensis on Pollutant Removal and Microbial Community in Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2015-05-01

    Full Text Available Aquatic animals play an important role in the energy flow and matter cycling in the wetland ecosystem. However, little is known about their effects on pollutant removal performance and microbial community in constructed wetlands. This work presents an initial attempt to investigate the effects of Misgurnus anguillicaudatus (loach and Cipangopaludina cathayensis (snail on nutrient removal performance and microbial community of constructed wetlands (CWs. Compared with a control group, CW microcosms with aquatic animals exhibited better pollutant removal performance. The removal efficiencies of total phosphorus (TP in the loach group were 13.1% higher than in the control group, and snails increased the ammonium removal most effectively. Moreover, the concentration of total organic carbon (TOC and TP in sediment significantly reduced with the addition of loaches and snails (p < 0.05, whereas the concentration of total nitrogen (TN showed an obvious increase with the addition of loaches. High-throughput sequencing showed a microbial community structure change. Loaches and snails in wetlands changed the microbial diversity, especially in the Proteobacteria and denitrifying community. Results suggested that benthic aquatic animals might play an important role in CW ecosystems.

  7. Ozone-assisted Regeneration of Magnetic Carbon Nanotubes for Removing Organic Water Pollutants

    DEFF Research Database (Denmark)

    Ateia, Mohamed; Ceccato, Marcel; Budi, Akin

    2018-01-01

    (MCNTs) after they have been used to remove organic pollutants from water. We ran MCNT through multiple regeneration cycles (i.e. magnetic collection → ozone regeneration → washing with ethanol then water) to adsorb atrazine. The results of our adsorption experiments show that the atrazine removal...... consecutive regeneration cycles. Additionally, we used a three layer graphite slab as a model system for CNTs and performed density functional theory (DFT) calculations to determine the free energy of adsorption and the free energy of solvation of atrazine and its byproducts in water and ethanol. The results...

  8. Synergistic wetland treatment of sewage and mine water: pollutant removal performance of the first full-scale system.

    Science.gov (United States)

    Younger, Paul L; Henderson, Robin

    2014-05-15

    Wetland systems are now well-established unit processes in the treatment of diverse wastewater streams. However, the development of wetland technology for sewage treatment followed an entirely separate trajectory from that for polluted mine waters. In recent years, increased networking has led to recognition of possible synergies which might be obtained by hybridising approaches to achieve co-treatment of otherwise distinct sewage and mine-derived wastewaters. As polluted discharges from abandoned mines often occur in or near the large conurbations to which the former mining activities gave rise, there is ample scope for such co-treatment in many places worldwide. The first full-scale co-treatment wetland anywhere in the world receiving large inflows of both partially-treated sewage (∼100 L s(-)(1)) and mine water (∼300 L s(-1)) was commissioned in Gateshead, England in 2005, and a performance evaluation has now been made. The evaluation is based entirely on routinely-collected water quality data, which the operators gather in fulfillment of their regulatory obligations. The principal parameters of concern in the sewage effluent are suspended solids, BOD5, ammoniacal nitrogen (NH4-N) and phosphate (P); in the mine water the only parameter of particular concern is total iron (Fe). Aerobic treatment processes are appropriate for removal of BOD5, NH4-N and Fe; for the removal of P, reaction with iron to form ferric phosphate solids is a likely pathway. With these considerations in mind, the treatment wetland was designed as a surface-flow aerobic system. Sample concentration level and daily flow rate date from April 2007 until March 2011 have been analyzed using nonparametric statistical methods. This has revealed sustained, high rates of absolute removal of all pollutants from the combined wastewater flow, quantified in terms of differences between influent and effluent loadings (i.e. mass per unit time). In terms of annual mass retention rates, for instance

  9. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Meguenni, H.; Mahlous, M.; Mansouri, B. [Centre de Recherche Nucléaire d' Alger, 2Bd Frantz Fanon BP-399 Alger (Algeria); Bouchfer, S. [ONA Office National de l’Assainissement, Alger (Algeria)

    2012-07-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  10. Application of Gamma Radiation for Removal of Organic Pollutants from Wastewater

    International Nuclear Information System (INIS)

    Meguenni, H.; Mahlous, M.; Mansouri, B.; Bouchfer, S.

    2012-01-01

    The study of this research is focused on the possibility of using gamma radiation in order to decrease the concentration of polycyclic aromatic hydrocarbon (PAH) in effluents. The research was initiated with a concentration of 100ppm of synthetic naphthalene aqueous solution submitted to different absorbed doses. The HPLC analysis has shown that the dose of 30kGy degraded 99.96% of the naphthalene molecule. The identification program of NIST library has identified the by-products formed during the radiation process. Concerning the industrial effluent wastewater sample, we opted for analysis by GC-MS before and after gamma irradiation, to monitor the degradation of PAH and other pollutants from the refinery. The results show that in global view, gamma radiation decreases significantly the contaminated level, with the increase of the absorbed dose. In detailed view, the relative content of the naphthalene, 2,7 dimethyl in the effluent sample decreased with the increase of the absorbed dose. At the dose of 6 kGy the molecule was completely degraded. The COD of effluent sample presented a reduction of 58%, when 10 kGy dose was applied. After irradiation a secondary treatment, based on adsorption using a natural adsorbent, has to be applied in order to remove the by-products of radiation degradation, to get a better quality of effluent and consequently improve the environmental condition. (author)

  11. Pollutants in drinking water: their sources, harmful effects and removal procedures

    International Nuclear Information System (INIS)

    Qadeer, R.

    2004-01-01

    The underground water resources available for human consumption are being continuously contaminated by the natural sources and anthropogenic activities. The pollutants include toxic microorganism, inorganic and organic chemical and radionuclide etc. this is an acute problem in our country, where free style way of disposal of industrial effluents into the natural water bodies contaminates the surface and ground water. These contaminants make their way into human body through contaminated drinking water, which leads to the malfunctioning of the body organs. Details of some pollutants present in drinking water, their source and harmful effects on human beings are reviewed in this communication. Merits and demerits of methods used to remove the pollutants from drinking water are also discussed. (author)

  12. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  13. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  14. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  15. Pollution Removal Performance of Laboratory Simulations of Sydney’s Street Stormwater Biofilters

    Directory of Open Access Journals (Sweden)

    James Macnamara

    2017-11-01

    Full Text Available The City of Sydney is constructing more than 21,000 square metres of street biofilter units (raingardens in terms of their Decentralised Water Master Plan (DWMP, for improving the quality of stormwater runoff to Port Jackson, the Cooks River, and the historical Botany Bay. Recharge of the Botany Sand Beds aquifer, currently undergoing remediation by extraction of industrial chlorinated hydrocarbon pollutants, is also envisaged. To anticipate the pollution removal efficiency of field biofilter designs, laboratory soil-column simulations were developed by Western Sydney University partnered with the City. Synthetic stormwater containing stoichiometric amounts of high-solubility pollutant salts in deionised water was passed through 104 mm columns that were layered to simulate monophasic and biphasic field designs. Both designs met the City’s improvement targets for total nitrogen (TN and total phosphorus (TP, with >65% median removal efficiency. Prolonged release of total suspended solids (SS on startup emphasised the need for specifications and testing of proprietary fills. Median removal efficiency for selected heavy metal ecotoxicants was >75%. The researchers suggested that Zinc be added to the targets as proxy for metals, polycyclic aromatic hydrocarbons (PAH and oils/greases co-generated during road use. Simulation results suggested that field units will play an important role in meeting regional stormwater improvement targets.

  16. Elevated tropospheric CO2 and O3 concentrations impair organic pollutant removal from grassland soil.

    Science.gov (United States)

    Ai, Fuxun; Eisenhauer, Nico; Jousset, Alexandre; Butenschoen, Olaf; Ji, Rong; Guo, Hongyan

    2018-04-03

    The concentrations of tropospheric CO 2 and O 3 have been rising due to human activities. These rising concentrations may have strong impacts on soil functions as changes in plant physiology may lead to altered plant-soil interactions. Here, the effects of eCO 2 and eO 3 on the removal of polycyclic aromatic hydrocarbon (PAH) pollutants in grassland soil were studied. Both elevated CO 2 and O 3 concentrations decreased PAH removal with lowest removal rates at elevated CO 2 and elevated O 3 concentrations. This effect was linked to a shift in soil microbial community structure by structural equation modeling. Elevated CO 2 and O 3 concentrations reduced the abundance of gram-positive bacteria, which were tightly linked to soil enzyme production and PAH degradation. Although plant diversity did not buffer CO 2 and O 3 effects, certain soil microbial communities and functions were affected by plant communities, indicating the potential for longer-term phytoremediation approaches. Results of this study show that elevated CO 2 and O 3 concentrations may compromise the ability of soils to degrade organic pollutants. On the other hand, the present study also indicates that the targeted assembly of plant communities may be a promising tool to shape soil microbial communities for the degradation of organic pollutants in a changing world.

  17. Dual-Functional Ultrafiltration Membrane for Simultaneous Removal of Multiple Pollutants with High Performance.

    Science.gov (United States)

    Pan, Shunlong; Li, Jiansheng; Noonan, Owen; Fang, Xiaofeng; Wan, Gaojie; Yu, Chengzhong; Wang, Lianjun

    2017-05-02

    Simultaneous removal of multiple pollutants from aqueous solution with less energy consumption is crucial in water purification. Here, a novel concept of dual-functional ultrafiltration (DFUF) membrane is demonstrated by entrapment of nanostructured adsorbents into the finger-like pores of ultrafiltration (UF) membrane rather than in the membrane matrix in previous reports of blend membranes, resulting in an exceptionally high active content and simultaneous removal of multiple pollutants from water due to the dual functions of rejection and adsorption. As a demonstration, hollow porous Zr(OH) x nanospheres (HPZNs) were immobilized in poly(ether sulfone) (PES) UF membranes through polydopamine coating with a high content of 68.9 wt %. The decontamination capacity of DFUF membranes toward multiple model pollutants (colloidal gold, polyethylene glycol (PEG), Pb(II)) was evaluated against a blend membrane. Compared to the blend membrane, the DFUF membranes showed 2.1-fold increase in the effective treatment volume for the treatment of Pb(II) contaminated water from 100 ppb to below 10 ppb (WHO drinking water standard). Simultaneously, the DFUF membranes effectively removed the colloidal gold and PEG below instrument detection limit, however the blend membrane only achieved 97.6% and 96.8% rejection for colloidal gold and PEG, respectively. Moreover, the DFUF membranes showed negligible leakage of nanoadsorbents during testing; and the membrane can be easily regenerated and reused. This study sheds new light on the design of high performance multifunction membranes for drinking water purification.

  18. A biomimetic absorbent for removal of trace level persistent organic pollutants from water

    International Nuclear Information System (INIS)

    Liu Huijuan; Qu Jiuhui; Dai Ruihua; Ru Jia; Wang Zijian

    2007-01-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA-triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol-water partition coefficient of the analyte. The absorption mechanism is discussed in detail. - Triolein-embedded absorbent was developed and it could remove lipophilic pollutants from water effectively

  19. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    Science.gov (United States)

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights

  20. Probabilistic Determination of Green Infrastructure Pollutant Removal Rates from the International Stormwater BMP Database

    Science.gov (United States)

    Gilliom, R.; Hogue, T. S.; McCray, J. E.

    2017-12-01

    There is a need for improved parameterization of stormwater best management practices (BMP) performance estimates to improve modeling of urban hydrology, planning and design of green infrastructure projects, and water quality crediting for stormwater management. Percent removal is commonly used to estimate BMP pollutant removal efficiency, but there is general agreement that this approach has significant uncertainties and is easily affected by site-specific factors. Additionally, some fraction of monitored BMPs have negative percent removal, so it is important to understand the probability that a BMP will provide the desired water quality function versus exacerbating water quality problems. The widely used k-C* equation has shown to provide a more adaptable and accurate method to model BMP contaminant attenuation, and previous work has begun to evaluate the strengths and weaknesses of the k-C* method. However, no systematic method exists for obtaining first-order removal rate constants needed to use the k-C* equation for stormwater BMPs; thus there is minimal application of the method. The current research analyzes existing water quality data in the International Stormwater BMP Database to provide screening-level parameterization of the k-C* equation for selected BMP types and analysis of factors that skew the distribution of efficiency estimates from the database. Results illustrate that while certain BMPs are more likely to provide desired contaminant removal than others, site- and design-specific factors strongly influence performance. For example, bioretention systems show both the highest and lowest removal rates of dissolved copper, total phosphorous, and total nitrogen. Exploration and discussion of this and other findings will inform the application of the probabilistic pollutant removal rate constants. Though data limitations exist, this research will facilitate improved accuracy of BMP modeling and ultimately aid decision-making for stormwater quality

  1. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    Science.gov (United States)

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  2. Performance of the constructed wetland systems in pollutants removal from hog wastewater

    Directory of Open Access Journals (Sweden)

    Wallison da Silva Freitas

    2010-08-01

    Full Text Available The main objective of this work was to evaluate the efficiency of a constructed wetland systems (CWS for pollutants removal, in mono crop and multi crop with three different species of plants, originated from hog wastewater treatment (HW. Therefore, 5 CWS of 24.0 m x 1.1 m x 0.7 m were constructed, sealed with a membrane of polyvinyl chloride (PVC and filled with 0.4 m of small gravel. In CWS1, CWS2 and CWS3 grown to cattail (Typha latifolia L., Alternanthera philoxeroides (Mart. Griseb. and Tifton 85 grass (Cynodon dactylon Pers., respectively. In the bed of CWS4 was planted at 1st third Alternanthera, cattail, in the 2nd third and tifton-85 grass and in the 3rd third of. The CWS5 was not planted and it was used as control. After passing through a filter filled with crushed bagasse of sugar cane, the HW was applied to the CWS in a flow of 0.8 m3 d-1, which corresponded to a hydraulic detention time of 4.8 days. According to the results it was shown that the five CWS(s had statistically nearly the same removal of pollutants, and the average removal efficiency of TSS, COD, BOD and Zn, were 91, 89, 86 and 94%, respectively. Also high removals were obtained concerning the ST, N-total, NH4+ and P-total, with average values of 62, 59, 52 and 50%, respectively. The plants in all planted CWS worked in a similar way maintaining the system efficiency and the non cultivated CWS presented analogous capacity of pollutants removal when compared to the cultivated CWS(s.

  3. Pyrene removal from contaminated soil using electrokinetic process combined with surfactant

    Directory of Open Access Journals (Sweden)

    Seyed Enayat Hashemi

    2015-07-01

    Full Text Available Background: Pyrene is one of the stable polycyclic aromatic hydrocarbons that is considered as an important pollutants, because of extensive distribution in the environment and carcinogenic and mutagenic properties. Among the various treatment techniques, electrokinetic method is an environmental- friendly process for organic and mineral pollutants adsorbed to soil with fine pore size the same as clay and low hydraulic conductivity soils. For improving the efficiency of pyrene removal from soil, soulobilization of pyrene from soil could be used by surfactants. Materials and Methods : In this study, clay soil was selected as model because of the specific properties. Combined method using surfactant and electrokinetic was applied for pyrene removal from soil. Experiments were designed using response surface methodology (RSM, and effect of three variables includes surfactant concentration, voltage and surfactant type were evaluated for pyrene removal from contaminated soil. Results: Pyrene removal using anionic surfactants(SDS and nonionic surfactants(TX100 as a solubilizing agents has high removal efficiency. In the optimum condition with 95% confidence coefficient, utilizing mixed surfactants of sodium dodecyl sulfate and triton X-100 with the same volume, induced of 18.54 volt and 6.53 percent surfactant concentration have 94.6% pyrene removal efficiency. Conclusion:: Results of this study shows that electrokinetic process combined with surfactant as solubilizing agent could be applied as an efficient method for treating the pyrene-contaminated soils.

  4. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  5. Study on arsenic removal process from water

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-09-01

    Full Text Available In this study a novel adsorbent, iron oxide, is used for As (V or As (III removal. Some ferric oxides have been reported to be effective for arsenic removal. Ferric oxides powder is a good adsorbent material since it’s has magnetic properties and a good adsorption capacity. The main purpose of this study has been focused on to study the relationship between adsorption capacity (ability, performance and the surface characteristics of the ferric oxide. Prepared sample’s capacity was evaluated. The value was 26.1-67.4 mg/g for As (V and 20.5-47.8 mg/g for As (III. pH dependence was evaluated and when pH increasing, adsorption capacity was decreased. The kinetic was evaluated and about 12 hours reached equilibrium and a capacity of 49 mg/g for As (V and 42 mg/g for As(III was gained. The kinetic constants for arsenic adsorption on the ferrihydrite adsorbent’s were fitted.DOI: http://dx.doi.org/10.5564/mjc.v12i0.172 Mongolian Journal of Chemistry Vol.12 2011: 53-55

  6. Nitrate removal from polluted water by using a vegetated floating system.

    Science.gov (United States)

    Bartucca, Maria Luce; Mimmo, Tanja; Cesco, Stefano; Del Buono, Daniele

    2016-01-15

    Nitrate (NO3(-)) water pollution is one of the most prevailing and relevant ecological issues. For instance, the wide presence of this pollutant in the environment is dramatically altering the quality of superficial and underground waters. Therefore, we set up a floating bed vegetated with a terrestrial herbaceous species (Italian ryegrass) with the aim to remediate hydroponic solutions polluted with NO3(-). The floating bed allowed the plants to grow and achieve an adequate development. Ryegrass was not affected by the treatments. On the contrary, plant biomass production and total nitrogen content (N-K) increased proportionally to the amount of NO3(-) applied. Regarding to the water cleaning experiments, the vegetated floating beds permitted to remove almost completely all the NO3(-) added from the hydroponic solutions with an initial concentration of 50, 100 and 150 mg L(-1). Furthermore, the calculation of the bioconcentration factor (BCF) indicated this species as successfully applicable for the remediation of solutions polluted by NO3(-). In conclusion, the results highlight that the combination of ryegrass and the floating bed system resulted to be effective in the remediation of aqueous solutions polluted by NO3(-). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Using decomposition kinetics to model the removal of mine water pollutants in constructed wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Tarutis, W J; Unz, R F [Pennsylvania State University, University Park, PA (United States)

    1994-01-01

    Although numerous mathematical models have been used to describe decomposition, few, if any, have been used to model the removal of pollutants in constructed wetlands. A steady state method based on decomposition kinetics and reaction stoichiometry has been developed which simulates the removal of ferrous iron entering wetlands constructed for mine drainage treatment. Input variables for the model include organic matter concentration, reaction rate coefficient, porosity and dry density, and hydraulic detection time. Application of the model assumes complete anaerobic conditions within the entire substrate profile, constant temperature, no additional organic matter input, and subsurface flow only. For these ideal conditions, model simulations indicate that wetlands constructed with readily decomposable substrates rich in organic carbon are initially capable of removing far greater amounts of iron than wetlands built with less biodegradable substrates. However, after three to five years of operation this difference becomes negligible. For acceptable long-term treatment performance, therefore, periodic additions of decomposable organic matter will be required.

  8. REMOVAL OF ARSENIC FROM DRINKING WATER SUPPLIES BY IRON REMOVAL PROCESS

    Science.gov (United States)

    This design manual is an in-depth presentation of the steps required to design and operate a water treatment plant for removal of arsenic in the As (V) form from drinking water using an iron removal process. The manual also discusses the capital and operating costs including many...

  9. Sodium removal by alcohol process: Basic tests and its application

    International Nuclear Information System (INIS)

    Nakai, S.; Yamamoto, S.; Akai, M.; Yatabe, T.

    1997-01-01

    We have various methods for sodium removal; an alcohol cleaning process, a steam cleaning process and a direct burning process. Sodium removal by the alcohol process has a lot of advantages, such as causing no alkali corrosion to steel, short processing time and easy operation. Therefore the alcohol process was selected for the 1MWt double wall tube straight type steam generator. We have already had some experiences of the alcohol process, while still needed to confirm the sodium removal rate in the crevice and to develop an on-line sodium concentration monitoring method in alcohol during sodium removal. We have conducted the small scale sodium removal test with flowing alcohol where the sodium removal rate in the crevice and the alcohol conductivity were measured as functions of sodium concentration in alcohol and alcohol temperature. The sodium removal of the DWTSG was conducted by the devised alcohol process safely and efficiently. The process hour was about 1 day. Visual inspection during dismantling of the DWTSG showed no evidence of any un-reacted sodium. (author)

  10. [Impurity removal technology of Tongan injection in liquid preparation process].

    Science.gov (United States)

    Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei

    2015-08-01

    In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.

  11. Experience with antimony activity removal process in Indian PHWRs

    International Nuclear Information System (INIS)

    Velmurugan, S.; Mittal, Vinit K.; Kumbhar, A.G.; Narasimhan, S.V.; Bhat, H.R.; Krishna Rao, K.S.; Upadhyay, S.K.; Jain, A.K.

    2008-01-01

    The problem of antimony (Sb) activity during decontamination was first encountered in NAPS-1 and Sb activity deposition took place during the decontamination resulting in poor decontamination factors (DF). Sb problem has been observed in PWRs and PHWRs elsewhere also. These utilities use an oxidative process involving the addition of H 2 O 2 to remove these Sb activities from the core and remove it on ion exchange resins. Experience in CANDU PHWRs indicated disappearance of H 2 O 2 in quantities higher than that observed in PWRs. This is attributed to the higher pick-up of H 2 O 2 by the magnetite/ferrites over large carbon steel surface present in the primary coolant system of PHWRs. Systematic work was carried out to understand the deposition of Sb on PHT system surfaces and a new method was evolved to remove the Sb activities from the system. This alternative reductive chemical process involve the addition of Nitrilo Tri Acetic Acid, Citric Acid and Rodine-92B and circulating the chemicals for a short period and then the Sb and other activities released from the core are removed by the mixed bed. Subsequent to the Sb removal process, the normal chemical decontamination of the system is carried out to remove 60 Co and other activities. This non-oxidizing Sb removal process was applied to NAPS-2 primary system prior to EMCCR. During this Sb removal process of NAPS-2, around 450 μCi/L activity of 124 Sb was released from the system surfaces to the formulation. Activity measurement in the samples collected and the on-line radiation field data indicated that deposition of Sb activities on system surfaces has been prevented by Rodine-92B and subsequently these activities have been removed by mixed bed IX columns. Antimony removal process worked successfully, but in the second normal decontamination process around 150 μCi/L activities came in the formulation which was not anticipated. As a result DF observed immediately after the decontamination campaign was not good

  12. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    Science.gov (United States)

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  13. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.

    Science.gov (United States)

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2010-01-01

    This work reports a systematic survey of over seventy individual pollutants in a Sewage Treatment Plant (STP) receiving urban wastewater. The compounds include mainly pharmaceuticals and personal care products, as well as some metabolites. The quantification in the ng/L range was performed by Liquid Chromatography-QTRAP-Mass Spectrometry and Gas Chromatography coupled to Mass Spectrometry. The results showed that paraxanthine, caffeine and acetaminophen were the main individual pollutants usually found in concentrations over 20 ppb. N-formyl-4-amino-antipiryne and galaxolide were also detected in the ppb level. A group of compounds including the beta-blockers atenolol, metoprolol and propanolol; the lipid regulators bezafibrate and fenofibric acid; the antibiotics erythromycin, sulfamethoxazole and trimethoprim, the antiinflammatories diclofenac, indomethacin, ketoprofen and mefenamic acid, the antiepileptic carbamazepine and the antiacid omeprazole exhibited removal efficiencies below 20% in the STP treatment. Ozonation with doses lower than 90 microM allowed the removal of many individual pollutants including some of those more refractory to biological treatment. A kinetic model allowed the determination of second order kinetic constants for the ozonation of bezafibrate, cotinine, diuron and metronidazole. The results show that the hydroxyl radical reaction was the major pathway for the oxidative transformation of these compounds. (c) 2009 Elsevier Ltd. All rights reserved.

  14. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  15. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  16. Investigation of Phenol Removal by Proxy-Electrocoagulation Process with Iron Electrodes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2017-09-01

    Full Text Available Background: Phenol as an aromatic hydroxyl compound are considered as a priority pollutant. Because of their stability, solubility in water and high toxicity had health important. Methods: In the present experimental study, electrocoagulation reactor by iron electrodes are used in the presence of hydrogen peroxide to phenol removing from aqueous solutions. Effects of variables including H2O2 dosage, reaction time, pH, current density and initial phenol concentration were evaluated to estimate the efficiency of the process. Results: The results showed that pH and H2O2 have the most important role in the removal of phenol. Increasing of H2O2 concentrations from 0.0125 to 0.025 M increased removal efficiency from 74% to 100%. Maximum removal was achieved at pH=3. However, increasing the pH to 9 lead to reducing removal efficiency to 9.8%. Also, by increasing of current density removal efficiency was increased. But with increasing initial concentration of phenol removal efficiency was reduced. Conclusion: Proxy-electrocoagulation process as an effective and robust process can be used for handling of phenol containing wastewater.

  17. Investigation of the adsorption properties and structures of porous materials for adsorptive removal of pollutants from water

    OpenAIRE

    ZAHRA ABBASI

    2017-01-01

    Adsorption is a low cost and effective method for the removal of non-biodegradable and harmful pollutants from water which has been widely used in industry. Porous and nanoporous materials such as metal organic frameworks (MOFs) and fly ash wastes were used as adsorbents for the removal of pollutants from water. The study showed MOF adsorbent could be fabricated as beads for easy handling and recycling due to the very low buoyancy. Temperature of heat treatment had significant effect on adsor...

  18. Removal costs and claims under the Oil Pollution Act of 1990

    International Nuclear Information System (INIS)

    Smith, R.E.

    1993-01-01

    The Oil Pollution Act of 1990 (OPA 90), enacted on August 18, 1990, changed the nature of federal response to oil spills and substantially increased the remedies available to those damaged by oil spills. Prior to OPA 90, the authority for federal oil spill response was found in section 311 of the Federal Water Pollution Control Act (FWPCA), and the funding for federal responses was provided through a revolving fund established under section 311(k). OPA 90 modified section 311 to authorize the President to open-quotes direct and monitor all Federal, State, and private actions to remove a dischargeclose quotes of oil. OPA 90 also authorized the use of the Oil Spill Liability Trust Fund (OSLTF) for federal removal costs, among other uses, thereby significantly increasing the funding available for federal response activities. The effect of OPA 90 is evolving. There are more cases, more removal costs, and more efforts to recover those costs from responsible parties. There are provisions for compensation for claims but relatively few claims so far. It is expected that the next two years will see substantial increases in the number of claims

  19. Relation of the physical and hydrobiological processes of thermal pollution

    International Nuclear Information System (INIS)

    Szolnoky, Cs.

    1981-01-01

    The process of thermal pollution of the rivers is discussed from the point of the living-space of the waters. The effects of fresh water-cooled thermal power stations on components of the biosphere of the rivers are described following the cooling process step-by-step. The characteristics of the thermal pollution of the Danube and Tisza are discussed and the effect of the Paks Nuclear Power Plant on the Danube is estimated. The regulation of the thermal pollution in the form of limiting values is proposed. (R.J.)

  20. Removal of pharmaceutical pollutants from synthetic wastewater using chemically modified biomass of green alga Scenedesmus obliquus.

    Science.gov (United States)

    Ali, Mohamed E M; Abd El-Aty, Azza M; Badawy, Mohamed I; Ali, Rizka K

    2018-04-30

    Pharmaceutical compounds are considered emerging environmental pollutants that have a potential harmful impact on environment and human health. In this study, the biomass of alga (Scenedesmus obliquus) was modified using alkaline solution, and used for the biosorption of tramadol (TRAM) and other pharmaceuticals. The adsorption kinetics and isotherms were investigated. The obtained results reveal high adsorption capacity of tramadol over modified algal biomass (MAB) after 45min with removal percentage of 91%. Pseudo-second order model was well fitted with the experimental data with correlation coefficient (0.999). Biosorption of tramadol on modified algal biomass proceeds with Freundlich isotherm model with correlation coefficient (0.942) that emphasized uptake of TRAM by MAB is driven by chemisorption. FTIR spectra of MAB before and after the adsorption were analyzed; some IR bands were detected with slight shift and low intensity suggesting their involving in adsorption. The tramadol biosorption by MAB is a chemical process as confirmed by Dubinin-Radushkevich. The adsorption of pharmaceutical over MAB is mainly preceded by hydrophilic interactions between amino and carbonyl groups in pharmaceutical molecules and hydroxyl and carbonyl functional groups on surface of biosorbent. It was emphasized by disappearance O-H and C-O from biomass IR spectra after adsorption. In matrix of pharmaceutical, the recorded adsorption capacities for CEFA, PARA, IBU, TRAM and CIP are 68, 58, 42, 42 and 39mg/g over MAB at natural pH and MAB dose of 0.5g/L. Furthermore, oxygen uptake by bacteria was applied for estimate the toxicity of pharmaceutical. The recorded result concluded the efficient reusability of modified algal biomass for biosorption of pharmaceuticals, as well only the adsorption efficiency decreased by 4.5% after three runs. Subsequently, the modified algal biomass is a promising reusable adsorbent for decontamination of wastewater from pharmaceuticals. Copyright

  1. Removal of sulfur from process streams

    International Nuclear Information System (INIS)

    Brignac, D.G.

    1984-01-01

    A process wherein water is added to a non-reactive gas stream, preferably a hydrogen or hydrogen-containing gas stream, sufficient to raise the water level thereof to from about 0.2 percent to about 50 percent, based on the total volume of the process gas stream, and the said moist gas stream is contacted, at elevated temperature, with a particulate mass of a sulfur-bearing metal alumina spinel characterized by the formula MAl 2 O 4 , wherein M is chromium, iron, cobalt, nickel, copper, cadmium, mercury, or zinc to desorb sulfur thereon. In the sulfur sorption cycle, due to the simultaneous adsorption of water and sulfur, the useful life of the metal alumina spinel for sulfur adsorption can be extended, and the sorbent made more easily regenerable after contact with a sulfur-bearing gas stream, notably sulfur-bearing wet hydrogen or wet hydrogen-rich gas streams

  2. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    International Nuclear Information System (INIS)

    Marincas, O; Avram, V; Moldovan, Z; Petrov, P; Ternes, T

    2009-01-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  3. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    Energy Technology Data Exchange (ETDEWEB)

    Marincas, O; Avram, V; Moldovan, Z [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Petrov, P [Water Treatment Station Siluet B, 21 Pencho Slaveikov Street, Varna 9000 (Bulgaria); Ternes, T, E-mail: olivian.marincas@itim-cj.r [Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  4. Lessons from the removal of lead from gasoline for controlling other environmental pollutants: A case study from New Zealand

    Directory of Open Access Journals (Sweden)

    Horrocks John

    2008-01-01

    Full Text Available Abstract Background It took over two decades to achieve the removal of leaded gasoline in this country. This was despite international evidence and original research conducted in New Zealand on the harm to child cognitive function and behaviour from lead exposure. Objective To identify lessons from the New Zealand experience of removing leaded gasoline that are potentially relevant to the control of other environmental pollutants. Discussion From the available documentation, we suggest a number of reasons for the slow policy response to the leaded gasoline hazard. These include: (1 industry power in the form of successful lobbying by the lead additive supplier, Associated Octel; (2 the absence of the precautionary principle as part of risk management policy; and (3 weak policymaking machinery that included: (a the poor use of health research evidence (from both NZ and internationally, as well as limited use of expertise in academic and non-governmental organisations; (b lack of personnel competent in addressing technically complex issues; and (c diffusion of responsibility among government agencies. Conclusion There is a need for a stronger precautionary approach by policymakers when considering environmental pollutants. Politicians, officials and health workers need to strengthen policymaking processes and effectively counter the industry tactics used to delay regulatory responses.

  5. Lessons from the removal of lead from gasoline for controlling other environmental pollutants: a case study from New Zealand.

    Science.gov (United States)

    Wilson, Nick; Horrocks, John

    2008-01-07

    It took over two decades to achieve the removal of leaded gasoline in this country. This was despite international evidence and original research conducted in New Zealand on the harm to child cognitive function and behaviour from lead exposure. To identify lessons from the New Zealand experience of removing leaded gasoline that are potentially relevant to the control of other environmental pollutants. From the available documentation, we suggest a number of reasons for the slow policy response to the leaded gasoline hazard. These include: (1) industry power in the form of successful lobbying by the lead additive supplier, Associated Octel; (2) the absence of the precautionary principle as part of risk management policy; and (3) weak policymaking machinery that included: (a) the poor use of health research evidence (from both NZ and internationally), as well as limited use of expertise in academic and non-governmental organisations; (b) lack of personnel competent in addressing technically complex issues; and (c) diffusion of responsibility among government agencies. There is a need for a stronger precautionary approach by policymakers when considering environmental pollutants. Politicians, officials and health workers need to strengthen policymaking processes and effectively counter the industry tactics used to delay regulatory responses.

