WorldWideScience

Sample records for poliovirus coxsackievirus rhinovirus

  1. The efficacy of simulated solar disinfection (SODIS) against coxsackievirus, poliovirus and hepatitis A virus.

    Science.gov (United States)

    Heaselgrave, Wayne; Kilvington, Simon

    2012-12-01

    The antimicrobial activity of simulated solar disinfection (SODIS) against enteric waterborne viruses including coxsackievirus-B5, poliovirus-2 and hepatitis A virus was investigated in this study. Assays were conducted in transparent 12-well polystyrene microtitre plates containing the appropriate viral test suspension. Plates were exposed to simulated sunlight at an optical irradiance of 550 Wm(-2) (watts per square metre) delivered from a SUNTEST™ CPS+ solar simulator for 6 hours. Aliquots of the viral test suspensions were taken at set time points and the level of inactivation of the viruses was determined by either culture on a HeLa cell monolayer for coxsackievirus-B5 and poliovirus-2 or by utilising a chromogenic antibody-based approach for hepatitis A virus. With coxsackievirus-B5, poliovirus-2 and hepatitis A virus, exposure to SODIS at an optical irradiance of 550 Wm(-2) for 1-2 hours resulted in complete inactivation of each virus. The findings from this study suggest that under appropriate conditions SODIS may be an effective technique for the inactivation of enteric viruses in drinking water. However, further verification studies need to be performed using natural sunlight in the region where the SODIS technology is to be employed to validate our results.

  2. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein

    NARCIS (Netherlands)

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-01-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were

  3. The compatibility of inactivated-Enterovirus 71 vaccination with Coxsackievirus A16 and Poliovirus immunizations in humans and animals.

    Science.gov (United States)

    Mao, Qunying; Wang, Yiping; Shao, Jie; Ying, Zhifang; Gao, Fan; Yao, Xin; Li, Changgui; Ye, Qiang; Xu, Miao; Li, Rongcheng; Zhu, Fengcai; Liang, Zhenglun

    2015-01-01

    Enterovirus 71 (EV71) is the key pathogen for Hand, Foot, and Mouth Disease (HFMD) and can result in severe neurological complications and death among young children. Three inactivated-EV71 vaccines have gone through phase III clinical trials and have demonstrated good safety and efficacy. These vaccines will benefit young children under the threat of severe HFMD. However, the potential immunization-related compatibility for different enterovirus vaccines remains unclear, making it hard to include the EV71 vaccine in Expanded Program on Immunization (EPI). Here, we measured the neutralizing antibodies (NTAbs) against EV71, Coxsackievirus A16 (CA16) and Poliovirus from infants enrolled in those EV71 vaccine clinical trials. The results indicated that the levels of NTAb GMTs for EV71 increased significantly in all 3 vaccine groups (high, middle and low dosages, respectively) post-vaccination. Seroconversion ratios and Geometric mean fold increase were significantly higher in the vaccine groups (≥ 7/9 and 8.9 ~ 228.1) than in the placebo group (≤ 1/10 and 0.8 ~ 1.7, P < 0.05). But no similar NTAb response trends were found in CA16 and 3 types of Poliovirus. The decrease of 3 types of Poliovirus NTAb GMTs and an increase of CA16 GMTs post-EV71-vaccination were found in vaccine and placebo groups. Further animal study on CA16 and poliovirus vaccine co-immunization or pre-immunization with EV71 vaccine in mice indicated that there was no NTAb cross-activity between EV71 and CA16/Poliovirus. Our research showed that inactivated-EV71 vaccine has good specific-neutralizing capacity and can be included in EPI.

  4. An RNA replication-center assay for high content image-based quantifications of human rhinovirus and coxsackievirus infections

    Directory of Open Access Journals (Sweden)

    Lötzerich Mark

    2010-10-01

    Full Text Available Abstract Background Picornaviruses are common human and animal pathogens, including polio and rhinoviruses of the enterovirus family, and hepatits A or food-and-mouth disease viruses. There are no effective countermeasures against the vast majority of picornaviruses, with the exception of polio and hepatitis A vaccines. Human rhinoviruses (HRV are the most prevalent picornaviruses comprising more than one hundred serotypes. The existing and also emerging HRVs pose severe health risks for patients with asthma or chronic obstructive pulmonary disease. Here, we developed a serotype-independent infection assay using a commercially available mouse monoclonal antibody (mabJ2 detecting double-strand RNA. Results Immunocytochemical staining for RNA replication centers using mabJ2 identified cells that were infected with either HRV1A, 2, 14, 16, 37 or coxsackievirus (CV B3, B4 or A21. MabJ2 labeled-cells were immunocytochemically positive for newly synthesized viral capsid proteins from HRV1A, 14, 16, 37 or CVB3, 4. We optimized the procedure for detection of virus replication in settings for high content screening with automated fluorescence microscopy and single cell analysis. Our data show that the infection signal was dependent on multiplicity, time and temperature of infection, and the mabJ2-positive cell numbers correlated with viral titres determined in single step growth curves. The mabJ2 infection assay was adapted to determine the efficacy of anti-viral compounds and small interfering RNAs (siRNAs blocking enterovirus infections. Conclusions We report a broadly applicable, rapid protocol to measure infection of cultured cells with enteroviruses at single cell resolution. This assay can be applied to a wide range of plus-sense RNA viruses, and hence allows comparative studies of viral infection biology without dedicated reagents or procedures. This protocol also allows to directly compare results from small compound or siRNA infection screens

  5. An RNA replication-center assay for high content image-based quantifications of human rhinovirus and coxsackievirus infections

    Science.gov (United States)

    2010-01-01

    Background Picornaviruses are common human and animal pathogens, including polio and rhinoviruses of the enterovirus family, and hepatits A or food-and-mouth disease viruses. There are no effective countermeasures against the vast majority of picornaviruses, with the exception of polio and hepatitis A vaccines. Human rhinoviruses (HRV) are the most prevalent picornaviruses comprising more than one hundred serotypes. The existing and also emerging HRVs pose severe health risks for patients with asthma or chronic obstructive pulmonary disease. Here, we developed a serotype-independent infection assay using a commercially available mouse monoclonal antibody (mabJ2) detecting double-strand RNA. Results Immunocytochemical staining for RNA replication centers using mabJ2 identified cells that were infected with either HRV1A, 2, 14, 16, 37 or coxsackievirus (CV) B3, B4 or A21. MabJ2 labeled-cells were immunocytochemically positive for newly synthesized viral capsid proteins from HRV1A, 14, 16, 37 or CVB3, 4. We optimized the procedure for detection of virus replication in settings for high content screening with automated fluorescence microscopy and single cell analysis. Our data show that the infection signal was dependent on multiplicity, time and temperature of infection, and the mabJ2-positive cell numbers correlated with viral titres determined in single step growth curves. The mabJ2 infection assay was adapted to determine the efficacy of anti-viral compounds and small interfering RNAs (siRNAs) blocking enterovirus infections. Conclusions We report a broadly applicable, rapid protocol to measure infection of cultured cells with enteroviruses at single cell resolution. This assay can be applied to a wide range of plus-sense RNA viruses, and hence allows comparative studies of viral infection biology without dedicated reagents or procedures. This protocol also allows to directly compare results from small compound or siRNA infection screens for different serotypes

  6. Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Jabafi, Ilham; Selisko, Barbara; Coutard, Bruno; De Palma, Armando M.; Neyts, Johan; Egloff, Marie-Pierre; Grisel, Sacha; Dalle, Karen; Campanacci, Valerie; Spinelli, Silvia; Cambillau, Christian; Canard, Bruno; Gruez, Arnaud

    2007-01-01

    The first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited to X-ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination

  7. Polypyrimidine Tract Binding Protein-1 (PTB1) Is a Determinant of the Tissue and Host Tropism of a Human Rhinovirus/Poliovirus Chimera PV1(RIPO)

    Science.gov (United States)

    Jahan, Nusrat; Wimmer, Eckard; Mueller, Steffen

    2013-01-01

    The internal ribosomal entry site (IRES) of picornavirus genomes serves as the nucleation site of a highly structured ribonucleoprotein complex essential to the binding of the 40S ribosomal subunit and initiation of viral protein translation. The transition from naked RNA to a functional "IRESome" complex are poorly understood, involving the folding of secondary and tertiary RNA structure, facilitated by a tightly concerted binding of various host cell proteins that are commonly referred to as IRES trans-acting factors (ITAFs). Here we have investigated the influence of one ITAF, the polypyrimidine tract-binding protein 1 (PTB1), on the tropism of PV1(RIPO), a chimeric poliovirus in which translation of the poliovirus polyprotein is under the control of a human rhinovirus type 2 (HRV2) IRES element. We show that PV1(RIPO)'s growth defect in restrictive mouse cells is partly due to the inability of its IRES to interact with endogenous murine PTB. Over-expression of human PTB1 stimulated the HRV2 IRES-mediated translation, resulting in increased growth of PV1(RIPO) in murine cells and human neuronal SK-N-MC cells. Mutations within the PV1(RIPO) IRES, selected to grow in restrictive mouse cells, eliminated the human PTB1 supplementation requirement, by restoring the ability of the IRES to interact with endogenous murine PTB. In combination with our previous findings these results give a compelling insight into the thermodynamic behavior of IRES structures. We have uncovered three distinct thermodynamic aspects of IRES formation which may independently contribute to overcome the observed PV1(RIPO) IRES block by lowering the free energy δG of the IRESome formation, and stabilizing the correct and functional structure: 1) lowering the growth temperature, 2) modifying the complement of ITAFs in restricted cells, or 3) selection of adaptive mutations. All three mechanisms can conceivably modulate the thermodynamics of RNA folding, and thus facilitate and stabilize the

  8. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges

  9. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein

    OpenAIRE

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-01-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackieviru...

  10. Nonhomologous Recombination between Defective Poliovirus and Coxsackievirus Genomes Suggests a New Model of Genetic Plasticity for Picornaviruses

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line

    2014-01-01

    ABSTRACT Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3′ end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. PMID:25096874

  11. [An investigation on a case of hand-foot-mouth disease caused by coxsackie-virus A6 associated with a vaccine-derived poliovirus co-infection].

    Science.gov (United States)

    Chen, Chun; Xie, Huaping; Cui, Min; Zhen, Ruonan; Zhang, Ying; Ni, Lihong; Huang, Yingyi; Geng, Jinmei; Lu, Huixi; Di, Biao; Wang, Ming

    2014-01-01

    To identify the pathogen and characteristics on a case of hand-foot-mouth disease (HFMD) caused by coxsackie-virus A6 (CA6) associated with vaccine-derived poliovirus (VDPV) co-infection. Field epidemiological study at the epidemic area was conducted and 16 stool samples including from the patient and close contacts were collected for isolation and identification of the enterovirus (EV). 21 stool samples from patients diagnosed as HFMD were collected in the same hospital at the same month to detect CA16,EV71, CA6 and PV by real-time RT-PCR or RT-PCR. The VP1 gene of the CA6 was amplified by RT-PCR and PCR products were sequenced and analyzed. The patient showed only HFMD symptoms, but no symptoms related to acute flaccid paralysis (AFP). No EVs were isolated from 16 samples collected from the patient and close contacts. And no AFP cases were found by an active search. A total of 21 samples from patients diagnosed as HFMD were collected in the same hospital at the same month and 4 were found to be EV71, 2 were CA16 and 15 (include the patient)were CA6. Only this patient was found to have had VDPV II infection. The CA6 VP1 gene was amplified from the HFMD patient and 9 other cases from the same hospital at the same month. Nucleotide sequences of the VP1 gene among the 9 strains shared 98.9%-100.0% in homology and 96.0%-100.0% in the deduced amino acid sequences. Phylogenetic analysis of the VP1 sequences categorized the 9 strains into the same branch. There were 6 nucleotides changes including U2909A between the VP1 region of the VDPV strain of the case and Sabin II. Results from phylogenetic analysis on the VP1 sequences indicated that the VDPV strain of the case was different from other VDPVs strains isolated in the world. This case was a HFMD which caused by CA6 co-infection with VDPV II and the VDPV was newly discovered. HFMD symptoms of the case were caused by CA6. The reason why this case did not have AFP symptoms was probably due the protective effect of IPV

  12. microRNA-4516 Contributes to Different Functions of Epithelial Permeability Barrier by Targeting Poliovirus Receptor Related Protein 1 in Enterovirus 71 and Coxsackievirus A16 Infections

    Directory of Open Access Journals (Sweden)

    Yajie Hu

    2018-04-01

    Full Text Available Enterovirus 71 (EV-A71 and coxsackievirus A16 (CV-A16 remain the predominant etiological agents of hand, foot, and mouth disease (HFMD. The clinical manifestations caused by the two viruses are obviously different. CV-A16 usually triggers a repeated infection, and airway epithelial integrity is often the potential causative factor of respiratory repeated infections. Our previous studies have demonstrated that there were some differentially expressed miRNAs involved in the regulation of adhesion function of epithelial barrier in EV-A71 and CV-A16 infections. In this study, we compared the differences between EV-A71 and CV-A16 infections on the airway epithelial barrier function in human bronchial epithelial (16HBE cells and further screened the key miRNA which leaded to the formation of these differences. Our results showed that more rapid proliferation, more serious destruction of 16HBE cells permeability, more apoptosis and disruption of intercellular adhesion-associated molecules were found in CV-A16 infection as compared to EV-A71 infection. Furthermore, we also identified that microRNA-4516 (miR-4516, which presented down-regulation in EV-A71 infection and up-regulation in CV-A16 infection was an important regulator of intercellular junctions by targeting Poliovirus receptor related protein 1(PVRL1. The expressions of PVRL1, claudin4, ZO-1 and E-cadherin in CV-A16-infected cells were significantly less than those in EV-A71-infected cells, while the expressions of these proteins were subverted when pre-treated with miR-4516-overexpression plasmid in EV-A71 infected and miR-4516-knockdown plasmid in CV-A16 infected 16HBE cells. Thus, these data suggested that the opposite expression of miR-4516 in EV-A71 and CV-A16 infections might be the initial steps leading to different epithelial impairments of 16HBE cells by destroying intercellular adhesion, which finally resulted in different outcomes of EV-A71 and CV-A16 infections.

  13. Radioimmunological detection of type-specific antibodies against polioviruses 1, 2 and 3 as well as the B4 Coxsackie virus. Radioimmunologischer Nachweis typenspezifischer Antikoerper gegen Poliovirus 1, 2 und 3 und gegen Coxsackievirus B4

    Energy Technology Data Exchange (ETDEWEB)

    Hartung Goetze, C.F.

    1985-06-27

    A simple radioimmunological procedure is described in which the qualitative and quantitative determination of serum antibodies against polioviruses 1, 2 and 3 and against the B4 Coxsackie virus is based on adsorption chromatography. It is comparable to the neutralisation test as regards sensitivity and specifity and has the additional advantage of being the faster, simplier and cheaper of those two methods. The radioactive labelling of the virsuses was achieved with types of 32 P or 3 H that had favourable half-lives and would thus permit the labelled compounds to be stored for prolonged periods of time. The immunological statuses and antibody titres of sera obtained from 45 female volunteers, where the vaccinations against polymyelitis had mostly been carried out by the oral route, showed remarkably little changes, which was evident from the fact that the proportion of study participants found to have antibodies against all three serological types was 91% in 1970 and still as large at 89% in 1983. When a total of 1016 sera were screened for Coxsackie virus B4, no age dependency could be determined for the age range between 5 and 35 years, nor were there any differences seen between the individual residential areas. (TRV).

  14. Poliovirus polymerase residue 5 plays a critical role in elongation complex stability.

    Science.gov (United States)

    Hobdey, Sarah E; Kempf, Brian J; Steil, Benjamin P; Barton, David J; Peersen, Olve B

    2010-08-01

    The structures of polio-, coxsackie-, and rhinovirus polymerases have revealed a conserved yet unusual protein conformation surrounding their buried N termini where a beta-strand distortion results in a solvent-exposed hydrophobic amino acid at residue 5. In a previous study, we found that coxsackievirus polymerase activity increased or decreased depending on the size of the amino acid at residue 5 and proposed that this residue becomes buried during the catalytic cycle. In this work, we extend our studies to show that poliovirus polymerase activity is also dependent on the nature of residue 5 and further elucidate which aspects of polymerase function are affected. Poliovirus polymerases with mutations of tryptophan 5 retain wild-type elongation rates, RNA binding affinities, and elongation complex formation rates but form unstable elongation complexes. A large hydrophobic residue is required to maintain the polymerase in an elongation-competent conformation, and smaller hydrophobic residues at position 5 progressively decrease the stability of elongation complexes and their processivity on genome-length templates. Consistent with this, the mutations also reduced viral RNA production in a cell-free replication system. In vivo, viruses containing residue 5 mutants produce viable virus, and an aromatic phenylalanine was maintained with only a slightly decreased virus growth rate. However, nonaromatic amino acids resulted in slow-growing viruses that reverted to wild type. The structural basis for this polymerase phenotype is yet to be determined, and we speculate that amino acid residue 5 interacts directly with template RNA or is involved in a protein structural interaction that stabilizes the elongation complex.

  15. Rhinovirus and airway allergy

    Directory of Open Access Journals (Sweden)

    Mutsuo Yamaya

    2004-01-01

    Full Text Available Rhinoviruses cause the majority of common colds, which often provoke wheezing in patients with asthma. The precise mechanisms responsible for the rhinovirus infection-induced exacerbations of bronchial asthma remain uncertain. However, several reports have demonstrated airway hyperresponsiveness, increases in chemical mediators in airway secretions, such as kinin and histamine, and airway inflammation in patients with bronchial asthma after rhinovirus infection. Rhinovirus infection induces the accumulation of inflammatory cells in airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Rhinovirus affects the barrier function of airway epithelial cells and activates airway epithelial cells and other cells in the lung to produce proinflammatory cytokines, including various types of interleukins, granulocyte-macrophage colony stimulating factor and RANTES, and histamine. Rhinovirus also stimulates the expression of intercellular adhesion molecule-1 (ICAM-1 and low-density lipoprotein receptors in the airway epithelium, receptors for major and minor rhinoviruses. Rhinovirus infection is inhibited by treatment with soluble ICAM-1 and by the reduction of ICAM-1 expression in airway epithelial cells after treatment with either glucocorticoid or erythromycin. Both soluble ICAM-1 and erythromycin have been reported to reduce the symptoms of common colds. Herein, we review the pathogenesis and management of rhinovirus infection-induced exacerbation of bronchial asthma and the relationship between rhinovirus infection and airway allergy.

  16. Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein.

    Science.gov (United States)

    Lyoo, Heyrhyoung; Dorobantu, Cristina M; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2017-11-01

    Enteroviruses (e.g. poliovirus, coxsackievirus, and rhinovirus) require several host factors for genome replication. Among these host factors are phosphatidylinositol-4-kinase IIIβ (PI4KB) and oxysterol binding protein (OSBP). Enterovirus mutants resistant to inhibitors of PI4KB and OSBP were previously isolated, which demonstrated a role of single substitutions in the non-structural 3A protein in conferring resistance. Besides the 3A substitutions (i.e., 3A-I54F and 3A-H57Y) in coxsackievirus B3 (CVB3), substitution N2D in 2C was identified in each of the PI4KB-inhibitor resistant CVB3 pools, but its possible benefit has not been investigated yet. In this study, we set out to investigate the possible role of 2C-N2D in the resistance to PI4KB and OSBP inhibition. We show that 2C-N2D by itself did not confer any resistance to inhibitors of PI4KB and OSBP. However, the double mutant (i.e., 2C-N2D/3A-H57Y) showed better replication than the 3A-H57Y single mutant in the presence of inhibitors. Growing evidence suggests that alterations in lipid homeostasis affect the proteolytic processing of the poliovirus polyprotein. Therefore, we studied the effect of PI4KB or OSBP inhibition on proteolytic processing of the CVB3 polyprotein during infection as well as in a replication-independent system. We show that both PI4KB and OSBP inhibitors specifically affected the cleavage at the 3A-3B junction, and that mutation 3A-H57Y recovered impaired proteolytic processing at this junction. Although 2C-N2D enhanced replication of the 3A-H57Y single mutant, we did not detect additional effects of this substitution on polyprotein processing, which leaves the mechanism of how 2C-N2D contributes to the resistance to be revealed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Inhibition of polyprotein processing and RNA replication of human rhinovirus by pyrrolidine dithiocarbamate involves metal ions.

    NARCIS (Netherlands)

    Krenn, B.M.; Holzer, B.; Gaudernak, E.; Triendl, A.; Kuppeveld, F.J.M. van; Seipelt, J.

    2005-01-01

    Pyrrolidine dithiocarbamate (PDTC) is an antiviral compound that was shown to inhibit the replication of human rhinoviruses (HRVs), poliovirus, and influenza virus. To elucidate the mechanism of PDTC, the effects on the individual steps of the infection cycle of HRV were investigated. PDTC did not

  18. Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication.

    Science.gov (United States)

    van der Schaar, Hilde M; van der Linden, Lonneke; Lanke, Kjerstin H W; Strating, Jeroen R P M; Pürstinger, Gerhard; de Vries, Erik; de Haan, Cornelis A M; Neyts, Johan; van Kuppeveld, Frank J M

    2012-11-01

    RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are unlikely to mutate in response to therapy. We recently demonstrated that phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) and its product phosphatidylinositol-4-phosphate (PI4P) are essential for replication of enteroviruses, a group of medically important RNA viruses including poliovirus (PV), coxsackievirus, rhinovirus, and enterovirus 71. Here, we show that enviroxime and GW5074 decreased PI4P levels at the Golgi complex by directly inhibiting PI4KIIIβ. Coxsackievirus mutants resistant to these inhibitors harbor single point mutations in the non-structural protein 3A. These 3A mutations did not confer compound-resistance by restoring the activity of PI4KIIIβ in the presence of the compounds. Instead, replication of the mutant viruses no longer depended on PI4KIIIβ, since their replication was insensitive to siRNA-mediated depletion of PI4KIIIβ. The mutant viruses also did not rely on other isoforms of PI4K. Consistently, no high level of PI4P could be detected at the replication sites induced by the mutant viruses in the presence of the compounds. Collectively, these findings indicate that through specific single point mutations in 3A, CVB3 can bypass an essential host factor and lipid for its propagation, which is a new example of RNA viruses acquiring resistance against antiviral compounds, even when they directly target host factors.

  19. Coxsackievirus Infections (For Parents)

    Science.gov (United States)

    ... cause symptoms that affect different body parts, including: Hand, foot, and mouth disease , a type of coxsackievirus syndrome, causes painful red ... hours, although the average fever lasts 3 days. Hand, foot, and mouth disease usually lasts for 2 or 3 days; viral ...

  20. Wild Poliovirus List

    Science.gov (United States)

    ... Affordable IPV Vaccine-derived Polioviruses: Managing the risks Antivirals Clinical Trials and Seroprevalence Surveys Research Publications Polio Research Committee Grants and Collaborations Polio ...

  1. Poliovirus Polymerase Residue 5 Plays a Critical Role in Elongation Complex Stability ▿

    OpenAIRE

    Hobdey, Sarah E.; Kempf, Brian J.; Steil, Benjamin P.; Barton, David J.; Peersen, Olve B.

    2010-01-01

    The structures of polio-, coxsackie-, and rhinovirus polymerases have revealed a conserved yet unusual protein conformation surrounding their buried N termini where a β-strand distortion results in a solvent-exposed hydrophobic amino acid at residue 5. In a previous study, we found that coxsackievirus polymerase activity increased or decreased depending on the size of the amino acid at residue 5 and proposed that this residue becomes buried during the catalytic cycle. In this work, we extend ...

  2. Improving the capillary electrophoretic analysis of poliovirus using a Plackett-Burman design.

    Science.gov (United States)

    Oita, Iuliana; Halewyck, Hadewych; Pieters, Sigrid; Dejaegher, Bieke; Thys, Bert; Rombaut, Bart; Heyden, Yvan Vander

    2009-11-01

    Separation techniques may offer interesting alternatives to classical virological techniques both for fundamental research purposes and for vaccine manufacturing. A capillary electrophoretic method for the analysis of the poliovirus was developed based on conditions for the human rhinovirus taken from literature. The method was optimized using a 12-experiment Plackett-Burman design, applied in order to examine simultaneously the effects of eight factors on responses such as, mobility of the electroosmotic flow, effective mobility of the poliovirus, analysis time and resolution between the virus peak and a system peak. The proposed method manages to perform an acceptable separation of poliovirus particles using a 50 mM borate buffer with 25 mM SDS, in an uncoated fused-silica capillary upon application of 10 kV at 30 degrees C. The linearity of the proposed method was investigated for a range of poliovirus dilutions up to 140 microg/mL.

  3. Development of potent inhibitors of the coxsackievirus 3C protease

    International Nuclear Information System (INIS)

    Lee, Eui Seung; Lee, Won Gil; Yun, Soo-Hyeon; Rho, Seong Hwan; Im, Isak; Yang, Sung Tae; Sellamuthu, Saravanan; Lee, Yong Jae; Kwon, Sun Jae; Park, Ohkmae K.; Jeon, Eun-Seok; Park, Woo Jin; Kim, Yong-Chul

    2007-01-01

    Coxsackievirus B3 (CVB3) 3C protease (3CP) plays essential roles in the viral replication cycle, and therefore, provides an attractive therapeutic target for treatment of human diseases caused by CVB3 infection. CVB3 3CP and human rhinovirus (HRV) 3CP have a high degree of amino acid sequence similarity. Comparative modeling of these two 3CPs revealed one prominent distinction; an Asn residue delineating the S2' pocket in HRV 3CP is replaced by a Tyr residue in CVB3 3CP. AG7088, a potent inhibitor of HRV 3CP, was modified by substitution of the ethyl group at the P2' position with various hydrophobic aromatic rings that are predicted to interact preferentially with the Tyr residue in the S2' pocket of CVB3 3CP. The resulting derivatives showed dramatically increased inhibitory activities against CVB3 3CP. In addition, one of the derivatives effectively inhibited the CVB3 proliferation in vitro

  4. [Absence of poliovirus circulation in Colombian departments with vaccination coverage below 80%].

    Science.gov (United States)

    González, María Mercedes; Sarmiento, Luis; Rey-Benito, Gloria Janneth; Padilla, Leonardo; Giraldo, Alejandra María; Castaño, Jhon Carlos

    2012-08-01

    This study aims to explore a possible silent circulation of wild and vaccine-derived polioviruses in departments of Colombia with polio vaccination coverage of below 80%. The study collected 52 samples of wastewater concentrated as a result of precipitation with polyethylene glycol and sodium chloride. The viral detection was carried out through isolation and the identification through neutralization of the cytopathic effect, as well as through a conventional polymerase chain reaction following reverse transcription. The isolated polioviruses were characterized by the VP1 gene sequence. In two of the 52 samples, there was a presence of the Sabin type 2 poliovirus with more than 99% sequence similarity with the Sabin type 2 strain polio. Circulation of the nonpolio enterovirus was detected in 17.3% of the samples. The serotypes identified corresponded to coxsackievirus B1, echovirus 30, and echovirus 11. No evidence of the spread of either vaccine-derived poliovirus or wild poliovirus was detected in the departments of Colombia with polio coverage lower than 80%.

  5. Transgenic mice susceptible to poliovirus.

    OpenAIRE

    Koike, S; Taya, C; Kurata, T; Abe, S; Ise, I; Yonekawa, H; Nomoto, A

    1991-01-01

    Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic mice just as in tissues of humans. The transgenic mice are susceptible to all three poliovirus serotypes, and the mice inoculated with poliov...

  6. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses.

    Science.gov (United States)

    Jegouic, Sophie; Joffret, Marie-Line; Blanchard, Claire; Riquet, Franck B; Perret, Céline; Pelletier, Isabelle; Colbere-Garapin, Florence; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2009-05-01

    Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3' half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3' half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3' portion of the cVDPV genome was replaced by the 3' half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.

  7. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses.

    Directory of Open Access Journals (Sweden)

    Sophie Jegouic

    2009-05-01

    Full Text Available Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17 and that sequences in the 3' half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3' half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3' portion of the cVDPV genome was replaced by the 3' half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.

  8. Progressive liver calcifications in neonatal coxsackievirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Konen, O.; Rathaus, V.; Shapiro, M. [Dept. of Diagnostic Imaging, Sapir Medical Center, Meir General Hospital, Kfar Saba (Israel); Bauer, S.; Dolfin, T. [Neonatal Dept. Neonatal intensive Care, Sapir Medical Center, Meir General Hospital Affiliated with the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2000-05-01

    Coxsackievirus group B can cause a severe systemic disease in the perinatal period. Severe manifestations like meningitis, encephalitis, hepatitis, and myocarditis have been previously reported. A case of a twin neonate infected by coxsackievirus group B is described, who developed progressive extensive hepatic calcifications demonstrated by ultrasound and computed tomography with follow-up. Hepatic calcifications in coxsackievirus infection have not been previously reported. (orig.)

  9. AT-21FINAL RESULTS OF A PHASE 1 TRIAL OF AN ONCOLYTIC POLIO/RHINOVIRUS RECOMBINANT (PVSRIPO) AGAINST RECURRENT GLIOBLASTOMA (GBM)

    OpenAIRE

    Desjardins, Annick; Sampson, John; Peters, Katherine; Vlahovic, Gordana; Threatt, Stevie; Herndon, James; Boulton, Susan; Lally-Goss, Denise; McSherry, Frances; Lipp, Eric; Friedman, Allan; Friedman, Henry; Bigner, Darell; Gromeier, Matthias

    2014-01-01

    BACKGROUND: PVSRIPO is the live attenuated, oral (SABIN) serotype 1 poliovirus vaccine containing a heterologous internal ribosomal entry site stemming from human rhinovirus type 2. PVSRIPO recognizes nectin-like molecule-5, an oncofetal cell adhesion molecule and tumor antigen widely expressed ectopically in malignancy. We report results of a phase 1 trial evaluating PVSRIPO delivered intratumorally by convection-enhanced delivery (CED). METHODS: Eligible patients were adults with recurrent ...

  10. Ausencia de circulación de poliovirus en departamentos colombianos con coberturas vacunales inferiores a 80% Absence of poliovirus circulation in Colombian departments with vaccination coverage below 80%

    Directory of Open Access Journals (Sweden)

    María Mercedes González

    2012-08-01

    Full Text Available El presente estudio se propuso explorar la posible circulación silente de poliovirus salvajes y derivados de la vacuna (VDPV, por sus siglas en inglés, en departamentos de Colombia con cobertura de vacunación para polio (OPV, por sus siglas en inglés menor de 80%. Se colectaron 52 muestras de aguas residuales que se concentraron mediante precipitación con polietilenglicol y cloruro de sodio. La detección viral se realizó mediante aislamiento y la identificación por neutralización del efecto citopático, así como mediante reacción en cadena de la polimerasa convencional y en tiempo real, posterior a la transcripción reversa (TR-RCP y rTR-RCP. Los poliovirus aislados se caracterizaron por secuenciación del gen VP1. En dos de las 52 muestras hubo presencia de poliovirus Sabin 2 con más de 99% de similitud de secuencia con la cepa OPV Sabin 2. Se detectó circulación de enterovirus no polio en 17,3% de las muestras. Los serotipos identificados correspondieron a coxsackievirus B1, echovirus 30 y echovirus 11. No se detectaron evidencias de circulación de VDPV ni poliovirus salvaje en los departamentos de Colombia con coberturas de OPV inferiores a 80%.This study aims to explore a possible silent circulation of wild and vaccine-derived polioviruses in departments of Colombia with polio vaccination coverage of below 80%. The study collected 52 samples of wastewater concentrated as a result of precipitation with polyethylene glycol and sodium chloride. The viral detection was carried out through isolation and the identification through neutralization of the cytopathic effect, as well as through a conventional polymerase chain reaction following reverse transcription. The isolated polioviruses were characterized by the VP1 gene sequence. In two of the 52 samples, there was a presence of the Sabin type 2 poliovirus with more than 99% sequence similarity with the Sabin type 2 strain polio. Circulation of the nonpolio enterovirus was

  11. Study of the Biological Activity of Novel Synthetic Compounds with Antiviral Properties against Human Rhinoviruses

    Directory of Open Access Journals (Sweden)

    Raffaello Pompei

    2011-04-01

    Full Text Available Picornaviridae represent a very large family of small RNA viruses, some of which are the cause of important human and animal diseases. Since no specific therapy against any of these viruses currently exists, palliative symptomatic treatments are employed. The early steps of the picornavirus replicative cycle seem to be privileged targets for some antiviral compounds like disoxaril and pirodavir. Pirodavir’s main weakness is its cytotoxicity on cell cultures at relatively low doses. In this work some original synthetic compounds were tested, in order to find less toxic compounds with an improved protection index (PI on infected cells. Using an amino group to substitute the oxygen atom in the central chain, such as that in the control molecule pirodavir, resulted in decreased activity against Rhinoviruses and Polioviruses. The presence of an -ethoxy-propoxy- group in the central chain (as in compound I-6602 resulted in decreased cell toxicity and in improved anti-Rhinovirus activity. This compound actually showed a PI >700 on HRV14, while pirodavir had a PI of 250. These results demonstrate that modification of pirodavir’s central hydrocarbon chain can lead to the production of novel derivatives with low cytotoxicity and improved PI against some strains of Rhinoviruses.

  12. Study of the biological activity of novel synthetic compounds with antiviral properties against human rhinoviruses.

    Science.gov (United States)

    Laconi, Samuela; Madeddu, Maria A; Pompei, Raffaello

    2011-04-26

    Picornaviridae represent a very large family of small RNA viruses, some of which are the cause of important human and animal diseases. Since no specific therapy against any of these viruses currently exists, palliative symptomatic treatments are employed. The early steps of the picornavirus replicative cycle seem to be privileged targets for some antiviral compounds like disoxaril and pirodavir. Pirodavir's main weakness is its cytotoxicity on cell cultures at relatively low doses. In this work some original synthetic compounds were tested, in order to find less toxic compounds with an improved protection index (PI) on infected cells. Using an amino group to substitute the oxygen atom in the central chain, such as that in the control molecule pirodavir, resulted in decreased activity against Rhinoviruses and Polioviruses. The presence of an -ethoxy-propoxy- group in the central chain (as in compound I-6602) resulted in decreased cell toxicity and in improved anti-Rhinovirus activity. This compound actually showed a PI >700 on HRV14, while pirodavir had a PI of 250. These results demonstrate that modification of pirodavir's central hydrocarbon chain can lead to the production of novel derivatives with low cytotoxicity and improved PI against some strains of Rhinoviruses.

  13. [Eradication of poliomyelitis and emergence of pathogenic vaccine-derived polioviruses: from Madagascar to Cameroon].

    Science.gov (United States)

    Delpeyroux, Francis; Colbère-Garapin, Florence; Razafindratsimandresy, Richter; Sadeuh-Mba, Serge; Joffret, Marie-Line; Rousset, Dominique; Blondel, Bruno

    2013-11-01

    The oral poliovaccine, a live vaccine made of attenuated poliovirus strains, is the main tool of the vaccination campaigns organised for eradicating poliomyelitis. these campaigns had led to the decline and, thereafter, to the disappearance of wild poliovirus strains of the three serotypes (1-3) in most parts of the world. However, when the poliovaccine coverage becomes too low, vaccine polioviruses can circulate in insufficiently immunized populations and become then pathogenic by mutations and genetic recombination with other enteroviruses of the same species, in particular some coxsackievirus A. These mutated and recombinant vaccine strains have been implicated in several epidemics of paralytic poliomyelitis. Two polio outbreaks associated with these pathogenic circulating vaccine-derived poliovirus (cVDPV) occurred in 2001-2002 and 2005 in the South of Madagascar where vaccine coverage was low. These cVDPV, of serotype 2 or 3, were isolated from paralyzed children and some of their healthy contacts. Other cVDPV were isolated in the same region from healthy children in 2011, indicating that these viruses were circulating again. Vaccination campaigns could stop the outbreaks in 2002 and 2005, and most probably prevent another one in 2011. Therefore, the genetic plasticity of poliovaccine strains that threatens the benefit of vaccination campaigns is the target of an accurate surveillance and an important theme of studies in the virology laboratories of the Institut Pasteur international network. © 2013 médecine/sciences – Inserm.

  14. Global distribution of novel rhinovirus genotype

    DEFF Research Database (Denmark)

    Briese, Thomas; Renwick, Neil; Venter, Marietjie

    2008-01-01

    Global surveillance for a novel rhinovirus genotype indicated its association with community outbreaks and pediatric respiratory disease in Africa, Asia, Australia, Europe, and North America. Molecular dating indicates that these viruses have been circulating for at least 250 years Udgivelsesdato...

  15. Ausencia de circulación de poliovirus en departamentos colombianos con coberturas vacunales inferiores a 80%

    Directory of Open Access Journals (Sweden)

    María Mercedes González

    2012-08-01

    Full Text Available El presente estudio se propuso explorar la posible circulación silente de poliovirus salvajes y derivados de la vacuna (VDPV, por sus siglas en inglés, en departamentos de Colombia con cobertura de vacunación para polio (OPV, por sus siglas en inglés menor de 80%. Se colectaron 52 muestras de aguas residuales que se concentraron mediante precipitación con polietilenglicol y cloruro de sodio. La detección viral se realizó mediante aislamiento y la identificación por neutralización del efecto citopático, así como mediante reacción en cadena de la polimerasa convencional y en tiempo real, posterior a la transcripción reversa (TR-RCP y rTR-RCP. Los poliovirus aislados se caracterizaron por secuenciación del gen VP1. En dos de las 52 muestras hubo presencia de poliovirus Sabin 2 con más de 99% de similitud de secuencia con la cepa OPV Sabin 2. Se detectó circulación de enterovirus no polio en 17,3% de las muestras. Los serotipos identificados correspondieron a coxsackievirus B1, echovirus 30 y echovirus 11. No se detectaron evidencias de circulación de VDPV ni poliovirus salvaje en los departamentos de Colombia con coberturas de OPV inferiores a 80%.

  16. Prevalence of Human Rhinovirus Infection in Children with Acute ...

    African Journals Online (AJOL)

    TNHJOURNALPH

    Rhinovirus and Enterovirus features. JClinMicrobiol2002; 40:4218-23. Savolainen C, Blomqvist Sand Hovi T. Human Rhinoviruses. PaediatrRespir. Rev 2003; 4:91-8. Brownlee J, Turner R. New developments in the epidemiology and clinical spectrum of Rhinovirus infections. CurrOpinPediatr 2008;. 20:67-71. Mahony J.

  17. Environmental Poliovirus Surveillance during Oral Poliovirus Vaccine and Inactivated Poliovirus Vaccine Use in Córdoba Province, Argentina▿

    OpenAIRE

    Mueller, Judith E.; Bessaud, Maël; Huang, Q. Sue; Martinez, Laura C.; Barril, Patricia A.; Morel, Viviane; Balanant, Jean; Bocacao, Judy; Hewitt, Joanne; Gessner, Brad D.; Delpeyroux, Francis; Nates, Silvia V.

    2009-01-01

    This study compares the presence of environmental poliovirus in two Argentinean populations using oral poliovirus vaccine (OPV) or inactivated poliovirus vaccine (IPV). From January 2003 to December 2005, Córdoba City used IPV in routine infant immunizations, with the exception of intermittent OPV use in August 2005. Between May 2005 and April 2006, we collected weekly wastewater samples in Córdoba City and the province's three major towns, which continued OPV use at all times. Wastewater sam...

  18. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance.

    Science.gov (United States)

    Kempf, Brian J; Peersen, Olve B; Barton, David J

    2016-10-01

    RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase

  19. Comparative biochemical studies of type 3 poliovirus.

    OpenAIRE

    Minor, P D

    1980-01-01

    A study of the biochemistry of type 3 poliovirus strains which involves the examination of the virus-coded polypeptides in infected cells and the preparation of oligonucleotide maps is reported. The polypeptide patterns were shown to be a relatively stable property of virus strains and distinguished Sabin vaccine strains from wild strains of poliovirus type 3. This approach may be of value in deciding the origin (vaccine or nonvaccine) of field isolates of poliovirus. Oligonucleotide maps wer...

  20. Poliovirus strain characterization: a WHO Memorandum*

    OpenAIRE

    1980-01-01

    Reliable laboratory techniques for the intratypic characterization of poliovirus types 1, 2, and 3 isolates have an important role in the epidemiological surveillance of poliomyelitis and in studies of the safety and efficacy of poliovirus vaccines. Of the techniques available for poliovirus strain characterization, those potentially most useful are intratypic serodifferentiation and the biochemical techniques. The value of strain-specific (absorbed) antisera for antigenic characterization of...

  1. Development of Plaque Assay Systems for Poliovirus.

    Science.gov (United States)

    1982-04-01

    inter- action must be ascertained for each type of virus to be collected and assayed. The vaccine strain of poliovirus type 1 (Sabin) was chosen as a...1067 DEVELOPMENT OF PLAQUE ASSAY SYSTEMS FOR POLIOVIRUS (U) by R.E. Fulton and K. Munroe Abstract During the summer months of 1978, Ms. Krista Munroe...quantitation of infectious poliovirus type 1. .Two different plaque assay techniques were developed and compared. The results of this work are presented

  2. Detection of poliovirus antigen by enzyme immunoassay.

    OpenAIRE

    Ukkonen, P; Huovilainen, A; Hovi, T

    1986-01-01

    A solid-phase enzyme immunoassay (EIA) was developed for the detection of poliovirus antigen. Rabbit and guinea pig antisera for the assay were raised against purified poliovirus type 3/Fin (strain 3/Fin/K) isolated from a fecal specimen from a meningitis patient during an outbreak of poliomyelitis in Finland in 1984. The EIA was highly specific for poliovirus type 3, and it was about 30 times more sensitive for strain 3/Fin/K than for strain 3/Saukett used in the inactivated poliovirus vacci...

  3. Environmental poliovirus surveillance during oral poliovirus vaccine and inactivated poliovirus vaccine use in Córdoba Province, Argentina.

    Science.gov (United States)

    Mueller, Judith E; Bessaud, Maël; Huang, Q Sue; Martinez, Laura C; Barril, Patricia A; Morel, Viviane; Balanant, Jean; Bocacao, Judy; Hewitt, Joanne; Gessner, Brad D; Delpeyroux, Francis; Nates, Silvia V

    2009-03-01

    This study compares the presence of environmental poliovirus in two Argentinean populations using oral poliovirus vaccine (OPV) or inactivated poliovirus vaccine (IPV). From January 2003 to December 2005, Córdoba City used IPV in routine infant immunizations, with the exception of intermittent OPV use in August 2005. Between May 2005 and April 2006, we collected weekly wastewater samples in Córdoba City and the province's three major towns, which continued OPV use at all times. Wastewater samples were processed and analyzed for the presence of poliovirus according to WHO guidelines. During the months of IPV use in Córdoba City, the overall proportion of poliovirus-positive samples was 19%. During an intermittent switch from IPV to OPV, this proportion increased to 100% within 2 months. During the 3 months when IPV was reintroduced to replace OPV, a substantial proportion of samples (25%) remained positive for poliovirus. In the OPV-using sites, on average, 54% of samples were poliovirus positive. Seventy-seven percent of poliovirus isolates showed at least one mutation in the VP1-encoding sequence; the maximum genetic divergence from the Sabin strain was 0.7%. Several isolates showed mutations on attenuation markers in the VP1-encoding sequence. The frequency or type of virus mutation did not differ between periods of IPV and OPV use or by virus serotypes. This study indicates that the sustained transmission of OPV viruses was limited during IPV use in a middle-income country with a temperate climate. The continued importation of poliovirus and genetic instability of vaccine strains even in the absence of sustained circulation suggest that high poliovirus vaccine coverage has to be maintained for all countries until the risk of reintroduction of either wild or vaccine-derived poliovirus is close to zero worldwide.

  4. Global Distribution of Novel Rhinovirus Genotype

    Science.gov (United States)

    Renwick, Neil; Venter, Marietjie; Jarman, Richard G.; Ghosh, Dhrubaa; Köndgen, Sophie; Shrestha, Sanjaya K.; Hoegh, A. Mette; Casas, Inmaculada; Adjogoua, Edgard Valerie; Akoua-Koffi, Chantal; Myint, Khin Saw; Williams, David T.; Chidlow, Glenys; van den Berg, Ria; Calvo, Cristina; Koch, Orienka; Palacios, Gustavo; Kapoor, Vishal; Villari, Joseph; Dominguez, Samuel R.; Holmes, Kathryn V.; Harnett, Gerry; Smith, David; Mackenzie, John S.; Ellerbrok, Heinz; Schweiger, Brunhilde; Schønning, Kristian; Chadha, Mandeep S.; Leendertz, Fabian H.; Mishra, A.C.; Gibbons, Robert V.; Holmes, Edward C.; Lipkin, W. Ian

    2008-01-01

    Global surveillance for a novel rhinovirus genotype indicated its association with community outbreaks and pediatric respiratory disease in Africa, Asia, Australia, Europe, and North America. Molecular dating indicates that these viruses have been circulating for at least 250 years. PMID:18507910

  5. Eczema Coxsackium Caused by Coxsackievirus A6

    DEFF Research Database (Denmark)

    Horsten, Hans-Henrik; Fisker, Niels; Bygum, Anette

    2016-01-01

    We present the first case of atypical hand, food, and mouth disease in our department with the distinct cutaneous morphology of eczema coxsackium. Clinicians should be aware of the possibility for more extensive cutaneous eruption related to coxsackievirus A6 infection and the diagnostic methods...

  6. Strain differentiation of polioviruses with monoclonal antibodies.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; A.J.H. Stegmann; J.A.A.M. van Asten (Jack)

    1984-01-01

    textabstractPanels of monoclonal antibodies raised against different poliovirus type 1, 2 and 3 strains, were tested in a micro-neutralization test and in a micro-enzyme linked immunosorbent assay against a large number of poliovirus strains. The results were compared with those obtained with the

  7. Immunity to poliovirus after infection and vaccination

    NARCIS (Netherlands)

    Herremans, Martina Maria Petronella Theresia

    1999-01-01

    The aim of this thesis was defined as the study of the contribution of IPV vaccination to the induction of a) protection against poliovirus infection and b) mucosal immunity.We have described the development of new immunological tools for the rapid detection of poliovirus-specific antibodies and

  8. 21 CFR 866.3145 - Coxsackievirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... Section 866.3145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... consist of antigens and antisera used in serological tests to identify antibodies to coxsackievirus in serum. Additionally, some of these reagents consist of coxsackievirus antisera conjugated with a...

  9. 21 CFR 866.3490 - Rhinovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... and antisera used in serological tests to identify antibodies to rhinovirus in serum. The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rhinovirus serological reagents. 866.3490 Section 866.3490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  10. Current status of poliovirus infections.

    Science.gov (United States)

    Melnick, J L

    1996-07-01

    Two scientists who played leading roles in the conquest of poliomyelitis died recently. In 1954, Jonas Salk provided the first licensed polio vaccine, the formalin (and heat)-inactivated virus. Albert Sabin gave us the attenuated live virus vaccine, which was licensed in 1962. This paper takes the reader through the history of the disease, including its pathogenesis, epidemiology, vaccines, and future directions. The emphasis is on vaccines, for it seems that with proper vaccination the number of new cases is falling dramatically. It is hoped that by the year 2000, we will accomplish the goal of the World Health Organization of "a world without polio." Then, because there is no animal reservoir, we can seriously discuss when and how to eliminate the need for vaccination and ultimately destroy our stocks of poliovirus.

  11. Differential effects of the putative GBF1 inhibitors Golgicide A and AG1478 on enterovirus replication.

    NARCIS (Netherlands)

    Linden, L. van der; Schaar, H.M. van der; Lanke, K.H.W.; Neyts, J.; Kuppeveld, F.J.M. van

    2010-01-01

    The genus Enterovirus, belonging to the family Picornaviridae, includes well-known pathogens, such as poliovirus, coxsackievirus, and rhinovirus. Brefeldin A (BFA) impedes replication of several enteroviruses through inhibition of Golgi-specific BFA resistance factor 1 (GBF1), a regulator of

  12. The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family

    NARCIS (Netherlands)

    van der Linden, Lonneke; Vives-Adrián, Laia; Selisko, Barbara; Ferrer-Orta, Cristina; Liu, Xinran; Lanke, Kjerstin; Ulferts, Rachel; De Palma, Armando M; Tanchis, Federica; Goris, Nesya; Lefebvre, David; De Clercq, Kris; Leyssen, Pieter; Lacroix, Céline; Pürstinger, Gerhard; Coutard, Bruno; Canard, Bruno; Boehr, David D; Arnold, Jamie J; Cameron, Craig E; Verdaguer, Nuria; Neyts, Johan; van Kuppeveld, Frank J M

    2015-01-01

    The genus Enterovirus of the family Picornaviridae contains many important human pathogens (e.g., poliovirus, coxsackievirus, rhinovirus, and enterovirus 71) for which no antiviral drugs are available. The viral RNA-dependent RNA polymerase is an attractive target for antiviral therapy.

  13. Induction and suppression of innate antiviral responses by picornaviruses

    NARCIS (Netherlands)

    Feng, Qian; Langereis, Martijn A; van Kuppeveld, Frank J M

    2014-01-01

    The family Picornaviridae comprises of small, non-enveloped, positive-strand RNA viruses and contains many human and animal pathogens including enteroviruses (e.g. poliovirus, coxsackievirus, enterovirus 71 and rhinovirus), cardioviruses (e.g. encephalomyocarditis virus), hepatitis A virus and

  14. Modification of picornavirus genomic RNA using 'click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA

    NARCIS (Netherlands)

    Langereis, Martijn A|info:eu-repo/dai/nl/304823597; Feng, Qian; Nelissen, Frank H T; Virgen-Slane, Richard; van der Heden van Noort, Gerbrand J; Maciejewski, Sonia; Filippov, Dmitri V; Semler, Bert L; van Delft, Floris L; van Kuppeveld, Frank J M|info:eu-repo/dai/nl/156614723

    Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for

  15. The potential benefits of a new poliovirus vaccine for long-term poliovirus risk management.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2016-12-01

    To estimate the incremental net benefits (INBs) of a hypothetical ideal vaccine with all of the advantages and no disadvantages of existing oral and inactivated poliovirus vaccines compared with current vaccines available for future outbreak response. INB estimates based on expected costs and polio cases from an existing global model of long-term poliovirus risk management. Excluding the development costs, an ideal poliovirus vaccine could offer expected INBs of US$1.6 billion. The ideal vaccine yields small benefits in most realizations of long-term risks, but great benefits in low-probability-high-consequence realizations. New poliovirus vaccines may offer valuable insurance against long-term poliovirus risks and new vaccine development efforts should continue as the world gathers more evidence about polio endgame risks.

  16. Characterization of group B coxsackieviruses isolated from non-polio acute flaccid paralysis patients in Pakistan: vital assessment before polio eradication.

    Science.gov (United States)

    Angez, M; Shaukat, S; Zahra, R; Alam, M M; Sharif, S; Khurshid, A; Arshad, Y; Suleman, M; Mujtaba, G; Zaidi, S S Z

    2017-09-01

    Pakistan is at the verge of polio eradication but isolation of non-polio enteroviruses (NPEVs) from acute flaccid paralysis (AFP) cases may result in serious or even fatal outcome. Many enteroviruses share similar symptoms and epidemiology as is the case with poliovirus and coxsackievirus (CV). The present study was designed to genetically characterize coxsackievirus B (CV-B) serotypes isolated from non-polio acute flaccid paralytic children, as well as to understand their probable role in paralysis. A total of 63 (20·1%) out of 313 stool samples during 2013 were found positive for NPEVs in rhabdomyosarcoma cells. Only 24 (38·0%) NPEVs were typed as CV-B by microneutralization assay and were further characterized by sequencing of the viral protein 1 (VP1) gene. Molecular phylogenetic analyses classified the study strains into six coxsackievirus B serotypes (coxsackievirus B1 to B6) with their respective prototype strains with evidence of epidemiological linkage and distinct clusters. Moreover, four major differences were found within the amino acid sequences of BC-loop in VP1 of CV-B strains. In conclusion, this study presented the molecular evolutionary genetic overview and distinct phylogenetic pattern of CV-B isolates from AFP cases in Pakistan, and explored the possible link between CV-B infections and AFP cases. Furthermore, our data reveal that these viruses might contribute to the incidence of paralysis in population and there is need of time to establish an enterovirus surveillance system for better understanding of epidemiological and virological characteristics of NPEV infections associated with AFP cases in the country.

  17. Sabin and wild type polioviruses from children who presented with ...

    African Journals Online (AJOL)

    polioviruses will continue to increase in importance. Objective: Isolating and identifying poliovirus strains from children of pediatrics age in Nigeria. Methods: A total of 120 fecal samples were randomly collected from children under the age of five who ...

  18. Molecular Epidemiology of Human Rhinoviruses and Enteroviruses Highlights Their Diversity in Sub-Saharan Africa.

    Science.gov (United States)

    L'Huillier, Arnaud G; Kaiser, Laurent; Petty, Tom J; Kilowoko, Mary; Kyungu, Esther; Hongoa, Philipina; Vieille, Gaël; Turin, Lara; Genton, Blaise; D'Acremont, Valérie; Tapparel, Caroline

    2015-12-08

    Human rhinoviruses (HRVs) and enteroviruses (HEVs) belong to the Enterovirus genus and are the most frequent cause of infection worldwide, but data on their molecular epidemiology in Africa are scarce. To understand HRV and HEV molecular epidemiology in this setting, we enrolled febrile pediatric patients participating in a large prospective cohort assessing the causes of fever in Tanzanian children. Naso/oropharyngeal swabs were systematically collected and tested by real-time RT-PCR for HRV and HEV. Viruses from positive samples were sequenced and phylogenetic analyses were then applied to highlight the HRV and HEV types as well as recombinant or divergent strains. Thirty-eight percent (378/1005) of the enrolled children harboured an HRV or HEV infection. Although some types were predominant, many distinct types were co-circulating, including a vaccinal poliovirus, HEV-A71 and HEV-D68. Three HRV-A recombinants were identified: HRV-A36/HRV-A67, HRV-A12/HRV-A67 and HRV-A96/HRV-A61. Four divergent HRV strains were also identified: one HRV-B strain and three HRV-C strains. This is the first prospective study focused on HRV and HEV molecular epidemiology in sub-Saharan Africa. This systematic and thorough large screening with careful clinical data management confirms the wide genomic diversity of these viruses, brings new insights about their evolution and provides data about associated symptoms.

  19. Characterizing poliovirus transmission and evolution: insights from modeling experiences with wild and vaccine-related polioviruses.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Kalkowska, Dominika A; Wassilak, Steven G F; Cochi, Stephen L; Thompson, Kimberly M

    2013-04-01

    With national and global health policymakers facing numerous complex decisions related to achieving and maintaining polio eradication, we expanded our previously developed dynamic poliovirus transmission model using information from an expert literature review process and including additional immunity states and the evolution of oral poliovirus vaccine (OPV). The model explicitly considers serotype differences and distinguishes fecal-oral and oropharyngeal transmission. We evaluated the model by simulating diverse historical experiences with polioviruses, including one country that eliminated wild poliovirus using both OPV and inactivated poliovirus vaccine (IPV) (USA), three importation outbreaks of wild poliovirus (Albania, the Netherlands, Tajikistan), one situation in which no circulating vaccine-derived polioviruses (cVDPVs) emerge despite annual OPV use and cessation (Cuba), three cVDPV outbreaks (Haiti, Madura Island in Indonesia, northern Nigeria), one area of current endemic circulation of all three serotypes (northern Nigeria), and one area with recent endemic circulation and subsequent elimination of multiple serotypes (northern India). We find that when sufficient information about the conditions exists, the model can reproduce the general behavior of poliovirus transmission and outbreaks while maintaining consistency in the generic model inputs. The assumption of spatially homogeneous mixing remains a significant limitation that affects the performance of the differential equation-based model when significant heterogeneities in immunity and mixing may exist. Further studies on OPV virus evolution and improved understanding of the mechanisms of mixing and transmission may help to better characterize poliovirus transmission in populations. Broad application of the model promises to offer insights in the context of global and national policy and economic models. © 2013 Society for Risk Analysis.

  20. Poliovirus vaccine strains detected in stool specimens of immunodeficient children in South Africa.

    Science.gov (United States)

    Pavlov, Dobromir N; Van Zyl, Walda B; Kruger, Mariane; Blignaut, Liezl; Grabow, Willie O K; Ehlers, Marthie M

    2006-01-01

    After exposure to the oral poliovirus vaccine (OPV), immunocompetent persons excrete poliovirus (PV) vaccine strains for a limited period. In contrast, immunodeficient individuals remain sometimes chronically infected, and in some cases, PV excretion times as long as 10 years have been reported. During prolonged replication in the human intestine, the PV vaccine strain almost invariably reverts its attenuated character and acquires neurovirulent properties (vaccine-derived PVs, or VDPVs), which resemble wild-type PV strains. The aim of this study was to determine the occurrence of OPV strains in stools of immunodeficient children from a selected area in South Africa, as a first step toward future research on the prevalence and potential health impact of VDPVs. In a period of 1 year, a total of 164 stool samples of HIV-positive children aged 4 months to 8 years were studied for the excretion of OPV strains. In addition, 23 stool samples from healthy immunocompetent children were analyzed after receiving their OPV immunization. By applying a reverse transcription-polymerase chain reaction in combination with a nested PCR, a total of 54 enteroviruses (EVs) were detected in the stool specimens of the immunodeficient children. Using restriction enzyme analysis, 13 PVs were distinguished from 41 nonpolio EVs (NPEVs). A Sabin-specific RT-triplex PCR confirmed the presence of 7 Sabin PV type 1, 4 Sabin PV type 3, and 2 Sabin PV type 2 isolates. The majority of the NPEV group was made up of 7 coxsackievirus B3 (CBV3), 6 echovirus 11 (ECV11), 5 ECV9, and 3 coxsackievirus A6 (CAV6) isolates. According to the results, two of the immunodeficient patients (P023 and P140) who had received their last OPV immunization more than 15 months before (vaccinated at 14 weeks of age) tested positive for Sabin PVs types 3 and 1, respectively. A 5-year-old immunodeficient patient (P052) who had received her last OPV immunization more than 42 months before (vaccinated at 18 months of age

  1. Adaptive immunity to rhinoviruses: sex and age matter

    Directory of Open Access Journals (Sweden)

    Pritchard Antonia L

    2010-12-01

    Full Text Available Abstract Background Rhinoviruses (RV are key triggers in acute asthma exacerbations. Previous studies suggest that men suffer from infectious diseases more frequently and with greater severity than women. Additionally, the immune response to most infections and vaccinations decreases with age. Most immune function studies do not account for such differences, therefore the aim of this study was to determine if the immune response to rhinovirus varies with sex or age. Methods Blood mononuclear cells were isolated from 63 healthy individuals and grouped by sex and age (≤50 years old and ≥52 years old. Cells were cultured with rhinovirus 16 at a multiplicity of infection of 1. The chemokine IP-10 was measured at 24 h as an index of innate immunity while IFNγ and IL-13 were measured at 5 days as an index of adaptive immunity. Results Rhinovirus induced IFNγ and IL-13 was significantly higher in ≤50 year old women than in age matched men (p 0.005. There was no sex or age based difference in rhinovirus induced IP-10 expression. Both IFNγ and IL-13 were negatively correlated with age in women but not in men. Conclusions This study suggests that pre-menopausal women have a stronger adaptive immune response to rhinovirus infection than men and older people, though the mechanisms responsible for these differences remain to be determined. Our findings highlight the importance of gender and age balance in clinical studies and in the development of new treatments and vaccines.

  2. Intratypic differentiation of poliovirus strains by enzyme-linked immunosorbent assay (ELISA): poliovirus type 1.

    Science.gov (United States)

    Glikmann, G; Moynihan, M; Petersen, I; Vestergaard, B F

    1983-01-01

    A double antibody sandwich-ELISA has been developed for the detection of antigenic differences between wild and vaccine derived strains of Poliovirus type 1. Poliovirus strains antibodies were prepared in rabbits by immunization with virus suspensions of: Sabin LSc2ab (vaccine derived) and Brunhilde and Mahoney (wild types). IgG fractions were purified from antiserum by precipitation with ammonium sulphate and DEAE-Sephadex A50 chromatography. Purified IgG antibodies were used for coating of microtest plates (catching antibodies). The same reagents labeled with horseradish peroxidase were used as conjugates (detecting antibodies). Detecting antibodies were made strain specific by cross-absorption with the heterologous virus strain. Absorbed and non-absorbed detecting antibodies were subsequently used for detection and quantitation of the poliovirus antigen(s) bound to IgG-coated surfaces. Poliovirus laboratory strains and isolates from sixty-six individuals were differentiated intratypically as vaccine derived or wild types when the ELISA was performed using absorbed conjugates. No intermediate strains were found, and all clinical samples tested fell in two distinct categories. Conversely, when detecting antibodies were used before absorption a high degree of homology between wild and vaccine strains was demonstrated and the differentiation between the two groups was poorly achieved. The ELISA has been optimized in terms of specificity and sensitivity. Less than 10 ng of poliovirus antigens could be detected by non-absorbed detecting antibodies whereas 18 ng was the minimal amount detected by the same antibodies after absorption. Preparation of strain specific antibodies did not require a previous concentration of the poliovirus suspension used for the absorption. It is proposed that the developed ELISA is capable of: 1) detection of low amounts of poliovirus antigens in clinical samples, and 2) intratypic differentiation of poliovirus antigens as either vaccine

  3. Poliovirus Laboratory Based Surveillance: An Overview.

    Science.gov (United States)

    Zaidi, Syed Sohail Zahoor; Asghar, Humayun; Sharif, Salmaan; Alam, Muhammad Masroor

    2016-01-01

    World Health Assembly (WHA) in 1988 encouraged the member states to launch Global Polio Eradication Initiative (GPEI) (resolution WHA41.28) against "the Crippler" called poliovirus, through strong routine immunization program and intensified surveillance systems. Since its launch, global incidence of poliomyelitis has been reduced by more than 99 % and the disease squeezed to only three endemic countries (Afghanistan, Pakistan, and Nigeria) out of 125. Today, poliomyelitis is on the verge of eradication, and their etiological agents, the three poliovirus serotypes, are on the brink of extinction from the natural environment. The last case of poliomyelitis due to wild type 2 strain occurred in 1999 in Uttar Pradesh, India whereas the last paralytic case due to wild poliovirus type 3 (WPV3) was seen in November, 2012 in Yobe, Nigeria. Despite this progress, undetected circulation cannot fully rule out the eradication as most of the poliovirus infections are entirely subclinical; hence sophisticated environmental surveillance is needed to ensure the complete eradication of virus. Moreover, the vaccine virus in under-immunized communities can sometimes revert and attain wild type characteristics posing a big challenge to the program.