  6. Development of practical decontamination process for the removal of uranium from gravel.

    Science.gov (United States)

    Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won

    2018-01-01

    In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.

  7. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment

    Science.gov (United States)

    Prajapati, Meera; van Bruggen, Johan J. A.; Dalu, Tatenda; Malla, Rabin

    2017-12-01

    The study aimed to evaluate the removal of pollutants by floating treatment wetlands (FTWs) using an edible floating plant, and emergent macrophytes. All experiments were performed under ambient conditions. Physico-chemical parameters were measured, along with microbiological analysis of biofilm within the roots, water column, and sludge and gravel zone. Nitrification and denitrification rates were high in the water zone of Azolla filiculoides, Lemna minor, Lactuca sativa, P. stratiotes, and Phragmites australis. Phosphate removal efficiencies were 23, 10, and 15% for the free-floating hydrophytes, emergent macrophytes, and control and edible plants, respectively. The microbial community was relatively more active in the root zone compared to other zones. Pistia stratiotes was found to be the efficient in ammonium (70%) and total nitrogen (59%) removal. Pistia stratiotes also showed the highest microbial activity of 1306 mg day-1, which was 62% of the total volume. Microbial activity was found in the water zone of all FTWs expect for P. australis. The use of P. stratiotes and the edible plant L. sativa could be a potential option to treat domestic wastewater due to relatively high nutrient and organic matter removal efficiency.

  8. Investigation of Phenol Removal from Aqueous Solutions by Electrofenton and Electropersulfate Processes

    Directory of Open Access Journals (Sweden)

    Alireza Rahmani

    2016-11-01

    Full Text Available Phenol, or benzene hydroxyl is a toxic aromatic hydrocarbon discharged into the environment through certian industrial effluents which, thereby, pollute water resources. This study examines phenol removal from aqueous solutions through electro-Fenton and electro/persulfate processes using iron electrodes. For this purpose, a laboratory-scale electrochemical batch reactor was used that was equipped with four electrodes and a direct DC power supply. In the tests carried out, the effects of operational parameters such as initial pH; current density; and initial concentrations of phenol, hydrogen peroxide, and persulfate on the removal of phenol were investigated. The results showed that EPS and EF processes achieved phenol removal efficiencies of 95.18% and 93.99%, respectively, at operating conditions of pH = 3, initial phenol concentration of 100 mg/l, hydrogen peroxide and persulfate concentration of 0. 4 mM, and a current density 0.07A/dm2 over 45 min. Increasing persulfate and hydrogen peroxide concentration from 0.4 to 0.8 mM reduced phenol removal efficiencies from 95.18% and 93.99% to 43% and 85%, respectively. Generally speaking, EPS and EF processes exhibited almost identical phenol removal efficiencies. Finally, the integrated electrochemical and persulphate process was found to be more productive in producing electrical iron and persulphate activation than using each single process in isolation.

  9. Image processing on the image with pixel noise bits removed

    Science.gov (United States)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  10. Fruit stones from industrial waste for the removal of lead ions from polluted water.

    Science.gov (United States)

    Rashed, M N

    2006-08-01

    Lead, one of the earliest metals recognized and used by humans, has a long history of beneficial use. However, it is now recognized as toxic and as posing a widespread threat to humans and wildlife. Treatment of lead from polluted water and wastewater has received a great deal of attention. Adsorption is one of the most common technologies for the treatment of lead-polluted water. This technique was evaluated here, with the goal of identifying innovative, low-cost adsorbent. This study presents experiments undertaken to determine the suitable conditions for the use of peach and apricot stones, produced from food industries as solid waste, as adsorbents for the removal of lead from aqueous solution. Chemical stability of adsorbents, effect of pH, adsorbents dose, adsorption time and equilibrium concentration were studied. The results reveal that adsorption of lead ions onto peach stone was stronger than onto apricot stone up to 3.36% at 3 h adsorption time. Suitable equilibrium time for the adsorption was 3-5 h (% Pb adsorption 93% for apricot and 97.64% for peach). The effective adsorption range for pH in the range was 7-8. Application of Langmuir and Freundlich isotherm models show high adsorption maximum and binding energies for using these adsorbents for the removal of lead ions from contaminated water and wastewater.

  11. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry.

    Science.gov (United States)

    Engel, Maya; Chefetz, Benny

    2016-12-01

    Adsorption of organic pollutants by carbon nanotubes (CNTs) in the environment or removal of pollutants during water purification require deep understanding of the impacts of the presence of dissolved organic matter (DOM). DOM is an integral part of environmental systems and plays a key role affecting the behavior of organic pollutants. In this study, the effects of solution chemistry (pH and ionic strength) and the presence of DOM on the removal of atrazine and lamotrigine by single-walled CNTs (SWCNTs) was investigated. The solubility of atrazine slightly decreased (∼5%) in the presence of DOM, whereas that of lamotrigine was significantly enhanced (by up to ∼70%). Simultaneous introduction of DOM and pollutant resulted in suppression of removal of both atrazine and lamotrigine, which was attributed to DOM-pollutant competition or blockage of adsorption sites by DOM. However the decrease in removal of lamotrigine was also a result of its complexation with DOM. Pre-introduction of DOM significantly reduced pollutant adsorption by the SWCNTs, whereas introduction of DOM after the pollutant resulted in the release of adsorbed atrazine and lamotrigine from the SWCNTs. These data imply that DOM exhibits higher affinity for the adsorption sites than the triazine-based pollutants. In the absence of DOM atrazine was a more effective competitor than lamotrigine for adsorption sites in SWCNTs. However, competition between pollutants in the presence of DOM revealed lamotrigine as the better competitor. Our findings help unravel the complex DOM-organic pollutant-CNT system and will aid in CNT-implementation in water-purification technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Electro-coagulation-flotation process for algae removal

    International Nuclear Information System (INIS)

    Gao Shanshan; Yang Jixian; Tian Jiayu; Ma Fang; Tu Gang; Du Maoan

    2010-01-01

    Algae in surface water have been a long-term issue all over the world, due to their adverse influence on drinking water treatment process as well as drinking water quality. The algae removal by electro-coagulation-flotation (ECF) technology was investigated in this paper. The results indicated that aluminum was an excellent electrode material for algae removal as compared with iron. The optimal parameters determined were: current density = 1 mA/cm 2 , pH = 4-7, water temperature = 18-36 deg. C, algae density = 0.55 x 10 9 -1.55 x 10 9 cells/L. Under the optimal conditions, 100% of algae removal was achieved with the energy consumption as low as 0.4 kWh/m 3 . The ECF performed well in acid and neutral conditions. At low initial pH of 4-7, the cell density of algae was effectively removed in the ECF, mainly through the charge neutralization mechanism; while the algae removal worsened when the pH increased (7-10), and the main mechanism shifted to sweeping flocculation and enmeshment. The mechanisms for algae removal at different pH were also confirmed by atomic force microscopy (AFM) analysis. Furthermore, initial cell density and water temperature could also influence the algae removal. Overall, the results indicated that the ECF technology was effective for algae removal, from both the technical and economical points of view.

  13. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  14. Reduction of environmental pollution from fuel and target manufacturing processes

    International Nuclear Information System (INIS)

    Hardt, H.A.

    1976-10-01

    Nuclear fuel and target manufacturing processes in the 300 Area generate potential environmental pollutants. Efforts to eliminate or reduce their harmful effects have been pursued for many years by the Raw Materials and Raw Materials Technology departments with assistance from other groups, primarily the Project and Health Physics departments. This report documents: methods adopted to reduce pollution; cost of these methods; amount of pollution reduction achieved; and other benefits in cost savings or quality improvement for January 1968 through December 1975. Capital funds totaling $915,000 were spent on these programs. Annual cost savings of $65,000 were realized, and incidental but significant improvements in product quality were obtained. In no case was product quality degraded. Reductions in releases of pollutants are summarized for water pollution, air pollution, and land pollution. In addition to these reductions, intangible benefits were realized including reduced corrosion of structures and equipment; improved working conditions for personnel; energy savings, both on and offplant; improved utilization of natural resources; and reduced impact to environment, both on and offplant

  15. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    Science.gov (United States)

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  16. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  17. Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry

    International Nuclear Information System (INIS)

    Bruggen, Bart van der; Vandecasteele, Carlo

    2003-01-01

    The nanofiltration system has many potential uses in removing chemical and biological contaminants from water. - During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed

  18. Application of KWU antimony removal process at Gentilly-2

    International Nuclear Information System (INIS)

    Dundar, Y.; Odar, S.; Streit, K.; Allsop, H.; Guzonas, D.

    1996-09-01

    This paper describes the work performed to adapt the KWU PWR antimony removal process to CANDU plant conditions, and the application of the process at the Hydro Quebec unit, Gentilly-2. The results of the application will be presented and the 'lessons learned' will be discussed in detail. (author)

  19. High-temperature radiation-induced removal of gaseous air pollutants

    International Nuclear Information System (INIS)

    Medina Rojas, I.; Thomson, M.J.

    2001-01-01

    This paper explores the use of high-temperature electron beam irradiation to simultaneous remove aromatic hydrocarbons, chlorinated hydrocarbons and nitrogen oxides. Detailed chemical kinetic modeling with validated mechanisms predicts that electron beam irradiation will simultaneously reduce NO with the thermal De-NO x process and oxidize benzene or ethyl chloride over a wide temperature range. Electron beam dosage of 2-10 kGy more than double the width of the temperature window over which the thermal De-NO x process is effective. At these dosages, the benzene and ethyl chloride removal efficiencies can exceed 90% within this temperature window. (author)

  20. Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation

    Science.gov (United States)

    Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie

    2018-04-01

    A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.

  1. Investigation of Cyanide Removal from Aqueous Solution Using Precipitation Process (FeCl3

    Directory of Open Access Journals (Sweden)

    A. Jonidi Jafari

    2013-02-01

    Full Text Available Background and Objectives: Cyanide is a toxic pollutant that is can be discharged from different industries such as iron and steel industry, coal mining and metal plating. Presence of this toxin in water and wastewater is a serious hazard and lead to undesirable effects on both the environment and human. Thus, its concentration control is essential for human health. The aim of this study was investigation of Cyanide Removal from aqueous solution using precipitation process (FeCl3. Material and Methods: This study is an experimental study in lab scale that was carried out in a batch system by jartest. Variations of this study including pH, FeCl3 concentration, reaction time and desired concentration of cyanide were investigated. Data were analyzed using Excel (version 2007 software. Results: The results of this research were showed that Cyanide with initial concentration of 10 mg/l in precipitation process was removed by 40% (conditions pH=90, FeCl3=0.4 g/l and the time 60 minutes. Also, the precipitation process efficiency to cyanide removal decreased of 40 to 23%, by increasing of the initial cyanide concentration of 10 to 15 mg/l. Conclusion: Precipitation process can be considered as a suitable alternative for recovery of cyanide to be re-used. Although, this process has limitations for treat total cyanide to environmental standards level. So, it is better be used in combination with other processes of these contaminants removal.

  2. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.

    Science.gov (United States)

    Zhang, Guosen; Wang, Yu; Jiang, Jinhui; Yang, Shao

    2017-06-01

    Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%-100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.

  3. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    International Nuclear Information System (INIS)

    Ogunlaja, O.O.; Parker, W.J.

    2015-01-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD −1 d −1 for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD −1 d −1 . A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2

  5. Assessment of the removal of estrogenicity in biological nutrient removal wastewater treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ogunlaja, O.O., E-mail: oogunlaj@uwaterloo.ca; Parker, W.J., E-mail: wjparker@uwaterloo.ca

    2015-05-01

    The removal of estrogenicity in a University of Cape Town-biological nutrient removal (UCT-BNR) wastewater treatment process was investigated using pilot and bench scale systems, batch experiments and mathematical modeling. In the pilot BNR process, 96 ± 5% of the estrogenicity exerted by the influent wastewater was removed by the treatment process. The degradation efficiencies in the anaerobic, anoxic and aerobic zones of the pilot BNR bioreactor were 11 ± 9%, 18 ± 2% and 93 ± 10%, respectively. In order to further understand the performance of the BNR process in the removal of estrogenicity from wastewater, a bench scale BNR process was operated with synthetic wastewater dosed with E1 and E2. The removal of estrogenicity in the bench scale system (95 ± 5%) was comparable to the pilot BNR process and the degradation efficiencies were estimated to be 8 ± 0.8%, 38 ± 4% and 85 ± 22% in the anaerobic, anoxic and aerobic zones, respectively. A biotransformation model developed to predict the fate of E1 and E2 in batch tests using the sludge from the BNR process was calibrated using the data from the experiments. The biotransformation rate constants for the transformation of E2 to E1 were estimated as 71 ± 1.5, 31 ± 3.3 and 1 ± 0.9 L g COD{sup −1} d{sup −1} for the aerobic, anoxic and anaerobic batch tests, respectively, while the corresponding biotransformation rate constants for the transformation of E1 were estimated to be 7.3 ± 1.0, 3 ± 2.0, and 0.85 ± 0.6 L·g COD{sup −1} d{sup −1}. A steady state mass balance model formulated to describe the interactions between E2 and E1 in BNR activated sludge reasonably described the fate of E1 and E2 in the BNR process. - Highlights: • Comparable estrogenicity removal was observed from two BNR processes. • Pseudo first order model described the transformation of E2 and E1 in BNR process. • Biotransformation of E1 in BNR activated sludge controls the degradation of E2.

  6. Modeling of hazardous air pollutant removal in the pulsed corona discharge

    International Nuclear Information System (INIS)

    Derakhshesh, Marzie; Abedi, Jalal; Omidyeganeh, Mohammad

    2009-01-01

    This study investigated the effects of two parts of the performance equation of the pulsed corona reactor, which is one of the non-thermal plasma processing tools of atmospheric pressure for eliminating pollutant streams. First, the effect of axial dispersion in the diffusion term and then the effect of different orders of the reaction in the decomposition rate term were considered. The mathematical model was primarily developed to predict the effluent concentration of the pulsed corona reactor using mass balance, and considering axial dispersion, linear velocity and decomposition rate of pollutant. The steady state form of this equation was subsequently solved assuming different reaction orders. For the derivation of the performance equation of the reactor, it was assumed that the decomposition rate of the pollutant was directly proportional to discharge power and the concentration of the pollutant. The results were validated and compared with another predicted model using their experimental data. The model developed in this study was also validated with two other experimental data in the literature for N 2 O

  7. Combined biodegradation and ozonation for removal of tannins and dyes for the reduction of pollution loads.

    Science.gov (United States)

    Kanagaraj, James; Mandal, Asit Baran

    2012-01-01

    Tannins and dyes pose major threat to the environment by generating huge pollution problem. Biodegradation of wattle extract, chrome tannin and dye compounds using suitable fungal culture namely Aspergillus niger, Penicillium sp. were carried out. In addition to these, ozone treatment was carried out to get higher degradation rate. The results were monitored by carrying out chemical oxygen demand (COD), total organic carbon (TOC), and UV-Vis analysis. The results showed that wattle extract (vegetable tannin) gave better biodegradation rate than dye and chromium compounds. Biodegradation plus ozone showed degradation rates of 92-95%, 94-95%, and 85-87% for the wattle extract, dyes, chromium compounds, respectively. UV-Vis showed that there were no peaks observed for biodegraded samples indicating better degradation rates as compared to the control samples. FT-IR spectra analysis suggested that the formation of flavanoid derivatives, chromic oxide and NH(2) compounds during degradation of wattle extract, chromium and dye compounds, respectively, at the peaks of 1,601-1,629 cm(-1), 1,647 cm(-1), and 1,610-1,680 cm(-1). The present investigation shows that combination of biodegradation with ozone is the effective method for the removal of dyes and tannins. The biodegradation of the said compounds in combination with ozonation showed better rate of degradation than by chemical methods. The combination of biodegradation with ozone helps to reduce pollution problems in terms of COD, TOC, total dissolved solids and total suspended solids.

  8. Chromium (Cr+6 Removal from Aqueous Environments by Electrocoagulation Process Using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2007-06-01

    Full Text Available The performance of electrocoagulation, with aluminum sacrificial anode, has been investigated. for removal of Cr (VI, Several working parameters, such as pollutant concentration, pH, electrical potential, COD, turbidity, and reaction time were studied in an attempt to achieve higher removal efficiency levels. Solutions of varying chromium concentrations (5-50-500 ppm were prepared. To follow the progress of the treatment, samples of 25ml were taken at 20 min intervals for up to 1 h and then filtered (0.45 μ to eliminate sludge formed during electrolysis. The pH of the initial solution was also varied to study its effects on chromium removal efficiency. Results obtained with synthetic wastewater revealed that the most effective chromium removal efficiency could be achieved when a constant pH level of 3 was maintained. In addition, increased electrical potential, within the range of 20-40V, enhanced treatment rate without affecting the charge loading, but required reduced metal ion concentrations to below admissible standard levels. The process was successfully applied to the treatment of an electroplating wastewater where an effective reduction of Cr (VI concentration below standard limits was obtained just after 20-60 min. The method was found to be highly efficient and relatively fast compared to conventional techniques. Thus, it may be concluded that electrocoagulation process has the potential to be utilized for the cost-effective removal of heavy metals from water and wastewater.

  9. ATMOSPHERE POLLUTION AT STORAGE OF SLAGS OF ALUMINIUM SECONDARY PROCESSING

    Directory of Open Access Journals (Sweden)

    A. S. Panasyugin

    2013-01-01

    Full Text Available Thermodynamic probability of the processes of the formation of compounds of aluminum (which release in the environment by hydrolysis ammonia, acetylene, propane and hydrogen sulfide is determined. In the article the economic loss from irrecoverable waste of aluminum and fines for emissions of air pollutants is estimated.

  10. Coagulation / flocculation process in the removal of trace metals ...

    African Journals Online (AJOL)

    Attempts were made in this study to examine the effectiveness of polymer addition to coagulation process during treatment of a beverage industrial wastewater to remove some of its trace metals content such as lead, cadmium, total iron, total chromium, nickel and zinc. Experiments were conducted using the standard Jar ...

  11. 27 CFR 19.381 - Removals from processing.

    Science.gov (United States)

    2010-04-01

    ... or further processing; (d) Spirits or wines for authorized voluntary destruction; or (e) Wines by transfer in bond to a bonded wine cellar or to another distilled spirits plant. However, wine may not be removed from the bonded premises of a distilled spirits plant for consumption or sale as wine. Spirits may...

  12. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Silver removal process development for the MEO cleanout

    International Nuclear Information System (INIS)

    Hsu, P.C.; Chiba, Z.; Schumacher, B.J.; Murguia, L.C.; Adamson, M.G.

    1996-02-01

    The Mediated Electrochemical Oxidation (MEO) system is an aqueous process which treats low-level mixed wastes by oxidizing the organic components of he waste into carbon dioxide and water. As MEO system continues to run, dissolved ash and radionuclides slowly accumulate in the anolyte and must be removed to maintain process efficiency. At such time, all of the anolyte is pumped into a still feed tank, and the silver ions need to be removed before sending the solution to a thin-film evaporator for further concentration. The efficiency of removing silver ions in the solution needs to be high enough such that the residual silver sent to Final Forms would be less than 1% wt. The purpose of this work is to develop an efficient process to remove silver ions during the MEO cleanout and to demonstrate the capability of centrifugation for separating small silver chloride particles from the solution. This development work includes lab scale experiments and bench scale tests. This report summarizes the results

  14. Performance of Electrocoagulation Process in the Removal of Total Coliform and Hetrotrophic Bacteria from Surface Water

    Directory of Open Access Journals (Sweden)

    Jamshid Derayat

    2015-03-01

    Full Text Available Electrocoagulation is an electrochemical method for the treatment of water and wastewater. The present cross-sectional study was designed to investigate the removal efficiency of total coliform and heterotrophic bacteria from surface water using the process. For this purpose, water samples were taken from the drinking water intake at Suleiman-Shahsonghur Dam. The electrocoagulation process was carried out in a Plexiglas reactor in the batch mode with Al and Fe used electrodes. The experiment design was carried out using the Design Expert Software (Stat-Ease Inc., Ver. 6.0.6. After each run, the values of metals dissolved due to anode electrode dissolution were measured using the Inductively Coupled Plasma (ICP and the results were analyzed using the RSM model. Results revealed maximum removal efficiencies of 100% and 89.1% for total coliform and heterotrophic bacteria using the Al electrode, respectively. Also, maximum removal efficiencies using the Fe electrode for the same pollutants were 100% and 76.1%. The measurements clearly indicate that the quantities of Al and Fe released in water were higher than the recommended values. While the electrocoagulation process showed to be effective in removing microbial agents from surface waters, the high concentrations of dissolved metals due to the dissolution of the anode electrode seem to remain a health problem that requires optimal conditions to be determined for acheiving standard concentrations of the dissolved metals.

  15. Experimental Application of an Advanced Separation Process for NOM Removal from Surface Drinking Water Supply

    Directory of Open Access Journals (Sweden)

    Arianna Callegari

    2017-10-01

    Full Text Available Natural organic matter (NOM in drinking water supplies significantly impacts on water supply quality and treatment, due to observed reactivity with many dissolved and particulate species. Several technologies are used nowadays to remove NOM from the water supply. The evolution of water-related directives, and progressively more restrictive standards for drinking water, however, call for the investigation of advanced, more efficient, and cost-effective water treatment processes. This paper contains a brief overview on the state-of-the-art methods for NOM removal from supply waters, and describes the experimental application of an advanced technology, tested and validated at the pilot scale on the water supply source of a town in Poland. The process allowed significant removal of natural organic matter (about 50% as Dissolved Organic Carbon and turbidity (from 50% to 90%, however, these results requested significant additions of powdered activated carbon. The key to success of this type of process is a correct setup with the identification of optimal types and dosages of reagents. Based on the results of the tests conducted it is foreseeable that this technology could be used onsite, not only for removal of NOM, but also of other hard-to-tackle pollutants potentially contained in the freshwater supply and not presently considered.

  16. Fenton Process Coupled to Ultrasound and UV Light Irradiation for the Oxidation of a Model Pollutant

    Directory of Open Access Journals (Sweden)

    Karen E. Barrera-Salgado

    2016-01-01

    Full Text Available The Fenton process coupled to photosonolysis (UV light and Us, using Fe2O3 catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50. Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3 catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.

  17. NO/sub x/ removal facility: MON process

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Y

    1974-05-01

    A newly developed process for nitrogen oxides removal is described. The MON process, named for Mitsubishi Kizoku, Okabe of Tohoku Univ., and Nippon Kagaku, uses potassium permanganate as an oxidizing agent. Potassium permanganate in alkaline solution converts nitric oxide into nitrate and nitrogen dioxide into nitric acid. The resulting MnO/sub 2/ is easily filtered and recovered as material for the manufacturing of KMnO/sub 4/. Contrary to the conventional methods, the NO/sub x/ conversion rate increases with increasing temperature. Test results at a pilot plant showed that NO/sub x/ was reduced from 570 ppM (nitric oxide 520 ppM) to 27 ppM (mostly NO) at 97 to 98 percent conversion. Another advantage of the process is that other acidic gases such as sulfur dioxide are also removed.

  18. Performance and enhanced mechanism of a novel bio-diatomite biofilm pretreatment process treating polluted raw water.

    Science.gov (United States)

    Yang, Guang-feng; Feng, Li-juan; Wang, Sha-fei; Yang, Qi; Xu, Xiang-yang; Zhu, Liang

    2015-09-01

    A lab-scale novel bio-diatomite biofilm process (BDBP) was established for the polluted raw water pretreatment in this study. Results showed that a shorter startup period of BDBP system was achieved under the completely circulated operation mode, and the removal efficiencies of nitrogen and disinfection by-product precursor were effective at low hydraulic retention time of 2-4 h due to high biomass attached to the carrier and diatomite. A maximum NH4(+)-N oxidation potential predicted by modified Stover-Kincannon model was 333.3 mg L(-1) d(-1) in the BDBP system, which was 4.7 times of that in the control reactor. Results demonstrated that the present of bio-diatomite favors the accumulation of functional microbes in the oligotrophic niche, and the pollutants removal performance of this novel process was enhanced for polluted raw water pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    Science.gov (United States)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  20. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  1. Feed Forward Artificial Neural Network Model to Estimate the TPH Removal Efficiency in Soil Washing Process

    Directory of Open Access Journals (Sweden)

    Hossein Jafari Mansoorian

    2017-01-01

    Full Text Available Background & Aims of the Study: A feed forward artificial neural network (FFANN was developed to predict the efficiency of total petroleum hydrocarbon (TPH removal from a contaminated soil, using soil washing process with Tween 80. The main objective of this study was to assess the performance of developed FFANN model for the estimation of   TPH removal. Materials and Methods: Several independent repressors including pH, shaking speed, surfactant concentration and contact time were used to describe the removal of TPH as a dependent variable in a FFANN model. 85% of data set observations were used for training the model and remaining 15% were used for model testing, approximately. The performance of the model was compared with linear regression and assessed, using Root of Mean Square Error (RMSE as goodness-of-fit measure Results: For the prediction of TPH removal efficiency, a FANN model with a three-hidden-layer structure of 4-3-1 and a learning rate of 0.01 showed the best predictive results. The RMSE and R2 for the training and testing steps of the model were obtained to be 2.596, 0.966, 10.70 and 0.78, respectively. Conclusion: For about 80% of the TPH removal efficiency can be described by the assessed regressors the developed model. Thus, focusing on the optimization of soil washing process regarding to shaking speed, contact time, surfactant concentration and pH can improve the TPH removal performance from polluted soils. The results of this study could be the basis for the application of FANN for the assessment of soil washing process and the control of petroleum hydrocarbon emission into the environments.

  2. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology.

    Science.gov (United States)

    Dvořák, Pavel; Nikel, Pablo I; Damborský, Jiří; de Lorenzo, Víctor

    2017-11-15

    Elimination or mitigation of the toxic effects of chemical waste released to the environment by industrial and urban activities relies largely on the catalytic activities of microorganisms-specifically bacteria. Given their capacity to evolve rapidly, they have the biochemical power to tackle a large number of molecules mobilized from their geological repositories through human action (e.g., hydrocarbons, heavy metals) or generated through chemical synthesis (e.g., xenobiotic compounds). Whereas naturally occurring microbes already have considerable ability to remove many environmental pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow revisiting the same environmental pollution challenges through fresh and far more powerful approaches. The focus on contaminated sites and chemicals has been broadened by the phenomenal problems of anthropogenic emissions of greenhouse gases and the accumulation of plastic waste on a global scale. In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering workflow. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cyanide removal by combined adsorption and biodegradation process

    Directory of Open Access Journals (Sweden)

    R. Roshan Dash, Ch. Balomajumder, A. Kumar

    2006-04-01

    Full Text Available Investigation of the effectiveness of simultaneous adsorption and biodegradation (SAB process over individual processes by using microbes Rhizopus oryzae and Stemphylium loti with granular activated carbon (GAC as adsorbent was carried out. The maximum removal efficiency of cyanide had been achieved by biodegradation alone was 83% by R. oryzae, while it was 90% by S. loti at initial pH of 5.6 and 7.2 respectively and at initial CN- concentration of 150 mg/L. In the combined process efficiency of R. oryzae closer to S. loti (95.3% and 98.6% respectively

  4. The Enhancement of H2O2/UV AOPs for the Removal of Selected Organic Pollutants from Drinking Water with Hydrodynamic Cavitation.

    Science.gov (United States)

    Čehovin, Matej; Medic, Alojz; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2016-12-01

    Drinking water contains organic matter that occasionally needs to be treated to assure its sufficient quality and safety for the consumers. H2O2 and UV advanced oxidation processes (H2O2/UV AOPs) were combined with hydrodynamic cavitation (HC) to assess the effects on the removal of selected organic pollutants. Water samples containing humic acid, methylene blue dye and micropollutants (metaldehyde, diatrizoic acid, iohexol) were treated first by H2O2 (dosages from 1 to 12 mg L-1) and UV (dosages from 300 to 2800 mJ cm-2) AOPs alone and later in combination with HC, generated by nozzles and orifice plates (4, 8, 18 orifices). Using HC, the removal of humic acid was enhanced by 5-15%, methylene blue by 5-20% and metaldehyde by approx. 10%. Under favouring conditions, i.e. high UV absorbance of the matrix (more than 0.050 cm-1 at a wavelength of 254 nm) and a high pollutant to oxidants ratio, HC was found to improve the hydrodynamic conditions in the photolytic reactor, to improve the subjection of the H2O2 to the UV fluence rate distribution and to enhance the removal of the tested organic pollutants, thus showing promising potential of further research in this field.

  5. Investigation of Electrocoagulation Process Efficiency for Color Removal from Polyacrylic Textile Industrial astewater

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Dyes due to coloring nature are appearance pollutants and destroys the transparency and aesthetic quality of surface waters even at relatively low concentration. Several processes have been used for dye removal from wastewater. In recent years, electrochemical methods have been successfully employed to treat dying wastewater.In this study, the electrocoagulation method with aluminum electrodes were used for polyacrylic textile wastewater treatment. COD of wastewater was 1400mg/l. This study was conducted in laboratory scale. The sample was placed in to the electrochemical reactor contains 4 electrodes. The electrodes were connected to a DC power supply. Then the effect of the three operational parameters, electrolysis time (20-60 minutes, electrical applied current (0.5-2.5 Ampere and pH (4-9 on color and COD removal efficiency has been investigated. The results showed that the color and COD removal efficiency is a direct relation with increasing of the reaction time and inverse relation with increase of pH. Optimum operation conditions were in applied current of 1.5 A, the retention time of 60 minutes and pH of 4. In this condition, color and COD removals were 86% and 85%, respectively. This study showed that electrocoagulation process is an effective and efficient method to treatment of polyacrylic textile wastewater.

  6. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  7. Removal of emerging organic pollutants in constructed wetlands: imazalil and tebuconazole as model pesticides

    DEFF Research Database (Denmark)

    Lyu, Tao

    2016-01-01

    The pesticides imazalil and tebuconazole are commonly used to protect various agricultural crops against fungal attack or as biocides for wood protection, as such, they have been found in both rural and urban water bodies. The emerging pesticides are gaining prominence due to the toxic effects...... model pesticides imazalil and tebuconazole under different CWs designs with various operation strategies. The results showed that CWs can be applied to efficiently treat imazalil and tebuconazole contaminated wastewater. The pesticides removal in CWs can be adequate described by first order kinetics...... model. Moreover, the removal ability was strongly influenced by CWs design, dissolved oxygen (DO) level, season (temperature), initial concentrations, hydraulic loading rate (HLR), plant present and species, and potentially nitrification processes. The pesticides biodegradation inside plant tissue after...

  8. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants. Oxidative degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Detomaso, Antonia; Lopez, Antonio; Lovecchio, Giangiuseppe; Mascolo, Giuseppe; Curci, Ruggero

    2003-01-01

    Chlorophenols (CPs) constitute a group of organic pollutants that are introduced into the environment as a result of several man-made activities, such as uncontrolled use of pesticides and herbicides, and as byproducts in the paper pulp bleaching. Promising removal technologies of chlorinated aromatics consist in the application of advanced oxidation processes (AOPs) that can provide an almost total degradation of a variety of contaminants. Among these, wide application find Fenton systems based on generation of reactive species having a high oxidizing power, such as hydroxyl radical HO*. Our objective was that of determining the overall degradation efficiency of the model compound 2,4-dichlorophenol (DCP) by thermal Fenton-type oxidation systems with a view toward defining in more details relevant process parameters, the effect of reaction temperature and of co-catalyst Cu2+. Reaction conditions were similar to those generally adopted as optimal in many practical applications, i.e. pollutant/Fe2+ (as FeSO4) ratio ca. 20, Fe2+/Cu2+ (co-catalyst) 2:1, pH adjusted and controlled at pH 3, and H2O2 in excess (up to four-fold over the stoichiometric amount required for complete mineralization). The results demonstrate that it is advantageous to carry out the reaction at a temperature markedly higher (70 degrees C) than ambient. The stepwise addition of H2O2 in aliquots yields an efficient transformation, while allowing a convenient control of the reaction exothermicity. Under these conditions, the essentially complete removal of the initial DCP is accomplished using just one equiv of H2O2 during 15 min; excess H2O2 (5 equivalents) yields extensive substrate mineralization. Also relevant, at 70 degrees C dechlorination of the initial DCP (and of derived reaction intermediates) is remarkably extensive (3-5% residual TOX), already with the addition of 1 equiv of H2O2. At the end of the reaction, IC and IC-MS analyses of the solution reveal that only low-molecular weight

  9. Process for removal of sulfur oxides from hot gases

    International Nuclear Information System (INIS)

    Bauerle, G. L.; Kohl, A. L.

    1984-01-01

    A process for the removal of sulfur oxides from two gas streams containing the same. One gas stream is introduced into a spray dryer zone and contacted with a finely dispersed spray of an aqueous medium containing an absorbent for sulfur oxides. The aqueous medium is introduced at a controlled rate so as to provide water to the gas in an amount to produce a cooled product gas having a temperature at least 7 0 C. above its adiabatic saturation temperature and from about 125-300% of the stoichiometric amount of absorbent required to react with the sulfur oxides to be removed from the gas stream. The effluent from the spray dryer zone comprises a gas stream of reduced sulfur oxide content and contains entrained dry particulate reaction products including unreacted absorbent. This gas stream is then introduced into a particulate removal zone from which is withdrawn a gas stream substantially free of particles and having a reduced sulfur oxide content. the dry particulate reaction products are collected and utilized as a source of absorbent for a second aqueous scrubbing medium containing unreacted absorbent for the sulfur oxides. An effluent gas stream is withdrawn from the aqueous scrubbing zone and comprises a water-saturated gas stream of reduced sulfur oxide content and substantially free of particles. The effluent gas streams from the particulate removal zone and the aqueous scrubbing zone are combined in such proportions that the combined gas stream has a temperature above its adiabatic saturation temperature

  10. Sewage water pollutants removal efficiency correlates to the concentration gradient of amendments

    International Nuclear Information System (INIS)

    Bhatti, Z.A.; Mahmood, Q.; Raja, I.A.

    2009-01-01

    Three coagulants viz. alum, FeCl/sub 3/ and Moringa oleifera seed extract were compared for treating municipal wastewater. The wastewater samples were collected from a drain near the Murree Road in Abbottabad city. The initial treatment depicted that alum was a suitable coagulant, while the other two caused color development and increased chemical oxygen demand in the effluent. Subsequently, wastewater samples were treatment with graded concentrations (4 32 mg.L/sup -1/ of alum in batch series, and shacked at 600-620 rpm for five minutes. The treated samples were analyzed for various water quality parameters to examine the effective coagulation and flocculation process in the wastewater. There was an increase in TDS and electrical conductivity with the increasing levels of alum above the optimized values (22 to 30 mg L/sup -1/). The process primary treatment strategy of wastewater treatment with alum is suitable for reducing the pollutants load in the sewer system. (author)

  11. Utilization of artificial recharged effluent for irrigation: pollutants' removal and risk assessment

    Directory of Open Access Journals (Sweden)

    Liangliang Wei

    2017-03-01

    Full Text Available The reclaimed water from soil aquifer treatment (SAT column was reused for irrigation as the source water, pollutants' removal and health risk assessment was analyzed via the comparison with secondary and tertiary effluents. The effect of the SAT pre-treatment on the qualities and growth of different crops (Lachca sativa – lettuce, Brasica rapa var chinensis – pak choi, Cucumis sativus – cucumber, Brassica oleracea – cabbage, and Zea mays – maize were evaluated. Experimental results demonstrated that the tertiary and SAT treatments had no significant effect on the crop qualities, and could efficiently decrease the accumulation of heavy metals (especially for SAT pre-treatment. Moreover, the carcinogenic risk of the chemical carcinogens for the 1.5 m SAT effluent irrigation declined roughly an order of magnitude as compared with the secondary effluent, and three to four orders of magnitude decreasing of the virus risk. These findings are significant for the safe and cheap reuse of secondary effluent for irrigation purposes.

  12. Polar pollutants in municipal wastewater and the water cycle: occurrence and removal of benzotriazoles.

    Science.gov (United States)

    Reemtsma, Thorsten; Miehe, Ulf; Duennbier, Uwe; Jekel, Martin

    2010-01-01

    1H-benzo-1,2,3-triazole (BTri) and its methylated analogues (tolyltriazole, TTri) are corrosion inhibitors used in many industrial applications, but also in households in dishwashing agents and in deicing fluids at airports and elsewhere. BTri and one of the TTri-isomers (4-TTri) are typical examples of polar and poorly degradable trace pollutants. Benzotriazole elimination in four wastewater treatment plants (WWTP) in Berlin ranged from 20 to 70% for 5-TTRi over 30 to 55% for BTri to insignificant for 4-TTri. WWTP effluent concentrations were in the range of 7-18 microg/L of BTri, 1-5 microg/L of 4-TTri and 0.8-1.2 microg/L of 5-TTri. BTri and 4-TTri proved to be omnipresent in surface waters of the rivers Rhine and Elbe with concentrations increasing from water for drinking water production from surface waters. Even after residence times of several months BTri and 4-TTri were determined in concentrations of a few hundred ng/L in bank filtration water. Isotherm data from batch experiments indicate that activated carbon filtration should be suitable to avoid intrusion of TTri into drinking water in partially closed water cycles. For BTri, however, sorption to activated carbon appears to be too weak and ozonation may be mandatory to remove it from raw waters. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Application of Super-Amphiphilic Silica-Nanogel Composites for Fast Removal of Water Pollutants

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2016-10-01

    Full Text Available This work first reports the preparation of super-amphiphilic silica-nanogel composites to reduce the contact angle of water to increase the diffusion of pollutant into adsorbents. In this respect, the silica nanoparticles were encapsulated into nanogels based on ionic and nonionic polyacrylamides by dispersion polymerization technique. The morphologies and the dispersion stability of nanogel composites were investigated to clarify the ability of silica-nanogel composites to adsorb at different interfaces. The feasibility of silica polyacrylamide nanogel composites to act as a high-performance adsorbent for removal of methylene blue (MB dye and heavy metals (Co2+ and Ni2+ from aqueous solution was investigated. The surface tension, contact angle, average pore size, and zeta potential of the silica-nanogel composites have been evaluated. The MB dye and heavy metal adsorption capacity achieved Qmax = 438–387 mg/g which is considerably high. The adsorption capacity results are explained from the changes in the morphology of the silica surfaces as recorded from scanning electron microscopy (SEM.

  14. Removal of priority pollutants from water by means of dielectric barrier discharge atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hijosa-Valsero, María, E-mail: mhijv@unileon.es [Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain); Molina, Ricardo, E-mail: ricardo.molina@cid.csic.es [Instituto de Química Avanzada de Cataluña (IQAC), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain); Schikora, Hendrik, E-mail: hendrik.schikora@igb.fraunhofer.de [Fraunhofer IGB, Nobelstraße 12, 70569 Stuttgart (Germany); Müller, Michael, E-mail: michael.mueller@igb.fraunhofer.de [Fraunhofer IGB, Nobelstraße 12, 70569 Stuttgart (Germany); Bayona, Josep M., E-mail: josep.bayona@cid.csic.es [Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA), CID, CSIC, C/Jordi Girona 18-26, E-08034 Barcelona (Spain)

    2013-11-15

    Highlights: • DBD plasma reactors were used to remove pollutants from aqueous solutions. • Atrazine, chlorfenvinfos, 2,4-dibromophenol and lindane were studied. • First-order degradation kinetics were observed for all the compounds. • Degradation by-products were identified by GC–MS. • Treatment efficiencies were lower in industrial wastewater than in pure water. -- Abstract: Two different nonthermal plasma reactors at atmospheric pressure were assessed for the removal of organic micropollutants (atrazine, chlorfenvinfos, 2,4-dibromophenol, and lindane) from aqueous solutions (1–5 mg L{sup −1}) at laboratory scale. Both devices were dielectric barrier discharge (DBD) reactors; one was a conventional batch reactor (R1) and the other a coaxial thin-falling-water-film reactor (R2). A first-order degradation kinetics was proposed for both experiments. The kinetic constants (k) were slightly faster in R1 (0.534 min{sup −1} for atrazine; 0.567 min{sup −1} for chlorfenvinfos; 0.802 min{sup −1} for 2,4-dibromophenol; 0.389 min{sup −1} for lindane) than in R2 (0.104 min{sup −1} for atrazine; 0.523 min{sup −1} for chlorfenvinfos; 0.273 min{sup −1} for 2,4-dibromophenol; 0.294 min{sup −1} for lindane). However, energy efficiencies were about one order of magnitude higher in R2 (89 mg kW{sup −1} h{sup −1} for atrazine; 447 mg kW{sup −1} h{sup −1} for chlorfenvinfos; 47 mg kW{sup −1} h{sup −1} for 2,4-dibromophenol; 50 mg kW{sup −1} h{sup −1} for lindane) than in R1. Degradation by-products of all four compounds were identified in R1. As expected, when the plasma treatment (R1) was applied to industrial wastewater spiked with atrazine or lindane, micropollutant removal was also achieved, although at a lower rate than with aqueous solutions (k = 0.117 min{sup −1} for atrazine; k = 0.061 min{sup −1} for lindane)

  15. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  16. Evaluation of Fenton Process in Removal of Direct Red 81

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Baghapour

    2016-01-01

    Full Text Available Background: Dyes are visible materials and are considered as one of the hazardous components that make up the industrial waste. Dye compounds in natural water, even in very low concentrations, will lead to environmental problems. Azo dyes are compounds with one or more –N=N– groups and are used in textile industry. Because of its low price, solubility, and stability, azo dyes are widely used in the textile industry. Direct Red 81 (DR81 is one of the azo dyes, which is removed from bodies of water, using various methods. This study aimed to assess DR81 dye removal by Fenton oxidation and the effects of various parameters on this process. Methods: Decolorization tests by Fenton oxidation were performed at dye concentrations of 50, 500, 100 and 1000 mg/L; hydrogen peroxide concentrations of 0, 10, 30, 60 and 120 mg/L; iron (II sulfate heptahydrate concentrations of 0, 3, 5, 20 and 50 mg/L; and pH levels of 3, 5, 7 and 10 for durations of 5, 10, 20, 30, 60 and 180 minutes. Results: The optimal condition occurred at a dye concentration of 20 mg/L, hydrogen peroxide concentration of 120 mg/L, bivalent iron concentration of 100 mg/L, pH of 3, and duration of 30 minutes. Under such conditions, the maximum dye removal rate was 88.98%. Conclusion: The results showed that DR81 could be decomposed and removed by Fenton oxidation. In addition, the removal of Direct Red 81 (DR81 depends on several factors such as dye concentration, reaction time, concentrations of hydrogen peroxide and iron, and pH

  17. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative

    International Nuclear Information System (INIS)

    Morani, Arianna; Nowak, David J.; Hirabayashi, Satoshi; Calfapietra, Carlo

    2011-01-01

    Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon benefits. Those trees will likely remove more than 10 000 tons of air pollutants and a maximum of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon storage will be reduced through time as carbon loss through tree mortality outweighs carbon accumulation through tree growth. Model projections are strongly affected by mortality rate whose uncertainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons. - Highlights: → The manuscript is part of the IUFRO Special section 'Adaptation of Forest Ecosystems to Air Pollution and Climate Change' (Elena Paoletti and Yusuf Serengil Eds.) approved by William J. Manning. → It has been already peer-reviewed and accepted outside EES. → The reference number of this manuscript is IUFRO49. - Carbon and air pollutant uptake by urban forests are highly influenced by mortality rates.

  18. How to select the best tree planting locations to enhance air pollution removal in the MillionTreesNYC initiative

    Energy Technology Data Exchange (ETDEWEB)

    Morani, Arianna [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR) Via Salaria km 29300, 00015 Monterotondo Scalo, Roma (Italy); Nowak, David J.; Hirabayashi, Satoshi [USDA Forest Service, Northern Research Station, 5 Moon Library, SUNY-ESF, Syracuse, NY 13210 (United States); Calfapietra, Carlo, E-mail: carlo.calfapietra@ibaf.cnr.it [Institute of Agro-Environmental and Forest Biology (IBAF), National Research Council (CNR) Via Salaria km 29300, 00015 Monterotondo Scalo, Roma (Italy)

    2011-05-15

    Highest priority zones for tree planting within New York City were selected by using a planting priority index developed combining three main indicators: pollution concentration, population density and low canopy cover. This new tree population was projected through time to estimate potential air quality and carbon benefits. Those trees will likely remove more than 10 000 tons of air pollutants and a maximum of 1500 tons of carbon over the next 100 years given a 4% annual mortality rate. Cumulative carbon storage will be reduced through time as carbon loss through tree mortality outweighs carbon accumulation through tree growth. Model projections are strongly affected by mortality rate whose uncertainties limit estimations accuracy. Increasing mortality rate from 4 to 8% per year produce a significant decrease in the total pollution removal over a 100 year period from 11 000 tons to 3000 tons. - Highlights: > The manuscript is part of the IUFRO Special section 'Adaptation of Forest Ecosystems to Air Pollution and Climate Change' (Elena Paoletti and Yusuf Serengil Eds.) approved by William J. Manning. > It has been already peer-reviewed and accepted outside EES. > The reference number of this manuscript is IUFRO49. - Carbon and air pollutant uptake by urban forests are highly influenced by mortality rates.

  19. Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide

    Directory of Open Access Journals (Sweden)

    Taleb Khaled A.

    2016-01-01

    Full Text Available A novel adsorbents NC-PEG, obtained by the modification of nanocellulose (NC with PEG-6-arm amino polyethylene glycol (PEG-NH2 via maleic anhydride (MA linker, was used for the removal of Cd2+ and Ni2+ from water. Subsequent precipitation of goethite (FO on NC-PEG produced NC-PEG/FO adsorbent which was used for As(V and As(III removal. In a batch test, the influence of pH, contact time, initial ion concentration and temperature on adsorption efficiency were studied. The maximum adsorption capacities found for Cd2+ and Ni2+, obtained by the use of Langmuir model, were 37.9 and 32.4 mg g−1 at 25 °C, respectively. Also, high As(V and As(III removal capacity of 26.0 and 23.6 mg g-1 were obtained. Thermodynamic parameters indicate endothermic, feasible and spontaneous nature of adsorption process. Kinetic study, i.e. fitting by Weber-Morris model predicted intra-particle diffusion as a rate-controlling step. Multi-cycle reusability of both NC-PEG and NC-PEG/FO, significantly affects the affordability of techno-economic indicators for consideration of their possible application. [Ministry of Education, Science and Technological developments of the Republic of Serbia, Project No. 172013, and University of Defence, Republic of Serbia, project VA-TT/4/16-18

  20. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  1. Use of advanced oxidation processes for removal of micropollutants

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    photocatalysis when illuminated with UV light, and it may furthermore be arranged so the photocatalyst is immobilized on the UV quartz tubes by coating, which removes the need for a constant addition and subsequent removal of TiO2 to the system. The effect of the current system, and the TiO2 modified system...... was investigated by degradation of the synthetic estrogen 17α-ethinylestradiol (EE2). EE2 was used as the model compound since it is a very potent endocrine disruptor that has been found to have endocrine effects on fish at ppt levels. Also, the disinfection capability with photocatalysis was investigated...... of the microorganisms, photocatalysis works by oxidizing the cell membrane for microorganism adsorbed to the coated surface, which is a more inefficient process per mole UV light....

  2. Natural diatomite process for removal of radioactivity from liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Osmanlioglu, Ahmet Erdal [Radioactive Waste Management Unit (RWMU), Turkish Atomic Energy Authority, Cekmece Nuclear Research and Training Center, Altinsehir Yolu 5 km. Halkali, 34303K Cekmece, Istanbul (Turkey)]. E-mail: Erdal.Osmanlioglu@taek.gov.tr

    2007-01-15

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  3. Natural diatomite process for removal of radioactivity from liquid waste

    International Nuclear Information System (INIS)

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite

  4. Natural diatomite process for removal of radioactivity from liquid waste.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2007-01-01

    Diatomite has a number of unique physical properties and has found diversified industrial utilization. The filtration characteristics are particularly significant in the purification of liquids. The purpose of this study was to test natural diatomaceous earth (diatomite) as an alternative material that could be used for removal of radioactivity from liquid waste. A pilot-scale column-type device was designed. Natural diatomite samples were ground, sieved and prepared to use as sorption media. In this study, real waste liquid was used as radioactive liquid having special conditions. The liquid waste contained three radionuclides (Cs-137, Cs-134 and Co-60). Following the treatment by diatomite, the radioactivity of liquid waste was reduced from the initial 2.60 Bq/ml to less than 0.40 Bq/ml. The results of this study show that most of the radioactivity was removed from the solution by processing with diatomite.

  5. Behavior of the new composites obtained from fly ash and titanium dioxide in removing of the pollutants from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Visa, Maria; Andronic, Luminita; Enesca, Alexandru

    2016-12-01

    Graphical abstract: - Highlights: • A novel substrates FLY1, 2, 3 and FLY2NPt is obtained by hydrothermal synthesis. • The composite type structure has specific surface ten times higher than fly ash. • Simultaneous removal of three pollutants reaches efficiencies above 80%. • Kinetic investigations show fast adsorption of the dye on the new composite. - Abstract: The goal of this paper was to develop a low-temperature TiO{sub 2}-fly ash (TiO{sub 2}-FA) composite based on interaction in alkaline solution using hydrothermal methods, to obtain crystalline nanocomposite at low temperature. These composites are interesting to be applied in visible photocatalysis/adsorption simultaneous advanced wastewater processes. Combining fly ash with titanium dioxide has the following advantages: (1) the titanium oxide crystallites grow on the support (active fly ash); (2) pollutant molecules migrate to the surface of TiO{sub 2} can be degraded by photocatalysis; and (3) activated fly ash substrates are regenerated in situ. The composites were characterized by the scanning electron microscopy (SEM) and atomic force microscopy (AFM) for morphological characterization of the surface, X-ray diffraction (XRD) for phase and crystallinity analysis, UV–vis spectroscopy to calculate the energy band gap, surface analysis by determining the contact angle, porosity analysis (BET). The photocatalytic property of the composites was evaluated by dye (methylene blue), surfactant (dodecylbenzenesulfonate–SDBS) degradation under UV and Visible irradiation. The adsorption tests were made on heavy metal (Cu{sup 2+}) cation. Properties of composites were correlated with the adsorption/photocatalytic activity of the samples.

  6. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  7. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  8. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  9. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.

    Science.gov (United States)

    Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A

    2017-07-01

    Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.

  10. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  11. Aluminium removal from water after defluoridation with the electrocoagulation process.

    Science.gov (United States)

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  12. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  13. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  14. A process to remove ammonia from PUREX plant effluents

    International Nuclear Information System (INIS)

    Moore, J.D.

    1990-01-01

    Zirconium-clad nuclear fuel from the Hanford N-Reactor is reprocessed in the PUREX (Plutonium Uranium Extraction) Plant operated by the Westinghouse Hanford Comapny. Before dissolution, cladding is chemically removed from the fuel elements with a solution of ammonium fluoride-ammonium nitrate (AFAN). a solution batch with an ammonia equivalent of about 1,100 kg is added to each fuel batch of 10 metric tons. This paper reports on this decladding process, know as the 'Zirflex' process which produces waste streams containing ammonia and ammonium slats. Waste stream treatment, includes ammonia scrubbing, scrub solution evaporation, residual solids dissolution, and chemical neutralization. These processes produce secondary liquid and gaseous waste streams containing varying concentrations of ammonia and low-level concentrations of radionuclides. Until legislative restrictions were imposed in 1987, these secondary streams were released to the soil in a liquid disposal 'crib' and to the atmosphere

  15. Extraction process for removing metallic impurities from alkalide metals

    Science.gov (United States)

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  16. [Physical process based risk assessment of groundwater pollution in the mining area].

    Science.gov (United States)

    Sun, Fa-Sheng; Cheng, Pin; Zhang, Bo

    2014-04-01

    Case studies of groundwater pollution risk assessment at home and abroad generally start from groundwater vulnerability, without considering the influence of characteristic pollutants on the consequences of pollution too much. Vulnerability is the natural sensitivity of the environment to pollutants. Risk assessment of groundwater pollution should reflect the movement and distribution of pollutants in groundwater. In order to improve the risk assessment theory and method of groundwater pollution, a physical process based risk assessment methodology for groundwater pollution was proposed in a mining area. According to the sensitivity of the economic and social conditions and the possible distribution of pollutants in the future, the spatial distribution of risk levels in aquifer was ranged before hand, and the pollutant source intensity corresponding to each risk level was deduced accordingly. By taking it as the criterion for the classification of groundwater pollution risk assessment, the groundwater pollution risk in the mining area was evaluated by simulating the migration of pollutants in the vadose zone and aquifer. The result show that the risk assessment method of groundwater pollution based on physical process can give the concentration distribution of pollutants and the risk level in the spatial and temporal. For single punctuate polluted area, it gives detailed risk characterization, which is better than the risk assessment method that based on aquifer intrinsic vulnerability index, and it is applicable to the risk assessment of existing polluted sites, optimizing the future sites and providing design parameters for the site construction.

  17. Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs.

    Science.gov (United States)

    Cheng, Yunqin; Chen, Yunlu; Lu, Juncheng; Nie, Jianxin; Liu, Yan

    2018-04-01

    The Fenton process is used as a tertiary treatment to remove organic pollutants from the effluent of bio-treated pharmaceutical wastewater (EBPW). The optimal and most appropriate Fenton conditions were determined by an orthogonal array test and single-factor experiments. The removal of chemical oxygen demand (COD) was influenced by the following factors in a descending order: H 2 O 2 /Fe(II) molar ratio > H 2 O 2 dosage > reaction time. Under the most appropriate Fenton conditions (H 2 O 2 /Fe(II) molar ratio of 1:1, H 2 O 2 dosage of 120 mg L -1 and reaction time of 10 min), the COD and dissolved organic carbon (DOC) were removed with efficiencies of 62 and 53%, respectively, which met the national discharge standard (GB 21903-2008) for the Lake Tai Basin, China. However, the Fenton treatment was inadequate for removal of N compounds, and the removal of organic nitrogen led to an increment in N-NH 3 from 3.28 to 19.71 mg L -1 . Proteins and polysaccharides were completely removed, and humic acids (HAs) were partly removed with an efficiency of 55%. Three-dimensional excitation/emission matrix spectra (3DEEMs) indicated complete removal of fulvic acid-like substances and 90% reduction in the florescence intensity of humic acid-like substances. Organic pollutants with molecular weights (MW) > 10 kDa were completely removed, MW 5-10 kDa were degraded into smaller MW ones, and some low molecular weight acids (MW 0.1-1 kDa) were mineralized during the Fenton process. Some species, including pharmaceutical intermediates and solvents were detected by gas chromatography-mass spectrometry (GC-MS). The operational costs of the Fenton's treatment were estimated to be 0.58 yuan RMB/m 3 EBPW based on reagent usage and iron sludge treatment and disposal.

  18. Sources and Processes Affecting Particulate Matter Pollution over North China

    Science.gov (United States)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  19. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced. The anaerobic......Pilot-scale anaerobic and aerobic treatment in a two-step bioreactor was performed for the removal of pollutants from pulp and paper mill effluent. After seven days of anaerobic treatment, colour (45%), lignin (60%), COD (26%) and adsorbable organic halogen (AOX) (20%) were reduced....... The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  20. Removal of heavy metals from polluted soil using the citric acid fermentation broth: a promising washing agent.

    Science.gov (United States)

    Zhang, Hongjiao; Gao, Yuntao; Xiong, Huabin

    2017-04-01

    The citric acid fermentation broth was prepared and it was employed to washing remediation of heavy metal-polluted soil. A well-defined washing effect was obtained, the removal percentages using citric acid fermentation broth are that 48.2% for Pb, 30.6% for Cu, 43.7% for Cr, and 58.4% for Cd and higher than that using citric acid solution. The kinetics of heavy metals desorption can be described by the double constant equation and Elovich equation and is a heterogeneous diffusion process. The speciation analysis shows that the citric acid fermentation broth can effectively reduce bioavailability and environmental risk of heavy metals. Spectroscopy characteristics analysis suggests that the washing method has only a small effect on the mineral composition and does not destroy the framework of soil system. Therefore, the citric acid fermentation broth is a promising washing agent and possesses a potential practical application value in the field of remediation of soils with a good washing performance.

  1. Low-cost removal of organic pollutants with nickel nanoparticle loaded ordered macroporous hydrogel as high performance catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: tmyi@tjcu.edu.cn [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Zhang, Sai [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Liu, Yue [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Wang, Xingrui [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia, E-mail: qhx@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2014-06-01

    A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni{sup 2+} ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH{sub 4} aqueous solution, the Ni{sup 2+} ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH{sub 4}. A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s{sup −1} g{sup −1}, which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity. - Highlights: • A new poly(acrylamide-co-acryl acid) hydrogel with ordered macropores. • A simple in situ fabrication of nickel nanoparticles under mild conditions. • High-performance heterogeneous catalyst for removal of nitrophenol from water. • Good recyclability of catalyst without any complicated regeneration process.

  2. Low-cost removal of organic pollutants with nickel nanoparticle loaded ordered macroporous hydrogel as high performance catalyst

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Zhang, Sai; Liu, Yue; Li, Xianxian; Wang, Xingrui; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile route for the in situ preparation of catalytically active Ni nanoparticles (NPs) in ordered macroporous hydrogel (OMH) has been developed. The hydrogel was fabricated based on polystyrene colloid template. The electronegativity of amide and carboxyl groups on the poly(acrylamide-co-acryl acid) chains of the hydrogel caused strong binding of Ni 2+ ions which made them distribute uniformly inside the hydrogel. When immersed in NaBH 4 aqueous solution, the Ni 2+ ions on the hydrogel were reduced to Ni NPs. The resultant Ni NPs loaded OMH showed good catalytic activity for the reduction of a common organic pollutant, 4-nitrophenol, with NaBH 4 . A kinetic study of the catalytic reaction was carried out. The rate constant per unit weight could reach 0.53 s −1  g −1 , which is much better than many common hydrogel loaded nickel catalysts. Moreover, the current catalyst can be easily separated and recovered with stable catalytic activity. - Highlights: • A new poly(acrylamide-co-acryl acid) hydrogel with ordered macropores. • A simple in situ fabrication of nickel nanoparticles under mild conditions. • High-performance heterogeneous catalyst for removal of nitrophenol from water. • Good recyclability of catalyst without any complicated regeneration process

  3. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  4. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    International Nuclear Information System (INIS)

    Thakur, Suman; Karak, Niranjan

    2014-01-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb 2+ and Cd 2+ within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous

  5. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  6. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  7. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    Science.gov (United States)

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  8. Autotrophic nitrogen removal process in a potable water treatment biofilter that simultaneously removes Mn and NH4(+)-N.

    Science.gov (United States)

    Cai, Yan'an; Li, Dong; Liang, Yuhai; Zeng, Huiping; Zhang, Jie

    2014-11-01

    Ammonia (NH4(+)-N) removal pathways were investigated in a potable water treatment biofilter that simultaneously removes manganese (Mn) and NH4(+)-N. The results indicated a significant loss of nitrogen in the biofilter. Both the completely autotrophic nitrogen removal over nitrite (CANON) process and nitrification were more likely to contribute to NH4(+)-N removal. Moreover, the model calculation results demonstrated that the CANON process contributed significantly to the removal of NH4(+)-N. For influent NH4(+)-N levels of 1.030 and 1.749mg/L, the CANON process contribution was about 48.5% and 46.6%, respectively. The most important finding was that anaerobic ammonia oxidation (ANAMMOX) bacteria were detectable in the biofilter. It is interesting that the CANON process was effective even for such low NH4(+)-N concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Development on the technologies for tritium removal processes

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woong; Kim, Yong Ik; Nah, Jung Won; Koo, Je Hyoo; Kim, Kwang Lak; Chung, Heung Suk; Lee, Han Soo; Cho, Yung Hyun; Paek, Seung Woo; Kang, Heui Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chung, Yong Won [In Hah Univ., Inchun (Korea, Republic of)

    1994-12-01

    While tritium exposure to the site-workers in Wolsung NPP is upto about 40 % of the total personnel exposure, Korea Institute of Nuclear Safety has asked tritium removal facility, as one of the requirements for post reactor construction, after operation of four CANDU reactors in Wolsung site. For the purpose of essential removal of tritium from the heavy water system of the heavy water reactors, an experiment of Ar-N{sub 2} cryogenic distillation tower was carried out as a preliminary study for development of liquid-phase catalytic exchange - cryogenic hydrogen distillation process. The steady-state reached after 50 minutes under 90 K in the Ar-N{sub 2} distillation column (inner diameter 20 mm, height 500 mm) packed with Dixon ring ({phi} 3 mm x H 3 mm), and the ratios of Ar-concentration at the top and at the bottom measured by gas chromatography within {+-}1 % relative error was approximately 93 : 3. This value was distillation performances quite higher than those estimated by computer-simulation, which might be due to good efficiency of the packing materials. Several dynamic characteristics such as height equivalent to theoretical plate or effects of the kind of packing materials for Ar-N{sub 2} distillation column to be produced will be available for design study of cryogenic hydrogen distillation process. 19 figs, 17 tabs, 21 refs. (Author).

  10. Development on the technologies for tritium removal processes

    International Nuclear Information System (INIS)

    Sung, Ki Woong; Kim, Yong Ik; Nah, Jung Won; Koo, Je Hyoo; Kim, Kwang Lak; Chung, Heung Suk; Lee, Han Soo; Cho, Yung Hyun; Paek, Seung Woo; Kang, Heui Suk; Chung, Yong Won

    1994-12-01

    While tritium exposure to the site-workers in Wolsung NPP is upto about 40 % of the total personnel exposure, Korea Institute of Nuclear Safety has asked tritium removal facility, as one of the requirements for post reactor construction, after operation of four CANDU reactors in Wolsung site. For the purpose of essential removal of tritium from the heavy water system of the heavy water reactors, an experiment of Ar-N 2 cryogenic distillation tower was carried out as a preliminary study for development of liquid-phase catalytic exchange - cryogenic hydrogen distillation process. The steady-state reached after 50 minutes under 90 K in the Ar-N 2 distillation column (inner diameter 20 mm, height 500 mm) packed with Dixon ring (φ 3 mm x H 3 mm), and the ratios of Ar-concentration at the top and at the bottom measured by gas chromatography within ±1 % relative error was approximately 93 : 3. This value was distillation performances quite higher than those estimated by computer-simulation, which might be due to good efficiency of the packing materials. Several dynamic characteristics such as height equivalent to theoretical plate or effects of the kind of packing materials for Ar-N 2 distillation column to be produced will be available for design study of cryogenic hydrogen distillation process. 19 figs, 17 tabs, 21 refs. (Author)

  11. Efficiency of Ciprofloxacin (CIP Removal from Pharmaceutical Effluents Using the Ozone/Persulfate(O3/PS Process

    Directory of Open Access Journals (Sweden)

    Alirezi Rahmani

    2016-03-01

    Full Text Available A newly emerging environmental problem is the discharge of pharmaceutical effluents containing antibiotic compounds. Compared to common methods, the ozone/persulfate process is a novel measure for treating persistent pollutants. This process is highly efficient in removing pollutants by using the free radicals of sulfates as powerful oxidants. In this study, a semi-continuous reactor with a useful volume of 1 L was used to evaluate the performance of the ozone/persulfate process in treating the ciprofloxacin antibiotic at concentrations from 10 to 100 mg/L in the presence of 0 to 15 mM of persulfate in 30 min. The results showed that under the optimized operating conditions of pH = 3, persulfate dose = 10 mM, ozone dose = 1 g/h, and an initial antibiotic concentration of 10 mg/L, this method was capable of removing 96% of the contaminant. Moreover, the efficiency of the process was found to be a function of experimental conditions. Based on the results of this study, it may be concluded that the ozone/persulfate process can be considered as an appropriate process for treating persistent and non-biodegradable pollutants.

  12. The AMES Laboratory chemical disposal site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1996-01-01

    The Ames Laboratory has historically supported the U.S. Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, chemical wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the U.S. Army Corps of Engineers (USACE), OHM Remediation Services Corp (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  13. The Ames Laboratory Chemical Disposal Site removal action: Source removal, processing, and disposal

    International Nuclear Information System (INIS)

    Shirley, R.S.