  4. Poliovirus tropism and attenuation are determined after internal ribosome entry

    OpenAIRE

    Kauder, Steven E.; Racaniello, Vincent R.

    2004-01-01

    Poliovirus replication is limited to a few organs, including the brain and spinal cord. This restricted tropism may be a consequence of organ-specific differences in translation initiation by the poliovirus internal ribosome entry site (IRES). A C-to-U mutation at base 472 in the IRES of the Sabin type 3 poliovirus vaccine strain, known to attenuate neurovirulence, may further restrict tropism by eliminating viral replication in the CNS. To determine the relationship between IRES-mediated tra...

  5. Human rhinoviruses: the cold wars resume.

    Science.gov (United States)

    Mackay, Ian M

    2008-08-01

    Human rhinoviruses (HRVs) are the most common cause of viral illness worldwide but today, less than half the strains have been sequenced and only a handful examined structurally. This viral super-group, known for decades, has still to face the full force of a molecular biology onslaught. However, newly identified viruses (NIVs) including human metapneumovirus and bocavirus and emergent viruses including SARS-CoV have already been exhaustively scrutinized. The clinical impact of most respiratory NIVs is attributable to one or two major strains but there are 100+ distinct HRVs and, because we have never sought them independently, we must arbitrarily divide the literature's clinical impact findings among them. Early findings from infection studies and use of inefficient detection methods have shaped the way we think of 'common cold' viruses today. To review past HRV-related studies in order to put recent HRV discoveries into context. HRV infections result in undue antibiotic prescriptions, sizable healthcare-related expenditure and exacerbation of expiratory wheezing associated with hospital admission. The finding of many divergent and previously unrecognized HRV strains has drawn attention and resources back to the most widespread and frequent infectious agent of humans; providing us the chance to seize the advantage in a decades-long cold war.

  6. Progress Toward Containment of Poliovirus Type 2 - Worldwide, 2017.

    Science.gov (United States)

    Previsani, Nicoletta; Singh, Harpal; St Pierre, Jeanette; Boualam, Liliane; Fournier-Caruana, Jacqueline; Sutter, Roland W; Zaffran, Michel

    2017-06-23

    The Global Polio Eradication Initiative (GPEI) continues to make progress toward the eradication target. Only one of the three serotypes, wild poliovirus (WPV) type 1 (WPV1), is still circulating, and the numbers of cases and countries with endemic transmission are at record lows. With the certification of wild poliovirus type 2 (WPV2) eradication in 2015 and the global replacement of trivalent oral poliovirus vaccine (tOPV) containing Sabin poliovirus types 1, 2, and 3 with bivalent OPV containing only Sabin poliovirus types 1 and 3 during April-May 2016, poliovirus type 2 (PV2) is now an eradicated pathogen. However, in eight countries (Cameroon, Chad, Democratic Republic of Congo, Mozambique, Niger, Nigeria, Pakistan, and Syria), monovalent type 2 OPV (mOPV2) was authorized for large-scale outbreak control after tOPV withdrawal (1). Poliovirus containment, an evolving area of work that affects every country, aims to ensure that all PV2 specimens are safely contained to minimize the risk for reintroducing the virus into communities. This report summarizes the current status of poliovirus containment and progress since the last report (2), and outlines remaining challenges. Within 30 countries, 86 facilities have been designated by the relevant national authorities (usually the Ministry of Health) to become poliovirus-essential facilities for the continued storage or handling of PV2 materials; each country is responsible for ensuring that these facilities meet all biorisk management requirements.

  7. Analysis of codon usage and nucleotide composition bias in polioviruses

    Directory of Open Access Journals (Sweden)

    Gu Yuan-xing

    2011-03-01

    Full Text Available Abstract Background Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and a member of the family of Picornaviridae and among the most rapidly evolving viruses known. Analysis of codon usage can reveal much about the molecular evolution of the viruses. However, little information about synonymous codon usage pattern of polioviruses genome has been acquired to date. Methods The relative synonymous codon usage (RSCU values, effective number of codon (ENC values, nucleotide contents and dinucleotides were investigated and a comparative analysis of codon usage pattern for open reading frames (ORFs among 48 polioviruses isolates including 31 of genotype 1, 13 of genotype 2 and 4 of genotype 3. Results The result shows that the overall extent of codon usage bias in poliovirus samples is low (mean ENC = 53.754 > 40. The general correlation between base composition and codon usage bias suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage bias in those polioviruses. Depending on the RSCU data, it was found that there was a significant variation in bias of codon usage among three genotypes. Geographic factor also has some effect on the codon usage pattern (exists in the genotype-1 of polioviruses. No significant effect in gene length or vaccine derived polioviruses (DVPVs, wild viruses and live attenuated virus was observed on the variations of synonymous codon usage in the virus genes. The relative abundance of dinucleotide (CpG in the ORFs of polioviruses are far below expected values especially in DVPVs and attenuated virus of polioviruses genotype 1. Conclusion The information from this study may not only have theoretical value in understanding poliovirus evolution, especially for DVPVs genotype 1, but also have potential value for the development of poliovirus vaccines.

  8. 21 CFR 866.3405 - Poliovirus serological reagents.

    Science.gov (United States)

    2010-04-01

    ... and antisera used in serological tests to identify antibodies to poliovirus in serum. Additionally... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Poliovirus serological reagents. 866.3405 Section 866.3405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  9. Towards a Sustainable Wild Poliovirus Containment Strategy in ...

    African Journals Online (AJOL)

    Esem

    7. Kelly H, Prasopa-Plaizier N, Ballard S. Laboratory. Containment of Wild Poliovirus. JAMA 2001;. 286:536. 8. Mpabalwani EM. Report on Phase 1 Wild Poliovirus laboratory containment activities, Zambia. Ministry of Health / WHO Zambia country office, November,. 2011. 9. Deshpande JM, Nadkarni SS, Siddiqui ZA.

  10. Plaque And Growth Characteristics Of Different Polioviruses Isolated ...

    African Journals Online (AJOL)

    Objective: To determine some virulent trait-related properties of poliovirus isolates from children with acute flaccid paralysis following vaccination with oral polio vaccine (OPV). Design: Six polioviruses earlier characterised into wild, vaccine-derived and OPV-like were studied using the plaque morphology and growth ...

  11. Environmental Surveillance System To Track Wild Poliovirus Transmission

    Science.gov (United States)

    Deshpande, Jagadish M.; Shetty, Sushmitha J.; Siddiqui, Zaeem A.

    2003-01-01

    Eradication of poliomyelitis from large metropolis cities in India has been difficult due to high population density and the presence of large urban slums. Three paralytic poliomyelitis cases were reported in Mumbai, India, in 1999 and 2000 in spite of high immunization coverage and good-quality supplementary immunization activities. We therefore established a systematic environmental surveillance study by weekly screening of sewage samples from three high-risk slum areas to detect the silent transmission of wild poliovirus. In 2001, from among the 137 sewage samples tested, wild poliovirus type 1 was isolated from 35 and wild poliovirus type 3 was isolated from 1. Acute flaccid paralysis (AFP) surveillance indicated one case of paralytic poliomyelitis from the city. Phylogenetic analysis with complete VP1 sequences revealed that the isolates from environmental samples belonged to four lineages of wild polioviruses recently isolated from poliomyelitis cases in Uttar Pradesh and not to those previously isolated from AFP cases in Mumbai. Wild poliovirus thus introduced caused one case of paralytic poliomyelitis. The virus was detected in environmental samples 3 months before. It was found that wild polioviruses introduced several times during the year circulated in Mumbai for a limited period before being eliminated. Environmental surveillance was found to be sensitive for the detection of wild poliovirus silent transmission. Nucleotide sequence analysis helped identify wild poliovirus reservoir areas. PMID:12732567

  12. Some genetic characteristics of sabin-like poliovirus isolated from ...

    African Journals Online (AJOL)

    A total of 34 sabin strains of the poliovirus isolated from 22 children with 60-day follow-up residual acute flaccid paralysis (AFP) were genetically characterized and ... Although we are not dealing with a case of circulating vaccine derived poliovirus (cVDPV) yet, if the above condition persists, the advent of cVDVP may not be ...

  13. Elimination of representative contaminant candidate list viruses, coxsackievirus, echovirus, hepatitis A virus, and norovirus, from water by coagulation processes.

    Science.gov (United States)

    Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K; Aochi, A

    2017-03-15

    We examined the removal of representative contaminant candidate list (CCL) viruses (coxsackievirus [CV] B5, echovirus type [EV] 11, and hepatitis A virus [HAV] IB), recombinant norovirus virus-like particles (rNV-VLPs), and murine norovirus (MNV) type 1 by coagulation. Water samples were subjected to coagulation with polyaluminum chloride (PACl, basicity 1.5) followed by either settling or settling and filtration. Together with our previously published results, the removal ratio order, as evaluated by a plaque-forming-unit method or an enzyme-linked immunosorbent assay after settling, was HAV>EV=rNV-VLPs≥CV=poliovirus type 1=MNV>adenovirus type 40 (range, 0.1-2.7-log 10 ). Infectious HAV was likely inactivated by the PACl and therefore was removed to a greater extent than the other viruses. A nonsulfated high-basicity PACl (basicity 2.1), removed the CCL viruses more efficiently than did two other sulfated PACls (basicity 1.5 or 2.1), alum, or ferric chloride. We also examined the removal ratio of two bacteriophages. The removal ratios for MS2 tended to be larger than those of the CCL viruses, whereas those for φX174 were comparable with or smaller than those of the CCL viruses. Therefore, φX174 may be a useful conservative surrogate for CCL viruses during coagulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Recurrent Coxsackievirus Infection in a Patient with Lamellar Ichthyosis.

    Science.gov (United States)

    Damsky, William E; Leventhal, Jonathan S; Khalil, David; Vesely, Matthew D; Craiglow, Brittany G; Milstone, Leonard M; Choate, Keith A

    2016-01-01

    We describe a case of coxsackievirus (CV) A6 infection in a patient with lamellar ichthyosis followed by subsequent CV A8 infection within the same year. Atypical cutaneous features characterized the infection. This observation, combined with the rapidity with which reinfection occurred, suggests that the natural history of CV infection may be altered in patients with underlying ichthyoses. © 2016 Wiley Periodicals, Inc.

  15. SAR studies of 9-norbornylpurines as Coxsackievirus B3 inhibitors

    Czech Academy of Sciences Publication Activity Database

    Šála, Michal; De Palma, A. M.; Hřebabecký, Hubert; Dejmek, Milan; Dračínský, Martin; Leyssen, P.; Neyts, J.; Mertlíková-Kaiserová, Helena; Nencka, Radim

    2011-01-01

    Roč. 21, č. 14 (2011), s. 4271-4275 ISSN 0960-894X R&D Projects: GA MŠk 1M0508; GA ČR GAP303/11/1297 Institutional research plan: CEZ:AV0Z40550506 Keywords : coxsackievirus * norbornane * picornaviruses Subject RIV: CC - Organic Chemistry Impact factor: 2.554, year: 2011

  16. A novel multiplex poliovirus binding inhibition assay applicable for large serosurveillance and vaccine studies, without the use of live poliovirus.

    NARCIS (Netherlands)

    Schepp, Rutger M; Berbers, Guy A M; Ferreira, José A; Reimerink, Johan H; van der Klis, Fiona R

    2017-01-01

    Large-scale serosurveillance or vaccine studies for poliovirus using the "gold standard" WHO neutralisation test (NT) are very laborious and time consuming. With the polio eradication at hand and with the removal of live attenuated Sabin strains from the oral poliovirus vaccine (OPV), starting with

  17. Protein phosphorylations in poliovirus infected cells.

    Science.gov (United States)

    James, L A; Tershak, D R

    1981-01-01

    In vivo phosphorylation of proteins that are associated with polysomes of poliovirus-infected VERO (African green monkey kidney) and HeLa (Henrietta Lacks) cells differed from phosphorylations observed with uninfected cells that were fed fresh medium. With both types of cells infection stimulated phosphorylation of proteins with molecular weights of 40 000-41 000, 39 000, 34 000, 32 000, and 24 000. Similarities of phosphorylations in VERO and HeLa cells suggest that they are a specific consequence of infection and might serve a regulatory function during protein synthesis.

  18. Immune Serum From Sabin Inactivated Poliovirus Vaccine Immunization Neutralizes Multiple Individual Wild and Vaccine-Derived Polioviruses.

    Science.gov (United States)

    Sun, Mingbo; Li, Changgui; Xu, Wenbo; Liao, Guoyang; Li, Rongcheng; Zhou, Jian; Li, Yanping; Cai, Wei; Yan, Dongmei; Che, Yanchun; Ying, Zhifang; Wang, Jianfeng; Yang, Huijuan; Ma, Yan; Ma, Lei; Ji, Guang; Shi, Li; Jiang, Shude; Li, Qihan

    2017-05-15

    A Sabin strain-based inactivated poliomyelitis vaccine (Sabin-IPV) is the rational option for completely eradicating poliovirus transmission. The neutralizing capacity of Sabin-IPV immune serum to different strains of poliovirus is a key indicator of the clinical protective efficacy of this vaccine. Sera collected from 500 infants enrolled in a randomized, blinded, positive control, phase 2 clinical trial were randomly divided into 5 groups: Groups A, B, and C received high, medium, and low doses, respectively, of Sabin-IPV, while groups D and E received trivalent oral polio vaccine and Salk strain-based IPV, respectively, all on the same schedule. Immune sera were collected after the third dose of primary immunization, and tested in cross-neutralization assays against 19 poliovirus strains of all 3 types. All immune sera from all 5 groups interacted with the 19 poliovirus strains with various titers and in a dose-dependent manner. One type 2 immunodeficiency-associated vaccine-derived poliovirus strain was not recognized by these immune sera. Sabin-IPV vaccine can induce protective antibodies against currently circulating and reference wild poliovirus strains and most vaccine-derived poliovirus strains, with rare exceptions. NCT01056705. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. Genome Sequence of Human Rhinovirus A22, Strain Lancaster/2015.

    Science.gov (United States)

    Atkinson, Kate V; Bishop, Lisa A; Rhodes, Glenn; Salez, Nicolas; McEwan, Neil R; Hegarty, Matthew J; Robey, Julie; Harding, Nicola; Wetherell, Simon; Lauder, Robert M; Pickup, Roger W; Wilkinson, Mark; Gatherer, Derek

    2017-03-23

    The genome of human rhinovirus A22 (HRV-A22) was assembled by deep sequencing RNA samples from nasopharyngeal swabs. The assembled genome is 8.7% divergent from the HRV-A22 reference strain over its full length, and it is only the second full-length genome sequence for HRV-A22. The new strain is designated strain HRV-A22/Lancaster/2015. Copyright © 2017 Atkinson et al.

  20. The prospective preventative HIV vaccine based on modified poliovirus.

    Science.gov (United States)

    Zhang, Yang-de; Lu, Xiao-lin; Li, Nian-feng

    2007-01-01

    In order to control HIV pandemic, many vaccines are invented. Although none first verified its efficacy in clinic, we hypothesize that HIV vaccine based on poliovirus is potential to develop the promising one, because it can elicit the broad immune response including the main mucosal, humoral and cellular reaction. However, the viral neural virulence is one major concern. The attenuated Sabin strain is a better candidate. While partial poliovirus genes are replaced by HIV antigen genes, the defective interfering particle will fail to produce progeny virions, which may further ensure its security. Although the vaccinal immune efficacy was verified in some similar animal experiments based on poliovirus to express the exogenous genes, more animal and clinical immune trials about HIV-poliovirus chimeric minireplicons are to be carried out and the hypotheses are to be validated.

  1. Characteristics of the poliovirus replication complex.

    Science.gov (United States)

    Bienz, K; Egger, D; Pfister, T

    1994-01-01

    In the infected cell, the poliovirus replication complex (RC) is found in the center of a rosette formed by many virus-induced vesicles. The RC is attached to the vesicular membranes and contains a compact central part which encloses the replication forks of the replicative intermediate and all proteins necessary for strand elongation. The growing plus strands of the replicative intermediate protrude from the central part of the RC, but are still enclosed by membraneous structures of the rosette. After completion, progeny 36S RNA is set free at the surface of the rosette. In an in vitro transcription system, isolated replication complex-containing rosettes are active in initiation, elongation and maturation (release) of plus strand progeny RNA. Full functionality of the RC depends on an intact structural framework of all membraneous components of the rosette.

  2. Regulation of translation initiation at the Poliovirus IRES

    OpenAIRE

    Hirnet, Juliane

    2010-01-01

    Poliovirus (PV) translation and replication can occur in neuronal cells where it causes degeneration and lysis of cells leading to paralytic poliomyelitis. Other cell types are much less affected by PV infection and do not support translation and replication of the virus as well. Apart from the poliospecific receptor, the reasons for the tissue preference of poliovirus may be found in its translation initiation via an internal ribosome entry site (IRES), which in addition ...

  3. Rare adverse events associated with oral poliovirus vaccine in Brazil

    Directory of Open Access Journals (Sweden)

    Friedrich F.

    1997-01-01

    Full Text Available Oral poliovirus vaccine (OPV developed by A. Sabin has been effectively used to control poliomyelitis in Brazil, and the last case with the isolation of a wild poliovirus strain occurred in March 1989. Although the vaccine controlled the circulation of wild strains and poliomyelitis cases associated with these strains were not detected during the last eight years, rare cases classified as vaccine-associated paralytic poliomyelitis (VAPP have been detected. Molecular characterization studies of poliovirus strains isolated from VAPP cases and from healthy contacts have confirmed that the isolates are derived from the Sabin vaccine strains and also detected genomic modifications known or suspected to increase neurovirulence such as mutations and recombination. The molecular characterization of polioviruses isolated during the last eight years from paralysis cases classified as Guillain-Barré (GBS syndrome and transverse myelitits (TM, and from facial paralysis (FP cases also confirmed the vaccine origin of the strains and demonstrated mutations known to increase neurovirulence. Analysis of the epidemiologic data of these GBS, TM and FP cases demonstrated that in most of them the last OPV dose was given months or years before the onset of the disease and the isolation of the polioviruses. The temporal association between the isolation of these strains and the GBS, TM and FP suggested that the Sabin vaccine-derived poliovirus strains could also rarely trigger the diseases.

  4. Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C.

    Directory of Open Access Journals (Sweden)

    Peter McErlean

    Full Text Available BACKGROUND: Human rhinoviruses (HRVs are the most frequently detected pathogens in acute respiratory tract infections (ARTIs and yet little is known about the prevalence, recurrence, structure and clinical impact of individual members. During 2007, the complete coding sequences of six previously unknown and highly divergent HRV strains were reported. To catalogue the molecular and clinical features distinguishing the divergent HRV strains, we undertook, for the first time, in silico analyses of all available polyprotein sequences and performed retrospective reviews of the medical records of cases in which variants of the prototype strain, HRV-QPM, had been detected. METHODOLOGY/PRINCIPLE FINDINGS: Genomic analyses revealed that the six divergent strains, residing within a clade we previously called HRV A2, had the shortest polyprotein of all picornaviruses investigated. Structure-based amino acid alignments identified conserved motifs shared among members of the genus Rhinovirus as well as substantive deletions and insertions unique to the divergent strains. Deletions mostly affected regions encoding proteins traditionally involved in antigenicity and serving as HRV and HEV receptor footprints. Because the HRV A2 strains cannot yet be cultured, we created homology models of predicted HRV-QPM structural proteins. In silico comparisons confirmed that HRV-QPM was most closely related to the major group HRVs. HRV-QPM was most frequently detected in infants with expiratory wheezing or persistent cough who had been admitted to hospital and required supplemental oxygen. It was the only virus detected in 65% of positive individuals. These observations contributed to an objective clinical impact ranging from mild to severe. CONCLUSIONS: The divergent strains did not meet classification requirements for any existing species of the genus Rhinovirus or Enterovirus. HRV A2 strains should be partitioned into at least one new species, putatively called Human

  5. Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor.

    NARCIS (Netherlands)

    Freiberg, F.; Sauter, M.; Pinkert, S.; Govindarajan, T.; Kaldrack, J.; Thakkar, M.; Fechner, H.; Klingel, K.; Gotthardt, M.

    2014-01-01

    The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail

  6. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers.

    Directory of Open Access Journals (Sweden)

    Scott M Robinson

    2014-04-01

    Full Text Available Coxsackievirus B3 (CVB3, a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, "fluorescent timer" protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3 following transfection in HeLa cells. "Fluorescent timer" protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs, and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of "fluorescent timer" protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. "Fluorescent timer" protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs containing matured "fluorescent timer" protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic

  7. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers.

    Science.gov (United States)

    Robinson, Scott M; Tsueng, Ginger; Sin, Jon; Mangale, Vrushali; Rahawi, Shahad; McIntyre, Laura L; Williams, Wesley; Kha, Nelson; Cruz, Casey; Hancock, Bryan M; Nguyen, David P; Sayen, M Richard; Hilton, Brett J; Doran, Kelly S; Segall, Anca M; Wolkowicz, Roland; Cornell, Christopher T; Whitton, J Lindsay; Gottlieb, Roberta A; Feuer, Ralph

    2014-04-01

    Coxsackievirus B3 (CVB3), a member of the picornavirus family and enterovirus genus, causes viral myocarditis, aseptic meningitis, and pancreatitis in humans. We genetically engineered a unique molecular marker, "fluorescent timer" protein, within our infectious CVB3 clone and isolated a high-titer recombinant viral stock (Timer-CVB3) following transfection in HeLa cells. "Fluorescent timer" protein undergoes slow conversion of fluorescence from green to red over time, and Timer-CVB3 can be utilized to track virus infection and dissemination in real time. Upon infection with Timer-CVB3, HeLa cells, neural progenitor and stem cells (NPSCs), and C2C12 myoblast cells slowly changed fluorescence from green to red over 72 hours as determined by fluorescence microscopy or flow cytometric analysis. The conversion of "fluorescent timer" protein in HeLa cells infected with Timer-CVB3 could be interrupted by fixation, suggesting that the fluorophore was stabilized by formaldehyde cross-linking reactions. Induction of a type I interferon response or ribavirin treatment reduced the progression of cell-to-cell virus spread in HeLa cells or NPSCs infected with Timer-CVB3. Time lapse photography of partially differentiated NPSCs infected with Timer-CVB3 revealed substantial intracellular membrane remodeling and the assembly of discrete virus replication organelles which changed fluorescence color in an asynchronous fashion within the cell. "Fluorescent timer" protein colocalized closely with viral 3A protein within virus replication organelles. Intriguingly, infection of partially differentiated NPSCs or C2C12 myoblast cells induced the release of abundant extracellular microvesicles (EMVs) containing matured "fluorescent timer" protein and infectious virus representing a novel route of virus dissemination. CVB3 virions were readily observed within purified EMVs by transmission electron microscopy, and infectious virus was identified within low-density isopycnic iodixanol

  8. Enter at Your Own Risk: How Enteroviruses Navigate the Dangerous World of Pattern Recognition Receptor Signaling

    OpenAIRE

    Harris, Katharine G; Coyne, Carolyn B

    2013-01-01

    Enteroviruses are the most common human viral pathogens worldwide. This genus of small, non-enveloped, single stranded RNA viruses includes coxsackievirus, rhinovirus, echovirus, and poliovirus species. Infection with these viruses can induce mild symptoms that resemble the common cold, but can also be associated with more severe syndromes such as poliomyelitis, neurological diseases including aseptic meningitis and encephalitis, myocarditis, and the onset of type I diabetes. In humans, polar...

  9. Experimental rhinovirus 16 infection. Effects on cell differentials and soluble markers in sputum in asthmatic subjects

    NARCIS (Netherlands)

    Grünberg, K.; Smits, H. H.; Timmers, M. C.; de Klerk, E. P.; Dolhain, R. J.; Dick, E. C.; Hiemstra, P. S.; Sterk, P. J.

    1997-01-01

    Asthma exacerbations are often associated with respiratory virus infections, particularly with rhinovirus. In the present study we investigated the effect of experimental rhinovirus 16 (RV16) infection on airway inflammation as assessed by analysis of hypertonic saline-induced sputum. Twenty-seven

  10. A one-step, real-time PCR assay for rapid detection of rhinovirus.

    Science.gov (United States)

    Do, Duc H; Laus, Stella; Leber, Amy; Marcon, Mario J; Jordan, Jeanne A; Martin, Judith M; Wadowsky, Robert M

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID(50) (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform.

  11. Rhinovirus viremia in adult patients with high viral load in bronchoalveolar lavages.

    Science.gov (United States)

    Van Rijn, Anneloes L; Claas, Eric C; von dem Borne, Peter A; Kroes, Aloys C M; de Vries, Jutte J C

    2017-11-01

    In children, rhinovirus viremia has been associated with higher nasopharyngeal loads and increase in severity of clinical signs and symptoms. This study aims to detect rhinovirus viremia in adult patients and to establish potential correlations with the clinical course. Adult patients with rhinovirus strongly positive bronchoalveolar lavages (BAL, quantitation cycle, Cq values <25) detected between 2008 and 2014 were studied retrospectively. Blood sampled between two weeks before and two weeks after BAL sampling was tested for rhinovirus RNA. Underlying conditions, symptoms, radiography, microbiological data, and disease outcome were analysed. Twenty-seven of 43 patients with rhinovirus positive BAL at Cq values <25 had blood samples available within the prespecified time-frame (mean blood 3-4 samples per patient). Four of these 27 patients (15%) tested rhinovirus RNA positive in their blood (of whom one patient twice). Genotyping demonstrated rhinovirus A01, A24, B52 and B92 in these four immunocompromised patients. Viremic patients were not significantly different with regard to underlying conditions, respiratory symptoms, radiological findings, co-pathogens nor the number of blood samples tested for RV. However, patients with rhinovirus viremia had significant higher mortality rates compared to patients without viremia, as all four died as a consequence of respiratory problems (100%) versus 22% (5/23), p=0.007 (Fisher's exact). Rhinovirus viremia can occur in adult patients with a high viral load in BAL fluid. Rhinovirus viremia may be considered a negative prognostic factor, although a causative role with regard to the adverse outcome has yet to be demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Human rhinovirus infections in rural Thailand: epidemiological evidence for rhinovirus as both pathogen and bystander.

    Directory of Open Access Journals (Sweden)

    Alicia M Fry

    Full Text Available BACKGROUND: We describe human rhinovirus (HRV detections in SaKaeo province, Thailand. METHODS: From September 1, 2003-August 31, 2005, we tested hospitalized patients with acute lower respiratory illness and outpatient controls without fever or respiratory symptoms for HRVs with polymerase chain reaction and molecularly-typed select HRVs. We compared HRV detection among hospitalized patients and controls and estimated enrollment adjusted incidence. RESULTS: HRVs were detected in 315 (16% of 1919 hospitalized patients and 27 (9.6% of 280 controls. Children had the highest frequency of HRV detections (hospitalized: <1 year: 29%, 1-4 year: 29%, ≥ 65 years: 9%; controls: <1 year: 24%, 1-4 year: 14%, ≥ 65 years: 2.8%. Enrollment adjusted hospitalized HRV detection rates were highest among persons aged <1 year (1038/100,000 persons/year, 1-4 years (457, and ≥ 65 years (71. All three HRV species were identified, HRV-A was the most common species in most age groups including children aged <1 year (61% and all adult age groups. HRV-C was the most common species in the 1-4 year (51% and 5-19 year age groups (54%. Compared to controls, hospitalized adults (≥ 19 years and children were more likely to have HRV detections (odds ratio [OR]: 4.8, 95% confidence interval [CI]: 1.5, 15.8; OR: 2.0, CI: 1.2, 3.3, respectively and hospitalized children were more likely to have HRV-A (OR 1.7, CI: 0.8, 3.5 or HVR-C (OR 2.7, CI: 1.2, 5.9 detection. CONCLUSIONS: HRV rates were high among hospitalized children and the elderly but asymptomatic children also had substantial HRV detection. HRV (all species, and HRV-A and HRV-C detections were epidemiologically-associated with hospitalized illness. Treatment or prevention modalities effective against HRV could reduce hospitalizations due to HRV in Thailand.

  13. Systematic review of mucosal immunity induced by oral and inactivated poliovirus vaccines against virus shedding following oral poliovirus challenge.

    Directory of Open Access Journals (Sweden)

    Thomas R Hird

    Full Text Available Inactivated poliovirus vaccine (IPV may be used in mass vaccination campaigns during the final stages of polio eradication. It is also likely to be adopted by many countries following the coordinated global cessation of vaccination with oral poliovirus vaccine (OPV after eradication. The success of IPV in the control of poliomyelitis outbreaks will depend on the degree of nasopharyngeal and intestinal mucosal immunity induced against poliovirus infection. We performed a systematic review of studies published through May 2011 that recorded the prevalence of poliovirus shedding in stool samples or nasopharyngeal secretions collected 5-30 days after a "challenge" dose of OPV. Studies were combined in a meta-analysis of the odds of shedding among children vaccinated according to IPV, OPV, and combination schedules. We identified 31 studies of shedding in stool and four in nasopharyngeal samples that met the inclusion criteria. Individuals vaccinated with OPV were protected against infection and shedding of poliovirus in stool samples collected after challenge compared with unvaccinated individuals (summary odds ratio [OR] for shedding 0.13 (95% confidence interval [CI] 0.08-0.24. In contrast, IPV provided no protection against shedding compared with unvaccinated individuals (summary OR 0.81 [95% CI 0.59-1.11] or when given in addition to OPV, compared with individuals given OPV alone (summary OR 1.14 [95% CI 0.82-1.58]. There were insufficient studies of nasopharyngeal shedding to draw a conclusion. IPV does not induce sufficient intestinal mucosal immunity to reduce the prevalence of fecal poliovirus shedding after challenge, although there was some evidence that it can reduce the quantity of virus shed. The impact of IPV on poliovirus transmission in countries where fecal-oral spread is common is unknown but is likely to be limited compared with OPV.

  14. Combined intranasal ipratropium bromide and oxymetazoline in experimental rhinovirus infection.

    Science.gov (United States)

    Pitkäranta, A; Wecker, M T; Korts, D C; Hayden, F G

    1998-01-01

    The topical anticholinergic ipratropium bromide and topical decongestant oxymetazoline were tested to determine whether oxymetazoline alone and the combination were well tolerated and reduced rhinorrhea and middle ear pressure abnormalities during experimental rhinovirus infection. The study was double-bind, placebo-controlled, and double dummy in design. Healthy volunteers (n = 109) with low serum neutralizing antibody titer (oxymetazoline 0.05% two sprays per nostril, oxymetazoline alone, or placebo. Treatments were self administered twice daily for 5 days beginning 1 day after rhinovirus inoculation. The overall infection rate was 83% and of those infected, 88% felt that they had a cold. During the 3-hour period after dosing, the increase in nasal discharge was significantly lower in the combined ipratropium and oxymetazoline (0.13 +/- 0.17 gm/3 hr, mean +/- SE) than after oxymetazoline alone (0.60 +/- 0.18 gm/3 hr) or vehicle (0.73 +/- 0.18 gm/3 hr). Over the 5-day observation period, total daily nasal discharge also tended to be lower in the ipratropium plus oxymetazoline group (3.67 +/- 0.70 gm/24 hr, mean +/- SE) compared to oxymetazoline (5.61 +/- 0.73: 35% reduction) or the vehicle (5.04 +/- 0.73; 27% reduction) recipients, but the differences were not statistically significant. Subjective assessments of rhinorrhea indicated that the severity of rhinorrhea was significantly better among patients receiving oxymetazoline alone or with ipratropium compared to the vehicle. No significant difference in the cumulative frequencies of middle ear pressure abnormalities (27-31%) were found among the treatment groups. Oxymetazoline does not consistently stimulate or decrease nasal mucus production, and ipratropium added to oxymetazoline is well tolerated and reduces rhinorrhea during experimental rhinovirus infection.

  15. [Inactivated poliovirus vaccines: an inevitable choice for eliminating poliomyelitis].

    Science.gov (United States)

    Vidor, J D; Jean-Denis, Shu

    2016-12-06

    The inactivated poliovirus vaccine (IPV) is a very old tool in the fight against poliomyelitis. Though supplanted by oral poliovirus vaccine (OPV) in the 1960s and 1970s, the IPV has now become an inevitable choice because of the increasingly recognized risks associated with continuous use of OPVs. Following the pioneering work of Jonas Salk, who established key principles for the IPV, considerable experience has accumulated over the years. This work has led to modern Salk IPV-containing vaccines, based on the use of inactivated wildtype polioviruses, which have been deployed for routine use in many countries. Very good protection against paralysis is achieved with IPV through the presence of circulating antibodies able to neutralize virus infectivity toward motor neurons. In addition, with IPV, a variable degree of protection against mucosal infection (and therefore transmission) through mucosal antibodies and immune cells is achieved, depending on previous exposure of subjects to wildtype or vaccine polioviruses. The use of an IPV-followed-by-OPV sequential immunization schedule has the potential advantage of eliminating the vaccine-associated paralytic poliomyelitis (VAPP) risk, while limiting the risks of vaccine-derived poliovirus (VDPVs). Sabin strain-derived IPVs are new tools, only recently beginning to be deployed, and data are being generated to document their performance. IPVs will play an irreplaceable role in global eradication of polio.

  16. Decreased rhinovirus shedding after intranasal oxymetazoline application in adults with induced colds compared with intranasal saline.

    Science.gov (United States)

    Winther, Birgit; Buchert, Dagobert; Turner, Ronald B; Hendley, J Owen; Tschaikin, Marion

    2010-01-01

    Intranasal oxymetazoline (OMZ) is used as a decongestant during common colds. Recently, intracellular adhesion molecule (ICAM) 1 receptor expression in vitro has been shown to be diminished by OMZ. ICAM-1 is the major receptor used by rhinovirus to gain entry to human cells. The objective of this study was to assess the effect of OMZ on geometric mean titer of rhinovirus in nasal lavage fluid after rhinovirus inoculation. Volunteers with antibody titers of ≤1:4 to rhinovirus type 39 were enrolled in a randomized, reference-controlled, double-blind study. Beginning 3 hours after intranasal challenge with 100-300 tissue culture infectious dose (TCID)₅₀ of virus, subjects received active 0.05% OMZ (45 μL containing 22.5 μg of OMZ hydrochloride in citrate buffer) or reference control (physiological saline solution [PSS]) three times daily for 5 days. Rhinovirus was detected in fibroblast cultures. Geometric mean viral titer (log₁₀) in 34 rhinovirus-infected subjects receiving OMZ was 1.49 on day 2 compared with 2.24 in the 38 infected subjects receiving PSS (p = 0.04). On day 3, the mean titers were 1.45 and 2.08, respectively. Median length of viral shedding was 3.3 days (OMZ) and 3.4 (PSS). Duration of clinical illness was 6.1 days in both groups. Topical OMZ decreased viral titer on day 2 during experimental rhinovirus infection in normal volunteers.

  17. Poliovirus and echovirus survival in Tetrahymena pyriformis culture in vivo.

    Science.gov (United States)

    Danes, L; Cerva, L

    1984-01-01

    Axenic cultures of Tetrahymena pyriformis, strain I MT IV, grown in a defined medium at room temperature, were used to study interactions of these protozoa with vaccination strain L Sc 2ab of poliovirus type 1, vaccination strain P 712 of poliovirus type 2 and with type 30 echovirus, strain 480/78. T. pyriformis cultures in media containing 10(3.0) TCD50/1 ml of type poliovirus, 10(3.0) TCD50/1 ml of type 2 poliovirus or 10(2.5) TCD50/1 ml echovirus 30 and in virus-free medium did not differ one from another in their growth and die-away kinetics during the 21 days of observation. Two-day T. pyriformis cultures were infected with poliovirus 1 (initial concentration 10(3.2) TCD50/1 ml), and poliovirus 2 and echovirus 30 (initial concentrations 10(3.0) TCD50/1 ml). Viruses were titrated in test tube cultures of BGM cells. The supernatant fluid, standardized sediment and samples of control virus suspension free of protozoa were titrated after 0, 2, 6, 10, 13, 18, 28 and 30 days. Most of the virus in culture was found associated with the sediment, both in the period of active growth and during the die-away phase of T. pyriformis protozoa. The virus in sediment was present at higher titres and its survival time was longer than in virus in liquid phase. Thirteen days after the first contact between T. pyriformis and virus the sediment and supernatant fluid of the old protozoan culture and the T. pyriformis-free control viral suspension were taken and used as inocula for new two-day T. pyriformis cultures.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. The Crystal Structure of the RNA-Dependent RNA Polymerase from Human Rhinovirus: A Dual Function Target for Common Cold Antiviral Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Love, Robert A.; Maegley, Karen A.; Yu, Xiu; Ferre, RoseAnn; Lingardo, Laura K.; Diehl, Wade; Parge, Hans E.; Dragovich, Peter S.; Fuhrman, Shella A. (Pfizer)

    2010-11-16

    Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3D{sup pol}, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3D{sup pol} have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3D{sup pol} enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3D{sup pol} provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3D{sup pol} also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.

  19. original article evaluation of immunity against poliovirus serotypes ...

    African Journals Online (AJOL)

    Dr Oboro VO

    polioviruses to block the infection. This study was therefore conducted to determine the proportion of infants with protective levels of serum neutralizing antibodies after at least two doses of OPV among children within the age at greatest risk of poliomyelitis in the riverine areas. (known as hard-to-reach areas because of the.

  20. Development of novel inactivated poliovirus vaccines: Breaking away from convention

    NARCIS (Netherlands)

    Sanders, B.P.

    2015-01-01

    Infection with poliovirus (a small, non-enveloped Picornavirus) can result in poliomyelitis, hallmarked by symptoms of paralysis which is caused by viral destruction of motor neurons. Circulating humoral neutralizing antibodies can effectively protect against the disease, an immune response which

  1. Persistence analysis of poliovirus on three different types of fomites.

    Science.gov (United States)

    Tamrakar, S B; Henley, J; Gurian, P L; Gerba, C P; Mitchell, J; Enger, K; Rose, J B

    2017-02-01

    The goal of this study was to explore various models for describing viral persistence (infectivity) on fomites and identify the best fit models. The persistence of poliovirus over time was studied on three different fomite materials: steel, cotton and plastic. Known concentrations of poliovirus type 1 were applied to the surface coupons in an indoor environment for various lengths of time. Viruses were recovered from the surfaces by vortexing in phosphate buffer. Seven different mathematical models of relative persistence over time were fit to the data, and the preferred model for each surface was selected based on the Bayesian information criterion. While the preferred model varied by fomite type, the virus showed a rapid initial decay on all of the fomite types, followed by a transition to a more gradual decay after about 4-8 days. Estimates of the time for 99% reduction ranged from 81 h for plastic to 143 h for cotton. A 6 log reduction of recoverable infectivity of poliovirus did not occur during the 3-week duration of the experiment for any of the fomites. In protected indoor environments poliovirus can remain infective for weeks. The models identified by this study can be used in risk assessments to identify appropriate strategies for managing this risk. © 2016 The Society for Applied Microbiology.

  2. Immunity to poliovirus serotypes in children population of selected ...

    African Journals Online (AJOL)

    Background: Poliovirus outbreaks are still reported in Nigeria despite renewed efforts to improve vaccine coverage, thus suggesting the existence of susceptible hosts. Also, there is anecdotal evidence of variation in vaccine coverage by region and specifically between urban and rural communities. Consequently, this study ...

  3. MicroRNA-555 has potent antiviral properties against poliovirus.

    Science.gov (United States)

    Shim, Byoung-Shik; Wu, Weilin; Kyriakis, Constantinos S; Bakre, Abhijeet; Jorquera, Patricia A; Perwitasari, Olivia; Tripp, Ralph A

    2016-03-01

    Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.

  4. Health facility-based survey of poliovirus antibody prevalence ...

    African Journals Online (AJOL)

    Background: High level of Poliovirus protective antibodies, must at all times be sustained in a community if poliomyelitis eradication is to be achieved. For some time now children have been vaccinated against poliomyelitis through various means in Northern Nigeria without authorities taking steps to evaluate the ...

  5. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18

    Directory of Open Access Journals (Sweden)

    Barry Richard D

    2011-01-01

    Full Text Available Abstract Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21 possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13, Coxsackievirus A15 (CVA15 and Coxsackievirus A18 (CVA18, also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction. As preexisting immunity could potentially hinder oncolytic virotherapy, sera from stage IV melanoma patients and normal controls were tested for levels of protective antibody against the panel of oncolytic Coxsackieviruses. Serum neutralization assays revealed that 3 of 21 subjects possessed low levels of anti-CVA21 antibodies, while protective antibodies for CVA13, CVA15 and CVA18 were not detected in any sample. Serum from individuals who were seropositive for CVA21 failed to exhibit cross-neutralization of CVA13, CVA15 and CVA18. From these studies it can be concluded that the administration of CVA13, CVA15 or CVA18 could be employed as a potential multivalent oncolytic therapy against malignant melanoma.

  6. Method for measuring the size distribution of airborne rhinovirus

    International Nuclear Information System (INIS)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor

  7. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  8. Rhinovirus Viremia in Patients Hospitalized With Community-Acquired Pneumonia.

    Science.gov (United States)

    Lu, Xiaoyan; Schneider, Eileen; Jain, Seema; Bramley, Anna M; Hymas, Weston; Stockmann, Chris; Ampofo, Krow; Arnold, Sandra R; Williams, Derek J; Self, Wesley H; Patel, Anami; Chappell, James D; Grijalva, Carlos G; Anderson, Evan J; Wunderink, Richard G; McCullers, Jonathan A; Edwards, Kathryn M; Pavia, Andrew T; Erdman, Dean D

    2017-11-27

    Rhinoviruses (RVs) are ubiquitous respiratory pathogens that often cause mild or subclinical infections. Molecular detection of RVs from the upper respiratory tract can be prolonged, complicating etiologic association in persons with severe lower respiratory tract infections. Little is known about RV viremia and its value as a diagnostic indicator in persons hospitalized with community-acquired pneumonia (CAP). Sera from RV-positive children and adults hospitalized with CAP were tested for RV by real-time reverse-transcription polymerase chain reaction. Rhinovirus species and type were determined by partial genome sequencing. Overall, 57 of 570 (10%) RV-positive patients were viremic, and all were children aged <10 years (n = 57/375; 15.2%). Although RV-A was the most common RV species detected from respiratory specimens (48.8%), almost all viremias were RV-C (98.2%). Viremic patients had fewer codetected pathogens and were more likely to have chest retractions, wheezing, and a history of underlying asthma/reactive airway disease than patients without viremia. More than 1 out of 7 RV-infected children aged <10 years hospitalized with CAP were viremic. In contrast with other RV species, RV-C infections were highly associated with viremia and were usually the only respiratory pathogen identified, suggesting that RV-C viremia may be an important diagnostic indicator in pediatric pneumonia. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Monoclonal antibodies to polioviruses; comparison of intratypic strain differentiation of poliovirus type 1 using monoclonal antibodies versus cross-absorbed antisera.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; T.G. Hazendonk; F.G.C.M. Uytdehaag (Fons); J.A.A.M. van Asten (Jack); G. van Steenis (Bert)

    1983-01-01

    textabstractA panel of 10 monoclonal antibodies raised to 3 different poliovirus type 1 strains was tested in a micro-enzyme-linked immunosorbent assay and in a micro-neutralization test against 87 poliovirus type 1 strains. The results, evaluated in a newly developed system for intratypic strain

  10. Rapid RT-PCR amplification of full-length poliovirus genomes allows rapid discrimination between wild-type and recombinant vaccine-derived polioviruses.

    Science.gov (United States)

    Boot, Hein J; Schepp, Rutger M; van Nunen, Femke J H B; Kimman, Tjeerd G

    2004-03-01

    Poliomyelitis outbreaks in areas that were free for a long time of wild-type polioviruses have been reported. Characterization at nucleotide level of the causative agents showed that the isolated viruses were recombinant oral polio vaccine (OPV)-derived polioviruses. To allow rapid identification and detailed analysis of such recombinant polioviruses, a robust full-length reverse transcriptase-PCR (RT-PCR) was developed using SuperScript II (RT) and expand (PCR). Without extensive purification, it was possible to amplify and characterize the full-length genomes of all selected vaccine, wild-type, and recombinant vaccine-derived polioviruses within a week. Endonuclease nuclease analysis (SpeI) of the full-length amplicons allowed easy discrimination between recombinant and non-recombinant polioviruses. Furthermore, sequence analysis of cloned full-length amplicons of a recombinant vaccine-derived poliovirus strain showed that the quasi-species nature of a viral stock is preserved during the RT-PCR procedure. This robust and rapid RT-PCR method will allow rapid characterization of (recombinant) poliovirus strains in case of a local poliomyelitis outbreak, and will help to assess the risk of the appearance of such strains after wild-type poliovirus has been eradicated globally.

  11. [Global eradication of poliomyelitis: intralaboratory contamination with wild poliovirus in the implementation of the program for safe laboratory containment of wild-type polioviruses in the Russian Federation].

    Science.gov (United States)

    Ivanova, O E; Eremeeva, T P; Korotkova, E A; Iakovenko, M L; Kuribko, S G; Fedorova, V B; Babkina, G M; Petina, V S; Vorontsova, T V; Iasinskiĭ, A A

    2006-01-01

    The paper describes a case of contamination of sewage samples by a wild poliovirus type 1 strain (Mahoney) in one of the virological laboratories of the Russian Federation. It discusses the possible sources and the mechanism of contamination, as well as the problems in the implementation of the program for safe laboratory containments of wild-type polioviruses.

  12. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay.

    Science.gov (United States)

    Myatt, Theodore A; Johnston, Sebastian L; Rudnick, Stephen; Milton, Donald K

    2003-01-13

    Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California) followed by semi-nested RT-PCR and detection by gel electrophoresis. We obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles.

  13. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway.

    Directory of Open Access Journals (Sweden)

    Seii eOHKA

    2012-04-01

    Full Text Available In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV via the blood-brain barrier (BBB. After the virus enters the central nervous system (CNS, it replicates in neurons, especially in motor neurons (MNs, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155-transgenic (Tg mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. Recently, we identified transferrin receptor 1 (TfR1 of mouse brain capillary endothelial cells as a binding protein to PV, implicating that TfR1 is a possible receptor for PV to permeate the BBB.

  14. Inactivation of poliovirus by gamma irradiation of wastewater sludges.

    Science.gov (United States)

    Kaupert, N; Burgi, E; Scolaro, L

    1999-01-01

    The effect of gamma radiation on poliovirus infectivity seeded in sludge samples was investigated in order to determine the radiation dose required to inactivate 90% of viral infectivity (D10). Sludges were obtained from anaerobic pretreated sewages produced by San Felipe, a wastewater treatment facility located at the Tucuman province, Argentina. A D10 of 3.34 kGy was determined for poliovirus type III, Sabin strain, suspended in sludge samples. This value dropped to 1.92 kGy when the virus was suspended in water. A virucidal effect associated to sludges was also demonstrated. These results will be of interest when considering the dose of gamma radiation to be applied to wastewater sludges in order to preserve the environment from viral contamination.

  15. Evolution of a rare vaccine-derived multirecombinant poliovirus.

    Science.gov (United States)

    Karakasiliotis, Ioannis; Paximadi, Eleni; Markoulatos, Panayotis

    2005-11-01

    Recombination is one of the mechanisms by which viral genomes evolve. A vaccine-derived multirecombinant poliovirus strain was isolated from a 5-month-old child with vaccine-associated paralytic poliomyelitis after oral poliovirus vaccine administration. The isolate had an S2/S1/S2/S1 primary genomic structure as revealed by restriction fragment length polymorphism and sequencing analysis. Recombination of the middle S1/S2 region is extremely rare and one of the few characterized types of recombination with Sabin type 1 as a 5' partner. An attempt was made to perform evolutionary analysis of the contributing sequences using the identified mutations in comparison with the original Sabin sequences. A hypothesis is proposed for the order in which the identified recombination events occurred.

  16. Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta

    NARCIS (Netherlands)

    Thibaut, Hendrik Jan; van der Schaar, Hilde M; Lanke, Kjerstin H W; Verbeken, Erik; Andrews, Martin; Leyssen, Pieter; Neyts, Johan; van Kuppeveld, Frank J M

    2014-01-01

    Coxsackieviruses require phosphatidylinositol-4-kinase IIIβ (PI4KIIIβ) for replication but can bypass this need by an H57Y mutation in protein 3A (3A-H57Y). We show that mutant coxsackievirus is not outcompeted by wild-type virus during 10 passages in vitro. In mice, the mutant virus proved as

  17. Detection of airborne rhinovirus and its relation to outdoor air supply in office environments.

    Science.gov (United States)

    Myatt, Theodore A; Johnston, Sebastian L; Zuo, Zhengfa; Wand, Matthew; Kebadze, Tatiana; Rudnick, Stephen; Milton, Donald K

    2004-06-01

    Rhinoviruses are major causes of morbidity in patients with respiratory diseases; however, their modes of transmission are controversial. We investigated detection of airborne rhinovirus in office environments by polymerase chain reaction technology and related detection to outdoor air supply rates. We sampled air from 9 A.M. to 5 P.M. each workday, with each sample run for 1 work week. We directly extracted RNA from the filters for nested reverse transcriptase-polymerase chain reaction analysis of rhinovirus. Nasal lavage samples from building occupants with upper respiratory infections were also collected. Indoor carbon dioxide (CO2 concentrations were recorded every 10 minutes as a surrogate for outdoor air supply. To increase the range of CO2 concentrations, we adjusted the outdoor air supply rates every 3 months. Generalized additive models demonstrated an association between the probability of detecting airborne rhinovirus and a weekly average CO2 concentration greater than approximately 100 ppm, after controlling for covariates. In addition, one rhinovirus from a nasal lavage contained an identical nucleic acid sequence similar to that in the building air collected during the same week. These results suggest that occupants in buildings with low outdoor air supply may have an increased risk of exposure to infectious droplet nuclei emanating from a fellow building occupant.

  18. Sorveglianza della circolazione ambientale dei poliovirus nel Lazio

    Directory of Open Access Journals (Sweden)

    A.M. Patti

    2003-05-01

    Full Text Available Ancora oggi in tutto il mondo il vaccino antipolio più utilizzato è l’OPV costituito da virus viventi attenuati che vengono eliminati per un periodo di tempo variabile dal soggetto vaccinato. L’immissione di virus vaccinali nell’ambiente è stata in passato, e lo è tuttora nelle zone endemiche, estremamente importante per assicurare e la competizione con il poliovirus selvaggio e una immunità di gregge. Nei paesi polio-free, ed in futuro in tutto il mondo, la circolazione di virus vaccinali potrebbe viceversa diventare un punto critico in grado di inficiare i risultati dell’eradicazione. Infatti i virus vaccino derivati, replicando, retromutano verso la neurovirulenza e/o accumulano mutazioni che alla fine conferiscono loro caratteristiche del tutto diverse dai ceppi parentali; inoltre possono anche ricombinarsi con il selvaggio o con altri enterovirus assumendo caratteristiche di virulenza e di trasmissibilità interumana che emergono con lo scoppio di focolai epidemici. Obiettivo del presente progetto è stata la valutazione della circolazione dei poliovirus e degli eventuali virus vaccino derivati in matrici ambientali nella regione Lazio nel periodo 1996-2002. Metodo: sono stati analizzati 26 campioni di liquami e 36 campioni di acque superficiali contaminate da liquami. Le particelle virali sono state concentrate mediante ultra filtrazione tangenziale (10.000 NMWR – Millipore. I concentrati sono stati seminati su cellule BGM ed L20B. I virus isolati sono stati identificati con antisieri specifici (RIUM e sui poliovirus, presso l’ISS, sono stati effettuati la differenziazione intratipica, il sequenziamento della regione VPI/2A, il sequenziamento della regione 5’ NCR e la regione codificante la polimerasi virale. Risultati e conclusioni: sono stati isolati complessivamente 6 poliovirus di cui 4 da acque superficiali. I virus erano tutti Sabin-kike e retromutati ma non ricombinanti. I dati ottenuti sottolineano l

  19. Iota-Carrageenan is a potent inhibitor of rhinovirus infection

    Directory of Open Access Journals (Sweden)

    Meier Christiane

    2008-09-01

    Full Text Available Abstract Background Human rhinoviruses (HRVs are the predominant cause of common cold. In addition, HRVs are implicated in the worsening of COPD and asthma, as well as the loss of lung transplants. Despite significant efforts, no anti-viral agent is approved for the prevention or treatment of HRV-infection. Results In this study we demonstrate that Iota-Carrageenan, a sulphated polysaccharide derived from red seaweed, is a potent anti-rhinoviral substance in-vitro. Iota-Carrageenan reduces HRV growth and inhibits the virus induced cythopathic effect of infected HeLa cells. In addition, Iota-Carrageenan effectively prevents the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture. The data suggest that Iota-Carrageenan acts primarily by preventing the binding or the entry of virions into the cells. Conclusion Since HRV infections predominately occur in the nasal cavity and the upper respiratory tract, a targeted treatment with a product containing Iota-Carrageenan is conceivable. Clinical trials are needed to determine whether Iota-Carrageenan-based products are effective in the treatment or prophylaxis of HRV infections.

  20. Human rhinovirus capsid dynamics is controlled by canyon flexibility

    International Nuclear Information System (INIS)

    Reisdorph, Nichole; Thomas, John J.; Katpally, Umesh; Chase, Elaine; Harris, Ken; Siuzdak, Gary; Smith, Thomas J.

    2003-01-01

    Quantitative enzyme accessibility experiments using nano liquid chromatography electrospray mass spectrometry combined with limited proteolysis and isotope-labeling was used to examine the dynamic nature of the human rhinovirus (HRV) capsid in the presence of three antiviral compounds, a neutralizing Fab, and drug binding cavity mutations. Using these methods, it was found that the antivirals WIN 52084 and picovir (pleconaril) stabilized the capsid, while dansylaziridine caused destabilization. Site-directed mutations in the drug-binding cavity were found to stabilize the HRV14 capsid against proteolytic digestion in a manner similar to WIN 52084 and pleconaril. Antibodies that bind to the NIm-IA antigenic site and penetrate the canyon were also observed to protect the virion against proteolytic cleavage. These results demonstrate that quantifying the effects of antiviral ligands on protein 'breathing' can be used to compare their mode of action and efficacy. In this case, it is apparent that hydrophobic antiviral agents, antibodies, or mutations in the canyon region block viral breathing. Therefore, these studies demonstrate that mobility in the canyon region is a major determinant in capsid breathing

  1. Comparative study of molecular and antigenic characterization for intratypic differentiation (ITD) of poliovirus strains.

    Science.gov (United States)

    Adedeji, A O; Okonko, I O; Adu, F D

    2012-12-01

    This study was designed to compare the sensitivity of a Sabin vaccine strain-specific PCR assay and an enzyme-linked immunosorbent assay with polyclonal cross-absorbed antisera (PAb-E) for intratypic differentiation (ITD) of polioviruses (PVs). These were used for the definitive characterization of the strains. Poliovirus strains isolated in L20B and RD cell lines were subjected to both PCR and ELISA. Both PCR and ELISA identified 3 (13.6%) out of 22 isolates, respectively as poliovirus Sabin 1. PCR identified 4 (18.2%) out of 22 isolates as poliovirus Sabin 2 and ELISA identified 2 (9.1%) out of 22 isolates as poliovirus Sabin 2. None of the two assay identified poliovirus Sabin 3. Both PCR and ELISA identified 12 (54.5%) out of 22 isolates, respectively as wild poliovirus (WPV) 1. None of the assays identified any of the isolates as WPV 2 and 3. Only PCR assay was able to identify the mixture of two poliovirus Sabin serotypes (a mixture of Sabin 1 and 2) and two mixtures of poliovirus Sabin 2 and 3. In this study, only ELISA was able to identified two invalid results. Invalid results observed in this study are of important practical implication to the emergence of vaccine-derived poliovirus. This may have epidemic potential. Hence, the two ITD assays are of paramount importance for identification of PVs. It is therefore recommended in line with WHO guideline that at least two methods be used for the ITD of poliovirus isolates, and each method should be based on a different principle (i.e., antigenic and genetic properties). Copyright © 2012 Wiley Periodicals, Inc.

  2. Assessment of efficacy of a live oral poliovirus vaccine for virulent Sabin-like poliovirus 1 strains in Japan.

    Science.gov (United States)

    Iwai, M; Nakayama, T; Matsuura, K; Hasegawa, S; Ando, S; Obara, M; Nagai, Y; Yoshida, H; Horie, H

    2006-01-01

    Virulent Sabin-like poliovirus (VSLP) was isolated from river and sewage waters between October 1993 and September 1995 in Toyama Prefecture, Japan (Yoshida et al., Lancet 356, 1461-1463, 2000). In this study, to assess the possibility of an epidemic of poliomyelitis caused by a VSLP in Japan under the current vaccination policy of administration of live attenuated oral poliovirus vaccine (OPV), we determined titers of serum neutralizing antibodies to poliovirus 1 (PV-1) strains Sabin (vaccine strain), Mahoney (wild-type strain) and G4-12 (VSLP) in various groups of residents of Toyama Prefecture, Japan. The seropositivity and geometric mean neutralizing antibody titers against these strains in the individuals who obtained two doses of OPV were 99.1%, 94.5% and 95.5%, respectively, and 564, 186 and 194, respectively. Although the antibody titers to G4-12 were lower compared with those to Sabin, these results indicate that the OPV vaccination policy in Japan has been effective in preventing poliomyelitis caused by VSLPs. These results also suggest that (i) an epidemic of poliomyelitis caused by a VSLP has not occurred in Japan due to herd immunity, and (ii) the possibility of reemergence of VSLPs will be prevented if sufficient herd immunity is acquired immediately after completion of the OPV vaccination in accordance with the poliomyelitis eradication program.

  3. Recent Progress in Understanding Coxsackievirus Replication, Dissemination, and Pathogenesis

    Science.gov (United States)

    Sin, Jon; Mangale, Vrushali; Thienphrapa, Wdee; Gottlieb, Roberta A.; Feuer, Ralph

    2015-01-01

    Coxsackieviruses (CVs) are relatively common viruses associated with a number of serious human diseases, including myocarditis and meningo-encephalitis. These viruses are considered cytolytic yet can persist for extended periods of time within certain host tissues requiring evasion from the host immune response and a greatly reduced rate of replication. A member of Picornaviridae family, CVs have been historically considered non-enveloped viruses – although recent evidence suggest that CV and other picornaviruses hijack host membranes and acquire an envelope. Acquisition of an envelope might provide distinct benefits to CV virions, such as resistance to neutralizing antibodies and efficient nonlytic viral spread. CV exhibits a unique tropism for progenitor cells in the host which may help to explain the susceptibility of the young host to infection and the establishment of chronic disease in adults. CVs have also been shown to exploit autophagy to maximize viral replication and assist in unconventional release from target cells. In this article, we review recent progress in clarifying virus replication and dissemination within the host cell, identifying determinants of tropism, and defining strategies utilized by the virus to evade the host immune response. Also, we will highlight unanswered questions and provide future perspectives regarding the potential mechanisms of CV pathogenesis. PMID:26142496

  4. Seroprevalence of Enterovirus A71 and Coxsackievirus A16 in Healthy People in Shandong Province, China.

    Directory of Open Access Journals (Sweden)

    Jian-Xing Wang

    Full Text Available Hand, foot, and mouth disease has become very common in mainland of China in recent years, and enterovirus A71 and coxsackievirus A16 are its major etiologic factors. Here we investigated the seroprevalence of enterovirus A71 and coxsackievirus A16 based on a large group of healthy individuals in Shandong province, China.A total of 1378 healthy individuals were tested for serum neutralizing antibodies against enterovirus A71 and coxsackievirus A16 using a micro neutralization test.The overall seroprevalence of enterovirus A71 neutralizing antibodies was 74.75%. It increased significantly from 48.84% in children aged 0-1 years old to 88.64% in those aged 20-29 years (p 40 years old with a significant gender-specific difference (p 40 years without a gender-specific difference. Nearly 50% of the children <1 year were susceptible to enterovirus A71 infection versus 40% to coxsackievirus A16 infection. Sample collection time and place also played a role in the enterovirus A71 and coxsackievirus A16 positive rates. The overall rates in January were significantly lower than those in April and August (p < 0.01; enterovirus A71 positive rates in Jinan city (capital city of Shandong province were lower than those in Jining city and Zibo city (p < 0.05; and oxsackievirus A16 positive rates in Jining city were significantly higher than those in Jinan city and Zibo city (p < 0.01.There were significant differences among age groups, locations, and time points in the seroprevalence rates of enterovirus A71 and coxsackievirus A16 neutralizing antibodies in healthy people in Shandong province.