    1995-01-01

    The Ames Laboratory has historically supported the US Department of Energy (USDOE) and its predecessor agencies by providing research into the purification and manufacturing of high purity uranium, thorium, and yttrium metals. Much of this work was accomplished in the late 1950s and early 1960s prior to the legislation of strict rules and regulations covering the disposal of radioactive and chemical wastes. As a result, approximately 800 cubic meters of low-level radioactive wastes, mixed wastes, and contaminated debris were disposed in nine near surface cells located in a 0.75 hectare plot of land owned by Iowa State University in Ames, Iowa. Under a national contract with the US Army Corps of Engineers (USACE), OHM Remediation Services Corp. (OHM) was tasked with providing turnkey environmental services to remove, process, package, transport, and coordinate the disposal of the waste materials and contaminated environmental media

  14. Characterization and adsorption mechanism of Zn2+ removal by PVA/EDTA resin in polluted water

    International Nuclear Information System (INIS)

    Zhang Yun; Li Yanfeng; Yang Liuqing; Ma Xiaojie; Wang Liyuan; Ye Zhengfang

    2010-01-01

    Batch adsorption experiments were conducted using a PVA/EDTA resin as an adsorbent to adsorb Zn(II) ions from single component system in which experimental parameters were studied including solution pH, contact time, adsorbent dose and initial metal ions concentration. The equilibrium isotherms were determined at pH 6 under constant ionic strength and at different temperatures. The results showed that the maximum removal of Zn(II) (99.8%) with 1 g L -1 of sorbent was observed at 40 mg L -1 at an initial pH value of 6. Removals of about 60-70% occurred in 15 min, and equilibrium was attained at around 30 min. The equilibrium data for the adsorption of Zn(II) on PVA/EDTA resin was tested with various adsorption isotherm models among which three models were found to be suitable for the Zn(II) adsorption. In addition, the kinetic adsorption fitted well to the pseudo-second-order model and the corresponding rate constants were obtained. Thermodynamic aspects of the adsorption process were also investigated. Furthermore a higher desorption efficiency of Zn(II) from the PVA/EDTA resin using acid treatment was available by more than 95%.

  15. Biological removal of metal ions from aqueous process streams

    International Nuclear Information System (INIS)

    Shumate, S.E. II; Strandberg, G.W.; Parrott, J.R. Jr.

    1978-01-01

    Aqueous waste streams from nuclear fuel processing operations may contain trace quantities of heavy metals such as uranium. Conventional chemical and physical treatment may be ineffective or very expensive when uranium concentrations in the range of 10 to 100 g/m 3 must be reduced to 1 g/m 3 or less. The ability of some microorganisms to adsorb or complex dissolved heavy metals offers an alternative treatment method. Uranium uptake by Saccharomyces cerevisiae NRRL Y-2574 and a strain of Pseudomonas aeruginosa was examined to identify factors which might affect a process for the removal of uranium from wastewater streams. At uranium concentrations in the range of 10 to 500 g/m 3 , where the binding capacity of the biomass was not exceeded, temperature, pH, and initial uranium concentration were found to influence the rate of uranium uptake, but not the soluble uranium concentration at equilibrium. 6 figs

  16. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  17. Pollution

    NARCIS (Netherlands)

    Dürr, E.; Jaffe, R.; Nonini, D.M.

    2014-01-01

    This essay points to the role of pollution in understanding the social construction of hierarchies and urban space. Conceptualizations of pollution and approaches to waste management always reflect the Zeitgeist and tend to be politically charged. We argue that an ethnographic approach to pollution

  18. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.

    Science.gov (United States)

    Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S

    2010-05-01

    The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.

  19. Impact of Optimized Flow Pattern on Pollutant Removal and Biogas Production Rate Using Wastewater Anaerobic Fermentation

    Directory of Open Access Journals (Sweden)

    Ruyi Huang

    2015-06-01

    Full Text Available This paper introduces a new-type of antigravity mixing method, which was applied in the biogas production process, using organic wastewater fermentation. It was found that the digesters with two designs, a high-position, centralized pressure outlet and a high-position, dispersed pressure outlets, both lead to an increase in biogas production rates by 89% and 125%, respectively. The biogas production peak appeared 1 day and 7 days earlier, and the COD removal rates were raised by 27% and 42%, respectively. The results indicated that the optimized flow field had a significant impact. This work also explains the mechanism of flow field optimization using computational fluid dynamics (CFD software for the simulation of the flow field form in the hydraulic mixing.

  20. Electrocoagulation (EC and Electrocoagulation/Flotation(ECF Processes for Removing High Turbidity from Surface Water Using Al and Fe Electrodes

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2013-08-01

    Full Text Available Electrocoagulation (EC and Electrocoagulation/flotation (ECF processes are simple and efficient in water and wastewater treatment. In recent years, many investigations have focused on the use of these processes for treating of polluted water. The purpose of this study was to investigate the efficiency of EC and ECF processes in removal of high turbidity water using different electrodes in different circumstances. In present study an electrocoagulation and electrocoagulation/ flotation reactor in a lab scale to an approximate volume of 6 liters which is equipped with four Al-AL and Fe-Fe electrodes (200 * 20 * 2 mm was used  for removing of high turbidity water. The effects of operating parameters such as type of electrodes, initial water turbidity, applied voltage (10 to 30 v, initial pH of the solution (3 to 12 and reaction times (5 to 30 minutes were evaluated. The batch experimental results showed that initial turbidity water, initial pH of the solution, different applied voltages up to %88 turbidity as initial turbidity of 1200 NTU have been removed when using Al-Al and Fe-Fe electrodes and reaction times highly effective on the turbidity removal efficiency in these processes. In ECF process, 84% in optimum condition. However, in EC  process the maximum removal was found  up to 68% of initial turbidity when using Al-Al and Fe-Fe electrodes in same operation. Based on the result obtained in this study, the type of electrodes in EC and ECF processes  significantly affect the removal rate of high turbid water. Also, it was found that much higher turbidity removal could be achieved by ECF process than that by EC process in the same condition.

  1. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light.

    Science.gov (United States)

    Sebti, Aicha; Souahi, Fatiha; Mohellebi, Faroudja; Igoud, Sadek

    2017-07-01

    This research focuses on the application of an artificial neural network (ANN) to predict the removal efficiency of tartrazine from simulated wastewater using a photocatalytic process under solar illumination. A program is developed in Matlab software to optimize the neural network architecture and select the suitable combination of training algorithm, activation function and hidden neurons number. The experimental results of a batch reactor operated under different conditions of pH, TiO 2 concentration, initial organic pollutant concentration and solar radiation intensity are used to train, validate and test the networks. While negligible mineralization is demonstrated, the experimental results show that under sunlight irradiation, 85% of tartrazine is removed after 300 min using only 0.3 g/L of TiO 2 powder. Therefore, irradiation time is prolonged and almost 66% of total organic carbon is reduced after 15 hours. ANN 5-8-1 with Bayesian regulation back-propagation algorithm and hyperbolic tangent sigmoid transfer function is found to be able to predict the response with high accuracy. In addition, the connection weights approach is used to assess the importance contribution of each input variable on the ANN model response. Among the five experimental parameters, the irradiation time has the greatest effect on the removal efficiency of tartrazine.

  2. Simultaneous removal of metals and organic compounds from a heavily polluted soil

    International Nuclear Information System (INIS)

    Szpyrkowicz, L.; Radaelli, M.; Bertini, S.; Daniele, S.; Casarin, F.

    2007-01-01

    The paper describes the results of treatment of soil samples, deriving from a dismissed industrial site, contaminated with several metals: Hg, Ni, Co, Zn, Pb, Cu, Cr, As and organic substances. The soil was subjected to remediation based on a process in which an oxidising leaching agent was produced electrochemically in-line in an undivided electrochemical cell reactor equipped with a Ti/Pt-Ir anode and a stainless steel cathode. Leaching of the soil samples was performed under dynamic conditions using a leaching column. A subsequent regeneration of the leaching solution, which consisted in electrodeposition of metals and electro-oxidation of organic substances, was carried out in a packed-bed reactor equipped with a centrally positioned graphite rod, serving as an anode, and stainless steel three-dimensional filling as a cathode. The study was focused on how and to which extent the metals present in the soil, as organic complexes, can be solubilised and how the process rates are impacted by the solution pH and other process variables. Data obtained under non-oxidising conditions, typically adopted for leaching of metals, are compared with the performance of chlorine-enriched leaching solutions. The results obtained under various conditions are also discussed in terms of the total organic carbon (TOC) removal from the water phase

  3. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-05-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater treatment method due to its efficiency, ease of operation, and low cost. However, currently used adsorbents have either high regeneration costs or low adsorption capacities. In this work, new organic/inorganic hybrids based on hollow silica microspheres were successfully synthesized, and their ability to remove Methylene Blue from wastewater and crude oil from simulated produced water was evaluated. By employing four different silanes, namely triethoxy (octyl) silane, triethoxy (dodecyl) silane, trichloro (octadecyl) silane, and triethoxy (pentafluorophenyl) silane, hydro and fluorocarbons were grafted onto the surface of commercially available silica microspheres. These silica derivatives were tested as adsorbents by exposing them to Methylene Blue aqueous solutions and synthetic produced water. Absorbance and oil concentration were measured via a UV/Vis Spectrophotometer and an HD-1000 Oil-in-Water Analyzer respectively. Methylene Blue uptake experiments showed that increasing the adsorbent dosage and decreasing initial dye concentration might increase adsorption percentage. On the other hand, adsorption capacities were improved with lower adsorbent dosages and higher initial dye concentrations. Varying the initial solution pH, from pH 5 to pH 9, and increasing ionic strength did not seem to have a significant impact on the extent of adsorption of Methylene Blue. Overall, the silica derivative containing aromatic functional groups, Caro, was proven to be the most effective adsorbent due to the presence of π-π and cation-π interactions in addition to the van der Waals and hydrophobic interactions occurring with all four adsorbents. Although the Langmuir Model did not accurately represent the equilibrium data, it

  4. Study on the associated removal of pollutants from coal-firing flue gas using biomass activated carbon pellets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cuiping; Yuan, Wanli [Qingdao Univ., Shandong (China). Electrical and Mechanical Engineering College; Qi, Haiying [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    2013-07-01

    A pilot-scale multi-layer system was developed for the adsorption of SO{sub 2}/NO{sub x}/Hg from flue gas (real flue gases of an heating boiler house) at various operating conditions, including operating temperature and activated carbon materials. Excellent SO{sub 2}/NO{sub x}/Hg removal efficiency was achieved with the multi-layer design with carbons pellets. The SO{sub 2} removal efficiency achieved with the first layer adsorption bed clearly decreased as the operating temperature was increased due to the decrease of physisorption performance. The NO{sub x} removal efficiency measured at the second layer adsorption bed was very higher when the particle carbon impregnated with NH{sub 3}. The higher amounts of Hg absorbed by cotton-seed-skin activated carbon (CSAC) were mainly contributed by chlorinated congeners content. The simultaneously removal of SO{sub 2}/NO{sub x}/Hg was optimization characterized with different carbon layer functions. Overall, The alkali function group and chloride content in CSAC impelled not only the outstanding physisorption but also better chemisorptions. The system for simultaneously removal of multi-pollutant-gas with biomass activated carbon pellets in multi-layer reactor was achieved and the removal results indicated was strongly depended on the activated carbon material and operating temperature.

  5. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  6. High Metal Removal Rate Process for Machining Difficult Materials

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Robert; McConnell, Elizabeth

    2016-06-29

    Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes. Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.

  7. Membrane Processes Based on Complexation Reactions of Pollutants as Sustainable Wastewater Treatments

    Directory of Open Access Journals (Sweden)

    Teresa Poerio

    2009-11-01

    Full Text Available Water is today considered to be a vital and limited resource due to industrial development and population growth. Developing appropriate water treatment techniques, to ensure a sustainable management, represents a key point in the worldwide strategies. By removing both organic and inorganic species using techniques based on coupling membrane processes and appropriate complexing agents to bind pollutants are very important alternatives to classical separation processes in water treatment. Supported Liquid Membrane (SLM and Complexation Ultrafiltration (CP-UF based processes meet the sustainability criteria because they require low amounts of energy compared to pressure driven membrane processes, low amounts of complexing agents and they allow recovery of water and some pollutants (e.g., metals. A more interesting process, on the application point of view, is the Stagnant Sandwich Liquid Membrane (SSwLM, introduced as SLM implementation. It has been studied in the separation of the drug gemfibrozil (GEM and of copper(II as organic and inorganic pollutants in water. Obtained results showed in both cases the higher efficiency of SSwLM with respect to the SLM system configuration. Indeed higher stability (335.5 vs. 23.5 hours for GEM; 182.7 vs. 49.2 for copper(II and higher fluxes (0.662 vs. 0.302 mmol·h-1·m-2 for GEM; 43.3 vs. 31.0 for copper(II were obtained by using the SSwLM. Concerning the CP-UF process, its feasibility was studied in the separation of metals from waters (e.g., from soil washing, giving particular attention to process sustainability such as water and polymer recycle, free metal and water recovery. The selectivity of the CP-UF process was also validated in the separate removal of copper(II and nickel(II both contained in synthetic and real aqueous effluents. Thus, complexation reactions involved in the SSwLM and the CP-UF processes play a key role to meet the sustainability criteria.

  8. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    Science.gov (United States)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  9. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  10. Irrigation model of bleached Kraft mill wastewater through volcanic soil as a pollutants attenuation process.

    Science.gov (United States)

    Navia, R; Inostroza, X; Diez, M C; Lorber, K E

    2006-05-01

    An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.

  11. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  12. Radium removal processes capital and operating cost estimates

    International Nuclear Information System (INIS)

    Kelly, F.J.

    1979-09-01

    An estimate of the fixed capital and operating costs for two alternative processes for the removal of dissolved Ra-226 from uranium mill effluent in Elliot Lake, Ontario is presented. Process 1 consists of barium-radium coprecipitation followed by coagulation, flocculation and sedimentation. Process 2 consists of barium-radium coprecipitation followed by gravity media filtration, sand filter backwashing and sedimentation. Cost estimates were prepared for 18 different plant configurations designed to treat 1000 and 4000 imperial gallons per minute (ig/m) of effluent, 24 hrs per day, 7 days per week and 365 days per year with several equipment options. The estimated fixed capital costs for plants equipped with gravity filters were less than those equipped with circular clarifiers. The capital costs ranged from $552,000 with a flow rate of 1000 ig/m to $2,578,000 with a flow rate of 4000 ig/m. Estimated annual operating costs, based on a plant life of 10 years, ranged from $298,000 with a flow rate of 1000 ig/m to $1,061,000 with a flow rate of 4000 ig/m

  13. Chemical Modifications of Hollow Silica Microspheres for the Removal of Organic Pollutants in Simulated Wastewater

    KAUST Repository

    Torano, Aniela Zarzar

    2017-01-01

    Aqueous industrial effluents containing organic pollutants, such as textile dyes and crude oil, represent environmental and human health concerns due to their toxicity and possible carcinogenic effects. Adsorption is the most promising wastewater

  14. Lack of data for predicting storm water pollutant removal by post-construction best management practices.

    Science.gov (United States)

    2016-03-01

    The project objective was to conduct a detailed literature review of storm water pollutants and mitigation technologies and synthesize : the information so that INDOT can implement project results into standards. Because it is a municipal separate st...

  15. Soil aquifer treatment to remove priority organic pollutants in the Llobregat river area

    OpenAIRE

    Huerta, Maria; Solé, Josep; Aceves, Mercè; Valhondo González, Cristina; Hernández, Marta; Gullón Santos, Martín

    2013-01-01

    The Llobregat River is the main source of water supply in this area. This river together with its aquifer has suffered from several damages which had contributed to endanger a suitable ecological and hydrological status; among them, pollution is a serious problem to deal with. In the last decades, the presence of organic pollutants in this river has been demonstrated [1,2]. Some of them are persistent to biological degradation and have shown to survive wastewater treatments almost unaltered a...

  16. Experimental Investigation of Phenanthrene Pollutant Removal Efficiency for Contaminated Sandy Soil by Enhanced Soil Washing

    Directory of Open Access Journals (Sweden)

    Saif salah Alquzweeni

    2016-12-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are environmental concerns that must be removed to acceptable level. This research assesses two agents (Na2EDTA and SDS to remediate contaminated sandy soil, spiked with 500mg/kg phenanthrene. Five sets of experiments (batch are applied to investigate the optimal of five influencing factors on soil remediation: Na2EDTA-SDS concentration, liquid/Solid ratio, stirring speed, pH value of flushing solution and mixing time. The results of batch experiments showed that SDS has high phenanthrene removal efficiency (90%, while Na2EDTA shows no phenanthrene removal. pH has no effect on phenanthrene removal. To study the influence of flow rates on the removal efficiency of contaminants, two column tests with hydraulic gradient of 0.2 and 1.2 conducted by SDS solution. The results illustrate that high phenanthrene removal from soil obtained by 1.2 hydraulic gradient condition. The SDS flushing solution removed approximately 69% and 81% of phenanthrene from soil under low and high hydraulic gradients, respectively. It was concluded that phenanthrene removal depend on surfactant micelles formation. Overall, the study showed that soil flushing removal efficiency for contaminants depends on the flushing agents selectivity and affinity to the contaminants and the condition of hydraulic gradient.

  17. Nitrogen removal process optimization in New York City WPCPS: a case study of Wards Island WPCP.

    Science.gov (United States)

    Ramalingam, K; Fillos, J; Musabyimana, M; Deur, A; Beckmann, K

    2009-01-01

    The New York City Department of Environmental Protection has been engaged in a continuous process to develop a nitrogen removal program to reduce the nitrogen mass discharge from its water pollution control plants, (WPCPs), from 49,158 kg/d to 20,105 kg/d by the year 2017 as recommended by the Long Island Sound Study. As part of the process, a comprehensive research effort was undertaken involving bench, pilot and full scale studies to identify the most effective way to upgrade and optimize the existing WPCPs. Aeration tank 13 (AT-13) at the Wards Island WPCP was particularly attractive as a full-scale research facility because its aeration tank with its dedicated final settling tanks and RAS pumps could be isolated from the remaining treatment facilities. The nitrogen removal performance of AT-13, which, at the time, was operated as a "basic step feed BNR Facility", was evaluated and concurrently nitrification kinetic parameters were measured using in-situ bench scale experiments. Additional bench scale experiments provided denitrification rates using different sources of carbon and measurement of the maximum specific growth rate of nitrifying bacteria. The combined findings were then used to upgrade AT-13 to a "full" BNR facility with carbon and alkalinity addition. This paper will focus on the combined bench and full scale results that were the basis for the consequent upgrade.

  18. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  19. Processes subject to integrated pollution control. Combustion processes: reheat and heat treatment furnaces 50 MW(th) and over

    International Nuclear Information System (INIS)

    1995-01-01

    This document, part of a series offering guidance on pollution control regulations issued by Her Majesty's Inspectorate of Pollution, focuses on combustion processes involved with reheat and heat treatment furnaces of 50 MW (th) and over. Techniques for controlling releases into air, water and to land are detailed as are the various pollution monitoring strategies. (UK)

  20. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.

    Science.gov (United States)

    Tian, J Y; Chen, Z L; Liang, H; Li, X; Wang, Z Z; Li, G B

    2009-01-01

    Biological activated carbon (BAC) and membrane bioreactor (MBR) were systematically compared for the drinking water treatment from slightly polluted raw water under the same hydraulic retention time (HRT) of 0.5 h. MBR exhibited excellent turbidity removal capacity due to the separation of the membrane; while only 60% of influent turbidity was intercepted by BAC. Perfect nitrification was achieved by MBR with the 89% reduction in ammonia; by contrast, BAC only eliminated a moderate amount of influent ammonia (by 54.5%). However, BAC was able to remove more dissolved organic matter (DOM, especially for organic molecules of 3,000 approximately 500 Daltons) and corresponding disinfection by-product formation potential (DBPFP) in raw water than MBR. Unfortunately, particulate organic matter (POM) was detected in the BAC effluent. On the other hand, BAC and MBR displayed essentially the same capacity for biodegradable organic matter (BOM) removal. Fractionation of DOM showed that the removal efficiencies of hydrophobic neutrals, hydrophobic acids, weakly hydrophobic acids and hydrophilic organic matter through BAC treatment were 11.7%, 8.8%, 13.9% and 4.8% higher than that through MBR; while MBR achieved 13.8% higher hydrophobic bases removal as compared with BAC.

  1. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    Science.gov (United States)

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. Copyright © 2016

  2. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration.

    Science.gov (United States)

    Yang, Zhenzhou; Tian, Sicong; Ji, Ru; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2017-10-01

    The present study systemically investigated the effect of a water-washing process on the removal of harmful chlorides, sulfates, and heavy metals in the air pollution control (APC) residue from municipal solid wastes incineration (MSWI), for sake of a better reuse and disposal of this kind of waste. In addition, the kinetic study was conducted to reveal the releasing mechanism of relevant element in the residue. The results show that, over 70wt.% of chlorides and nearly 25wt.% of sulfates in the residue could be removed by water washing. Based on an economical consideration, the optimal operation conditions for water washing of APC residue was at liquid/solid (L/S) ratio of 3mL:1g and extracting time of 5min. As expected, the concentrations of Co, Cr, Fe, Ni, V and Cu in the washing effluent increased with time during the washing process. However, the extracting regime differs among different heavy metals. The concentrations of Ba and Mn increased firstly but declined afterwards, and concentrations of Pb and Zn gradually declined while Cd and As kept constant with the increase of extracting time. It is worth mentioning that the bubbling of CO 2 into the washing effluent is promisingly effective for a further removal of Pb, Cu and Zn. Furthermore, kinetic study of the water washing process reveals that the extracting of heavy metals during water washing follows a second-order model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  4. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  5. Removal of radionuclides from process streams - a review

    International Nuclear Information System (INIS)

    Itzkovitch, I.J.; Ritcey, G.M.

    1979-04-01

    This report details the origin and control of radium 226, thorium 230 and lead 210 contamination of mill effluent streams from conventional and non-conventional milling of uranium ores, reviews the basic chemistry of the radionuclides as it relates to potential alternatives for control and presents these alternatives along with a summary of published cost data. The conclusions from the study indicate that the current technology, using sulphuric acid processing, solubilizes only a comparatively small quantity of the radionuclides, with the solid containing approximately the same concentration as the original ore. Present technolgy does not provide for complete removal and isolation of the radionuclides. Current practice for control of thorium 230 in liquid effluents by neutralization is adequate to meet present Governmental guidelines. Radium in solution is presently being controlled by precipitation with barium chloride but levels of less than 3 pCi/L of soluble radium could be difficult if not impossible to achieve consistently by this treatment. Indications are that the concentration of lead 210 in liquid effluent may exceed present guidelines. No specific control procedures are employed for lead 210. Methods of isolating radium 226 are required for treating effluents from conventional milling as well as from alternative processes under development. Ion exchange is suggested as a means of isolating these radionuclides. (OT)

  6. Removable partial denture alloys processed by laser-sintering technique.

    Science.gov (United States)

    Alageel, Omar; Abdallah, Mohamed-Nur; Alsheghri, Ammar; Song, Jun; Caron, Eric; Tamimi, Faleh

    2018-04-01

    Removable partial dentures (RPDs) are traditionally made using a casting technique. New additive manufacturing processes based on laser sintering has been developed for quick fabrication of RPDs metal frameworks at low cost. The objective of this study was to characterize the mechanical, physical, and biocompatibility properties of RPD cobalt-chromium (Co-Cr) alloys produced by two laser-sintering systems and compare them to those prepared using traditional casting methods. The laser-sintered Co-Cr alloys were processed by the selective laser-sintering method (SLS) and the direct metal laser-sintering (DMLS) method using the Phenix system (L-1) and EOS system (L-2), respectively. L-1 and L-2 techniques were 8 and 3.5 times more precise than the casting (CC) technique (p laser-sintered and cast alloys were biocompatible. In conclusion, laser-sintered alloys are more precise and present better mechanical and fatigue properties than cast alloys for RPDs. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1174-1185, 2018. © 2017 Wiley Periodicals, Inc.

  7. Physicochemically modified peat by thermal and oxidation processes as an active material for purification of wastewaters from certain hazardous pollutants

    Directory of Open Access Journals (Sweden)

    Purenović Jelena M.

    2017-01-01

    Full Text Available The physicochemical modification of peat through thermal and oxidation processes was carried out, in order to obtain new, inexpensive and active material for purification of different types of waters. During the modification, surface chemical compounds of Shilov type were formed. Batch adsorption properties and suitability of physicochemically modified peat (PCMP for odor removal were tested in aqueous solutions of H2S and colloidal sulphur. Additionally, PCMP was tested in the removal of As(V which is hazardous ingredient in contaminated waters. Possible mechanisms of pollutants binding include interactions, which lead to formation of adducts and clathrates. All these processes are elucidated in detail. The results showed that the obtained material can be used for the removal of sulphide, colloidal sulphur and As(V from different types of waters. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 45012

  8. Water hyacinths and alligator weeds for removal of silver, cobalt, and strontium from polluted waters

    Science.gov (United States)

    Wolverton, B. C.; Mcdonald, R. C.

    1975-01-01

    Water hyacinths and alligator weeds demonstrated the ability to rapidly remove heavy metals from an aqueous system by root absorption and concentration. Water hyacinths demonstrated the ability to remove 0.439 mg of silver, 0.568 mg of cobalt, and 0.544 mg of strontium in an ionized form per gram of dry plant material in a 24-hour period. Alligator weeds removed a maximum of 0.439 mg of silver, 0.130 mg of cobalt, and 0.161 mg of strontium per gram of dry plant material per day.

  9. Biofilm systems for the removal of micro-pollutants from wastewater

    DEFF Research Database (Denmark)

    Escola, Monica

    2016-01-01

    of the target compounds were obtained and could be used for further MBBR or HYBAS designs. Third, MBBRs were tested for the removal of pharmaceuticals during the post-denitrification step with methanol and ethanol as carbon sources. The results indicated that post-denitrifiaction achieved high pharmaceuticals...... removal and, in some cases, those were higher than the ones achieved in aerobic reactors. The results also indicated that methanol could lead to a more efficient biofilm than ethanol towards pharmaceuticals removal. Finally, some work was made on analytical method development. The separation, isolation...

  10. Long-term Simulation of the Removal of Pollutants in Retention Basins

    DEFF Research Database (Denmark)

    Larsen, Torben; Neerup-Jensen, Ole; Kaasgaard, Mogens

    2005-01-01

    -dependant sedimentation and the variation of the settling velocity of the particles. The results show that including these effects lead to significant lower discharges of pollutants compared to conventional methods of estimation. As an example computations with a spectrum of basins which cover realistic sizes show......The paper describes a method for the long-term simulation of the discharge of pollutants to the environment from storm sewer overflows in combined sewer systems, which has a connected retention basin. This study covers Cd, Cu, Ni, Pb, Zn and PAH. The method includes both the influence of the flow...

  11. Removable butterfly valve, especially for polluting and/or dangerous fluids

    International Nuclear Information System (INIS)

    Garrigues, J.C.

    1984-01-01

    This invention relates to a valve for use in systems carrying polluting, corrosive or dangerous fluids requiring the use of biological protection. The facilities concerned are those in which fluids, mainly polluting, corrosive or dangerous liquids requiring the use of various types of biological protection, are handled. This is particularly so for nuclear installations in which the equipment is surrounded by protective shields which stop the radiation and prevent radioactive gases and aerosols from spreading. The invention proposes for the present valve a high-safety leaktightness system which respects the most specifications and standards and which suppresses any dead volume inside the valve [fr

  12. Survey Efficiency of Ultraviolet and Zinc Oxide Process (UV/ZnO for Removal of Diazinon Pesticide from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2015-03-01

    Full Text Available The presence of persistent organic pollutants and toxics (e.g., pesticides in ground, surface, and drinking water resources combined with the inability of conventional treatment methods to remove these pollutants have led to the development of advanced oxidation processes. Nowadays, nanophotocatalyst processes are considered as clean and environmentally-friendly treatment methods that can be extensively used for removing contaminants. The objective of the present study was to determine the efficiency of the ultraviolet and zinc oxide (UV/ZnO process in the removal of diazinon pesticide from aqueous solutions. For the purposes of this study, samples were adjusted in a batch reactor at five different detention times. The pH levels used were 3, 7, and 9. Irradiation was performed using a 125 W medium-pressure mercury lamp. The diazinon concentrations of the samples were 100 and 500 µg/L and the concentrations of zinc oxide nanoparticles were 50, 100, and 150 mg/L. The highest degradation efficiency was observed at pH 7 (mean = 80.92 30.3, while the lowest was observed for pH 3 (mean 67.11 24.49. Results showed that the optimal concentration of nanoparticles (6-12 nm was 100 mg L-1.

  13. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.

    Science.gov (United States)

    Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P

    2016-04-15

    In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    International Nuclear Information System (INIS)

    Nadejde, C.; Neamtu, M.; Hodoroaba, V.-D.; Schneider, R. J.; Paul, A.; Ababei, G.; Panne, U.

    2015-01-01

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe 3 O 4 ) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H 2 O 2 dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H 2 O 2 , under UV irradiation. The highest mineralization rates were observed for Fe 3 O 4 -TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method

  15. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  16. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent

    DEFF Research Database (Denmark)

    Genc-Fuhrman, Hülya; Wu, P.; Zhou, Y.

    2008-01-01

    In this study fixed-bed sorption filters are filled with an iron based sorbent (ferrosorp plus, FP) and used to remove a range of heavy metals (i.e. As, Cd, Cr, Cu, Ni, and Zn) from polluted water. It is found that FP is very effective at simultaneous removal of the heavy metals, and the magnitude...... inflow pH of 6.8 and heavy metal concentration of ≈2.8 μM. It is concluded that FP has high affinity to heavy metals and it can be used (e.g. as a filter medium) to treat waters containing a wide range of heavy metals, e.g. stormwater, industrial wastewater....

  17. A-Cell equipment removal quality process plan

    International Nuclear Information System (INIS)

    TAKASUMI, D.S.

    1999-01-01

    This document establishes the quality assuring activities used to manage the 324 building A-Cell equipment removal activity. This activity will package, remove, transport and dispose of the equipment in A-Cell. This document is provided to ensure that appropriate and effective quality assuring activities have been incorporated into the work controlling documentation and procedures

  18. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  19. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  20. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  1. Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid: For removal of pharmaceutical pollutant, doxycycline from aqueous solutions.

    Science.gov (United States)

    Naeimi, Shakiba; Faghihian, Hossein

    2017-07-01

    As a pharmaceutical pollutant, doxycycline causes contamination when enters into the environment. In this research MIL-53(Fe), and its magnetic hybrid MIL-53(Fe)/Fe 3 O 4 were synthesized and employed for removal of doxycycline from aqueous solutions. The adsorbents were characterized by XRD, SEM, BET, FTIR, EDAX, VSM and TG-DTG technique. The effect of different variables such as DOC concentration, pH, contacting time, and adsorbent dose on the removal efficiency was studied and under optimized conditions the adsorption capacity of 322mgg -1 was obtained. The adsorption process was kinetically fast and the equilibration was attained within 30min. The used adsorbent was easily separated from the solution by applying external magnetic field. The regenerated adsorbent retained most of its initial capacity after six regeneration steps. The effect of ionic strength was studied and it was indicated that removal of doxycycline from salt-containing water with moderate ionic strengths was quite feasible. Langmuir, Freundlich, Tempkin and Dubinin-Redushkevich isotherms were employed to describe the nature of adsorption process. The sorption data was well interpreted by the Longmuir model. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Treatment of highway runoff : engineered filter media for pollutant removal through enhanced sorption : final report.

    Science.gov (United States)

    2015-07-27

    The work performed in this study focused on the investigation of the use of engineered biofiltration layers to enhance the removal of roadway stormwater runoff contaminants (specifically nutrients, solids, heavy metals, and pH). Six Georgia native gr...

  3. 512-S Facility, Actinide Removal Process Radiological Design Summary Report

    International Nuclear Information System (INIS)

    Nathan, S.J.

    2004-01-01

    This report contains top-level requirements for the various areas of radiological protection for workers. Detailed quotations of the requirements for applicable regulatory documents can be found in the Radiological Design Summary Report Implementation Guide. For the purposes of demonstrating compliance with these requirements, per Engineering Standard 01064, ''shall consider / shall evaluate'' indicates that the designer must examine the requirement for the design and either incorporate or provide a technical justification as to why the requirement is not incorporated. This report describes how the Building 512-S, Actinide Removal Process meets the required radiological design criteria and requirements based on 10CFR835, DOE Order 420.1A, WSRC Manual 5Q and various other DOE guides and handbooks. The analyses supporting this Radiological Design Summary Report initially used a source term of 10.6 Ci/gallon of Cs-137 as the basis for bulk shielding calculations. As the project evolved, the source term was reduced to 1.1 Ci/gallon of Cs-137. This latter source term forms the basis for later dose rate evaluations

  4. Dependence of indoor-pollutant concentrations on sources, ventilation rates, and other removal factors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.; Grimsrud, D.T.

    1983-01-01

    The behavior of several classes of chemical and physical pollutants include emissions from combustion appliances, radon and its progeny, formaldehyde, and other organic compounds. Current research at Lawrence Berkeley Laboratory is described and research needs in the area of indoor air quality is pointed out

  5. Synthesis and characterization of the removal of organic pollutants in effluents.

    Science.gov (United States)

    Bakayoko, Moussa; Kalakodio, Loissi; Kalagodio, Adiara; Abo, Bodjui Olivier; Muhoza, Jean Pierre; Ismaila, El Moctar

    2018-04-25

    The use of a large number of organic pollutants results in the accumulation of effluents at the places of production and the environment. These substances are, therefore, dangerous for living organisms and can cause heavy environmental damage. Hence, to cure these problems certain methods were used for the elimination of organic effluents. Indeed, the methods of elimination through magnetic adsorption and/or separation prove to be effective in the treatment of certain wastes, but the effectiveness of each one of these methods depends on several characteristics and also present limitations according to the pollutants they adsorb. This review examines on the one hand the capacity of certain elements of these methods in the elimination of certain pollutants and on the other hand the advantages and limits of these methods. Elements like biochars, biosorbents and composite materials are used due to their very strong porosity which makes it possible for them to develop an important contact surface with the external medium, at low costs, and the possibility of producing them from renewable sources. The latter still run up however against the problems of formation of mud and regeneration. Depollution by magnetic separation is also used due to its capacity to mitigate the disadvantages of certain methods which generally lead to the formation of mud and overcoming also the difficulties like obtaining an active material and at the same time being able to fix the pollutants present in the effluents to treat and sensitize them to external magnetic fields.

  6. NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater

    International Nuclear Information System (INIS)

    Song Zhi; Hu Juncheng; Chen Lifang; Richards, Ryan

    2009-01-01

    Semiconductor single-crystalline polar NiO(111) nanosheets with well-defined hexagonal holes have been investigated for application in dye adsorption and combustion processes. With regard to adsorption technologies, high surface area metal oxides have an advantage over activated carbon in that the adsorbed species can be combusted and the adsorbent reused in the case of metal oxides while regeneration of activated carbon remains challenging and thus the adsorbent/adsorbate system must be disposed of. Here, three typical textile dyes, reactive brilliant red X-3B, congo red and fuchsin red, were studied for removal from wastewater with two NiO systems and activated carbon. These studies revealed that the NiO(111) nanosheets exhibited much more favorable adsorptive properties than conventionally prepared nickel oxide powder (CP-NiO) obtained from thermal decomposition of nickel nitrate. The maximum adsorption capabilities of the three dyes on NiO(111) nanosheets reached 30.4 mg g -1 , 35.15 mg g -1 and 22 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid, respectively, while the maximum adsorption capabilities of the three dyes on CP-NiO were only 8.4, 13.2 and 12 mg g -1 for reactive brilliant red X-3B, congo red and fuchsin acid. To simulate the adsorption isotherm, two commonly employed models, the Langmuir and the Freundlich isotherms, were selected to explicate the interaction of the dye and NiO(111). The isotherm evaluations revealed that the Langmuir model demonstrated better fit to experimental equilibrium data than the Freundlich model. The maximum predicted adsorption capacity was 36.1 mg g -1 . In addition, adsorption kinetic data of NiO(111) followed a pseudo-second-order rate for congo red. These studies infer that NiO(111) nanosheets possess desirable properties for application in adsorption and combustion applications.

  7. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    Science.gov (United States)

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  8. Simultaneous pollutant removal and electricity generation in denitrifying microbial fuel cell with boric acid-borate buffer solution.

    Science.gov (United States)

    Chen, Gang; Zhang, Shaohui; Li, Meng; Wei, Yan

    2015-01-01

    A double-chamber denitrifying microbial fuel cell (MFC), using boric acid-borate buffer solution as an alternative to phosphate buffer solution, was set up to investigate the influence of buffer solution concentration, temperature and external resistance on electricity generation and pollutant removal efficiency. The result revealed that the denitrifying MFC with boric acid-borate buffer solution was successfully started up in 51 days, with a stable cell voltage of 205.1 ± 1.96 mV at an external resistance of 50 Ω. Higher concentration of buffer solution favored nitrogen removal and electricity generation. The maximum power density of 8.27 W/m(3) net cathodic chamber was obtained at a buffer solution concentration of 100 mmol/L. An increase in temperature benefitted electricity generation and nitrogen removal. A suitable temperature for this denitrifying MFC was suggested to be 25 °C. Decreasing the external resistance favored nitrogen removal and organic matter consumption by exoelectrogens.

  9. A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation

    International Nuclear Information System (INIS)

    Ma, Liang; Zhou, Minghua; Ren, Gengbo; Yang, Weilu; Liang, Liang

    2016-01-01

    Highlights: • A highly energy-efficient flow-through electro-Fenton reactor was designed. • It had high H 2 O 2 yield and low energy consumption for organic pollutants degradation. • The effect of operational parameters was optimized and possible process mechanism was studied. • The novel system performed wide practicability and potential for organic pollutants degradation. - Abstract: A highly energy-efficient flow-through Electro-Fenton (E-Fenton) reactor for oxidation of methylene blue (MB) from aqueous solution was designed using a perforated DSA as anode and the graphite felt modified by carbon black and polytetrafluoroethylene (PTFE) as cathode for the in situ generation of H 2 O 2 . The modified cathode had a high H 2 O 2 production with low energy consumption, which was characterized by scanning electron microscopy (SEM), nitrogen adsorption-desorption study and contact angle. The flow-through E-Fenton system was compared to the flow-by and regular one, and confirmed to be best on MB removal and TOC degradation. The operational parameters such as current density, pH, Fe 2+ concentration and flow rate were optimized. The MB and TOC removal efficiency of the effluents could keep above 90% and 50%, respectively, and the energy consumption was 23.0 kWh/kgTOC at the current density of 50 mA, pH 3, 0.3 mM Fe 2+ , and the flow rate of 7 mL/min. ·OH was proved to be the main oxidizing species in this system. After 5 times operation, the system, especially cathode, still showed good stability. Five more organic pollutants including orange II (OG), tartrazine, acetylsalicylic acid (ASA), tetracycline (TC) and 2,4-dichlorophen (2,4-DCP) were investigated and the electric energy consumption (EEC) was compared with literatures. All results demonstrated that this flow-through E-Fenton system was energy-efficient and potential for degradation of organic pollutants.

  10. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad [University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-06-15

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.

  11. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    International Nuclear Information System (INIS)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad

    2014-01-01

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency

  12. Investigation the Efficiency of Combined Coagulation and Advanced Oxidation by Fenton Process in the Removal of Clarithromycin Antibiotic COD

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yazdanbakhsh

    2012-07-01

    Full Text Available Antibiotics are considered among the major pollutants in water environments. In this study, removal of Claritromycine antibiotic has been studied from synthetic wastewater by combined coagulation and advanced oxidation processes. This study, was done in laboratory scale .  Samples of synthetic wastewater  were prepared from Claritromycin antibiotic. Concentration of samples were 200 mg/l. COD index was selected as a parameter evaluated in this study. In the first stage, coagulation process was done on synthetic wastewater and the proper condition was achieved (proper coagulant, optimum pH, dosage of coagulant. After that, Fenton oxidation process was done, on the effluent of coagulation process. In Fenton process the influence of pH, Fe2+ and hydrogen peroxide were studied on the removal efficiency of Claritromycin antibiotic and the optimum values for each parameter were determined. According to the results of this study, Poly Aluminum Chloride (PAC  is the proper coagulant. With pH equal to 7 and 100 mg/l PAC, 84.37% removal of Claritromycine was achieved.  For fenton process, optimum parameters for the removal of Claritromycin were determined. The optimum condition for fenton process were, pH= 7, Fe2+ equal to 0.45 mmol/ l , hydrogen proxide equal to 0. 16 mmol/l, ratio of H2O2/Fe2+ equal to 0.4 and detention time of 1hour .With Applying of optimum conditions for combined coagulation and Fenton processes, 96.3% removal of Claritromycin was obtained.

  13. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  14. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    International Nuclear Information System (INIS)

    Sannino, Filomena; Ruocco, Silvia; Marocco, Antonello; Esposito, Serena; Pansini, Michele

    2012-01-01

    Highlights: ► Bringing agrochemical concentration below the law limit allowed in wastewaters. ► Regenerating the adsorbent which can be used again in the cyclic process. ► Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm 3 , the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 °C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  15. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Ruocco, Silvia [Dipartimento di Scienze del Suolo, della Pianta, dell' Ambiente e delle Produzioni Animali, Universita di Napoli ' Federico II' , Via Universita 100, 80055 Portici (Italy); Marocco, Antonello; Esposito, Serena; Pansini, Michele [Laboratorio Materiali - Dipartimento di Meccanica, Strutture, Ambiente e Territorio - Universita di Cassino - Via Di Biasio 43 - 03043 Cassino (Italy)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Bringing agrochemical concentration below the law limit allowed in wastewaters. Black-Right-Pointing-Pointer Regenerating the adsorbent which can be used again in the cyclic process. Black-Right-Pointing-Pointer Destroying the agrochemical molecules by combustion. - Abstract: Removal of the agrochemical simazine from polluted waters through adsorption by zeolite Y in its protonic form was studied. The investigated parameters were: pH, time, initial simazine concentration and solid/liquid ratio. An iterative process of simazine removal from waters is proposed, featuring: (i) final agrochemical concentration well below 0.05 mg/dm{sup 3}, the maximum concentration allowed by Italian laws in wastewaters; (ii) regeneration of the adsorbent by a few minutes thermal treatment in air at about 500 Degree-Sign C, which results in the combustion of simazine without damage of the adsorbent; (iii) destruction of the agrochemical compound by combustion.

  16. Application of heterogeneous fenton oxidation for the removal of pollutants from wastewater

    OpenAIRE

    Rodríguez Rey, Daniel

    2014-01-01

    During the last century there has been a growing concern about water pollution throughout the developed countries. Water has a major impact on the environment as it is used by all living being. This leads to leave the wastewater used with an acceptable quality for its next destination. Fortunately, national and international water quality agreements and laws have pushed development of wastewater treatment technology that nowadays allows us to return the used water to the environment in goo...

  17. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    Science.gov (United States)

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  18. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    International Nuclear Information System (INIS)

    Escolà Casas, Mònica; Bester, Kai

    2015-01-01

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m 3 m 2 h −1 the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds

  19. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    Energy Technology Data Exchange (ETDEWEB)

    Escolà Casas, Mònica; Bester, Kai, E-mail: kb@dmu.dk

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m{sup 3} m{sup 2} h{sup −1} the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. - Highlights: • A biofilm reactor (biofilter) can remove micro-pollutants from WWTP effluent. • Sorption could be excluded as the dominant removal mechanism. • Biodegradation was responsible for removing seven compounds. • The removal efficiency was usually proportional to the hydraulic residence-time. • Single first-order removal rates apply for most compounds.

  20. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan

    2016-01-15

    Phthalate esters are one of the most frequently detected persistent organic pollutants in the environment. A better understanding of their occurrence and degradation in the environment and during wastewater treatment processes will facilitate the development of strategies to reduce these pollutants and to bioremediate contaminated freshwater and soil. Phthalate esters occur at measurable levels in different environments worldwide. For example, the concentrations of dimethyl phthalate (DMP) in atmospheric particulate matter, fresh water and sediments, soil, and landfills are N.D.-10.4 ng/m(3), N.D.-31.7 μg/L, N.D.-316 μg/kg dry weight, and N.D.-200 μg/kg dry weight, N.D.-43.27 μg/L, respectively. Bis(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are primary phthalate ester pollutants. Urbanization has increased the discharge of phthalate esters to atmospheric and aquatic environments, and the use of agricultural plastics has exacerbated soil contamination by phthalate esters in rural areas. Aerobic biodegradation is the primary manner of phthalate ester mineralization in the environment, and this process has been widely studied. Phthalate esters can be removed during wastewater treatment processes. The combination of different wastewater treatment technologies showed greater efficiency in the removal of phthalate esters than individual treatment steps, such as the combination of anaerobic wastewater treatment with a membrane bioreactor would increase the efficiency of phthalate ester removal from 65%-71% to 95%-97%. This review provides a useful framework to identify future research objectives to achieve the mineralization and elimination of phthalate esters in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simple Bioremediation Treatments for the Removal of Polycyclic Aromatic Hydrocarbons (PAHs) from the Polluted Desert Soil of Kuwait

    International Nuclear Information System (INIS)

    Al-Gounaim, Marzooq Yousuf; Abu-Shady, Abdulsatar

    2004-01-01

    A soil microcosm test was designed to evaluate the influence of mixing polluted desert soil with clay soil (which is used as an amendment material and for immobilization of bacterial cells) on the biodegradation of petroleum polycyclic aromatic hydrocarbons (PAHs). Residual PAHs in this type of polluted soil were quantified by using GC analysis. At the begining of experiment 16 PAHs were resolved, of which the mutagenic and carcinogenic compounds flouranthene and pyrene were more frequent than the otherPAHs (14% and 12.4% respectively). Results of total PAH biodegradation show that mixing this polluted desert soil with clay soil or its water extract stimulated the biodegradation of 85.8%-89.1% of these compounds. This is contrast to 61.7%-75.5% in the absence of clay soil. Moreover when the mixed bacterial culture was immobilized in this clay soil 94.4% of total of total PAHs were degraded. On the other hand, the free cells of mixed culture succeeded to remove only 75.5% of these compounds. In this study the six-ranged PAHs were completely degraded in the presence of clay soil. A particularly notable distinction between the immobilized culture (T3) and other treatment in this biodegradation study is the greater efficiency of the immobilized culture to degrade the individuals of the 16 PAHs, especially the carcinogenic compounds: flouranthene, pyrene, chrysene, benzo(a) pyrene and dibenzo (a,h) anthracene. These results lead to the conclusion that mixing the polluted desert soil with clay soil and/or its water extract seems to be a simple cost effective bioremediation method. (author)

  2. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.

    Science.gov (United States)

    Liu, T; Sun, Y; Wang, Z L

    2016-01-01

    Sediment contamination by heavy metals has become a widespread problem that can affect the normal behaviors of rivers and lakes. After chitosan/Fe(0)-nanoparticles (CS-NZVI) beads were cross-linked with glutaraldehyde (GLA), their mechanical strength, stability and separation efficiency from the sediment were obviously improved. Moreover, the average aperture size of GLA-CS-NZVI beads was 20.6 μm and NZVI particles were nearly spherical in shape with a mean diameter of 40.2 nm. In addition, the pH showed an insignificant effect on the removal rates from the sediment. Due to the dissolution of metals species into aqueous solutions as an introduction of the salt, the removal rates of all heavy metals from the sediment were increased with an increase of the salinity. The competitive adsorption of heavy metals between the sediment particles and GLA-CS-NZVI beads became stronger as the sediment particles became smaller, leading to decreased removal rates. Therefore, the removal efficiency could be enhanced by optimizing experimental conditions and choosing appropriate materials for the target contaminants.

  3. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions

    International Nuclear Information System (INIS)

    Akhtar, Mubeena; Moosa Hasany, S.; Bhanger, M.I.; Iqbal, Shahid

    2007-01-01

    Moringa oleifera pods Lamarck (Drumstick or Horseradish) is a multipurpose medium or small size tree from sub-Himalayan regions of north-west India and indigenous to many parts of Asia, Africa, South America, and in the Pacific and Caribbean Islands. Its pods (MOP) have been employed as an inexpensive and effective sorbent for the removal of organics, i.e., benzene, toluene, ethylbenzene and cumene (BTEC) from aqueous solutions using HPLC method. Effect of different parameters, i.e., sorbent dose 0.05-0.8 g, 25 cm -3 agitation time 5-120 min, pH 1-10, temperature 283-308 K and concentration of sorbate (1.3-13) x 10 -3 , (1.1-11) x 10 -3 , (0.9-9) x 10 -3 , (0.8-8) x 10 -3 mol dm -3 , on the sorption potential of MOP for BTEC have been investigated. The pore area and average pore diameter of the MOP by BET method using nitrogen as a standard are calculated to be 28.06 ± 0.8 m 2 g -1 and 86.2 ± 1.3 nm respectively. Freundlich, Langumir and Dubinin-Radushkevich (D-R) sorption isotherms were employed to evaluate the sorption capacity of MOP. Sorption capacities of BTEC onto MOP have been found to be 46 ± 10, 84 ± 9, 101 ± 4, 106 ± 32 mmol g -1 by Freundlich, 8 ± 0.1, 9 ± 0.1, 10 ± 0.3, 9 ± 0.1 mmol g -1 by Langumir and 15 ± 1, 21 ± 1, 23 ± 2, 22 ± 3 mmol g -1 by D-R isotherms respectively, from BTEC solutions at 303 K. While the mean energy of sorption process 9.6 ± 0.3, 9.2 ± 0.2, 9.3 ± 0.3, 9.5 ± 0.4 kJ mol -1 for BTEC is calculated by D-R isotherm only. Rate constant of BTEC onto MOP 0.033 ± 0.003, 0.030 ± 0.002, 0.029 ± 0.002, 0.027 ± 0.002 min -1 at solution concentration of 1.3 x 10 -3 , 1.1 x 10 -3 , 0.9 x 10 -3 and 0.8 x 10 -3 mol dm -3 and at 303 K have been calculated by employing Lagergren equation. Thermodynamic parameters ΔH -8 ± 0.4, -10 ± 0.6, -11 ± 0.7, -11 ± 0.7 kJ mol -1 , ΔS -22 ± 2, -26 ± 2, -27 ± 2, -29 ± 3 J mol -1 K -1 and ΔG 303K -0.9 ± 0.2, -1.9 ± 0.2, -2.3 ± 0.1 and -2.6 ± 0.2 kJ mol -1 were also estimated

  4. Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Mubeena [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080 (Pakistan)]. E-mail: profmarao@yahoo.com; Moosa Hasany, S. [Pakistan Institute of Engineering and Applied Sciences, PO Nilore, Islamabad (Pakistan); Bhanger, M.I. [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro-76080 (Pakistan); Iqbal, Shahid [Department of Chemistry, University of Sargodha, Sargodha-40100 (Pakistan)]. E-mail: ranashahid313@gmail.com

    2007-03-22

    Moringa oleifera pods Lamarck (Drumstick or Horseradish) is a multipurpose medium or small size tree from sub-Himalayan regions of north-west India and indigenous to many parts of Asia, Africa, South America, and in the Pacific and Caribbean Islands. Its pods (MOP) have been employed as an inexpensive and effective sorbent for the removal of organics, i.e., benzene, toluene, ethylbenzene and cumene (BTEC) from aqueous solutions using HPLC method. Effect of different parameters, i.e., sorbent dose 0.05-0.8 g, 25 cm{sup -3} agitation time 5-120 min, pH 1-10, temperature 283-308 K and concentration of sorbate (1.3-13) x 10{sup -3}, (1.1-11) x 10{sup -3}, (0.9-9) x 10{sup -3}, (0.8-8) x 10{sup -3} mol dm{sup -3}, on the sorption potential of MOP for BTEC have been investigated. The pore area and average pore diameter of the MOP by BET method using nitrogen as a standard are calculated to be 28.06 {+-} 0.8 m{sup 2} g{sup -1} and 86.2 {+-} 1.3 nm respectively. Freundlich, Langumir and Dubinin-Radushkevich (D-R) sorption isotherms were employed to evaluate the sorption capacity of MOP. Sorption capacities of BTEC onto MOP have been found to be 46 {+-} 10, 84 {+-} 9, 101 {+-} 4, 106 {+-} 32 mmol g{sup -1} by Freundlich, 8 {+-} 0.1, 9 {+-} 0.1, 10 {+-} 0.3, 9 {+-} 0.1 mmol g{sup -1} by Langumir and 15 {+-} 1, 21 {+-} 1, 23 {+-} 2, 22 {+-} 3 mmol g{sup -1} by D-R isotherms respectively, from BTEC solutions at 303 K. While the mean energy of sorption process 9.6 {+-} 0.3, 9.2 {+-} 0.2, 9.3 {+-} 0.3, 9.5 {+-} 0.4 kJ mol{sup -1} for BTEC is calculated by D-R isotherm only. Rate constant of BTEC onto MOP 0.033 {+-} 0.003, 0.030 {+-} 0.002, 0.029 {+-} 0.002, 0.027 {+-} 0.002 min{sup -1} at solution concentration of 1.3 x 10{sup -3}, 1.1 x 10{sup -3}, 0.9 x 10{sup -3} and 0.8 x 10{sup -3} mol dm{sup -3} and at 303 K have been calculated by employing Lagergren equation. Thermodynamic parameters {delta}H -8 {+-} 0.4, -10 {+-} 0.6, -11 {+-} 0.7, -11 {+-} 0.7 kJ mol{sup -1}, {delta

  5. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China

    Science.gov (United States)

    Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong

    2015-12-01

    A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.

  6. Determination of the efficiency of sawdust and coco fiber used as Biofilter for pollutant removal for the treatment of wastewater

    Directory of Open Access Journals (Sweden)

    Jimmy Vicente Reyes

    2016-09-01

    Full Text Available Water is a resource used by mankind for industrial and domestic needs, which once used, is discharged into the public sewer system or septic tanks. This project proposes an ecological alternative for the treatment of wastewater from domestic use named Biofilter, which is built of living material (worms and inert material (chip and gravel, which filters the wastewater; the biological filter has shown high efficiency in the removal of organic matter and pathogens. The field work was carried out with experimental biological filters, to ascertain the best composition of inert material, different variants were used. Two experimental Biofilters, one using sawdust and the other coco fiber were used in the treatment of domestic wastewater; treated samples from each reactor were subjected to laboratory analysis. The analysis and interpretation of results showed that the Biofilter using sawdust removed 53.53 % of pollutants and is outside the required norm for wastewater treatment and the Biofilter using coco fiber removed 82.37 % of contaminants and is within the Environmental Quality Norm and Effluent Discharge: Water Resource.

  7. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Science.gov (United States)

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  9. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    Full Text Available Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry and inorganic amendments (lime, superphosphate, and potassium phosphate on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1. A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the

  10. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    Science.gov (United States)

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Science.gov (United States)

    2010-05-20

    ...-AP48 National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production... published a proposed rule for mercury emissions from the gold mine ore processing and production area source... Environmental protection, Air pollution control, Hazardous substances, Incorporations by reference, Reporting...

  12. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  13. Study on decomposition and removal of organic pollutants in gases using electron beams

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki

    2006-01-01

    Volatile organic compounds (VOC) used as solvents and de-oil reagents have been emitted to the atmosphere and oxidized subsequently into toxic photochemical oxidants in the atmosphere. Reduction of the emission of VOC has been required under law and regulations for factories/plants at which huge amounts of VOC are used. The electron beam (EB) treatment is suitable for purification of high flow-rate ventilation air containing dilute VOC emitted from such factories/plants. The purification processes of such ventilation air have been developed based on the decomposition reactions and property changes of VOC. The results for chloro-ethylenes and aromatic hydrocarbons, which have been emitted with abundant quantities, are introduced in the present paper. Chloroethylenes, except for monochloroethylene, were oxidized into water-soluble primary products through chain reactions in EB irradiated humid air. The chain oxidation reactions of such chloro-ethylenes were initiated exclusively by a reaction with OH radicals, but electron-attachment dissociation under EB irradiation. Gas-phase termination reactions involved the bimolecular reaction of alkylperoxyl radicals for tri- and di-chloroethylenes, and the reaction of alkylperoxyl radicals and alkyl radicals beside such a bimolecular reaction for tetrachloroethylene. The deposition of the alkyl-peroxyl radicals on an irradiation vessel wall also terminated the chain oxidation reactions. The solid-phase termination reaction was negligible to the gas-phase termination reactions under irradiation with high-dose rate so that the oxidation of chloro-ethylenes was achieved with lower doses under high-dose rate irradiation like EB irradiation. The hydrolysis of the primary products combined with EB irradiation is prospective to be applied to the purification of chloroethylenes/air mixtures with lower doses. Under irradiation of aromatic hydrocarbons/air mixtures, toxic and oxidation-resistant particles with mean diameters of a few

  14. Reuse of spent granular activated carbon for organic micro-pollutant removal from treated wastewater.

    Science.gov (United States)

    Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk

    2015-09-01

    Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Simultaneously Recovering High-Purity Chromium and Removing Organic Pollutants from Tannery Effluent

    Directory of Open Access Journals (Sweden)

    Jie Zong

    2016-01-01

    Full Text Available Chromium pollution is a serious issue because of carcinogenic toxicities of the pollutants and low recovery rate of chromium because of the presence of organic, such as protein and fat. In this work, high recovery rate and high purity of the chromium ion were successfully prepared by the way of acid enzyme, flocculant, and Fenton oxidation. The experiments were characterized by TG, TOC, UV-VIS, and SEM. In the work, the tannery waste chrome liquor was used as experimental material. The results showed that the percentage of reduction of TOC in the tannery waste chrome liquor by method of Fenton oxidation, acid enzyme, and the flocculant was 71.15%, 65.26%, and 22.05%, respectively. Therefore, the organism content of chrome tanning waste liquid was greatly reduced through the pretreatment. And the application experiment showed that the properties and grain surface and fibers of the tanned leather with commercial chromium powder and chrome tanning agent prepared from the chromium waste liquid treated with Fenton are nearly the same.

  16. Thief process for the removal of mercury from flue gas

    Science.gov (United States)

    Pennline, Henry W.; Granite, Evan J.; Freeman, Mark C.; Hargis, Richard A.; O'Dowd, William J.

    2003-02-18

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  17. Optimization of coagulation-flocculation process for colour removal ...

    African Journals Online (AJOL)

    Response surface methodology (RSM) using face-centered central composite design (FCCD) was used to optimize the four variables. Increase in the colour removal efficiency was higher in acidic solution pH. Accurate control of coagulant dosages gave optimum destabilization of charged particles and re-stabilization ...

  18. optimization of coagulation-flocculation process for colour removal

    African Journals Online (AJOL)

    user

    2DEPARTMENT OF CHEMICAL ENGINEERING, NNAMDI AZIKIWE UNIVERSITY, AWKA, ANAMBRA STATE. ... The ability of organic polymer rich coagulants for colour removal from acid dye was studied. ... Response surface methodology (RSM) using face-centered ...... successfully applied for modeling and optimizing the.

  19. Microbial decontamination of polluted soil in a slurry process

    International Nuclear Information System (INIS)

    Geerdink, M.J.; Kleijntjens, R.H.; Loosdrecht, M.C.M. van; Luyben, K.C.A.M.

    1996-01-01

    Oil-contaminated soil (2.3--17 g/kg), even soil with high clay and silt content, was remediated microbiologically in a slurry reactor. The presence of soil, however, limits the degradation rate of oil. In contrast with results form experiments using oil dispersed in water, the relative composition of the oil components in a soil slurry after degradation was about the same as that of the original oil. Thus the composition of the degraded oil is the same as that of the original oil, which is indicative for a physical, rather than a (bio)chemical, limitation on the oil degradation rate. About 70% of the contaminant was readily available and was degraded in less than eight days. The dual injected turbulent suspension (DITS) reactor is able to combine remediation of part of the contaminated (polydisperse) soil with separation of the soil into a heavily and a lightly polluted fraction. In continuous operation, lowering the overall soil residence time from 200 to 100 h did not significantly increase the oil concentration in the effluent soil. Therefore a soil residence time of less than 100 h is feasible. With a residence time of 100 h, overall oil degradation rates at the steady state were more than 70 times faster than in a comparable land farm. After treatment in a DITS reactor, the remaining oil in the contaminated soil fraction is slowly released from the soil. From a batch experiment it was found that another 10 weeks were needed to reach the Dutch reference level of 50 mg/kg. This can be done in a process with a low energy input, such as a landfarm

  20. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    Science.gov (United States)

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  1. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology

    DEFF Research Database (Denmark)

    Dvořák, Pavel; Nikel, Pablo Ivan; Damborskýc, Jiří

    2017-01-01

    pollutants with no external intervention, the onset of genetic engineering in the 1980s allowed the possibility of rational design of bacteria to catabolize specific compounds, which could eventually be released into the environment as bioremediation agents. The complexity of this endeavour and the lack...... of fundamental knowledge nonetheless led to the virtual abandonment of such a recombinant DNA-based bioremediation only a decade later. In a twist of events, the last few years have witnessed the emergence of new systemic fields (including systems and synthetic biology, and metabolic engineering) that allow....... In this article, we analyze how contemporary systemic biology is helping to take the design of bioremediation agents back to the core of environmental biotechnology. We inspect a number of recent strategies for catabolic pathway construction and optimization and we bring them together by proposing an engineering...

  2. Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands

    Directory of Open Access Journals (Sweden)

    Luis Carlos Sandoval-Herazo

    2018-05-01

    Full Text Available The high costs involved in treating wastewater are problems that developing countries confront, mainly in rural areas. Therefore, Constructed Wetlands (CWs, which are composed of substrate, vegetation, and microorganisms, are an economically and ecologically viable option for wastewater treatment in these places. There is a wide variety of possibilities for substrates and ornamental plants that have not yet been evaluated to be implemented in future CW designs. The goal of this study was to evaluate the process of adaptation and removal of wastewater pollutants in CW microcosms using different terrestrial ornamental plants (Lavandula sp., Spathiphyllum wallisii, and Zantedeschia aethiopica. Those plants were sown in two types of substrate: red volcanic gravel (RVG and polyethylene terephthalate (PET. CWs with vegetation reduced 5-day biochemical oxygen demand (BOD5 by 68% with RVG substrate and 63% with PET substrate, nitrates 50% in RVG substrate and 35% in PET substrate, phosphates 38% in RVG substrate and 35% in PET substrate, and fecal coliforms 64% in RVG and 59% in PET substrate. In control microcosms without vegetation, reductions were significantly lower than those in the presence of plants, with reduction of BOD5 by 61% in RVG substrate and 55% in PET substrate, nitrates 26% in RVG substrate and 22% in PET substrate, phosphates 27% in RVG substrate and 25% in PET substrate. Concerning fecal coliforms 62% were removed in RVG substrate and 59% in PET substrate. Regarding the production of flowers, Lavandula sp. did not manage to adapt and died 45 days after sowing and did not produce flowers. Spathiphyllum wallisii produced 12 flowers in RVG and nine flowers in PET, while Zantedeschia aethiopica produced 10 in RVG and 7 in PET. These results showed that the use of substrates made of RVG and PET is a viable alternative to be implemented in CWs. In addition, the reuse of PET is an option that decreases pollution by garbage. The plants

  3. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Ortuño, Nuria; Conesa, Juan A., E-mail: ja.conesa@ua.es; Moltó, Julia; Font, Rafael

    2014-11-15

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO{sub 2005}-TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants.

  4. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Conesa, Juan A.; Moltó, Julia; Font, Rafael

    2014-01-01

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO 2005 -TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants

  5. Multivariate methods for evaluating the efficiency of electrodialytic removal of heavy metals from polluted harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine Bondo; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.

    2015-01-01

    , dry/wet sediment, cell set-up as well as sediment properties. Evaluation of the model showed that remediation time and current density had the highest comparative influence on the clean-up levels. Individual models for each heavy metal showed variance in the variable importance, indicating...... that the targeted heavy,metals were bound to different sediment fractions. Based on the results, a PLS model was used to design five new EDR experiments of a sixth sediment to achieve specified clean-up levels of Cu and Pb. The removal efficiencies were up to 82% for Cu and 87% for Pb and the targeted clean...

  6. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  7. Study on characteristics of high frequency dielectric barrier discharge for the removal of organic pollutant adsorbed on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Qu, G.Z.; Li, G.F. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Li, J.; Lu, N.; Wu, Y.; Li, D. [Dalian Univ. of Technology, Dalian (China). Inst. of Electrostatics and Special Power; Key Lab of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian (China)

    2010-07-01

    Advanced oxidation technologies such as photocatalysis, electrochemical degradation, Fenton oxidation, hydrogen peroxide oxidation, and plasma oxidation are increasingly being used to degrade refractory biodegradable organic contaminants. The plasma oxidation method has the advantage of direct in situ production of multiple types of high-reactive chemical species, including molecules and radicals that facilitate the degradation reaction. In addition, plasma oxidation does not produce any secondary pollution. Compared to other plasma technologies, the dielectric barrier discharge (DBD) plasma has been considered as a promising technology for removing toxic compounds because of its stability and its treatability property of biologically recalcitrant compounds in wastewater. However, the energy efficiency of DBD requires improvement for economic reasons. This paper reported on an experimental study that investigated the electrical characteristics of a parallel plate DBD reactor using a high frequency power supply for the removal of pentachlorophenol (PCP) adsorbed on activated carbon (AC). This study examined the effects of AC with different mass on discharge characteristics and compared the voltage and current waveforms, and discharge images of DBD reactors with different dielectric configurations. When the DBD reactor filled with AC, the applied voltage of discharge decreased regardless of the DBD reactor configuration in terms of having a single barrier or two barriers. The discharge characteristics had no significant change with AC mass increasing. The discharge images and current waveforms showed that DBD reactor configuration consisting of two dielectrics is more homogeneous and stable than the one consisting of a single dielectric. Under the same electric field condition, the degradation efficiency of PCP in two barriers reactor is higher than that in single barrier reactor. It was concluded that the findings from this study may be instrumental in treating

  8. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    Science.gov (United States)

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  9. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  10. Zinc removal from wastewater by complexation-microfiltration process

    OpenAIRE

    Trivunac Katarina; Sekulić Zoran; Stevanović Slavica

    2012-01-01

    As a result of its wide industrial applications, zinc has become an important contaminant in aquatic environment since it is a toxic heavy metal and some of its compounds such as zinc arsenate and zinc cyanide, may be extremely hazardous. Therefore, there is a growing need for developing simple methods capable of separating and recovering trace zinc from environmental waters. Nowadays, the ultra and microfiltration method for trace metals removal from waters by the addition of water-sol...