  5. Anti-poliovirus activity of medicinal plants selected from the Nigerian ...

    African Journals Online (AJOL)

    These results support the traditional use of S. siamea and Z. candida as antiviral agents and suggest that they could provide a possible source for anti-poliovirus drug discovery and development. Keywords: Anti-poliovirus activity, traditional medicine, MTT colorimetric assay. African Journal of Biotechnology Vol. 12(24), pp.

  6. [Genetic characterization of poliovirus isolates from environmental sewage surveillance in Shandong, 2010].

    Science.gov (United States)

    Zhang, Yan; Ji, Sheng-Xiang; Zhang, Xiao-Li; Li, Yan; Zhang, Yong; Tao, Ze-Xin; Wang, Hai-Yan; Zhu, Shuang-Li; Song, Li-Zhi; Feng, Yi; Liu, Yao; Ji, Feng; Lin, Xiao-Juan; Feng, Lei; Hiromu, Yoshida; Xu, Ai-Qiang

    2011-07-01

    To investigate the genetic characteristics of poliovirus isolates from environmental sewage surveillance in Shandong province, we collected sewage samples in Jinan and Linyi City. Serotyping and VP1/ 3D sequencing were performed on polioviruses isolated from the concentrated sewage samples, and VP1 mutation and recombination were analyzed. Thirty-two of sewage samples were collected, and polioviruses were detected in 10 of the samples with a positive rate of 31.3%. Eighteen Sabin strains were isolated including three type 1, nine type 2, and six type 3 polioviruses, and the number of nucleotide substitutions in VP1 coding region varied from 0 to 4. Recombination was found in three Sabin 2 and four Sabin 3 polioviruses. Analysis of neurovirulence sites of VP1 revealed that one Sabin 1 vaccine strain had a nucleotide change of A to G at nt 2749, one Sabin 2 strain had a nucleotide change of A to G at nt 2908, three Sabin 2 strains had a nucleotide change of U to C at nt 2909, and all six Sabin 3 strains had a nucleotide change of C to U at nt 2493. Poliovirus vaccine strains could be isolated from environmental sewage with a high rate of gene recombination and back mutation of neuvirulence-associated sites. None of wild-type poliovirus or vaccine-derived poliovirus was detected.

  7. STUDY OF IMMUNITY TO POLIOVIRUSES ON CERTAIN "SILENT" TERRITORIES OF RUSSIA

    Directory of Open Access Journals (Sweden)

    N. I. Romanenkova

    2011-01-01

    Full Text Available Abstract. The degree of immunity to polioviruses of three serotypes among children of different ages was analysed on certain "controlled" and "silent" territories of Russia in different periods of Polio Eradication Initiative. It was shown that the levels of immunity of children’s population to polioviruses on "controlled" and "silent" territories had no significant difference. It was stated that on the phase which preceded the certification for the absence of circulation of wild polioviruses, when the National Immunisation Days were conducted in the country, the percentage of eronegative children to polioviruses of different serotypes was low on all the territories of Russia. After Russia as a part of the WHO European region was certified as a polio free country and mass immunisation was stopped thepercentage of seronegative children increased, especially to poliovirus of serotype 3, both on the "controlled" and on the "silent" territories.

  8. Patients with Primary Immunodeficiencies Are a Reservoir of Poliovirus and a Risk to Polio Eradication

    Directory of Open Access Journals (Sweden)

    Asghar Aghamohammadi

    2017-06-01

    Full Text Available Immunodeficiency-associated vaccine-derived polioviruses (iVDPVs have been isolated from primary immunodeficiency (PID patients exposed to oral poliovirus vaccine (OPV. Patients may excrete poliovirus strains for months or years; the excreted viruses are frequently highly divergent from the parental OPV and have been shown to be as neurovirulent as wild virus. Thus, these patients represent a potential reservoir for transmission of neurovirulent polioviruses in the post-eradication era. In support of WHO recommendations to better estimate the prevalence of poliovirus excreters among PIDs and characterize genetic evolution of these strains, 635 patients including 570 with primary antibody deficiencies and 65 combined immunodeficiencies were studied from 13 OPV-using countries. Two stool samples were collected over 4 days, tested for enterovirus, and the poliovirus positive samples were sequenced. Thirteen patients (2% excreted polioviruses, most for less than 2 months following identification of infection. Five (0.8% were classified as iVDPVs (only in combined immunodeficiencies and mostly poliovirus serotype 2. Non-polio enteroviruses were detected in 30 patients (4.7%. Patients with combined immunodeficiencies had increased risk of delayed poliovirus clearance compared to primary antibody deficiencies. Usually, iVDPV was detected in subjects with combined immunodeficiencies in a short period of time after OPV exposure, most for less than 6 months. Surveillance for poliovirus excretion among PID patients should be reinforced until polio eradication is certified and the use of OPV is stopped. Survival rates among PID patients are improving in lower and middle income countries, and iVDPV excreters are identified more frequently. Antivirals or enhanced immunotherapies presently in development represent the only potential means to manage the treatment of prolonged excreters and the risk they present to the polio endgame.

  9. Human rhinovirus infection in young African children with acute wheezing

    Directory of Open Access Journals (Sweden)

    Zar Heather J

    2011-03-01

    Full Text Available Abstract Background Infections caused by human rhinoviruses (HRVs are important triggers of wheezing in young children. Wheezy illness has increasingly been recognised as an important cause of morbidity in African children, but there is little information on the contribution of HRV to this. The aim of this study was to determine the role of HRV as a cause of acute wheezing in South African children. Methods Two hundred and twenty children presenting consecutively at a tertiary children's hospital with a wheezing illness from May 2004 to November 2005 were prospectively enrolled. A nasal swab was taken and reverse transcription PCR used to screen the samples for HRV. The presence of human metapneumovirus, human bocavirus and human coronavirus-NL63 was assessed in all samples using PCR-based assays. A general shell vial culture using a pool of monoclonal antibodies was used to detect other common respiratory viruses on 26% of samples. Phylogenetic analysis to determine circulating HRV species was performed on a portion of HRV-positive samples. Categorical characteristics were analysed using Fisher's Exact test. Results HRV was detected in 128 (58.2% of children, most (72% of whom were under 2 years of age. Presenting symptoms between the HRV-positive and negative groups were similar. Most illness was managed with ambulatory therapy, but 45 (35% were hospitalized for treatment and 3 (2% were admitted to intensive care. There were no in-hospital deaths. All 3 species of HRV were detected with HRV-C being the most common (52% followed by HRV-A (37% and HRV-B (11%. Infection with other respiratory viruses occurred in 20/128 (16% of HRV-positive children and in 26/92 (28% of HRV-negative samples. Conclusion HRV may be the commonest viral infection in young South African children with acute wheezing. Infection is associated with mild or moderate clinical disease.

  10. Colchicine aggravates coxsackievirus B3 infection in mice.

    Science.gov (United States)

    Smilde, Bernard J; Woudstra, Linde; Fong Hing, Gene; Wouters, Diana; Zeerleder, Sacha; Murk, Jean-Luc; van Ham, Marieke; Heymans, Stephane; Juffermans, Lynda J M; van Rossum, Albert C; Niessen, Hans W M; Krijnen, Paul A J; Emmens, Reindert W

    2016-08-01

    There is a clinical need for immunosuppressive therapy that can treat myocarditis patients in the presence of an active viral infection. In this study we therefore investigated the effects of colchicine, an immunosuppressive drug which has been used successfully as treatment for pericarditis patients, in a mouse model of coxsackievirus B3(CVB3)-induced myocarditis. Four groups of C3H mice were included: control mice (n=8), mice infected with CVB3 (1×10(5) PFU, n=10), mice with colchicine administration (2mg/kg i.p, n=5) and mice with combined CVB3 infection and colchicine administration (n=10). After three days, the heart, pancreas and spleen were harvested and evaluated using (immuno)histochemical analysis and CVB3 qPCR. Mice were terminated at day 3 post-virus infection as colchicine treatment rapidly resulted in severe illness and mortality in CVB3-infected mice. Colchicine significantly decreased the number of macrophages in the heart in CVB3-infected mice (pcolchicine caused complete destruction of the acini in the CVB3-infected mice and also significantly decreased macrophage (pcolchicine treatment of CVB3-infected mice induced massive apoptosis in the white pulp and significantly inhibited the virus-induced increase of megakaryocytes in the spleen (pcolchicine significantly increased CVB3 levels in both the pancreas and the heart. Colchicine treatment in CVB3-induced myocarditis has a detrimental effect as it causes complete destruction of the exocrine pancreas and enhances viral load in both heart and pancreas. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Rhinovirus induction of fractalkine (CX3CL1 in airway and peripheral blood mononuclear cells in asthma.

    Directory of Open Access Journals (Sweden)

    Nadine Upton

    Full Text Available Rhinovirus infection is associated with the majority of asthma exacerbations. The role of fractalkine in anti-viral (type 1 and pathogenic (type 2 responses to rhinovirus infection in allergic asthma is unknown. To determine whether (1 fractalkine is produced in airway cells and in peripheral blood leucocytes, (2 rhinovirus infection increases production of fractalkine and (3 levels of fractalkine differ in asthmatic compared to non-asthmatic subjects. Fractalkine protein and mRNA levels were measured in bronchoalveolar lavage (BAL cells and peripheral blood mononuclear cells (PBMCs from non-asthmatic controls (n = 15 and mild allergic asthmatic (n = 15 subjects. Protein levels of fractalkine were also measured in macrophages polarised ex vivo to give M1 (type 1 and M2 (type 2 macrophages and in BAL fluid obtained from mild (n = 11 and moderate (n = 14 allergic asthmatic and non-asthmatic control (n = 10 subjects pre and post in vivo rhinovirus infection. BAL cells produced significantly greater levels of fractalkine than PBMCs. Rhinovirus infection increased production of fractalkine by BAL cells from non-asthmatic controls (P<0.01 and in M1-polarised macrophages (P<0.05, but not in BAL cells from mild asthmatics or in M2 polarised macrophages. Rhinovirus induced fractalkine in PBMCs from asthmatic (P<0.001 and healthy control subjects (P<0.05. Trends towards induction of fractalkine in moderate asthmatic subjects during in vivo rhinovirus infection failed to reach statistical significance. Fractalkine may be involved in both immunopathological and anti-viral immune responses to rhinovirus infection. Further investigation into how fractalkine is regulated across different cell types and into the effect of stimulation including rhinovirus infection is warranted to better understand the precise role of this unique dual adhesion factor and chemokine in immune cell recruitment.

  12. Airborne rhinovirus detection and effect of ultraviolet irradiation on detection by a semi-nested RT-PCR assay

    Directory of Open Access Journals (Sweden)

    Rudnick Stephen

    2003-01-01

    Full Text Available Abstract Background Rhinovirus, the most common cause of upper respiratory tract infections, has been implicated in asthma exacerbations and possibly asthma deaths. Although the method of transmission of rhinoviruses is disputed, several studies have demonstrated that aerosol transmission is a likely method of transmission among adults. As a first step in studies of possible airborne rhinovirus transmission, we developed methods to detect aerosolized rhinovirus by extending existing technology for detecting infectious agents in nasal specimens. Methods We aerosolized rhinovirus in a small aerosol chamber. Experiments were conducted with decreasing concentrations of rhinovirus. To determine the effect of UV irradiation on detection of rhinoviral aerosols, we also conducted experiments in which we exposed aerosols to a UV dose of 684 mJ/m2. Aerosols were collected on Teflon filters and rhinovirus recovered in Qiagen AVL buffer using the Qiagen QIAamp Viral RNA Kit (Qiagen Corp., Valencia, California followed by semi-nested RT-PCR and detection by gel electrophoresis. Results We obtained positive results from filter samples that had collected at least 1.3 TCID50 of aerosolized rhinovirus. Ultraviolet irradiation of airborne virus at doses much greater than those used in upper-room UV germicidal irradiation applications did not inhibit subsequent detection with the RT-PCR assay. Conclusion The air sampling and extraction methodology developed in this study should be applicable to the detection of rhinovirus and other airborne viruses in the indoor air of offices and schools. This method, however, cannot distinguish UV inactivated virus from infectious viral particles.

  13. A molecular epidemiological perspective of rhinovirus types circulating in Amsterdam from 2007 to 2012

    NARCIS (Netherlands)

    van der Linden, L.; Bruning, A. H. L.; Thomas, X. V.; Minnaar, R. P.; Rebers, S. P. H.; Schinkel, J.; de Jong, M. D.; Pajkrt, D.; Wolthers, K. C.

    2016-01-01

    Rhinoviruses (RVs) are frequently detected respiratory viruses that cause mild common cold symptoms, but may also lead to more severe respiratory tract infections. The large number of RV types, classified into species A, B and C, hampers clear insights into the epidemiology and clinical significance

  14. Cadherin-related Family Member 3 Genetics and Rhinovirus C Respiratory Illnesses

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Coleman, Amaziah T; Evans, Michael D

    2018-01-01

    Background Experimental evidence suggests that CDHR3 is a receptor for rhinovirus-C (RV-C), and a missense variant in this gene (rs6967330) is associated with childhood asthma with severe exacerbations. Objective To determine whether rs6967330 influences RV-C infections and illnesses in early chi...

  15. Equal virulence of rhinovirus and respiratory syncytial virus in infants hospitalized for lower respiratory tract infection

    NARCIS (Netherlands)

    van Leeuwen, J.C.; Goossens, L.K.; Hendrix, R.; van der Palen, Jacobus Adrianus Maria; Lusthusz, A.; Thio, B.J.

    2012-01-01

    Respiratory syncytial virus (RSV) and rhinovirus (RV) are predominant viruses associated with lower respiratory tract infection in infants. We compared the symptoms of lower respiratory tract infection caused by RSV and RV in hospitalized infants. RV showed the same symptoms as RSV, so on clinical

  16. Achieving high seroprevalence against polioviruses in Sri Lanka--results from a serological survey, 2014.

    Science.gov (United States)

    Gamage, Deepa; Palihawadana, Paba; Mach, Ondrej; Weldon, William C; Oberste, Steven M; Sutter, Roland W

    2015-12-01

    The immunization program in Sri Lanka consistently reaches >90% coverage with oral poliovirus vaccines (OPV), and no polio supplementary vaccination campaigns have been conducted since 2003. We evaluated serological protection against polioviruses in children. A cross-sectional community-based survey was performed in three districts of Sri Lanka (Colombo, Badulla, and Killinochi). Randomly selected children in four age groups (9-11 months, 3-4 years, 7-9 years, and 15 years) were tested for poliovirus neutralizing antibodies. All 400 enrolled children completed the study. The proportion of seropositive children for poliovirus Type 1 and Type 2 was >95% for all age groups; for poliovirus Type 3 it was 95%, 90%, 77%, and 75% in the respective age groups. The vaccination coverage in our sample based on vaccination cards or parental recall was >90% in all age groups. Most Sri Lankan children are serologically protected against polioviruses through routine immunization only. This seroprevalence survey provided baseline data prior to the anticipated addition of inactivated poliovirus vaccine (IPV) into the Sri Lankan immunization program and the switch from trivalent OPV (tOPV) to bivalent OPV (bOPV). Copyright © 2015 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  17. Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993.

    Science.gov (United States)

    Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen

    2003-08-01

    From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5' untranslated region (5' UTR) and noncapsid- 3' UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide.

  18. Poliovirus replication and spread in primary neuron cultures.

    Science.gov (United States)

    Daley, John K; Gechman, Lisa A; Skipworth, Jason; Rall, Glenn F

    2005-09-15

    While some neurotropic viruses cause rapid central nervous system (CNS) disease upon entry into the brain parenchyma, other viruses that are cytolytic in the periphery either result in little neuropathology or are associated with a protracted course of CNS disease consistent with persistent infection. One such virus, poliovirus (PV), is an extremely lytic RNA virus that requires the expression of CD155, the poliovirus receptor (PVR), for infection. To compare the kinetics of PV infection in neuronal and non-neuronal cell types, primary hippocampal neurons and fibroblasts were isolated from CD155+ transgenic embryos and infected with the Mahoney and Sabin strains of PV. Despite similar levels of infection in these ex vivo cultures, PV-infected neurons produced 100-fold fewer infectious particles as compared to fibroblasts throughout infection, and death of PV-infected neurons was delayed approximately 48 h. Spread in neurons occurred primarily by trans-synaptic transmission and was CD155-dependent. Together, these results demonstrate that the magnitude and speed with which PV replication, spread, and subsequent cell death occur in neurons is decreased as compared to non-neuronal cells, implicating cell-specific effects on replication that may then influence viral pathogenesis.

  19. Genetic analysis of poliovirus strains isolated from sewage in Poland.

    Science.gov (United States)

    Kuryk, Ł; Wieczorek, M; Diedrich, S; Böttcher, S; Witek, A; Litwińska, B

    2014-07-01

    The study describes genetic characterization of poliovirus (PV) strains isolated from sewage samples in Poland. The analyses were performed for the detection of any putative polio revertants and recombinants in three genomic regions by sequencing analysis. Thirty-six strains were analyzed. The analyzed strains were identified by neutralization assay as 7 strains of serotype P1, 10 strains of serotype P2, and 19 strains of serotype P3. Sewage isolates were sequenced in 5'UTR, VP1, and 3D genomic regions. All detected PVs were classified as vaccine strains on the basis of VP1 sequence. Mutational differences in the VP1 sequences of isolated viruses ranged from 0.0% to 0.4%, indicating a limited replication period. The genetic analysis of the 3D region showed that some strains have recombinant genomes. Nine strains were found as dipartite recombinants (seven strains--S3/S2, one strain--S2/S1, one strain--S3/S1), while one strain was found as tripartite recombinant (S3/S2/S1). No recombinants with non-PV enteroviruses were identified. None of wild-type PVs or vaccine-derived polioviruses (VDPVs) were detected. This study showed the absence of wild or VDPV circulation in the country and demonstrated the usefulness of environmental surveillance in addition to acute flaccid paralysis (AFP) surveillance in support of polio eradication initiatives. © 2013 Wiley Periodicals, Inc.

  20. The impact of human rhinovirus infection in pediatric patients undergoing heart surgery.

    Science.gov (United States)

    Delgado-Corcoran, Claudia; Witte, Madolin K; Ampofo, Krow; Castillo, Ramon; Bodily, Stephanie; Bratton, Susan L

    2014-12-01

    Human rhinovirus (HRV), the most common cause of upper respiratory infection in children, can present as bronchiolitis, pneumonia, or asthma exacerbations. The impact of HRV in infants and toddlers with congenital heart disease is poorly defined. A case-control study was performed to compare the clinical course for 19 young children with respiratory symptoms who tested positive for rhinovirus after heart surgery with that of 56 matched control subjects. The control subjects were matched by surgical repair, age, weight, and time of the year. Patients with known HRVs before surgery and control subjects with respiratory symptoms or positive test results for viruses were excluded from the study. Human rhinovirus infection was associated with more than a tenfold increase in the odds of noninvasive ventilation after extubation (odds ratio [OR] 11.45; 95 % confidence interval [CI] 3.97-38.67), a 12-fold increase in the probability of extubation failure (OR 12.84; 95 % CI 2.93-56.29), and increased use of pulmonary medications including bronchodilator and nitric oxide (p < 0.001). As a result, the hospital length of stay (HLOS) was two times longer than for the control subjects (p < 0.001), and the cardiac intensive care unit (CICU) length of stay (CICU LOS) was three times longer (p < 0.0001). The intubation time was significantly longer (p < 0.001), and the CICU respiratory charges were significantly greater (p = 0.001) for the infected patients. Human rhinovirus increases resource use and prolongs postoperative recovery after pediatric heart surgery. Surgery timing should be delayed for patients with rhinovirus if possible.

  1. Sabin and wild polioviruses from apparently healthy primary school children in northeastern Nigeria.

    Science.gov (United States)

    Baba, M M; Oderinde, B S; Patrick, P Z; Jarmai, M M

    2012-02-01

    Despite significant success of the Global Polio Eradication Initiative (GPEI) in Nigeria, Afghanistan, India, Pakistan, wild poliovirus still occurs due to persistently high proportions of under and unimmunized children. The study aimed at determining the type of poliovirus often excreted into the environment. Four hundred nine fecal samples collected from apparently healthy school children aged 5-16 years in Borno and Adamawa States, northeastern Nigeria, were tested for poliovirus by tissue culture technique. The isolates were characterized further by intratypic differentiation testing and genetic sequencing. Three wild poliovirus type, 11 Sabin type, combination of Sabin-types 1 + 2 and 2 + 3 poliovirus, and 22 non-polio enteroviruses were obtained. The continued excretion of wild-type poliovirus among children above 5 years old vaccinated with oral polio vaccine contributes to the persistent circulation of these viruses in the environment and may limit the population immunity. However, the excreted Sabin poliovirus is capable of immunizing the unvaccinated children and promotes herd immunity. Similarly, the excretion of combination of two polio serotypes indicates the child susceptibility to the missing serotype (s) and therefore indicates an immunity gap. The common unhygienic practices in the environment could aid the spread of these viruses through oral-fecal route. Asymptomatic transmission of wild poliovirus among older oral polio vaccine-vaccinated children poses a serious threat to polio eradication program in Nigeria and therefore, environmental and serological surveillance with larger sample size are important for monitoring poliovirus circulation in Nigeria. Copyright © 2011 Wiley Periodicals, Inc.

  2. Human Circulating Antibody-Producing B Cell as a Predictive Measure of Mucosal Immunity to Poliovirus.

    Directory of Open Access Journals (Sweden)

    Ayan Dey

    Full Text Available The "gold standard" for assessing mucosal immunity after vaccination with poliovirus vaccines consists in measuring virus excretion in stool after challenge with oral poliovirus vaccine (OPV. This testing is time and resource intensive, and development of alternative methods is a priority for accelerating polio eradication. We therefore evaluated circulating antibody-secreting cells (ASCs as a potential means to evaluate mucosal immunity to poliovirus vaccine.199 subjects, aged 10 years, and previously immunized repeatedly with OPV, were selected. Subjects were assigned to receive either a booster dose of inactivated poliovirus vaccine (IPV, bivalent OPV (bOPV, or no vaccine. Using a micro-modified whole blood-based ELISPOT assay designed for field setting, circulating poliovirus type-specific IgA- and IgG-ASCs, including gut homing α4β7+ ASCs, were enumerated on days 0 and 7 after booster immunization. In addition, serum samples collected on days 0, 28 and 56 were tested for neutralizing antibody titers against poliovirus types 1, 2, and 3. Stool specimens were collected on day 28 (day of bOPV challenge, and on days 31, 35 and 42 and processed for poliovirus isolation.An IPV dose elicited blood IgA- and IgG-ASC responses in 84.8 to 94.9% of subjects, respectively. In comparison, a bOPV dose evoked corresponding blood ASC responses in 20.0 to 48.6% of subjects. A significant association was found between IgA- and IgG-ASC responses and serum neutralizing antibody titers for poliovirus type 1, 2, 3 (p<0.001. In the IPV group, α4β7+ ASCs accounted for a substantial proportion of IgA-ASCs and the proportion of subjects with a positive α4β7+ IgA-ASC response to poliovirus types 1, 2 and 3 was 62.7%, 89.8% and 45.8%, respectively. A significant association was observed between virus excretion and α4β7+ IgA- and/or IgG-ASC responses to poliovirus type 3 among immunized children; however, only a weak association was found for type 1 poliovirus

  3. Epizootic of vesicular disease in pigs caused by coxsackievirus B4 in the Soviet Union in 1975.

    Science.gov (United States)

    Lomakina, Natalia F; Shustova, Elena; Strizhakova, Olga M; Drexler, Felix; Lukashev, Alexander N

    2016-01-01

    Swine vesicular disease virus (SVDV) emerged around 1960 from a human enterovirus ancestor, coxsackievirus B5 (CVB5), and caused a series of epizootics in Europe and Asia. We characterized a coxsackievirus B4 strain that caused an epizootic involving 24 488 pigs in the Soviet Union in 1975. Phylogenetic evidence suggested that the swine virus emerged from a human ancestor between 1945 and 1975, almost simultaneously with the transfer of CVB5.

  4. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    International Nuclear Information System (INIS)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M.

    1982-01-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys. (Auth.)

  5. Emergence of vaccine-derived polioviruses, Democratic Republic of Congo, 2004-2011.

    Science.gov (United States)

    Gumede, Nicksy; Lentsoane, Olivia; Burns, Cara C; Pallansch, Mark; de Gourville, Esther; Yogolelo, Riziki; Muyembe-Tamfum, Jean Jacques; Puren, Adrian; Schoub, Barry D; Venter, Marietjie

    2013-10-01

    Polioviruses isolated from 70 acute flaccid paralysis patients from the Democratic Republic of Congo (DRC) during 2004-2011 were characterized and found to be vaccine-derived type 2 polioviruses (VDPV2s). Partial genomic sequencing of the isolates revealed nucleotide sequence divergence of up to 3.5% in the viral protein 1 capsid region of the viral genome relative to the Sabin vaccine strain. Genetic analysis identified at least 7 circulating lineages localized to specific geographic regions. Multiple independent events of VDPV2 emergence occurred throughout DRC during this 7-year period. During 2010-2011, VDPV2 circulation in eastern DRC occurred in an area distinct from that of wild poliovirus circulation, whereas VDPV2 circulation in the southwestern part of DRC (in Kasai Occidental) occurred within the larger region of wild poliovirus circulation.

  6. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  7. [The intratypic characterization of the poliovirus by the polymerase chain reaction technic].

    Science.gov (United States)

    Avalos Redón, I; Más Lago, P J; Sarmiento Pérez, L R; Palomera Puente, R; Muné Jiménez, M; Bello Corredor, M; Pérez Santos, L

    1998-01-01

    The polymerase chain reaction techniques was introduced for the intratypic characterization of Poliovirus. Primers were used only to promote the amplification of the Sabin vaccine strains proved by electrophoretic run of the amplified DNA products (Sabin 1-97 pb, Sabin 2-71 pb, Sabin 3-44 pb) and whose specificity was satisfactorily verified. 23 Cuban poliovirus strains isolated and identified at the Laboratory of Enterovirus of the "Pedro Kourí" Tropical Medicine Institute from 1993 to 1994 were studied by this technique. All of them were of the vaccine type. It was observed how the Sabin vaccine poliovirus may be the cause of viral meningoencephalitis as a milder neurological complication. This study provided one more evidence about the non circulation of the wild poliovirus in Cuba.

  8. A Cluster of Paralytic Poliomyelitis Cases Due to Transmission of Slightly Diverged Sabin 2 Vaccine Poliovirus.

    Science.gov (United States)

    Korotkova, Ekaterina A; Gmyl, Anatoly P; Yakovenko, Maria L; Ivanova, Olga E; Eremeeva, Tatyana P; Kozlovskaya, Liubov I; Shakaryan, Armen K; Lipskaya, Galina Y; Parshina, Irina L; Loginovskikh, Nataliya V; Morozova, Nadezhda S; Agol, Vadim I

    2016-07-01

    Four cases of acute flaccid paralysis caused by slightly evolved (Sabin-like) vaccine polioviruses of serotype 2 were registered in July to August 2010 in an orphanage of Biysk (Altai Region, Russia). The Biysk cluster of vaccine-associated paralytic poliomyelitis (VAPP) had several uncommon, if not unique, features. (i) Until this outbreak, Sabin-like viruses (in distinction to more markedly evolved vaccine-derived polioviruses [VDPVs]) were reported to cause only sporadic cases of VAPP. Consequently, VAPP cases were not considered to require outbreak-type responses. However, the Biysk outbreak completely blurred the borderline between Sabin-like viruses and VDPVs in epidemiological terms. (ii) The outbreak demonstrated a very high disease/infection ratio, apparently exceeding even that reported for wild polioviruses. The viral genome structures did not provide any substantial hints as to the underlying reason(s) for such pathogenicity. (iii) The replacement of intestinal poliovirus lineages by other Sabin-like lineages during short intervals after the disease onsets was observed in two patients. Again, the sequences of the respective genomes provided no clues to explain these events. (iv) The polioviruses isolated from the patients and their contacts demonstrated a striking heterogeneity as well as rapid and uneven evolution of the whole genomes and their parts, apparently due to extensive interpersonal contacts in a relatively small closed community, multiple bottlenecking, and recombination. Altogether, the results demonstrate several new aspects of pathogenicity, epidemiology, and evolution of vaccine-related polioviruses and underscore several serious gaps in understanding these problems. The oral poliovirus vaccine largely contributed to the nearly complete disappearance of poliovirus-caused poliomyelitis. Being generally safe, it can, in some cases, result in a paralytic disease. Two types of such outcomes are distinguished: those caused by slightly

  9. Current Status of Measles and Oral Poliovirus Vaccines

    Science.gov (United States)

    MacLeod, D. R. E.

    1964-01-01

    Live attenuated measles vaccine, accompanied by a dose of gamma globulin to reduce systemic reactions, has given a high degree of protection, probably long lasting. Further attenuated vaccine gives promise of achieving the same result without the use of gamma globulin. Inactivated vaccine has not been shown to give durable immunity, but a schedule of killed vaccine followed by live vaccine has provided protection with minimal reactions. Inactivated vaccine can probably be combined with other antigens. Sabin oral poliovirus vaccines of all three types have been highly effective in preventing paralytic illness and reducing the spread of virulent strains. Because of the rare occurrence, chiefly in adults, of paralytic cases considered to be probably vaccine-associated, though no proof was possible, it has been recommended in Canada that initial immunization with Salk vaccine be continued and that all infants and children should subsequently receive trivalent Sabin vaccine. PMID:14229761

  10. Virus removal during groundwater recharge: effects of infiltration rate on adsorption of poliovirus to soil.

    OpenAIRE

    Vaughn, J M; Landry, E F; Beckwith, C A; Thomas, M Z

    1981-01-01

    Studies were conducted to determine the influence of infiltration rate on poliovirus removal during groundwater recharge with tertiary-treated wastewater effluents. Experiments were conducted at a uniquely designed, field-situated test recharge basin facility through which some 62,000 m3 of sewage had been previously applied. Recharge at high infiltration rates (75 to 100 cm/h) resulted in the movement of considerable numbers of seeded poliovirus to the groundwater. Moderately reduced infiltr...

  11. [Antigen differences of genetic variants Abent+ and Abent- poliovirus vaccine strain of III type].

    Science.gov (United States)

    Shyrobokov, V P; Kostenko, I H; Nikolaienko, I V

    2003-01-01

    Hybridomes--producers of monoclonal antibodies (MAB) were obtained able to differentiate the variants Abent+ and Abent- poliovirus vaccine strain in the virus neutralizing reaction. Using the obtained panel the changes of the epitope structure of capsid proteins of poliovirus variants (dissociants) were found which appeared during reproduction in cell culture. It proves the fact that there exist essential antigenic differences of superficial virion's proteins, which appear during the process of dissociation.

  12. Brunenders: a partially attenuated historic poliovirus type I vaccine strain.

    Science.gov (United States)

    Sanders, Barbara P; Liu, Ying; Brandjes, Alies; van Hoek, Vladimir; de Los Rios Oakes, Isabel; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2015-09-01

    Brunenders, a type I poliovirus (PV) strain, was developed in 1952 by J. F. Enders and colleagues through serial in vitro passaging of the parental Brunhilde strain, and was reported to display partial neuroattenuation in monkeys. This phenotype of attenuation encouraged two vaccine manufacturers to adopt Brunenders as the type I component for their inactivated poliovirus vaccines (IPVs) in the 1950s, although today no licensed IPV vaccine contains Brunenders. Here we confirmed, in a transgenic mouse model, the report of Enders on the reduced neurovirulence of Brunenders. Although dramatically neuroattenuated relative to WT PV strains, Brunenders remains more virulent than the attenuated oral vaccine strain, Sabin 1. Importantly, the neuroattenuation of Brunenders does not affect in vitro growth kinetics and in vitro antigenicity, which were similar to those of Mahoney, the conventional type I IPV vaccine strain. We showed, by full nucleotide sequencing, that Brunhilde and Brunenders differ at 31 nucleotides, eight of which lead to amino acid changes, all located in the capsid. Upon exchanging the Brunenders capsid sequence with that of the Mahoney capsid, WT neurovirulence was regained in vivo, suggesting a role for the capsid mutations in Brunenders attenuation. To date, as polio eradication draws closer, the switch to using attenuated strains for IPV is actively being pursued. Brunenders preceded this novel strategy as a partially attenuated IPV strain, accompanied by decades of successful use in the field. Providing data on the attenuation of Brunenders may be of value in the further construction of attenuated PV strains to support the grand pursuit of the global eradication of poliomyelitis.

  13. Prolonged Replication of a Type 1 Vaccine-Derived Poliovirus in an Immunodeficient Patient

    Science.gov (United States)

    Kew, Olen M.; Sutter, Roland W.; Nottay, Baldev K.; McDonough, Michael J.; Prevots, D. Rebecca; Quick, Linda; Pallansch, Mark A.

    1998-01-01

    VP1 sequences were determined for poliovirus type 1 isolates obtained over a 189-day period from a poliomyelitis patient with common variable immunodeficiency syndrome (a defect in antibody formation). The isolate from the first sample, taken 11 days after onset of paralysis, contained two poliovirus populations, differing from the Sabin 1 vaccine strain by ∼10%, differing from diverse type 1 wild polioviruses by 19 to 24%, and differing from each other by 5.5% of nucleotides. Specimens taken after day 11 appeared to contain only one major poliovirus population. Evolution of VP1 sequences at synonymous third-codon positions occurred at an overall rate of ∼3.4% per year over the 189-day period. Assuming this rate to be constant throughout the period of infection, the infection was calculated to have started ∼9.3 years earlier. This estimate is about the time (6.9 years earlier) the patient received his last oral poliovirus vaccine dose, approximately 2 years before the diagnosis of immunodeficiency. These findings may have important implications for the strategy to eliminate poliovirus immunization after global polio eradication. PMID:9738040

  14. Wild and vaccine-derived poliovirus circulation, and implications for polio eradication.

    Science.gov (United States)

    Lopalco, P L

    2017-02-01

    Polio cases due to wild virus are reported by only three countries in the world. Poliovirus type 2 has been globally eradicated and the last detection of poliovirus type 3 dates to November 2012. Poliovirus type 1 remains the only circulating wild strain; between January and September 2016 it caused 26 cases (nine in Afghanistan, 14 in Pakistan, three in Nigeria). The use of oral polio vaccine (OPV) has been the key to success in the eradication effort. However, paradoxically, moving towards global polio eradication, the burden caused by vaccine-derived polioviruses (VDPVs) becomes increasingly important. In this paper circulation of both wild virus and VDPVs is reviewed and implications for the polio eradication endgame are discussed. Between April and May 2016 OPV2 cessation has been implemented globally, in a coordinated switch from trivalent OPV to bivalent OPV. In order to decrease the risk for cVDPV2 re-emergence inactivated polio vaccine (IPV) has been introduced in the routine vaccine schedule of all countries. The likelihood of re-emergence of cVDPVs should markedly decrease with time after OPV cessation, but silent circulation of polioviruses cannot be ruled out even a long time after cessation. For this reason, immunity levels against polioviruses should be kept as high as possible in the population by the use of IPV, and both clinical and environmental surveillance should be maintained at a high level.

  15. Poliovirus vaccine shedding among persons with HIV in Abidjan, Cote d'Ivoire.

    Science.gov (United States)

    Hennessey, Karen A; Lago, Hugues; Diomande, Fabien; Akoua-Koffi, Chantal; Caceres, Victor M; Pallansch, Mark A; Kew, Olen M; Nolan, Monica; Zuber, Patrick L F

    2005-12-15

    As polio eradication nears, the development of immunization policies for an era without the disease has become increasingly important. Outbreaks due to circulating vaccine-derived poliovirus (VDPV) and rare cases of immunodeficient persons with prolonged VDPV shedding lend to the growing consensus that oral poliovirus vaccine (OPV) use should be discontinued as soon after polio eradication as possible. The present study was conducted to assess whether persons infected with human immunodeficiency virus (HIV) experience prolonged VDPV shedding and serve as a source of reintroduction of virus into the population. Adults infected with HIV had specimens tested (1) 8 months after a mass OPV campaign, to determine whether poliovirus related to OPV administered during the campaign was present (i.e., prolonged excretion), and (2) starting 7 weeks after a subsequent campaign, to determine whether poliovirus could be detected after the height of OPV exposure. A total of 419 participants were enrolled--315 during the 8-12 months after an OPV campaign held in 2001 and 104 during the 7-13 weeks after a 2002 campaign. No poliovirus was isolated from any participants. It appears unlikely that adults infected with HIV experience prolonged vaccine virus shedding, and, therefore, they probably represent a minimal risk of reintroducing vaccine virus into the population after poliovirus has been eradicated.

  16. A RT-PCR method for selective amplification and phenotypic characterization of all three serotypes of Sabin-related polioviruses from viral mixtures

    Directory of Open Access Journals (Sweden)

    Eliane Veiga da Costa

    2012-08-01

    Full Text Available Outbreaks caused by vaccine-derived polioviruses are challenging the final eradication of paralytic poliomyelitis. Therefore, the surveillance of the acute flaccid paralysis cases based on poliovirus isolation and characterization remains an essential activity. Due to the use of trivalent oral poliovirus vaccine (OPV, mixtures containing more than one serotype of Sabin-related polioviruses are frequently isolated from clinical samples. Because each poliovirus isolate needs to be individually analyzed, we designed polymerase chain reaction primers that can selectively distinguish and amplify a genomic segment of the three Sabin-related poliovirus serotypes present in mixtures, thus, optimizing the diagnosis and providing prompt information to support epidemiologic actions.

  17. Coxsackievirus A6: a new emerging pathogen causing hand, foot and mouth disease outbreaks worldwide.

    Science.gov (United States)

    Bian, Lianlian; Wang, Yiping; Yao, Xin; Mao, Qunying; Xu, Miao; Liang, Zhenglun

    2015-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the predominant pathogens causing outbreaks of hand, foot and mouth disease (HFMD) worldwide. Other human enterovirus A (HEV-A) serotypes tend to cause only sporadic HFMD cases. However, since a HFMD caused by coxsackievirus A6 broke out in Finland in 2008, CA6 has been identified as the responsible pathogen for a series of HFMD outbreaks in Europe, North America and Asia. Because of the severity of the clinical manifestations and the underestimated public health burden, the epidemic of CA6-associated HFMD presents a new challenge to the control of HFMD. This article reviewed the epidemic characteristics, molecular epidemiology, clinical features and laboratory diagnosis of CA6 infection. The genetic evolution of CA6 strains associated with HFMD was also analyzed. It indicated that the development of a multivalent vaccine combining EV71, CA16 and CA6 is an urgent necessity to control HFMD.

  18. Identification of a consistent pattern of mutations in neurovirulent variants derived from the sabin vaccine strain of poliovirus type 2.

    OpenAIRE

    Equestre, M; Genovese, D; Cavalieri, F; Fiore, L; Santoro, R; Perez Bercoff, R

    1991-01-01

    Complete nucleotide sequencing of the RNAs of two unrelated neurovirulent isolates of Sabin-related poliovirus type 2 revealed that two nucleotides and one amino acid (amino acid 143 in the major capsid protein VP1) consistently departed from the sequences of the nonneurovirulent poliovirus type 2 712 and Sabin vaccine strains. This pattern of mutation appeared to be a feature common to all neurovirulent variants of poliovirus type 2.

  19. Environmental surveillance of poliovirus and non-polio enterovirus in urban sewage in Dakar, Senegal (2007-2013)

    OpenAIRE

    Ndiaye, Abdou Kader; Diop, Pape Amadou Mbathio; Diop, Ousmane Madiagne

    2014-01-01

    Introduction Global poliomyelitis eradication initiative relies on (i) laboratory based surveillance of acute flaccid surveillance (AFP) to monitor the circulation of wild poliovirus in a population, and (ii) vaccination to prevent its diffusion. However, as poliovirus can survive in the environment namely in sewage, environmental surveillance (ES) is of growing importance as the eradication target is close. This study aimed to assess polioviruses and non polio enteroviruses circulation in se...

  20. Peroxynitrite inhibition of Coxsackievirus infection by prevention of viral RNA entry

    OpenAIRE

    Padalko, Elizaveta; Ohnishi, Tomokazu; Matsushita, Kenji; Sun, Henry; Fox-Talbot, Karen; Bao, Clare; Baldwin, William M.; Lowenstein, Charles J.

    2004-01-01

    Although peroxynitrite is harmful to the host, the beneficial effects of peroxynitrite are less well understood. We explored the role of peroxynitrite in the host immune response to Coxsackievirus infection. Peroxynitrite inhibits viral replication in vitro, in part by inhibiting viral RNA entry into the host cell. Nitrotyrosine, a marker for peroxynitrite production, is colocalized with viral antigens in the hearts of infected mice but not control mice. Nitrotyrosine coprecipitates with the ...

  1. Multiple Phenotypes in Adult Mice following Inactivation of the Coxsackievirus and Adenovirus Receptor (Car) Gene

    OpenAIRE

    Pazirandeh, Ahmad; Sultana, Taranum; Mirza, Momina; Rozell, Björn; Hultenby, Kjell; Wallis, Karin; Vennström, Björn; Davis, Ben; Arner, Anders; Heuchel, Rainer; Löhr, Matthias; Philipson, Lennart; Sollerbrant, Kerstin

    2011-01-01

    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhib...

  2. Immunologic Characterization of Cytokine Responses to Enterovirus 71 and Coxsackievirus A16 Infection in Children

    OpenAIRE

    Zhang, Shu-Yan; Xu, Mei-Yan; Xu, Hong-Mei; Li, Xiu-Jun; Ding, Shu-Jun; Wang, Xian-Jun; Li, Ting-Yu; Lu, Qing-Bin

    2015-01-01

    Abstract Viral encephalitis is a serious complication of hand, foot, and mouth disease (HFMD), but characteristics of cytokines response in enterovirus 71 (EV-71) and/or coxsackievirus A16 (CV-A16) associated HFMD with or without viral encephalitis remained unclear. We performed a multigroup retrospective study and compared the serum cytokines concentrations among 16 encephalitis patients infected with EV-71 and CV-A16, 24 encephalitis patients with single EV-71 infection, 34 mild HFMD patien...

  3. Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules.

    Science.gov (United States)

    Martin, S; Casasnovas, J M; Staunton, D E; Springer, T A

    1993-01-01

    The intercellular adhesion molecule 1 (ICAM-1) is used as a cellular receptor by 90% of human rhinoviruses (HRVs). Chimeric immunoadhesin molecules containing extracellular domains of ICAM-1 and constant regions of immunoglobulins (Igs) were designed in order to determine the effect of increased valency, Ig isotype, and number of ICAM-1 domains on neutralization and disruption of rhinovirus structure. These immunoadhesins include ICAM-1 amino-terminal domains 1 and 2 fused to the hinge and constant domains of the heavy chains of IgA1, IgM, and IgG1 (IC1-2D/IgA, -/IgM, and -/IgG). In addition, all five extracellular domains were fused to IgA1 (IC1-5D/IgA). Immunoadhesins were compared with soluble forms of ICAM-1 containing five and two domains (sICAM-1 and ICI-2D, respectively) in assays of HRV binding, infectivity, and conformation. In prevention of HRV plaque formation, IC1-5D/IgA was 200 times and IC1-2D/IgM and IC1-2D/IgA were 25 and 10 times more effective, respectively, than ICAM-1. The same chimeras were highly effective in inhibiting binding of rhinovirus to cells and disrupting the conformation of the virus capsid, as demonstrated by generation of approximately 65S particles. The results show that the number of ICAM-1 domains and a flexible Ig hinge are important factors contributing to the efficacy of neutralization. The higher efficiency of chimeras that bound bivalently in disrupting HRV was attributed to higher binding avidity. The IC1-5D/IgA immunoadhesin was effective at nanomolar concentrations, making it feasible therapy for rhinovirus infection. Images PMID:8098781

  4. Antiviral activity of gemcitabine against human rhinovirus in vitro and in vivo.

    Science.gov (United States)

    Song, Jae-Hyoung; Kim, Seong-Ryeol; Heo, Eun-Young; Lee, Jae-Young; Kim, Dong-Eun; Cho, Sungchan; Chang, Sun-Young; Yoon, Byung-Il; Seong, Jeongmin; Ko, Hyun-Jeong

    2017-09-01

    Rhinovirus, a major causative agent of the common cold, is associated with exacerbation of asthma and chronic obstructive pulmonary disease. Currently, there is no antiviral treatment or vaccine for human rhinovirus (HRV). Gemcitabine (2',2'-difluorodeoxycytidine, dFdC) is a deoxycytidine analog with antiviral activity against rhinovirus, as well as enterovirus 71, in vitro. However, the antiviral effects of gemcitabine in vivo have not been investigated. In the current study, we assessed whether gemcitabine mediated antiviral effects in the murine HRV infection model. Intranasal administration of gemcitabine significantly lowered pulmonary viral load and inflammation by decreasing proinflammatory cytokines, including TNF-α and IL-1β, and reduction in the number of lung-infiltrating lymphocytes. Interestingly, we found that the addition of UTP and CTP significantly attenuated the antiviral activity of gemcitabine. Thus the limitation of UTP and CTP by the addition of gemcitabine may inhibit the viral RNA synthesis. These results suggest that gemcitabine, an antineoplastic drug, can be repositioned as an antiviral drug to inhibit HRV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. World Health Organization Guidelines for Containment of Poliovirus Following Type-Specific Polio Eradication - Worldwide, 2015.

    Science.gov (United States)

    Previsani, Nicoletta; Tangermann, Rudolph H; Tallis, Graham; Jafari, Hamid S

    2015-08-28

    In 1988, the World Health Assembly of the World Health Organization (WHO) resolved to eradicate polio worldwide. Among the three wild poliovirus (WPV) types (type 1, type 2, and type 3), WPV type 2 (WPV2) has been eliminated in the wild since 1999, and WPV type 3 (WPV3) has not been reported since 2012. In 2015, only Afghanistan and Pakistan have reported WPV transmission. On May 25, 2015, all WHO Member States endorsed World Health Assembly resolution 68.3 on full implementation of the Polio Eradication and Endgame Strategic Plan 2013-2018 (the Endgame Plan), and with it, the third Global Action Plan to minimize poliovirus facility-associated risk (GAPIII). All WHO Member States have committed to implementing appropriate containment of WPV2 in essential laboratory and vaccine production facilities* by the end of 2015 and of type 2 oral poliovirus vaccine (OPV2) within 3 months of global withdrawal of OPV2, which is planned for April 2016. This report summarizes critical steps for essential laboratory and vaccine production facilities that intend to retain materials confirmed to contain or potentially containing type-specific WPV, vaccine-derived poliovirus (VDPV), or OPV/Sabin viruses, and steps for nonessential facilities† that process specimens that contain or might contain polioviruses. National authorities will need to certify that the essential facilities they host meet the containment requirements described in GAPIII. After certification of WPV eradication, the use of all OPV will cease; final containment of all polioviruses after polio eradication and OPV cessation will minimize the risk for reintroduction of poliovirus into a polio-free world.

  6. Immunogenicity of Different Routine Poliovirus Vaccination Schedules: A Randomized, Controlled Trial in Karachi, Pakistan.

    Science.gov (United States)

    Saleem, Ali F; Mach, Ondrej; Yousafzai, Mohammad T; Khan, Asia; Weldon, William C; Steven Oberste, M; Zaidi, Syed S; Alam, Muhammad M; Quadri, Farheen; Sutter, Roland W; Zaidi, Anita K M

    2018-01-17

    We assessed immunity against polioviruses induced with a new Pakistani poliovirus immunization schedule and compared it to alternative poliovirus immunization schedules. Newborns were randomized to undergo vaccination based on 1 of 5 vaccination schedules, with doses administered at birth and at 6, 10, and 14 weeks of age. Arm A received inactivated poliovirus vaccine (IPV) at all time points. Arm B received bivalent oral poliovirus vaccine (bOPV) at all time points. Arms C and D received bOPV at the first 3 time points and bOPV plus IPV at the final time point (the current schedule). Arm E received trivalent OPV (tOPV) at all time points. At 22 weeks of age, all children received 1 challenge dose of tOPV, and children in arm D received 1 additional IPV dose. Sera were analyzed for the presence of poliovirus neutralizing antibodies at birth and 14 and 22 weeks of age. Seroconversion for poliovirus type 1 (PV1) at 22 weeks of age was observed in 80% of individuals in arm A, 97% in arm B, 94% in arm C, 96% in arm D, and 94% in arm E; for PV2, seroconversion frequencies were 84%, 19%, 53%, 49%, and 93%, respectively; and for PV3, seroconversion frequencies were 93%, 94%, 98%, 94%, and 85%, respectively. The current immunization schedule in Pakistan induced high seroconversion rates for PV1 and PV3; however, it induced PV2 seroconversion in only half of study subjects. There is a growing cohort of young children in Pakistan who are unprotected against PV2; and this creates an increasing risk of a large-scale outbreak of poliomyelitis caused by circulating vaccine-derived PV2. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Increasing Type 1 Poliovirus Capsid Stability by Thermal Selection

    Science.gov (United States)

    Adeyemi, Oluwapelumi O.; Nicol, Clare

    2016-01-01

    ABSTRACT Poliomyelitis is a highly infectious disease caused by poliovirus (PV). It can result in paralysis and may be fatal. Integrated global immunization programs using live-attenuated oral (OPV) and/or inactivated (IPV) PV vaccines have systematically reduced its spread and paved the way for eradication. Immunization will continue posteradication to ensure against reintroduction of the disease, but there are biosafety concerns for both OPV and IPV. They could be addressed by the production and use of virus-free virus-like particle (VLP) vaccines that mimic the “empty” capsids (ECs) normally produced in viral infection. Although ECs are antigenically indistinguishable from mature virus particles, they are less stable and readily convert into an alternative conformation unsuitable for vaccine purposes. Stabilized ECs, expressed recombinantly as VLPs, could be ideal candidate vaccines for a polio-free world. However, although genome-free PV ECs have been expressed as VLPs in a variety of systems, their inherent antigenic instability has proved a barrier to further development. In this study, we selected thermally stable ECs of type 1 PV (PV-1). The ECs are antigenically stable at temperatures above the conversion temperature of wild-type (wt) virions. We have identified mutations on the capsid surface and in internal networks that are responsible for EC stability. With reference to the capsid structure, we speculate on the roles of these residues in capsid stability and postulate that such stabilized VLPs could be used as novel vaccines. IMPORTANCE Poliomyelitis is a highly infectious disease caused by PV and is on the verge of eradication. There are biosafety concerns about reintroduction of the disease from current vaccines that require live virus for production. Recombinantly expressed virus-like particles (VLPs) could address these inherent problems. However, the genome-free capsids (ECs) of wt PV are unstable and readily change antigenicity to a form not

  8. Development of an enzyme immunoassay for poliovirus antigens

    Directory of Open Access Journals (Sweden)

    Newton Hashimoto

    2007-01-01

    Full Text Available An indirect solid-phase enzyme immunoassay (EIA was developed for the detection of poliovirus antigen. Virus antigen was obtained in LLC-MK2 cell cultures and used to prepare antibodies in rabbit and guinea pig. Antibodies were evaluated by double immunodiffusion and neutralization test. Optimal concentrations of guinea pig and rabbit immunoglobulins were determined by checkerboard titration. Microtitre plates were coated with 15.0 µg/ml guinea pig anti-polio immunoglobulin and rabbit anti-polio immunoglobulin at the concentration of 7.94 µg/ml was used as detecting antibody. The standard curve with eight different antigen concentrations in eight replicates resulted in a coefficient of variation (CV between 2.1% to 7.8%. The dose-response relationship was determined by simple linear regression with a coefficient of correlation (R² equal to 96.4%. The assay detected a minimum of 2.3 µg/ml poliovirus antigen.O trabalho apresenta o desenvolvimento de um ensaio imunoenzimático indireto para a detecção de antígeno de poliovírus. O antígeno viral foi obtido em cultura de células LLC-MK2 e usado para imunização de coelho e cobaia. Os soros hiperimunes foram avaliados por imunodifusão dupla e teste de neutralização. Após padronização, o soro de captura, produzido em cobaia, foi usado na concentração protéica de 15.0 µg/ml para sensibilizar microplacas de poliestireno e o soro de coelho (detector foi usado na concentração de 7.94 µg/ml. A curva padrão resultante da utilização de oito diferentes concentrações do antígeno padrão definiu um coeficiente de variação de 2.1% a 7.8%. A relação dose-resposta foi determinada por regressão linear simples com o estabelecimento do coeficiente de correlação (R² igual a 96.4%. O ensaio possibilitou a detecção mínima de 2.3 µg/ml de antígeno de poliovírus.

  9. Preventing Vaccine-Derived Poliovirus Emergence during the Polio Endgame.

    Directory of Open Access Journals (Sweden)

    Margarita Pons-Salort

    2016-07-01

    Full Text Available Reversion and spread of vaccine-derived poliovirus (VDPV to cause outbreaks of poliomyelitis is a rare outcome resulting from immunisation with the live-attenuated oral poliovirus vaccines (OPVs. Global withdrawal of all three OPV serotypes is therefore a key objective of the polio endgame strategic plan, starting with serotype 2 (OPV2 in April 2016. Supplementary immunisation activities (SIAs with trivalent OPV (tOPV in advance of this date could mitigate the risks of OPV2 withdrawal by increasing serotype-2 immunity, but may also create new serotype-2 VDPV (VDPV2. Here, we examine the risk factors for VDPV2 emergence and implications for the strategy of tOPV SIAs prior to OPV2 withdrawal. We first developed mathematical models of VDPV2 emergence and spread. We found that in settings with low routine immunisation coverage, the implementation of a single SIA increases the risk of VDPV2 emergence. If routine coverage is 20%, at least 3 SIAs are needed to bring that risk close to zero, and if SIA coverage is low or there are persistently "missed" groups, the risk remains high despite the implementation of multiple SIAs. We then analysed data from Nigeria on the 29 VDPV2 emergences that occurred during 2004-2014. Districts reporting the first case of poliomyelitis associated with a VDPV2 emergence were compared to districts with no VDPV2 emergence in the same 6-month period using conditional logistic regression. In agreement with the model results, the odds of VDPV2 emergence decreased with higher routine immunisation coverage (odds ratio 0.67 for a 10% absolute increase in coverage [95% confidence interval 0.55-0.82]. We also found that the probability of a VDPV2 emergence resulting in poliomyelitis in >1 child was significantly higher in districts with low serotype-2 population immunity. Our results support a strategy of focused tOPV SIAs before OPV2 withdrawal in areas at risk of VDPV2 emergence and in sufficient number to raise population

  10. Unexpectedly Higher Morbidity and Mortality of Hospitalized Elderly Patients Associated with Rhinovirus Compared with Influenza Virus Respiratory Tract Infection

    Directory of Open Access Journals (Sweden)

    Ivan F. N. Hung

    2017-01-01

    Full Text Available Rhinovirus is a common cause of upper and lower respiratory tract infections in adults, especially among the elderly and immunocompromised. Nevertheless, its clinical characteristics and mortality risks have not been well described. A retrospective analysis on a prospective cohort was conducted in a single teaching hospital center over a one-year period. We compared adult patients hospitalized for pneumonia caused by rhinovirus infection with those hospitalized for influenza infection during the same period. All recruited patients were followed up for at least 3 months up to 15 months. Independent risk factors associated with mortality for rhinovirus infection were identified. Between 1 March 2014 and 28 February 2015, a total of 1946 patients were consecutively included for analysis. Of these, 728 patients were hospitalized for rhinovirus infection and 1218 patients were hospitalized for influenza infection. Significantly more rhinovirus patients were elderly home residents and had chronic lung diseases (p < 0.001, whereas more influenza patients had previous stroke (p = 0.02; otherwise, there were no differences in the Charlson comorbidity indexes between the two groups. More patients in the rhinovirus group developed pneumonia complications (p = 0.03, required oxygen therapy, and had a longer hospitalization period (p < 0.001, whereas more patients in the influenza virus group presented with fever (p < 0.001 and upper respiratory tract symptoms of cough and sore throat (p < 0.001, and developed cardiovascular complications (p < 0.001. The 30-day (p < 0.05, 90-day (p < 0.01, and 1-year (p < 0.01 mortality rate was significantly higher in the rhinovirus group than the influenza virus group. Intensive care unit admission (odds ratio (OR: 9.56; 95% confidence interval (C.I. 2.17–42.18, elderly home residents (OR: 2.60; 95% C.I. 1.56–4.33, requirement of oxygen therapy during hospitalization (OR: 2.62; 95% C.I. 1.62–4.24, and hemoglobin

  11. Early life rhinovirus infection exacerbates house-dust-mite induced lung disease more severely in female mice.

    Science.gov (United States)

    Phan, Jennifer A; Kicic, Anthony; Berry, Luke J; Sly, Peter D; Larcombe, Alexander N

    2016-01-01

    Recent studies have employed animal models to investigate links between rhinovirus infection and allergic airways disease, however, most do not involve early life infection, and none consider the effects of sex on responses. Here, we infected male and female mice with human rhinovirus 1B (or control) on day 7 of life. Mice were then subjected to 7 weeks of exposure to house-dust-mite prior to assessment of bronchoalveolar inflammation, serum antibodies, lung function, and responsiveness to methacholine. There were significant differences in responses between males and females in most outcomes. In males, chronic house-dust-mite exposure increased bronchoalveolar inflammation, house-dust-mite specific IgG1 and responsiveness of the lung parenchyma, however, there was no additional impact of rhinovirus infection. Conversely, in females, there were additive and synergistic effects of rhinovirus infection and house-dust-mite exposure on neutrophilia, airway resistance, and responsiveness of the lung parenchyma. We conclude that early life rhinovirus infection influences the development of house-dust-mite induced lung disease in female, but not male mice.

  12. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Raheem Ullah

    Full Text Available Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  13. Pathogenic Events in a Nonhuman Primate Model of Oral Poliovirus Infection Leading to Paralytic Poliomyelitis.

    Science.gov (United States)

    Shen, Ling; Chen, Crystal Y; Huang, Dan; Wang, Richard; Zhang, Meihong; Qian, Lixia; Zhu, Yanfen; Zhang, Alvin Zhuoran; Yang, Enzhuo; Qaqish, Arwa; Chumakov, Konstantin; Kouiavskaia, Diana; Vignuzzi, Marco; Nathanson, Neal; Macadam, Andrew J; Andino, Raul; Kew, Olen; Xu, Junfa; Chen, Zheng W

    2017-07-15

    Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 10 7 to 10 9 50% tissue culture infective doses (TCID 50 ) consistently infected all the animals, and many monkeys receiving 10 8 or 10 9 TCID 50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines. IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with

  14. EFFECT OF TRIIODOTHYRONINE ON CELLS AND ON THEIR RESPONSE TO INFECTION BY POLIOVIRUSES1

    Science.gov (United States)

    Murphy, William H.; Bullis, Cora

    1962-01-01

    Murphy, W. H. (The University of Michigan, Ann Arbor) and Cora Bullis. Effect of triiodothyronine on cells and on their response to infection by polioviruses. J. Bacteriol. 83:641–648. 1962.—An analysis was made of the effect of triiodothyronine (T3) at physiological (1 μg/ml) and maximal subliminal toxic levels (35 μg/ml) on HeLa-S3, HeLa-Gey, Chang-liver, and Maben cells, and on their response to infection by cytopathic and submoderate (noncytopathic) mutants of type 2 poliovirus. Assays of cell response to T3 alone, or in combination with the mutants of poliovirus, were made by conventional monolayer cell culture techniques, by study of the effect of T3 on plating efficiency of cells, and by study of its influence on colonies of cell variants. Cellular response to liminal doses of T3 was characterized by agglutination of cells and thickening of the cell membrane. Compact colonies of Chang-liver and Maben cells were the most sensitive to maximal subliminal amounts of T3. T3 in combination with cytopathic or submoderate (noncytopathic) mutants of poliovirus slightly increased the rate of destruction of cells susceptible to virus, but did not influence yield of virus from cell cultures. T3 at physiological or subliminal concentrations did not induce cytopathic response of cell cultures latently infected by submoderate poliovirus. Images PMID:14477441

  15. Development and introduction of inactivated poliovirus vaccines derived from Sabin strains in Japan.

    Science.gov (United States)

    Shimizu, Hiroyuki

    2016-04-07

    During the endgame of global polio eradication, the universal introduction of inactivated poliovirus vaccines is urgently required to reduce the risk of vaccine-associated paralytic poliomyelitis and polio outbreaks due to wild and vaccine-derived polioviruses. In particular, the development of inactivated poliovirus vaccines (IPVs) derived from the attenuated Sabin strains is considered to be a highly favorable option for the production of novel IPV that reduce the risk of facility-acquired transmission of poliovirus to the communities. In Japan, Sabin-derived IPVs (sIPVs) have been developed and introduced for routine immunization in November 2012. They are the first licensed sIPVs in the world. Consequently, trivalent oral poliovirus vaccine was used for polio control in Japan for more than half a century but has now been removed from the list of vaccines licensed for routine immunization. This paper reviews the development, introduction, characterization, and global status of IPV derived from attenuated Sabin strains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Different effect of proteasome inhibition on vesicular stomatitis virus and poliovirus replication.

    Directory of Open Access Journals (Sweden)

    Nickolay Neznanov

    2008-04-01

    Full Text Available Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2alpha, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection.