  11. Removing radioactive noble gases from nuclear process off-gases

    International Nuclear Information System (INIS)

    Lofredo, A.

    1977-01-01

    A system is claimed for separating, concentrating and storing radioactive krypton and xenon in the off-gases from a boiling water reactor, wherein adsorption and cryogenic distillation are both efficiently used for rapid and positive separation and removal of the radioactive noble gases, and for limiting such gases in circulation in the system to low inventory at all times, and wherein the system is self-regulating to eliminate operator options or attention

  12. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants

    International Nuclear Information System (INIS)

    Chadlia, Aguir; Mohamed, Khalfaoui; Najah, Laribi; Farouk, M'henni Mohamed

    2009-01-01

    The present work describes the preparation of new chelating materials derived from Posidonia for adsorption of heavy metal ions and dye in aqueous solution. The first part of this report deals with the chemical modification of Posidonia with succinic anhydride. Thus, we have obtained materials with various succinyl groups contents (from 29.8 to 39.2%). The obtained materials were characterized by infrared and CP/MAS 13 C-RMN spectroscopy. The rate of succinyl content of the modified Posidonia was determined by saponification. The second part is devoted to the evaluation of the adsorption capacity of metal ions such as Pb 2+ and dye such as direct red 75 (DR75) for raw and modified Posidonia materials. Two possible ways for the adsorption of these pollutants are studied: adsorption of each pollutant alone onto these supports, and cumulative adsorption of both metal ions and dye on the same supports. In the last case, the pollutant is adsorbed successively from two different solutions. The effects of pollutants concentration, support dose, pH, contact time and temperature on adsorption of each pollutant were evaluated. The results showed that the raw and modified Posidonia show a high capacity for Pb 2+ adsorption. The capacity of modified Posidonia saturated with Pb 2+ to adsorb DR75 was found 147.12 mg g -1 . While the adsorption capacity of the nonsaturated modified Posidonia was equal to 81.63 mg g -1 . The pseudo-second-order model was the best to represent adsorption kinetics of DR75. The pseudo-first-order model would be better for fitting the adsorption kinetic process of Pb 2+ onto raw and modified Posidonia. The adsorption isotherms of Pb 2+ could be described by the Jossens equation model. Any of the tested models can describe the adsorption of DR75 onto the studied materials. These results confirm that the adsorption of DR75 from aqueous solution was multilayer.

  13. Process for off-gas particulate removal and apparatus therefor

    International Nuclear Information System (INIS)

    Carl, D.E.

    1997-01-01

    In the event of a breach in the off-gas line of a melter operation requiring closure of the line, a secondary vessel vent line is provided with a particulate collector utilizing atomization for removal of large particulates from the off-gas. The collector receives the gas containing particulates and directs a portion of the gas through outer and inner annular channels. The collector further receives a fluid, such as water, which is directed through the outer channel together with a second portion of the particulate-laden gas. The outer and inner channels have respective ring-like termination apertures concentrically disposed adjacent one another on the outer edge of the downstream side of the particulate collector. Each of the outer and inner channels curves outwardly away from the collector's centerline in proceeding toward the downstream side of the collector. Gas flow in the outer channel maintains the fluid on the channel's wall in the form of a ''wavy film,'' while the gas stream from the inner channel shears the fluid film as it exits the outer channel in reducing the fluid to small droplets. Droplets formed by the collector capture particulates in the gas stream by one of three mechanisms: impaction, interception or Brownian diffusion in removing the particulates. The particulate-laden droplets are removed from the fluid stream by a vessel vent condenser or mist eliminator. 4 figs

  14. An Enthusiastic Glance in to the Visible Responsive Photocatalysts for Energy Production and Pollutant Removal, with Special Emphasis on Titania

    Directory of Open Access Journals (Sweden)

    Padikkaparambil Silija

    2012-01-01

    Full Text Available As a consequence of the rapid growth of industry, major problems are created related to energy and environment. Sunlight being one of the most potential alternative source of energy, the development of efficient solar-energy storage systems is an important subject in the fields of science and technology. Here we have reviewed and summarized some of the recent reports on visible responsive photocatalysts. In this review, the influence of various metal oxide photocatalysts on energy production and pollutant removal are presented with special emphasis on titania based photocatalysts. The photoactivity of titania for various pollutant degradation, modified titania (TiO2 systems, their physical and chemical characteristics, and so forth, are described in detail at this juncture. Different methods used to enhance the visible light absorption of TiO2, like doping with metals and nonmetals, coupling with other metal oxides, and so forth, have been discussed. Various applications of photocatalysts including photocatalytic treatment of waste water, pesticide degradation and water splitting to produce hydrogen are summarized. The development of photocatalysts that function under visible light for the efficient utilization of sunlight is an area of current interest and thus the different methods of preparation for the visible active photocatalysts are also explored.

  15. Assessment of Some Synthetic Polymers for the Removal of Pollutants from Waste Solutions

    International Nuclear Information System (INIS)

    Ayoub, R.; El-Naggar, H.A.; Ezz EL-Din, M.R.; Moussa, A.R.

    1999-01-01

    The sorption capacity of 134 Cs, 60 Co, 152+154 Eu and Cu (II) by three prepared has been studied using batch and column techniques. The three polymers are polyacrylic acid (PAA), polyacrylamide-acrylic acid (PAM-AA) and polyacrylamide-N-vinyl-2-pyrraldone (PAM-NVP). These polymers were prepared by gamma radiation initiated polymerization of their corresponding monomer solutions. The appropriate value for V/m ratio (volume of solution to mass of polymer) that can result in reasonably high distribution coefficient, Kd, was determined. The variation of the amount sorbed of the isotope per gram polymer (X/m) with concentration of the relevant element was found to follow a Frendlich type isotherm. The distribution coefficient, Kd, of the studied element was found to be affected by the ph of the solution. The desorption of the investigated metal ions is also studied at different ph. For column studies, the percent removed of the radioisotopes 134 Cs, 60 Co, ( 152+154 )Eu in addition to some heavy metals ions such as Pb, Cd, Zn and Cu(II) was determined. More than 95% of these elements were removed when 3 beds column of PAA or PAM-AA was used. From the data obtained we can conclude that the polymer PAA or PAM-AA can considered as an efficient sorbent for metal cations from their aqueous solution

  16. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  17. Marine pollution monitoring and coastal processes off Andhra Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    plants are some of them. ESSAR group is going to invest Rs.1000 crores to set up industries in this belt. In view of the above, regular monitoring of pollution concentration in the harbour and coastal waters is being done by NIO, RC, Visakhapatnam under...

  18. Efficient device for the benign removal of organic pollutants from aqueous solutions using modified mesoporous magnetite nanostructures

    Science.gov (United States)

    Vojoudi, H.; Badiei, A.; Amiri, A.; Banaei, A.; Ziarani, G. M.; Schenk-Joß, K.

    2018-02-01

    In this study, a home-made device comprising a column filled with magnetic mesoporous silica-coated nanostructures (MSCM-PA) as an adsorbent was constructed and used to remove organic pollutants from aqueous solutions. The MSCM-PA adsorbent was prepared and characterized using Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometry, Brunauer-Emmett-Teller, thermogravimetric analysis/differential thermal analysis, and powder X-ray diffraction techniques. The adsorption behavior of the MSCM-PA sorbent was studied based on the removal of Everzol blue dye from aqueous solutions. We investigated the effects of various parameters such as the solution pH, initial dye concentration, adsorbent dose, flow rate, and contact time on the adsorption of Everzol blue from aqueous solutions. The adsorption data were modeled using Langmuir and Freundlich isotherms, and a good fit was obtained with the Langmuir isotherm. The maximum Everzol blue adsorption capacity by MSCM-PA was 162 mg g-1. The results indicate that our device is capable of adsorbing anionic dyes from aqueous solutions.

  19. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    Science.gov (United States)

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  20. Efficiency of Coagulation and Flocculation Process Combined with Chemical Sequestration in Removal of Organic and Inorganic Contaminants from Aautomotive Industry Sewag

    Directory of Open Access Journals (Sweden)

    Mohammad Malakootian

    2016-08-01

    Full Text Available Introduction: The most important environmental problem of automotive industries is the produced wastewater due to its various processes. The flocculation and coagulation along with chemical sequestration are among important processes for removing contaminants from wastewaters. The aim of this study is to investigate the efficiency of coagulation and flocculation process along with chemical sequestration in the removal of organic and inorganic pollutants from automotive industry sewage. Study Method: This study is an applied-experimental study. The removal of organic and inorganic substances by coagulation, flocculation process combined with chemical sequestration was carried out in batch reactors. The parameters turbidity, heavy metals' concentration, color, phosphate, coagulants concentration, exposure time, TSS, pH and COD were studied. The concentration of color and residue of heavy metals were determined using spectrophotometer -UV and atomic absorption. Results: The research results showed that the removal percentage of Cr, Ni, Pb and Zn by ferric sulfate combined with lime at a pH equal to 10 and the exposure time of 100 minutes were 52.65, 96.3, 3.27 and 100 respectively, and percentage of removing them by aluminum sulfate combined with lime was 52.65, 97.8, 3.37 and 99.81 respectively. the removal percentage of TSS, COD, color, turbidity, phosphates ferric sulfate was also 68.9, 83, 94, 84 and 47.2 respectively, and this amount of removal by aluminum sulfate was 62, 80, 94, 73.5 and 48 respectively at neutral pH and concentration of coagulant was obtained equal to 150 mg / L. Conclusion: According to the results, the use of coagulation and flocculation process combined with chemical sequestration in the removal of organic and inorganic pollutants in wastewaters of automotive industry achieved under optimal conditions is very effective and can be used in water treatment of automotive industry.

  1. Fabrication of conductive and high-dispersed Ppy@Ag/g-C{sub 3}N{sub 4} composite photocatalysts for removing various pollutants in water

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi; Tang, Xu [School of Chemistry and Chemical Engineering, Jiangsu University (China); Ma, Changchang [School of the Environment and Safety Engineering, Jiangsu University (China); Song, Minshan [School of Mathematics and Physics, Jiangsu University of Science and Technology (China); Gao, Nailing; Wang, Youshan; Huo, Pengwei [School of Chemistry and Chemical Engineering, Jiangsu University (China); Lu, Ziyang, E-mail: mrzhuzhi007@163.com [School of the Environment and Safety Engineering, Jiangsu University (China); Yan, Yongsheng, E-mail: gchxz206@126.com [School of Chemistry and Chemical Engineering, Jiangsu University (China)

    2016-11-30

    Highlights: • The high-dispersed Ag modified g-C{sub 3}N{sub 4} (Ag/g-C{sub 3}N{sub 4}) was successfully synthesized in situ deposited on the surface of g-C{sub 3}N{sub 4} during calcined melamine. • The as-prepared Ppy@Ag/g-C{sub 3}N{sub 4} could remove of various organic pollutants in water. • The enhanced photocatalytic activity of Ppy@Ag/g-C{sub 3}N{sub 4} comes from π conjugated electronic structures of Ppy and Ag species as the electron transfer mediator between Ppy and g-C{sub 3}N{sub 4}. • The Ppy@Ag/g-C{sub 3}N{sub 4} sample also showed a relatively good recycling stability. - Abstract: The ternary conductive Ppy@Ag/g-C{sub 3}N{sub 4} composite photocatalysts was successfully synthesized by polymerization process and surface polymerization technique. And the as-prepared Ppy@Ag/g-C{sub 3}N{sub 4} sample exhibited the higher photocatalytic activity for various pollutant (MO, DM, TC, CIP, GFLX and EH) remove than that of pure g-C{sub 3}N{sub 4} and Ag/g-C{sub 3}N{sub 4} under visible light irradiation. It mainly originated from the Ag nanoparticles anchored between g-C{sub 3}N{sub 4} and Ppy acted as electron transfer mediator that facilitated the charge carrier separation and then expending the lifetime of the carriers. Meanwhile, the obtained Ppy@Ag/g-C{sub 3}N{sub 4} sample also showed a relatively good recycling stability which was the crucial factor for photocatalyst practical application. This work provided a new facile strategy for improving photo-degradation activity of g-C{sub 3}N{sub 4} photocatalyst.

  2. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Nadejde, C., E-mail: claudianadejde@gmail.com; Neamtu, M., E-mail: mariana.neamtu@uaic.ro [‘Alexandru Ioan Cuza’ University, Interdisciplinary Research Department – Field Science (Romania); Hodoroaba, V.-D.; Schneider, R. J.; Paul, A. [BAM Federal Institute for Materials Research and Testing (Germany); Ababei, G. [National Institute of Research and Development for Technical Physics (Romania); Panne, U. [BAM Federal Institute for Materials Research and Testing (Germany)

    2015-12-15

    The use of magnetic materials as heterogeneous catalysts has attracted increasing attention in the last years since they proved to be promising candidates for water treatment. In the present study, two types of surface-modified magnetite (Fe{sub 3}O{sub 4}) nanoparticles, coated with non-hazardous naturally occurring agents—either tannic acid (TA) or dissolved natural organic matter—were evaluated as magnetic heterogeneous catalysts. Chemical synthesis (co-precipitation) was chosen to yield the nanocatalysts due to its well-established simplicity and efficiency. Subsequently, the properties of the final products were fully assessed by various characterization techniques. The catalytic activity in heterogeneous oxidation of aqueous solutions containing a model pollutant, Bisphenol A (BPA), was comparatively studied. The effect of operational parameters (catalyst loading, H{sub 2}O{sub 2} dosage, and UV light irradiation) on the degradation performance of the oxidation process was investigated. The optimum experimental parameters were found to be 1.0 g/L of catalysts and 10 mM H{sub 2}O{sub 2}, under UV irradiation. The highest mineralization rates were observed for Fe{sub 3}O{sub 4}-TA catalyst. More than 80 % of BPA was removed after 30 min of reaction time under the specified experimental conditions. The obtained results showed that the two catalysts studied here are suitable candidates for the removal of pollutants in wastewaters by means of heterogeneous reaction using a green sustainable treatment method.

  3. Pollution magnet: nano-magnetite for arsenic removal from drinking water.

    Science.gov (United States)

    Yavuz, Cafer T; Mayo, J T; Suchecki, Carmen; Wang, Jennifer; Ellsworth, Adam Z; D'Couto, Helen; Quevedo, Elizabeth; Prakash, Arjun; Gonzalez, Laura; Nguyen, Christina; Kelty, Christopher; Colvin, Vicki L

    2010-08-01

    Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible "everyday" chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.

  4. Effect of gamma radiation on materials used for removal of some environmental pollutants

    International Nuclear Information System (INIS)

    El-Kelesh, N.A.A.

    1995-01-01

    This study is conducted to evaluate the feasibility of using granular activated carbon and ion exchange resins for the removal of pesticides from aqueous solutions. Analysis of effluent components from carbon columns treating mono solute pesticide solutions was made to establish expected patterns of pesticide breakthrough for full-scale column systems. The breakthrough curves will be measured using laboratory scale column for several combination of particle size, influent concentration, flow rate column length column diameter and the effects of the operation condition. Five pesticides are used in the present work: Two organophosphorus pesticides; oufunack and monocrotophose, two carbamate pesticides; seven and osbac and one chloro hydrocarbon, kelthane also, equilibrium isotherms and interparticle diffusivities will be investigated through batch experiments in analyzing the adsorption of aqueous solutions of pesticides onto granular activated carbon and ion exchange resins. Comparison between column and batch experiments also will be studied

  5. Removal of radionuclides from process streams, a series of applications

    International Nuclear Information System (INIS)

    Menetrez, M.Y.

    1987-01-01

    The extensive research performed on metal oxide adsorption, the adsorption phenomena and physical conditions of cationic adsorption on manganese dioxide in solution have demonstrated that above pH 3 cations are adsorbed by an order of affinity, and that the interaction is characterized by the pH dependence of the metal. The relationship of the zero point charge of pH and the solution ionic strength effects on interfacial surface potential and adsorption have been addressed. A system to produce MnO 2 fiber with a heavy MnO 2 loading was designed, constructed, and operated successfully. Extensive testing has been performed on the adsorption of radium, calcium, cadmium, cesium, cobalt, iron, and manganese on MnO 2 fiber. This testing entailed field work utilizing bleed stream tests of MnO 2 fiber cartridges and tests of loose MnO 2 fiber and resin in columns. Radium removal amounted to a level of 36.9 nanocuries per gram MnO 2 , or 2 microcuries on a single 10 inch MnO 2 fiber filter element. Removal of metals from solutions was demonstrated at various rates specific for each metal tested. The order of affinity of those metals tested and the combined effects of electrolytic solutions was compared to previous research. The analysis of radium in water was performed using a highly modified procedure which is included to specify the exact steps of the analytical method followed. This method has introduced innovations in equipment, technique, and the use of reagents. Results of a comparison of MnO 2 fiber to commercial water treatment media for the removal of cobalt and cesium is presented

  6. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  7. Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater.

    Science.gov (United States)

    Ding, Baojun; Wang, Jie; Tao, Shengyang; Ding, Yunzhe; Zhang, Lijing; Gao, Ning; Li, Guangtao; Shi, Haonan; Li, Weijun; Ge, Shuo

    2018-07-15

    Water pollution control has become significant challenges in recent years because of their extensive species diversity. It is critical to developing general-purpose materials for environmental rehabilitation. In this paper, a novel module-assembly method is developed to prepare multi-functional materials for treating pollutants in water. Building blocks are porous nanoparticles with a different function. Microspheres (MS) with a diameter of 90 μm are prepared and have a coefficient of variation of 6.8%. The modular fashion of self-assembly process in a microfluidic chip is the crucial factor in fabricating the multifunction material. The assembled microspheres with different building modules still have a specific surface area larger than 400 m 2 g -1 , and exhibit excellent performance in adsorbing various pollutants in water, such as heavy metal ions and organic dyes. The adsorption capacities of them to Hg 2+ and orange II reach 150 mg g -1 and 333 mg g -1 , respectively. The integrated fluorescence probes in microspheres can detect low concentration (9.8 ppb) of Hg 2+ . Microspheres integrated with Fe 3 O 4 nanoparticles have a magnetic susceptibility of 6.01 emu g -1 and can be easily removed from wastewater by applying an external magnetic. Due to the stability of inorganic building blocks, each function in the assembled system is well performed, and multi-functional "All-in-One" materials can be easily fabricated. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Membrane and Adsorption Processes for Removing of Organics and Inorganics from Urban Wastewaters

    OpenAIRE

    Majlinda Daci-Ajvazi; Bashkim Thaçi; Nexhat Daci; Salih Gash

    2016-01-01

    Since in Kosovo there are still no water purification plants and untreated wastewaters are discharged in environment, in this paper we’ve studied methods for removing of different organic and inorganic pollutants from Kosovo urban wastewaters. For best results we’ve used two methods, reverse osmosis and adsorption. For reverse osmosis, all samples were pretreated with coagulant (FeSO4) and flocculant (CaO) and then treated with reverse osmosis membranes. For adsorption, we used Kosovo coal as...

  9. Recalcitrance removal of pretreated landfill leachate by ozone-based oxidation processes

    OpenAIRE

    Van Aken, Pieter; Van Eyck, Kwinten; Luyten, Jan; Degrève, Jan; Liers, Sven

    2010-01-01

    The sanitary landfill method for the ultimate disposal of solid waste material continues to be widely accepted and used due to its economic advantages. However, water infiltrates through the solid waste and a variety of organic and inorganic pollutants will be dissolved and transported. These leachates may contain large amounts of organic matter, as well as ammonia-nitrogen, heavy metals, chlorinated organic and inorganic salts. The removal of organic material is usual the prerequisite before...

  10. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  11. Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke

    Institute of Scientific and Technical Information of China (English)

    Mohe Zhang; Quanlin Zhao; Zhengfang Ye

    2011-01-01

    We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite.Since the composition of TNT red water was very complicated,chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency.This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water,and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography,UV-Vis spectra and gas chromatography/mass spectroscopy.The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model.The adsorption process was an exothermic and physical process.The sorption isotherm was in good agreement with Redlich-Peterson isotherm.At the conditions of initial pH =6.28,20°C and 3 hr of agitation,under 160 g/L AC,64.8% of COD was removed.The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%,respectively.After adsorption,the acute toxicity of TNT red water reduced greatly,compared with that of unprocessed TNT red water.

  12. Phase separation and soluble pollutant removal by means of alternationg current electrocoagulation

    International Nuclear Information System (INIS)

    Farrell, C.W.; Gardner-Clayson, T.W.

    1992-01-01

    Electro-Pure Systems (EPS) has undertaken a two-year laboratory program to investigate the technical and economic viability of alternation current electrocoagulation technology (ACE Technology) for Superfund site remediation. Alternating current electrocoagulation was originally developed as a treatment technology in the early 1980s to break stable aqueous suspensions of clays and coal fines in the mining industry. The technology offers a replacement for primary chemical coagulant addition to simplify effluent treatment, realize cost savings, and facilitate recovery of fine grained products that would otherwise have been lost. The traditional approach for treatment of such effluents entails addition of organic polymers or inorganic salts to promote flocculation of fine particulates and colloidi-sized oil droplets in aqueous suspensions. These flocculated materials are than separated by sedimentation or filtration. Unfortunately, chemical coagulant addition generates voluminous, gelatinous sludges which are difficult to dewater and slow to filter. As an alternative to chemical conditioning, alternation current electrocoagulation introduces into an aqueous medium highly, charged polymetric aluminum hydroxide species which will neutralize the electrostatic charges on suspended solids and oil droplets to facilitate their agglomeration (or coagulation). These species will also coprecipitate many soluble ions. ACE Technology prompts coagulation without adding any soluble species and produces a sludge with a lower contained water content and which will filter more rapidly through separation of the hazardous components from an aqueous waste the volume of potentially toxic pollutants requiring special handling and disposal can be minimized. Waste reduction goals may be accomplished by integrating this technology into a variety of operations which generate contaminated water

  13. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Caffarel-Méndez, S; Ponce-Noyola, M T; Barrera-Córtes, J; Poggi-Varaldo, Héctor M

    2009-03-01

    The objective of this work was to evaluate the post-treatment of an anaerobic recalcitrant effluent (anaerobically-treated weak black liquor, AnE) in an aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilized onto small cubes of holm oak wood. The treated effluent (named anaerobic effluent; AnE) from an anaerobic fluidized bed reactor was fed to an up-flow aerobic fungal packed bed reactor (PBR). Two HRT were tested in this unit, namely 5 and 2.5days; the PBR operated 60days at 5-day HRT and 35days at 2.5-day HRT. The aerobic packed bench scale reactor was a glass column 1.5L total geometric volume containing 0.75L biocubes of T. versicolor immobilized onto holm oak wood small cubes of 5mm side. The reactor was operated at 25 degrees C. The pH of the AnE was adjusted to 4.5 before feeding; no carbohydrates or other soluble carbon source was supplemented. The fungal packed bed bioreactor averaged organic matter removals of 30% and 32% COD basis, during an experimental run of 60days at 5-day HRT and 35days at 2.5-day HRT, respectively. Colour and ligninoids contents were removed at higher percentages (69% and 54% respectively, average of both HRT). There was no significant difference between reactor performance at 5- and 2.5-day HRT, so, operation at 2.5-day HRT is recommended since reactor throughput is double. Activity of manganese peroxidase and laccase was found during the entire operation of the fungal PBR whereas lignin peroxidase activity practically disappeared in the second operation period. In general, enzyme activities were higher in the first period of operation (5-day HRT) than at 2.5-day HRT. To the best of our knowledge, this is one of the few works that demonstrated extended performance (3months) of a fungal bioreactor for the treatment of a recalcitrant wastewater with no supplementation of glucose or other expensive, soluble carbohydrate.

  14. Removal of micro pollutants using activated biochars and powdered activated carbon in water

    Science.gov (United States)

    Kim, E.; Jung, C.; Han, J.; Son, A.; Yoon, Y.

    2015-12-01

    Recent studies have suggested that emerging micropollutants containing endocrine disrupting compounds (EDCs); bisphenol A, 17 α-ethinylestradiol, 17 β-estradiol and pharmaceuticals and personal care products (PPCPs); sulfamethoxazole, carbamazepine, ibuprofen, atenolol, benzophenone, benzotriazole, caffeine, gemfibrozil, primidone, triclocarban in water have been linked to ecological impacts, even at trace concentrations (sub ug/L). Adsorption with adsorbent such as activated carbon having a high-binding affinity has been widely used to eliminate various contaminants in the aqueous phase. Recently, an efficient treatment strategy for EDCs and PPCPs has been considered by using cost effective adsorption particularly with biochar in aqueous environmentIn this study, the objective of this study is to determine the removal of 13 target EDCs/PPCPs having different physicochemical properties by a biochar at various water quality conditions (pH (3.5, 7, and 10.5), background ions (NaCl, CaCl2, Na₂SO₄), ionic strength, natural organic matter (NOM)). The activated biochar produced in a laboratory was also characterized by using conventional analytical methods as well as advanced solid-state nuclear magnetic resonance (NMR) techniques, which answer how these properties determine the competitive adsorption characteristics and mechanisms of EDCs and PPCPs.The primary findings suggest that micropollutants can be removed more effectively by the biochar than the commercially available powdered activated carbon. At pH values below the pKa of each compound, the adsorption affinity toward adsorbents increased significantly with the pH, whereas the adsorption affinity decreased significantly at the pH above the pKa values. Na+ did not significantly impact adsorption, while increasing the concentration of Ca2+lead to increase in the adsorption of these micropollutants. NOM adsorption with humic acids on these adsorbents disturbed adsorption capacity of the target compounds as

  15. The potential of the innovative SeMPAC process for enhancing the removal of recalcitrant organic micropollutants

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino, T., E-mail: teresa.alvarino@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Komesli, O. [Ataturk University, Department of Environmental Engineering, 25250 Erzurum (Turkey); Middle East Technical University, Department of Environmental Engineering, 06531 Ankara (Turkey); Suarez, S., E-mail: sonia.suarez@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Lema, J.M., E-mail: juan.lema@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Omil, F., E-mail: francisco.omil@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2016-05-05

    Highlights: • Complete OMPs mass balance in a combined system biological treatment plus PAC. • Improvement of the denitrification after PAC addition. • Enhancement of OMPs biotransformation after PAC addition. • Relation between hydrophobicity (log D) and sorption onto the PAC. • Progressive saturation of the activated carbon in the solid phase with the time. - Abstract: SeMPAC is an innovative process based on a membrane sequential batch reactor to which powdered activated carbon (PAC) is directly added. It was developed with the aim of obtaining a high quality effluent in terms of conventional pollutants and organic micropollutants (OMPs). High COD removal and nitrification efficiencies (>95%) were obtained already during the operation without PAC, although denitrification was enhanced by PAC addition. OMPs were followed in the solid and liquid matrixes so that biotransformation, sorption onto the sludge and adsorption onto the PAC could be assessed. Recalcitrant compounds, such as carbamazepine and diazepam, were readily removed only after PAC addition (>99%). Progressive saturation of PAC was observed, with increasing concentrations of OMPs in the solid phase. Removal efficiencies for recalcitrant compounds were used as indicators for new additions of PAC. An improvement in the moderately biodegradable OMPs removal was observed after PAC addition (e.g. fluoxetine, trimethoprim) which was attributed to the biofilm that grew onto the sorbent, as well as to adsorption onto PAC.

  16. Effect of Gamma Radiation on Materials Used for Removal of Some Organic Pollutants

    International Nuclear Information System (INIS)

    Dessouki, A.M.; El-Kelesh, N.A.; Aly, R.O.; Abdel-Mottaleb, M.S.

    2000-01-01

    The feasibility of using Granular Activated Carbon and Ion Exchange Resins for the removal of pesticides from aqueous solutions was studied. Analysis of effluent components from carbon columns treating mono solute pesticide solutions was made to establish expected patterns of pesticide breakthrough for full scale column systems. The breakthrough curves were measured using laboratory scale column. Two organophosphorous pesticides Oufunack and Monocrotophos were used and equilibrium isotherms and interparticle diffusivities were investigated through batch experiments. Adsorption purification showed that Granular Activated Carbon (GAC) possesses the highest adsorption capacity for the two pesticides used compared with the ion exchange resins which may be attributed to the very high surface area of GAC and its high porous nature. The radiation-adsorption method combined the conventional adsorption purification with radiation treatment of the sorbent materials. Gamma irradiation doses between 20-30 kGy at the end of steady state region were used for prolonging the protection time of the sorbent materials. Also complete regeneration of the sorbents by gamma radiation (50-75 kGy) after complete exhaustion was achieved. The quality of the resultant purified wastewater by radiation-adsorption purification was controlled and found to be below the maximum permissible concentration (MPC) of these pesticides in surface water

  17. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall.

    Science.gov (United States)

    Egodawatta, Prasanna; Goonetilleke, Ashantha

    2008-01-01

    Pollutant wash-off is one of the key pollutant processes that detailed knowledge is required in order to develop successful treatment design strategies for urban stormwater. Unfortunately, current knowledge relating to pollutant wash-off is limited. This paper presents the outcomes of a detailed investigation into pollutant wash-off on residential road surfaces. The investigations consisted of research methodologies formulated to overcome the physical constraints due to the heterogeneity of urban paved surfaces and the dependency on naturally occurring rainfall. This entailed the use of small road surface plots and artificially simulated rainfall. Road surfaces were selected due to its critical importance as an urban stormwater pollutant source. The study results showed that the influence of initially available pollutants on the wash-off process was limited. Furthermore, pollutant wash-off from road surfaces can be replicated using an exponential equation. However, the typical version of the exponential wash-off equation needs to be modified by introducing a non dimensional factor referred to as 'capacity factor' CF. Three rainfall intensity ranges were identified where the variation of CF can be defined. Furthermore, it was found that particulate density rather than size is the critical parameter that influences the process of pollutant wash-off. (c) IWA Publishing 2008.

  18. Water pollution control. High performances finishing processing; Lutte contre la pollution des eaux. Finitions a haute performance

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, P.

    1999-04-01

    The sewage recovery or recycling is an efficient way to control the water resources conservation. This paper characterizes in a first part the residual pollutants of an effluent rejected in the natural medium. It deals then the recycling and the water recovery objectives to present the possible processing. The author emphasizes some modern high performances engineering as, granular material filtration, membrane filtration, osmosis, UV disinfection, flocculation activated carbon or chemical oxidation. (A.L.B.)

  19. Modelling of fluoride removal via batch monopolar electrocoagulation process using aluminium electrodes

    Science.gov (United States)

    Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.

    2017-09-01

    Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.

  20. Comparing removal efficiency and reaction rates of organic micro-pollutants during ozonation from different municipal waste water treatment plants effluents in Sweden

    DEFF Research Database (Denmark)

    El-taliawy, Haitham; Ekblad, Maja; Nilsson, Filip

    2015-01-01

    The Removal of about 50 micro-pollutants from 7 waste water treatment plant effluents –in Sweden- was tested on pilot scale. Different ozone doses and two different pilots with different reactor sizes and retention times were tested. Ozone reaction rates depended on DOC concentration in the water...

  1. Photooxidative Removal of p -Nitrophenol by UV/H 2 O 2 Process in a Spinning Disk Photoreactor: Influence of Operating Parameters

    Directory of Open Access Journals (Sweden)

    H. Dadkhah

    2017-10-01

    Full Text Available In this paper, spinning disk photoreactor (SDP has been used for the removal of a refractory pollutant, namely p-nitrophenol (PNP, in UV/H2O2 process. The effect of various parameters such as the plate type in the SDP, concentration of oxidant (H2O2, fluid volume, initial concentration of PNP, distance of the lamps from the spinning disk, distance of the lamps from each other, pH, and rotation speed of the spinning disk in the removal efficiency has been investigated. The results indicated that the use of scrobiculate disc instead of flat disc significantly increased the removal percentage of PNP from 46 to 100 % for the irradiation time of 20 min; it also increased with increasing H2O2 concentration, but the increase in fluid volume and the initial concentration of PNP reduced the removal percentage of PNP in the SDP. The increase in the distance of UV lamps from each other and from disc surface in the SDP reduced the removal percentage of PNP. However, the increase in pH to 5.5 increased removal efficiency while increasing pH above 5.5 reduced PNP removal efficiency. The disk rotation speed from 0 to 90 rpm increased the removal percentage from 49 to 70 % for the irradiation time of 5 min, but increasing the rotation speed to more than 90 rpm reduced the removal efficiency.

  2. Applicability of MIEX(®)DOC process for organics removal from NOM laden water.

    Science.gov (United States)

    Karpinska, Anna M; Boaventura, Rui A R; Vilar, Vítor J P; Bilyk, Andrzej; Molczan, Marek

    2013-06-01

    The aim of this study was to evaluate applicability of ion exchange process for organics removal from Douro River surface water at the intake of Lever water treatment plant using magnetized ion exchange resin MIEX®. Qualitative analysis of the natural organic matter present in the surface water and prediction of its amenability to removal in conventional coagulation process were assessed. Results obtained in MIEX®DOC process kinetic batch experiments allowed determination of ion exchange efficiency in dissolved organic carbon (DOC), UV absorbing organics, and true color removal. The data were compared with the efficiencies of the conventional unit processes for organics removal at Lever WTP. MIEX®DOC process revealed to be more efficient in DOC removal than conventional treatment achieving the efficiencies in the range of 61-91 %, lowering disinfection by-products formation potential of the water. DOC removal efficiency at Lever WTP depends largely on the raw water quality and ranges from 28 % for water of moderated quality to 89 % of significantly deteriorated quality. In this work, MIEX®DOC process was also used as a reference method for the determination of contribution of anionic fraction to dissolved organic matter and selectivity of the unit processes at Lever WTP for its removal.

  3. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process

    OpenAIRE

    Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic u...

  4. Zinc removal from wastewater by complexation-microfiltration process

    Directory of Open Access Journals (Sweden)

    Trivunac Katarina

    2012-01-01

    Full Text Available As a result of its wide industrial applications, zinc has become an important contaminant in aquatic environment since it is a toxic heavy metal and some of its compounds such as zinc arsenate and zinc cyanide, may be extremely hazardous. Therefore, there is a growing need for developing simple methods capable of separating and recovering trace zinc from environmental waters. Nowadays, the ultra and microfiltration method for trace metals removal from waters by the addition of water-soluble polymers into the aqueous solutions has become a significant research area. The choice of watersoluble macroligands remains important for developing this technology. Sodium carboxymethyl cellulose (Na-CMC was selected as complexing agent. The microfiltration experiments were carried out in stirred dead-end cell. To separate formed polymer-metal complex Versapor membranes were used. The concentration of heavy metal ions after microfiltration in aqueous solution was determined using atomic absorption spectroscopy (AAS. Effects of amount of complexing agent, pH value, type of anion, ionic strength and operating pressure on the flux (J and rejection coefficient (R were investigated. Experimental results indicate a considerable influence of the pH, ionic strength and type of anion on the rejection coefficient, while effect of amount of complexing agent is relatively insignificant. The Na-CMC used in the research proved to be very effective, which may be supported by the high rejection coefficients obtained (99%.

  5. Accelerated hydrocarbon removal with the NoVOCs trademark process

    International Nuclear Information System (INIS)

    Dawson, G.W.; McKeon, T.J.

    1996-01-01

    It has been estimated that by 1990, there were over 240,000 leaking underground storage tanks in the US and that the majority of those tanks had contained some type of petroleum fuel. The resulting hydrocarbon contamination from those leaking tanks became the focus of a significant amount of environmental restoration effort. Free product was collected and removed from the water table. Contaminated soils were excavated for thermal desorption or land farming, or aerated in place to promote bioremediation. Affected ground water was withdrawn by means of extraction wells and routed to air stripping towers or, more recently, stripped in place with in situ air sparging. NoVOCs trademark is a patented design for the application of in-well stripping as an alternative to pump and treat systems over which it offers two unique advantages: (1) Development of a circulation pattern within the saturated zone that optimizes dissolution and transport of contaminants to the well; and (2) Separation of the volatile contaminants for the ground water in the well so that only vapor is transported above ground and there are no water discharges to be managed

  6. Optimization of induced crystallization reaction in a novel process of nutrients removal coupled with phosphorus recovery from domestic wastewater

    Directory of Open Access Journals (Sweden)

    Zou Haiming

    2017-12-01

    Full Text Available Phosphorus removal and recovery from domestic wastewater is urgent nowadays. A novel process of nutrients removal coupled with phosphorus recovery from domestic sewage was proposed and optimization of induced crystallization reaction was performed in this study. The results showed that 92.3% of phosphorus recovery via induced Hydroxyapatite crystallization was achieved at the optimum process parameters: reaction time of 80 min, seed crystal loads of 60 g/L, pH of 8.5, Ca/P mole ratio of 2.0 and 4.0 L/min aeration rate when the PO43--P concentration was 10 mg/L in the influent, displaying an excellent phosphorus recovery performance. Importantly, it was found that the effect of reaction temperature on induced Hydroxyapatite crystallization was slight, thus favoring practical application of phosphorus recovery method described in this study. From these results, the proposed method of induced HAP crystallization to recover phosphorus combined with nutrients removal can be an economical and effective technology, probably favoring the water pollution control and phosphate rock recycle.

  7. Use of AOP's to remove paper mill wastewater pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Amat, A.M.; Arques, A. [Dpto. de Ingenieria Textil y Papelera, EPSA-UPV, Univ. Politecnica de Valencia, Alcoy (Spain); Garcia, C.; Lopez, F. [Dpto. de Ingenieria Quimica y Nuclear, Univ. Politecnica de Valencia, Alcoy (Spain)

    2003-07-01

    Ozone and UV radiation are aggressive advanced oxidation processes that have been tested to degrade paper mill effluents. Eugenol and guaiacol, models of the lignin fraction of these wastewaters are easily oxidisable by ozone even at low dosages (0.8 g/h). On the other hand, glucose and fatty acids are more difficult to degrade, although the combination O{sub 3}/UV improves the process and important decrease in COD and BOD values were observed. Solar photocatalysis is a milder alternative to O{sub 3}/UV; photo-Fenton reaction and titanium dioxide have been tested. Both methods have been able to degrade the phenolic components of paper wastewaters, but they were not able to oxidise glucose or volatile fatty acids. (orig.)

  8. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  9. Focus on CSIR research in pollution and waste: Biological sulphate removal technology

    CSIR Research Space (South Africa)

    Godfrey, Linda K

    2007-08-01

    Full Text Available stream_source_info Godfrey_2007.Stockholm.pdf.txt stream_content_type text/plain stream_size 3297 Content-Encoding UTF-8 stream_name Godfrey_2007.Stockholm.pdf.txt Content-Type text/plain; charset=UTF-8 Biological.... This treatment process relies on many species of degrading bacteria including the sulphate reducing bacteria (SRB). Fermentation microorganisms using cattle rumen fluid The rumen is a highly cellulytic ecosystem with a complex microbial population...

  10. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Chadlia, Aguir, E-mail: aguirc@yahoo.ca [Unite de Recherche de Chimie Appliquee et Environnement, Faculte des Sciences de Monastir, 5000 (Tunisia); Mohamed, Khalfaoui [Unite de Recherche de Physique Quantique, Faculte des Sciences de Monastir, 5000 (Tunisia); Najah, Laribi; Farouk, M' henni Mohamed [Unite de Recherche de Chimie Appliquee et Environnement, Faculte des Sciences de Monastir, 5000 (Tunisia)

    2009-12-30

    The present work describes the preparation of new chelating materials derived from Posidonia for adsorption of heavy metal ions and dye in aqueous solution. The first part of this report deals with the chemical modification of Posidonia with succinic anhydride. Thus, we have obtained materials with various succinyl groups contents (from 29.8 to 39.2%). The obtained materials were characterized by infrared and CP/MAS {sup 13}C-RMN spectroscopy. The rate of succinyl content of the modified Posidonia was determined by saponification. The second part is devoted to the evaluation of the adsorption capacity of metal ions such as Pb{sup 2+} and dye such as direct red 75 (DR75) for raw and modified Posidonia materials. Two possible ways for the adsorption of these pollutants are studied: adsorption of each pollutant alone onto these supports, and cumulative adsorption of both metal ions and dye on the same supports. In the last case, the pollutant is adsorbed successively from two different solutions. The effects of pollutants concentration, support dose, pH, contact time and temperature on adsorption of each pollutant were evaluated. The results showed that the raw and modified Posidonia show a high capacity for Pb{sup 2+} adsorption. The capacity of modified Posidonia saturated with Pb{sup 2+} to adsorb DR75 was found 147.12 mg g{sup -1}. While the adsorption capacity of the nonsaturated modified Posidonia was equal to 81.63 mg g{sup -1}. The pseudo-second-order model was the best to represent adsorption kinetics of DR75. The pseudo-first-order model would be better for fitting the adsorption kinetic process of Pb{sup 2+} onto raw and modified Posidonia. The adsorption isotherms of Pb{sup 2+} could be described by the Jossens equation model. Any of the tested models can describe the adsorption of DR75 onto the studied materials. These results confirm that the adsorption of DR75 from aqueous solution was multilayer.

  11. Removal of Dye (Blue 56 From Aqueous Solution via Adsorption onto Pistachio Shell: kinetic and isotherm study of removal process

    Directory of Open Access Journals (Sweden)

    A. Ravanpaykar

    2012-03-01

    Full Text Available In the present investigation, shells of pistachio are used as adsorbents and they have been successfully used for the removal of Blue 56, from water samples. The effect of various parameters such as: pH, amounts of adsorbents, size of adsorbent particles and contact time on removal processing were investigated. Inthisstudy Freundlichabsorptionisotherms and Langmuir were investigated. The experimental data were correlated reasonably well by the Freundlich adsorption isotherm and isotherm parameters were calculated. In order to investigate the efficiency of Blue 56 adsorption on the pistachio shell, pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion kinetic models were studied. Themodel that hadgoodcorrelationtoattractFreundlichwas chosenasthemodel. Its kineticsfollowsthepseudosecond order reaction.

  12. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications.

    Science.gov (United States)

    Capanema, Nádia S V; Mansur, Alexandra A P; Mansur, Herman S; de Jesus, Anderson C; Carvalho, Sandhra M; Chagas, Poliane; de Oliveira, Luiz C

    2017-08-28

    In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g -1 depending on the dye concentration (from 100 to 500 mg L -1 ), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L -1 , 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.

  13. Removal of uranium and priority pollutant metals from Fernald Environmental Management Project wastewater utilizing potassium ferrate

    International Nuclear Information System (INIS)

    Hampshire, Lyle H.; Potts, Michael E.

    1992-01-01

    A side-by-side treatment comparison between calcium hydroxide and TRU/Clear '4', a potassium ferrate based wastewater treatment chemical, was performed in a process wastewater and stormwater treatment facility. Results from the full-scale plant testing demonstrated that potassium ferrate could achieve the same treatment levels as calcium hydroxide while generating 55% less sludge than the calcium hydroxide treatment. The testing also showed that utilization of potassium ferrate would minimize the volume of sludge generated and assist in the reduction of total waste management costs associated with storage, monitoring, transportation, and final disposition of generated sludge. (author)

  14. Solar dryers for a non-polluting removal of sewage sludge; Solartrockner fuer eine umweltfreundliche Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Kos, Manfred [Lenze, Hameln (Germany)

    2011-06-15

    The acceptance of solar drying technology is depending on the quality of the produced dry goods. On local markets as well as for the export market dryed products can only compete if they can meet the quality standards of the food processing industry and consumers. A high added value for operators of solar dryers especially from developing countries can only be achieved if the goods can be exported. Dried sewage sludge shows to have an energy density corresponding to brown coal, burns however carbon dioxide neutrally compared with fossil fuels and grows continuously in water treatment plants on the outskirts of cities. (GL)

  15. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification.

    Science.gov (United States)

    Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2004-04-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.

  16. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  17. Modeling of a Large-Scale High Temperature Regenerative Sulfur Removal Process

    DEFF Research Database (Denmark)

    Konttinen, Jukka T.; Johnsson, Jan Erik

    1999-01-01

    model that does not account for bed hydrodynamics. The pilot-scale test run results, obtained in the test runs of the sulfur removal process with real coal gasifier gas, have been used for parameter estimation. The validity of the reactor model for commercial-scale design applications is discussed.......Regenerable mixed metal oxide sorbents are prime candidates for the removal of hydrogen sulfide from hot gasifier gas in the simplified integrated gasification combined cycle (IGCC) process. As part of the regenerative sulfur removal process development, reactor models are needed for scale......-up. Steady-state kinetic reactor models are needed for reactor sizing, and dynamic models can be used for process control design and operator training. The regenerative sulfur removal process to be studied in this paper consists of two side-by-side fluidized bed reactors operating at temperatures of 400...

  18. Case study of the application of Fenton process to highly polluted wastewater from power plant.

    Science.gov (United States)

    Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J

    2013-05-15

    This work investigates the application of Fenton process to the treatment of a highly polluted industrial wastewater resulting from the pipeline cleaning in a power plant. This effluent is characterized by a high chemical oxygen demand (COD>40 g/L), low biodegradability and quite a high iron concentration (around 3g/L) this coming from pipeline corrosion. The effect of the initial reaction temperature (between 50 and 90 °C) and the way of feeding H2O2 on the mineralization percentage and the efficiency of H2O2 consumption has been analyzed. With the stoichiometric amount of H2O2 relative to initial COD, fed in continuous mode, more than 90% COD reduction was achieved at 90 °C. That was accompanied by a dramatic improvement of the biodegradability. Thus, a combined treatment based on semicontinuous high-temperature Fenton oxidation (SHTF) and conventional aerobic biological treatment would allow fulfilling the COD and ecotoxicity regional limits for industrial wastewaters into de municipal sewer system. For the sake of comparison, catalytic wet air oxidation was also tested with poor results (less than 30% COD removal at 140 °C and 8 atm oxygen pressure). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A bioseparation process for removing heavy metals from waste ...

    African Journals Online (AJOL)

    The role of cell structure, cell wall, micropores and macropores is evaluated in terms of the potential of these biosorbents for metal sequestration. Binding mechanisms are discussed, including the key functional groups involved and the ion-exchange process. Quantification of metal-biomass interactions is fundamental to the ...

  20. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  1. Impact of compost process conditions on organic micro pollutant degradation during full scale composting.

    Science.gov (United States)

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2015-06-01

    Knowledge about the effects of oxygen concentration, nutrient availability and moisture content on removal of organic micro-pollutants during aerobic composting is at present very limited. Impact of oxygen concentration, readily available nitrogen content (NH4(+), NO3(-)), and moisture content on biological transformation of 15 key organic micro-pollutants during composting, was therefore investigated using bench-scale degradation experiments based on non-sterile compost samples, collected at full-scale composting facilities. In addition, the adequacy of bench-scale composting experiments for representing full-scale composting conditions, was investigated using micro-pollutant concentration measurements from both bench- and full-scale composting experiments. Results showed that lack of oxygen generally prevented transformation of organic micro-pollutants. Increasing readily available nitrogen content from about 50 mg N per 100 g compost to about 140 mg N per 100 g compost actually reduced micro-pollutant transformation, while changes in compost moisture content from 50% to 20% by weight, only had minor influence on micro-pollutant transformation. First-order micro-pollutant degradation rates for 13 organic micro-pollutants were calculated using data from both full- and bench-scale experiments. First-order degradation coefficients for both types of experiments were similar and ranged from 0.02 to 0.03 d(-1) on average, indicating that if a proper sampling strategy is employed, bench-scale experiments can be used to represent full-scale composting conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Solar Photocatalytic Removal of Chemical and Bacterial Pollutants from Water Using Pt/TiO2-Coated Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    S. P. Devipriya

    2012-01-01

    Full Text Available Semiconductor photocatalysis has become an increasingly promising technology in environmental wastewater treatment. The present work reports a simple technique for the preparation of platinum-deposited TiO2 catalysts and its immobilization on ordinary ceramic tiles. The Pt/TiO2 is characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDAX, and diffuse reflectance spectroscopy (DRS. Deposition of Pt on TiO2 extends the optical absorption of the latter to the visible region which makes it attractive for solar energy application. Optimum loading of Pt on TiO2 was found to be 0.5%. The Pt/TiO2 is coated on ceramic tiles and immobilized. This catalyst was found effective for the solar photocatalytic removal of chemical and bacterial pollutants from water. Once the parameters are optimized, the Pt/TiO2/tile can find application in swimming pools, hospitals, water theme parks, and even industries for the decontamination of water.

  3. Processes to remove acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  4. Future CO2 removal from pulp mills - Process integration consequences

    International Nuclear Information System (INIS)

    Hektor, Erik; Berntsson, Thore

    2007-01-01

    Earlier work has shown that capturing the CO 2 from flue gases in the recovery boiler at a pulp mill can be a cost-effective way of reducing mill CO 2 emissions. However, the CO 2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO 2 are investigated. The reduction is achieved by using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO 2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the heat of absorption from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO 2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO 2 . With tough CO 2 reduction targets and correspondingly high CO 2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2

  5. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  6. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    Science.gov (United States)

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Investigation of combined coagulation and advanced oxidation process efficiency for the removal of Clarithromycin from wastewater

    Directory of Open Access Journals (Sweden)

    ahmad reza Yazdanbakhsh

    2011-06-01

    Conclusion: In general the results of the performed tests indicated that combined coagulation and advanced oxidation process has high efficiency in removal of Claritromycin wastewater COD. But application this method in the industry should be surveyed.

  9. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling; Yen, Chia-Heng

    2017-04-01

    In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.

  10. The Iron Removal in Marmatite Concentrate Pressure Leaching Process

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    To modify the pressure leaching technology of horizontal autoclave using marmatite concentrate, an appropriate increase in the pulp’s residence time in the horizontal autoclave is required. This increase will provide sufficient time for leaching to be completed in the first three chambers of the horizontal autoclave. Adding zinc oxide ore and potassium sulfate in the fourth chamber of the horizontal autoclave is needed to complete preliminary neutralization and iron precipitation in the horizontal autoclave. The pilot plant experimental results of the proposed technology are satisfactory, further shortening the process of pressure leaching and improving its economic efficiency.

  11. Novel MBR_based main stream biological nutrient removal process: high performance and microbial community.

    Science.gov (United States)

    Zhang, Chuanyi; Xu, Xinhai; Zhao, Kuixia; Tang, Lianggang; Zou, Siqi; Yuan, Limei

    2018-02-01

    For municipal wastewater treatment, main stream biological nutrient removal (BNR) process is becoming more and more important. This lab-scale study, novel MBR_based BNR processes (named A 2 N-MBR and A 2 NO-MBR) were built. Comparison of the COD removal, results obtained demonstrated that COD removal efficiencies were almost the same in three processes, with effluent concentration all bellowed 30 mg L -1 . However, the two-sludge systems (A 2 N-MBR and A 2 NO-MBR) had an obvious advantage over the A 2 /O for denitrification and phosphorus removal, with the average TP removal rates of 91.20, 98.05% and TN removal rates of 73.00, 79.49%, respectively, higher than that of 86.45 and 61.60% in A 2 /O process. Illumina Miseq sequencing revealed that Candidatus_Accumulibacter, which is capable of using nitrate as an electron acceptor for phosphorus and nitrogen removal simultaneously, was the dominant phylum in both A 2 N-MBR and A 2 NO-MBR process, accounting for 28.74 and 23.98%, respectively. Distinguishingly, major organism groups related to nitrogen and phosphorus removal in A 2 /O system were Anaerolineaceae_uncultured, Saprospiraceae_uncultured and Thauera, with proportions of 11.31, 8.56 and 5.00%, respectively. Hence, the diversity of dominant PAOs group was likely responsible for the difference in nitrogen and phosphorus removal in the three processes.

  12. Studies on Removal of Dyes from wastewater using Electro-coagulation Process

    OpenAIRE

    N B. Patel; B D. Soni; J P. Ruparelia

    2000-01-01

    Electro-coagulation (EC) is one of the effective techniques to remove colour, COD and organic compounds from wastewater. In this paper electro coagulation technique has been used for the removal of colour and COD from dye solutions containing Direct Black 22 and Acid Red 97 using batch process. For batch the process effect of operational parameters such as current density, initial pH of the solution, time of electrolysis and electrode materials were studied to attempt max...

  13. Performance Evaluation of Electro-Fenton Process (EFP in Removal of Hexavalent Chromium in the Presence of Cyanide, as an Interfering Agent, from Synthetic Wastewaters

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2014-06-01

    Full Text Available Background: Chromium (VI is a hazardous pollutant that enters into the environment through different industrial wastewater. Therefore, Choice a suitable method for removal of the pollutant before discharging into the environment is necessary. The aim of this work was performance evaluation of Electro-Fenton process (EFP in removal of hexavalent chromium in the presence of cyanide, as an interfering agent, from synthetic wastewaters. Methods: In this experimental study, a reactor with 1 L useful volume and 4 electrodes made ​​of iron was used. pH, initial concentration of  chromium (VI, voltage, hydrogen peroxide and cyanide concentration, as an interfering agent, were investigated in order to determine the process efficiency. Results: Results reveals that the considered parameters were affected on the efficiency of the process. In optimum condition, pH=3 and voltage=20 V, initial concentration=100 mg/L, concentration of hydrogen peroxide=50 mL/L the maximum efficiency was reached up to 97%. Cyanide Presence, in the same condition, reduced the efficiency under 50 % and also, the efficiency was decreased by changing the parameters level from optimum condition. Conclusion: Results indicate the proper efficiency of chromium (VI by EFP process; however presence of other pollutants such as cyanide can cause efficiency decrease which must be considered in the process application.

  14. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  15. Metal monitoring for process control of laser-based coating removal

    Science.gov (United States)

    Fraser, Mark E.; Hunter, Amy J.; Panagiotou, Thomai; Davis, Steven J.; Freiwald, David A.

    1999-12-01

    Cost-effective and environmentally-sound means of paint and coatings removal is a problem spanning many government, commercial, industrial and municipal applications. For example, the Department of Energy is currently engaged in removing paint and other coatings from concrete and structural steel as part of decommissioning former nuclear processing facilities. Laser-based coatings removal is an attractive new technology for these applications as it promises to reduce the waste volume by up to 75 percent. To function more efficiently, however, the laser-based systems require some form of process control.

  16. Biological nitrate removal processes from drinking water supply-a review.

    Science.gov (United States)

    Mohseni-Bandpi, Anoushiravan; Elliott, David Jack; Zazouli, Mohammad Ali

    2013-12-19

    This paper reviews both heterotrophic and autotrophic processes for the removal of nitrate from water supplies. The most commonly used carbon sources in heterotrophic denitrification are methanol, ethanol and acetic acid. Process performance for each feed stock is compared with particular reference nitrate and nitrite residual and to toxicity potential. Autotrophic nitrate removal has the advantages of not requiring an organic carbon source; however the slow growth rate of autotrophic bacteria and low nitrate removal rate have contributed to the fact that relatively few full scale plants are in operation at the present time.

  17. Aspen HYSYS process simulation and Aspen ICARUS cost estimation of CO2 removal plant

    OpenAIRE

    Vozniuk, Ievgeniia Oleksandrivna

    2010-01-01

    An Aspen HYSYS model of CO2 removal was developed and modified with a split-stream configuration in order to reduce energy consumption in the reboiler. The model has been calculated with variation of parameters to optimize the process and find an optimum solution. For the selected base cases the heat exchanger minimum temperature difference was specified to 10K and the removal efficiency was 85%. The reboiler duty of 3.8 MJ/kg CO2 removed for the standard process without split-stream was ...

  18. INVESTIGATION OF DENTURE REMOVAL PROCESS BY MEANS OF DESTRUCTION OF FIXING CEMENT BY ULTRASOUND ACTION

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2007-01-01

    Full Text Available The paper contains results of experimental investigations in respect of denture removal processes using as models so natural teeth as well and this removal process presupposes destruction of fixing cement by ultrasound action. It has been established that the best conditions for separation of a denture from a tooth body are ensured while ultrasound is acting on non-removable denture structure in liquid phase (water. At the expense of sound-capillary effect water fills in porous structure of fixing cement at high speed and a cavitation that appears in it leads to intensive cement destruction (dispersion.

  19. An investigation of air emission levels from distinct iron and steel production processes with the adoption of pollution control and pollution prevention alternatives

    International Nuclear Information System (INIS)

    Costa, M.M.; Schaeffer, R.

    1999-01-01

    This paper aims to investigate environmental aspects from different iron and steel production processes. A methodology based on material flows is developed in order to verify some air emission levels attained by Pollution Control and Pollution Prevention alternatives. The data basis for modeling energy and materials flows in iron and steel production is obtained from a literature review on different technological processes, energy and materials consumption and pollutant releases to the environmental Modeling combines both process analysis and input-output techniques to simulate the different iron and steel production routes and to estimate the resulting total atmospheric pollution releases based on air emission factors for several pollutants by each production step. Processes examined include: (1) Conventional Integrated (100% ore-based and partly scrap-based); (2) Mini-mill with EAF (100% scrap-based and partly DRI-based); and (3) New Integrated based on the COREX smelting reduction process. Among the alternatives considered for air emissions reductions are those related to Pollution Control (mainly gas cleaning systems) and to Pollution Prevention (change/reduction in input materials, operational procedures and housekeeping improvements, on-site recycling and technology innovations and modifications). Results indicate higher air pollution intensity for the Conventional Integrated Route over the Mini-mill with EAF and COREX smelting reduction processes, though pointing out that final figures are strongly affected by the systems' boundaries and the different air emission levels of each production step

  20. [Pollution prevention and control of aqueous extract of astragali radix processed with ZrO2 inorganic ceramic membrane micro-filtration].

    Science.gov (United States)

    Pan, Lin-Men; Huang, Min-Yan; Guo, Li-Wei

    2012-11-01

    To study the measures for preventing and controlling the pollution of aqueous extract of Astragali Radix proceeded with inorganic ceramic membrane micro-filtration, in order to find effective measures for preventing and controlling the membrane pollution. The resistance distribution, polymer removal and changes in physical and chemical parameters of the zirconium oxide film of different pore diameters were determined to analyze the state or location of pollutants as well as the regularity of formation. Meanwhile, recoil and ultrasonic physical measures were adopted to strengthen the membrane process, in order to explore the methods for preventing and controlling the membrane pollution. When 0.2 microm of ZrO2 micro-filtrated aqueous extract of Astragali Radix, the rate of pollution was as high as 44.9%. The hole blocking resistance and the concentration polarization resistance were the main filtration resistances, while the surface deposit resistance decreased with the increase in the membrane's hold diameter; after micro-filtration, the liquid turbidity significantly reduced, with slight changes in both pH and viscosity. The 0.2 microm ZrO2 micro-filtration membrane performed better than the 0.05 microm pore size membrane in terms of conductivity. The 0. 2 microm and 0.05 microm pore diameter membranes showed better performance in the removal of pectin. The ultrasonic measure to strengthen membranes is more suitable to this system, with a flux rate up by 41.7%. The membrane optimization process adopts appropriate measures for preventing and controlling the membrane pollution, in order to reduce the membrane pollution, recover membrane performance and increase filtration efficiency.

  1. Uranium removal from organic solutions of PUREX process

    International Nuclear Information System (INIS)

    Dell'Occhio, L.A.; Dupetit, G.A.; Pascale, A.A.; Vicens, H.E.

    1987-01-01

    During the uranium extraction process with tributyl phosphate (TBP) in nitric medium, a bi solvated, non hydrated complex is formed, of formula UO2(NO3)2TBP, which is soluble in the diluent, a paraffin hydrocarbon. As it is known that some uranium salts, for instance the nitrate, when dissolved in organic solvents, like isopropanol, can be discharged as complex molecules at the cathode of an electrodeposition cell, it was decided to apply this technique to uranium loaded TBP solutions. From preliminary experiments resulted a practical possibility for the analytical control through the alpha measurement of electro deposits. This technique could be applied as well to the treatment of depleted organic streams carrying undesirable alpha activity, because the so treated solutions become deprived of uranium. This work presents the curves obtained working at constant voltage with uranium-loaded TBP solutions, the determination of the optimal operation voltage in these conditions, the electrodeposition yield for electro polished copper and stainless steel cathodes and the tests of reproducibility of deposits. A summary of the results obtained operating the high voltage supply at constant power is also presented. (Author)

  2. Removal of Acid Yellow 17 Dye by Fenton Oxidation Process

    Science.gov (United States)

    Khan, Jehangeer; Sayed, Murtaza; Ali, Fayaz; Khan, Hasan Mahmood

    2018-05-01

    In the present research work the degradation of acid yellow 17 (AY 17) by H2O2/Fe2+ was investigated. The effect of various conditions such as pH value, temperature, conc. of H2O2, Fe2+, conc. of AY 17 were studied. Additionally the scavenging effects of various anions such as Cl-, SO42-, CO32- and HCO3-, on percent degradation of AY 17 were examined. It was found that these anions decrease percent degradation as well as rate of degradation reaction. The optimum conditions were determined as [AY 17]=[Fe2+]=0.06 mM [H2O2]=0.9 mM, and pH 3.0 for 60 min of reaction time. It was found that at optimum conditions 89% degradation of AY17 was achieved. The degradation kinetics of AY17 followed pseudo-first-order reaction kinetics. Thermodynamic studies under natural conditions showed positive value of ΔH (enthalpy) which indicates the degradation process is endothermic.

  3. Control of a Biological Nitrogen Removal Process in an Intensified Single Reactor Configuration

    DEFF Research Database (Denmark)

    Vangsgaard, Anna Katrine; Mauricio Iglesias, Miguel; Gernaey, Krist

    2013-01-01

    The nitrogen removing granular sludge process is a novel and intensified process. However, its stable operation and control remains a challenging problem. In this contribution, a new process oriented approach is used to develop, evaluate and benchmark control strategies to ensure stable operation...

  4. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  5. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    To improve phytoremediation processes, multiple techniques that comprise different aspects of contaminant removal from soils have been combined. Using creosote as a test contaminant, a multi-process phytoremediation system composed of physical (volatilization), photochemical (photooxidation) and microbial remediation, and phytoremediation (plant-assisted remediation) processes was developed. The techniques applied to realize these processes were land-farming (aeration and light exposure), introduction of contaminant degrading bacteria, plant growth promoting rhizobacteria (PGPR), and plant growth of contaminant-tolerant tall fescue (Festuca arundinacea). Over a 4-month period, the average efficiency of removal of 16 priority PAHs by the multi-process remediation system was twice that of land-farming, 50% more than bioremediation alone, and 45% more than phytoremediation by itself. Importantly, the multi-process system was capable of removing most of the highly hydrophobic, soil-bound PAHs from soil. The key elements for successful phytoremediation were the use of plant species that have the ability to proliferate in the presence of high levels of contaminants and strains of PGPR that increase plant tolerance to contaminants and accelerate plant growth in heavily contaminated soils. The synergistic use of these approaches resulted in rapid and massive biomass accumulation of plant tissue in contaminated soil, putatively providing more active metabolic processes, leading to more rapid and more complete removal of PAHs. - Persistent PAH contaminants in soils can be removed more completely and rapidly by using multiple remediation processes

  6. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants

    International Nuclear Information System (INIS)

    Huang, Qiang; Liu, Meiying; Wan, Qing; Jiang, Ruming; Mao, Liucheng; Zeng, Guangjian; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-01-01

    In this study, we developed a new procedure to prepare monodispersed functionalized SiO_2 (SiO_2-PDA-PDMC) composites via mussel inspired chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). Samples were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) measurements. TEM results showed that spherical morphology was unchanged after the functionalization. FT-IR results confirmed the successful modification with polydopamine (PDA) and the presence of poly-([2-(Methacryloyloxy) ethyl] trimethylammonium chloride) (PDMC) layer on the surface of SiO_2 spheres. TGA data showed that the PDMC account for about 12.12 wt% in the sample of SiO_2-PDA-PDMC composites. The XPS analysis further confirmed the existence of PDMC on the surface of SiO_2-PDA-PDMC composites. The obtained SiO_2-PDA-PDMC composites were used as adsorbent for the removal of Congo red (CR) from aqueous solution to evaluate the performance in environment application. The effect of contact time, solution pH, initial CR concentration and temperature on the adsorption of CR onto SiO_2-PDA-PDMC composites was investigated. Adsorption results demonstrated that adsorption of CR onto SiO_2-PDA-PDMC composites was a fast and efficient process. The adsorption equilibrium reached within 60 min, and the adsorption process followed the pseudo-second-order model. The experimental data of isotherms were better described by the Freundlich model. Thermodynamic study depicted the endothermic nature of adsorption and the process was spontaneous. Results from the effect of solution pH on the CR adsorption showed that the acidic condition favors the adsorption and provided evidence for the contribution of PDMC on the SiO_2-PDA-PDMC composites in the removal of CR. This study suggests SiO_2-PDA-PDMC composites can be developed as a new adsorbent for the removal of

  7. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiang; Liu, Meiying; Wan, Qing; Jiang, Ruming; Mao, Liucheng; Zeng, Guangjian; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-06-01

    In this study, we developed a new procedure to prepare monodispersed functionalized SiO{sub 2} (SiO{sub 2}-PDA-PDMC) composites via mussel inspired chemistry and surface initiated atom transfer radical polymerization (SI-ATRP). Samples were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA) measurements. TEM results showed that spherical morphology was unchanged after the functionalization. FT-IR results confirmed the successful modification with polydopamine (PDA) and the presence of poly-([2-(Methacryloyloxy) ethyl] trimethylammonium chloride) (PDMC) layer on the surface of SiO{sub 2} spheres. TGA data showed that the PDMC account for about 12.12 wt% in the sample of SiO{sub 2}-PDA-PDMC composites. The XPS analysis further confirmed the existence of PDMC on the surface of SiO{sub 2}-PDA-PDMC composites. The obtained SiO{sub 2}-PDA-PDMC composites were used as adsorbent for the removal of Congo red (CR) from aqueous solution to evaluate the performance in environment application. The effect of contact time, solution pH, initial CR concentration and temperature on the adsorption of CR onto SiO{sub 2}-PDA-PDMC composites was investigated. Adsorption results demonstrated that adsorption of CR onto SiO{sub 2}-PDA-PDMC composites was a fast and efficient process. The adsorption equilibrium reached within 60 min, and the adsorption process followed the pseudo-second-order model. The experimental data of isotherms were better described by the Freundlich model. Thermodynamic study depicted the endothermic nature of adsorption and the process was spontaneous. Results from the effect of solution pH on the CR adsorption showed that the acidic condition favors the adsorption and provided evidence for the contribution of PDMC on the SiO{sub 2}-PDA-PDMC composites in the removal of CR. This study suggests SiO{sub 2}-PDA-PDMC composites can be

  8. Evaluation of Efficacy of Advanced Oxidation Processes Fenton, Fenton-like and Photo-Fenton for Removal of Phenol from Aqueous Solutions

    International Nuclear Information System (INIS)

    Mofrad, M. R.; Akbari, H.; Miranzadeh, M. B.; Nezhad, M. E.; Atharizade, M.