  17. Reemergence of recombinant vaccine-derived poliovirus outbreak in Madagascar.

    Science.gov (United States)

    Rakoto-Andrianarivelo, Mala; Gumede, Nicksy; Jegouic, Sophie; Balanant, Jean; Andriamamonjy, Seta N; Rabemanantsoa, Sendraharimanana; Birmingham, Maureen; Randriamanalina, Bakolalao; Nkolomoni, Léon; Venter, Marietjie; Schoub, Barry D; Delpeyroux, Francis; Reynes, Jean-Marc

    2008-05-15

    After the 2001-2002 poliomyelitis outbreak due to recombinant vaccine-derived polioviruses (VDPVs) in the Toliara province of Madagascar, another outbreak reoccurred in the same province in 2005. We conducted epidemiological and virological investigations for each polio case patient and for their contacts. From May to August 2005, a total of 5 cases of acute flaccid paralysis were reported among unvaccinated or partially vaccinated children 2-3 years old. Type-3 or type-2 VDPV was isolated from case patients and from healthy contacts. These strains were classified into 4 recombinant lineages that showed complex mosaic genomic structures originating from different vaccine strain serotypes and probably from human enterovirus C (HEV-C) species. Genetic relatedness could be observed among these 4 lineages. Vaccination coverage of the population was very low (vaccine strains and of their related HEV-C strains. The occurrence of an outbreak due to VDPV 3 years after a previous outbreak indicates that a short period with low vaccination coverage is enough to create favorable conditions for the emergence of VDPV in this setting.

  18. Radiation sensitivity of poliovirus, a model for norovirus, inoculated in oyster (Crassostrea gigas) and culture broth under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Pil-Mun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Jae Seok [Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Song, Beom-Seok; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Baek, Min [Atomic Energy Policy Division, Ministry of Education, Science and Technology, Gwacheon 427-715 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Poliovirus is a recognized surrogate for norovirus, pathogen in water and food, due to the structural and genetic similarity. Although radiation sensitivity of poliovirus in water or media had been reported, there has been no research in food model such as shellfish. In this study, oyster (Crassostrea gigas) was incubated in artificial seawater contaminated with poliovirus, and thus radiation sensitivity of poliovirus was determined in inoculated oyster. The effects of ionizing radiation on the sensitivity of poliovirus were also evaluated under different conditions such as pH (4-7) and salt concentration (1-15%) in culture broth, and temperature during irradiation. The D{sub 10} value of poliovirus in PBS buffer, virus culture broth and oyster was determined to 0.46, 2.84 and 2.94 kGy, respectively. The initial plaque forming unit (PFU) of poliovirus in culture broth was slightly decreased as the decrease of pH and the increase of salt concentration, but radiation sensitivity was not affected by pH and salt contents. However, radiation resistance of poliovirus was increased at frozen state. These results provide the basic information for the inactivation of pathogenic virus in foods by using irradiation.

  19. Modeling strategies to increase population immunity and prevent poliovirus transmission in 2 high-risk areas in northern India.

    Science.gov (United States)

    Kalkowska, Dominika A; Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2014-11-01

    India presented many challenges to the global effort to eliminate the transmission of wild polioviruses (WPVs) and poliomyelitis, with the last case of WPV type 2 in the world reported in northern India in 1999 and WPV types 1 and 3 circulating until early 2011. We used a differential equation-based model to characterize the dynamics of poliovirus transmission and various opportunities to increase and maintain high population immunity to poliovirus transmission for 2 high-risk areas in northern India. We explored options that India probably considered before 2011, to demonstrate the impact of strategies to accelerate WPV elimination and sustain high population immunity. We also characterized the impact of current and potential future vaccination strategies and explored the potential trade-offs associated with the various strategies. National immunization policy choices impact population immunity, which leads to different numbers of expected paralytic cases and risks of circulating vaccine-derived poliovirus outbreaks. Assuming that India maintains high vaccination intensity everywhere, we do not anticipate issues with outbreaks of circulating vaccine-derived poliovirus type 2 infection following globally coordinated cessation of type 2-containting oral poliovirus vaccine use. We find a relatively modest potential role for inactivated poliovirus vaccine. National policy makers should consider the impacts of their vaccine choices on population immunity to poliovirus transmission. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Poliovirus surveillance by examining sewage specimens. Quantitative recovery of virus after introduction into sewerage at remote upstream location.

    Science.gov (United States)

    Hovi, T; Stenvik, M; Partanen, H; Kangas, A

    2001-08-01

    In order to assess the feasibility of environmental poliovirus surveillance, known amounts of poliovirus type 1, strain Sabin, were flushed into the sewage network of Helsinki. Grab specimens collected at a remote downstream location and concentrated about a 100-fold revealed infectious poliovirus on four successive days in all three separate experiments. As for concentration, a simple two-phase separation method was found to be at least as useful as a several-fold more resource-demanding polyethylene glycol (PEG) precipitation method. Recovery of the introduced virus was remarkably high (more than 10%). Using the current system, it might be possible to detect poliovirus circulation in a population of 700,000 people by examining a single 400 ml sewage specimen, if 1 out of 10,000 inhabitants were excreting the virus. It is concluded that environmental surveillance is a sensitive approach to monitor silent poliovirus circulation in populations served by a sewage network.

  1. Coxsackievirus A6 and enterovirus 71 causing hand, foot and mouth disease in Cuba, 2011-2013.

    Science.gov (United States)

    Fonseca, Magilé C; Sarmiento, Luis; Resik, Sonia; Martínez, Yenisleidys; Hung, Lai Heng; Morier, Luis; Piñón, Alexander; Valdéz, Odalys; Kourí, Vivian; González, Guelsys

    2014-09-01

    Hand, foot and mouth disease (HFMD) is usually caused by coxsackievirus A16 or enterovirus 71 (EV71). Between 2011 and 2013, HFMD cases were reported from different Cuban provinces. A total of 42 clinical specimens were obtained from 23 patients. Detection, identification and phylogenetic analysis of enterovirus-associated HFMD were carried out by virus isolation, specific enterovirus PCR and partial VP1 sequences. HEV was detected in 11 HFMD cases. Emerging genetic variants of coxsackievirus A6 and EV71 were identified as the causative agents of the Cuban HFMD cases.

  2. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  3. Isolation of sabin-like polioviruses from wastewater in a country using inactivated polio vaccine.

    Science.gov (United States)

    Zurbriggen, Sebastian; Tobler, Kurt; Abril, Carlos; Diedrich, Sabine; Ackermann, Mathias; Pallansch, Mark A; Metzler, Alfred

    2008-09-01

    From 2001 to 2004, Switzerland switched from routine vaccination with oral polio vaccine (OPV) to inactivated polio vaccine (IPV), using both vaccines in the intervening period. Since IPV is less effective at inducing mucosal immunity than OPV, this change might allow imported poliovirus to circulate undetected more easily in an increasingly IPV-immunized population. Environmental monitoring is a recognized tool for identifying polioviruses in a community. To look for evidence of poliovirus circulation following cessation of OPV use, two sewage treatment plants located in the Zurich area were sampled from 2004 to 2006. Following virus isolation using either RD or L20B cells, enteroviruses and polioviruses were identified by reverse transcription-PCR. A total of 20 out of 174 wastewater samples were positive for 62 Sabin-like isolates. One isolate from each poliovirus-positive sample was analyzed in more detail. Sequencing the complete viral protein 1 (VP1) capsid coding region, as well as intratypic differentiation (ITD), identified 3 Sabin type 1, 13 Sabin type 2, and 4 Sabin type 3 strains. One serotype 1 strain showed a discordant result in the ITD. Three-quarters of the strains showed mutations within the 5' untranslated region and VP1, known to be associated with reversion to virulence. Moreover, three strains showed heterotypic recombination (S2/S1 and S3/S2/S3). The low number of synonymous mutations and the partial temperature sensitivity are not consistent with extended circulation of these Sabin virus strains. Nevertheless, the continuous introduction of polioviruses into the community emphasizes the necessity for uninterrupted child vaccination to maintain high herd immunity.

  4. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine

    Science.gov (United States)

    Sanders, Barbara P.; de los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G.; Song, Yutong; Cooper, Gillian; Crawt, Laura E.; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H. H. V.; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-01-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4–9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  5. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds.

    Science.gov (United States)

    Bernard, Angela; Lacroix, Céline; Cabiddu, Maria G; Neyts, Johan; Leyssen, Pieter; Pompei, Raffaello

    2015-04-01

    The Enterovirus genus of the Picornaviridae is represented by several viral pathogens that are associated with human disease, namely Poliovirus 1, Enterovirus 71 and Rhinoviruses. Enterovirus 71 has been associated with encephalitis, while Rhinoviruses are a major cause of asthma exacerbations and chronic obstructive pulmonary disease. Based on the structure of both pleconaril and pirodavir, we previously synthesized some original compounds as potential inhibitors of Rhinovirus replication. These compounds were explored for in vitro antiviral potential on other human pathogenic Enteroviruses, namely Enterovirus 71 on rhabdo-myosarcoma cells, Coxsackievirus B3 on Vero cells, Poliovirus 1 and Echovirus 11 on BGM cells. Activity was confirmed for compound against Rhinovirus 14. Furthermore, few compounds showed a cell-protective effect on Enterovirus 71, presented a marked improvement as compared to the reference drug pleconaril for inhibitory activity on both Enterovirus 71 and Poliovirus 1. The most striking observation was the clear cell protective effect for the set of analogues in a virus-cell-based assay for Echovirus 11 with an effective concentration (EC50) as low as 0.3 µM (Selectivity index or SI = 483), and selectivity indexes greater than 857 (EC50 = 0.6 µM) and 1524 (EC50 = 0.33 µM). Some of the evaluated compounds showed potent and selective antiviral activity against several enterovirus species, such as Enterovirus 71 (EV-A), Echovirus 11 (EV-B), and Poliovirus 1 (EV-C). This could be used as a starting point for the development of other pleconaril/pirodavir-like enterovirus inhibitors with broad-spectrum activity and improved effects as compared to the reference drugs. © The Author(s) 2015.

  6. Toll-like receptor 3 blockade in rhinovirus-induced experimental asthma exacerbations

    DEFF Research Database (Denmark)

    Silkoff, Philip E; Flavin, Susan; Gordon, Robert

    2017-01-01

    BACKGROUND: Human rhinoviruses (HRVs) commonly precipitate asthma exacerbations. Toll-like receptor 3, an innate pattern recognition receptor, is triggered by HRV, driving inflammation that can worsen asthma. OBJECTIVE: We sought to evaluate an inhibitory mAb to Toll-like receptor 3, CNTO3157......: In summary, CNTO3157 was ineffective in attenuating the effect of HRV-16 challenge on lung function, asthma control, and symptoms in asthmatic patients but suppressed cold symptoms in healthy subjects. Other approaches, including blockade of multiple pathways or antiviral agents, need to be sought...

  7. Hand, foot and mouth disease caused by coxsackievirus A6, Beijing, 2013.

    Science.gov (United States)

    Hongyan, Gu; Chengjie, Ma; Qiaozhi, Yang; Wenhao, Hua; Juan, Li; Lin, Pang; Yanli, Xu; Hongshan, Wei; Xingwang, Li

    2014-12-01

    Specimens and clinical data were collected from 243 hand, foot and mouth disease patients in Beijing in 2013. In total, 130 stool specimens were genotyped for enterovirus. Hand, foot and mouth disease was mainly detected in suburban areas and at the edges of urban areas between May and August. Coxsackievirus (CV) A6 replaced enterovirus (EV) 71 and CVA16, becoming the main causative agent of hand, foot and mouth disease. CVA6 infection led to significantly reduced fever duration and glucose levels compared with EV71 infection.

  8. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car gene.

    Directory of Open Access Journals (Sweden)

    Ahmad Pazirandeh

    Full Text Available To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR, a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  9. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene.

    Science.gov (United States)

    Pazirandeh, Ahmad; Sultana, Taranum; Mirza, Momina; Rozell, Björn; Hultenby, Kjell; Wallis, Karin; Vennström, Björn; Davis, Ben; Arner, Anders; Heuchel, Rainer; Löhr, Matthias; Philipson, Lennart; Sollerbrant, Kerstin

    2011-01-01

    To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  10. Development of real-time PCR to detect oral vaccine-like poliovirus and its application to environmental surveillance.

    Science.gov (United States)

    Iwai-Itamochi, Masae; Yoshida, Hiromu; Obara-Nagoya, Mayumi; Horimoto, Eiji; Kurata, Takeshi; Takizawa, Takenori

    2014-01-01

    In order to perform environmental surveillance to track oral poliovirus vaccine-like poliovirus sensitively and conveniently, real-time PCR was developed and applied to a raw sewage concentrate. The real-time PCR method detected 0.01-0.1 TCID50 of 3 serotypes of Sabin strain specifically. The method also detected the corresponding serotypes of oral poliovirus vaccine-like poliovirus specifically, but detected neither wild poliovirus, except Mahoney for type 1 and Saukett for type 3, nor other enteric viruses, as far as examined. When real-time PCR was applied to environmental surveillance, the overall agreement rates between real-time PCR and the cell culture were 83.3% for all serotypes. Since real-time PCR has the advantages of rapid detection of viruses and minimum requirement of sampling volume as compared with ordinary cell culture, it is suitable to monitor oral poliovirus vaccine-like poliovirus in the environment, especially in areas where an oral vaccine is being replaced by an inactivated vaccine. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Isolation and characterization of circulating type 1 vaccine-derived poliovirus from sewage and stream waters in Hispaniola.

    Science.gov (United States)

    Vinjé, Jan; Gregoricus, Nicole; Martin, Javier; Gary, Howard E; Caceres, Victor M; Venczel, Linda; Macadam, Andrew; Dobbins, James G; Burns, Cara; Wait, Douglas; Ko, Gwangpyo; Landaverde, Mauricio; Kew, Olen; Sobsey, Mark D

    2004-04-01

    Twenty-one cases of acute flaccid paralysis (AFP) were reported on the island of Hispaniola in 2000. Laboratory analysis confirmed the presence of circulating vaccine-derived poliovirus (cVDPV) type 1 in stool samples obtained from patients. As a complement to the active search for cases of AFP, environmental sampling was conducted during November and December 2000, to test for cVDPV in sewage, streams, canals, and public latrines. Fifty-five environmental samples were obtained and analyzed for the presence of polioviruses by use of cell culture followed by neutralization and reverse-transcription polymerase chain reaction. Of the 23 positive samples, 10 tested positive for poliovirus type 1, 7 tested positive for poliovirus type 2, 5 tested positive for poliovirus type 3, and 1 tested positive for both poliovirus type 2 and type 3. By sequence analysis of the complete viral capsid gene 1 (VP1), a 2.1%-3.7% genetic sequence difference between 7 type 1 strains and Sabin type 1 vaccine strain was found. Phylogenetic analysis showed that these viruses are highly related to cVDPV isolated from clinical cases and form distinct subclusters related to geographic region. Our findings demonstrate a useful role for environmental surveillance of neurovirulent polioviruses in the overall polio eradication program.

  12. Environmental surveillance of poliovirus and non-polio enterovirus in urban sewage in Dakar, Senegal (2007-2013).

    Science.gov (United States)

    Ndiaye, Abdou Kader; Diop, Pape Amadou Mbathio; Diop, Ousmane Madiagne

    2014-01-01

    Global poliomyelitis eradication initiative relies on (i) laboratory based surveillance of acute flaccid surveillance (AFP) to monitor the circulation of wild poliovirus in a population, and (ii) vaccination to prevent its diffusion. However, as poliovirus can survive in the environment namely in sewage, environmental surveillance (ES) is of growing importance as the eradication target is close. This study aimed to assess polioviruses and non polio enteroviruses circulation in sewage drains covering a significant population of Dakar. From April 2007 to May 2013, 271 specimens of raw sewage were collected using the grab method in 6 neighborhoods of Dakar. Samples were processed to extract and concentrate viruses using polyethylene glycol and Dextran (two-phase separation method). Isolation of enteroviruses was attempted in RD, L20B and Hep2 cell lines. Polioviruses were identified by RT-PCR and Elisa. Non Polio Enteroviruses (NPEVs) were identified by RT-PCR and microneutralisation tests. Polioviruses and NPEVs were respectively detected in 34,3% and 42,8% sewage samples. No wild poliovirus neither circulating vaccine-derived Poliovirus (cVDPV) was detected. Neutralization assays have identified 49 non polio enteroviruses that were subsequently classified in 13 serotypes belonging to HEV-A (22, 4%), HEV-B (12, 24%), HEV-C (26, 53%) and HEV-D (6, 12%) species. This study is the first documentation of enteroviruses environmental detection in Senegal. It shows the usefulness of environmental surveillance for indirect monitoring of the circulation and distribution of enteroviruses in the community.

  13. Synthesis of new compounds with promising antiviral properties against group A and B Human Rhinoviruses.

    Science.gov (United States)

    Bernard, Angela M; Cabiddu, Maria G; De Montis, Stefania; Mura, Roberto; Pompei, Raffaello

    2014-08-01

    The human common cold, which is a benign disease caused by the Rhinoviruses, generally receives palliative symptomatic treatments, since no specific therapy against any of these viruses currently exists. In this work, some original synthetic compounds were produced and tested, in order to find non-toxic substances with an improved protection index (PI) for infected cells, as compared to reference drugs such as Pirodavir. We designed a series of novel molecules with a double oxygen in the central hydrocarbon chain and some modifications of the lateral methylisoxazole and propoxybenzoate moieties of lead compound 6602 (ethyl 4-{3-[2-(3-methyl-1,2-isoxazol-5-yl)ethoxy]propoxy}benzoate). It was found that most of these substances were actually less toxic than Pirodavir; in addition, the new molecule indicated as 8c was more than 30 times less toxic than Pirodavir, about twice as active on the group A strain of Rhinovirus HRV14, and even four times more effective on the group B strain HRV39, as compared to Pirodavir's PI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Anti-rhinovirus-specific activity of the alpha-sympathomimetic oxymetazoline.

    Science.gov (United States)

    Koelsch, Stephan; Tschaikin, Marion; Sacher, Fritz

    2007-01-01

    Oxymetazoline (CAS 2315-02-8, OMZ, Nasivin) known as the active ingredient in nose drops and sprays demonstrates excellent efficacy in the treatment of rhinitis symptoms that are mainly caused by Rhinovirus infections. To elucidate possible modes of action, the antiviral activity of OMZ was studied in vitro on human pathogenic viruses. No in vitro effects were detected against enveloped RNA viruses, Parainfluenza Virus and Respiratory Syncytial Virus and against Adenovirus, a non-enveloped DNA-virus. In contrast, OMZ showed a specific inhibition of Human Rhinovirus (HRV). Analysis of production of HRV-14 and HRV-39 after treatment of infected HeLa cells using plaque-reduction assay and virus titration showed a strong dose-dependent antiviral activity of OMZ. Additional data demonstrated that OMZ did also directly affect HRV-14 infectivity in a dose-dependent manner. Analysis of a cell-protective effect of OMZ showed that pre-treatment of HeLa cells decreased virus adsorption as well as virus replication. Furthermore, OMZ induced a down-regulation of ICAM-1 expression on Tumor Necrosis Factor-alpha (TNF-alpha)-stimulated HeLa cells and human umbilical vein endothelial cells. Taken together, these results show that OMZ besides its vasoconstrictive action also possesses potent antiviral and anti-inflammatory activities. Therefore, OMZ does not only reduce rhinitis symptoms but additionally offers a causal therapeutic approach.

  15. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach.

    Directory of Open Access Journals (Sweden)

    Pandurang S Kolekar

    Full Text Available Rhinoviruses (RV are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C, with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on "return time distribution" (RTD of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2 to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html.

  16. Integrins are not essential for entry of coxsackievirus A9 into SW480 human colon adenocarcinoma cells

    NARCIS (Netherlands)

    Heikkilä, Outi; Merilahti, Pirjo; Hakanen, Marika; Karelehto, Eveliina; Alanko, Jonna; Sukki, Maria; Kiljunen, Saija; Susi, Petri

    2016-01-01

    Coxsackievirus A9 (CV-A9) is a pathogenic enterovirus type within the family Picornaviridae. CV-A9 infects A549 human epithelial lung carcinoma cells by attaching to the αVβ6 integrin receptor through a highly conserved Arg-Gly-Asp (RGD) motif, which is located at the exposed carboxy-terminus of the

  17. An atypical course of coxsackievirus A6 associated hand, foot and mouth disease in extremely low birth weight preterm twins

    NARCIS (Netherlands)

    Bruning, Andrea H. L.; van der Sanden, Sabine M. G.; ten Hoedt, Amber E.; Wolthers, Katja C.; van Kaam, Anton H.; Pajkrt, Dasja

    2015-01-01

    The incidence of coxsackievirus A6 (CV-A6) associated hand, foot and mouth disease (HFMD) has reportedly increased since 2008 with sometimes severe complications. We here describe an atypical course of CV-A6-associated HFMD in extremely low birth weight twins. The CV-A6-strains are genetically

  18. Novel Substituted Heteroaromatic Piperazine and Piperidine Derivatives as Inhibitors of Human Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2013-04-01

    Full Text Available A series of substituted heteroaromatic piperazine and piperidine derivatives were found through virtual screening based on the structure of human enterovirus 71 capsid protein VP1. The preliminary biological evaluation revealed that compounds 8e and 9e have potent activity against EV71 and Coxsackievirus A16 with low cytotoxicity.

  19. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells

    International Nuclear Information System (INIS)

    Chung, Sun-Ku; Kim, Joo-Young; Kim, In-Beom; Park, Sang-Ick; Paek, Kyung-Hee; Nam, Jae-Hwan

    2005-01-01

    Coxsackievirus B3 (CVB3) is nonenveloped and has a single-stranded positive-sense RNA genome. CVB3 induces myocarditis and ultimately dilated cardiomyopathy. Although there are mounting evidences of an interaction between CVB3 particles and the cellular receptors, coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF), very little is known about the mechanisms of internalization and trafficking. In the present study, we used the CVB3 H3 strain, which is CAR-dependent but DAF-independent Woodruff variant and found that during entry, CVB3 particles were colocalized in clathrin, after interacting primarily with CAR, which was not recycled to the plasma membrane. We also found that CVB3 internalization was dependent on the function of dynamin, a large GTPase that has an essential role in endocytosis. Heat-shock cognate protein, Hsc70, which acts as a chaperone in the release of coat proteins from clathrin-coated vesicles (CCV), played a role in CVB3 trafficking processes. Moreover, endosomal acidification was crucial for CVB3 endocytosis. Finally, CVB3 was colocalized in early endosome autoantigen 1 (EEA1) molecules, which are involved in endosome-endosome tethering and fusion. In conclusion, these data together indicate that CVB3 uses clathrin-mediated endocytosis and is transcytosed to early endosomes

  20. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    DEFF Research Database (Denmark)

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban

    2016-01-01

    and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three...

  1. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis

    International Nuclear Information System (INIS)

    Power, U.F.; Collins, J.K.

    1989-01-01

    The elimination of sewage effluent-associated poliovirus, Escherichia coli, and a 22-nm icosahedral coliphage by the common mussel, Mytilus edulis, was studied. Both laboratory-and commercial-scale recirculating, UV depuration systems were used in this study. In the laboratory system, the logarithms of the poliovirus, E. coli, and coliphage levels were reduced by 1.86, 2.9, and 2.16, respectively, within 52 h of depuration. The relative patterns and rates of elimination of the three organisms suggest that they are eliminated from mussels by different mechanisms during depuration under suitable conditions. Poliovirus was not included in experiments undertaken in the commercial-scale depuration system. The differences in the relative rates and patterns of elimination were maintained for E. coli and coliphage in this system, with the logarithm of the E. coli levels being reduced by 3.18 and the logarithm of the coliphage levels being reduced by 0.87. The results from both depuration systems suggest that E. coli is an inappropriate indicator of the efficiency of virus elimination during depuration. The coliphage used appears to be a more representative indicator. Depuration under stressful conditions appeared to have a negligible affect on poliovirus and coliphage elimination rates from mussels. However, the rate and pattern of E. coli elimination were dramatically affected by these conditions. Therefore, monitoring E. coli counts might prove useful in ensuring that mussels are functioning well during depuration

  2. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water - a laboratory study using simulated sunlight.

    Science.gov (United States)

    Heaselgrave, W; Patel, N; Kilvington, S; Kehoe, S C; McGuigan, K G

    2006-08-01

    To determine the efficacy of solar disinfection (SODIS) in disinfecting water contaminated with poliovirus and Acanthamoeba polyphaga cysts. Organisms were subjected to a simulated global solar irradiance of 850 Wm(-2) in water temperatures between 25 and 55 degrees C. SODIS at 25 degrees C totally inactivated poliovirus after 6-h exposure (reduction of 4.4 log units). No SODIS-induced reduction in A. polyphaga cyst viability was observed for sample temperatures below 45 degrees C. Total cyst inactivation was only observed after 6-h SODIS exposure at 50 degrees C (3.6 log unit reduction) and after 4 h at 55 degrees C (3.3 log unit reduction). SODIS is an effective means of disinfecting water contaminated with poliovirus and A. polyphaga cysts, provided water temperatures of 50-55 degrees C are attained in the latter case. This research presents the first SODIS inactivation curve for poliovirus and provides further evidence that batch SODIS provides effective protection against waterborne protozoan cysts.

  3. Anti-idiotypic antibodies to poliovirus antibodies in commercial immunoglubulin preparations, human serum and milk.

    NARCIS (Netherlands)

    M. Hahn-Zoric; B. Carlsson; S. Jeansson; H.P. Ekre; A.D.M.E. Osterhaus (Albert); D. Roberton; L.A. Hanson

    1993-01-01

    textabstractOur previous studies have suggested that fetal antibody production can be induced by maternal antiidiotypic antibodies transferred to the fetus via the placenta. We tested commercial Ig, sera, and milk for the presence of anti-idiotypic antibodies to poliovirus type 1, using affinity

  4. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  5. Immunological and pathogenic properties of poliovirus variants selected for resistance to antiviral drug V-073.

    Science.gov (United States)

    Kouiavskaia, Diana V; Dragunsky, Eugenia M; Liu, Hong-Mei; Oberste, M Steven; Collett, Marc S; Chumakov, Konstantin M

    2011-01-01

    The National Research Council has recommended development of polio antiviral drugs to assist in management of outbreaks and to mitigate adverse consequences of vaccination. V-073 is a small molecule poliovirus capsid inhibitor that is being developed for these purposes. Antiviral use raises the potential of treatment-emergent resistance. Understanding virological consequences of resistance is important. Six independent laboratory-derived V-073-resistant poliovirus variants were characterized for their ability to be neutralized by conventional vaccine-induced immune sera, to elicit serum neutralizing antibodies upon CD-1 mouse immunization, and to replicate in and to cause paralysis of TgPVR21 mice. V-073-resistant variants were effectively neutralized by oral poliovirus vaccine and inactivated poliovirus vaccine human immune sera. All variants elicited virus neutralizing antibody titres in CD-1 mice that were comparable to drug-susceptible parental and Sabin vaccine strain viruses. Infection efficiency of TgPVR21 mice by variants was comparable to (1 of 6 variants) or considerably lower than (5 of 6 variants) parental viruses. Drug-resistant variants replicated to levels comparable to (1 of 6 variants) or substantially less than (5 of 6 variants) their drug-susceptible parental viruses and were on average 1.4 log(10) (range 0.3 to >2.8 log₁₀) less neurovirulent. Laboratory-derived V-073-resistant variants exhibit clear attenuation of pathogenic properties while maintaining immunological features of drug-susceptible viruses.

  6. Characterization of a highly evolved vaccine-derived poliovirus type 3 isolated from sewage in Estonia.

    Science.gov (United States)

    Blomqvist, Soile; Savolainen, Carita; Laine, Pia; Hirttiö, Päivi; Lamminsalo, Elisa; Penttilä, Eija; Jöks, Silver; Roivainen, Merja; Hovi, Tapani

    2004-05-01

    Two types of vaccine-derived polioviruses have been recently designated to emphasize the different origins of the evolved viruses: circulating vaccine-derived polioviruses (cVDPV) associated with outbreaks of paralytic disease and strains isolated from chronically infected immunodeficient individuals (iVDPV). We describe here a type 3 VDPV (PV3/EST/02/E252; later E252) isolated from sewage collected in Tallinn, Estonia, in October 2002. Due to aberrant properties in subtyping, the virus was subjected to detailed characterization. Partial genomic sequencing suggested that the closest relative was the oral vaccine strain PV3/Sabin, but the two virus strains shared only 86.7% of the 900 nucleotides (nt) coding for the capsid protein VP1. Phylogenetic analysis of the nearly complete genome [nt 19 to poly(A)] revealed multiple nucleotide substitutions throughout the genome and a possible Sabin 3/Sabin 1-recombination junction site in the 2C coding region. A calculation based on the estimated mutation frequency of the P1 region of polioviruses suggested that the E252 virus might have replicated in one or more individuals for approximately 10 years. No persons chronically excreting poliovirus are known in Estonia. Amino acid substitutions were seen in all known antigenic sites, which was consistent with the observed aberrant antigenic properties of the virus demonstrated by both monoclonal antibodies and human sera from vaccinated children. In spite of the apparent transmission potential, no evidence was obtained for circulation of the virus in the Estonian population.

  7. Anti-poliovirus activity of medicinal plants selected from the Nigerian ...

    African Journals Online (AJOL)

    Evuel

    Poliomyelitis caused by the Poliovirus is a major cause of morbidity and mortality among children in developing countries. Polio eradication by vaccination of children in. Nigeria has been largely unsuccessful due to the charac- teristic problems of accessibility, limited supervision, cultural hindrances and occasional vaccine- ...

  8. Investigation of an outbreak of type 3 wild poliovirus in Cote d'Ivoire ...

    African Journals Online (AJOL)

    Conclusion: Despite the limitations, this study shows that a country that has interrupted polio transmission for one type of poliovirus can still be at high risk for polio outbreaks of this same type following an importation. This can occur when routine immunization coverage is low, polio supplementary immunization activities are ...

  9. Update on vaccine-derived polioviruses--worldwide, July 2009-March 2011.

    Science.gov (United States)

    2011-07-01

    In 1988, the World Health Assembly resolved to eradicate poliomyelitis worldwide. The live, attenuated oral poliovirus vaccine (OPV) has many advantages favoring its use in polio eradication: it is administered easily by mouth; confers intestinal immunity, making recent OPV recipients resistant to infection by wild polioviruses (WPVs); provides long-term protection against paralytic disease through durable humoral immunity; and is inexpensive. Despite its many advantages, OPV use carries the risk for occurrence of rare cases of vaccine-associated paralytic poliomyelitis among immunologically normal OPV recipients and their contacts and the additional risk for emergence of vaccine-derived polioviruses (VDPVs). Because of these risks, OPV use will be discontinued worldwide once the goal of eradicating all WPV transmission is achieved. VDPVs can cause polio outbreaks in areas with low OPV coverage and can replicate for years in immunodeficient persons; therefore, strategies to strengthen global polio immunization and surveillance are needed to limit emergence of VDPVs. This report updates previous surveillance summaries and describes VDPVs detected worldwide during July 2009--March 2011 and reported as of June 20, 2011. Three new outbreaks of circulating VDPVs (cVDPVs), ranging in size from six to 16 cases, were identified in Afghanistan, Ethiopia, and India; three previously identified outbreaks in Nigeria, Democratic Republic of Congo (DRC), and Somalia continued through late 2010 or into 2011 and resulted in 355, 37, and 13 total cases, respectively; two countries experienced importations of cVDPVs from Nigeria; nine newly identified paralyzed immunodeficient persons in seven middle-income and developing countries were found to excrete VDPVs; and VDPVs were found among persons and environmental samples in 15 countries. With the use of alternate OPV formulations since 2005 and with enhanced poliovirus surveillance sensitivity and laboratory screening, the number of

  10. Intratypic differentiation of polioviruses isolated from suspected cases of poliomyelitis in Brazil during the period of 1990 to 1993

    Directory of Open Access Journals (Sweden)

    A. M. B. de Filippis

    1994-12-01

    Full Text Available This study analyzed 3129 fecal samples derived from 1626 patients with sudden onset acute flaccid paralysis clinically compatible with poliomyelitis. The samples were collected in the period ranging from January 1990 to September 1993 in all regions of Brazil. Among the 1626 cases studied, 196 had isolation of poliovirus. Nevertheless, it was observed that some factors influenced the isolation rate and the intratypic characterization of these polioviruses. No cases of acute flaccid paralysis has been found to be etiologically related with wild polioviruses.

  11. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    Science.gov (United States)

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. [Study on the Fast Testing Strategy for identifying the wild poliovirus I].

    Science.gov (United States)

    Gong, Cheng; Luo, Ming; Chen, Meng; Zhang, Tie-Gang; Zhang, He-Run; Wang, Yu-Mei; Li, Ren-Qing; Dong, Mei; Chen, Wei-Xin; Chen, Li-Juan

    2012-07-01

    To explore the Fast Testing Sstrategy (FTS) for wild poliovirus I (WP1). Epidemiological investigations were carried out on 671 students from WP1 epidemic areas in China. A set of real time RT-PCR assays, including panenterovirus testings (PE) assay, poliovirus serotypings (PS) assay and the assay distinguishing wild strain from vaccine strain of poliovirus I (DWV) were introduced into the screening program for WPV1 to replace the conventional RT-PCR, recommended by the China National Polio Laboratory (GNPL). Additionally, sensitivities of all the assays were assessed by poliovirus type I to III (Sabin stain) and the isolated WPV1. (1) 33 non-poliovirus enterovirus (NPEV) cases were detected, with 16 polio vaccine-related cases including 5 polio I, 1 polio II, 3 polio III, 1 polio I + II, 4 polio I + III and 2 polio I + II + III. Three WPV1 cases were also detected in this study and confirmed by CNPL. (2) For polio virus vaccine strain, sensitivities of the set of real time RT-PCR assays ranged from 1 to 100 times than that of the in-house RT-PCR assay. The sensitivities of PE and PS assays for the detection of polio II were 100 times than that of the RT-PCR assay and the sensitivity of DWV assay used for the detection of polio I were 10 times than that of the RT-PCR assay. For WPV1, the sensitivity of three real time RT-PCR was 10 times hight than that of the RT-PCR assay. The novel FTS for WPV1 suggested by this study would include PE, PS and DWV. It not only could greatly shorten the testing time but also more sensitive than the RT-PCR and suited for emergency detection for WPV1.

  13. The role of enterovirus 71 and coxsackievirus A strains in a large outbreak of hand, foot, and mouth disease in 2012 in Changsha, China

    Directory of Open Access Journals (Sweden)

    Jing-Fang Chen

    2014-11-01

    Conclusions: Our results demonstrate that EV-71 was the primary causative agent responsible for the HFMD outbreak in Changsha in 2012, and the co-circulation of other coxsackievirus A strains posed a potential risk to public health.

  14. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    Science.gov (United States)

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  15. Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus.

    Science.gov (United States)

    Cakebread, Julie A; Xu, Yunhe; Grainge, Chris; Kehagia, Valia; Howarth, Peter H; Holgate, Stephen T; Davies, Donna E

    2011-05-01

    Rhinoviruses are the major cause of asthma exacerbations. Previous studies suggest that primary bronchial epithelial cells (PBECs) from asthmatic subjects are more susceptible to rhinovirus infection because of deficient IFN-β production. Although augmenting the innate immune response might provide a novel approach for treatment of virus-induced asthma exacerbations, the potential of IFN-β to modulate antiviral and proinflammatory responses in asthmatic epithelium is poorly characterized. We sought to compare responses of PBECs from nonasthmatic and asthmatic subjects to exogenous IFN-β and test the inflammatory effects of IFN-β in response to rhinovirus infection. PBECs were treated with IFN-β and infected with a low inoculum of human rhinovirus serotype 1B to simulate a natural viral infection. Expression of interferon-responsive genes and inflammatory responses were analyzed by using reverse transcription-quantitative real-time PCR, cytometric bead arrays, or both; viral titers were assessed by using the 50% tissue culture infection dose. Expression of IFN-β-stimulated antiviral genes was comparable in PBECs from nonasthmatic or asthmatic donors. Exogenous IFN-β significantly protected PBECs from asthmatic donors against rhinovirus infection by suppressing viral replication. Interferon-inducible protein 10 (IP-10), RANTES, and IL-6 release in response to rhinovirus infection was triggered only in PBECs from asthmatic donors. Although exogenous IFN-β alone stimulated some release of IP-10 (but not IL-6 or RANTES), it significantly reduced rhinovirus-induced IP-10, RANTES, and IL-6 expression when tested in combination with rhinovirus. PBECs from asthmatic donors have a normal antiviral response to exogenous IFN-β. The ability of IFN-β to suppress viral replication suggests that it might limit virus-induced exacerbations by shortening the duration of the inflammatory response. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published

  16. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    Science.gov (United States)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  17. Survey of poliovirus antibodies in Borno and Yobe States, North-Eastern Nigeria.

    Directory of Open Access Journals (Sweden)

    Mustapha Modu Gofama

    Full Text Available Nigeria remains one of only three polio-endemic countries in the world. In 2016, after an absence of 2 years, wild poliovirus serotype 1 was again detected in North-Eastern Nigeria. To better guide programmatic action, we assessed the immunity status of infants and children in Borno and Yobe states, and evaluated the impact of recently introduced inactivated poliovirus vaccine (IPV on antibody seroprevalence.We conducted a facility-based study of seroprevalence to poliovirus serotypes 1, 2 and 3 among health-seeking patients in two sites each of Borno and Yobe States. Enrolment was conducted amongst children 6-9 and 36-47 months of age attending the paediatrics outpatient department of the selected hospitals in the two states between 11 January and 5 February 2016. Detailed demographic and immunization history of the child was taken and an assessment of the child's health and nutritional state was conducted via physical examination. Blood was collected to test for levels of neutralizing antibody titres against the three poliovirus serotypes. The seroprevalence in the two age groups, potential determinants of seropositivity and the impact of one dose of IPV on humoral immunity were assessed. A total of 583 subjects were enrolled and provided sufficient quantities of serum for testing. Among 6-9-month-old infants, the seroprevalence was 81% (74-87%, 86% (79-91%, and 72% (65-79% in Borno State, and 75% (67-81%, 74% (66-81% and 69% (61-76% in Yobe States, for serotypes-1, 2 and 3, respectively. Among children aged 36-47 months, the seroprevalence was >90% in both states for all three serotypes, with the exception of type 3 seroprevalence in Borno [87% (80-91%]. Median reciprocal anti-polio neutralizing antibody titers were consistently >900 for serotypes 1 and 2 across age groups and states; with lower estimates for serotype 3, particularly in Borno. IPV received in routine immunization was found to be a significant determinant of seropositivity and

  18. Oral poliovirus vaccine type 3 from a patient with transverse myelitis is neurovirulent in a transgenic mouse model.

    Science.gov (United States)

    Thorley, Bruce; Kelly, Heath; Nishimura, Yorihiro; Yoon, Yeon Kyung; Brussen, Kerri Anne; Roberts, Jason; Shimizu, Hiroyuki

    2009-04-01

    It is accepted that oral poliovirus vaccine (OPV) can cause vaccine-associated paralytic poliomyelitis (VAPP) and that wild poliovirus infection can rarely present as transverse myelitis. It is therefore possible that OPV could cause transverse myelitis. We previously reported a case of transverse myelitis that developed in a 6-month-old boy, 7 days after receiving his second dose of OPV. Our aim was to test the virus from this patient with transverse myelitis for neurovirulence in a mouse model. The TgPVR21 transgenic mouse line, which expresses the human poliovirus receptor CD155, was used to assess neurovirulence of the viruses tested. Neurovirulence was expressed as the PD(50), the dose of virus causing paralysis in 50% of the mice. Four type 3 polioviruses were tested: a prototype wild strain, a fully attenuated polio vaccine virus, a virus from a patient with VAPP and the virus from the patient with transverse myelitis. The PD(50) for the wild poliovirus strain was 3.83 and for the fully attenuated vaccine strain, 7.63. The PD(50) for the two clinical isolates were between these values, > or = 4.96 for the poliovirus known to have caused VAPP and > or = 4.81 for the virus from the patient with transverse myelitis. The report of an OPV strain from a transverse myelitis case being neurovirulent in an in vivo mouse model provides further evidence for a causal association between OPV and transverse myelitis.

  19. Changes in population dynamics during long-term evolution of sabin type 1 poliovirus in an immunodeficient patient.

    Science.gov (United States)

    Odoom, John K; Yunus, Zaira; Dunn, Glynis; Minor, Philip D; Martín, Javier

    2008-09-01

    The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5' noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.

  20. Effect of buffer on the immune response to trivalent oral poliovirus vaccine in Bangladesh: a community based randomized controlled trial.

    Science.gov (United States)

    Chandir, Subhash; Ahamed, Kabir U; Baqui, Abdullah H; Sutter, Roland W; Okayasu, Hiromasa; Pallansch, Mark A; Oberste, Mark S; Moulton, Lawrence H; Halsey, Neal A

    2014-11-01

    Polio eradication efforts have been hampered by low responses to trivalent oral poliovirus vaccine (tOPV) in some developing countries. Since stomach acidity may neutralize vaccine viruses, we assessed whether administration of a buffer solution could improve the immunogenicity of tOPV. Healthy infants 4-6 weeks old in Sylhet, Bangladesh, were randomized to receive tOPV with or without a sodium bicarbonate and sodium citrate buffer at age 6, 10, and 14 weeks. Levels of serum neutralizing antibodies for poliovirus types 1, 2, and 3 were measured before and after vaccination, at 6 and 18 weeks of age, respectively. Serologic response rates following 3 doses of tOPV for buffer recipients and control infants were 95% and 88% (P=.065), respectively, for type 1 poliovirus; 95% and 97% (P=.543), respectively, for type 2 poliovirus; and 90% and 89% (P=.79), respectively, for type 3 poliovirus. Administration of a buffer solution prior to vaccination was not associated with statistically significant increases in the immune response to tOPV; however, a marginal 7% increase (P=.065) in serologic response to poliovirus type 1 was observed. NCT01579825. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Prolonged Excretion of Poliovirus among Individuals with Primary Immunodeficiency Disorder: An Analysis of the World Health Organization Registry

    Directory of Open Access Journals (Sweden)

    Grace Macklin

    2017-09-01

    Full Text Available Individuals with primary immunodeficiency disorder may excrete poliovirus for extended periods and will constitute the only remaining reservoir of virus after eradication and withdrawal of oral poliovirus vaccine. Here, we analyzed the epidemiology of prolonged and chronic immunodeficiency-related vaccine-derived poliovirus cases in a registry maintained by the World Health Organization, to identify risk factors and determine the length of excretion. Between 1962 and 2016, there were 101 cases, with 94/101 (93% prolonged excretors and 7/101 (7% chronic excretors. We documented an increase in incidence in recent decades, with a shift toward middle-income countries, and a predominance of poliovirus type 2 in 73/101 (72% cases. The median length of excretion was 1.3 years (95% confidence interval: 1.0, 1.4 and 90% of individuals stopped excreting after 3.7 years. Common variable immunodeficiency syndrome and residence in high-income countries were risk factors for long-term excretion. The changing epidemiology of cases, manifested by the greater incidence in recent decades and a shift to from high- to middle-income countries, highlights the expanding risk of poliovirus transmission after oral poliovirus vaccine cessation. To better quantify and reduce this risk, more sensitive surveillance and effective antiviral therapies are needed.

  2. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques.

    Science.gov (United States)

    Wang, Jingjing; Zhang, Ying; Zhang, Xiaolong; Hu, Yajie; Dong, Chenghong; Liu, Longding; Yang, Erxia; Che, Yanchun; Pu, Jing; Wang, Xi; Song, Jie; Liao, Yun; Feng, Min; Liang, Yan; Zhao, Ting; Jiang, Li; He, Zhanlong; Lu, Shuaiyao; Wang, Lichun; Li, Yanyan; Fan, Shengtao; Guo, Lei; Li, Qihan

    2017-01-01

    Coxsackievirus A16 (CV-A16) causes human hand, foot and mouth disease, but its pathogenesis is unclear. In rhesus macaques, CV-A16 infection causes characteristic vesicles in the oral mucosa and limbs as well as viremia and positive viral loads in the tissues, suggesting that these animals reflect the pathologic process of the infection. An immunologic analysis indicated a defective immune response, which included undetectable neutralizing antibodies and IFN-γ-specific memory T-cells in macaques infected with CV-A16. Furthermore, existing neutralizing antibodies in macaques immunized with the inactivated vaccine were surprisingly unable to protect against a viral challenge despite the presence of a positive T-cell memory response against viral antigens. The virus was capable of infecting pre-conventional dendritic cells and replicating within them, which may correlate with the immunological characteristics observed in the animals. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Phage Display-Derived Cross-Reactive Neutralizing Antibody against Enterovirus 71 and Coxsackievirus A16.

    Science.gov (United States)

    Zhang, Xiao; Sun, Chunyun; Xiao, Xiangqian; Pang, Lin; Shen, Sisi; Zhang, Jie; Cen, Shan; Yang, Burton B; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are members of the Picornaviridae family and are considered the main causative agents of hand, foot and mouth disease (HFMD). In recent decades large HFMD outbreaks caused by EV71 and CVA16 have become significant public health concerns in the Asia-Pacific region. Vaccines and antiviral drugs are unavailable to prevent EV71 and CVA16 infection. In the current study, a chimeric antibody targeting a highly conserved peptide in the EV71 VP4 protein was isolated by using a phage display technique. The antibody showed cross-neutralizing capability against EV71 and CVA16 in vitro. The results suggest that this phage display-derived antibody will have great potential as a broad neutralizing antibody against EV71 and CVA16 after affinity maturation and humanization.

  4. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  5. Comparative genomic analysis of coxsackievirus A6 strains of different clinical disease entities.

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    Full Text Available BACKGROUND: Studies regarding coxsackievirus A6 (CVA6 infection were limited. In Taiwan, outbreaks of CVA6 occurred in 2009 and 2010, respectively, but the clinical manifestations were markedly different. We conducted a study to compare the clinical features and genomic sequence between the two years. METHODOLOGY/PRINCIPAL FINDINGS: In 2009 and 2010, 205 patients with coxsackievirus A6 (CVA6 infection were treated at Chang Gung Memorial Hospital. Detailed clinical features were obtained from 126 inpatients, 62 in 2009 and 64 in 2010. Between the inpatients in 2009 and 2010, no statistically significant difference was noted in terms of demographics, length of hospital stay and laboratory data. Significantly more patients in 2009 presented with herpangina (82% while more patients in 2010 presented with hand-foot-mouth disease (HFMD; 67% and skin rash beyond the typical sites for HFMD. Complete genomic sequences were determined and compared for three isolates from patients with herpangina in 2009 and three isolates from patients with HFMD in 2010. The complete sequences showed that 2009 and 2010 CVA6 isolates were indistinguishable by partial VP1 genes, but there were 5 unique nucleotide changes in 3' UTR, and 23 out of 2201 (1% amino acids were different. 2010 viruses underwent the largest number of amino acid changes in 3CD protein, which is the precursor of both 3C protease and 3D polymerase. CONCLUSIONS: Since 2008 in Finland, outbreaks of HFMD due to CVA6 were noted internationally. CVA6 of different genetic background may cause different clinical manifestations such as herpangina and HFMD.

  6. New coxsackievirus B4 genotype circulating in Inner Mongolia Autonomous Region, China.

    Directory of Open Access Journals (Sweden)

    Xiaoling Tian

    Full Text Available Hand, foot, and mouth disease (HFMD surveillance was initiated in the Inner Mongolia Autonomous Region of China in 2007, a crucial scrutiny for monitoring the prevalence of enterovirus serotypes associated with HFMD patients. However, this surveillance mostly focused on enterovirus 71 (EV-A71 and coxsackievirus A16; therefore, information on other enterovirus serotypes is limited. To identify the other circulating enterovirus serotypes in the HFMD outbreaks in Inner Mongolia in 2010, clinical samples from HFMD patients were investigated. Six coxsackievirus B4 (CVB4 strains were isolated and phylogenetic analyses of VP1 sequences were performed. Full-length genome sequences of two representative CVB4 isolates were acquired and similarity plot and bootscanning analyses were performed. The phylogenetic dendrogram indicated that all CVB4 strains could be divided into 5 genotypes (Genotypes I-V with high bootstrap support (90-100%. The CVB4 prototype strain (JVB was the sole member of genotype I. CVB4 strains belonging to genotype II, which were once common in Europe and the Americas, seemingly disappeared and gave way to genotype III and IV strains, which appear to be the dominant circulating strains in the world. All Chinese CVB4 strains belonged to Genotype V, a newly identified genotype supported by a high bootstrap value (100%, and are circulating only in mainland of China. Intertypic recombination occurred in the Chinese CVB4 strains with novel unknown serotype EV-B donor sequences. Two Chinese CVB4 strains had a virulent residue at position 129 of VP1, and one strain also had a virulent residue at position 16 of VP4. Increased surveillance is needed to monitor the emergence of new genetic lineages of enteroviruses in areas that are often associated with large-scale outbreaks. In addition, continued monitoring of enteroviruses by clinical surveillance and genetic characterization should be enhanced.

  7. Outbreak of variant hand-foot-and-mouth disease caused by coxsackievirus A6 in Auckland, New Zealand.

    Science.gov (United States)

    Hayman, Rebecca; Shepherd, Michael; Tarring, Claire; Best, Emma

    2014-10-01

    Hand-foot-and-mouth disease is a common, usually mild childhood illness caused by enteroviruses. Over the last five years, coxsackievirus A6 has been identified as a causative agent in outbreaks in Europe, South-East Asia and America. It has an atypical presentation compared with other enteroviruses, with more widespread rash, larger blisters and subsequent skin peeling and/or nail shedding. We give the first description of an outbreak of coxsackievirus A6 in New Zealand and how health-care communication networks enabled detection of and dissemination of information about this emergent strain. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  8. Coxsackievirus B4 as a Causative Agent of Diabetes Mellitus Type 1: Is There a Role of Inefficiently Treated Drinking Water and Sewage in Virus Spreading?

    Science.gov (United States)

    El-Senousy, Waled M; Abdel-Moneim, Adel; Abdel-Latif, Mahmoud; El-Hefnawy, Mohamed H; Khalil, Rehab G

    2018-03-01

    for isolation of separate EV isolates from treated and untreated water and sewage samples. Characterization of the EV amplicons by RT-PCR followed by sequencing of these isolates revealed high homology (97%) with human coxsackievirus B4 (CV B4) in 60% of the isolates, while the rest of the isolates belonged to poliovirus type 1 and type 2 vaccine strains. On the other hand, characterization of the EV amplicons by RT-PCR followed by sequencing for T1D-EV + children specimens indicated that all samples contained CV B4 with the same sequence characterized in the environmental samples. CV B4-contaminated drinking water or treated sewage may play a role as a causative agent of T1D in children.

  9. Fractional-Dose Inactivated Poliovirus Vaccine Campaign - Sindh Province, Pakistan, 2016.

    Science.gov (United States)

    Pervaiz, Aslam; Mbaeyi, Chukwuma; Baig, Mirza Amir; Burman, Ashley; Ahmed, Jamal A; Akter, Sharifa; Jatoi, Fayaz A; Mahamud, Abdirahman; Asghar, Rana Jawad; Azam, Naila; Shah, Muhammad Nadeem; Laghari, Mumtaz Ali; Soomro, Kamaluddin; Wadood, Mufti Zubair; Ehrhardt, Derek; Safdar, Rana M; Farag, Noha

    2017-12-01

    Following the declaration of eradication of wild poliovirus (WPV) type 2 in September 2015, trivalent oral poliovirus vaccine (tOPV) was withdrawn globally to reduce the risk for type 2 vaccine-derived poliovirus (VDPV2) transmission; all countries implemented a synchronized switch to bivalent OPV (type 1 and 3) in April 2016 (1,2). Any isolation of VDPV2 after the switch is to be treated as a potential public health emergency and might indicate the need for supplementary immunization activities (3,4). On August 9, 2016, VDPV2 was isolated from a sewage sample taken from an environmental surveillance site in Hyderabad, Sindh province, Pakistan. Possible vaccination activities in response to VDPV2 isolation include the use of injectable inactivated polio vaccine (IPV), which poses no risk for vaccine-derived poliovirus transmission. Fractional-dose, intradermal IPV (fIPV), one fifth of the standard intramuscular dose, has been developed to more efficiently manage limited IPV supplies. fIPV has been shown in some studies to be noninferior to full-dose IPV (5,6) and was used successfully in response to a similar detection of a single VDPV2 isolate from sewage in India (7). Injectable fIPV was used for response activities in Hyderabad and three neighboring districts. This report describes the findings of an assessment of preparatory activities and subsequent implementation of the fIPV campaign. Despite achieving high coverage (>80%), several operational challenges were noted. The lessons learned from this campaign could help to guide the planning and implementation of future fIPV vaccination activities.

  10. Long-term excretion of vaccine-derived poliovirus by a healthy child.

    Science.gov (United States)

    Martín, Javier; Odoom, Kofi; Tuite, Gráinne; Dunn, Glynis; Hopewell, Nicola; Cooper, Gill; Fitzharris, Catherine; Butler, Karina; Hall, William W; Minor, Philip D

    2004-12-01

    A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a "defective" molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected.

  11. Molecular Evolution of a Type 1 Wild-Vaccine Poliovirus Recombinant during Widespread Circulation in China

    Science.gov (United States)

    Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Pallansch, Mark A.; Kew, Olen M.

    2000-01-01

    Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3′-terminal sequences of VP1 (115 nt) and the 5′ half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3′ half of 2A were more distantly related (polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of ∼3.7 × 10−2 substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection. PMID:11070012

  12. Poliovirus modulates Bcl-xl expression in the human U937 promonocytic cell line.

    Science.gov (United States)

    Calandria, C; López-Guerrero, J A

    2002-12-01

    Poliovirus induces bcl-2-independent apoptosis in the human U937 promonocytic cell line [28]. Here we describe that this cell death, induced after viral infection, correlates with the modulation of the protooncoprotein Bcl-xl. Furthermore, poliovirus infection decreases the detected Bcl-xl in a U937 clone that overexpresses this protein (U937bcl-xl). Although in U937bcl-xl cells, Bcl-xl was not as highly regulated as in parental U937 cells, correlation between Bcl-xl modulation and the cleavage of poly(ADP-ribose)polymerase could be observed. Nevertheless, the induction of shutoff after infection of transfected control U937neo or U937bcl-xl clones was not significantly altered. Finally, production of new viral particles was slightly restricted in Bcl-xl-overexpressing U937 cells. Taken together, these results suggest that Bcl-xl is modulated during the induction of apoptosis in the promonocytic cell line U937 after poliovirus infection, although modulation of this protooncogene was not sufficient to modify the course of infection.

  13. Characterization of CHAT and Cox type 1 live-attenuated poliovirus vaccine strains.

    Science.gov (United States)

    Martín, Javier; Minor, Philip D

    2002-06-01

    CHAT and Cox type 1 live-attenuated poliovirus strains were developed in the 1950s to be used as vaccines for humans. This paper describes their characterization with respect to virulence, sensitivity for growth at high temperatures, and complete nucleotide and amino acid sequences. The results are compared to those for their common parental wild virus, the Mahoney strain, and to those for two other poliovirus strains derived from Mahoney, the Sabin 1 vaccine strain and the mouse-adapted LS-a virus. Analysis of four isolates from cases of vaccine-associated paralytic poliomyelitis related to the CHAT vaccine revealed genetic and phenotypic properties of the CHAT strain following replication in the human gut. CHAT-VAPP strain 134 contained a genome highly evolved from that of CHAT (1.1% nucleotide differences), suggesting long-term circulation of a vaccine-derived strain in the human population. The molecular mechanisms of attenuation and evolution of poliovirus in humans are discussed in the context of the global polio eradication initiative.

  14. Circulation of type 1 vaccine-derived poliovirus in the Philippines in 2001.

    Science.gov (United States)

    Shimizu, Hiroyuki; Thorley, Bruce; Paladin, Fem Julia; Brussen, Kerri Anne; Stambos, Vicki; Yuen, Lilly; Utama, Andi; Tano, Yoshio; Arita, Minetaro; Yoshida, Hiromu; Yoneyama, Tetsuo; Benegas, Agnes; Roesel, Sigrun; Pallansch, Mark; Kew, Olen; Miyamura, Tatsuo

    2004-12-01

    In 2001, highly evolved type 1 circulating vaccine-derived poliovirus (cVDPV) was isolated from three acute flaccid paralysis patients and one contact from three separate communities in the Philippines. Complete genomic sequencing of these four cVDPV isolates revealed that the capsid region was derived from the Sabin 1 vaccine strain but most of the noncapsid region was derived from an unidentified enterovirus unrelated to the oral poliovirus vaccine (OPV) strains. The sequences of the cVDPV isolates were closely related to each other, and the isolates had a common recombination site. Most of the genetic and biological properties of the cVDPV isolates were indistinguishable from those of wild polioviruses. However, the most recently identified cVDPV isolate from a healthy contact retained the temperature sensitivity and partial attenuation phenotypes. The sequence relationships among the isolates and Sabin 1 suggested that cVDPV originated from an OPV dose given in 1998 to 1999 and that cVDPV circulated along a narrow chain of transmission. Type 1 cVDPV was last detected in the Philippines in September 2001, and population immunity to polio was raised by extensive OPV campaigns in late 2001 and early 2002.

  15. Isolation of poliovirus shedding following vaccination in children with antibody deficiency disorders.

    Science.gov (United States)

    Galal, Nermeen M; Bassiouny, Laila; Nasr, Eman; Abdelmeguid, Naglaa

    2012-12-15

    Prolonged excretion of oral poliovirus may occur in primary antibody deficiency states. Those patients who persistently excrete the virus may pose the risk of aiding viral propagation in the environment. This study therefore aimed to identify the potential for prolonged poliovirus shedding by patients diagnosed with congenital antibody deficiency disorders. A cohort of children later diagnosed with antibody deficiency disorders was included in the study. Patient history was taken for each participant, with emphasis on vaccination data. Laboratory investigations included immunoglobulin profiles and stool sample collection at one month intervals from each patient, with follow-up for six months. The virus isolates were detected using enzyme-linked immunosorbent assay (ELISA) and molecular reverse transcription polymerase chain reaction (RT-PCR) techniques. On the initial sample screens, one patient revealed excretion one for Sabin-like strain 1 (SL1) and one patient revealed excretion for Sabin like strain 2 (SL2). Only one patient continued to shed the virus (SL1) on three successive samples and on follow-up. There was no correlation between the level of immunoglobulins and duration of virus shedding. The study demonstrates the low occurrence of prolonged vaccine polioviruses shedding in a group of children exposed to a live vaccine.

  16. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection - a randomised controlled trial.

    Science.gov (United States)

    Turner, R B; Woodfolk, J A; Borish, L; Steinke, J W; Patrie, J T; Muehling, L M; Lahtinen, S; Lehtinen, M J

    2017-04-26

    Ingestion of probiotics appears to have modest effects on the incidence of viral respiratory infection. The mechanism of these effects is not clear; however, there is evidence from animal models that the probiotic may have an effect on innate immune responses to pathogens. The purpose of this randomised, placebo-controlled study was to determine the effect of administration of Bifidobacterium animalis subspecies lactis Bl-04 on innate and adaptive host responses to experimental rhinovirus challenge. The effect on the response of chemokine (C-X-C motif) ligand 8 (CXCL8) to rhinovirus infection was defined as the primary endpoint for the study. 152 seronegative volunteers who had been supplemented for 28 days, 73 with probiotic and 79 with placebo, were challenged with RV-A39. Supplement or placebo administration was then continued for five days during collection of specimens for assessment of host response, infection, and symptoms. 58 probiotic and 57 placebo-supplemented volunteers met protocol-defined criteria for analysis. Probiotic resulted in higher nasal lavage CXCL8 on day 0 prior to virus challenge (90 vs 58 pg/ml, respectively, P=0.04, ANCOVA). The CXCL8 response to rhinovirus infection in nasal lavage was significantly reduced in the probiotic treated group (P=0.03, ANCOVA). Probiotic was also associated with a reduction in nasal lavage virus titre and the proportion of subjects shedding virus in nasal secretions (76% in the probiotic group, 91% in the placebo group, P=0.04, Fisher Exact test). The administration of probiotic did not influence lower respiratory inflammation (assessed by exhaled nitric oxide), subjective symptom scores, or infection rate. This study demonstrates that ingestion of Bl-04 may have an effect on the baseline state of innate immunity in the nose and on the subsequent response of the human host to rhinovirus infection. Clinicaltrials.gov registry number: NCT01669603.

  17. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection – a randomised controlled trial

    Science.gov (United States)

    Woodfolk, J.A.; Borish, L.; Steinke, J.W.; Patrie, J.T.; Muehling, L.M.; Lahtinen, S.; Lehtinen, M.J.