    2015-01-01

    Contamination of water, soil and groundwater caused by aromatic compounds induces great concern in most world areas. Among organic pollutants, phenol is mostly considered dangerous due to its high toxicity for human and animal. Advanced oxidation processes (AOPs) is considered as a most efficient method also the best one for purifying organic compounds which are resistant to conventional physical and chemical processes. This experimental study was carried out in laboratory scale. First, a synthetic solution was made of phenol. Then, Fenton, Fenton-like and photo-Fenton processes were applied removing phenol from aquatic solution. The effects of Hydrogen Peroxide concentration, catalyst, pH and time were studied to phenol removal efficiency. Results showed that Photo-Fenton process with removal efficiency (97.5 percentage) is more efficient than Fenton and Fenton-like processes with removal efficiency (78.7 percentage and 82.5 percentage respectively), in pH=3, (H/sub 2/O/sub 2/)= 3mM, (Fe2+)= 0.1 mM, phenol concentration 100 mg L-1 and time reaction 60 min, the phenol removal was 97.5 percentage. (author)

  9. Removal of chlortetracycline from spiked municipal wastewater using a photoelectrocatalytic process operated under sunlight irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Daghrir, Rimeh, E-mail: rimeh.daghrir@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Drogui, Patrick, E-mail: patrick.drogui@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, 490 rue de la Couronne, Québec, Qc G1K 9A9 (Canada); Delegan, Nazar, E-mail: delegan@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada); El Khakani, My Ali, E-mail: elkhakani@emt.inrs.ca [Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Blvd. Lionel-Boulet, Varennes, Qc J3X 1S2 (Canada)

    2014-01-01

    The degradation of chlortetracycline in synthetic solution and in municipal effluent was investigated using a photoelectrocatalytic oxidation process under visible irradiation. The N-doped TiO{sub 2} used as photoanode with 3.4 at.% of nitrogen content was prepared by means of a radiofrequency magnetron sputtering (RF-MS) process. Under visible irradiation, higher photoelectrocatalytic removal efficiency of CTC was recorded using N-doped TiO{sub 2} compared to the conventional electrochemical oxidation, direct photolysis and photocatalysis processes. The photoelectrocatalytic process operated at 0.6 A of current intensity during 180 min of treatment time promotes the degradation of 99.1 ± 0.1% of CTC. Under these conditions, removal rates of 85.4 ± 3.6%, 87.4 ± 3.1% and 55.7 ± 2.9% of TOC, TN and NH{sub 4}{sup +} have been recorded. During the treatment, CTC was mainly transformed into CO{sub 2} and H{sub 2}O. The process was also found to be effective in removing indicator of pathogens such as fecal coliform (log-inactivation was higher than 1.2 units). - Highlights: •PECO process is a feasible technology for the treatment of MWW contaminated by CTC. •99.1% ± 0.1% of CTC was degraded by PECO using N-doped TiO{sub 2}. •85.4% ± 3.6% of TOC removal and 97.5% ± 1.2% of COD removal were achieved. •87.4% ± 3.1% of TN removal and 55.7% ± 2.9% of NH{sub 4}{sup +} removal were recorded. •More than 94% of fecal coliform was removed (abatement > 1.2-log units)

  10. Mercury reduction and removal during high-level radioactive waste processing and vitrification

    International Nuclear Information System (INIS)

    Eibling, R.E.; Fowler, J.R.

    1981-01-01

    A reference process for immobilizing the high-level radioactive waste in borosilicate glass has been developed at the Savannah River Plant. This waste contains a substantial amount of mercury from separations processing. Because mercury will not remain in borosilicate glass at the processing temperature, mercury must be removed before vitrification or must be handled in the off-gas system. A process has been developed to remove mercury by reduction with formic acid prior to vitrification. Additional benefits of formic acid treatment include improved sludge handling and glass melter redox control

  11. Pressure hydrometallurgy: A new chance to non-polluting processes

    OpenAIRE

    Srećko R. Stopić; Bernd G. Friedrich

    2011-01-01

    A wide spectrum of hydrometallurgical processes offers many promising approaches for industrial application in order to improve the environmental impact of conventional metals productions, or for replacing hydrometallurgical processes whose gas emissions and a high content of formed metals (As, Cr, Pb) are becoming increasingly unacceptable. The main advantages of pressure hydrometallurgy are fast kinetics, enhanced selectivity over iron and other dissolved species. The pioneer work on hydrom...

  12. Mathematical Modeling of Nitrous Oxide Production during Denitrifying Phosphorus Removal Process.

    Science.gov (United States)

    Liu, Yiwen; Peng, Lai; Chen, Xueming; Ni, Bing-Jie

    2015-07-21

    A denitrifying phosphorus removal process undergoes frequent alternating anaerobic/anoxic conditions to achieve phosphate release and uptake, during which microbial internal storage polymers (e.g., Polyhydroxyalkanoate (PHA)) could be produced and consumed dynamically. The PHA turnovers play important roles in nitrous oxide (N2O) accumulation during the denitrifying phosphorus removal process. In this work, a mathematical model is developed to describe N2O dynamics and the key role of PHA consumption on N2O accumulation during the denitrifying phosphorus removal process for the first time. In this model, the four-step anoxic storage of polyphosphate and four-step anoxic growth on PHA using nitrate, nitrite, nitric oxide (NO), and N2O consecutively by denitrifying polyphosphate accumulating organisms (DPAOs) are taken into account for describing all potential N2O accumulation steps in the denitrifying phosphorus removal process. The developed model is successfully applied to reproduce experimental data on N2O production obtained from four independent denitrifying phosphorus removal study reports with different experimental conditions. The model satisfactorily describes the N2O accumulation, nitrogen reduction, phosphate release and uptake, and PHA dynamics for all systems, suggesting the validity and applicability of the model. The results indicated a substantial role of PHA consumption in N2O accumulation due to the relatively low N2O reduction rate by using PHA during denitrifying phosphorus removal.

  13. Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater.

    Science.gov (United States)

    Silva, Larissa L S; Sales, Julio C S; Campos, Juacyara C; Bila, Daniele M; Fonseca, Fabiana V

    2017-03-01

    The presence of micropollutants in sewage is already widely known, as well as the effects caused by natural and synthetic hormones. Thus, it is necessary to apply treatments to remove them from water systems, such as advanced oxidation processes (AOPs) and membrane separation processes, which can oxidize and remove high concentrations of organic compounds. This work investigated the removal of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from biotreated sewage. Reverse osmosis processes were conducted at three recoveries (50, 60, and 70 %). For E2 and EE2, the removals were affected by the recovery. The best results for RO were as follows: the E2 compound removal was 89 % for 60 % recovery and the EE2 compound removal was 57 % for 50 % recovery. The RO recovery did not impact the E3 removal. It was concluded that the interaction between the evaluated estrogens, and the membrane was the major factor for the hormone separation. The AOP treatment using H 2 O 2 /UV was carried out in two sampling campaigns. First, we evaluated the variation of UV doses (24.48, 73.44, 122.4, and 244.8 kJ m -2 ) with 18.8 mg L -1 of H 2 O 2 in the reaction. EE2 showed considerable removals (around 70 %). In order to optimize the results, an experimental design was applied. The best result was obtained with higher UV dose (122.4 kJ m -2 ) and lower H 2 O 2 concentration (4 mg L -1 ), achieving removal of 91 % for E3 and 100 % for E2 and EE2.

  14. Design of Sensor Data Processing Steps in an Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kwang Woo Nam

    2011-11-01

    Full Text Available Environmental monitoring is required to understand the effects of various kinds of phenomena such as a flood, a typhoon, or a forest fire. To detect the environmental conditions in remote places, monitoring applications employ the sensor networks to detect conditions, context models to understand phenomena, and computing technology to process the large volumes of data. In this paper, we present an air pollution monitoring system to provide alarm messages about potentially dangerous areas with sensor data analysis. We design the data analysis steps to understand the detected air pollution regions and levels. The analyzed data is used to track the pollution and to give an alarm. This implemented monitoring system is used to mitigate the damages caused by air pollution.

  15. Water Pollution Control Legislation in Israel: Understanding Implementation Processes from an Actor-Centered Approach

    Directory of Open Access Journals (Sweden)

    Sharon Hophmayer-Tokich

    2013-09-01

    Full Text Available In the State of Israel, advanced legislation for the management of scarce water resources, including legislation to prevent water pollution, were put in place in the early stages of the State’s formation. Despite that, on-going uncontrolled pollution has deteriorated the quality of water sources for decades, with the main source of pollution being untreated or partially treated domestic wastewater. This has been mainly the result of lack of enforcement of the existing laws. During the 1990s and onwards, a shift to forceful enforcement has been observed and wastewater treatment substantially improved. The paper analyzes the implementation processes of the pollution control legislations (the lack-of and the shift to forceful enforcement based on an actor-centered approach, using the contextual interaction theory.

  16. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  17. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    Science.gov (United States)

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  18. Application of Electrocoagulation Process Using Iron and Aluminum Electrodes for Fluoride Removal from Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2012-01-01

    Full Text Available Fluoride in drinking water above permissible level is responsible for human being affected by skeletal fluorosis. The present study was carried out to assess the ability of electrocoagulation process with iron and aluminum electrodes in order to removal of fluoride from aqueous solutions. Several working parameters, such as fluoride concentration, pH, applied voltage and reaction time were studied to achieve a higher removal capacity. Variable concentrations (1, 5 and 10 mg L-1 of fluoride solutions were prepared by mixing proper amount of sodium fluoride with deionized water. The varying pH of the initial solution (3, 7 and 10 was also studied to measure their effects on the fluoride removal efficiency. Results obtained with synthetic solution revealed that the most effective removal capacities of fluoride could be achieved at 40 V electrical potential. In addition, the increase of electrical potential, in the range of 10-40 V, enhanced the treatment rate. Also comparison of fluoride removal efficiency showed that removal efficiency is similar with iron and aluminum electrodes. Finally it can be concluded that the electrocoagulation process has the potential to be utilized for the cost-effective removal of fluoride from water and wastewater.

  19. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  20. Multi-Pollutant and One-Stage Scrubbers for Removal of Ammonia, Odor, and Particulate Matter from Animal House Exhaust Air

    OpenAIRE

    Ogink, N.W.M.; Melse, R.W.; Mosquera Losada, J.

    2008-01-01

    In several European countries, acid scrubbers and bio-scrubbers are off-the-shelf techniques for effective removal of ammonia from exhaust air from animal houses and, to a lesser extent, for odor. The number of operating air scrubbers at livestock operations in the Netherlands in 2008 is estimated to clean the air of approximately 10 percent of the pigs produced nationwide. Currently, a new generation of so-called multi-pollutant air scrubbers are developed for intensive livestock production ...

  1. Inside Story of Gas Processes within Stormwater Biofilters: Does Greenhouse Gas Production Tarnish the Benefits of Nitrogen Removal?

    Science.gov (United States)

    Payne, Emily G I; Pham, Tracey; Cook, Perran L M; Deletic, Ana; Hatt, Belinda E; Fletcher, Tim D

    2017-04-04

    Stormwater biofilters are dynamic environments, supporting diverse processes that act to capture and transform incoming pollutants. However, beneficial water treatment processes can be accompanied by undesirable greenhouse gas production. This study investigated the potential for nitrous oxide (N 2 O) and methane (CH 4 ) generation in dissolved form at the base of laboratory-scale stormwater biofilter columns. The influence of plant presence, species, inflow frequency, and inclusion of a saturated zone and carbon source were studied. Free-draining biofilters remained aerobic with negligible greenhouse gas production during storm events. Designs with a saturated zone were oxygenated at their base by incoming stormwater before anaerobic conditions rapidly re-established, although extended dry periods allowed the reintroduction of oxygen by evapotranspiration. Production of CH 4 and N 2 O in the saturated zone varied significantly in response to plant presence, species, and wetting and drying. Concentrations of N 2 O typically peaked rapidly following stormwater inundation, associated with limited plant root systems and poorer nitrogen removal from biofilter effluent. Production of CH 4 also commenced quickly but continued throughout the anaerobic interevent period and lacked clear relationships with plant characteristics or nitrogen removal performance. Dissolved greenhouse gas concentrations were highly variable, but peak concentrations of N 2 O accounted for nitrogen load. While further work is required to measure surface emissions, the potential for substantial release of N 2 O or CH 4 in biofilter effluent appears relatively low.

  2. Simplified model of SO2 removal from industrial gas in e-beam process

    International Nuclear Information System (INIS)

    Bouzyk, J.; Sowinski, M.

    1997-01-01

    The analysis of SO 2 and, on the part, NO x removal mechanism by e-beam process has been discussed. It is estimated that radiation contribution to SO 2 removal amounts to 40% while in the case of NO x it appears to reach about 70%. Taking into account the main reactions responsible for SO 2 oxidation as well as the assumption presented in our previous paper an algorithm has been developed to describe linear kinetics of the process. The principal assumption referred to depends on OH radical concentration to be nearly stable. The concept of an extended model of NO x /SO 2 removal has been presented and the literature data have been used to check the suggested model. On that basis the general idea has been proposed for controlling SO 2 /NO x removal which comprises both the simplified and extended pathway. (author)

  3. Efficiency of Advanced H2O2/ZnO Oxidation Process in Ceftriaxone Antibiotic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Maryam Noroozi cholcheh

    2017-11-01

    Full Text Available A major concern about pharmaceutical pollution is the presence of antibiotics in water resources through their release into sewers where they cause bacterial resistance and enhanced drug-resistance in human-borne pathogens and growing microbial populations in the environment. The objective of this study was to investigate the efficiency of  the advanced H2O2/ZnO oxidation process in removing ceftriaxone from aqueous solutions. For this purpose, an experimental study was conducted in which the SEM, XRD, and TEM techniques were employed to determine the size of Zinc oxide nano-particles. Additionally, the oxidation process parameters of pH (3-11, molar ratio of H2O2/ZnO (1.5-3, initial concentration of ceftriaxone (5–15 mg/L, and contact time (30-90 min were investigated. Teh data thus obntained were subjected top statistical analysis using the SPSS (ANOVA test. XRD results revealeda hexagonal crystal structure for the nano-ZnO. TEM images confirmed the spherical shape of the nanoparticles. Finally, SEM images revealed that the Zn nanoparticles used in this study were less than 30 nanometers in diameter. Based on the results, an optimum pH of 11, a contact time of 90 minutes, and a H2O2/ZnO molar ratio equal to 1.5 were the optimum conditions to achieve a ceftriaxone removal efficiency of 92%. The advance H2O2/ZnO oxidation process may thus be claimed to be highly capable of removing ceftriaxone from aqueous solutions.

  4. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  5. Improvements in iodine and ruthenium removal from advanced liquid processing system

    Energy Technology Data Exchange (ETDEWEB)

    Skibo, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-27

    SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).

  6. Physical removal of metallic carbon nanotubes from nanotube network devices using a thermal and fluidic process

    International Nuclear Information System (INIS)

    Ford, Alexandra C; Shaughnessy, Michael; Wong, Bryan M; Kane, Alexander A; Krafcik, Karen L; Léonard, François; Kuznetsov, Oleksandr V; Billups, W Edward; Hauge, Robert H

    2013-01-01

    Electronic and optoelectronic devices based on thin films of carbon nanotubes are currently limited by the presence of metallic nanotubes. Here we present a novel approach based on nanotube alkyl functionalization to physically remove the metallic nanotubes from such network devices. The process relies on preferential thermal desorption of the alkyls from the semiconducting nanotubes and the subsequent dissolution and selective removal of the metallic nanotubes in chloroform. The approach is versatile and is applied to devices post-fabrication. (paper)

  7. Anaerobic microbial processes for energy conservation and biotransformation of pollutants

    NARCIS (Netherlands)

    Luz Ferreira Martins Paulo, da Lara

    2017-01-01

    Anaerobic microbial processes are commonly applied in the treatment of domestic and industrial wastewaters. Anaerobic digestion (AD) of wastewater has received a great deal of attention, but many aspects related to the complex interactions between microorganism, and how that is affected by the

  8. H/sub 2/S-removal processes for low-Btu coal gas

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, M. S.

    1979-01-01

    Process descriptions are provided for seven methods of removing H/sub 2/S from a low-Btu coal-derived gas. The processes include MDEA, Benfield, Selexol, Sulfinol, Stretford, MERC Iron Oxide, and Molecular Sieve. Each of these processes was selected as representing a particular category of gas treating (e.g., physical solvent systems). The open literature contains over 50 processes for H/sub 2/S removal, of which 35 were briefly characterized in the literature survey. Using a technical evaluation of these 35 processes, 21 were eliminated as unsuitable for the required application. The remaining 14 processes represent six categories of gas treating. A seventh category, low-temperature solid sorption, was subsequently added. The processes were qualitatively compared within their respective categories to select a representative process in each of the seven categories.

  9. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process.

    Science.gov (United States)

    de Wilt, Arnoud; van Gijn, Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-07-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a cost-effective pharmaceutical removal. A three-step biological-ozone-biological (BO 3 B) treatment process was therefore designed for the enhanced pharmaceutical removal from wastewater effluent. The first biological step removed 38% of ozone scavenging TOC, thus proportionally reducing the absolute ozone input for the subsequent ozonation. Complementariness between biological and ozone treatment, i.e. targeting different pharmaceuticals, resulted in cost-effective pharmaceutical removal by the overall BO 3 B process. At a low ozone dose of 0.2 g O 3 /g TOC and an HRT of 1.46 h in the biological reactors, the removal of 8 out of 9 pharmaceuticals exceeded 85%, except for metoprolol (60%). Testing various ozone doses and HRTs revealed that pharmaceuticals were ineffectively removed at 0.1 g O3/g TOC and an HRT of 0.3 h. At HRTs of 0.47 and 1.46 h easily and moderately biodegradable pharmaceuticals such as caffeine, gemfibrozil, ibuprofen, naproxen and sulfamethoxazole were over 95% removed by biological treatment. The biorecalcitrant carbamazepine was completely ozonated at a dose of 0.4 g O 3 /g TOC. Ozonation products are likely biodegraded in the last biological reactor as a 17% TOC removal was found. No appreciable acute toxicity towards D. magna, P. subcapitata and V. fischeri was found after exposure to the influents and effluents of the individual BO 3 B reactors. The BO 3 B process is estimated to increase the yearly wastewater treatment tariff per population equivalent in the Netherlands by less than 10%. Overall, the BO 3 B process is a cost-effective treatment process for the removal of pharmaceuticals from secondary clarified effluents. Copyright

  10. Microbial remediation of soil pollution from ore mining. Part 3: Cyanide removal and biosorption of heavy metals in mining and processing water; Untersuchungen zur mikrobiellen Sicherung von Erzbergbaualtlasten. Teilvorhaben 3: Cyanidabbau und Biosorption von Schwermetallen in Abwaessern aus Erzbergbau- und Aufbereitungsbetrieben. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Blumenroth, P.; Bosecker, K.

    1999-12-01

    1. Cyanide degradation: Of the cyanide- and thiocyanate-degrading bacteria, Burkholderia cepacia and Pseudomonas spec. were the most effective. 2. Biosorption: Of the isolates suited for biosorption of heavy metals, 597-A (non-identifiable) and 597-A2 (Aspergillus fumigatis) had the biggest potential. The sorption capacity of the fungi for metals varied with the C source used for their growth: apple juice > molasses > glucose. The fungi are not cyanide-sensitive and can even degrade cyanide. Living biomass had better metal sorption efficiencies than dead mycelium. The biosorption rates in waste water were usually higher than in broth. Depending on the metal composition and concentrations and on the exposure time and volume of the mycelia, up to 85 % of the initial concentration was removed from the liquid phase. The capacity of different biomasses for the sorption of metal mixtures was between 65 and 80 mg/g of dry matter depending on the experimental conditions, with peak rates up to 100 mg/g. [German] 1. Cyanidabbau: Von den zum Abbau von Cyaniden und Thiocyanat befaehigten Bakterien erwiesen sich Burkholderia cepacia und Pseudomonas spec. als am besten geeignet. 2. Biosorption: Von den zur Biosorption von Schwermetallen befaehigten Isolaten wiesen 597-A1 (nicht identifizierbar) und 597-A2 (Aspergillus fumigatus) das groesste Potential auf. Die Sorptionsleistung der Pilze fuer Metalle war abhaengig von der C-Quelle, die zur Anzucht verwendet wurde: Apfelsaft>Melasse>Glucose. Die Pilze sind unempfindlich gegenueber Cyanid und sogar zu dessen Abbau in der Lage. Lebende Biomasse sorbierte mehr Metalle als abgetoetetes Pilzmyzel. Die in Abwaessern ermittelten Biosorptionsraten waren meist hoeher als die in Medium erzielten Raten. Je nach Zusammensetzung und Konzentration der Metalle sowie Einwirkdauer und Menge des eingesetzten Pilzmyzels wurden bis zu 85% des Ausgangsgehaltes aus der Fluessigphase entfernt. Die Kapazitaet verschiedener Biomassen fuer die Sorption

  11. Standard practice for fluorescent liquid penetrant testing using the Solvent-Removable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the solvent-removable process. It is a nondestructive testing method for detecting discontinuities that are open to the surface, such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination solvent-removable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent solvent-removable liquid penetrant examination of materials and parts. Agreement by th...

  12. Development of a solvent extraction process for cesium removal from SRS tank waste

    International Nuclear Information System (INIS)

    Leonard, R.A.; Conner, C.; Liberatore, M.W.; Sedlet, J.; Aase, S.B.; Vandegrift, G.F.; Delmau, L.H.; Bonnesen, P.V.; Moyer, B.A.

    2001-01-01

    An alkaline-side solvent extraction process was developed for cesium removal from Savannah River Site (SRS) tank waste. The process was invented at Oak Ridge National Laboratory and developed and tested at Argonne National Laboratory using singlestage and multistage tests in a laboratory-scale centrifugal contactor. The dispersion number, hydraulic performance, stage efficiency, and general operability of the process flowsheet were determined. Based on these tests, further solvent development work was done. The final solvent formulation appears to be an excellent candidate for removing cesium from SRS tank waste.

  13. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    Science.gov (United States)

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Partial Nitrification and Denitrifying Phosphorus Removal in a Pilot-Scale ABR/MBR Combined Process.

    Science.gov (United States)

    Wu, Peng; Xu, Lezhong; Wang, Jianfang; Huang, Zhenxing; Zhang, Jiachao; Shen, Yaoliang

    2015-11-01

    A pilot-scale combined process consisting of an anaerobic baffled reactor (ABR) and an aerobic membrane bioreactor (MBR) for the purpose of achieving easy management, low energy demands, and high efficiencies on nutrient removal from municipal wastewater was investigated. The process operated at room temperature with hydraulic retention time (HRT) of 7.5 h, recycle ratio 1 of 200%, recycle ratio 2 of 100%, and dissolved oxygen (DO) of 1 mg/L and achieved good effluent quality with chemical oxygen demand (COD) of 25 mg/L, NH4 (+)-N of 4 mg/L, total nitrogen (TN) of 11 mg/L, and total phosphorus (TP) of 0.7 mg/L. The MBR achieved partial nitrification, and NO2 (-)-N has been accumulated (4 mg/L). Efficient short-cut denitrification was occurred in the ABR with a TN removal efficiency of 51%, while the role of denitrification and phosphorus removal removed partial TN (14%). Furthermore, nitrogen was further removed (11%) by simultaneous nitrification and denitrification in the MBR. In addition, phosphorus accumulating organisms in the MBR sufficiently uptake phosphorus; thus, effluent TP further reduced with a TP removal efficiency of 84%. Analysis of fluorescence in situ hybridization (FISH) showed that ammonia oxidizing bacteria (AOB) and phosphorus accumulating organisms (PAOs) were enriched in the process. In addition, the accumulation of NO2 (-)-N was contributed to the inhibition on the activities of the NOB rather than its elimination.

  15. Enhanced pharmaceutical removal from water in a three step bio-ozone-bio process

    NARCIS (Netherlands)

    Wilt, de Arnoud; Gijn, van Koen; Verhoek, Tom; Vergnes, Amber; Hoek, Mirit; Rijnaarts, Huub; Langenhoff, Alette

    2018-01-01

    Individual treatment processes like biological treatment or ozonation have their limitations for the removal of pharmaceuticals from secondary clarified effluents with high organic matter concentrations (i.e. 17 mg TOC/L). These limitations can be overcome by combining these two processes for a

  16. External Carbon Source Addition as a Means to Control an Activated Sludge Nutrient Removal Process

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens; Søeberg, Henrik

    1994-01-01

    In alternating type activated sludge nutrient removal processes, the denitrification rate can be limited by the availability of readily-degradable carbon substrate. A control strategy is proposed by which an easily metabolizable COD source is added directly to that point in the process at which d...

  17. Pressure hydrometallurgy: A new chance to non-polluting processes

    Directory of Open Access Journals (Sweden)

    Srećko R. Stopić

    2011-07-01

    Full Text Available A wide spectrum of hydrometallurgical processes offers many promising approaches for industrial application in order to improve the environmental impact of conventional metals productions, or for replacing hydrometallurgical processes whose gas emissions and a high content of formed metals (As, Cr, Pb are becoming increasingly unacceptable. The main advantages of pressure hydrometallurgy are fast kinetics, enhanced selectivity over iron and other dissolved species. The pioneer work on hydrometallurgical operation (dissolution, precipitation, metal winning was performed in Russia at the beginning of the previous century, mainly by Ipatieff and Bayer, each working independently in Saint Petersburg. Gradually, industrial application took place firstly in aluminium and later in nickel production. Today, in addition to nickel and aluminium, the pressure hydrometallurgy is well established in a wide spectrum of industrial applications for production of different metals (gold, zinc, molybdenium, titanium, germanium from ore deposits and secondary materials. High pressure leaching in combination with other metallurgical operations (cementation, precipitation, solvent extraction, and electrowinning provides an adequate technology to reintroduce lost metals into the industrial cycle, thereby saving resources and energy, while keeping the environment cleaner. It seems that pressure hydrometallurgy might be a very important key to better and nonpolluting processes in production of metals.

  18. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    International Nuclear Information System (INIS)

    Sena, Rennio F. de; Tambosi, Jose L.; Floriani, Silvia L.; Virmond, Elaine; Schroeder, Horst Fr.; Moreira, Regina F.P.M.; Jose, Humberto J.

    2009-01-01

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.

  19. Process for preparing wastes for non-pollutant disposal

    International Nuclear Information System (INIS)

    Rosenstiel, T.L.; Debus, A.A.G.

    1984-01-01

    In disposing of wastes, particularly toxic wastes, containing organic liquids, i.e. solvents or oil, which may be radio-active a non-ionic surface active agent which is a polyoxy alkylphenol is added to the oily material and then calcium sulphate hemihydrate and water are added. This forms part of a process in which a melamine resin is also added to the mix which is then allowed to harden and the hardened mass disposed of. The use of polyoxyethylene glycol soaps as emulsifying agents is also referred to. Preferred soaps are tallates and preferred alkyl groups in the alkylphenol are octyl and ronyl. (author)

  20. Monitoring and pollution control: A stochastic process approach to model oil spills

    International Nuclear Information System (INIS)

    Viladrich-Grau, M.

    1991-01-01

    The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

  1. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    Science.gov (United States)

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Evaluation of the adsorbent properties of a zeolite rock modified for the removal of the azo dyes as water pollutants

    International Nuclear Information System (INIS)

    Torres P, J.

    2005-01-01

    At the moment some investigations which make reference to the removal of dyes for diverse adsorbent materials; as well as the factors that influence in the sorption process, considering the type so much of dye as those characteristics of the adsorbent material. In this work were investigated those adsorbent properties of a zeolite rock coming from San Luis Potosi State for the removal of azo dyes, using as peculiar cases the Red 40 (Red Allura) and the Yellow 5 (Tartrazine); for it were determined kinetic parameters and the sorption isotherms, as well as the sorption mechanisms involved in each case, between the dyes and the zeolite rock. In this work also it was considered the characterization before and after to removal of color from the water, through advanced analytical techniques such as the scanning electron microscopy of high vacuum (SEM), elementary microanalysis (EDS) and X-ray diffraction (XRD). The experimental part of the work fundamentally consisted, in the conditioning with a NaCl solution and later on the modification with HDTMA-Br of the natural zeolite rock, for then to put it in contact with solutions of the dyes R-40 and A-5, varying so much the contact times as the concentrations; the quantification of sodium in the liquid phase after the modification of the zeolite rock to determine the capacity of external cation exchange (CICE) it was carried out by means of the atomic absorption spectroscopy technique (EAA), and the quantification of the surfactant and the dyes in the liquid phase, it was carried out by means of the UV-vis spectrophotometry technique. It was found that the kinetic model that better it describes the process of sorption of R-40 and A-5 for the modified zeolite rock with HDTMA-Br, leaving of monocomponent and bi component solutions, it is the pseudo- second order. Inside of the obtained results for the sorption isotherms, as much the dye R-40 as the dye A-5 its presented a better adjustment to the Langmuir model. In what refers

  3. A post-processing study on aluminum surface by fiber laser: Removing face milling patterns

    Science.gov (United States)

    Kayahan, Ersin

    2018-05-01

    The face milling process of the metal surface is a well-known machining process of using rotary cutters to remove material from a workpiece. Flat metal surfaces can be produced by a face milling process. However, in practice, visible, traced marks following the motion of points on the cutter's face are usually apparent. In this study, it was shown that milled patterns can be removed by means of 20 W fiber laser on the aluminum surface (AA7075). Experimental results also showed that roughened and hydrophobic surface can be produced with optimized laser parameters. It is a new approach to remove the patterns from the metal surface and can be explained through roughening by re-melting instead of ablation. The new method is a strong candidate to replace sandblasting the metal surface. It is also cheap and environmentally friendly.

  4. Pollution minimisation practices in the Australian mining and mineral processing industries

    Energy Technology Data Exchange (ETDEWEB)

    Catherine Driussi; Janis Jansz [Edith Cowan University, Joondalup, WA (Australia)

    2006-07-01

    Research was conducted to identify some of the current pollution minimisation practices adopted in Australia's mining and mineral processing industries. Initially, 84 mining and mineral processing companies were approached for inclusion in the study, with request only made for information that was available to the company stakeholders and the wider general community. Among the responses received, BHP Billiton, BlueScope Steel, Newmont Australia Limited and AngloGold Australia provided the information requested and/or a substantial quantity of information through reports on their company website. Analysis of the data collected for these companies indicated that improvements were made, and that policies had been implemented over the previous few years. The pollution minimisation and policy practices adopted at the operations of these companies include environmental management systems, advanced pollution control technologies, environmental awareness training for employees, and requirement - from company stakeholders - for increased accountability of environmental impacts.

  5. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review.