    2018-01-01

    Ingestion of probiotics appears to have modest effects on the incidence of viral respiratory infection. The mechanism of these effects is not clear; however, there is evidence from animal models that the probiotic may have an effect on innate immune responses to pathogens. The purpose of this randomised, placebo-controlled study was to determine the effect of administration of Bifidobacterium animalis subspecies lactis Bl-04 on innate and adaptive host responses to experimental rhinovirus challenge. The effect on the response of chemokine (C-X-C motif) ligand 8 (CXCL8) to rhinovirus infection was defined as the primary endpoint for the study. 152 seronegative volunteers who had been supplemented for 28 days, 73 with probiotic and 79 with placebo, were challenged with RV-A39. Supplement or placebo administration was then continued for five days during collection of specimens for assessment of host response, infection, and symptoms. 58 probiotic and 57 placebo-supplemented volunteers met protocol-defined criteria for analysis. Probiotic resulted in higher nasal lavage CXCL8 on day 0 prior to virus challenge (90 vs 58 pg/ml, respectively, P=0.04, ANCOVA). The CXCL8 response to rhinovirus infection in nasal lavage was significantly reduced in the probiotic treated group (P=0.03, ANCOVA). Probiotic was also associated with a reduction in nasal lavage virus titre and the proportion of subjects shedding virus in nasal secretions (76% in the probiotic group, 91% in the placebo group, P=0.04, Fisher Exact test). The administration of probiotic did not influence lower respiratory inflammation (assessed by exhaled nitric oxide), subjective symptom scores, or infection rate. This study demonstrates that ingestion of Bl-04 may have an effect on the baseline state of innate immunity in the nose and on the subsequent response of the human host to rhinovirus infection. Clinicaltrials.gov registry number: NCT01669603. PMID:28343401

  18. Rhinovirus infection interferes with induction of tolerance to aeroantigens through OX40 ligand, thymic stromal lymphopoietin, and IL-33.

    Science.gov (United States)

    Mehta, Amit K; Duan, Wei; Doerner, Astrid M; Traves, Suzanne L; Broide, David H; Proud, David; Zuraw, Bruce L; Croft, Michael

    2016-01-01

    Rhinovirus infection at an early age has been associated with development of asthma, but how rhinovirus influences the immune response is not clear. Tolerance to inhaled antigen is mediated through induction of regulatory T (Treg) cells, and we examined whether rhinovirus infection of the respiratory tract can block airway tolerance by modulating Treg cells. The immune response to intranasal ovalbumin in mice was assessed with concomitant infection with RV1B, and the factors induced in vivo were compared with those made by human lung epithelial cells infected in vitro with RV16. RV1B infection of mice abrogated tolerance induced by inhalation of soluble ovalbumin, suppressing the normal generation of forkhead box protein 3-positive Treg cells while promoting TH2 cells. Furthermore, RV1B infection led to susceptibility to asthmatic lung disease when mice subsequently re-encountered aeroantigen. RV1B promoted early in vivo expression of the TNF family protein OX40 ligand on lung dendritic cells that was dependent on the innate cytokine thymic stromal lymphopoietin (TSLP) and also induced another innate cytokine, IL-33. Inhibiting each of these pathways allowed the natural development of Treg cells while minimizing TH2 differentiation and restored tolerance in the face of RV1B infection. In accordance, RV16 infection of human lung epithelial cells upregulated TSLP and IL-33 expression. These results suggest that infection of the respiratory epithelium with rhinovirus can antagonize tolerance to inhaled antigen through combined induction of TSLP, IL-33, and OX40 ligand and that this can lead to susceptibility to asthmatic lung inflammation. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Atypical hand, foot and mouth disease in adults associated with coxsackievirus A6: a clinico-pathologic study.

    Science.gov (United States)

    Laga, Alvaro C; Shroba, Suzanne M; Hanna, John

    2016-11-01

    Hand, foot, and mouth disease (HFMD) is a contagious illness most commonly occurring in children 5 years old or younger. The most common cause of HFMD in the United States is Coxsackievirus A16. HFMD is uncommon in adults, and may show other atypical features including a broader spectrum of cutaneous involvement and a greater degree of severity. We evaluated the clinical, histopathologic and molecular features of three cases of atypical HFMD occurring in adults. All three cases showed clinical features that were worrisome for erythema multiforme or a disseminated herpesvirus infection. The histopathologic findings were quite uniform, and showed intraepidermal vesiculation with a predominantly neutrophil-rich infiltrate. A characteristic feature was the specific involvement of the upper stratum spinosum and stratum granulosum, with relative sparing of the stratum corneum. In none of the cases was there evidence of herpesvirus. Molecular analysis performed on two of the cases showed involvement by Coxsackievirus A6, an uncommon serotype in HFMD. All three cases resolved spontaneously. Atypical HFMD associated with Coxsackievirus A6 represents an uncommon and potentially diagnostically challenging cutaneous eruption. Its recognition is critical to avoid unneeded therapy and to establish accurate prognostic expectations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Solution structure of the 2A protease from a common cold agent, human rhinovirus C2, strain W12.

    Directory of Open Access Journals (Sweden)

    Woonghee Lee

    Full Text Available Human rhinovirus strains differ greatly in their virulence, and this has been correlated with the differing substrate specificity of the respective 2A protease (2Apro. Rhinoviruses use their 2Apro to cleave a spectrum of cellular proteins important to virus replication and anti-host activities. These enzymes share a chymotrypsin-like fold stabilized by a tetra-coordinated zinc ion. The catalytic triad consists of conserved Cys (C105, His (H34, and Asp (D18 residues. We used a semi-automated NMR protocol developed at NMRFAM to determine the solution structure of 2Apro (C105A variant from an isolate of the clinically important rhinovirus C species (RV-C. The backbone of C2 2Apro superimposed closely (1.41-1.81 Å rmsd with those of orthologs from RV-A2, coxsackie B4 (CB4, and enterovirus 71 (EV71 having sequence identities between 40% and 60%. Comparison of the structures suggest that the differential functional properties of C2 2Apro stem from its unique surface charge, high proportion of surface aromatics, and sequence surrounding the di-tyrosine flap.

  1. High Titers of IgE Antibody to Dust Mite Allergen and the Risk for Wheezing Among Asthmatic Children Infected with Rhinovirus

    Science.gov (United States)

    Soto-Quiros, Manuel; Avila, Lydiana; Platts-Mills, Thomas AE; Hunt, John F.; Erdman, Dean D.; Carper, Holliday; Murphy, Deborah D.; Odio, Silvia; James, Hayley R.; Patrie, James T.; Hunt, William; O’Rourke, Ashli K.; Davis, Michael D.; Steinke, John W.; Lu, Xiaoyan; Kennedy, Joshua; Heymann, Peter W.

    2013-01-01

    Background The relevance of allergic sensitization, judged by titers of serum IgE antibodies, to the risk of an asthma exacerbation caused by rhinovirus is unclear. Objective To examine the prevalence of rhinovirus infections in relation to the atopic status of children treated for wheezing in Costa Rica, a country with an increased asthma burden. Methods The children enrolled (n=287) were 7 through 12 years old. They included 96 with acute wheezing, 65 with stable asthma, and 126 non-asthmatic controls. PCR methods, including gene sequencing to identify rhinovirus strains, were used to identify viral pathogens in nasal washes. Results were examined in relation to wheezing, total IgE, allergen-specific IgE antibody, and levels of expired nitric oxide (FENO). Results Sixty-four percent of wheezing children compared to 13% of children with stable asthma and 17% of the non-asthmatic controls tested positive for rhinovirus (p<0.001 for both comparisons). Among wheezing subjects, 75% of the rhinoviruses detected were Group C strains. High titers of IgE antibodies to dust mite allergen (especially Dermatophagoides sp) were common and correlated significantly with levels of total IgE and FENO. The greatest risk for wheezing was observed among children with titers of IgE antibodies to dust mite ≥17.5 IU/ml who tested positive for rhinovirus (odds ratio for wheezing: 31.5; 95% CI 8.3–108, p<0.001). Conclusions High titers of IgE antibody to dust mite allergen were common and significantly increased the risk for acute wheezing provoked by rhinovirus among asthmatic children. PMID:22560151

  2. High titers of IgE antibody to dust mite allergen and risk for wheezing among asthmatic children infected with rhinovirus.

    Science.gov (United States)

    Soto-Quiros, Manuel; Avila, Lydiana; Platts-Mills, Thomas A E; Hunt, John F; Erdman, Dean D; Carper, Holliday; Murphy, Deborah D; Odio, Silvia; James, Hayley R; Patrie, James T; Hunt, William; O'Rourke, Ashli K; Davis, Michael D; Steinke, John W; Lu, Xiaoyan; Kennedy, Joshua; Heymann, Peter W

    2012-06-01

    The relevance of allergic sensitization, as judged by titers of serum IgE antibodies, to the risk of an asthma exacerbation caused by rhinovirus is unclear. We sought to examine the prevalence of rhinovirus infections in relation to the atopic status of children treated for wheezing in Costa Rica, a country with an increased asthma burden. The children enrolled (n= 287) were 7 through 12 years old. They included 96 with acute wheezing, 65 with stable asthma, and 126 nonasthmatic control subjects. PCR methods, including gene sequencing to identify rhinovirus strains, were used to identify viral pathogens in nasal washes. Results were examined in relation to wheezing, IgE, allergen-specific IgE antibody, and fraction of exhaled nitric oxide levels. Sixty-four percent of wheezing children compared with 13% of children with stable asthma and 13% of nonasthmatic control subjects had positive test results for rhinovirus (P< .001 for both comparisons). Among wheezing subjects, 75% of the rhinoviruses detected were group C strains. High titers of IgE antibodies to dust mite allergen (especially Dermatophagoides species) were common and correlated significantly with total IgE and fraction of exhaled nitric oxide levels. The greatest risk for wheezing was observed among children with titers of IgE antibodies to dust mite of 17.5 IU/mL or greater who tested positive for rhinovirus (odds ratio for wheezing, 31.5; 95% CI, 8.3-108; P< .001). High titers of IgE antibody to dust mite allergen were common and significantly increased the risk for acute wheezing provoked by rhinovirus among asthmatic children. Published by Mosby, Inc.

  3. Crystal Structures of Yeast-Produced Enterovirus 71 and Enterovirus 71/Coxsackievirus A16 Chimeric Virus-Like Particles Provide the Structural Basis for Novel Vaccine Design against Hand-Foot-and-Mouth Disease.

    Science.gov (United States)

    Lyu, Ke; He, Ya-Ling; Li, Hao-Yang; Chen, Rong

    2015-06-01

    Human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two major causative agents for hand-foot-and-mouth disease (HFMD). Previously, we demonstrated that a virus-like particle (VLP) for EV71 produced from Saccharomyces cerevisiae is a potential vaccine candidate against EV71 infection, and an EV71/CVA16 chimeric VLP can elicit protective immune responses against both virus infections. Here, we presented the crystal structures of both VLPs, showing that both the linear and conformational neutralization epitopes identified in EV71 are mostly preserved on both VLPs. The replacement of only 4 residues in the VP1 GH loop converted strongly negatively charged surface patches formed by portions of the SP70 epitope in EV71 VLP into a relatively neutral surface in the chimeric VLP, which likely accounted for the additional neutralization capability of the chimeric VLP against CVA16 infection. Such local variations in the amino acid sequences and the surface charge potential are also present in different types of polioviruses. In comparison to EV71 VLP, the chimeric VLP exhibits structural changes at the local site of amino acid replacement and the surface loops of all capsid proteins. This is consistent with the observation that the VP1 GH loop located near the pseudo-3-fold junction is involved in extensive interactions with other capsid regions. Furthermore, portions of VP0 and VP1 in EV71 VLP are at least transiently exposed, revealing the structural flexibility of the VLP. Together, our structural analysis provided insights into the structural basis of enterovirus neutralization and novel vaccine design against HFMD and other enterovirus-associated diseases. Our previous studies demonstrated that the enterovirus 71 (EV71) virus-like particle (VLP) produced from yeast is a vaccine candidate against EV71 infection and that a chimeric EV71/coxsackievirus A16 (CVA16) VLP with the replacement of 4 amino acids in the VP1 GH loop can confer protection against both

  4. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review.

    Science.gov (United States)

    Akram, Muhammad; Tahir, Imtiaz Mahmood; Shah, Syed Muhammad Ali; Mahmood, Zahed; Altaf, Awais; Ahmad, Khalil; Munir, Naveed; Daniyal, Muhammad; Nasir, Suhaila; Mehboob, Huma

    2018-01-22

    Viral infections are being managed therapeutically through available antiviral regimens with unsatisfactory clinical outcomes. The refractory viral infections resistant to available antiviral drugs are alarming threats and a serious health concern. For viral hepatitis, the interferon and vaccine therapies solely are not ultimate solutions due to recurrence of hepatitis C virus. Owing to the growing incidences of viral infections and especially of resistant viral strains, the available therapeutic modalities need to be improved, complemented with the discovery of novel antiviral agents to combat refractory viral infections. It is widely accepted that medicinal plant heritage is nature gifted, precious, and fueled with the valuable resources for treatment of metabolic and infectious disorders. The aims of this review are to assemble the facts and to conclude the therapeutic potential of medicinal plants in the eradication and management of various viral diseases such as influenza, human immunodeficiency virus (HIV), herpes simplex virus (HSV), hepatitis, and coxsackievirus infections, which have been proven in diverse clinical studies. The articles, published in the English language since 1982 to 2017, were included from Web of Science, Cochrane Library, AMED, CISCOM, EMBASE, MEDLINE, Scopus, and PubMed by using relevant keywords including plants possessing antiviral activity, the antiviral effects of plants, and plants used in viral disorders. The scientific literature mainly focusing on plant extracts and herbal products with therapeutic efficacies against experimental models of influenza, HIV, HSV, hepatitis, and coxsackievirus were included in the study. Pure compounds possessing antiviral activity were excluded, and plants possessing activity against viruses other than viruses in inclusion criteria were excluded. Hundreds of plant extracts with antiviral effect were recognized. However, the data from only 36 families investigated through in vitro and in vivo

  5. Clinical features of patients with acute respiratory illness and rhinovirus in their bronchoalveolar lavages.

    Science.gov (United States)

    Malcolm, E; Arruda, E; Hayden, F G; Kaiser, L

    2001-04-01

    Several reports in selected populations suggest that human rhinovirus (HRV) may be responsible for lower respiratory tract infections or pneumonia. We describe clinical features of all patients with rhinovirus cultured from their bronchoalveolar lavage (BAL) during a 10-yr period in a tertiary care center. Results for viral culture of all lower respiratory specimens performed during a 10-year period at the University of Virginia Health Sciences Center were reviewed. A case was defined as any patient with a positive culture for HRV in a BAL specimen. A comprehensive review of the patients' medical records was performed. In one case, in situ hybridization (ISH) was performed in order to identify whether rhinoviral RNA was present in bronchial biopsy specimens. During the 10-year study period viruses were identified in 431 lower respiratory tract specimens, and were most frequently cytomegalovirus or herpes simplex virus. Twenty patients (ages, 2.5-86 year) had a bronchoalveolar specimen culture positive for HRV. All had an abnormal chest radiograph, 60% were admitted to the intensive care unit, and 25% expired during their hospitalization. In 18 patients (90%) various severe underlying conditions were identified including solid organ transplants in seven, malignancies in four and AIDS in two. An immunosuppressive disease or condition requiring immunosuppressive therapy was present in all cases. In addition to HRV, one or more potential pathogens were identified in respiratory specimens from 14 patients (70%). Histopathological abnormalities, ranging from fibropurulent debris in alveoli to diffuse alveolar damage, were present in 6 of 13 bronchial biopsies. In two cases without any other significant pathogens than HRV, acute inflammations with fibropurulent debris in alveoli were observed. One lung transplant patient showed intermittent recovery of HRV in her respiratory specimens during a 15-week time period, but ISH did not show HRV RNA in bronchial epithelial cells

  6. Functional and genetic predisposition to rhinovirus lower respiratory tract infections in prematurely born infants.

    Science.gov (United States)

    Drysdale, Simon B; Alcazar, Mireia; Wilson, Theresa; Smith, Melvyn; Zuckerman, Mark; Hodemaekers, Hennie M; Janssen, Riny; Bont, Louis; Johnston, Sebastian L; Greenough, Anne

    2016-12-01

    Term born infants are predisposed to human rhinovirus (HRV) lower respiratory tract infections (LRTI) by reduced neonatal lung function and genetic susceptibility. Our aim was to investigate whether prematurely born infants were similarly predisposed to HRV LRTIs or any other viral LRTIs. Infants born less than 36 weeks of gestational age were recruited. Prior to neonatal/maternity unit discharge, lung function (functional residual capacity by helium gas dilution and multiple breath washout, lung clearance index and compliance (C rs ), and resistance (R rs ) of the respiratory system) was assessed and DNA samples assessed for eight single nucleotide polymorphisms (SNPs) in seven genes: ADAM33, IL10, MMP16 NFκB1A,SFTPC, VDR, and NOS2A. Infants were prospectively followed until 1 year corrected age. Nasopharyngeal aspirates (NPAs) were sent whenever an infant developed a LRTI and tested for 13 viruses. One hundred and thirty-nine infants were included in the analysis. Infants who developed HRV LRTIs had reduced C rs (1.6 versus 1.2 mL/cmH 2 O/kg, p = 0.044) at 36 weeks postmenstrual age. A SNP in the gene coding for the vitamin D receptor was associated with the development of HRV LRTIs and any viral LRTIs (p = 0.02). Prematurely born infants may have both a functional and genetic predisposition to HRV LRTIs. What is Known: • Term born infants are predisposed to rhinovirus lower respiratory tract (HRV LRTIs) infection by reduced neonatal lung function. • Term born infants requiring hospitalisation due to HRV bronchiolitis were more likely to have single nucleotide polymorphism (SNP) in the IL-10 gene. What is New: • Prematurely born infants who developed a HRV LRTI had lower C rs before maternity unit discharge. • A SNP in the gene coding for the vitamin D receptor was associated with the development of HRV LRTIs and overall respiratory viral LRTIs in prematurely born infants.

  7. Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Zimmermann, Marita; Pallansch, Mark A; Thompson, Kimberly M

    2017-12-01

    Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.

  8. Evaluation of immunogenicity and protective properties of inactivated poliovirus vaccines: a new surrogate method for predicting vaccine efficacy.

    Science.gov (United States)

    Dragunsky, Eugenia M; Ivanov, Alexander P; Wells, Virgen R; Ivshina, Anna V; Rezapkin, Gennady V; Abe, Shinobu; Potapova, Svetlana G; Enterline, Joan C; Hashizume, Sou; Chumakov, Konstantin M

    2004-10-15

    An assay for the evaluation of protective properties of inactivated poliovirus vaccines (IPVs) in transgenic (Tg) mice susceptible to poliovirus has been developed and optimized for type 2 IPV. This method was used to compare the immunogenicity and protective properties of experimental IPV produced from the attenuated Sabin strain (sIPV) with those of conventional IPV (cIPV) produced from the wild-type (wt) poliovirus MEF-1 strain. Modified enzyme-linked immunosorbent assays (ELISAs) were used to measure immune response in serum and saliva samples from test mice. Tg mice were vaccinated and were challenged either with wt poliovirus or virulent poliovirus derived from the vaccine strain. Compared with cIPV, sIPV induced lower levels of antibodies and did not completely protect mice against challenge with wt virus but did protect mice against challenge with the virulent vaccine-derived strain. This may be due to an 18% nucleotide difference between the MEF-1 and Sabin 2 strains, resulting in 72 amino acid substitutions and leading to antigenic dissimilarity. Immunological properties of both strains, revealed by cross-neutralization tests and ELISAs, confirmed that MEF-1 possesses broader immunogenicity than does Sabin 2. This animal model may be used for the assessment of new IPVs and of combination vaccines containing an IPV component. Copyright 2004 Infectious Diseases Society of America

  9. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA.

    Science.gov (United States)

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Xu, Ruixue; Wang, Shujing

    2015-01-01

    Poliovirus, the causative agent of poliomyelitis, is a human enterovirus and member of the Picornaviridae family. An effective live-attenuated poliovirus vaccine strain (Sabin 1) has been developed and has protected humans from polio. However, a few cases of vaccine virulence reversion have been documented in several countries. For instance, circulating type 1 vaccine-derived poliovirus is a highly pathogenic poliovirus that evolved from an avirulent strain, but the mechanism by which vaccine strains undergo reversion remains unclear. In this study, vaccine strains exhibited A to G/U to C and G to A/C to U hypermutations in the reversed evolution of Sabin 1. Furthermore, the mutation ratios of U to C and C to U were higher than those of other mutation types. Dinucleotide editing context was then analyzed. Results showed that A to G and U to C mutations exhibited preferences similar to adenosine deaminases acting on RNA (ADAR). Hence, ADARs may participate in poliovirus vaccine evolution.

  10. A poliomyelitis model through mucosal infection in transgenic mice bearing human poliovirus receptor, TgPVR21

    International Nuclear Information System (INIS)

    Nagata, Noriyo; Iwasaki, Takuya; Ami, Yasushi; Sato, Yuko; Hatano, Ikuyoshi; Harashima, Ayako; Suzaki, Yuriko; Yoshii, Takao; Hashikawa, Tsutomu; Sata, Tetsutaro; Horiuchi, Yoshinobu; Koike, Satoshi; Kurata, Takeshi; Nomoto, Akio

    2004-01-01

    Transgenic mice bearing the human poliovirus receptor (TgPVR) are less susceptible to oral inoculation, although they are susceptible to parenteral inoculation. We investigated the susceptibility of TgPVR 21 line [Arch. Virol. 130 (1994) 351] to poliovirus through various mucosal routes. Intranasal inoculation of a neurovirulent Mahoney strain (OM1) caused flaccid paralysis with viral replication in the central nervous system at a dose of 10 6 cell culture infectious dose (CCID 50 ), in contrast, no paralysis following oral or intragastric inoculation of the same dose. Intranasal inoculation of a vaccine strain, Sabin 1, at 10 6 CCID 50 , resulted in no paralysis. Initial replication of poliovirus in the nasal cavity was confirmed by virus isolation and detection of negative-stranded replicative intermediates by RT-PCR and viral antigens using a high-sensitive immunohistochemistry and genome/transcripts by in situ hybridization. Poliovirus-specific IgG antibodies were elevated in the sera of surviving TgPVR21. This model can be used as a mucosal infection model and for differentiation of neurovirulent and attenuated poliovirus strains

  11. Natural Type 3/Type 2 Intertypic Vaccine-Related Poliovirus Recombinants with the First Crossover Sites within the VP1 Capsid Coding Region

    DEFF Research Database (Denmark)

    Zhang, Yong; Zhu, Shuangli; Yan, Dongmei

    2010-01-01

    Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008.......Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008....

  12. Rapid group-, serotype-, and vaccine strain-specific identification of poliovirus isolates by real-time reverse transcription-PCR using degenerate primers and probes containing deoxyinosine residues.

    Science.gov (United States)

    Kilpatrick, David R; Yang, Chen-Fu; Ching, Karen; Vincent, Annelet; Iber, Jane; Campagnoli, Ray; Mandelbaum, Mark; De, Lina; Yang, Su-Ju; Nix, Allan; Kew, Olen M

    2009-06-01

    We have adapted our previously described poliovirus diagnostic reverse transcription-PCR (RT-PCR) assays to a real-time RT-PCR (rRT-PCR) format. Our highly specific assays and rRT-PCR reagents are designed for use in the WHO Global Polio Laboratory Network for rapid and large-scale identification of poliovirus field isolates.

  13. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  14. Comparison of asymptomatic and symptomatic rhinovirus infections in university students: incidence, species diversity, and viral load.

    Science.gov (United States)

    Granados, Andrea; Goodall, Emma C; Luinstra, Kathy; Smieja, Marek; Mahony, James

    2015-08-01

    Human rhinovirus (HRV) infections are common but poorly characterized in university students. Thus, we characterized asymptomatic and symptomatic HRV infections by incidence, species diversity, and viral load of 502 university students during September and October of 2010 and 2011 from nasal swabs and electronically submitted symptom questionnaires. We tested all symptomatic students and randomly sampled participants who remained asymptomatic (n=25/week, over 8 weeks each study year) on a weekly basis by real-time PCR and sequenced HRV positives. HRV was identified in 33/400 (8.3%) and 85/92 (92.4%) of the asymptomatic and symptomatic students, respectively. We identified a higher than previously reported rate of HRV-B in both groups, although the distribution of HRV species was similar (P=0.37). Asymptomatic viral load averaged 1.2 log10 copies/mL lower than symptomatic HRV (P<0.001). In conclusion, asymptomatic HRV activity preceded peak symptomatic activity in September and October and was associated with lower viral load. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Human rhinovirus-induced ISG15 selectively modulates epithelial antiviral immunity

    Science.gov (United States)

    Zaheer, R S; Wiehler, S; Hudy, M H; Traves, S L; Pelikan, J B; Leigh, R; Proud, D

    2014-01-01

    Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule. PMID:24448099

  16. A molecular epidemiological perspective of rhinovirus types circulating in Amsterdam from 2007 to 2012.

    Science.gov (United States)

    van der Linden, L; Bruning, A H L; Thomas, X V; Minnaar, R P; Rebers, S P H; Schinkel, J; de Jong, M D; Pajkrt, D; Wolthers, K C

    2016-12-01

    Rhinoviruses (RVs) are frequently detected respiratory viruses that cause mild common cold symptoms, but may also lead to more severe respiratory tract infections. The large number of RV types, classified into species A, B and C, hampers clear insights into the epidemiology and clinical significance of each RV type. The aim of this study was to map the circulation of RV types in the Amsterdam area. RV-positive nasopharyngeal and oropharyngeal samples, collected from 2007 to 2012 in the Academic Medical Centre (Amsterdam, the Netherlands), were typed based on the sequence of the region coding for capsid proteins VP4 and VP2. RV-A, RV-B and RV-C were found in proportions of of 52.4% (334/637), 11.3% (72/637), and 36.2% (231/637), respectively. We detected 129 of the 167 currently classified types. RVs circulated throughout the entire year with a peak in the autumn and a decline in the summer. Some RV types were observed throughout the entire sampling period and others had a more seasonal pattern. Nine RV-A and four RV-B novel provisionally assigned types were identified. This study provides an insight into the molecular epidemiology of RVs in the Amsterdam area. The RVs circulating are diverse and include several provisionally new types. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Anti-human rhinovirus activity of gallic acid possessing antioxidant capacity.

    Science.gov (United States)

    Choi, Hwa Jung; Song, Jae Hyoung; Bhatt, Lok Ranjan; Baek, Seung Hwa

    2010-09-01

    Human rhinoviruses (HRVs) are a major cause of the common cold and until now there is no registered clinically effective antiviral chemotherapeutic agent for treatment of diseases caused by HRVs. Our previous report showed that gallic acid from Woodfordia fruticosa flowers possessed antioxidant activity. Many studies reported that antioxidants possess antiviral activities against various viruses. Therefore, we examined antiviral activity of gallic acid against HRVs and mode of its actions by observing the effect of gallic acid on HRV-induced cytopathic effect (CPE) and the infectivity of HRV particles, and then carried out a time-addition study. As a result, gallic acid actively inhibited HRV2 and -3 replications with antiviral activity more than 55% without cytotoxicity in human epitheloid carcinoma cervix (HeLa) cells at a concentration of 100 mug/mL. Also, ribavirin showed lower anti-HRV3 activity than gallic acid and similar anti-HRV3 activity to it. The addition of gallic acid to HRV-infected HeLa cells directly reduced the formation of a visible CPE. Furthermore, gallic acid did directly interact or activate with HRV particles. Collectively, we concluded that the inhibition of HRV production by gallic acid is mainly due to a general action as an antioxidant and the mode of action derived from the inhibition of virus absorption. Copyright 2010 John Wiley & Sons, Ltd.

  18. Human Rhinovirus C Associated with Wheezing in Hospitalized Children in the Middle East

    Science.gov (United States)

    Miller, E. Kathryn; Khuri-Bulos, Najwa; Williams, John V.; Shehabi, Asem A.; Faouri, Samir; Jundi, Ihsan Al; Chen, Qingxia; Heil, Luke; Mohamed, Yassir; Morin, Laura-Lee; Ali, Asad; Halasa, Natasha B.

    2009-01-01

    Background Few studies have investigated the disease burden and genetic diversity of human rhinoviruses (HRV) in developing countries. Objectives To assess the burden of HRV in Amman, Jordan and to characterize clinical differences between HRV groups. Study Design We prospectively studied children <5 years old hospitalized with respiratory symptoms and/or fever in Amman, Jordan. Viruses were identified by real-time RT-PCR. VP4/VP2 gene sequencing was performed on HRV-positive specimens. Results Of 728 enrolled children, 266 (37%) tested positive for picornaviruses, 240 of which were HRV. Of the HRV-positive samples, 62 (26%) were of the recently identified group HRVC, 131 (55%) were HRVA, and 7 (3%) were HRVB. The HRVC strains clustered into at least 19 distinct genotypes. Compared with HRVA-infected children, children with HRVC were more likely to require supplemental oxygen (63% vs. 42%, p=0.007) and, when co-infections were excluded, were more likely to have wheezing (100% vs. 82%, p=0.016). Conclusions There is a significant burden of HRV-associated hospitalizations in young children in Jordan. Infection with the recently identified group HRVC is associated with wheezing and more severe illness. PMID:19581125

  19. Immunization with Live Human Rhinovirus (HRV 16 Induces Protection in Cotton Rats against HRV14 Infection

    Directory of Open Access Journals (Sweden)

    Mira C. Patel

    2017-08-01

    Full Text Available Human rhinoviruses (HRVs are the main cause of cold-like illnesses, and currently no vaccine or antiviral therapies against HRVs are available to prevent or mitigate HRV infection. There are more than 150 antigenically heterogeneous HRV serotypes, with ∼90 HRVs belonging to major group species A and B. Development of small animal models that are susceptible to infection with major group HRVs would be beneficial for vaccine research. Previously, we showed that the cotton rat (Sigmodon hispidus is semi-permissive to HRV16 (major group, species HRV-A virus infection, replicating in the upper and lower respiratory tracts with measurable pathology, mucus production, and expression of inflammatory mediators. Herein, we report that intranasal infection of cotton rats with HRV14 (major group, species HRV-B virus results in isolation of infectious virus from the nose and lung. Similar to HRV16, intramuscular immunization with live HRV14 induces homologous protection that correlated with high levels of serum neutralizing antibodies. Vaccination and challenge experiments with HRV14 and HRV16 to evaluate the development of cross-protective immunity demonstrate that intramuscular immunization with live HRV16 significantly protects animals against HRV14 challenge. Determination of the immunological mechanisms involved in heterologous protection and further characterization of infection with other major HRV serotypes in the cotton rat could enhance the robustness of the model to define heterotypic relationships between this diverse group of viruses and thereby increase its potential for development of a multi-serotype HRV vaccine.

  20. Persistent rhinovirus infection in pediatric hematopoietic stem cell transplant recipients with impaired cellular immunity.

    Science.gov (United States)

    Piralla, Antonio; Zecca, Marco; Comoli, Patrizia; Girello, Alessia; Maccario, Rita; Baldanti, Fausto

    2015-06-01

    HRV infections are generally self-limiting in healthy subjects, whereas in immunocompromised hosts HRV infections can lead to severe complications and persistent infections. The persistence of HRV shedding could be due to the inefficient immunological control of a single infectious episode. To investigate the clinical, virologic and immunologic characteristics of pediatric HSCT recipients with HRV-PI infection. During the period 2006-2012, eight hematopoietic stem cell transplant (HSCT) recipients presented with persistent rhinovirus infection (HRV-PI, ≥30 days). Viral load and T-CD4(+), T-CD8(+), B and NK lymphocyte counts at the onset of infection were compared with those of fourteen HSCT recipients with acute HRV infection (HRV-AI, ≤15 days). The median duration of HRV positivity in patients with HRV-PI was 61 days (range 30-174 days) and phylogenetic analysis showed the persistence of a single HRV type in all patients (100%). In HSCT recipients with HRV-PI, T-CD4(+), T-CD8(+) and NK cell counts at the onset of infection were significantly lower than those observed in recipients with HRV-AI (pimmunity in HRV clearance and highlights the importance of its recovery for the control of HRV infection in HSCT recipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  2. Impact of exogenous sequences on the characteristics of an epidemic type 2 recombinant vaccine-derived poliovirus.

    Science.gov (United States)

    Riquet, Franck B; Blanchard, Claire; Jegouic, Sophie; Balanant, Jean; Guillot, Sophie; Vibet, Marie-Anne; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2008-09-01

    Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.

  3. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    Directory of Open Access Journals (Sweden)

    Ching-Ying Wang

    2012-01-01

    Full Text Available Pandemic infection or reemergence of Enterovirus 71 (EV71 and coxsackievirus A16 (CVA16 occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L. DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50=35.88 μg/mL and CVA16 (IC50=42.91 μg/mL. Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions.

  4. Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle

    International Nuclear Information System (INIS)

    Triantafilou, Kathy; Triantafilou, Martha

    2003-01-01

    Lipid rafts have an important property to preferentially concentrate some proteins, while excluding others. Lipid rafts can also act as functional platforms for multiple signalling and trafficking processes. Several reports have shown that lipid rafts play a crucial role in the assembly of several enveloped viruses and possibly their cell entry. In this study we investigated the importance of lipid raft formation in Coxsackievirus A9 (CAV-9) entry and cell infection. Here by using a variety of biochemical and biophysical methods, we report that receptor molecules integrin αvβ3 and GRP78, which are implicated in CAV-9 infection as well as accessory molecules such as MHC class I, are accumulated in increased concentrations in lipid rafts following CAV-9 infection. In addition our studies revealed that raft integrity is essential for this virus since CAV-9 activates the Raf/MAPK signalling pathway within the raft and raft-disrupting drugs such as nystatin and MCD can successfully inhibit CAV-9 infection

  5. Emerging Coxsackievirus A6 Causing Hand, Foot and Mouth Disease, Vietnam.

    Science.gov (United States)

    Anh, Nguyen To; Nhu, Le Nguyen Truc; Van, Hoang Minh Tu; Hong, Nguyen Thi Thu; Thanh, Tran Tan; Hang, Vu Thi Ty; Ny, Nguyen Thi Han; Nguyet, Lam Anh; Phuong, Tran Thi Lan; Nhan, Le Nguyen Thanh; Hung, Nguyen Thanh; Khanh, Truong Huu; Tuan, Ha Manh; Viet, Ho Lu; Nam, Nguyen Tran; Viet, Do Chau; Qui, Phan Tu; Wills, Bridget; Sabanathan, Sarawathy; Chau, Nguyen Van Vinh; Thwaites, Louise; Rogier van Doorn, H; Thwaites, Guy; Rabaa, Maia A; Van Tan, Le

    2018-04-01

    Hand, foot and mouth disease (HFMD) is a major public health issue in Asia and has global pandemic potential. Coxsackievirus A6 (CV-A6) was detected in 514/2,230 (23%) of HFMD patients admitted to 3 major hospitals in southern Vietnam during 2011-2015. Of these patients, 93 (18%) had severe HFMD. Phylogenetic analysis of 98 genome sequences revealed they belonged to cluster A and had been circulating in Vietnam for 2 years before emergence. CV-A6 movement among localities within Vietnam occurred frequently, whereas viral movement across international borders appeared rare. Skyline plots identified fluctuations in the relative genetic diversity of CV-A6 corresponding to large CV-A6-associated HFMD outbreaks worldwide. These data show that CV-A6 is an emerging pathogen and emphasize the necessity of active surveillance and understanding the mechanisms that shape the pathogen evolution and emergence, which is essential for development and implementation of intervention strategies.

  6. Development of sandwich ELISAs that can distinguish different types of coxsackievirus A16 viral particles.

    Science.gov (United States)

    Ye, Xiangzhong; Yang, Lisheng; Jia, Jizong; Han, Jinle; Li, Shuxuan; Liu, Yajing; Xu, Longfa; Zhao, Huan; Chen, Yixin; Li, Yimin; Cheng, Tong; Xia, Ningshao

    2016-03-01

    Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease (HFMD). No CA16 vaccine candidates have progressed to clinical trials so far. Immunogenicity studies indicated that different CA16 particles have much influence on the efficacy of a candidate vaccine. However, there are still no relevant reports on the methods of detecting different CA16 particles. In this study, we screened several monoclonal antibodies (mAbs) specific for different CA16 particles, and several sandwich enzyme-linked immunoassays (ELISAs) were developed to measure the different types of CA16 viral particles. The mAbs that could only bind denatured or empty capsids could not neutralize CA16. In contrast, the mAbs that could bind mature full particles or all types of particles showed obvious neutralizing activity. The thermal stability of different CA16 particles was evaluated using these sandwich ELISAs. The mature full particles were found to be more thermolabile than the other types of particles and could be stabilized by high concentrations of cations. These methods can be used to assist in the potency control of CA16 vaccines and will promote the development of a CA16 vaccine.

  7. Coxsackievirus-Induced Proteomic Alterations in Primary Human Islets Provide Insights for the Etiology of Diabetes

    Science.gov (United States)

    Nyalwidhe, Julius O.; Gallagher, Glen R.; Glenn, Lindsey M.; Morris, Margaret A.; Vangala, Pranitha; Jurczyk, Agata; Bortell, Rita; Harlan, David M.; Nadler, Jerry L.

    2017-01-01

    Enteroviral infections have been associated with the development of type 1 diabetes (T1D), a chronic inflammatory disease characterized by autoimmune destruction of insulin-producing pancreatic beta cells. Cultured human islets, including the insulin-producing beta cells, can be infected with coxsackievirus B4 (CVB4) and thus are useful for understanding cellular responses to infection. We performed quantitative mass spectrometry analysis on cultured primary human islets infected with CVB4 to identify molecules and pathways altered upon infection. Corresponding uninfected controls were included in the study for comparative protein expression analyses. Proteins were significantly and differentially regulated in human islets challenged with virus compared with their uninfected counterparts. Complementary analyses of gene transcripts in CVB4-infected primary islets over a time course validated the induction of RNA transcripts for many of the proteins that were increased in the proteomics studies. Notably, infection with CVB4 results in a considerable decrease in insulin. Genes/proteins modulated during CVB4 infection also include those involved in activation of immune responses, including type I interferon pathways linked to T1D pathogenesis and with antiviral, cell repair, and inflammatory properties. Our study applies proteomics analyses to cultured human islets challenged with virus and identifies target proteins that could be useful in T1D interventions. PMID:29264452

  8. Coxsackievirus A16 infection induces neural cell and non-neural cell apoptosis in vitro.

    Directory of Open Access Journals (Sweden)

    Zhaolong Li

    Full Text Available Coxsackievirus A16 (CA16 is one of the main causative pathogens of hand, foot and mouth disease (HFMD. Viral replication typically results in host cell apoptosis. Although CA16 infection has been reported to induce apoptosis in the human rhabdomyosarcoma (RD cell line, it remains unclear whether CA16 induces apoptosis in diverse cell types, especially neural cells which have important clinical significance. In the current study, CA16 infection was found to induce similar apoptotic responses in both neural cells and non-neural cells in vitro, including nuclear fragmentation, DNA fragmentation and phosphatidylserine translocation. CA16 generally is not known to lead to serious neurological symptoms in vivo. In order to further clarify the correlation between clinical symptoms and cell apoptosis, two CA16 strains from patients with different clinical features were investigated. The results showed that both CA16 strains with or without neurological symptoms in infected patients led to neural and muscle cell apoptosis. Furthermore, mechanistic studies showed that CA16 infection induced apoptosis through the same mechanism in both neural and non-neural cells, namely via activation of both the mitochondrial (intrinsic pathway-related caspase 9 protein and the Fas death receptor (extrinsic pathway-related caspase 8 protein. Understanding the mechanisms by which CA16 infection induces apoptosis in both neural and non-neural cells will facilitate a better understanding of CA16 pathogenesis.

  9. Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    Science.gov (United States)

    Wang, Ching-Ying; Huang, Shun-Chueh; Zhang, Yongjun; Lai, Zhen-Rung; Kung, Szu-Hao; Chang, Yuan-Shiun; Lin, Cheng-Wen

    2012-01-01

    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions. PMID:22666293

  10. Cardiac Fibroblasts Aggravate Viral Myocarditis: Cell Specific Coxsackievirus B3 Replication

    Directory of Open Access Journals (Sweden)

    Diana Lindner

    2014-01-01

    Full Text Available Myocarditis is an inflammatory disease caused by viral infection. Different subpopulations of leukocytes enter the cardiac tissue and lead to severe cardiac inflammation associated with myocyte loss and remodeling. Here, we study possible cell sources for viral replication using three compartments of the heart: fibroblasts, cardiomyocytes, and macrophages. We infected C57BL/6j mice with Coxsackievirus B3 (CVB3 and detected increased gene expression of anti-inflammatory and antiviral cytokines in the heart. Subsequently, we infected cardiac fibroblasts, cardiomyocytes, and macrophages with CVB3. Due to viral infection, the expression of TNF-α, IL-6, MCP-1, and IFN-β was significantly increased in cardiac fibroblasts compared to cardiomyocytes or macrophages. We found that in addition to cardiomyocytes cardiac fibroblasts were infected by CVB3 and displayed a higher virus replication (132-fold increase compared to cardiomyocytes (14-fold increase between 6 and 24 hours after infection. At higher virus concentrations, macrophages are able to reduce the viral copy number. At low virus concentration a persistent virus infection was determined. Therefore, we suggest that cardiac fibroblasts play an important role in the pathology of CVB3-induced myocarditis and are another important contributor of virus replication aggravating myocarditis.

  11. Acute pancreatitis in hand, foot and mouth disease caused by Coxsackievirus A16: case report.

    Science.gov (United States)

    Park, Byungsung; Kwon, Hyuckjin; Lee, Kwanseop; Kang, Minjae

    2017-10-01

    Coxsackievirus A16 (CA16), which primarily causes hand, foot, and mouth disease (HFMD), is associated with complications, such as encephalitis, acute flaccid paralysis, myocarditis, pericarditis, and shock. However, no case of pancreatitis associated with CA16 has been reported in children. We report a case of CA16-associated acute pancreatitis in a 3-year-old girl with HFMD. She was admitted because of poor oral intake and high fever for 1 day. Maculopapular rashes on both hands and feet and multiple vesicles on the soft palate were observed on physical examination. She was treated conservatively with intravenous fluids. On the fourth hospital day, she had severe abdominal pain and vomiting. The serum levels of amylase and lipase were remarkably elevated (amylase, 1,902 IU/L; reference range, 28-100 IU/L; lipase, >1,500 IU/L; reference range, 13-60 IU/L), and ultrasonography showed diffuse swelling of the pancreas with a small amount of ascites. The real-time reverse transcription polymerase chain reaction result from a stool sample was positive for CA16. CA16 can cause acute pancreatitis, and should be considered in the differential diagnosis of abdominal pain in children with HFMD.

  12. Optimization and Characterization of Candidate Strain for Coxsackievirus A16 Inactivated Vaccine

    Directory of Open Access Journals (Sweden)

    Jingliang Li

    2015-07-01

    Full Text Available Coxsackievirus A16 (CA16 and enterovirus 71 (EV71, both of which can cause hand, foot and mouth disease (HFMD, are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024 isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine.

  13. Molecular epidemiology of coxsackievirus A16: intratype and prevalent intertype recombination identified.

    Directory of Open Access Journals (Sweden)

    Xiangpeng Chen

    Full Text Available Coxsackievirus A16 (CVA16 is responsible for nearly 50% of all the confirmed hand, foot, and mouth disease (HFMD cases in mainland China, sometimes it could also cause severe complications, and even death. To clarify the genetic characteristics and the epidemic patterns of CVA16 in mainland China, comprehensive bioinfomatics analyses were performed by using 35 CVA16 whole genome sequences from 1998 to 2011, 593 complete CVA16 VP1 sequences from 1981 to 2011, and prototype strains of human enterovirus species A (EV-A. Analysis on complete VP1 sequences revealed that subgenotypes B1a and B1b were prevalent strains and have been co-circulating in many Asian countries since 2000, especially in mainland China for at least 13 years. While the prevalence of subgenotype B1c (totally 20 strains was much limited, only found in Malaysia from 2005 to 2007 and in France in 2010. Genotype B2 only caused epidemic in Japan and Malaysia from 1981 to 2000. Both subgenotypes B1a and B1b were potential recombinant viruses containing sequences from other EV-A donors in the 5'-untranslated region and P2, P3 non-structural protein encoding regions.

  14. Immunologic Characterization of Cytokine Responses to Enterovirus 71 and Coxsackievirus A16 Infection in Children.

    Science.gov (United States)

    Zhang, Shu-Yan; Xu, Mei-Yan; Xu, Hong-Mei; Li, Xiu-Jun; Ding, Shu-Jun; Wang, Xian-Jun; Li, Ting-Yu; Lu, Qing-Bin

    2015-07-01

    Viral encephalitis is a serious complication of hand, foot, and mouth disease (HFMD), but characteristics of cytokines response in enterovirus 71 (EV-71) and/or coxsackievirus A16 (CV-A16) associated HFMD with or without viral encephalitis remained unclear.We performed a multigroup retrospective study and compared the serum cytokines concentrations among 16 encephalitis patients infected with EV-71 and CV-A16, 24 encephalitis patients with single EV-71 infection, 34 mild HFMD patients with EV-71 infection, 18 mild HFMD patients with CV-A16 infection, and 39 healthy control subjects.Serum levels of interleukin (IL)-4, IL-5, IL-22, and IL-23 were significantly higher in encephalitis patients than in HFMD-alone patients when adjusting for age and sex; IL-2, tumor necrosis factor (TNF)-α, IL-4, IL-22, and IL-1β were significantly higher in HFMD-alone patients of EV-71 infection than in CV-A16 infected HFMD patients; cerebrospinal fluid level of IL-6 was lower in the EV-71/CV-A16 associated encephalitis than that in the EV-71 alone associated encephalitis patients.Over or low expression of the cytokines cascade in HFMD patients appears to play an important role in the elicitation of the immune response to EV-71 and CV-A16. These data will be used to define a cytokine profile, which might help to recognize HFMD patients with the high risk of developing encephalitis.

  15. [Research progress on seroepidemiological study of enterovirus 71 and coxsackievirus A16 infection among children].

    Science.gov (United States)

    Luo, Li; Xing, Weijia; Liao, Qiaohong; Yu, Hongjie

    2015-02-01

    Most common causative agents for hand, foot and mouth disease (HFMD) are enterovirus 71 (EV-A71) and coxsackievirus A16 (CV-A16). The symptomatic and asymptomatic cases could transmit the disease in population. Many sero-epidemiological surveys were launched to estimate the sero-incidence of EV-A71 and CV-A16 enterovirus, the susceptibility of different sub-population, and to observe the dynamics of neutralizing antibody. A literature search of sero-epidemiological study focused on EV-A71 or CV-A16 was conducted via PubMed and China Hospital Knowledge Database. Based on the 20 selected studies, the different age groups' antibody level, the susceptibility, the dynamics of antibody and sero-incidence of EV-A71 or CV-A16 were analyzed. From our results, the antibody level against EV-A71 or CV-A16 in neonates was associated with their mothers, which was similar with that of adults. The antibody level against EV-A71 or CV-A16 in neonates dropped to lowest level at one years-old, and started to dramatically increase until four years-old, and reached a plateau at five years-old. In conclusion, the infants aged 6-12 months were the priority group to receive vaccination when the EV-A71 vaccine is licensed in the future.

  16. IL-9 inhibits viral replication in Coxsackievirus B3-induced myocarditis

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2016-10-01

    Full Text Available Myocardial injuries in viral myocarditis (VMC are caused by viral infection and related autoimmune disorders. Recent studies suggest that IL-9 mediated both antimicrobial immune and autoimmune responses in addition to allergic diseases. However, the role of IL-9 in viral infection and VMC remains controversial and uncertain. In this study, we infected Balb/c mice with Coxsackievirus B3 (CVB3, and found that IL-9 was enriched in the blood and hearts of VMC mice on days 5 and 7 after virus infection. Most of IL-9 was secreted by CD8+ T cells on day 5 and CD4+ T cells on day 7 in the myocardium. Further, IL-9 knockout exacerbated cardiac damage following CVB3 infection, along with a sharp increase in viral replication and IL-17a expression, as well as a decrease in TGF-β. In contrast, repletion of IL-9 in Balb/c mice with CVB infection induced the opposite effect. Studies in vitro further revealed that IL-9 directly inhibited viral replication in cardiomyocytes by reducing coxsackie and adenovirus receptor expression, which might be associated with up-regulation of TGF-β autocrine effect in these cells. However, IL-9 had no direct effect on apoptosis in cardiomyocytes. Our data indicated that IL-9 played a protective role in disease progression by inhibiting CVB3 replication in the early stages of VMC.

  17. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative.

    Directory of Open Access Journals (Sweden)

    Glynis Dunn

    2015-08-01

    Full Text Available There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post

  18. Twenty-Eight Years of Poliovirus Replication in an Immunodeficient Individual: Impact on the Global Polio Eradication Initiative

    Science.gov (United States)

    Dunn, Glynis; Klapsa, Dimitra; Wilton, Thomas; Stone, Lindsay; Minor, Philip D.; Martin, Javier

    2015-01-01

    There are currently huge efforts by the World Health Organization and partners to complete global polio eradication. With the significant decline in poliomyelitis cases due to wild poliovirus in recent years, rare cases related to the use of live-attenuated oral polio vaccine assume greater importance. Poliovirus strains in the oral vaccine are known to quickly revert to neurovirulent phenotype following replication in humans after immunisation. These strains can transmit from person to person leading to poliomyelitis outbreaks and can replicate for long periods of time in immunodeficient individuals leading to paralysis or chronic infection, with currently no effective treatment to stop excretion from these patients. Here, we describe an individual who has been excreting type 2 vaccine-derived poliovirus for twenty eight years as estimated by the molecular clock established with VP1 capsid gene nucleotide sequences of serial isolates. This represents by far the longest period of excretion described from such a patient who is the only identified individual known to be excreting highly evolved vaccine-derived poliovirus at present. Using a range of in vivo and in vitro assays we show that the viruses are very virulent, antigenically drifted and excreted at high titre suggesting that such chronic excreters pose an obvious risk to the eradication programme. Our results in virus neutralization assays with human sera and immunisation-challenge experiments using transgenic mice expressing the human poliovirus receptor indicate that while maintaining high immunisation coverage will likely confer protection against paralytic disease caused by these viruses, significant changes in immunisation strategies might be required to effectively stop their occurrence and potential widespread transmission. Eventually, new stable live-attenuated polio vaccines with no risk of reversion might be required to respond to any poliovirus isolation in the post-eradication era. PMID:26313548

  19. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria.

    Science.gov (United States)

    Burns, Cara C; Shaw, Jing; Jorba, Jaume; Bukbuk, David; Adu, Festus; Gumede, Nicksy; Pate, Muhammed Ali; Abanida, Emmanuel Ade; Gasasira, Alex; Iber, Jane; Chen, Qi; Vincent, Annelet; Chenoweth, Paul; Henderson, Elizabeth; Wannemuehler, Kathleen; Naeem, Asif; Umami, Rifqiyah Nur; Nishimura, Yorihiro; Shimizu, Hiroyuki; Baba, Marycelin; Adeniji, Adekunle; Williams, A J; Kilpatrick, David R; Oberste, M Steven; Wassilak, Steven G; Tomori, Oyewale; Pallansch, Mark A; Kew, Olen

    2013-05-01

    Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5'-untranslated region [5'-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5'-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries.

  20. Stool screening of Syrian refugees and asylum seekers in Germany, 2013/2014: Identification of Sabin like polioviruses.

    Science.gov (United States)

    Böttcher, Sindy; Neubauer, Katrin; Baillot, Armin; Rieder, Gabriele; Adam, Maja; Diedrich, Sabine

    2015-10-01

    Germany is a partner of the Global Polio Eradication Initiative. Assurance of polio free status is based on enterovirus surveillance, which focuses on patients with signs of acute flaccid paralysis or aseptic meningitis/encephalitis, representing the key symptoms of poliovirus infection. In response to the wild poliovirus outbreak in Syria 2013 and high number of refugees coming from Syria to Germany, stool samples from 629 Syrian refugees/asylum seekers aged Syrian refugees and asylum seekers at that time. Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Effect of Sucrose on the Infectivity, Migration and Neutralization of Neurovirulent Poliovirus Type 1

    OpenAIRE

    Srivastava, Ashok Kumar; Koza, Jiri; Matyasova, Irena

    1989-01-01

    Infectivity of neurovirulent poliovirus type 1, Brunhilde strain, was elevated more than 1 log on human rhabdomyosarcoma (RD) cells in the presence of 7.5 percent sucrose, although migration of the virus through 15 percent sucrose solution was not significant. Apparent inhibition of virus neutralization by rabbit antiserun was obserbed at all serum dilutions tested (1:100-1:1600) in the presence of 11.25 percent sucrose and at 1:800 serum dilution in the presence of 5.6 and 2.8 percent sucrose.

  2. Coxsackievirus A6 associated hand, foot and mouth disease in adults: clinical presentation and review of the literature.

    Science.gov (United States)

    Ramirez-Fort, Marigdalia K; Downing, Christopher; Doan, Hung Q; Benoist, Frances; Oberste, M Steven; Khan, Farhan; Tyring, Stephen K

    2014-08-01

    Hand, foot, and mouth disease (HFMD) is generally considered a rare illness in adults. Classically, HFMD has been strongly associated with coxsackievirus strain A16 and enterovirus 71. The coxsackievirus A6 (CVA6) strain has been linked to severe worldwide outbreaks since 2008. CVA6 is associated with a more severe and profound course of disease, affecting both children and adults. To present a series of five adult patients diagnosed with HFMD due to CVA6. We investigate method of diagnosis and compare clinical presentation of adult cases to those in children. Each patient underwent a full-body skin exam as well as inspection of the oral cavity. Rapid plasma reagin (RPR) and serologic assays by complement fixation against coxsackievirus B (1-6) and A (2,4,7,9,10,16) were performed as indicated. As standard serological testing does not detect CVA6, real-time reverse transcription-polymerase chain reaction (qRT-PCR) of serum, buccal swabs, and skin scrapings were performed by the Centers for Disease Control and Prevention (CDC). Each patient had clinical findings consistent with various stages of HFMD. One patient presented with delayed onychomadesis and desquamation of the palms and soles. RPR and serologic assays by complement fixation against CVB (1-6) and CVA (2,4,7,9,10,16) were mostly negative, although elevated in two patients due to cross-reactivity. qRT-PCR identified CVA6 genetic material in samples from all patients. This series demonstrates that there is a wide array of disease presentation of CVA6 associated HFMD in adults. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Sabin Vaccine Reversion in the Field: a Comprehensive Analysis of Sabin-Like Poliovirus Isolates in Nigeria

    Science.gov (United States)

    Chang, Stewart; Iber, Jane; Zhao, Kun; Adeniji, Johnson A.; Bukbuk, David; Baba, Marycelin; Behrend, Matthew; Burns, Cara C.; Oberste, M. Steven

    2015-01-01

    ABSTRACT To assess the dynamics of genetic reversion of live poliovirus vaccine in humans, we studied molecular evolution in Sabin-like poliovirus isolates from Nigerian acute flaccid paralysis cases obtained from routine surveillance. We employed a novel modeling approach to infer substitution and recombination rates from whole-genome sequences and information about poliovirus infection dynamics and the individual vaccination history. We confirmed observations from a recent vaccine trial that VP1 substitution rates are increased for Sabin-like isolates relative to the rate for the wild type due to increased nonsynonymous substitution rates. We also inferred substitution rates for attenuating nucleotides and confirmed that reversion can occur in days to weeks after vaccination. We combine our observations for Sabin-like virus evolution with the molecular clock for VP1 of circulating wild-type strains to infer that the mean time from the initiating vaccine dose to the earliest detection of circulating vaccine-derived poliovirus (cVDPV) is 300 days for Sabin-like virus type 1, 210 days for Sabin-like virus type 2, and 390 days for Sabin-like virus type 3. Phylogenetic relationships indicated transient local transmission of Sabin-like virus type 3 and, possibly, Sabin-like virus type 1 during periods of low wild polio incidence. Comparison of Sabin-like virus recombinants with known Nigerian vaccine-derived poliovirus recombinants shows that while recombination with non-Sabin enteroviruses is associated with cVDPV, the recombination rates are similar for Sabin isolate-Sabin isolate and Sabin isolate–non-Sabin enterovirus recombination after accounting for the time from dosing to the time of detection. Our study provides a comprehensive picture of the evolutionary dynamics of the oral polio vaccine in the field. IMPORTANCE The global polio eradication effort has completed its 26th year. Despite success in eliminating wild poliovirus from most of the world, polio

  4. Gene expression patterns induced at different stages of rhinovirus infection in human alveolar epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Etemadi

    Full Text Available Human rhinovirus (HRV is the common virus that causes acute respiratory infection (ARI and is frequently associated with lower respiratory tract infections (LRTIs. We aimed to investigate whether HRV infection induces a specific gene expression pattern in airway epithelial cells. Alveolar epithelial cell monolayers were infected with HRV species B (HRV-B. RNA was extracted from both supernatants and infected monolayer cells at 6, 12, 24 and 48 hours post infection (hpi and transcriptional profile was analyzed using Affymetrix GeneChip and the results were subsequently validated using quantitative Real-time PCR method. HRV-B infects alveolar epithelial cells which supports implication of the virus with LRTIs. In total 991 genes were found differentially expressed during the course of infection. Of these, 459 genes were up-regulated whereas 532 genes were down-regulated. Differential gene expression at 6 hpi (187 genes up-regulated vs. 156 down-regulated were significantly represented by gene ontologies related to the chemokines and inflammatory molecules indicating characteristic of viral infection. The 75 up-regulated genes surpassed the down-regulated genes (35 at 12 hpi and their enriched ontologies fell into discrete functional entities such as regulation of apoptosis, anti-apoptosis, and wound healing. At later time points of 24 and 48 hpi, predominated down-regulated genes were enriched for extracellular matrix proteins and airway remodeling events. Our data provides a comprehensive image of host response to HRV infection. The study suggests the underlying molecular regulatory networks genes which might be involved in pathogenicity of the HRV-B and potential targets for further validations and development of effective treatment.

  5. Clinical and molecular epidemiology of human rhinovirus infections in patients with hematologic malignancy.

    Science.gov (United States)

    Jacobs, Samantha E; Lamson, Daryl M; Soave, Rosemary; Guzman, Brigitte Huertas; Shore, Tsiporah B; Ritchie, Ellen K; Zappetti, Dana; Satlin, Michael J; Leonard, John P; van Besien, Koen; Schuetz, Audrey N; Jenkins, Stephen G; George, Kirsten St; Walsh, Thomas J

    2015-10-01

    Human rhinoviruses (HRVs) are common causes of upper respiratory tract infection (URTI) in hematologic malignancy (HM) patients. Predictors of lower respiratory tract infection (LRTI) including the impact of HRV species and types are poorly understood. This study aims to describe the clinical and molecular epidemiology of HRV infections among HM patients. From April 2012-March 2013, HRV-positive respiratory specimens from symptomatic HM patients were molecularly characterized by analysis of partial viral protein 1 (VP1) or VP4 gene sequence. HRV LRTI risk-factors and outcomes were analyzed using multivariable logistic regression. One hundred and ten HM patients presented with HRV URTI (n=78) and HRV LRTI (n=32). Hypoalbuminemia (OR 3.0; 95% CI, 1.0-9.2; p=0.05) was independently associated with LRTI, but other clinical and laboratory markers of host immunity did not differ between patients with URTI versus LRTI. Detection of bacterial co-pathogens was common in LRTI cases (25%). Among 92 typeable respiratory specimens, there were 58 (64%) HRV-As, 12 (13%) HRV-Bs, and 21 (23%) HRV-Cs, and one Enterovirus 68. LRTI rates among HRV-A (29%), HRV-B (17%), and HRV-C (29%) were similar. HRV-A infections occurred year-round while HRV-B and HRV-C infections clustered in the late fall and winter. HRVs are associated with LRTI in HM patients. Illness severity is not attributable to specific HRV species or types. The frequent detection of bacterial co-pathogens in HRV LRTIs further substantiates the hypothesis that HRVs predispose to bacterial superinfection of the lower airways, similar to that of other community-acquired respiratory viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma.

    Science.gov (United States)

    Esquivel, Ann; Busse, William W; Calatroni, Agustin; Togias, Alkis G; Grindle, Kristine G; Bochkov, Yury A; Gruchalla, Rebecca S; Kattan, Meyer; Kercsmar, Carolyn M; Khurana Hershey, G; Kim, Haejin; Lebeau, Petra; Liu, Andrew H; Szefler, Stanley J; Teach, Stephen J; West, Joseph B; Wildfire, Jeremy; Pongracic, Jaqueline A; Gern, James E

    2017-10-15

    Allergic inflammation has been linked to increased susceptibility to viral illnesses, but it is unclear whether this association is causal. To test whether omalizumab treatment to reduce IgE would shorten the frequency and duration of rhinovirus (RV) illnesses in children with allergic asthma. In the PROSE (Preventative Omalizumab or Step-up Therapy for Severe Fall Exacerbations) study, we examined children with allergic asthma (aged 6-17 yr; n = 478) from low-income census tracts in eight U.S. cities, and we analyzed virology for the groups randomized to treatment with guidelines-based asthma care (n = 89) or add-on omalizumab (n = 259). Weekly nasal mucus samples were analyzed for RVs, and respiratory symptoms and asthma exacerbations were recorded over a 90-day period during the fall seasons of 2012 or 2013. Adjusted illness rates (illnesses per sample) by treatment arm were calculated using Poisson regression. RVs were detected in 97 (57%) of 171 exacerbation samples and 2,150 (36%) of 5,959 nonexacerbation samples (OR, 2.32; P Omalizumab decreased the duration of RV infection (11.2 d vs. 12.4 d; P = 0.03) and reduced peak RV shedding by 0.4 log units (95% confidence interval, -0.77 to -0.02; P = 0.04). Finally, omalizumab decreased the frequency of RV illnesses (risk ratio, 0.64; 95% confidence interval, 0.49-0.84). In children with allergic asthma, treatment with omalizumab decreased the duration of RV infections, viral shedding, and the risk of RV illnesses. These findings provide direct evidence that blocking IgE decreases susceptibility to RV infections and illness. Clinical trial registered with www.clinicaltrials.gov (NCT01430403).

  7. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C.

    Science.gov (United States)

    Mello, Chris; Aguayo, Esmeralda; Rodriguez, Madeleine; Lee, Gary; Jordan, Robert; Cihlar, Tomas; Birkus, Gabriel

    2014-01-01

    Human rhinovirus type C (HRV-C) is a newly discovered enterovirus species frequently associated with exacerbation of asthma and other acute respiratory conditions. Until recently, HRV-C could not be propagated in vitro, hampering in-depth characterization of the virus replication cycle and preventing efficient testing of antiviral agents. Herein we describe several subgenomic RNA replicon systems and a cell culture infectious model for HRV-C that can be used for antiviral screening. The replicon constructs consist of genome sequences from HRVc15, HRVc11, HRVc24, and HRVc25 strains, with the P1 capsid region replaced by a Renilla luciferase coding sequence. Following transfection of the replicon RNA into HeLa cells, the constructs produced time-dependent increases in luciferase signal that can be inhibited in a dose-dependent manner by known inhibitors of HRV replication, including the 3C protease inhibitor rupintrivir, the nucleoside analog inhibitor MK-0608, and the phosphatidylinositol 4-kinase IIIβ (PI4K-IIIβ) kinase inhibitor PIK93. Furthermore, with the exception of pleconaril and pirodavir, the other tested classes of HRV inhibitors blocked the replication of full-length HRVc15 and HRVc11 in human airway epithelial cells (HAEs) that were differentiated in the air-liquid interface, exhibiting antiviral activities similar to those observed with HRV-16. In summary, this study is the first comprehensive profiling of multiple classes of antivirals against HRV-C, and the set of newly developed quantitative HRV-C antiviral assays represent indispensable tools for the identification and evaluation of novel panserotype HRV inhibitors.

  8. Serotype and genetic diversity of human rhinovirus strains that circulated in Kenya in 2008.

    Science.gov (United States)

    Milanoi, Sylvia; Ongus, Juliette R; Gachara, George; Coldren, Rodney; Bulimo, Wallace

    2016-05-01

    Human rhinoviruses (HRVs) are a well-established cause of the common cold and recent studies indicated that they may be associated with severe acute respiratory illnesses (SARIs) like pneumonia, asthma, and bronchiolitis. Despite global studies on the genetic diversity of the virus, the serotype diversity of these viruses across diverse geographic regions in Kenya has not been characterized. This study sought to characterize the serotype diversity of HRV strains that circulated in Kenya in 2008. A total of 517 archived nasopharyngeal samples collected in a previous respiratory virus surveillance program across Kenya in 2008 were selected. Participants enrolled were outpatients who presented with influenza-like (ILI) symptoms. Real-time RT-PCR was employed for preliminary HRV detection. HRV-positive samples were amplified using RT-PCR and thereafter the nucleotide sequences of the amplicons were determined followed by phylogenetic analysis. Twenty-five percent of the samples tested positive for HRV. Phylogenetic analysis revealed that the Kenyan HRVs clustered into three main species comprising HRV-A (54%), HRV-B (12%), and HRV-C (35%). Overall, 20 different serotypes were identified. Intrastrain sequence homology among the Kenyan strains ranged from 58% to 100% at the nucleotide level and 55% to 100% at the amino acid level. These results show that a wide range of HRV serotypes with different levels of nucleotide variation were present in Kenya. Furthermore, our data show that HRVs contributed substantially to influenza-like illness in Kenya in 2008. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  9. Decreased lung function after preschool wheezing rhinovirus illnesses in children at risk to develop asthma.

    Science.gov (United States)

    Guilbert, Theresa W; Singh, Anne Marie; Danov, Zoran; Evans, Michael D; Jackson, Daniel J; Burton, Ryan; Roberg, Kathy A; Anderson, Elizabeth L; Pappas, Tressa E; Gangnon, Ronald; Gern, James E; Lemanske, Robert F

    2011-09-01

    Preschool rhinovirus (RV) wheezing illnesses predict an increased risk of childhood asthma; however, it is not clear how specific viral illnesses in early life relate to lung function later on in childhood. To determine the relationship of virus-specific wheezing illnesses and lung function in a longitudinal cohort of children at risk for asthma. Two hundred thirty-eight children were followed prospectively from birth to 8 years of age. Early life viral wheezing respiratory illnesses were assessed by using standard techniques, and lung function was assessed annually by using spirometry and impulse oscillometry. The relationships of these virus-specific wheezing illnesses and lung function were assessed by using mixed-effect linear regression. Children with RV wheezing illness demonstrated significantly decreased spirometry values, FEV(1) (P = .001), FEV(0.5) (P Children who wheezed with respiratory syncytial virus or other viral illnesses did not have any significant differences in spirometric or impulse oscillometry indices when compared with children who did not. Children diagnosed with asthma at ages 6 or 8 years had significantly decreased FEF(25-75) (P = .05) compared with children without asthma. Among outpatient viral wheezing illnesses in early childhood, those caused by RV infections are the most significant predictors of decreased lung function up to age 8 years in a high-risk birth cohort. Whether low lung function is a cause and/or effect of RV wheezing illnesses is yet to be determined. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  10. Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells.

    Science.gov (United States)

    Maciejewski, Barbara A; Jamieson, Kyla C; Arnason, Jason W; Kooi, Cora; Wiehler, Shahina; Traves, Suzanne L; Leigh, Richard; Proud, David

    2017-05-01

    Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes. Copyright © 2017 the American Physiological Society.

  11. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    Science.gov (United States)

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  12. Chemokine release from human rhinovirus-infected airway epithelial cells promotes fibroblast migration.

    Science.gov (United States)

    Shelfoon, Christopher; Shariff, Sami; Traves, Suzanne L; Kooi, Cora; Leigh, Richard; Proud, David

    2016-07-01

    Thickening of the lamina reticularis, a feature of remodeling in the asthmatic airways, is now known to be present in young children who wheeze. Human rhinovirus (HRV) infection is a common trigger for childhood wheezing, which is a risk factor for subsequent asthma development. We hypothesized that HRV-infected epithelial cells release chemoattractants to recruit fibroblasts that could potentially contribute to thickening of the lamina reticularis. We sought to investigate whether conditioned medium from HRV-infected epithelial cells can trigger directed migration of fibroblasts. Human bronchial epithelial cells were exposed to medium alone or infected with HRV-16. Conditioned medium from both conditions were tested as chemoattractants for human bronchial fibroblasts in the xCELLigence cell migration apparatus. HRV-conditioned medium was chemotactic for fibroblasts. Treatment of fibroblasts with pertussis toxin, an inhibitor of Gαi-coupled receptors, prevented their migration. Production of epithelial chemoattractants required HRV replication. Multiplex analysis of epithelial supernatants identified CXCL10, CXCL8, and CCL5 as Gαi-coupled receptor agonists of potential interest. Subsequent analysis confirmed that fibroblasts express CXCR3 and CXCR1 receptors and that CXCL10 and, to a lesser extent, CXCL8, but not CCL5, are major contributors to fibroblast migration caused by HRV-conditioned medium. CXCL10 and CXCL8 produced from HRV-infected epithelial cells are chemotactic for fibroblasts. This raises the possibility that repeated HRV infections in childhood could contribute to the initiation and progression of airway remodeling in asthmatic patients by recruiting fibroblasts that produce matrix proteins and thicken the lamina reticularis. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  14. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Science.gov (United States)

    Proud, David; Hudy, Magdalena H; Wiehler, Shahina; Zaheer, Raza S; Amin, Minaa A; Pelikan, Jonathan B; Tacon, Claire E; Tonsaker, Tabitha O; Walker, Brandie L; Kooi, Cora; Traves, Suzanne L; Leigh, Richard

    2012-01-01

    Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  15. Transcriptional and epigenetic modulation of human rhinovirus-induced CXCL10 production by cigarette smoke.

    Science.gov (United States)

    Hudy, Magdalena H; Traves, Suzanne L; Proud, David

    2014-03-01

    Human rhinovirus (HRV) triggers exacerbations of asthma and chronic obstructive pulmonary disease. Cigarette smoking is the primary risk factor for the development of chronic obstructive pulmonary disease, and 25% of individuals with asthma smoke. Smokers experience both longer and more severe colds. We previously showed that cigarette smoke extract (CSE) inhibited HRV-induced expression of a range of epithelial antiviral molecules. Here, we use CXCL10 as a model antiviral gene to examine the mechanisms by which CSE inhibits epithelial antiviral immunity. HRV-induced CXCL10 transcription depends on activation of NF-ĸB and IFN-regulatory factor-1 (IRF-1), and we now also implicate two signal transducer and activator of transcription (STAT) consensus sequences in the CXCL10 promoter in HRV-induced CXCL10 expression. CSE inhibited HRV-induced activation and nuclear translocation/binding of both NF-ĸB, and IRF-1 to their respective recognition sequences in the CXCL10 promoter. HRV also induced formation of complexes at the STAT region in the CXCL10 promoter, and HRV-induced activation of STAT-1 was inhibited by CSE. In addition, CSE inhibited HRV-induced chromatin accessibility around the transcriptional start site of the CXCL10 promoter. Although CSE inhibited HRV-induced expression of both the viral double-stranded RNA sensors, retinoic acid-inducible gene-I and melanoma differentiation-associated gene (MDA) 5, only specific short interfering RNA (siRNA) to MDA5, but not nontargeting siRNA, or siRNA to retinoic acid-inducible gene-I, inhibited HRV-induced CXCL10 induction. We conclude that CSE reduces chromatin accessibility and inhibits viral signaling via NF-ĸB, IRF-1, STAT-1, and MDA5. Thus, we show that CSE can simultaneously modulate multiple pathways linked to innate immune responses to HRV infection.

  16. Rhinovirus/enterovirus RNA in tonsillar tissue of children with tonsillar disease.

    Science.gov (United States)

    Suvilehto, Jari; Roivainen, Merja; Seppänen, Mikko; Meri, Seppo; Hovi, Tapani; Carpén, Olli; Pitkäranta, Anne

    2006-03-01

    Human rhinoviruses (HRVs) together with the closely related human enteroviruses (HEVs) cause most of the acute respiratory illnesses throughout the year. HRVs have been detected in most parts of the respiratory tract but not in pharyngeal tonsils. We aimed to find out whether HRVs were detectable in tonsillar tissue and if their presence correlated to the tonsillar disease. Thirty-three tonsillar samples collected in February-March 2003 from children with no acute respiratory symptoms were studied with HRV in situ hybridization (HRV-ISH). Ten tonsillar samples were further examined in a separate laboratory by two different reverse transcription polymerase chain reaction (RT-PCR) methods designed for detection of HRV/HEV RNA. Twenty of the 33 samples (62%) were positive by HRV-ISH. Five positive and five negative HRV-ISH samples were investigated by two different PCR methods. HRV/HEV RNA was detected in 9 of the 10 specimens by a hanging drop-nested PCR. One HRV-ISH negative sample was positive by a conventional non-nested PCR. One of the samples studied by all three methods, from a patient with recurrent tonsillitis, had no detectable HRV/HEV RNA. Positive result in HRV-ISH did not correlate significantly with underlying tonsillar disease, history of respiratory infections or bronchial asthma. Altogether HRV/HEV RNA was detected in 75% of the tonsils with no correlation to patients' operation indication or history of respiratory diseases. In February-March, HRV/HEV RNA was frequently found in tonsillar tissue in children irrespective of the tonsillar pathology. Whether detection of the RNA is a marker of chronic infection or is merely remnant of past infection is not known.

  17. Human rhinovirus in experimental infection after peroral Lactobacillus rhamnosus GG consumption, a pilot study.

    Science.gov (United States)

    Tapiovaara, Laura; Kumpu, Minna; Mäkivuokko, Harri; Waris, Matti; Korpela, Riitta; Pitkäranta, Anne; Winther, Birgit

    2016-08-01

    Data has emerged on possible beneficial effects of probiotics in respiratory tract viral infections, but it is unclear if the promising positive effects evidenced are due to a reduced viral load during infections. The aims of this work were to investigate the effect of peroral probiotic Lactobacillus rhamnosus GG (American Type Culture Collection [ATCC], Accession No. 53103) consumption on human rhinovirus (HRV) load in nasopharyngeal lavage samples in experimental HRV infection, and to correlate viral load to clinical symptoms. Intranasal HRV A39 inoculation was performed on 59 adults, who had consumed juice enriched with live or heat-inactivated L. rhamnosus GG or control juice for 3 weeks prior to inoculation in a randomized, controlled, pilot trial setting. Nasopharyngeal lavage samples and symptom data were analyzed on day 0 before inoculation, and on days 2 and 5. Samples were subjected to quantitative HRV detection by polymerase chain reaction (PCR). Before inoculation 9 of 59 (15%) samples presented with another HRV strain than the studied A39. There was a tendency toward the lowest HRV loads in the L. rhamnosus GG groups and the highest in placebo group (log10 copies/mL, 95% confidence interval [CI], 6.20 [5.18 to 7.40] in live, 6.30 [4.91 to 7.08] in inactivated L. rhamnosus GG, and 7.25 [5.81 to 7.52] in placebo group, p = 0.57 in day 2) in the wild-type excluded population. The HRV load positively correlated with the symptom scores on days 2 and 5 (correlation coefficient 0.61 [p GG when compared to placebo. HRV load positively correlated with the total symptom scores. © 2016 ARS-AAOA, LLC.

  18. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds.

    Science.gov (United States)

    Smee, Donald F; Evans, W Joseph; Nicolaou, K C; Tarbet, E Bart; Day, Craig W

    2016-07-01

    Compounds were evaluated for antiviral activity in rhabdomyosarcoma (RD) cells against a recent 2014 clinical isolate of enterovirus D68 (EV-D68), a 1962 strain of EV-68D, rhinovirus 87 (RV-87, serologically the same as EV-D68), and enterovirus 71 (EV-71). Test substances included known-active antipicornavirus agents (enviroxime, guanidine HCl, pirodavir, pleconaril, and rupintrivir), nucleobase/nucleoside analogs (3-deazaguanine and ribavirin), and three novel epidithiodiketopiperazines (KCN-2,2'-epi-19, KCN-19, and KCN-21). Of these, rupintrivir was the most potent, with 50% inhibition of viral cytopathic effect (EC50) and 90% inhibition (EC90) of virus yield at 0.0022-0.0053 μM against EV-D68. Enviroxime, pleconaril and the KCN compounds showed efficacy at 0.01-0.3 μM; 3-deazaguanine and pirodavir inhibited EV-D68 at 7-13 μM, and guanidine HCl and ribavirin were inhibitory at 80-135 μM. Pirodavir was active against EV-71 (EC50 of 0.78 μM) but not against RV-87 or EV-D68, and all other compounds were less effective against EV-71 than against RV-87 and EV-D68. The most promising compound inhibiting both virus infections at low concentrations was rupintrivir. Antiviral activity was confirmed for the ten compounds in virus yield reduction (VYR) assays in RD cells, and for enviroxime, guanidine HCl, and pirodavir by cytopathic effect (CPE) assays in A549, HeLa-Ohio-1, and RD cells. These studies may serve as a basis for further pre-clinical discovery of anti-enterovirus inhibitors. Furthermore, the antiviral profiles and growth characteristics observed herein support the assertion that EV-D68 should be classified together with RV-87. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Correlation between vaccine coverage against polio and circulation and genetic evolution of the poliovirus strains isolated in Romania in the framework of the global polio eradication strategy.

    Science.gov (United States)

    Băicuş, Anda; Persu, Ana; Popescu, Maria; Penciu, Alina; Stavri, Simona; Soare, Alina; Grecu, Nicolae; Szmal, Camelia; Oprişan, Gabriela

    2009-01-01

    Until 2008 in Romania poliomyelitis has been controlled by predominantly using trivalent oral poliovirus vaccine (TOPV). The alternative vaccination schedule (formalin inactivated poliovirus vaccine IPV/OPV) has been implemented starting September 2008 and at the begining of 2009 was decided only vaccination with IPV. Between 1995-2006 the risk of the vaccine-associated paralytic poliomyelitis (VAPP) decreased with an average of less than 2 VAPP cases/year and no VAPP case between 2007 - September 2009. Begining with 2007 the number of the poliovirus strains isolated was less. All 9 poliovirus strains (PV) isolated between 2007-2009 and investigated by RT-PCR-RFLP in VP1-2A and VP3-VP1 coding regions showed Sabin-like profiles, and only one strain poliovirus type 3 showed Sabin 2-like profile by RFLP in 3D coding ARN polymerase region. The study about the seroprevalence of antibodies against poliovirus types in serum samples from the acute flaccid paralysis (AFP), facial paralysis (FP) cases showed that the seroprevalence of antibodies against types 1 and 2 Sabin strains was higher (>90%) than for type 3 Sabin strains (average 85%). It was confirmed the necessity of maintaining a proper vaccine coverage in population, after the switch in the vaccination strategy in Romania until all threats of poliovirus are eliminated globally.

  20. A Neonatal Murine Model of Coxsackievirus A6 Infection for Evaluation of Antiviral and Vaccine Efficacy.

    Science.gov (United States)

    Zhang, Zhenjie; Dong, Zhaopeng; Wei, Qingjuan; Carr, Michael J; Li, Juan; Ding, Shujun; Tong, Yigang; Li, Dong; Shi, Weifeng

    2017-05-01

    Hand, foot, and mouth disease (HFMD) is a global health concern. Family Picornaviridae members, particularly enterovirus A71 (EVA71) and coxsackievirus A16 (CVA16), are the primary etiological agents of HFMD; however, a third enterovirus A species, CVA6, has been recently associated with epidemic outbreaks. Study of the pathogenesis of CVA6 infection and development of antivirals and vaccines are hindered by a lack of appropriate animal models. We have developed and characterized a murine model of CVA6 infection that was employed to evaluate the antiviral activities of different drugs and the protective efficacies of CVA6-inactivated vaccines. Neonatal mice were susceptible to CVA6 infection via intramuscular inoculation, and the susceptibility of mice to CVA6 infection was age and dose dependent. Five-day-old mice infected with 10 5.5 50% tissue culture infective doses of the CVA6 WF057R strain consistently exhibited clinical signs, including reduced mobility, lower weight gain, and quadriplegia with significant pathology in the brain, hind limb skeletal muscles, and lungs of the infected mice in the moribund state. Immunohistochemical analysis and quantitative reverse transcription-PCR (qRT-PCR) analyses showed high viral loads (11 log 10 /mg) in skeletal muscle, and elevated levels of interleukin-6 (IL-6; >2,000 pg/ml) were associated with severe viral pneumonia and encephalitis. Ribavirin and gamma interferon administered prophylactically diminished CVA6-associated pathology in vivo , and treatment with IL-6 accelerated the death of neonatal mice. Both specific anti-CVA6 serum and maternal antibody play important roles in controlling CVA6 infection and viral replication. Collectively, these findings indicate that this neonatal murine model will be invaluable in future studies to develop CVA6-specific antivirals and vaccines. IMPORTANCE Although coxsackievirus A6 (CVA6) infections are commonly mild and self-limiting, a small proportion of children may have

  1. Effect of booster doses of poliovirus vaccine in previously vaccinated children, Clinical Trial Results 2013.

    Science.gov (United States)

    Habib, Muhammad Atif; Soofi, Sajid; Mach, Ondrej; Samejo, Tariq; Alam, Didar; Bhatti, Zaid; Weldon, William C; Oberste, Steven M; Sutter, Roland; Bhutta, Zulfiqar A

    2016-07-19

    Considering the current polio situation Pakistan needs vaccine combinations to reach maximum population level immunity. The trial assessed whether inactivated poliovirus vaccine (IPV) can be used to rapidly boost immunity among children in Pakistan. A five-arm randomized clinical trial was conducted among children (6-24months, 5-6years and 10-11years). Children were randomized in four intervention arms as per the vaccines they received (bOPV, IPV, bOPV+vitamin A, and bOPV+IPV) and a control arm which did not receive any vaccine. Baseline seroprevalence of poliovirus antibodies and serological immune response 28days after intervention were assessed. The baseline seroprevalence was high for all serotypes and the three age groups [PV1: 97%, 100%, 96%, PV2: 86%, 100%, 99%, PV3: 83%, 95%, 87% for the three age groups respectively]. There was significantly higher rate of immune response observed in the study arms which included IPV (95-99%) compared with bOPV only arms (11-43%), [p0.5]. IPV has shown the ability to efficiently close existing immunity gaps in a vulnerable population of children in rural Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An assessment of the reasons for oral poliovirus vaccine refusals in northern Nigeria.

    Science.gov (United States)

    Michael, Charles A; Ogbuanu, Ikechukwu U; Storms, Aaron D; Ohuabunwo, Chima J; Corkum, Melissa; Ashenafi, Samra; Achari, Panchanan; Biya, Oladayo; Nguku, Patrick; Mahoney, Frank

    2014-11-01

    Accumulation of susceptible children whose caregivers refuse to accept oral poliovirus vaccine (OPV) contributes to the spread of poliovirus in Nigeria. During and immediately following the OPV campaign in October 2012, polio eradication partners conducted a study among households in which the vaccine was refused, using semistructured questionnaires. The selected study districts had a history of persistent OPV refusals in previous campaigns. Polio risk perception was low among study participants. The majority (59%) of participants believed that vaccination was either not necessary or would not be helpful, and 30% thought it might be harmful. Religious beliefs were an important driver in the way people understood disease. Fifty-two percent of 48 respondents reported that illnesses were due to God's will and/or destiny and that only God could protect them against illnesses. Only a minority (14%) of respondents indicated that polio was a significant problem in their community. Caregivers refuse OPV largely because of poor polio risk perception and religious beliefs. Communication strategies should, therefore, aim to increase awareness of polio as a real health threat and educate communities about the safety of the vaccine. In addition, polio eradication partners should collaborate with other agencies and ministries to improve total primary healthcare packages to address identified unmet health and social needs. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. An Outbreak of Wild Poliovirus in the Republic of Congo, 2010–2011

    Science.gov (United States)

    Patel, Minal K.; Konde, Mandy Kader; Didi-Ngossaki, Boris Hermann; Ndinga, Edouard; Yogolelo, Riziki; Salla, Mbaye; Shaba, Keith; Everts, Johannes; Armstrong, Gregory L.; Daniels, Danni; Burns, Cara; Wassilak, Steve; Pallansch, Mark; Kretsinger, Katrina

    2015-01-01

    Background The Republic of Congo has had no cases of wild poliovirus type 1 (WPV1) since 2000. In October 2010, a neurologist noted an abnormal number of cases of acute flaccid paralysis (AFP) among adults, which were later confirmed to be caused by WPV1. Methods Those presenting with AFP underwent clinical history, physical examination, and clinical specimen collection to determine if they had polio. AFP cases were classified as laboratory-confirmed, clinical, or nonpolio AFP. Epidemiologic features of the outbreak were analyzed. Results From 19 September 2010 to 22 January 2011, 445 cases of WPV1 were reported in the Republic of Congo; 390 cases were from Pointe Noire. Overall, 331 cases were among adults; 378 cases were clinically confirmed, and 64 cases were laboratory confirmed. The case-fatality ratio (CFR) was 43%. Epidemiologic characteristics differed among polio cases reported in Pointe Noire and cases reported in the rest of the Republic of Congo, including age distribution and CFR. The outbreak stopped after multiple vaccination rounds with oral poliovirus vaccine, which targeted the entire population. Conclusions This outbreak underscores the need to maintain high vaccination coverage to prevent outbreaks, the need to maintain timely high-quality surveillance to rapidly identify and respond to any potential cases before an outbreak escalates, and the need to perform ongoing risk assessments of immunity gaps in polio-free countries. PMID:22911642

  4. An outbreak of wild poliovirus in the Republic of Congo, 2010-2011.

    Science.gov (United States)

    Patel, Minal K; Konde, Mandy Kader; Didi-Ngossaki, Boris Hermann; Ndinga, Edouard; Yogolelo, Riziki; Salla, Mbaye; Shaba, Keith; Everts, Johannes; Armstrong, Gregory L; Daniels, Danni; Burns, Cara; Wassilak, Steve; Pallansch, Mark; Kretsinger, Katrina

    2012-11-15

    The Republic of Congo has had no cases of wild poliovirus type 1 (WPV1) since 2000. In October 2010, a neurologist noted an abnormal number of cases of acute flaccid paralysis (AFP) among adults, which were later confirmed to be caused by WPV1. Those presenting with AFP underwent clinical history, physical examination, and clinical specimen collection to determine if they had polio. AFP cases were classified as laboratory-confirmed, clinical, or nonpolio AFP. Epidemiologic features of the outbreak were analyzed. From 19 September 2010 to 22 January 2011, 445 cases of WPV1 were reported in the Republic of Congo; 390 cases were from Pointe Noire. Overall, 331 cases were among adults; 378 cases were clinically confirmed, and 64 cases were laboratory confirmed. The case-fatality ratio (CFR) was 43%. Epidemiologic characteristics differed among polio cases reported in Pointe Noire and cases reported in the rest of the Republic of Congo, including age distribution and CFR. The outbreak stopped after multiple vaccination rounds with oral poliovirus vaccine, which targeted the entire population. This outbreak underscores the need to maintain high vaccination coverage to prevent outbreaks, the need to maintain timely high-quality surveillance to rapidly identify and respond to any potential cases before an outbreak escalates, and the need to perform ongoing risk assessments of immunity gaps in polio-free countries.

  5. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Ekaterina Korotkova

    2017-11-01

    Full Text Available Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.

  6. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  7. Isolation and characterization of a highly evolved type 3 vaccine-derived poliovirus in China.

    Science.gov (United States)

    Zhang, Xiaowei; Qin, Chong; Li, Wei; Zheng, Zhenhua; Wang, Hanzhong; Cui, Zongqiang

    2017-06-15

    In this study, we report the identification and characterization of a highly evolved type 3 vaccine-derived poliovirus (VDPV) strain designated as WIV14, isolated in 2014 from a 4-year-old child suspected of having an enteroviral infection in China. Complete genome sequence of WIV14 revealed multiple nucleotide substitutions when compared with the attenuated poliovirus (PV) Sabin 3, including the reversion of three major attenuation sites to wild type. From the nucleotide divergence for the P1/capsid region, we estimated that the evolution time of WIV14 was more than 7 years, indicating the possible long time of replication. WIV14 strain seemed to have differences in biological characteristics compared with attenuated PV strains, such as being non-temperature-sensitive and producing large plaques. The current isolation of a highly divergent type 3 VDPV gives an idea of the risk of emergent VDPV strains, and emphasizes the importance of maintaining high vaccination coverage and herd immunity against PVs in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from live-attenuated Sabin strains.

    Science.gov (United States)

    Tano, Yoshio; Shimizu, Hiroyuki; Martin, Javier; Nishimura, Yorihiro; Simizu, Bunsiti; Miyamura, Tatsuo

    2007-10-10

    A candidate inactivated poliovirus vaccine derived from live-attenuated Sabin strains (sIPV), which are used in the oral poliovirus vaccine (OPV), was prepared in a large-production scale. The modification of viral antigenic epitopes during the formalin inactivation process was investigated by capture ELISA assays using type-specific and antigenic site-specific monoclonal antibodies (MoAbs). The major antigenic site 1 was modified during the formalin inactivation of Sabin 1. Antigenic sites 1-3 were slightly modified during the formalin inactivation of Sabin 2 strain. Sites 1 and 3 were altered on inactivated Sabin 3 virus. These alterations were different to those shown by wild-type Saukett strain, used in conventional IPV (cIPV). It has been previously reported that type 1 sIPV showed higher immunogenicity to type 1 cIPV whereas types 2 and 3 sIPV induced lower level of immunogenicity than their cIPV counterparts. Our results suggest that the differences in epitope structure after formalin inactivation may account, at least in part, for the observed differences in immunogenicity between Sabin and wild-type inactivated poliovaccines.

  9. Isolation of recombinant type 2 vaccine-derived poliovirus (VDPV) from a Nigerian child.

    Science.gov (United States)

    Adu, Festus; Iber, Jane; Bukbuk, David; Gumede, Nicksy; Yang, Su-Ju; Jorba, Jaume; Campagnoli, Ray; Sule, Waidi Folorunso; Yang, Chen-Fu; Burns, Cara; Pallansch, Mark; Harry, Tekena; Kew, Olen

    2007-07-01

    A type 2 vaccine-derived poliovirus (VDPV), differing from Sabin 2 at 2.5% (22/903) of VP1 nucleotide (nt) positions, was isolated from an incompletely immunized 21-month-old Nigerian child who developed acute flaccid paralysis in 2002. Sequences upstream of nt position 620 (within the 5'-untranslated region [5'-UTR]) and downstream of nt position 5840 (in the 3C(pro) region) were derived from species C enteroviruses unrelated to the oral poliovirus vaccine (OPV) strains. The two substitutions associated with the attenuated phenotype had either recombined out (A(481)-->G in the 5'-UTR) or reverted (Ile(143)-->Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype of Sabin 2 and it was antigenically distinct from the parental OPV strain, having amino acid substitutions in or near neutralizing antigenic sites 1 and 3. The date of the initiating OPV dose, calculated from the number of synonymous substitutions in the capsid region, was estimated to be approximately 16 to 18 months before onset of paralysis, a finding inconsistent with the most recent mass OPV campaign (conducted 12 days before onset of paralysis) as being the source of infection. Although no related type 2 VDPVs were detected in Nigeria or elsewhere, the VDPV was found in an area where conditions favor VDPV emergence and spread.

  10. [Role of the National Poliovirus Laboratory for the Program of eradication and poliomyelitis surveillance].

    Science.gov (United States)

    Trallero, Gloria; Cabrerizo, María; Avellón, Ana

    2013-01-01

    The Spanish acute flaccid paralysis surveillance network is coordinated by the National Poliovirus Laboratory (NPL), which, since 1998, carries out polioviruses (PV) and other enteroviruses detected characterization by cell culture and molecular techniques. A total of 110,725 (70046+40679) samples were studied between 1998-2012 and enteroviruses were detected in 8% of these. Among these enteroviruses 241 PV were characterized as PV Sabin-like, except samples belong to an imported poliomyelitis case, all of which were characterised as vaccine derived PV type 2. The NPL has carried out the serotyping and the intratypic differentiation of all the isolated PV in Spain of any syndrome. It is shown that wild PV has not circulated in our country during the 15 years studied and that has led to the signing of the Act of the "eradication of poliomyelitis in Spain" by WHO in 2001, and the /"certification of the eradication of wild PV free for European countries" on 21 June 2002. Currently only 3 countries have endemic transmission of wild PV (Pakistan, Afghanistan and Nigeria). Until a complete worldwide eradication, was achieved, Spain will actively continue to participate in the maintenance of the poliomyelitis eradication infrastructure by monitoring and vaccination as well as the wild PV containment plan to avoid the spread of wild PV.

  11. Phenotypic and genomic analysis of serotype 3 Sabin poliovirus vaccine produced in MRC-5 cell substrate.

    Science.gov (United States)

    Alirezaie, Behnam; Taqavian, Mohammad; Aghaiypour, Khosrow; Esna-Ashari, Fatemeh; Shafyi, Abbas

    2011-05-01

    The cell substrate has a pivotal role in live virus vaccines production. It is necessary to evaluate the effects of the cell substrate on the properties of the propagated viruses, especially in the case of viruses which are unstable genetically such as polioviruses, by monitoring the molecular and phenotypical characteristics of harvested viruses. To investigate the presence/absence of mutation(s), the near full-length genomic sequence of different harvests of the type 3 Sabin strain of poliovirus propagated in MRC-5 cells were determined. The sequences were compared with genomic sequences of different virus seeds, vaccines, and OPV-like isolates. Nearly complete genomic sequencing results, however, revealed no detectable mutations throughout the genome RNA-plaque purified (RSO)-derived monopool of type 3 OPVs manufactured in MRC-5. Thirty-six years of experience in OPV production, trend analysis, and vaccine surveillance also suggest that: (i) different monopools of serotype 3 OPV produced in MRC-5 retained their phenotypic characteristics (temperature sensitivity and neuroattenuation), (ii) MRC-5 cells support the production of acceptable virus yields, (iii) OPV replicated in the MRC-5 cell substrate is a highly efficient and safe vaccine. These results confirm previous reports that MRC-5 is a desirable cell substrate for the production of OPV. Copyright © 2011 Wiley-Liss, Inc.

  12. Poliovirus mutants excreted by a chronically infected hypogammaglobulinemic patient establish persistent infections in human intestinal cells

    International Nuclear Information System (INIS)

    Labadie, Karine; Pelletier, Isabelle; Saulnier, Aure; Martin, Javier; Colbere-Garapin, Florence

    2004-01-01

    Immunodeficient patients whose gut is chronically infected by vaccine-derived poliovirus (VDPV) may excrete large amounts of virus for years. To investigate how poliovirus (PV) establishes chronic infections in the gut, we tested whether it is possible to establish persistent VDPV infections in human intestinal Caco-2 cells. Four type 3 VDPV mutants, representative of the viral evolution in the gut of a hypogammaglobulinemic patient over almost 2 years [J. Virol. 74 (2000) 3001], were used to infect both undifferentiated, dividing cells, and differentiated, polarized enterocytes. A VDPV mutant excreted 36 days postvaccination by the patient was lytic in both types of intestinal cell cultures, like the parental Sabin 3 (S3) strain. In contrast, three VDPVs excreted 136, 442, and 637 days postvaccination, established persistent infections both in undifferentiated cells and in enterocytes. Thus, viral determinants selected between day 36 and 136 conferred on VDPV mutants the capacity to infect intestinal cells persistently. The percentage of persistently VDPV-infected cultures was higher in enterocytes than in undifferentiated cells, implicating cellular determinants involved in the differentiation of enterocytes in persistent VDPV infections. The establishment of persistent infections in enterocytes was not due to poor replication of VDPVs in these cells, but was associated with reduced viral adsorption to the cell surface

  13. α-Galactosylceramide protects mice from lethal Coxsackievirus B3 infection and subsequent myocarditis.

    Science.gov (United States)

    Wu, C Y; Feng, Y; Qian, G C; Wu, J H; Luo, J; Wang, Y; Chen, G J; Guo, X K; Wang, Z J

    2010-10-01

    Myocarditis is an inflammation of the myocardium which often follows virus infections. Coxsackievirus B3 (CVB3), as a marker of the enterovirus group, is one of the most important infectious agents of virus-induced myocarditis. Using a CVB3-induced myocarditis model, we show that injection α-galactosylceramide (α-GalCer), a ligand for invariant natural killer (NK) T (iNK T) cells, can protect the mice from viral myocarditis. After the systemic administration of α-GalCer in CVB3 infected mice, viral transcription and titres in mouse heart, sera and spleen were reduced, and the damage to the heart was ameliorated. This is accompanied by a better disease course with an improved weight loss profile. Compared with untreated mice, α-GalCer-treated mice showed high levels of interferon (IFN)-γ and interleukin (IL)-4, and reduced proinflammatory cytokines and chemokines in their cardiac tissue. Anti-viral immune response was up-regulated by α-GalCer. Three days after CVB3 infection, α-GalCer-administered mice had larger spleens. Besides NK T cells, more macrophages and CD8(+) T cells were found in these spleens. Upon stimulation with phorbol myristate acetate plus ionomycin, splenocytes from α-GalCer-treated mice produced significantly more cytokines [including IFN-γ, tumour necrosis factor-α, IL-4 and IL-10] than those from untreated mice. These data suggest that administration of α-GalCer during acute CVB3 infection is able to protect the mice from lethal myocarditis by local changes in inflammatory cytokine patterns and enhancement of anti-viral immune response at the early stage. α-GalCer is a potential candidate for viral myocarditis treatment. Our work supports the use of anti-viral treatment early to reduce the incidence of virus-mediated heart damage. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  14. Effects of Source Water Quality on Chlorine Inactivation of Adenovirus, Coxsackievirus, Echovirus, and Murine Norovirus ▿

    Science.gov (United States)

    Kahler, Amy M.; Cromeans, Theresa L.; Roberts, Jacquelin M.; Hill, Vincent R.

    2010-01-01

    More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15°C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration × contact time (CT) values (mg·min/liter) required to achieve 2-, 3-, and 4-log10 reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log10 CT values at 5°C ranging from ≤0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log10 CT values at 5°C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15°C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans. PMID:20562285

  15. Effects of source water quality on chlorine inactivation of adenovirus, coxsackievirus, echovirus, and murine norovirus.

    Science.gov (United States)

    Kahler, Amy M; Cromeans, Theresa L; Roberts, Jacquelin M; Hill, Vincent R

    2010-08-01

    More information is needed on the disinfection efficacy of chlorine for viruses in source water. In this study, chlorine disinfection efficacy was investigated for USEPA Contaminant Candidate List viruses coxsackievirus B5 (CVB5), echovirus 1 (E1), murine norovirus (MNV), and human adenovirus 2 (HAdV2) in one untreated groundwater source and two partially treated surface waters. Disinfection experiments using pH 7 and 8 source water were carried out in duplicate, using 0.2 and 1 mg/liter free chlorine at 5 and 15 degrees C. The efficiency factor Hom (EFH) model was used to calculate disinfectant concentration x contact time (CT) values (mg x min/liter) required to achieve 2-, 3-, and 4-log(10) reductions in viral titers. In all water types, chlorine disinfection was most effective for MNV, with 3-log(10) CT values at 5 degrees C ranging from < or = 0.020 to 0.034. Chlorine disinfection was least effective for CVB5 in all water types, with 3-log(10) CT values at 5 degrees C ranging from 2.3 to 7.9. Overall, disinfection proceeded faster at 15 degrees C and pH 7 for all water types. Inactivation of the study viruses was significantly different between water types, but no single source water had consistently different inactivation rates than another. CT values for CVB5 in one type of source water exceeded the recommended CT values set forth by USEPA's Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems using Surface Water Sources. The results of this study demonstrate that water quality plays a substantial role in the inactivation of viruses and should be considered when developing chlorination plans.

  16. Coxsackievirus and adenovirus receptor expression in human endometrial adenocarcinoma: possible clinical implications

    Science.gov (United States)

    Giaginis, Costas T; Zarros, Apostolos C; Papaefthymiou, Maria A; Papadopouli, Aikaterini E; Sfiniadakis, Ioannis K; Theocharis, Stamatios E

    2008-01-01

    The coxsackievirus and adenovirus receptor (CAR) is a crucial receptor for the entry of both coxsackie B viruses and adenoviruses into host cells. CAR expression on tumor cells was reported to be associated with their sensitivity to adenoviral infection, while it was considered as a surrogate marker for monitoring and/or predicting the outcome of adenovirus-mediated gene therapy. The aim of the present study was to evaluate the clinical significance of CAR expression in endometrial adenocarcinoma. CAR expression was assessed immunohistochemically in tumoral samples of 41 endometrial adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological parameters, tumor proliferative capacity and patient survival. CAR positivity was noted in 23 out of 41 (56%) endometrial adenocarcinoma cases, while high CAR expression in 8 out of 23 (35%) positive ones. CAR intensity of immunostaining was classified as mild in 11 (48%), moderate in 10 (43%) and intense in 2 (9%) out of the 23 positive cases. CAR positivity was significantly associated with tumor histological grade (p = 0.036), as well differentiated tumors more frequently demonstrating no CAR expression. CAR staining intensity was significantly associated with tumor histological type (p = 0.016), as tumors possessing squamous elements presented more frequently intense CAR immunostaining. High CAR expression showed a trend to be correlated with increased tumor proliferative capacity (p = 0.057). Patients with tumors presenting moderate or intense CAR staining intensity were characterized by longer survival times than those with mild one; however, this difference did not reach statistical significance. These data reveal, for the first time, the expression of CAR in clinical material obtained from patients with endometrial adenocarcinoma in relation to important clinicopathological parameters for their management. As CAR appears to modulate the proliferation and characteristics of cancer

  17. Coxsackievirus and adenovirus receptor expression in human endometrial adenocarcinoma: possible clinical implications

    Directory of Open Access Journals (Sweden)

    Sfiniadakis Ioannis K

    2008-06-01

    Full Text Available Abstract The coxsackievirus and adenovirus receptor (CAR is a crucial receptor for the entry of both coxsackie B viruses and adenoviruses into host cells. CAR expression on tumor cells was reported to be associated with their sensitivity to adenoviral infection, while it was considered as a surrogate marker for monitoring and/or predicting the outcome of adenovirus-mediated gene therapy. The aim of the present study was to evaluate the clinical significance of CAR expression in endometrial adenocarcinoma. CAR expression was assessed immunohistochemically in tumoral samples of 41 endometrial adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological parameters, tumor proliferative capacity and patient survival. CAR positivity was noted in 23 out of 41 (56% endometrial adenocarcinoma cases, while high CAR expression in 8 out of 23 (35% positive ones. CAR intensity of immunostaining was classified as mild in 11 (48%, moderate in 10 (43% and intense in 2 (9% out of the 23 positive cases. CAR positivity was significantly associated with tumor histological grade (p = 0.036, as well differentiated tumors more frequently demonstrating no CAR expression. CAR staining intensity was significantly associated with tumor histological type (p = 0.016, as tumors possessing squamous elements presented more frequently intense CAR immunostaining. High CAR expression showed a trend to be correlated with increased tumor proliferative capacity (p = 0.057. Patients with tumors presenting moderate or intense CAR staining intensity were characterized by longer survival times than those with mild one; however, this difference did not reach statistical significance. These data reveal, for the first time, the expression of CAR in clinical material obtained from patients with endometrial adenocarcinoma in relation to important clinicopathological parameters for their management. As CAR appears to modulate the proliferation and

  18. Heme Oxygenase-1 Mediates Oxidative Stress and Apoptosis in Coxsackievirus B3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Oana N. Ursu

    2014-01-01

    Full Text Available Background: Heme oxygenase-1 (HO-1, which is suggested to play a role in defending the organism against oxidative stress-mediated injuries, can be induced by diverse factors including viruses and iron. As coxsackievirus B3 (CVB3-infected SWR/J mice susceptible for chronic myocarditis were found to have a significant iron incorporation and HO-1 upregulation in the myocardium, we aimed to investigate the molecular interplay between HO-1 expression and iron homeostasis in the outcome of viral myocarditis. Methods and Results: In susceptible SWR/J mice, but not in resistant C57BL/6 mice, we observed at later stages of CVB3 myocarditis significant iron deposits in macrophages and also in cardiomyocytes, which were spatially associated with oxidative stress, upregulation of HO-1 and caspase-3 activation. HO-1, which is also expressed in cultivated RAW 264.7 macrophages upon incubation with iron and/or CVB3, could be downregulated by inhibition of NO/iNOS using L-NAME. Moreover, specific inhibition of HO-1 by tin mesoporphyrin revealed a suppression of superoxide production in iron and/or CVB3-treated macrophages. The molecular relationship of HO-1 and caspase-3 activation was proven by downregulation with HO-1 siRNA in iron- and/or CVB3-treated cultivated cells. Importantly, iron was found to increase viral replication in vitro. Conclusion: These results indicate that HO-1 induces a paracrine signalling in macrophages via reactive oxygen species production, mediating apoptosis of heart muscle cells at later stages of myocarditis. Notably, in genetically susceptible mice iron potentiates the detrimental effects of CVB3 by the NO/HO-1 pathway, thus increasing cardiac pathogenicity.

  19. Human cardiac-derived adherent proliferating cells reduce murine acute Coxsackievirus B3-induced myocarditis.

    Directory of Open Access Journals (Sweden)

    Kapka Miteva

    Full Text Available BACKGROUND: Under conventional heart failure therapy, inflammatory cardiomyopathy typically has a progressive course, indicating a need for alternative therapeutic strategies to improve long-term outcomes. We recently isolated and identified novel cardiac-derived cells from human cardiac biopsies: cardiac-derived adherent proliferating cells (CAPs. They have similarities with mesenchymal stromal cells, which are known for their anti-apoptotic and immunomodulatory properties. We explored whether CAPs application could be a novel strategy to improve acute Coxsackievirus B3 (CVB3-induced myocarditis. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the safety of our approach, we first analyzed the expression of the coxsackie- and adenovirus receptor (CAR and the co-receptor CD55 on CAPs, which are both required for effective CVB3 infectivity. We could demonstrate that CAPs only minimally express both receptors, which translates to minimal CVB3 copy numbers, and without viral particle release after CVB3 infection. Co-culture of CAPs with CVB3-infected HL-1 cardiomyocytes resulted in a reduction of CVB3-induced HL-1 apoptosis and viral progeny release. In addition, CAPs reduced CD4 and CD8 T cell proliferation. All CAPs-mediated protective effects were nitric oxide- and interleukin-10-dependent and required interferon-γ. In an acute murine model of CVB3-induced myocarditis, application of CAPs led to a decrease of cardiac apoptosis, cardiac CVB3 viral load and improved left ventricular contractility parameters. This was associated with a decline in cardiac mononuclear cell activity, an increase in T regulatory cells and T cell apoptosis, and an increase in left ventricular interleukin-10 and interferon-γ mRNA expression. CONCLUSIONS: We conclude that CAPs are a unique type of cardiac-derived cells and promising tools to improve acute CVB3-induced myocarditis.

  20. Genomic characteristics of coxsackievirus A8 strains associated with hand, foot, and mouth disease and herpangina.

    Science.gov (United States)

    Chen, Long; Yang, Hong; Wang, Chao; Yao, Xiang-Jie; Zhang, Hai-Long; Zhang, Ren-Li; He, Ya-Qing

    2016-01-01

    Coxsackievirus A8 (CV-A8), a member of the genus Enterovirus of the family Picornaviridae, can cause a variety of infectious diseases, such as hand, foot and mouth disease (HFMD), herpangina (HA), encephalitis, paralysis, myelitis, and meningitis. This is a first report of complete genome sequences of CV-A8 strains associated with HFMD/HA since the prototype strain Donovan was identified in 1949. The complete genome sequences of eight new CV-A8 strains showed 19.2 %-20.6 % nucleotide differences when compared to the prototype strain Donovan, and 81.5 %-99.9 % similarity to each other. The topology of a polyphyletic tree based on complete capsid protein gene sequences indicated that the new CV-A8 strains and Donovan are monophyletic. However, seven CV-A8 strains clustered with CV-A10 and CV-A2 in the 5'UTR and P2 region, respectively. In the P3 region, three and four CV-A8 strains grouped with CV-A6 and CV-A2, respectively. Seven CV-A8 strains segregated from Donovan and grouped in a separate lineage in the 3'UTR. The strain CVA8/SZ266/CHN/2014 was most similar to EV71 in the nonstructural proteins regions. Phylogenetic analysis classified worldwide CV-A8 isolates into four distinct clusters, and almost all Chinese and Thai CV-A8 strains evolved independently in their respective lineages, which indicated geographical evolution of CV-A8.

  1. Clinical features and phylogenetic analysis of Coxsackievirus A9 in Northern Taiwan in 2011

    Directory of Open Access Journals (Sweden)

    Huang Yi-Chuan

    2013-01-01

    Full Text Available Abstract Background Coxsackievirus A9 (CA9 was one of the most prevalent serotype of enteroviral infections in Taiwan in 2011. After several patient series were reported in the 1960s and 1970s, few studies have focused on the clinical manifestations of CA9 infections. Our study explores and deepens the current understanding of CA9. Methods We analyzed the clinical presentations of 100 culture-proven CA9-infected patients in 2011 by reviewing their medical records and depicted the CA9 phylogenetic tree. Results Of the 100 patients with culture-proven CA9 infections, the mean (SD age was 4.6 (3.4 years and the male to female ratio was 1.9. For clinical manifestations, 96 patients (96% had fever and the mean (SD duration of fever was 5.9 (3.4 days. Sixty one patients (61% developed a skin rash, and the predominant pattern was a generalized non-itchy maculopapular rash without vesicular changes. While most patients showed injected throat, oral ulcers were found in only 19 cases (19%, among whom, 6 were diagnosed as herpangina. Complicated cases included: aseptic meningitis (n=8, bronchopneumonia (n=6, acute cerebellitis (n=1, and polio-like syndrome (n=1. Phylogenetic analysis for current CA9 strains is closest to the CA9 isolate 27-YN-2008 from the border area of mainland China and Myanmar. Conclusions The most common feature of CA9 during the 2011 epidemic in Taiwan is generalized febrile exanthema rather than herpangina or hand, foot, and mouth disease. Given that prolonged fever and some complications are possible, caution should be advised in assessing patients as well as in predicting the clinical course.

  2. The antiviral effect of jiadifenoic acids C against coxsackievirus B3

    Directory of Open Access Journals (Sweden)

    Miao Ge

    2014-08-01

    Full Text Available Coxsackievirus B type 3 (CVB3 is one of the major causative pathogens associated with viral meningitis and myocarditis, which are widespread in the human population and especially prevalent in neonates and children. These infections can result in dilated cardiomyopathy (DCM and other severe clinical complications. There are no vaccines or drugs approved for the prevention or therapy of CVB3-induced diseases. During screening for anti-CVB3 candidates in our previous studies, we found that jiadifenoic acids C exhibited strong antiviral activities against CVB3 as well as other strains of Coxsackie B viruses (CVBs. The present studies were carried out to evaluate the antiviral activities of jiadifenoic acids C. Results showed that jiadifenoic acids C could reduce CVB3 RNA and proteins synthesis in a dose-dependent manner. Jiadifenoic acids C also had a similar antiviral effect on the pleconaril-resistant variant of CVB3. We further examined the impact of jiadifenoic acids C on the synthesis of viral structural and non-structural proteins, finding that jiadifenoic acids C could reduce VP1 and 3D protein production. A time-course study with Vero cells showed that jiadifenoic acids C displayed significant antiviral activities at 0–6 h after CVB3 inoculation, indicating that jiadifenoic acids C functioned at an early step of CVB3 replication. However, jiadifenoic acids C had no prophylactic effect against CVB3. Taken together, we show that jiadifenoic acids C exhibit strong antiviral activities against all strains of CVB, including the pleconaril-resistant variant. Our study could provide a significant lead for anti-CVB3 drug development.

  3. How does thymus infection by coxsackievirus contribute to the pathogenesis of type 1 diabetes?

    Directory of Open Access Journals (Sweden)

    Hélène eMichaux

    2015-06-01

    Full Text Available Through synthesis and presentation of neuroendocrine self-antigens by major histocompatibility complex (MHC proteins, thymic epithelial cells (TECs play a crucial role in programming central immune self-tolerance to neuroendocrine functions. Insulin-like growth factor-2 (IGF-2 is the dominant gene/polypeptide of the insulin family that is expressed in TECs from different animal species and humans. Igf2 transcription is defective in the thymus of diabetes-prone Bio-Breeding (BB rats, and tolerance to insulin is severely decreased in Igf2-/- mice. For more than 15 years now, our group is investigating the hypothesis that, besides a pancreotropic action, infection by coxsackievirus B4 (CV-B4 could implicate the thymus as well, and interfere with the intrathymic programming of central tolerance to the insulin family and secondarily to insulin-secreting islet β cells. In this perspective, we have demonstrated that a productive infection of the thymus occurs after oral CV-B4 inoculation of mice. Moreover, our most recent data have demonstrated that CV-B4 infection of a murine medullary (m TEC line induces a significant decrease in Igf2 expression and IGF-2 production. In these conditions, Igf1 expression was much less affected by CV-B4 infection, while Ins2 transcription was not detected in this cell line. Through the inhibition of Igf2 expression in TECs, CV-B4 infection could lead to a breakdown of central immune tolerance to the insulin family and promote an autoimmune response against insulin-secreting islet β cells. Our major research objective now is to understand the molecular mechanisms by which CV-B4 infection of TECs leads to a major decrease in Igf2 expression in these cells.

  4. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation.

    Directory of Open Access Journals (Sweden)

    Qian Feng

    Full Text Available Upon viral infections, pattern recognition receptors (PRRs recognize pathogen-associated molecular patterns (PAMPs and stimulate an antiviral state associated with the production of type I interferons (IFNs and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3, a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.

  5. Characterizing Enterovirus 71 and Coxsackievirus A16 virus-like particles production in insect cells.

    Science.gov (United States)

    Somasundaram, Balaji; Chang, Cindy; Fan, Yuan Y; Lim, Pei-Yin; Cardosa, Jane; Lua, Linda

    2016-02-15

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are two viruses commonly responsible for hand, foot and mouth disease (HFMD) in children. The lack of prophylactic or therapeutic measures against HFMD is a major public health concern. Insect cell-based EV71 and CVA16 virus-like particles (VLPs) are promising vaccine candidates against HFMD and are currently under development. In this paper, the influence of insect cell line, incubation temperature, and serial passaging effect and stability of budded virus (BV) stocks on EV71 and CVA16 VLP production was investigated. Enhanced EV71 and CVA16 VLP production was observed in Sf9 cells compared to High Five™ cells. Lowering the incubation temperature from the standard 27°C to 21°C increased the production of both VLPs in Sf9 cells. Serial passaging of CVA16 BV stocks in cell culture had a detrimental effect on the productivity of the structural proteins and the effect was observed with only 5 passages of BV stocks. A 2.7× higher production yield was achieved with EV71 compared to CVA16. High-resolution asymmetric flow field-flow fractionation couple with multi-angle light scattering (AF4-MALS) was used for the first time to characterize EV71 and CVA16 VLPs, displaying an average root mean square radius of 15±1nm and 15.3±5.8 nm respectively. This study highlights the need for different approaches in the design of production process to develop a bivalent EV71 and CVA16 vaccine. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Isolation and characterization of a type 2 vaccine-derived poliovirus from environmental surveillance in China, 2012.

    Science.gov (United States)

    Tao, Zexin; Zhang, Yong; Liu, Yao; Xu, Aiqiang; Lin, Xiaojuan; Yoshida, Hiromu; Xiong, Ping; Zhu, Shuangli; Wang, Suting; Yan, Dongmei; Song, Lizhi; Wang, Haiyan; Cui, Ning; Xu, Wenbo

    2013-01-01

    Environmental surveillance of poliovirus on sewage has been conducted in Shandong Province, China since 2008. A type 2 vaccine-derived poliovirus (VDPV) with 7 mutations in VP1 coding region was isolated from the sewage collected in the city of Jinan in December 2012. The complete genome sequencing analysis of this isolate revealed 25 nucleotide substitutions, 7 of which resulted in amino acid alteration. No evidence of recombination with other poliovirus serotypes was observed. The virus did not lose temperature sensitive phenotype at 40°C. An estimation based on the evolution rate of the P1 coding region suggested that evolution time of this strain might be 160-176 days. VP1 sequence analysis revealed that this VDPV strain is of no close relationship with other local type 2 polioviruses (n=66) from sewage collected between May 2012 and June 2013, suggesting the lack of its circulation in the local population. The person who excreted the virus was not known and no closely related virus was isolated in local population via acute flaccid paralysis surveillance. By far this is the first report of VDPV isolated from sewage in China, and these results underscore the value of environmental surveillance in the polio surveillance system even in countries with high rates of OPV coverage.

  7. Estudio virológico de casos mortales de poliomelitis paralítica II. Aislamiento de Poliovirus de Líquido Cefalorraquídeo (post Mortem)

    OpenAIRE

    Célis G., Eduardo; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú; Nicho N., Nelly; Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú

    2014-01-01

    6 samples of cerebrospinal fluid was subjected to virological study post-mortem, from 6 cases of Paralytic Poliomiellitis occurred in the Children's Hospital (Lima), having obtained the following results: In case 1, poliovirus type II was isolated; in case 3, poliovirus type III asisló; in case 4, Poliovirus Type I, and the cases 2, 5 and 6 were negative was isolated. Se sometió al estudio virológico 6 muestras de líquido cefalorraquídeo post-mortem, proveniente de 6 casos de Poliomielliti...

  8. Comparison of culture, single and multiplex real-time PCR for detection of Sabin poliovirus shedding in recently vaccinated Indian children.

    Science.gov (United States)

    Giri, Sidhartha; Rajan, Anand K; Kumar, Nirmal; Dhanapal, Pavithra; Venkatesan, Jayalakshmi; Iturriza-Gomara, Miren; Taniuchi, Mami; John, Jacob; Abraham, Asha Mary; Kang, Gagandeep

    2017-08-01

    Although, culture is considered the gold standard for poliovirus detection from stool samples, real-time PCR has emerged as a faster and more sensitive alternative. Detection of poliovirus from the stool of recently vaccinated children by culture, single and multiplex real-time PCR was compared. Of the 80 samples tested, 55 (68.75%) were positive by culture compared to 61 (76.25%) and 60 (75%) samples by the single and one step multiplex real-time PCR assays respectively. Real-time PCR (singleplex and multiplex) is more sensitive than culture for poliovirus detection in stool, although the difference was not statistically significant. © 2017 Wiley Periodicals, Inc.

  9. Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis.

    NARCIS (Netherlands)

    Ooij, M.J.M. van; Vogt, D.A.; Paul, A.; Castro, C.; Kuijpers, J.M.; Kuppeveld, F.J.M. van; Cameron, C.E.; Wimmer, E.; Andino, R.; Melchers, W.J.G.

    2006-01-01

    A stem-loop element located within the 2C-coding region of the coxsackievirus B3 (CVB3) genome has been proposed to function as a cis-acting replication element (CRE). It is shown here that disruption of this structure indeed interfered with viral RNA replication in vivo and abolished uridylylation

  10. Age-Associated Changes in Estrogen Receptor Ratios Correlate with Increased Female Susceptibility to Coxsackievirus B3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Andreas Koenig

    2017-11-01

    Full Text Available Sexual bias is a hallmark in various diseases. This review evaluates sexual dimorphism in clinical and experimental coxsackievirus B3 (CVB3 myocarditis, and how sex bias in the experimental disease changes with increased age. Coxsackieviruses are major causes of viral myocarditis, an inflammation of the heart muscle, which is more frequent and severe in men than women. Young male mice infected with CVB3 develop heart-specific autoimmunity and severe myocarditis. Females infected during estrus (high estradiol develop T-regulatory cells and when infected during diestrus (low estradiol develop autoimmunity similar to males. During estrus, protection depends on estrogen receptor alpha (ERα, which promotes type I interferon, activation of natural killer/natural killer T cells and suppressor cell responses. Estrogen receptor beta has opposing effects to ERα and supports pro-inflammatory immunity. However, the sexual dimorphism of the disease is significantly ameliorated in aged animals when old females become as susceptible as males. This correlates to a selective loss of the ERα that is required for immunosuppression. Therefore, sex-associated hormones control susceptibility in the virus-mediated disease, but their impact can alter with the age and physiological stage of the individual.

  11. Outbreak of influenza and rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July-21 August 2016.

    Science.gov (United States)

    Swanson, Krista C; Darling, Nellie; Kremer, Perry; Doepking, Matthew; Steiner, Shane C; Myers, Christopher A; Hawksworth, Anthony W; Sanchez, Jose L; Harris, Stic; Cooper, Michael J

    2018-01-01

    Military and Coast Guard recruits are particularly susceptible to respiratory infections. Although seasonal influenza vaccinations are mandatory for recruits, the vaccine expires annually in June. On 29 July 2016, the U.S. Coast Guard Training Center Cape May, NJ, identified an increase in febrile respiratory illness (FRI) among recruits. During 24 July-21 August, a total of 115 recruits reported symptoms. A total of 74 recruits tested positive for respiratory infections: influenza A (H3) (n=34), rhinovirus (n=28), influenza/rhinovirus co-infection (n=11), and adenovirus/rhinovirus co-infection (n=1), while 41 recruits had no laboratory-confirmed specimen but were considered suspected cases. Only one recruit reported receiving the seasonal influenza vaccine within the previous 12 months. Influenza predominated during 24 July-6 August, whereas rhinovirus predominated during 7 August-20 August. Most (92.2%) cases were identified in four of 10 recruit companies; incidence rates were highest among recruits in weeks 2-4 of an 8-week training cycle. Key factors for outbreak control included rapid detection through routine FRI surveillance, quick decision-making and streamlined response by using a single chain of command, and employing both nonpharmaceutical and pharmaceutical interventions.

  12. [Circulating vaccine-derived poliovirus type 2 outbreak in Democratic Republic of Congo 2011-2012].

    Science.gov (United States)

    Bazira, L; Coulibaly, T; Mayenga, M; Ncharre, C; Yogolelo, R; Mbule, A; Moudzeo, H; Lwamba, P; Mulumba, A W; Cabore, J

    2015-10-01

    According to the WHO records of 2013, the incidence of poliomyelitis was reduced by more than 99%, the number of endemic countries decreased from 125 in 1988 to 3 in 2013 and over 10 million cases were prevented from poliomyelitis thanks to the intensive use of Oral polio vaccine (OPV). However, the emergence of circulating vaccine-derived poliovirus strains (cVDPV), causing serious epidemics like the wild poliovirus, is a major challenge on the final straight towards the goal of eradication and OPV cessation. This paper describes the cVDPVoutbreak that occurred in the Democratic Republic of Congo (DRC) from November 2011 to April 2012. All children under 15 years of age with acute flaccid paralysis (AFP) and confirmed presence of cVDPV in the stool samples were included. Thirty (30) children, all from the administrative territories of Bukama and Malemba Nkulu in the Katanga Province (south-east DRC), were reported. The virus responsible was the cVDPV type 2 (0.7% -3.5% divergent from the reference Sabin 2 strain) in 29 children (97%) and the ambiguous vaccine-derived poliovirus strain (0.7% divergent) was confirmed in one case (3%), a boy seventeen months old and already vaccinated four times with OPV. Twentyfive children (83%) were protected by any of the routine EPI vaccines and 3 children (10%) had never received any dose of OPV. In reaction, DRC has conducted five local campaigns over a period of 10 months (from January to October 2012) and the epidemic was stopped after the second round performed in March 2012. As elsewhere in similar conditions, low immunization coverage, poor sanitation conditions and the stop of the use of OPV2 have favoured the emergence of the third cVDPV epidemic in DRC. The implementation of the Strategic Plan for Polio eradication and endgame strategic plan 2013-2018 will prevent the emergence of cVDPV and set up the conditions for a coordinated OPV phase out.

  13. Mutations in Sabin 2 strain of poliovirus and stability of attenuation phenotype.

    Science.gov (United States)

    Rezapkin, G V; Fan, L; Asher, D M; Fibi, M R; Dragunsky, E M; Chumakov, K M

    1999-05-25

    In this study, we attempted to identify the molecular determinants in the genome of the attenuated Sabin 2 vaccine strain of poliovirus that may change during vaccine production and result in an increase in monkey neurovirulence. An extensive search for suitable vaccine lots identified six batches that had failed the monkey neurovirulence test (MNVT). On repeated tests, these batches were found to have acceptable levels of monkey neurovirulence. One of the batches was additionally passaged six times under conditions used in vaccine production, and the resulting high-passage sample was screened for the presence of mutations and tested in monkeys. In addition to the previously described A --> G reversion at nucleotide 481, high-passage stock also contained a mutation in the VP1-coding region (3364 = G --> A) that consistently accumulated in the course of passaging. However, despite the presence of substantial amounts of these mutations, high-passage stock passed the MNVT. Replication of Sabin 2 poliovirus in the central nervous system of transgenic mice susceptible to poliovirus or in cultures of mouse cells, resulted in another mutation (3363 = A --> G). Even though its presence correlated with paralysis in mice, the introduction of 3363-G into the Sabin 2 genome did not increase neurovirulence of the virus. Previous studies identified the 481-G mutation as an important determinant of monkey neurovirulence. We prepared virus samples with varying amounts of genetically defined single mutants at this nucleotide and tested them in monkeys. The results demonstrated that even a 100% substitution at this site introduced into Sabin 2 strain did not increase monkey neurovirulence. The determination of the nucleotide sequence of an alternative strain used for the production of type 2 OPV (Chung 2) showed that it contained 100% of the wild-type 481-G but possessed an extremely low level of neurovirulence. These results demonstrate the remarkable stability of the attenuated

  14. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood.

    Directory of Open Access Journals (Sweden)

    Maria J Gutierrez

    Full Text Available Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome and examine the changes during rhinovirus (RV infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood.Nasal airway secretions were obtained from children (≤3 yrs. old during PCR-confirmed RV infections (n = 10 and age-matched controls (n = 10. Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC differentiated at air-liquid interface (ALI. Bioinformatics tools were used to determine the unified (nasal and bronchial signature airway secretory miRNAome and changes during RV infection in children.Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV.Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway

  15. 25-hydroxyvitamin D deficiency, exacerbation frequency and human rhinovirus exacerbations in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Quint Jennifer K

    2012-06-01

    Full Text Available Abstract Background 25-hydroxyvitamin D deficiency is associated with COPD and increased susceptibility to infection in the general population. Methods We investigated whether COPD patients deficient in 25-hydroxyvitamin D were more likely to be frequent exacerbators, had reduced outdoor activity and were more susceptible to human rhinovirus (HRV exacerbations than those with insufficient and normal levels. We also investigated whether the frequency of FokI, BsmI and TaqIα 25-hydroxyvitamin D receptor (VDR polymorphisms differed between frequent and infrequent exacerbators. Results There was no difference in 25-hydroxyvitamin D levels between frequent and infrequent exacerbators in the summer; medians 44.1nmol/L (29.1 – 68.0 and 39.4nmol/L (22.3 – 59.2 or winter; medians 24.9nmol/L (14.3 – 43.1 and 27.1nmol/L (19.9 – 37.6. Patients who spent less time outdoors in the 14 days prior to sampling had lower 25-hydroxyvitamin D levels (p = 0.02. Day length was independently associated with 25-hydroxyvitamin D levels (p = 0.02. There was no difference in 25-hydroxyvitamin D levels between baseline and exacerbation; medians 36.2nmol/L (IQR 22.4-59.4 and 33.3nmol/L (23.0-49.7; p = 0.43. HRV positive exacerbations were not associated with lower 25-hydroxyvitamin D levels at exacerbation than exacerbations that did not test positive for HRV; medians 30.0nmol/L (20.4 – 57.8 and 30.6nmol/L (19.4 – 48.7. There was no relationship between exacerbation frequency and any VDR polymorphisms (all p > 0.05. Conclusions Low 25-hydroxyvitamin D levels in COPD are not associated with frequent exacerbations and do not increase susceptibility to HRV exacerbations. Independent of day length, patients who spend less time outdoors have lower 25-hydroxyvitamin D concentration.

  16. Integration of vitamin A supplementation with the expanded program on immunization does not affect seroconversion to oral poliovirus vaccine in infants.

    NARCIS (Netherlands)

    R.D. Semba; M. Muhilal; N.E. Mohgaddam (Nasrin); Z. Munasir; A. Akib; D. Permaesih; M.S. Muherdiyantiningsih; A.D.M.E. Osterhaus (Albert)

    1999-01-01

    textabstractChildhood immunization programs may provide infrastructure for delivering vitamin A supplements to infants in developing countries. The effect of giving vitamin A, an immune enhancer, on antibody responses to trivalent oral poliovirus vaccine (TOPV) is unknown. A

  17. Seroepidemiology of coxsackievirus B5 in infants and children in Jiangsu province, China.

    Science.gov (United States)

    Gao, Fan; Bian, Lianlian; Hao, Xiaotian; Hu, Yalin; Yao, Xin; Sun, Shiyang; Chen, Pan; Yang, Ce; Du, Ruixiao; Li, Jingxin; Zhu, Fengcai; Mao, Qunying; Liang, Zhenglun

    2018-01-02

    Coxsackievirus B5 (CV-B5) is associated with various human diseases such as viral encephalitis, aseptic meningitis, paralysis, herpangina, and hand, foot and mouth disease (HFMD). However, there is currently no effective vaccine against CV-B5.The seroepidemiologic characteristics of CV-B5 remained unknown. A cohort study was carried out in 176 participants aged 6-35 months from January 2012 to January 2014. The serum samples were collected and tested for CV-B5 neutralizing antibodies (NtAbs) four times during these two years. The confirmed enterovirus cases were recorded through the surveillance system, and their throat or rectal swabs were collected for pathogen detection. According to the changes of CV-B5 NtAbs, two CV-B5 epidemics were detected among these participants during the two-year follow-up. Sixty-seven cases out of all participants had seroconversion in CV-B5 NtAbs. During the first epidemic from March 2012 to September 2012, CV-B5 seropositivity rate increased significantly (6.8%, 12/176 vs. 21.6%, 38/176, P = 0.000). The seroconversion rate and geometric mean fold-increase (GMFI) were 18.2% (32/176) and 55.7, respectively; During the second epidemic from September 2012 to January 2014, CV-B5 seropositivity rate also increased (21.6%, 38/176 vs. 38.6%, 68/176, P = 0.000), and the seroconversion rate and GMFI were 19.9% (35/176) and 46.5, respectively. Only one case had CV-B5 associated HFMD during the two-year follow-up, and CV-B5 from the throat swab isolate was GI.D3 subtype, which belonged to the major pandemic strain in mainland China. CV-B5 infection was common in infants and children in Jiangsu province, China. Therefore, it's necessary to strengthen the surveillance on CV-B5 and to understand the epidemic characteristics of CV-B5 infection.

  18. Seroepidemiology of human enterovirus71 and coxsackievirusA16 in Jiangsu province, China

    Directory of Open Access Journals (Sweden)

    Ji Hong

    2012-10-01

    Full Text Available Abstract Background The major etiology of hand, foot and mouth disease (HFMD is infection with human enterovirus A (HEV-A. Among subtypes of HEV-A, coxsackievirusA16 (CoxA16 and enterovirus 71 (EV71 are major causes for recurrent HFMD among infants and children in Jiangsu Province, mainland China. Here, we analyzed maternal antibodies between prenatal women and their neonates, to determine age-specific seroprevalence of human EV71 and CoxA16 infections in infants and children aged 0 to 15 years. The results may facilitate the development of immunization against HFMD. Methods This study used cross-section of 40 pairs of pregnant women and neonates and 800 subjects aged 1 month to 15 years old. Micro-dose cytopathogenic effects measured neutralizing antibodies against EV71 and CoxA16. Chi-square test compared seroprevalence rates between age groups and McNemar test, paired-Samples t-test and independent-samples t-test analyzed differences of geometric mean titers. Results A strong correlation between titers of neutralizing antibody against EV71 and CoxA16 in prenatal women and neonates was observed (rEV71 = 0.67, rCoxA16 = 0.56, respectively, p 80% of children between 5 to 15 years of age. However, seroprevalence rates of anti-CoxA16 antibody were very low (0.0–13.0% between 0 to 6 months of age, gradually increased between 7 months to 4 years (15.0–70.0%, and stabilized at 54.0% (108/200 between 5 to 15 years. Seroprevalence rates against EV71 and CoxA16 were low under 1 year (0.0–10.0%, and showed an age dependent increase with high seroprevalence (52.5–62.5% between 4 and10 years of age. Conclusions Concomitant infection of EV71 and CoxA16 was common in Jiangsu Province. Therefore, development of bivalent vaccine against both EV71 and CoxA16 is critical. The optimal schedule for vaccination may be 4 to11 months of age.

  19. Emergence of Vaccine-Derived Polioviruses during Ebola Virus Disease Outbreak, Guinea, 2014-2015.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Majumdar, Manasi; Kebe, Ousmane; Fall, Aichatou D; Kone, Moussa; Kande, Mouctar; Dabo, Moustapha; Sylla, Mohamed Salif; Sompare, Djenou; Howard, Wayne; Faye, Ousmane; Martin, Javier; Ndiaye, Kader

    2018-01-01

    During the 2014-2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis.

  20. Antigenic modification of attenuated Sabin type 1 poliovirus by in vitro passages at supraoptimal temperatures.

    Science.gov (United States)

    Crainic, R; Blondel, B; Candréa, A; Dufraisse, G; Horaud, F

    1985-01-01

    Mutants were selected from Sabin type 1 attenuated poliovirus (LSc2ab strain), capable of growing at a high temperature (39.5 degrees C). They proved to be neurovirulent for monkeys. No correlation was found between neurovirulence and antigenic structure in Sabin type 1 virus as demonstrated by the analysis of the neutralization epitope formulae of thermo-resistant, neurovirulent mutants derived from LSs2ab strain. The lack of correlation between the antigenic pattern of the virus and the virulence was also confirmed by a mutant resistant to neutralization with monoclonal antibodies derived from the wild Mahoney parent of the Sabin type 1 virus. This mutant continued to be neurovirulent in spite of the complete conversion of its neutralization epitope formula to the Sabin virus pattern.

  1. Survival of polioviruses and echoviruses in Acanthamoeba castellanii cultivated in vitro.

    Science.gov (United States)

    Danes, L; Cerva, L

    1981-01-01

    Cultures of Acanthamoeba castellanii, kept at room temperature in sterile Bacto-Casitone (Difco) medium, were artificially infected with vaccination poliovirus strains type 1 and type 3 and with echovirus type 4 and echovirus type 30. No remarkable virus cumulation was observed on the surface or inside amoeba cells during the observation period of 21 days. Amoeba-adsorbed viruses were impossible to remove by repeated washings. Virus neutralization with specific antisera showed that enteroviruses were most probably present only on amoeba surfaces. In contrast to amoeba-free virus suspension, echoviruses bound to amoebae and their cell pulp persisted even after 52 to 75 days. However, the tested amoeba species played only the role of a solids-like carrier in this survival of echoviruses.

  2. Limited and localized outbreak of newly emergent type 2 vaccine-derived poliovirus in Sichuan, China.

    Science.gov (United States)

    Yan, Dongmei; Zhang, Yong; Zhu, Shuangli; Chen, Na; Li, Xiaolei; Wang, Dongyan; Ma, Xiaozhen; Zhu, Hui; Tong, Wenbin; Xu, Wenbo

    2014-07-01

    From August 2011 to February 2012, an outbreak caused by type 2 circulating vaccine-derived poliovirus (cVDPV) occurred in Aba County, Sichuan, China. During the outbreak, four type 2 VDPVs (≥0.6% nucleotide divergence in the VP1 region relative to the Sabin 2 strain) were isolated from 3 patients with acute flaccid paralysis (AFP) and one close contact. In addition, a type 2 pre-VDPV (0.3% to 0.5% divergence from Sabin 2) that was genetically related to these type 2 VDPVs was isolated from another AFP patient. These 4 patients were all unimmunized children 0.7 to 1.1 years old. Nucleotide sequencing revealed that the 4 VDPV isolates differed from Sabin 2 by 0.7% to 1.2% in nucleotides in the VP1 region and shared 5 nucleotide substitutions with the pre-VDPV. All 5 isolates were closely related, and all were S2/S3/S2/S3 recombinants sharing common recombination crossover sites. Although the two major determinants of attenuation and temperature sensitivity phenotype of Sabin 2 (A481 in the 5' untranslated region and Ile143 in the VP1 protein) had reverted in all 5 isolates, one VDPV (strain CHN16017) still retained the temperature sensitivity phenotype. Phylogenetic analysis of the third coding position of the complete P1 coding region suggested that the cVDPVs circulated locally for about 7 months following the initiating oral poliovirus vaccine (OPV) dose. Our findings reinforce the point that cVDPVs can emerge and spread in isolated communities with immunity gaps and highlight the emergence risks of type 2 cVDPVs accompanying the trivalent OPV used. To solve this issue, it is recommended that type 2 OPV be removed from the trivalent OPV or that inactivated polio vaccine (IPV) be used instead. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Phase 3 Trial of a Sabin Strain-Based Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Liao, Guoyang; Li, Rongcheng; Li, Changgui; Sun, Mingbo; Jiang, Shude; Li, Yanping; Mo, Zhaojun; Xia, Jielai; Xie, Zhongping; Che, Yanchun; Yang, Jingsi; Yin, Zhifang; Wang, Jianfeng; Chu, Jiayou; Cai, Wei; Zhou, Jian; Wang, Junzhi; Li, Qihan

    2016-12-01

     The development of a Sabin strain-based inactivated poliovirus vaccine (Sabin-IPV) is imperative to protecting against vaccine-associated paralytic poliomyelitis in developing countries.  In this double-blinded, parallel-group, noninferiority trial, eligible infants aged 60-90 days were randomly assigned in a ratio of 1:1 to receive either 3 doses of Sabin-IPV or Salk strain-based IPV (Salk-IPV) at 30-day intervals and a booster at the age of 18 months. Immunogenicity and safety were assessed on the basis of a protocol.  Of 1438 infants, 1200 eligible infants were recruited and received either Sabin-IPV or Salk-IPV. From the Sabin-IPV and Salk-IPV groups, 570 and 564 infants, respectively, completed the primary immunization and formed the per-protocol population. The seroconversion rates of the participants who received Sabin-IPV were 100%, 94.9%, and 99.0% (types I, II, and III, respectively), and those of the participants who received Salk-IPV were 94.7%, 91.3%, and 97.9% 1 month after the completion of primary immunization. An anamnestic response for poliovirus types I, II, and III was elicited by a booster in both groups. Except in the case of fever, other adverse events were similar between the 2 groups.  The immune response induced by Sabin-IPV was not inferior to that established with Salk-IPV. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  5. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture

    Directory of Open Access Journals (Sweden)

    Lee-Montiel Felipe T

    2011-12-01

    Full Text Available Abstract Background In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1 was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles. Results Buffalo green monkey kidney (BGMK cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.. A partial least squares (PLS regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV of 17 plaque forming units (PFU/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected. Conclusions This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and

  6. Co-circulation and evolution of polioviruses and species C enteroviruses in a district of Madagascar.

    Directory of Open Access Journals (Sweden)

    Mala Rakoto-Andrianarivelo

    2007-12-01

    Full Text Available Between October 2001 and April 2002, five cases of acute flaccid paralysis (AFP associated with type 2 vaccine-derived polioviruses (VDPVs were reported in the southern province of the Republic of Madagascar. To determine viral factors that favor the emergence of these pathogenic VDPVs, we analyzed in detail their genomic and phenotypic characteristics and compared them with co-circulating enteroviruses. These VDPVs appeared to belong to two independent recombinant lineages with sequences from the type 2 strain of the oral poliovaccine (OPV in the 5'-half of the genome and sequences derived from unidentified species C enteroviruses (HEV-C in the 3'-half. VDPV strains showed characteristics similar to those of wild neurovirulent viruses including neurovirulence in poliovirus-receptor transgenic mice. We looked for other VDPVs and for circulating enteroviruses in 316 stools collected from healthy children living in the small area where most of the AFP cases occurred. We found vaccine PVs, two VDPVs similar to those found in AFP cases, some echoviruses, and above all, many serotypes of coxsackie A viruses belonging to HEV-C, with substantial genetic diversity. Several coxsackie viruses A17 and A13 carried nucleotide sequences closely related to the 2C and the 3D(pol coding regions of the VDPVs, respectively. There was also evidence of multiple genetic recombination events among the HEV-C resulting in numerous recombinant genotypes. This indicates that co-circulation of HEV-C and OPV strains is associated with evolution by recombination, resulting in unexpectedly extensive viral diversity in small human populations in some tropical regions. This probably contributed to the emergence of recombinant VDPVs. These findings give further insight into viral ecosystems and the evolutionary processes that shape viral biodiversity.

  7. Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: A systematic review and implications for polio eradication

    Science.gov (United States)

    Guo, Jean; Bolivar-Wagers, Sara; Srinivas, Nivedita; Holubar, Marisa; Maldonado, Yvonne

    2017-01-01

    Background Vaccine-derived polioviruses (VDPVs), strains of poliovirus mutated from the oral polio vaccine, pose a challenge to global polio eradication. Immunodeficiency-related vaccine-derived polioviruses (iVDPVs) are a type of VDPV which may serve as sources of poliovirus reintroduction after the eradication of wild-type poliovirus. This review is a comprehensive update of confirmed iVDPV cases published in the scientific literature from 1962 to 2012, and describes clinically relevant trends in reported iVDPV cases worldwide. Methods We conducted a systematic review of published iVDPV case reports from January 1960 to November 2012 from four databases. We included cases in which the patient had a primary immunodeficiency, and the vaccine virus isolated from the patient either met the sequencing definition of VDPV (>1% divergence for serotypes 1 and 3 and >0.6% for serotype 2) and/or was previously reported as an iVDPV by the World Health Organization. Results We identified 68 iVDPV cases in 49 manuscripts reported from 25 countries and the Palestinian territories. 62% of case patients were male, 78% presented clinically with acute flaccid paralysis, and 65% were iVDPV2. 57% of cases occurred in patients with predominantly antibody immunodeficiencies, and the overall all-cause mortality rate was greater than 60%. The median age at case detection was 1.4 years [IQR: 0.8, 4.5] and the median duration of shedding was 1.3 years [IQR: 0.7, 2.2]. We identified a poliovirus genome VP1 region mutation rate of 0.72% per year and a higher median percent divergence for iVDPV1 cases. More cases were reported from high income countries, which also had a larger age variation and different distribution of immunodeficiencies compared to upper and lower middle-income countries. Conclusion Our study describes the incidence and characteristics of global iVDPV cases reported in the literature in the past five decades. It also highlights the regional and economic disparities of

  8. Seroprevalencia de anticuerpos contra el poliovirus 1 en niños mexicanos Seroprevalence of antibodies against poliovirus type 1 in Mexican children

    Directory of Open Access Journals (Sweden)

    Juan Ruiz-Gómez

    2007-01-01

    Full Text Available OBJETIVO: Analizar la frecuencia y distribución de la prevalencia de anticuerpos contra el virus de la poliomielitis tipo 1 en niños menores de 10 años en México, además de contribuir a la evaluación del programa de vacunación. MATERIAL Y MÉTODOS: Se estudió la presencia de anticuerpos contra el poliovirus tipo 1 en una muestra de la Encuesta Nacional de Salud 2000. Los sueros se recolectaron entre noviembre de 1999 y junio de 2000 a nivel nacional. La muestra constó de 6 270 niños de uno a nueve años de edad y se utilizó la técnica de neutralización. RESULTADOS: La seropositividad fue de 99.3% (IC95%99.1-99.7. Se identificaron como factores de riesgo de susceptibilidad el analfabetismo (RM= 1.5, p= 0.002 y el bajo ingreso familiar (RM= 1.4, p= 0.0487 y como factor protector el acceso a la seguridad social (RM= 0.41, p=0.04. CONCLUSIONES: Las actividades del programa de vacunación que han llevado a cabo las instituciones de salud han dado resultados en el control y eliminación de la enfermedad. Sin embargo, los programas de vacunación no deben interrumpirse, incluso si se ha registrado 99.3% de seropositividad; no puede soslayarse que al convertir el 0.7% restante, se calcula que hay 190 000 niños susceptibles de contraer la enfermedad. Estos niños se localizan sobre todo en el sur del país.OBJECTIVE: To analyze the frequency and distribution of the prevalence of antibodies against the poliomyelitis type 1 virus in children 1-9 years old in Mexico. MATERIAL AND METHODS: Antibodies against poliovirus type 1 (neutralization method were studied in 6 270 sera selected from the 24 232 sera from children one to nine years old, collected by the 2000 National Health Survey (ENSA 2000 that was conducted from November 1999 to June 2000. RESULTS: Overall seroprevalence was 99.3% (95%CI: 99.1-99.7. Using bivariate analysis, absence of antibodies was shown to be associated with illiteracy (OR= 1.5, p=0.002 and low household income (OR= 1

  9. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction

    Directory of Open Access Journals (Sweden)

    Xiaobo Lei

    2016-01-01

    Full Text Available Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  10. Innate Immunity Evasion by Enteroviruses: Insights into Virus-Host Interaction.

    Science.gov (United States)

    Lei, Xiaobo; Xiao, Xia; Wang, Jianwei

    2016-01-15

    Enterovirus genus includes multiple important human pathogens, such as poliovirus, coxsackievirus, enterovirus (EV) A71, EV-D68 and rhinovirus. Infection with EVs can cause numerous clinical conditions including poliomyelitis, meningitis and encephalitis, hand-foot-and-mouth disease, acute flaccid paralysis, diarrhea, myocarditis and respiratory illness. EVs, which are positive-sense single-stranded RNA viruses, trigger activation of the host antiviral innate immune responses through pathogen recognition receptors such as retinoic acid-inducible gene (RIG-I)-likeand Toll-like receptors. In turn, EVs have developed sophisticated strategies to evade host antiviral responses. In this review, we discuss the interplay between the host innate immune responses and EV infection, with a primary focus on host immune detection and protection against EV infection and viral strategies to evade these antiviral immune responses.

  11. Molecular epidemiology of severe respiratory disease by human rhinoviruses and enteroviruses at a tertiary paediatric hospital in Barcelona, Spain.

    Science.gov (United States)

    Launes, C; Armero, G; Anton, A; Hernandez, L; Gimferrer, L; Cisneros, C; Jordan, I; Muñoz-Almagro, C

    2015-08-01

    In order to describe the molecular epidemiology of human rhinovirus (HRV) and enterovirus (EV) infection in severely ill children, we studied all episodes of bronchospasm/bronchopneumonia in 6-month-old to 18-year-old patients from January 2010 to May 2012 who required mechanical ventilation. HRV/EVs were detected in 55 (57.3%) of 96 patients, of which 50 (91%) were HRV (HRV-A, 16; HRV-B, 1; HRV-C, 18) and 5 (9%) were EVs (EV-D68, 3). No significant differences in epidemiologic and clinical characteristics were found between different types. In six of the 13 patients who required invasive mechanical ventilation, HRV was the only pathogen detected. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    Science.gov (United States)

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  13. Virus replication, cytopathology, and lysosomal enzyme response of mitotic and interphase Hep-2 cells infected with poliovirus.

    Science.gov (United States)

    Bienz, K; Egger, D; Wolff, D A

    1973-04-01

    Mitotic Hep-2 cells, selected by the PEL (colloidal silica) density gradient method and held in mitosis with Colcemid, are readily infected by poliovirus type I (Mahoney). They produce and release the same amount of virus as interphase, random-growing cells. In contrast to interphase cells, mitotic cells show no detectable virus-induced cytopathic effect at the light microscopy level and only slight alterations, consisting of small clusters of vacuoles, at the electron microscopy level. Mitotic cells contain the same total amount of lysosomal enzymes per cell as interphase cells, but they display no redistribution of lysosomal enzymes during the virus infection as interphase cells do. This supports the view that lysosomal enzyme redistribution is associated with the cytopathic effect in poliovirus infection but shows that virus synthesis and release is not dependent on either the cytopathic effect or lysosomal enzyme release. The possible reasons for the lack of cytopathic effect in mitotic cells are discussed.

  14. Prevalence of Coxsackievirus A6 and Enterovirus 71 in Hand, Foot and Mouth Disease in Nanjing, China in 2013.

    Science.gov (United States)

    Hu, Ya-Qian; Xie, Guang-Cheng; Li, Dan-Di; Pang, Li-Li; Xie, Jing; Wang, Peng; Chen, Ying; Yang, Jing; Cheng, Wei-Xia; Zhang, Qing; Jin, Yu; Duan, Zhao-Jun

    2015-09-01

    Although hand, foot and mouth disease (HFMD) has been strongly associated with enterovirus 71 (EV71), coxsackievirus A16 (CVA16) and other enteroviruses, studies regarding coxsackievirus A6 (CVA6) infection in HFMD are limited. The aim of this study was to identify the major etiological agents causing HFMD in Nanjing in 2013 and explore the clinical and genetic characteristics of the prevalent enterovirus (EV) types in HFMD. A total of 394 throat swabs were collected from hospitalized children diagnosed with HFMD from April to July 2013. EVs were detected by reverse transcription polymerase chain reaction of 5' UTR sequences. Genotyping and phylogenetic analysis were based on VP4 sequences. Demographic and clinical data were obtained. Of the specimens, 68.5% (270/394) were positive for EVs. The genotypes and detection rates were CVA6, 30.00% (81/270); EV71, 17.41% (47/270); HRV, 11.11% (30/270); CVA10, 3.33% (9/270); CVA2, 1.11% (3/270); CVA16, 0.74% (2/270); EV68, 0.37% (1/270); echovirus 6, 0.37% (1/270); echovirus 9, 0.37% (1/270), respectively. Patients infected with CVA6 displayed symptoms atypical of HFMD, including larger vesicles on their limbs and buttocks. Phylogenetic analysis revealed 2 genetically distinct CVA6 strains that circulated independently within the region. Patients infected with CVA6 were more likely to have abnormal periphery blood white blood cell and C-reactive protein levels, while EV71 was more likely to infect the central nervous system, as indicated by clinical manifestations and white blood cell analysis of cerebrospinal fluid. Multiple EV genotypes contributed to HFMD in Nanjing in 2013, and CVA6 was the dominant genotype. The clinical presentation of CVA6 infection differs from that of EV71 infection in HFMD.

  15. Combined use of inactivated and oral poliovirus vaccines in refugee camps and surrounding communities - Kenya, December 2013.

    Science.gov (United States)

    Sheikh, Mohamed A; Makokha, Frederick; Hussein, Abdullahi M; Mohamed, Gedi; Mach, Ondrej; Humayun, Kabir; Okiror, Samuel; Abrar, Leila; Nasibov, Orkhan; Burton, John; Unshur, Ahmed; Wannemuehler, Kathleen; Estivariz, Concepcion F

    2014-03-21

    Since the launch of the Global Polio Eradication Initiative (GPEI) in 1988, circulation of indigenous wild poliovirus (WPV) has continued without interruption in only three countries: Afghanistan, Nigeria, and Pakistan. During April-December 2013, a polio outbreak caused by WPV type 1 (WPV1) of Nigerian origin resulted in 217 cases in or near the Horn of Africa, including 194 cases in Somalia, 14 cases in Kenya, and nine cases in Ethiopia (all cases were reported as of March 10, 2014). During December 14-18, 2013, Kenya conducted the first-ever campaign providing inactivated poliovirus vaccine (IPV) together with oral poliovirus vaccine (OPV) as part of its outbreak response. The campaign targeted 126,000 children aged ≤59 months who resided in Somali refugee camps and surrounding communities near the Kenya-Somalia border, where most WPV1 cases had been reported, with the aim of increasing population immunity levels to ensure interruption of any residual WPV transmission and prevent spread from potential new importations. A campaign evaluation and vaccination coverage survey demonstrated that combined administration of IPV and OPV in a mass campaign is feasible and can achieve coverage >90%, although combined IPV and OPV campaigns come at a higher cost than OPV-only campaigns and require particular attention to vaccinator training and supervision. Future operational studies could assess the impact on population immunity and the cost-effectiveness of combined IPV and OPV campaigns to accelerate interruption of poliovirus transmission during polio outbreaks and in certain areas in which WPV circulation is endemic.

  16. Chimpanzee-Human Monoclonal Antibodies for Treatment of Chronic Poliovirus Excretors and Emergency Postexposure Prophylaxis▿‡

    Science.gov (United States)

    Chen, Zhaochun; Chumakov, Konstantin; Dragunsky, Eugenia; Kouiavskaia, Diana; Makiya, Michelle; Neverov, Alexander; Rezapkin, Gennady; Sebrell, Andrew; Purcell, Robert

    2011-01-01

    Six poliovirus-neutralizing Fabs were recovered from a combinatorial Fab phage display library constructed from bone marrow-derived lymphocytes of immunized chimpanzees. The chimeric chimpanzee-human full-length IgGs (hereinafter called monoclonal antibodies [MAbs]) were generated by combining a chimpanzee IgG light chain and a variable domain of heavy chain with a human constant Fc region. The six MAbs neutralized vaccine strains and virulent strains of poliovirus. Five MAbs were serotype specific, while one MAb cross-neutralized serotypes 1 and 2. Epitope mapping performed by selecting and sequencing antibody-resistant viral variants indicated that the cross-neutralizing MAb bound between antigenic sites 1 and 2, thereby covering the canyon region containing the receptor-binding site. Another serotype 1-specific MAb recognized a region located between antigenic sites 2 and 3 that included parts of capsid proteins VP1 and VP3. Both serotype 2-specific antibodies recognized antigenic site 1. No escape mutants to serotype 3-specific MAbs could be generated. The administration of a serotype 1-specific MAb to transgenic mice susceptible to poliovirus at a dose of 5 μg/mouse completely protected them from paralysis after challenge with a lethal dose of wild-type poliovirus. Moreover, MAb injection 6 or 12 h after virus infection provided significant protection. The MAbs described here could be tested in clinical trials to determine whether they might be useful for treatment of immunocompromised chronic virus excretors and for emergency protection of contacts of a paralytic poliomyelitis case. PMID:21345966

  17. ISOLATION OF ANTIGENIC MUTANTS OF TYPE 1 POLIOVIRUS : GROWING THE VIRUS IN THE PRESENCE OF HOMOLOGOUS ANTISERUM

    OpenAIRE

    HASHIMOTO, Nobuo

    1980-01-01

    The antigenic mutants, which were significantly different intra-typically from the parental Mahoney-1709 type 1 poliovirus, were repeatedly isolated after a number of serial virus passages in the presence of homologous anti-Mahoney sera. The levels of the antigenic variation of those mutant viruses varied, depending on the individual antiserum employed for mutant selection and the passage numbers with same antiserum. The susceptibility to certain serum inhibitors of the antigenic mutants vari...

  18. Mutation of lysine residues in the nucleotide binding segments of the poliovirus RNA-dependent RNA polymerase.

    OpenAIRE

    Richards, O C; Baker, S; Ehrenfeld, E

    1996-01-01

    The poliovirus 3D RNA-dependent RNA polymerase contains two peptide segments previously shown to cross-link to nucleotide substrates via lysine residues. To determine which lysine residue(s) might be implicated in catalytic function, we engineered mutations to generate proteins with leucine residues substituted individually for each of the lysine residues in the NTP binding regions. These proteins were expressed in Escherichia coli and were examined for their abilities to bind nucleotides and...

  19. MicroRNA screening identifies miR-134 as a regulator of poliovirus and enterovirus 71 infection

    OpenAIRE

    Orr-Burks, Nichole Lynn; Shim, Byoung-Shik; Wu, Weilin; Bakre, Abhijeet A.; Karpilow, Jon; Tripp, Ralph A.

    2017-01-01

    MicroRNAs (miRNAs) regulate virus replication through multiple mechanisms. Poliovirus causes a highly debilitating disease and though global efforts to eradicate polio have sharply decreased polio incidence, unfortunately three countries (Afghanistan, Nigeria and Pakistan) remain polio-endemic. We hypothesize that understanding the host factors involved in polio replication will identify novel prophylactic and therapeutic targets against polio and related viruses. In this data set, employing ...

  20. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania.

    Science.gov (United States)

    Combiescu, M; Guillot, S; Persu, A; Baicus, A; Pitigoi, D; Balanant, J; Oprisan, G; Crainic, R; Delpeyroux, F; Aubert-Combiescu, A

    2007-01-01

    After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.

  1. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.

    Science.gov (United States)

    Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo

    2015-09-11

    We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Genetic changes in strains of poliovirus type 2 isolated from patients with vaccine-associated paralytic poliomyelitis].

    Science.gov (United States)

    Sosa-Díaz, R Y; Más-Lago, P; Valdés-Ramírez, O; Sarmiento-Pérez, L

    Poliomyelitis is currently a rare disease in developed countries, where only vaccinal strains seem to be in circulation, which replace wild poliovirus. Nevertheless, it is still a serious disease for children in underdeveloped countries of Asia and Africa. We analysed nine strains of poliovirus type 2 isolated from the faecal matter of patients with vaccine associated paralytic poliomyelitis (VAPP), from the beginning of anti polio vaccination campaigns in our country. These strains were submitted to sequencing of a fragment of 114 base pairs from the 5 NTR (non traductional region), where one of the main determinants of attenuation/reversion to the neurovirulence of poliovirus lies in the position of nucleotide 481. In this position it was observed how guanine had been replaced by adenine in all the strains that were sequenced, so that it coincided with the homologous sequence of the wild strain, as well as with that of strains obtained from healthy children immunised with the live vaccine. This presupposes that other changes must occur or that other factors must be involved for VAPP to occur or not, and we therefore suggest the sequencing of other regions of the genome in search of other possible differential changes in nucleotides.

  3. Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay.

    Science.gov (United States)

    Yang, Xiaoyi; Chen, Eying; Jiang, Hengguang; Muszynski, Karen; Harris, Raymond D; Giardina, Steven L; Gromeier, Matthias; Mitra, Gautam; Soman, Gopalan

    2009-01-01

    PVS-RIPO is a recombinant oncolytic poliovirus designed for clinical application to target CD155 expressing malignant gliomas and other malignant diseases. PVS-RIPO does not replicate in healthy neurons and is therefore non-pathogenic in rodent and non-human primate models of poliomyelitis. A tetrazolium salt dye-based cellular assay was developed and qualified to define the cytotoxicity of virus preparations on susceptible cells and to explore the target cell specificity of PVS-RIPO. In this assay, PVS-RIPO inhibited proliferation of U87-MG astrocytoma cells in a dose-dependent manner. However, HEK293 cells were much less susceptible to cell killing by PVS-RIPO. In contrast, the Sabin type 1 live attenuated poliovirus vaccine strain (PV(1)S) was cytotoxic to both HEK293 and U87-MG cells. The correlation between expression of CD155 and cytotoxicity was also explored using six different cell lines. There was little or no expression of CD155 and PVS-RIPO-induced cytotoxicity in Jurkat and Daudi cells. HEK293 was the only cell line tested that showed CD155 expression and resistance to PVS-RIPO cytotoxicity. The results indicate that differential cytotoxicity measured by the colorimetric assay can be used to evaluate the cytotoxicity and cell-type specificity of recombinant strains of poliovirus and to demonstrate lot to lot consistency during the manufacture of viruses intended for clinical use.

  4. Persistence of poliovirus 1 in soil and on vegetables grown in soil previously flooded with inoculated sewage sludge or effluent.

    Science.gov (United States)

    Tierney, J T; Sullivan, R; Larkin, E P

    1977-01-01

    Land disposal of sewage sludge and effluent is becoming a common practice in the United States. The fertilizer content and humus value of such wastes are useful for agricultural purposes, and the recycling of sewage onto the land eliminates many of our stream pollution problems. The potential exists for crops grown in such irrigated soil to be contaminated by viruses that may be present in the sewage. Studies were initiated to determine viral persistence in soil and on crops grown under natural conditions in field plots that had been flooded to a depth of 1 inch (2.54 cm) with poliovirus 1-inoculated sewage wastes. Lettuce and radishes were planted in sludge- or effluent-flooded soil. In one study, the vegetables were planted 1 day before flooding, and in another they were planted 3 days after the plots were flooded. Survival of poliovirus 1 in soil irrigated with inoculated sewage sludge and effluent was determined during two summer growing seasons and one winter period. The longest period of survival was during the winter, when virus was detected after 96 days. During the summer, the longest survival period was 11 days. Poliovirus 1 was recovered from the mature vegetables 23 days after flooding of the plots had ceased. Lettuce and radishes are usually harvested 3 to 4 weeks after planting.

  5. MicroRNA screening identifies miR-134 as a regulator of poliovirus and enterovirus 71 infection.

    Science.gov (United States)

    Orr-Burks, Nichole Lynn; Shim, Byoung-Shik; Wu, Weilin; Bakre, Abhijeet A; Karpilow, Jon; Tripp, Ralph A

    2017-03-01

    MicroRNAs (miRNAs) regulate virus replication through multiple mechanisms. Poliovirus causes a highly debilitating disease and though global efforts to eradicate polio have sharply decreased polio incidence, unfortunately three countries (Afghanistan, Nigeria and Pakistan) remain polio-endemic. We hypothesize that understanding the host factors involved in polio replication will identify novel prophylactic and therapeutic targets against polio and related viruses. In this data set, employing genome wide screens of miRNA mimics and inhibitors, we identified miRNAs which significantly suppressed polio replication. Specifically, miR-134 regulates poliovirus replication via modulation of ras-related nuclear protein (RAN), an important component of the nuclear transport system. MiR-134 also inhibited other Picornaviridae viruses including EV71, a growing concern and a high priority for vaccination in Asian countries like China. These findings demonstrate a novel mechanism for miRNA regulation of poliovirus and other Picornaviridae viruses in host cells, and thereby may provide a novel approach in combating infection and a potential approach for the development of anti-Picornaviridae strategies.

  6. Inactivated poliovirus vaccine given alone or in a sequential schedule with bivalent oral poliovirus vaccine in Chilean infants: a randomised, controlled, open-label, phase 4, non-inferiority study.

    Science.gov (United States)

    O'Ryan, Miguel; Bandyopadhyay, Ananda S; Villena, Rodolfo; Espinoza, Mónica; Novoa, José; Weldon, William C; Oberste, M Steven; Self, Steve; Borate, Bhavesh R; Asturias, Edwin J; Clemens, Ralf; Orenstein, Walter; Jimeno, José; Rüttimann, Ricardo; Costa Clemens, Sue Ann

    2015-11-01

    Bivalent oral poliovirus vaccine (bOPV; types 1 and 3) is expected to replace trivalent OPV (tOPV) globally by April, 2016, preceded by the introduction of at least one dose of inactivated poliovirus vaccine (IPV) in routine immunisation programmes to eliminate vaccine-associated or vaccine-derived poliomyelitis from serotype 2 poliovirus. Because data are needed on sequential IPV-bOPV schedules, we assessed the immunogenicity of two different IPV-bOPV schedules compared with an all-IPV schedule in infants. We did a randomised, controlled, open-label, non-inferiority trial with healthy, full-term (>2·5 kg birthweight) infants aged 8 weeks (± 7 days) at six well-child clinics in Santiago, Chile. We used supplied lists to randomly assign infants (1:1:1) to receive three polio vaccinations (IPV by injection or bOPV as oral drops) at age 8, 16, and 24 weeks in one of three sequential schedules: IPV-bOPV-bOPV, IPV-IPV-bOPV, or IPV-IPV-IPV. We did the randomisation with blocks of 12 stratified by study site. All analyses were done in a masked manner. Co-primary outcomes were non-inferiority of the bOPV-containing schedules compared with the all-IPV schedule for seroconversion (within a 10% margin) and antibody titres (within two-thirds log2 titres) to poliovirus serotypes 1 and 3 at age 28 weeks, analysed in the per-protocol population. Secondary outcomes were seroconversion and titres to serotype 2 and faecal shedding for 4 weeks after a monovalent OPV type 2 challenge at age 28 weeks. Safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01841671, and is closed to new participants. Between April 25 and August 1, 2013, we assigned 570 infants to treatment: 190 to IPV-bOPV-bOPV, 192 to IPV-IPV-bOPV, and 188 to IPV-IPV-IPV. 564 (99%) were vaccinated and included in the intention-to-treat cohort, and 537 (94%) in the per-protocol analyses. In the IPV-bOPV-bOPV, IPV-IPV-bOPV, and IPV-IPV-IPV groups

  7. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    Science.gov (United States)

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  8. Neurovirulent vaccine-derived polioviruses in sewage from highly immune populations.

    Science.gov (United States)

    Shulman, Lester M; Manor, Yossi; Sofer, Danit; Handsher, Rachel; Swartz, Tiberio; Delpeyroux, Francis; Mendelson, Ella

    2006-12-20

    Vaccine-derived polioviruses (VDPVs) have caused poliomyelitis outbreaks in communities with sub-optimal vaccination. Israeli environmental surveillance of sewage from populations with high (>95%) documented vaccine coverage of confirmed efficacy identified two separate evolutionary clusters of VDPVs: Group 1 (1998-2005, one system, population 1.6x10(6)) and Group 2 (2006, 2 systems, populations 0.7x10(6) and 5x10(4)). Molecular analyses support evolution of nine Group 1 VDPVs along five different lineages, starting from a common ancestral type 2 vaccine-derived Sabin-2/Sabin-1 recombinant strain, and independent evolution of three Group 2 VDPVs along one lineage starting from a different recombinant strain. The primary evidence for two independent origins was based on comparison of unique recombination fingerprints, the number and distribution of identical substitutions, and evolutionary rates. Geometric mean titers of neutralizing antibodies against Group 1 VDPVs were significantly lower than against vaccine strains in all age-group cohorts tested. All individuals had neutralizing titers >1:8 against these VDPVs except 7% of the 20-50 year cohort. Group 1 VDPVs were highly neurovirulent in a transgenic mouse model. Intermediate levels of protective immunity against Group 2 VDPVs correlated with fewer (5.0+1.0) amino acid substitutions in neutralizing antigenic sites than in Group 1 VDPV's (12.1+/-1.5). VDPVs that revert from live oral attenuated vaccines and reacquire characteristics of wild-type polioviruses not only threaten populations with poor immune coverage, but are also a potential source for re-introduction of poliomyelitis into highly immune populations through older individuals with waning immunity. The presence of two independently evolved groups of VDPVs in Israel and the growing number of reports of environmental VDPV elsewhere make it imperative to determine the global frequency of environmental VDPV. Our study underscores the importance of the

  9. Neurovirulent vaccine-derived polioviruses in sewage from highly immune populations.

    Directory of Open Access Journals (Sweden)

    Lester M Shulman

    Full Text Available BACKGROUND: Vaccine-derived polioviruses (VDPVs have caused poliomyelitis outbreaks in communities with sub-optimal vaccination. Israeli environmental surveillance of sewage from populations with high (>95% documented vaccine coverage of confirmed efficacy identified two separate evolutionary clusters of VDPVs: Group 1 (1998-2005, one system, population 1.6x10(6 and Group 2 (2006, 2 systems, populations 0.7x10(6 and 5x10(4. PRINCIPAL FINDINGS: Molecular analyses support evolution of nine Group 1 VDPVs along five different lineages, starting from a common ancestral type 2 vaccine-derived Sabin-2/Sabin-1 recombinant strain, and independent evolution of three Group 2 VDPVs along one lineage starting from a different recombinant strain. The primary evidence for two independent origins was based on comparison of unique recombination fingerprints, the number and distribution of identical substitutions, and evolutionary rates. Geometric mean titers of neutralizing antibodies against Group 1 VDPVs were significantly lower than against vaccine strains in all age-group cohorts tested. All individuals had neutralizing titers >1:8 against these VDPVs except 7% of the 20-50 year cohort. Group 1 VDPVs were highly neurovirulent in a transgenic mouse model. Intermediate levels of protective immunity against Group 2 VDPVs correlated with fewer (5.0+1.0 amino acid substitutions in neutralizing antigenic sites than in Group 1 VDPV's (12.1+/-1.5. SIGNIFICANCE: VDPVs that revert from live oral attenuated vaccines and reacquire characteristics of wild-type polioviruses not only threaten populations with poor immune coverage, but are also a potential source for re-introduction of poliomyelitis into highly immune populations through older individuals with waning immunity. The presence of two independently evolved groups of VDPVs in Israel and the growing number of reports of environmental VDPV elsewhere make it imperative to determine the global frequency of

  10. Effect of live and inactivated Lactobacillus rhamnosus GG on experimentally induced rhinovirus colds: randomised, double blind, placebo-controlled pilot trial.

    Science.gov (United States)

    Kumpu, M; Kekkonen, R A; Korpela, R; Tynkkynen, S; Järvenpää, S; Kautiainen, H; Allen, E K; Hendley, J O; Pitkäranta, A; Winther, B

    2015-01-01

    The aim of this work was to investigate the usability of an experimental rhinovirus model in probiotic trials aiming to assess effectiveness in viral infections, and to provide preliminary data of live and inactivated probiotic Lactobacillus rhamnosus GG for larger-scale trials utilising the model. 59 subjects were randomised to receive 100 ml of fruit juice supplemented with 10(9) cfu of live or heat-inactivated (by spray-drying) L. rhamnosus GG or control juice daily for six weeks. After three weeks subjects were intranasally inoculated with experimental rhinovirus. Infection rate (at least one positive culture for challenge virus on five days following inoculation or at least four-fold rise in antibody response to challenge virus) was 14/19 in the group receiving live probiotic strain and 18/20 both in the group receiving heat-inactivated probiotic strain and in the control group (P=0.36). The occurrence and severity of cold symptoms on the five days following the inoculation was lowest in the group receiving live probiotic strain (P=0.45). This trial was the first one dedicated to the investigation of the effect of probiotics using the experimental rhinovirus model. The model showed potential for demonstration of efficacy of probiotics in controlled respiratory viral infections. Occurrence and severity of cold symptoms and number of subjects with rhinovirus infection was lowest in the group receiving live L. rhamnosus GG, but differences were not statistically significant. Further large-scale studies are needed to demonstrate the efficacy of L. rhamnosus GG in respiratory infections.

  11. Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Yao Hailan

    2012-08-01

    Full Text Available Abstract Background Coxsackievirus B3 is an important infectious agent of viral myocarditis, pancreatitis and aseptic meningitis, but there are no specific antiviral therapeutic reagents in clinical use. RNA interference-based technology has been developed to prevent the viral infection. Methods To evaluate the impact of RNA interference on viral replication, cytopathogenicity and animal survival, short hairpin RNAs targeting the viral 2B region (shRNA-2B expressed by a recombinant vector (pGCL-2B or a recombinant lentivirus (Lenti-2B were tansfected in HeLa cells or transduced in mice infected with CVB3. Results ShRNA-2B exhibited a significant effect on inhibition of viral production in HeLa cells. Furthermore, shRNA-2B improved mouse survival rate, reduced the viral tissues titers and attenuated tissue damage compared with those of the shRNA-NC treated control group. Lenti-2B displayed more effective role in inhibition of viral replication than pGCL-2B in vivo. Conclusions Coxsackievirus B3 2B is an effective target of gene silencing against coxsackievirus B3 infection, suggesting that shRNA-2B is a potential agent for further development into a treatment for enterviral diseases.

  12. Visual detection of human enterovirus 71 subgenotype C4 and Coxsackievirus A16 by reverse transcription loop-mediated isothermal amplification with the hydroxynaphthol blue dye.

    Science.gov (United States)

    Nie, Kai; Zhang, Yong; Luo, Le; Yang, Meng-Jie; Hu, Xiu-Mei; Wang, Miao; Zhu, Shuang-Li; Han, Feng; Xu, Wen-Bo; Ma, Xue-Jun

    2011-08-01

    A sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for rapid visual detection of human enterovirus 71 subgenotype C4 (EV71-C4) and Coxsackievirus A16 (CVA16) infection, respectively. The reaction was performed in one step in a single tube at 65°C for 60 min with the addition of the hydroxynaphthol blue (HNB) dye prior to amplification. The detection limits of the RT-LAMP assay were 0.33 and 1.58 of a 50% tissue culture infective dose (TCID(50)) per reaction based on 10-fold dilutions of a titrated EV71 or CVA16 strain, respectively. No cross-reaction was observed with Coxsackievirus A (CVA) viruses (CVA2, 4, 5, 7, 9, 10, 14, and 24), Coxsackievirus B (CVB) viruses (CVB1,2,3,4, and 5) or ECHO viruses (ECHO3, 6, 11, and 19). The assay was further evaluated with 47 clinical stool specimens diagnosed previously with EV71, CVA16 or other human enterovirus infections. Virus isolates from stool samples were confirmed by virus neutralization testing and sequencing. RT-LAMP with HNB dye was demonstrated to be a sensitive and cost-effective assay for rapid visual detection of human EV71-C4 and CVA16. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Antiviral Activity of Sulfated Polysaccharide of Adenanthera pavonina against Poliovirus in HEp-2 Cells

    Directory of Open Access Journals (Sweden)

    Ananda Marques de Godoi

    2014-01-01

    Full Text Available Adenanthera pavonina, popularly known as red-bead tree, carolina, pigeon’s eye, and dragon’s eye, is a plant traditionally used in Brazil for the treatment of several diseases. The present study aimed at evaluating the activity of sulfated polysaccharide from the Adenanthera pavonina (SPLSAp seeds against poliovirus type 1 (PV-1 in HEp-2 cell cultures. The SPLSAp presented a cytotoxic concentration (CC50 of 500 μg/mL in HEp-2 cell cultures, evaluated by the dimethylthiazolyl-diphenyltetrazolium bromide method (MTT. The SPLSAp exhibited a significant antiviral activity, with a 50% inhibitory concentration (IC50 of 1.18 µg/mL, determined by plaque reduction assay and a high selectivity index (SI of 423. The maximum inhibition (100% of PV replication was found when the SPLSAp treatment was concomitant with viral infection (time 0 h, at all tested concentrations. The maximal inhibition was also found when the SPLSAp was used 1 h and 2 h postinfection, albeit at 50 μg/mL and 100 μg/mL. Therefore, we demonstrated that the SPLSAp inhibited PV growth. We also suggested that SPLSAp inhibited PV in more than one step of the replication, as the mechanism of antiviral action. We, therefore, selected the compound as a potential candidate for further development towards the control of the infection.

  14. Retrospective characterization of a vaccine-derived poliovirus type 1 isolate from sewage in Greece.

    Science.gov (United States)

    Dedepsidis, Evaggelos; Kyriakopoulou, Zaharoula; Pliaka, Vaia; Kottaridi, Christine; Bolanaki, Eugenia; Levidiotou-Stefanou, Stamatina; Komiotis, Dimitri; Markoulatos, Panayotis

    2007-11-01

    Retrospective molecular and phenotypic characterization of a vaccine-derived poliovirus (VDPV) type 1 isolate (7/b/97) isolated from sewage in Athens, Greece, in 1997 is reported. VP1 sequencing of this isolate revealed 1.87% divergence from the VP1 region of reference strain Sabin 1, while further genomic characterization of isolate 7/b/97 revealed a recombination event in the nonstructural part of the genome between a vaccine strain and a nonvaccine strain probably belonging to Enterovirus species C. Amino acid substitutions commonly found in previous studies were identified in the capsid coding region of the isolate, while most of the attenuation and temperature sensitivity determinants were reverted. The ultimate source of isolate 7/b/97 is unknown. The recovery of such a highly divergent derivative of a vaccine strain emphasizes the need for urgent implementation of environmental surveillance as a supportive procedure in the polio surveillance system even in countries with high rates of OPV coverage in order to prevent cases or even outbreaks of poliomyelitis that otherwise would be inevitable.

  15. Modeling the costs and benefits of temporary recommendations for poliovirus exporting countries to vaccinate international travelers.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2017-07-05

    Recognizing that infectious agents readily cross international borders, the International Health Regulations Emergency Committee issues Temporary Recommendations (TRs) that include vaccination of travelers from countries affected by public health emergencies, including serotype 1 wild polioviruses (WPV1s). This analysis estimates the costs and benefits of TRs implemented by countries with reported WPV1 during 2014-2016 while accounting for numerous uncertainties. We estimate the TR costs based on programmatic data and prior economic analyses and TR benefits by simulating potential WPV1 outbreaks in the absence of the TRs using the rate and extent of WPV1 importation outbreaks per reported WPV1 case during 2004-2013 and the number of reported WPV1 cases that occurred in countries with active TRs. The benefits of TRs outweigh the costs in 77% of model iterations, resulting in expected incremental net economic benefits of $210 million. Inclusion of indirect costs increases the costs by 13%, the expected savings from prevented outbreaks by 4%, and the expected incremental net benefits by 3%. Despite the considerable costs of implementing TRs, this study provides health and economic justification for these investments in the context of managing a disease in advanced stages of its global eradication. Copyright © 2017 The Auhors. Published by Elsevier Ltd.. All rights reserved.

  16. Comparison study on three protocols used to concentrate poliovirus type 1 from drinking water.

    Science.gov (United States)

    Senouci, S; Maul, A; Schwartzbrod, L

    1996-03-01

    The efficiency of three techniques used to concentrate enteric viruses from water media and based on adsorption-elution on glass are tested. The techniques are adsorption on glass wool (GW) at the natural pH of the water and adsorption on glass powder using acidified water (pH 3.5). In the second case, two devices are used the classical apparatus (CGP) and the modified apparatus (MGP). A solution of glycine 0.05 M--3% beef extract pH 9.5 is used in all three techniques to perform the elution. The sensitivity of the above concentration methods is assayed with samples of 20 liters of tap water artificially contaminated with a known quantity of poliovirus type 1 (10(1) to 10(7) MPNCU [20 L]-1). The resulting concentrates are inoculated to BGM cell cultures and tittered according to the MPN technique. The study demonstrated that the recovery rate increased with the viral concentration of the samples with maximum efficiency reaching 81% for GW, 89% for CGP and 99% for MGP. A Wilcoxon test performed on paired samples and on the overall results with all three methods. Significant differences were demonstrated leading to the ranking of the techniques in the growing order of sensitivity GW, CGP and MGP. These finding were confirmed using a fitting technique according to the algorithm of Marquardt.

  17. Factors contributing to outbreaks of wild poliovirus type 1 infection involving persons aged ≥15 years in the Democratic Republic of the Congo, 2010-2011, informed by a pre-outbreak poliovirus immunity assessment.

    Science.gov (United States)

    Alleman, Mary M; Wannemuehler, Kathleen A; Weldon, William C; Kabuayi, Jean Pierre; Ekofo, Felly; Edidi, Samuel; Mulumba, Audry; Mbule, Albert; Ntumbannji, Renée N; Coulibaly, Tiekoura; Abiola, Nadine; Mpingulu, Minlangu; Sidibe, Kassim; Oberste, M Steven

    2014-11-01

    The Democratic Republic of the Congo (DRC) experienced atypical outbreaks of wild poliovirus type 1 (WPV1) infection during 2010-2011 in that they affected persons aged ≥15 years in 4 (Bandundu, Bas Congo, Kasaï Occidental, and Kinshasa provinces) of the 6 provinces with outbreaks. Analyses of cases of WPV1 infection with onset during 2010-2011 by province, age, polio vaccination status, and sex were conducted. The prevalence of antibodies to poliovirus (PV) types 1, 2, and 3 was assessed in sera collected before the outbreaks from women attending antenatal clinics in 3 of the 4 above-mentioned provinces. Of 193 cases of WPV1 infection during 2010-2011, 32 (17%) occurred in individuals aged ≥15 years. Of these 32 cases, 31 (97%) occurred in individuals aged 16-29 years; 9 (28%) were notified in Bandundu, 17 (53%) were notified in Kinshasa, and 22 (69%) had an unknown polio vaccination status. In the seroprevalence assessment, PV type 1 and 3 seroprevalence was lower among women aged 15-29 years in Bandundu and Kinshasa, compared with those in Kasaï Occidental. Seropositivity to PVs was associated with increasing age, more pregnancies, and a younger age at first pregnancy. This spatiotemporal analysis strongly suggests that the 2010-2011 outbreaks of WPV1 infection affecting young adults were caused by a PV type 1 immunity gap in Kinshasa and Bandundu due to insufficient exposure to PV type 1 through natural infection or vaccination. Poliovirus immunity gaps in this age group likely persist in DRC. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Immunogenicity and safety of combined adsorbed low-dose diphtheria, tetanus and inactivated poliovirus vaccine (REVAXIS®) versus combined diphtheria, tetanus and inactivated poliovirus vaccine (DT Polio®) given as a booster dose at 6 years of age

    Science.gov (United States)

    Gajdos, Vincent; Soubeyrand, Benoit; Vidor, Emmanuel; Richard, Patrick; Boyer, Julie; Sadorge, Christine

    2011-01-01

    This randomized, comparative, phase-IIIb study conducted in France aimed to demonstrate whether seroprotection against diphtheria, tetanus and poliomyelitis 1 month after a single dose of REVAXIS (low-dose diphtheria) is non-inferior to seroprotection 1 month after a single dose of DT Polio (standard-dose diphtheria), both vaccines being given as a second booster to healthy children at 6 years of age. Children were randomly assigned to receive a single intramuscular dose of REVAXIS or DT Polio. Primary endpoints were the 1-month post-booster seroprotection rates for diphtheria, tetanus and poliovirus type-1, -2 and -3 antigens. Secondary endpoints were immunogenicity and safety observations. Of 788 children screened, 760 were randomized: REVAXIS group, 384 children; DT Polio group, 376 children. No relevant difference in demographic characteristics at baseline was observed between REVAXIS and DT Polio groups. Noninferiority of REVAXIS compared with DT Polio for seroprotection was demonstrated against diphtheria (respectively 98.6% and 99.3%), tetanus (respectively 99.6% and 100%) and poliovirus antigens (100% for each types in both groups). No allergic reactions to REVAXIS were reported. A benefit/risk ratio in favor of REVAXIS was suggested by the trend towards a better tolerability of REVAXIS compared with DT Polio regarding the rate of severe solicited injection-site reactions. The results support the use of REVAXIS as a booster at 6 years of age in infants who previously received a three-dose primary series within the first 6 months of life and a first booster including diphtheria, tetanus and poliovirus vaccine(s) given before 2 years of age. PMID:21441781

  19. Further development of a new transgenic mouse test for the evaluation of the immunogenicity and protective properties of inactivated poliovirus vaccine.

    Science.gov (United States)

    Dragunsky, Eugenia M; Ivanov, Alexander P; Abe, Shinobu; Potapova, Svetlana G; Enterline, Joan C; Hashizume, So; Chumakov, Konstantin M

    2006-09-15

    Recently, we developed and optimized a new method for the evaluation of the protective properties of serotype 2 inactivated poliovirus vaccines (IPV). The method is based on the immunization and subsequent challenge of transgenic (Tg) mice susceptible to poliovirus. We describe a similar method for the assessment of the protectiveness of serotype 1 IPV and demonstrate that experimental IPV produced from attenuated Sabin strain (sIPV) of serotype 1 poliovirus induced serum neutralizing antibodies, immunoglobulin (Ig) G, IgM, and salivary IgA at titers comparable to those induced by conventional IPV (cIPV) produced from the wild-type Mahoney strain. In contrast to our previous results with serotype 2 sIPV, serotype 1 sIPV provided even better protection of Tg mice than cIPV against challenge with wild-type Mahoney strain.

  20. Frequency of isolation of polioviruses and non polio enteroviruses from patients with acute flaccid paralysis, enterovirus infection and children from groups at risk

    Directory of Open Access Journals (Sweden)

    N. I. Romanenkova

    2012-01-01

    Full Text Available The article describes the frequency of isolation of polioviruses and non polio enteroviruses from different categories of the investigated children. The percentage of detection of polioviruses from the patients with acute flaccid paralysis was lower than that from the children from groups at risk. Among the patients with the enterovirus infection the polioviruses were rarely revealed. The frequency of isolation of non polio enteroviruses from these patients was significantly higher than that from the other categories of investigated persons. The improvement of poliomyelitis surveillance and the reinforcement of virological surveillance of children from groups at risk and those with enterovirus infection will provide the important data for Global Polio Eradication Initiative and the maintenance of polio free status of the Russian Federation.

  1. Comparison of serum and salivary antibodies in children vaccinated with oral live or parenteral inactivated poliovirus vaccines of different antigen concentrations.

    Science.gov (United States)

    Zaman, S; Carlsson, B; Jalil, F; Mellander, L; Van Wezel, A L; Böttiger, M; Hanson, L A

    1991-12-01

    A new antigen-rich inactivated poliovirus vaccine (IPV) in ordinary (IPV1), double (IPV2) and quadruple (IPV4) antigen concentrations was given in 2 doses to 6 and 18 week old Pakistani infants. The immune responses to poliovirus types 1 and 3 were compared to those in infants given three doses of oral poliovirus vaccine (OPV) at 6, 12 and 18 weeks of age. Enzyme-linked immunosorbent assay, ELISA, was used to estimate IgG and IgA in serum and secretory IgA (SIgA) in saliva. Two to three years later, a follow-up of the serum antibody response was carried out in the same infants using a microneutralization test. Serum IgG antibody responses to poliovirus type 1 antigen after two doses of IPV1, IPV2 and IPV4 were not significantly higher than the response after three doses of OPV at 21 weeks of age (p greater than 0.05). The serum IgG responses to poliovirus type 3 were similar to those against type 1 in all the groups. Mean neutralizing antibody titres to poliovirus type 1 was significantly higher in the IPV2 group than the rest of the groups (p less than 0.01). For type 3, these titres were highest but not significantly, in the IPV4 group (p greater than 0.05). This study shows that two doses of a new antigen-rich IPV can give similar immediate serum antibody responses as OPV but higher late responses. SIgA antibodies in saliva were more efficiently induced by OPV after three doses than after 2 doses of IPV (p less than 0.05).

  2. Characteristics of an environmentally monitored prolonged type 2 vaccine derived poliovirus shedding episode that stopped without intervention.

    Directory of Open Access Journals (Sweden)

    Tapani Hovi

    Full Text Available Vaccine derived poliovirus (VDPV type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003-2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5'UTR, P1, P2, P3, and 3'UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV, including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1 individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2 genetic divergence of VDPV strains may remain extensive during years long replication in humans.

  3. Intratypic recombination among lineages of type 1 vaccine-derived poliovirus emerging during chronic infection of an immunodeficient patient.

    Science.gov (United States)

    Yang, Chen-Fu; Chen, Hour-Young; Jorba, Jaume; Sun, Hui-Chih; Yang, Su-Ju; Lee, Hsiang-Chi; Huang, Yhu-Chering; Lin, Tzou-Yien; Chen, Pei-Jer; Shimizu, Hiroyuki; Nishimura, Yorihiro; Utama, Andi; Pallansch, Mark; Miyamura, Tatsuo; Kew, Olen; Yang, Jyh-Yuan

    2005-10-01

    We determined the complete genomic sequences of nine type 1 immunodeficient vaccine-derived poliovirus (iVDPV) isolates obtained over a 337-day period from a poliomyelitis patient from Taiwan with common variable immunodeficiency. The iVDPV isolates differed from the Sabin type 1 oral poliovirus vaccine (OPV) strain at 1.84% to 3.15% of total open reading frame positions and had diverged into at least five distinct lineages. Phylogenetic analysis suggested that the chronic infection was initiated by the fifth and last OPV dose, given 567 days before onset of paralysis, and that divergence of major lineages began very early in the chronic infection. Key determinants of attenuation in Sabin 1 had reverted in the iVDPV isolates, and representative isolates of each lineage showed increased neurovirulence for PVR-Tg21 transgenic mice. None of the isolates had retained the temperature-sensitive phenotype of Sabin 1. All isolates were antigenic variants of Sabin 1, having multiple amino acid substitutions within or near neutralizing antigenic sites 1, 2, and 3a. Antigenic divergence of the iVDPV variants from Sabin 1 followed two major independent evolutionary pathways. The emergence of distinct coreplicating lineages suggests that iVDPVs can replicate for many months at separate sites in the gastrointestinal tract. Some isolates had mosaic genome structures indicative of recombination across and within lineages. iVDPV excretion apparently ceased after 30 to 35 months of chronic infection. The appearance of a chronic VDPV excretor in a tropical, developing country has important implications for the strategy to stop OPV immunization after eradication of wild polioviruses.

  4. Characteristics of an environmentally monitored prolonged type 2 vaccine derived poliovirus shedding episode that stopped without intervention.

    Science.gov (United States)

    Hovi, Tapani; Paananen, Anja; Blomqvist, Soile; Savolainen-Kopra, Carita; Al-Hello, Haider; Smura, Teemu; Shimizu, Hiroyuki; Nadova, Katarina; Sobotova, Zdenka; Gavrilin, Eugene; Roivainen, Merja

    2013-01-01

    Vaccine derived poliovirus (VDPV) type 2 strains strongly divergent from the corresponding vaccine strain, Sabin 2, were repeatedly isolated from sewage in Slovakia over a period of 22 months in 2003-2005. Cell cultures of stool specimens from known immune deficient patients and from an identified putative source population of 500 people failed to identify the potential excretor(s) of the virus. The occurrence of VDPV in sewage stopped without any intervention. No paralytic cases were reported in Slovakia during the episode. According to a GenBank search and similarity plotting-analysis, the closest known relative of the first isolate PV2/03/SVK/E783 through all main sections of the genome was the type 2 poliovirus Sabin strain, with nucleotide identities in 5'UTR, P1, P2, P3, and 3'UTR parts of the genome of 88.6, 85.9, 87.3, 88.5, and 94.0 percent, respectively. Phenotypic properties of selected Slovakian aVDPV strains resembled those of VDPV strains isolated from immune deficient individuals with prolonged PV infection (iVDPV), including antigenic changes and moderate neurovirulence in the transgenic mouse model. One hundred and two unique VP1 coding sequences were determined from VDPV strains isolated from 34 sewage specimens. Nucleotide differences from Sabin 2 in the VP1 coding region ranged from 12.5 to 15.6 percent, and reached a maximum of 9.6 percent between the VDPV strains under study. Most of the nucleotide substitutions were synonymous but as many as 93 amino acid positions out of 301 in VP1 showed substitutions. We conclude that (1) individuals with prolonged poliovirus infection are not as rare as suggested by the studies on immune deficient patients known to the health care systems and (2) genetic divergence of VDPV strains may remain extensive during years long replication in humans.

  5. Cold chain and virus-free chloroplast-made booster vaccine to confer immunity against different poliovirus serotypes.

    Science.gov (United States)

    Chan, Hui-Ting; Xiao, Yuhong; Weldon, William C; Oberste, Steven M; Chumakov, Konstantin; Daniell, Henry

    2016-11-01

    The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log 2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Nucleotide variation in Sabin type 3 poliovirus from an Albanian infant with agammaglobulinemia and vaccine associated poliomyelitis.

    Science.gov (United States)

    Foiadelli, Thomas; Savasta, Salvatore; Battistone, Andrea; Kota, Majlinda; Passera, Carolina; Fiore, Stefano; Bino, Silvia; Amato, Concetta; Lozza, Alessandro; Marseglia, Gian Luigi; Fiore, Lucia

    2016-06-10

    Vaccine-associated paralytic poliomyelitis (VAPP) and immunodeficient long-term polio excretors constitute a significant public health burden and are a major concern for the WHO global polio eradication endgame. Poliovirus type 3 characterized as Sabin-like was isolated from a 5-month-old Albanian child with X-linked agammaglobulinemia and VAPP after oral polio vaccine administration. Diagnostic workup and treatment were performed in Italy. Poliovirus replicated in the gut for 7 months. The 5' non coding region (NCR), VP1, VP3 capsid proteins and the 3D polymerase genomic regions of sequential isolates were sequenced. Increasing accumulation of nucleotide mutations in the VP1 region was detected over time, reaching 1.0 % of genome variation with respect to the Sabin reference strain, which is the threshold that defines a vaccine-derived poliovirus (VDPV). We identified mutations in the 5'NCR and VP3 regions that are associated with reversion to neurovirulence. Despite this, all isolates were characterized as Sabin-like. Several amino acid mutations were identified in the VP1 region, probably involved in growth adaptation and viral persistence in the human gut. Intertypic recombination with Sabin type 2 polio in the 3D polymerase region, possibly associated with increased virus transmissibility, was found in all isolates. Gamma-globulin replacement therapy led to viral clearance and neurological improvement, preventing the occurrence of persistent immunodeficiency-related VDPV. This is the first case of VAPP in an immunodeficient child detected in Albania through the Acute Flaccid Paralysis surveillance system and the first investigated case of vaccine associated poliomyelitis in Italy since the introduction of an all-Salk schedule in 2002. We discuss over the biological and clinical implications in the context of the Global Polio Eradication Program and emphasize on the importance of the Acute Flaccid Paralysis surveillance.

  7. Immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine in infants: a comparative, observer-blind, randomised, controlled trial.

    Science.gov (United States)

    Sáez-Llorens, Xavier; Clemens, Ralf; Leroux-Roels, Geert; Jimeno, José; Clemens, Sue Ann Costa; Weldon, William C; Oberste, M Steven; Molina, Natanael; Bandyopadhyay, Ananda S

    2016-03-01

    Following the proposed worldwide switch from trivalent oral poliovirus vaccine (tOPV) to bivalent types 1 and 3 OPV (bOPV) in 2016, inactivated poliovirus vaccine (IPV) will be the only source of protection against poliovirus type 2. With most countries opting for one dose of IPV in routine immunisation schedules during this transition because of cost and manufacturing constraints, optimisation of protection against all poliovirus types will be a priority of the global eradication programme. We assessed the immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine (mIPV2HD) in infants. This observer-blind, comparative, randomised controlled trial was done in a single centre in Panama. We enrolled healthy infants who had not received any previous vaccination against poliovirus. Infants were randomly assigned (1:1) by computer-generated randomisation sequence to receive a single dose of either mIPV2HD or standard trivalent IPV given concurrently with a third dose of bOPV at 14 weeks of age. At 18 weeks, all infants were challenged with one dose of monovalent type 2 OPV (mOPV2). Primary endpoints were seroconversion and median antibody titres to type 2 poliovirus 4 weeks after vaccination with mIPV2HD or IPV; and safety (as determined by the proportion and nature of serious adverse events and important medical events for 8 weeks after vaccination). The primary immunogenicity analyses included all participants for whom a post-vaccination blood sample was available. All randomised participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02111135. Between April 14 and May 9, 2014, 233 children were enrolled and randomly assigned to receive mIPV2HD (117 infants) or IPV (116 infants). 4 weeks after vaccination with mIPV2HD or IPV, seroconversion to poliovirus type 2 was recorded in 107 (93·0%, 95% CI 86·8-96·9) of 115 infants in the mIPV2HD group compared with 86 (74·8%, 65·8

  8. Die Vesikel des Poliovirus-Replikationskomplex entstehen an den Membranen des endoplasmatischen Retikulums unter Verwendung der zellulären COPII-Proteine

    OpenAIRE

    Rust, René Christian

    2001-01-01

    Poliovirus gehört zur Familie der Picornaviridae, die unbehüllte animal- und humanpathogenen Viren umfasst, die ein einzelsträngiges RNA-Genom positiver Polarität besitzen. Die RNA-Replikation des Poliovirus findet, wie bei allen Plus-Strang RNA-Viren, in einem membrangebundenen Replikationskomplex statt. Dabei wird durch die virale RNA-Polymerase eine, zum viralen Genom komplementäre, Minus-Strang-RNA synthetisiert, die als Matrize für die Synthese neuer Viru...

  9. Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response.

    Directory of Open Access Journals (Sweden)

    Nicole Bedke

    Full Text Available Rhinovirus (RV infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-β, influences interferon (IFN production by primary bronchial epithelial cells (PBECs following RV infection. Exogenous TGF-β(2 increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA. Conversely, neutralizing TGF-β antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-β(2 levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-β on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-β and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-β contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3.

  10. Rhinovirus infections in western Sweden: a four-year molecular epidemiology study comparing local and globally appearing types.

    Science.gov (United States)

    Sansone, M; Andersson, M; Brittain-Long, R; Andersson, L-M; Olofsson, S; Westin, J; Lindh, M

    2013-07-01

    Human rhinovirus (HRV) is a highly prevalent pathogen and a major cause of acute respiratory tract infection (ARTI). HRV express less seasonality than other viral ARTIs, which typically appear as seasonal epidemics lasting for 1-2 months. The aim of this study was to investigate the seasonal patterns of HRV types over four consecutive years in one geographic region. HRV identified in respiratory samples from 114 patients over a four-year period were analysed by VP4/VP2 sequencing. HRV-A was found in 64, HRV-B in 11 and HRV-C in 37 cases. Overall, 33 different HRV-A types, nine B types and 21 C types were found. As many as 21 of the HRV types appeared during several seasons, with a maximum time-span of four years. Some types appeared during successive seasons and, in some cases, phylogenetic analysis indicated extended periods of circulation locally. Most of the strains were closely related to HRV identified in other parts of the world during the same time period. HRV strains that circulate locally represent many types and seem to reflect that HRV infections are highly globalised. The existence of simultaneous or successive epidemics with different HRV types in combination with the ability of each type to remain in the local population over extended periods of time may contribute to explaining the high rate of HRV infections.

  11. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Tapparel, Caroline, E-mail: Caroline.Tapparel@hcuge.ch [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Sobo, Komla [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland); Constant, Samuel; Huang, Song [Epithelix sárl, 14 Chemin des Aulx, 1228 Plan les Ouates, Geneva (Switzerland); Van Belle, Sandra; Kaiser, Laurent [Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University of Geneva Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1211 Geneva 14 (Switzerland)

    2013-11-15

    New molecular diagnostic tools have recently allowed the discovery of human rhinovirus species C (HRV-C) that may be overrepresented in children with lower respiratory tract complications. Unlike HRV-A and HRV-B, HRV-C cannot be propagated in conventional immortalized cell lines and their biological properties have been difficult to study. Recent studies have described the successful amplification of HRV-C15, HRV-C11, and HRV-C41 in sinus mucosal organ cultures and in fully differentiated human airway epithelial cells. Consistent with these studies, we report that a panel of clinical HRV-C specimens including HRV-C2, HRV-C7, HRV-C12, HRV-C15, and HRV-C29 types were all capable of mediating productive infection in reconstituted 3D human primary upper airway epithelial tissues and that the virions enter and exit preferentially through the apical surface. Similar to HRV-A and HRV-B, our data support the acid sensitivity of HRV-C. We observed also that the optimum temperature requirement during HRV-C growth may be type-dependent. - Highlights: • A 3D human upper airway epithelia reconstituted in vitro supports HRV-C growth. • HRV-Cs enter and exit preferentially at the apical side of this ALI culture system. • HRV-Cs are acid sensitive. • Temperature sensitivity may be type-dependent for HRV-Cs.

  12. Prevalence and molecular characterization of human rhinovirus in stool samples of individuals with and without acute gastroenteritis.

    Science.gov (United States)

    Khoonta, Prapaporn; Linsuwanon, Piyada; Posuwan, Nawarat; Vongpunsawad, Sompong; Payungporn, Sunchai; Poovorawan, Yong

    2017-05-01

    Human rhinovirus (RV) most often causes mild upper respiratory tract infection. Although RV is routinely isolated from the respiratory tract, few studies have examined RV in other types of clinical samples. The prevalence of RV was examined in 1,294 stool samples collected mostly from children with acute gastroenteritis residing in Bangkok and Khon Kaen province of Thailand between January 2010 and October 2014. In addition, 591 samples from hand-foot-mouth disease (HFMD) or herpangina patients who do not have gastroenteritis served as a comparison group. Samples were initially screened by semi-nested PCR for the RV 5'UTR through the VP2 capsid region. RV genotyping and phylogenetic analysis were performed on the VP4/VP2 regions. Among children with acute gastroenteritis, RV was found in 2.3% (30/1,294) of stool samples, which comprised 47% (14/30) RV-A, 17% (5/30) RV-B, and 37% (11/30) RV-C. In the comparison group, 0.8% (5/591) was RV-positive and RV-C (3/5) was the major species found. Interestingly, RV was recovered more often from children with acute gastroenteritis than from those with HFMD or herpangina. As many as 31 RV types were present in the gastroenteritis stools, which were different than the types found in those with HFMD or herpangina. J. Med. Virol. 89:801-808, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Antiviral effect of compounds derived from Angelica archangelica L. on Herpes simplex virus-1 and Coxsackievirus B3 infections.

    Science.gov (United States)

    Rajtar, Barbara; Skalicka-Woźniak, Krystyna; Świątek, Łukasz; Stec, Agnieszka; Boguszewska, Anastazja; Polz-Dacewicz, Małgorzata

    2017-11-01

    The dichloromethane extract from fruits of Angelica archangelica L. was separated by the modern high-performance countercurrent chromatography (HPCCC). The extract and five pure compounds: xanthotoxin, bergapten, imperatorin, phellopterin and isoimperatorin, and the mixture of imperatorin and phellopterin, have been studied as the potential antiviral agents against Herpes simplex virus type l and Coxsackievirus B3. The cytotoxicity was measured using the MTT method. Compounds were tested for the in vitro antiviral activity using the cytopathic effect (CPE) inhibitory assay and by the virus titre reduction assay. Real-time PCR was used to quantify the relative inhibition of the HSV-1 replication. The results indicate that the highest activity was demonstrated by the extract, imperatorin, phellopterin and the mixture of imperatorin and phellopterin, reducing the HSV-1 replication by 5.61 log, 4.7 log, 3.01 log and 3.73 log, respectively. The influence of isolated compounds on the CVB3 replication was not significant. Only the extract caused the decrease in the titre of virus in relation to the virus control. Our results show that coumarins of A. archangelica L. might be a potential candidate for the development of the alternative natural anti- HSV-1 compound. Moreover, the presence of isopentenyloxy moiety at C-8 position significantly improves their activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Clinicopathologic analysis of coxsackievirus a6 new variant induced widespread mucocutaneous bullous reactions mimicking severe cutaneous adverse reactions.

    Science.gov (United States)

    Chung, Wen-Hung; Shih, Shin-Ru; Chang, Ching-Fen; Lin, Tzou-Yien; Huang, Yhu-Chering; Chang, Shih-Chen; Liu, Ming-Tsan; Ko, Yu-Shien; Deng, Ming-Chung; Liau, Yea-Ling; Lin, Lung-Huang; Chen, Tou-Hwei; Yang, Chih-Hsun; Ho, Hsin-Chun; Lin, Jheng-Wei; Lu, Chun-Wei; Lu, Chin-Fang; Hung, Shuen-Iu

    2013-12-15

    The cutaneous manifestations of human enterovirus (HEV) infection are usually limited, such as hand-foot-mouth disease. By comparison, Stevens-Johnson syndrome (SJS) is a life-threatening severe cutaneous adverse reaction (SCAR), mainly caused by drugs. During the HEV outbreaks in 2010-2012 in Taiwan, we identified 21 patients who developed widespread blistering mucocutaneous reactions without any suspected drug causality. We screened possible pathogen(s) for detecting human herpes virus (HHV1-HHV7), HEV, or Mycoplasma pneumoniae infections using throat swab virus cultures, real-time PCR, DNA sequencing, immunochemistry and electron microscopy analyses. Coxsackievirus A6 (CVA6) DNA was identified in the blistering skin lesions in 6 of 21 patients. Cytotoxic T lymphocytes and natural killer cells expressing granulysin predominantly infiltrated into the skin lesions, sharing the histopathological features with SJS. Intact CVA6 viral particles were identified in the blister fluids and skin lesions by electron microscopy. The phylogenetic analysis of the viral genome showed the CVA6 DNA sequence sharing higher similarity (97.6%-98.1%) to CVA6 strains reported from Finland at 2008. This study identifies a new variant of CVA6 as the causative agent for severe mucocutaneous blistering reactions mimicking SCAR. An awareness of this unusual presentation of HEV infection is needed in the epidemic area.

  15. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages.

    Science.gov (United States)

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G; Puri, Raj K; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-11-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2-deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.

  16. Severe hand, foot and mouth disease associated with Coxsackievirus A10 infections in Xiamen, China in 2015.

    Science.gov (United States)

    Chen, Mengyuan; He, Shuizhen; Yan, Qiang; Xu, Xuerong; Wu, Wenhui; Ge, Shengxiang; Zhang, Shiyin; Chen, Min; Xia, Ningshao

    2017-08-01

    Coxsackievirus A10 (CV-A10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD) and usually causes mild cases. During 2009-2014, no severe cases caused by CV-A10 was reported in Xiamen, China, however, an increase in cases was seen in 2015. We aimed to perform a retrospective molecular epidemiological analysis of HFMD associated with CV-A10 infections in Xiamen. CV-A10 VP1 (n=41) capsid and full-length or near full-length genomes (n=14) were sequenced. Phylogenetic trees were constructed based on these sequences and other reference sequences and nucleotide and amino acid changes were characterized. From 2009-2014, no laboratory-confirmed CV-A10 infections associated with severe cases were identified, however, in 2015, 39% (7/18) of severe HFMD cases were CV-A10 infections. Sequence analysis of severe and non-severe CV-A10 HFMD cases determined that severe cases predominantly clustered with an emerging clade E lineage A strain which contained 4 nucleotide changes in 5' UTR and 5 amino acid substitutions in structural and non-structural proteins. The results indicate CV-A10 infection may be emerging as a new and major cause of severe HFMD and CV-A10 surveillance should be increased and considered in HFMD prevention and control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Coxsackievirus A6-related hand foot and mouth disease: skin manifestations in a cluster of adult patients.

    Science.gov (United States)

    Ben-Chetrit, Eli; Wiener-Well, Yonit; Shulman, Lester M; Cohen, Matan J; Elinav, Hila; Sofer, Danit; Feldman, Itamar; Marva, Eytan; Wolf, Dana G

    2014-03-01

    Hand foot and mouth disease (HFMD) is a common childhood manifestation of enterovirus (EV) infection. It predominantly affects young children, and has been mainly associated with coxsackievirus (CV) A16 and EV 71. We report an unusual cluster of adult patients with HFMD. Throat swabs and vesicular fluid samples obtained from patients admitted to the emergency room (ER) with HFMD were tested for EV by reverse transcription (RT)-real time PCR, and further subjected to sequencing and phylogenetic analysis. CVA6 was identified as the causative agent of HFMD in five epidemiologically-unrelated adult patients (28-37 years old) admitted to the ER between December 2012 and February 2013. Phylogenetic analysis mapped the CVA6 strains into one cluster. All patients manifested with fever and a severe vasculitis-like rash, followed by spontaneous recovery. This cluster identifies CVA6 as an emerging cause of HFMD of unusual age distribution, seasonality, and clinical severity, underscoring the need for continued alertness and clinical-genotypic surveillance of EV HFMD. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. B1c genetic subtype of coxsackievirus A16 associated with hand, foot and mouth disease in Andaman Islands, India.

    Science.gov (United States)

    Palani, Surya; Nagarajan, Muruganandam; Biswas, Ashok Kumar; Maile, Anwesh; Paluru, Vijayachari

    2016-07-01

    An outbreak of hand, foot and mouth disease (HFMD) occurred in the Andaman Islands in 2013. Therefore, we aimed to identify the aetiological agent and to explore its genetic characteristics. Clinical specimens were subjected to virus isolation, further confirmed by sequencing the partial VP1/2A region of enterovirus, and analysed using MEGA 6 software with intra-serotype reference sequences. Coxsackievirus A16 (CV A16) was found to be the causative agent, closely grouped with B1c genetic clusters of CV A16. However, it has significant genetic distance (K2P=0.059%) with B1c sub-clusters. Extended research work should be carried out to better understand the emerging nature of CV A16 associated with HFMD in these islands.GenBank accession numbers: KU523376-KU523387. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Coxsackievirus B3 Directly Induced Th17 Cell Differentiation by Inhibiting Nup98 Expression in Patients with Acute Viral Myocarditis.

    Science.gov (United States)

    Long, Qi; Liao, Yu-Hua; Xie, Yu; Liang, Wei; Cheng, Xiang; Yuan, Jing; Yu, Miao

    2016-01-01

    Th17 cells play a key role in the progression of coxsackievirus B3 (CVB3)-induced acute viral myocarditis (AVMC). However, the direct effect of virus on Th17 cell differentiation is still unknown. Recently, nucleoporin (Nup) 98 has been proved to be associated with lymphocyte differentiation. Therefore, we investigated whether Nup98 mediated Th17 cell differentiation in AVMC. In our study, patients with AVMC and healthy controls were recruited. The results showed that CVB3 could enter into the CD4 + T cells in AVMC patients and healthy controls. After transfecting purified CD4 + T cells with CVB3 in vitro , the Th17 cell frequency, IL-17 secretion, and RORγT synthesis were increased while the Nup98 levels were decreased. Furthermore, down-regulating Nup98 expression by siRNA-Nup98 in CD4 + T cells resulted in the elevated Th17 cell frequency and IL-17 secretion, along with enhanced levels of RORγT, dissociative p300/CBP, and acetylated Stat3. Up-regulation of Nup98 expression by pcDNA3.1-Nup98 showed the opposite effects. Our results suggested that CVB3 directly induced CD4 + T cell differentiation into Th17 cells by inhibiting Nup98 expression, representing a therapeutic target in AVMC.

  20. Coxsackievirus B3 directly induced Th17 cell differentiation by inhibiting Nup98 expression in patients with acute viral myocarditis

    Directory of Open Access Journals (Sweden)

    Qi Long

    2016-12-01

    Full Text Available Th17 cells play a key role in the progression of coxsackievirus B3 (CVB3-induced acute viral myocarditis (AVMC. However, the direct effect of virus on Th17 cell differentiation is still unknown. Recently, nucleoporin (Nup 98 has been proved to be associated with lymphocyte differentiation. Therefore, we investigated whether Nup98 mediated Th17 cell differentiation in AVMC. In our study, patients with AVMC and healthy controls were recruited. The results showed that CVB3 could enter into the CD4+ T cells in AVMC patients and healthy controls. After transfecting purified CD4+ T cells with CVB3 in vitro, the Th17 cell frequency, IL-17 secretion, and RORγT synthesis were increased while the Nup98 levels were decreased. Furthermore, down-regulating Nup98 expression by siRNA-Nup98 in CD4+ T cells resulted in the elevated Th17 cell frequency and IL-17 secretion, along with enhanced levels of RORγT, dissociative p300/CBP, and acetylated Stat3. Up-regulation of Nup98 expression by pcDNA3.1-Nup98 showed the opposite effects. Our results suggested that CVB3 directly induced CD4+ T cell differentiation into Th17 cells by inhibiting Nup98 expression, representing a therapeutic target in AVMC.

  1. The Epidemiological Study of Coxsackievirus A6 revealing Hand, Foot and Mouth Disease Epidemic patterns in Guangdong, China.

    Science.gov (United States)

    Zeng, Hanri; Lu, Jing; Zheng, Huanying; Yi, Lina; Guo, Xue; Liu, Leng; Rutherford, Shannon; Sun, Limei; Tan, Xiaohua; Li, Hui; Ke, Changwen; Lin, Jinyan

    2015-05-21

    Enterovirus A71 (EVA71) and Coxsackievirus A16 (CVA16) are regarded as the two major causative pathogens in hand, foot and mouth disease (HFMD) epidemics. However, CVA6, previously largely ignored, became the predominant pathogen in China in 2013. In this study, we describe the epidemiological trends of CVA6 during the annual HFMD outbreaks from 2008 to 2013 in Guangdong, China. The study results show that CVA6 has been one of three major causative agents of HFMD epidemics since 2009. The periodic rotation and dominance of the three pathogens, EVA71, CVA16 and CVA6, may have contributed to the continuously increasing HFMD epidemics. Moreover, phylogenetic analysis of the VP1 gene shows that major circulating CVA6 strains collected from 2009 to 2013 are distinct from the earlier strains collected before 2009. In conclusion, the discovery from this research investigating epidemiological trends of CVA6 from 2008 to 2013 explains the possible pattern of the continuous HFMD epidemic in China. The etiological change pattern also highlights the need for improvement for pathogen surveillance and vaccine strategies for HFMD control in China.

  2. Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum.

    Science.gov (United States)

    Jin, Jun; Ma, Hongxia; Xu, Lin; An, Dong; Sun, Shiyang; Huang, Xueyong; Kong, Wei; Jiang, Chunlai

    2013-02-01

    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A novel minicircle vector based system for inhibting the replication and gene expression of enterovirus 71 and coxsackievirus A16.

    Science.gov (United States)

    Yang, Zhuo; Li, Guodong; Zhang, Yingqiu; Liu, Xiaoman; Tien, Po

    2012-11-01

    Enterovirus 71 (EV 71) and Coxsackievirus A16 (CA 16) are two major causative agents of hand, foot and mouth disease (HFMD). They have been associated with severe neurological and cardiological complications worldwide, and have caused significant mortalities during large-scale outbreaks in China. Currently, there are no effective treatments against EV 71 and CA 16 infections. We now describe the development of a novel minicircle vector based RNA interference (RNAi) system as a therapeutic approach to inhibiting EV 71 and CA 16 replication. Small interfering RNA (siRNA) molecules targeting the conserved regions of the 3C(pro) and 3D(pol) function gene of the EV 71 and CA 16 China strains were designed based on their nucleotide sequences available in GenBank. This RNAi system was found to effectively block the replication and gene expression of these viruses in rhabdomyosarcoma (RD) cells and virus-infected mice model. The inhibitory effects were confirmed by a corresponding decrease in viral RNA, viral protein, and progeny virus production. In addition, no significant adverse off-target silencing or cytotoxic effects were observed. These results demonstrated the potential and feasibility of this novel minicircle vector based RNAi system for antiviral therapy against EV 71 and CA 16 infection. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses.

    Science.gov (United States)

    Cai, Yicun; Ku, Zhiqiang; Liu, Qingwei; Leng, Qibin; Huang, Zhong

    2014-05-01

    Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two major causative agents of hand, foot and mouth disease (HFMD), which is an infectious disease frequently occurring in children. A bivalent vaccine against both EV71 and CA16 is highly desirable. In the present study, we compare monovalent inactivated EV71, monovalent inactivated CA16, and a combination vaccine candidate comprising of both inactivated EV71 and CA16, for their immunogenicity and in vivo protective efficacy. The two monovalent vaccines were found to elicit serum antibodies that potently neutralized the homologous virus but had no or weak neutralization activity against the heterologous one; in contrast, the bivalent vaccine immunized sera efficiently neutralized both EV71 and CA16. More importantly, passive immunization with the bivalent vaccine protected mice against either EV71 or CA16 lethal infections, whereas the monovalent vaccines only prevented the homologous but not the heterologous challenges. Together, our results demonstrate that the experimental bivalent vaccine comprising of inactivated EV71 and CA16 induces a balanced protective immunity against both EV71 and CA16, and thus provide proof-of-concept for further development of multivalent vaccines for broad protection against HFMD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Identification of luteolin as enterovirus 71 and coxsackievirus A16 inhibitors through reporter viruses and cell viability-based screening.

    Science.gov (United States)

    Xu, Lin; Su, Weiheng; Jin, Jun; Chen, Jiawen; Li, Xiaojun; Zhang, Xuyuan; Sun, Meiyan; Sun, Shiyang; Fan, Peihu; An, Dong; Zhang, Huafei; Zhang, Xiguang; Kong, Wei; Ma, Tonghui; Jiang, Chunlai

    2014-07-17

    Hand, foot and mouth disease (HFMD) is a common pediatric illness mainly caused by infection with enterovirus 71 (EV71) and coxsackievirus A16 (CA16). The frequent HFMD outbreaks have become a serious public health problem. Currently, no vaccine or antiviral drug for EV71/CA16 infections has been approved. In this study, a two-step screening platform consisting of reporter virus-based assays and cell viability‑based assays was developed to identify potential inhibitors of EV71/CA16 infection. Two types of reporter viruses, a pseudovirus containing luciferase-encoding RNA replicons encapsidated by viral capsid proteins and a full-length reporter virus containing enhanced green fluorescent protein, were used for primary screening of 400 highly purified natural compounds. Thereafter, a cell viability-based secondary screen was performed for the identified hits to confirm their antiviral activities. Three compounds (luteolin, galangin, and quercetin) were identified, among which luteolin exhibited the most potent inhibition of viral infection. In the cell viability assay and plaque reduction assay, luteolin showed similar 50% effective concentration (EC50) values of about 10 μM. Luteolin targeted the post-attachment stage of EV71 and CA16 infection by inhibiting viral RNA replication. This study suggests that luteolin may serve as a lead compound to develop potent anti-EV71 and CA16 drugs.

  6. Systematic Identification and Bioinformatic Analysis of MicroRNAs in Response to Infections of Coxsackievirus A16 and Enterovirus 71.

    Science.gov (United States)

    Zhu, Zheng; Qi, Yuhua; Fan, Huan; Cui, Lunbiao; Shi, Zhiyang

    2016-01-01

    Hand, foot, and mouth disease (HFMD), mainly caused by coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) infections, remains a serious public health issue with thousands of newly diagnostic cases each year since 2008 in China. The mechanisms underlying viral infection, however, are elusive to date. In the present study, we systematically investigated the host cellular microRNA (miRNA) expression patterns in response to CVA16 and EV71 infections. Through microarray examination, 27 miRNAs (15 upregulated and 12 downregulated) were found to be coassociated with the replication process of two viruses, while the expression levels of 15 and 5 miRNAs were significantly changed in CVA16- and EV71-infected cells, respectively. A great number of target genes of 27 common differentially expressed miRNAs were predicted by combined use of two computational target prediction algorithms, TargetScan and MiRanda. Comprehensive bioinformatic analysis of target genes in GO categories and KEGG pathways indicated the involvement of diverse biological functions and signaling pathways during viral infection. These results provide an overview of the roles of miRNAs in virus-host interaction, which will contribute to further understanding of HFMD pathological mechanisms.

  7. A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice.

    Science.gov (United States)

    Yang, Lisheng; Liu, Yajing; Li, Shuxuan; Zhao, Huan; Lin, Qiaona; Yu, Hai; Huang, Xiumin; Zheng, Qingbing; Cheng, Tong; Xia, Ningshao

    2016-11-21

    Hand, foot, and mouth disease (HFMD) is a highly contagious disease that mainly affects infants and children. Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major pathogens of HFMD. Two EV71 vaccines were recently licensed in China and the administration of the EV71 vaccines is believed to significantly reduce the number of HFMD-related severe or fatal cases. However, a monovalent EV71 vaccine cannot cross-protect against CA16 infection, this may result in that it cannot effectively control the overall HFMD epidemic. In this study, a chimeric EV71, whose VP1/210-225 epitope was replaced by that of CA16, was constructed using a reverse genetics technique to produce a candidate EV71/CA16 bivalent vaccine strain. The chimeric EV71 was infectious and showed similar growth characteristics as its parental strain. The replacement of the VP1/210-225 epitope did not significantly affect the antigenicity and immunogenicity of EV71. More importantly, the chimeric EV71 could induce protective immunity against both EV71 and CA16, and protect neonatal mice against either EV71 or CA16 lethal infections, the chimeric EV71 constructed in this study was shown to be a feasible and promising candidate bivalent vaccine against both EV71 and CA16. The construction of a chimeric enterovirus also provides an alternative platform for broad-spectrum HFMD vaccines development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Characterization of enterovirus 71 and coxsackievirus A16 isolated in hand, foot, and mouth disease patients in Guangdong, 2010.

    Science.gov (United States)

    He, Si-Jie; Han, Jian-Feng; Ding, Xi-Xia; Wang, Ya-Di; Qin, Cheng-Feng

    2013-11-01

    Hand, foot, and mouth disease (HFMD) is an acute viral disease caused by human enteroviruses, especially human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16), and mainly affects infants and young children. After the outbreak in 2008 in Fuyang, China, HFMD was classified as a category C notifiable infectious disease by the Ministry of Health of China. In this study, we report the epidemiologic and clinical manifestations of HFMD in Guangdong Province, China in 2010, and characterize HEV71 and CVA16 isolated from clinical specimens. Among the 542 HFMD patients, 495 (91.3%) were positive for enterovirus as detected by real-time reverse transcriptase PCR; 243 were positive for HEV71 (49.1%, 243/495) and 114 were positive for CVA16 (23.0%, 114/495). Most of the affected children were aged 5 years or under (93.7%, 508/542). Phylogenetic analyses of VP1 gene sequences showed that the HEV71 isolates belonged to C4a subgenotype, and CVA16 isolates belonged to B1 genotype. Our results demonstrate that HEV71 and CVA16 are the primary causative agents responsible for HFMD in Guangdong Province, and their co-circulation poses a potential risk to public health. Copyright © 2013 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Potent antiviral agents fail to elicit genetically-stable resistance mutations in either enterovirus 71 or Coxsackievirus A16.

    Science.gov (United States)

    Kelly, James T; De Colibus, Luigi; Elliott, Lauren; Fry, Elizabeth E; Stuart, David I; Rowlands, David J; Stonehouse, Nicola J

    2015-12-01

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the two major causative agents of hand, foot and mouth disease (HFMD), for which there are currently no licenced treatments. Here, the acquisition of resistance towards two novel capsid-binding compounds, NLD and ALD, was studied and compared to the analogous compound GPP3. During serial passage, EV71 rapidly became resistant to each compound and mutations at residues I113 and V123 in VP1 were identified. A mutation at residue 113 was also identified in CVA16 after passage with GPP3. The mutations were associated with reduced thermostability and were rapidly lost in the absence of inhibitors. In silico modelling suggested that the mutations prevented the compounds from binding the VP1 pocket in the capsid. Although both viruses developed resistance to these potent pocket-binding compounds, the acquired mutations were associated with large fitness costs and reverted to WT phenotype and sequence rapidly in the absence of inhibitors. The most effective inhibitor, NLD, had a very large selectivity index, showing interesting pharmacological properties as a novel anti-EV71 agent. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Use of Preservative Agents and Antibiotics for Increased Poliovirus Survival on Positively Charged Filters.

    Science.gov (United States)

    Fagnant, Christine Susan; Kossik, Alexandra Lynn; Zhou, Nicolette Angela; Sánchez-Gonzalez, Liliana; Falman, Jill Christin; Keim, Erika Karen; Linden, Yarrow; Scheibe, Alana; Barnes, Kilala Sayisha; Beck, Nicola Koren; Boyle, David S; Meschke, John Scott

    2017-12-01

    Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195-208, 2008). To evaluate virus survival over time on ViroCap ™ filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin ™ 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.

  11. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Samoilovich, Elena; Kahelin, Heidi; Hiekka, Anna-Kaisa; Hovi, Tapani; Roivainen, Merja

    2009-08-01

    The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

  12. Necl-5/poliovirus receptor interacts with VEGFR2 and regulates VEGF-induced angiogenesis.

    Science.gov (United States)

    Kinugasa, Mitsuo; Amano, Hisayuki; Satomi-Kobayashi, Seimi; Nakayama, Kazuhiko; Miyata, Muneaki; Kubo, Yoshiki; Nagamatsu, Yuichi; Kurogane, Yusuke; Kureha, Fumie; Yamana, Shota; Hirata, Ken-ichi; Miyoshi, Jun; Takai, Yoshimi; Rikitake, Yoshiyuki

    2012-03-02

    Vascular endothelial growth factor (VEGF), a major proangiogenic agent, exerts its proangiogenic action by binding to VEGF receptor 2 (VEGFR2), the activity of which is regulated by direct interactions with other cell surface proteins, including integrin α(V)β(3). However, how the interaction between VEGFR2 and integrin α(V)β(3) is regulated is not clear. To investigate whether Necl-5/poliovirus receptor, an immunoglobulin-like molecule that is known to bind integrin α(V)β(3), regulates the interaction between VEGFR2 and integrin α(V)β(3), and to clarify the role of Necl-5 in the VEGF-induced angiogenesis. Necl-5-knockout mice displayed no obvious defect in vascular development; however, recovery of blood flow after hindlimb ischemia and the VEGF-induced neovascularization in implanted Matrigel plugs were impaired in Necl-5-knockout mice. To clarify the mechanism of the regulation of angiogenesis by Necl-5, we investigated the roles of Necl-5 in the VEGF-induced angiogenic responses in vitro. Knockdown of Necl-5 by siRNAs in human umbilical vein endothelial cells (HUVECs) inhibited the VEGF-induced capillary-like network formation on Matrigel, migration, and proliferation, and conversely, enhanced apoptosis. Coimmunoprecipitation assays showed the interaction of Necl-5 with VEGFR2, and knockdown of Necl-5 prevented the VEGF-induced interaction of integrin α(V)β(3) with VEGFR2. Knockdown of Necl-5 suppressed the VEGFR2-mediated activation of downstream proangiogenic and survival signals, including Rap1, Akt, and endothelial nitric oxide synthase. These results demonstrate the critical role of Necl-5 in angiogenesis and suggest that Necl-5 may regulate the VEGF-induced angiogenesis by controlling the interaction of VEGFR2 with integrin α(v)β(3), and the VEGFR2-mediated Rap1-Akt signaling pathway.

  13. The recent outbreaks and reemergence of poliovirus in war and conflict-affected areas.

    Science.gov (United States)

    Akil, Luma; Ahmad, H Anwar

    2016-08-01

    Poliomyelitis is a highly infectious disease caused by poliovirus, which becomes difficult to manage/eradicate in politically unstable areas. The objectives of this study were to determine the movement and management of such polio outbreaks in endemic countries and countries with reoccurring cases of polio and to determine the effect of political instability on polio eradication. In this study, the extent of polio outbreaks was examined and modeled using statistical methodologies and mapped with GIS software. Data on polio cases and immunization were collected for countries with polio cases for the period 2011 to 2014. Weekly data from the Global Polio Eradication Initiative were collected for selected countries. The recent virus origin and current movement was mapped using GIS. Correlations between immunization rates, the Global Peace Index (GPI), and other indicators of a country's political stability with polio outbreaks were determined. Data were analyzed using SAS 9.4 and ArcGIS 10. For several reasons, Pakistan remains highly vulnerable to new incidences of polio (306 cases in 2014). Overall immunization rates showed a steady decline over time in selected countries. Countries with polio cases were shown to have high rates of infant mortality, and their GPI ranked between 2.0 and 3.3; displaced populations, level of violent crime rating, and political instability also were ranked high for several countries. Polio was shown to be high in areas with increased conflict and instability. Displaced populations living in hard-to-reach areas may lack access to proper vaccination and health care. Wars and conflict have also resulted in the reemergence of polio in otherwise polio-free countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Genetic Characteristics of Type 2 Vaccine-derived Poliovirus in Shanxi Province (China) in 2014].

    Science.gov (United States)

    Yan, Dongrei; Li, Xiaolei; Zhang, Yong; Yang, Jianfang; Zhu, Shuangli; Wang, Dongyan; Zhang, Chuangye; Zhu, Hui; Xu, Wenbo

    2015-03-01

    The World Health Organization redefined the type 2 vaccine-derived poliovirus (VDPV) in 2010. To study the genetic characteristics and evolution of type 2 VDPV under this new definition, we conducted genome sequencing and analyses of type 2 VDPVs isolated from one patient with acute flaccid paralysis in Shanxi province (China) in 2014. Nucleotide sequencing revealed that the full-length of type 2 VDPV is 7439 bases encoding 2207 amino acids with no insertion or deletion of nucleotides compared with Sabin2. One nucleotide substitution identified as a key determinant of the attenuated phenotype of the Sabin 2 strain (A-G reversion at nucleotide nt 481 in the 5-end of the untranslated region) had reverted in the Shanxi type 2 VDPV. The other known key determinant of the attenuated phenotype of the Sabin 2 strain (U-->C reversion at nt2909 in the VP1 coding region that caused a Ile143Thr substitution in VP1) had not reverted in the Shanxi VDPV. The Shanxi type 2 VDPV was S2/S1 recombinant, the crossover site of which mapped to the 3-end of the 3D region (between nt 6247 and nt 6281). A phylogentic tree based on the VP1 coding region showed that evolution of the Shanxi type 2 VDPV was independent of other type 2 VDPVs detected worldwide. We estimated that the strain circulated for approximately = 11 months in the population according to the known evolution rate. The present study confirmed that the Chinese Polio Laboratory Network could discover the VDPV promptly and that it played an important part in maintenance of a polio-free China.

  15. Antiviral activity of Lactobacillus reuteri Protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines.

    Science.gov (United States)

    Ang, Lei Yin Emily; Too, Horng Khit Issac; Tan, Eng Lee; Chow, Tak-Kwong Vincent; Shek, Lynette Pei-Chi; Tham, Elizabeth Huiwen; Alonso, Sylvie

    2016-06-24

    Recurrence of hand, foot and mouth disease (HFMD) pandemics continues to threaten public health. Despite increasing awareness and efforts, effective vaccine and drug treatment have yet to be available. Probiotics have gained recognition in the field of healthcare worldwide, and have been extensively prescribed to babies and young children to relieve gastrointestinal (GI) disturbances and diseases, associated or not with microbial infections. Since the faecal-oral axis represents the major route of HFMD transmission, transient persistence of probiotic bacteria in the GI tract may confer some protection against HFMD and limit transmission among children. In this work, the antiviral activity of two commercially available probiotics, namely Lactobacillus reuteri Protectis (L. reuteri Protectis) and Lactobacillus casei Shirota (L. casei Shirota), was assayed against Coxsackieviruses and Enterovirus 71 (EV71), the main agents responsible for HFMD. In vitro infection set-ups using human skeletal muscle and colon cell lines were designed to assess the antiviral effect of the probiotic bacteria during entry and post-entry steps of the infection cycle. Our findings indicate that L. reuteri Protectis displays a significant dose-dependent antiviral activity against Coxsackievirus type A (CA) strain 6 (CA6), CA16 and EV71, but not against Coxsackievirus type B strain 2. Our data support that the antiviral effect is likely achieved through direct physical interaction between bacteria and virus particles, which impairs virus entry into its mammalian host cell. In contrast, no significant antiviral effect was observed with L. casei Shirota. Should the antiviral activity of L. reuteri Protectis observed in vitro be translated in vivo, such probiotics-based therapeutic approach may have the potential to address the urgent need for a safe and effective means to protect against HFMD and limit its transmission among children.

  16. Molecular and Phenotypic Characterization of a Highly Evolved Type 2 Vaccine-Derived Poliovirus Isolated from Seawater in Brazil, 2014.

    Science.gov (United States)

    Cassemiro, Klécia Marília S de Melo; Burlandy, Fernanda M; Barbosa, Mikaela R F; Chen, Qi; Jorba, Jaume; Hachich, Elayse M; Sato, Maria I Z; Burns, Cara C; da Silva, Edson E

    2016-01-01

    A type 2 vaccine-derived poliovirus (VDPV), differing from the Sabin 2 strain at 8.6% (78/903) of VP1 nucleotide positions, was isolated from seawater collected from a seaport in São Paulo State, Brazil. The P1/capsid region is related to the Sabin 2 strain, but sequences within the 5'-untranslated region and downstream of the P1 region were derived from recombination with other members of Human Enterovirus Species C (HEV-C). The two known attenuating mutations had reverted to wild-type (A481G in the 5'-UTR and Ile143Thr in VP1). The VDPV isolate had lost the temperature sensitive phenotype and had accumulated amino acid substitutions in neutralizing antigenic (NAg) sites 3a and 3b. The date of the initiating OPV dose, estimated from the number of synonymous substitutions in the capsid region, was approximately 8.5 years before seawater sampling, a finding consistent with a long time of virus replication and possible transmission among several individuals. Although no closely related type 2 VDPVs were detected in Brazil or elsewhere, this VDPV was found in an area with a mobile population, where conditions may favor both viral infection and spread. Environmental surveillance serves as an important tool for sensitive and early detection of circulating poliovirus in the final stages of global polio eradication.

  17. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults.

    Science.gov (United States)

    Verdijk, Pauline; Rots, Nynke Y; van Oijen, Monique G C T; Oberste, M Steven; Boog, Claire J; Okayasu, Hiromasa; Sutter, Roland W; Bakker, Wilfried A M

    2013-11-12

    An inactivated poliovirus vaccine (IPV) based on attenuated poliovirus strains (Sabin-1, -2 and -3) was developed for technology transfer to manufacturers in low- and middle income countries in the context of the Global Polio Eradication Initiative. Safety and immunogenicity of the Sabin-IPV was evaluated in a double-blind, randomized, controlled, phase I 'proof-of-concept' trial. Healthy male adults received a single intramuscular injection with Sabin-IPV, Sabin-IPV adjuvanted with aluminum hydroxide or conventional IPV. Virus-neutralizing titers against both Sabin and wild poliovirus strains were determined before and 28 days after vaccination. No vaccine-related serious adverse events were observed, and all local and systemic reactions were mild or moderate and transient. In all subjects, an increase in antibody titer for all types of poliovirus (both Sabin and wild strains) was observed 28 days after vaccination. Sabin-IPV and Sabin-IPV adjuvanted with aluminum hydroxide administered as a booster dose were equally immunogenic and safe as conventional IPV. EudraCTnr: 2010-024581-22, NCT01708720. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Characterization of mutations in the VP(1) region of Sabin strain type 1 polioviruses isolated from vaccine-associated paralytic poliomyelitis cases in Iran.

    Science.gov (United States)

    Rahimi, Pooneh; Tabatabaie, H; Gouya, Mohammad M; Zahraie, Mohsen; Mahmudi, M; Ziaie, A; Rad, K Samimi; Shahmahmudi, Sh; Musavi, T; Azad, T Mokhtari; Nategh, R

    2007-08-01

    The live-attenuated oral polio vaccine used to interrupt poliovirus transmission is genetically unstable. Reversion of some attenuating mutations, which normally occurs during vaccine strain replication in some recipients, and can rarely cause vaccine-associated paralytic poliomyelitis (VAPP). The poliovirus eradication program designed by the World Health Organization (WHO) includes immunization with OPV in addition to careful surveillance of all acute-flaccid paralysis (AFP) cases. In Iran we last isolated imported wild poliovirus in 2000 and the immunization coverage was 100% in 2002. During 2001, there were three AFP cases with residual paralysis from which Sabin-like type 1 polioviruses were isolated in our national polio laboratory. The complete VP(1) region of the three isolates was sequenced and amino acid substitutions associated with these neurovirulent isolates were recorded. These isolates had either 4, 2 or 1 nucleotide substitution(s) in the VP(1) region, corresponding to amino acid change in the VP(1) of isolate 1 of either (H-[149]->Y), (T-[106]->A) or (I-[90]->L), respectively. Surveillance of the VAPP cases in countries where endemic transmission has recently ceased increases our understanding of the important neurovirulent mutations in vaccine-strain isolates and assists in planning the next step in the eradication program in these countries.

  19. Primary vaccination of adults with reduced antigen-content diphtheria-tetanus-acellular pertussis or dTpa-inactivated poliovirus vaccines compared to diphtheria-tetanus-toxoid vaccines.

    NARCIS (Netherlands)

    Theeten, H.; Rumke, H.C.; Hoppener, F.J.; Vilatimo, R.; Narejos, S.; Damme, P. van; Hoet, B.

    2007-01-01

    OBJECTIVE: To evaluate immunogenicity and reactogenicity of primary vaccination with reduced-antigen-content diphtheria-tetanus-acellular pertussis (dTpa) or dTpa-inactivated poliovirus (dTpa-IPV) vaccine compared to diphtheria-tetanus-toxoid vaccines (Td) in adults > or = 40 years of age without

  20. Differences in female-male mortality after high-titre measles vaccine and association with subsequent vaccination with diphtheria-tetanus-pertussis and inactivated poliovirus

    DEFF Research Database (Denmark)

    Aaby, Peter; Jensen, Henrik; Samb, Badara

    2003-01-01

    Females given high-titre measles vaccine (HTMV) have high mortality; diphtheria-tetanus-pertussis (DTP) vaccination might be associated with increased female mortality. We aimed to assess whether DTP or inactivated poliovirus (IPV) administered after HTMV was associated with increased female...

  1. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall.

    Directory of Open Access Journals (Sweden)

    Tapani Hovi

    Full Text Available Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2 were compared to those of type 1 and type 3 wild poliovirus (WPV lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv bias and strikingly lower Ts/Tv rate ratios at the 2(nd codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd codon position was also found in the large set of VP1 sequences of Nigerian circulating (cVDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.

  2. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall.

    Science.gov (United States)

    Hovi, Tapani; Savolainen-Kopra, Carita; Smura, Teemu; Blomqvist, Soile; Al-Hello, Haider; Roivainen, Merja

    2013-01-01

    Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2) were compared to those of type 1 and type 3 wild poliovirus (WPV) lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin) by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv) bias and strikingly lower Ts/Tv rate ratios at the 2(nd) codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd) codon position was also found in the large set of VP1 sequences of Nigerian circulating (c)VDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.

  3. Detection of human rhinovirus C viral genome in blood among children with severe respiratory infections in the Philippines.

    Directory of Open Access Journals (Sweden)

    Naoko Fuji

    Full Text Available Human rhinovirus (HRV C was recently identified as the third species of HRV using a molecular technique. Infections caused by previously identified HRVs (A and B are thought to be limited to the respiratory tract; however, pathogenesis of HRVC is still largely unknown. A total of 816 nasopharyngeal swabs from hospitalized children with severe respiratory infections in the Philippines (May 2008-May 2009 were tested for HRV by reverse transcription polymerase chain reaction (RT-PCR, and 243 samples (29.8% were positive for HRV. Among these patients, serum samples were also tested to determine whether specific HRV species were associated with viremia. Only 30 serum samples (12.3% were positive for HRV. However, the HRV positive rates were different among HRV species, 3% (4/135 for HRVA, 0% (0/25 for HRVB, and 31% (26/83 for HRVC, and were the highest on 2 days after the onset of symptoms. These results suggest that HRVC may have a different pathogenicity and can more commonly cause viremia than HRVA and HRVB. Serum positive rates for HRV are affected by age, i.e., higher positive rates for those aged 1 year or more. HRVC that were detected from serum exhibited the same level of sequence diversity as those positive only for nasopharyngeal samples in phylogenetic analysis. However, all HRVA which were detected from serum were clustered in a monophyletic clade based on their 5' non-coding region (NCR sequences, which is closely related with a certain HRVC genotype (A2 in 5'-NCR. This finding suggests that the 5'NCR region may be associated with viremia.

  4. Characterising the mechanism of airway smooth muscle β2 adrenoceptor desensitization by rhinovirus infected bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    David Van Ly

    Full Text Available Rhinovirus (RV infections account for approximately two thirds of all virus-induced asthma exacerbations and often result in an impaired response to β2 agonist therapy. Using an in vitro model of RV infection, we investigated the mechanisms underlying RV-induced β2 adrenoceptor desensitization in primary human airway smooth muscle cells (ASMC. RV infection of primary human bronchial epithelial cells (HBEC for 24 hours produced conditioned medium that caused β2 adrenoceptor desensitization on ASMCs without an effect on ASMCs viability. Less than 3 kDa size fractionation together with trypsin digestion of RV-induced conditioned medium did not prevent β2 adrenoceptor desensitization, suggesting it could potentially be mediated by a small peptide or lipid. RV infection of BECs, ASMCs and fibroblasts produced prostaglandins, of which PGE2, PGF2α and PGI2 had the ability to cause β2 adrenoceptor desensitization on ASMCs. RV-induced conditioned medium from HBECs depleted of PGE2 did not prevent ASMC β2 adrenoceptor desensitization; however this medium induced PGE2 from ASMCs, suggesting that autocrine prostaglandin production may be responsible. Using inhibitors of cyclooxygenase and prostaglandin receptor antagonists, we found that β2 adrenoceptor desensitization was mediated through ASMC derived COX-2 induced prostaglandins. Since ASMC prostaglandin production is unlikely to be caused by RV-induced epithelial derived proteins or lipids we next investigated activation of toll-like receptors (TLR by viral RNA. The combination of TLR agonists poly I:C and imiquimod induced PGE2 and β2 adrenoceptor desensitization on ASMC as did the RNA extracted from RV-induced conditioned medium. Viral RNA but not epithelial RNA caused β2 adrenoceptor desensitization confirming that viral RNA and not endogenous human RNA was responsible. It was deduced that the mechanism by which β2 adrenoceptor desensitization occurs was by pattern recognition receptor

  5. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    Directory of Open Access Journals (Sweden)

    Erin J Walker

    Full Text Available Human Rhinovirus (HRV infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.

  6. Characterization of rhinovirus subviral A particles via capillary electrophoresis, electron microscopy and gas phase electrophoretic mobility molecular analysis: part II.

    Science.gov (United States)

    Subirats, Xavier; Weiss, Victor U; Gösler, Irene; Puls, Christoph; Limbeck, Andreas; Allmaier, Günter; Kenndler, Ernst

    2013-06-01

    Human rhinoviruses (HRVs) are valuable tools in the investigation of early viral infection steps due to their far reaching (although still incomplete) characterization. During endocytosis, native virions first loose one of the four capsid proteins (VP4); corresponding particles sediment at 135S and were termed subviral A particles. Subsequently, the viral RNA genome leaves the viral shell giving rise to empty capsids. In continuation of our previous work with HRV serotype 2 (HRV2) intermediate subviral particles, in which we were able to discriminate by CE even between two intermediates (AI and AII) of virus uncoating, we further concentrated on the characterization of AI particles with the electrophoretic mobility of around -17.2 × 10(-9) m(2) /Vs at 20°C. In the course of our present work we related these particles to virions as previously described at the subviral A stage of uncoating (and as such sedimenting at 135S) by determination of their protein and RNA content--in comparison to native virions AI particles did not include VP4, however, still 93% of their initial RNA content. Binding of an mAb specific for subviral particles demonstrated antigenic rearrangements on the capsid surface at the AI stage. Furthermore, we investigated possible factors stabilizing intermediates of virus uncoating. We could exclude the influence of the previously suspected so-called contaminant of virus preparation on HRV2 subviral particle formation. Instead, we regarded other factors being part of the virus preparation system and found a dependence of AI particle formation on the presence of divalent cations. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. In vitro RNA release from a human rhinovirus monitored by means of a molecular beacon and chip electrophoresis.

    Science.gov (United States)

    Weiss, Victor U; Bliem, Christina; Gösler, Irene; Fedosyuk, Sofiya; Kratzmeier, Martin; Blaas, Dieter; Allmaier, Günter

    2016-06-01

    Liquid-phase electrophoresis either in the classical capillary format or miniaturized (chip CE) is a valuable tool for quality control of virus preparations and for targeting questions related to conformational changes of viruses during infection. We present an in vitro assay to follow the release of the RNA genome from a human rhinovirus (common cold virus) by using a molecular beacon (MB) and chip CE. The MB, a probe that becomes fluorescent upon hybridization to a complementary sequence, was designed to bind close to the 3' end of the viral genome. Addition of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), a well-known additive for reduction of bleaching and blinking of fluorophores in fluorescence microscopy, to the background electrolyte increased the sensitivity of our chip CE set-up. Hence, a fast, sensitive and straightforward method for the detection of viral RNA is introduced. Additionally, challenges of our assay will be discussed. In particular, we found that (i) desalting of virus preparations prior to analysis increased the recorded signal and (ii) the MB-RNA complex signal decreased with the time of virus storage at -70 °C. This suggests that 3'-proximal sequences of the viral RNA, if not the whole genome, underwent degradation during storage and/or freezing and thawing. In summary, we demonstrate, for two independent virus batches, that chip electrophoresis can be used to monitor MB hybridization to RNA released upon incubation of the native virus at 56 °C. Graphical Abstract Schematic of the study strategy: RNA released from HRV-A2 is detected by chip electrophoresis through the increase in fluorescence after genom complexation to a cognate molecular beacon.

  8. Rhinovirus Infection Interferes with the Induction of Tolerance to Aeroantigens through OX40L, TSLP and IL-33

    Science.gov (United States)

    Mehta, Amit K.; Duan, Wei; Doerner, Astrid M.; Traves, Suzanne L.; Broide, David H.; Proud, David; Zuraw, Bruce L.; Croft, Michael

    2015-01-01

    Background Rhinovirus (RV) infection during an early age has been associated with development of asthma, but how RV influences the immune response is not clear. Objective Tolerance to inhaled antigen is mediated via the induction of regulatory T cells (Treg), and we asked whether RV infection of the respiratory tract might block airway tolerance by modulating Treg cells. Methods The immune response to intranasal ovalbumin (OVA) in mice was assessed with concomitant infection with RV1B, and the factors induced in vivo were compared to factors made by human lung epithelial cells infected in vitro with RV16. Results RV1B infection of mice abrogated tolerance induced by inhalation of soluble OVA, suppressing the normal generation of Foxp3+ Treg cells while promoting Th2 cells. Furthermore, RV1B infection led to susceptibility to develop asthmatic lung disease when mice subsequently reencountered aeroantigen. RV1B promoted early in vivo expression of the TNF family protein, OX40L, on lung dendritic cells that was dependent on the innate cytokine thymic stromal lymphopoietin (TSLP), and also induced another innate cytokine IL-33. Inhibiting each of these pathways allowed the natural development of Treg cells while minimizing Th2 differentiation, and restored tolerance in the face of RV1B infection. In accordance, RV16 infection of human lung epithelial cells upregulated TSLP and IL-33 expression. Conclusions These results suggest that infection of the respiratory epithelium with RV can antagonize tolerance to inhaled antigen through a combined induction of TSLP, IL-33 and OX40L, and this may lead to susceptibility to developing asthmatic lung inflammation. PMID:26100084

  9. Rhinovirus attenuates non-typeable Hemophilus influenzae-stimulated IL-8 responses via TLR2-dependent degradation of IRAK-1.

    Directory of Open Access Journals (Sweden)

    Benjamin L Unger

    Full Text Available Bacterial infections following rhinovirus (RV, a common cold virus, are well documented, but pathogenic mechanisms are poorly understood. We developed animal and cell culture models to examine the effects of RV on subsequent infection with non-typeable Hemophilus influenzae (NTHi. We focused on NTHI-induced neutrophil chemoattractants expression that is essential for bacterial clearance. Mice infected with RV1B were superinfected with NTHi and lung bacterial density, chemokines and neutrophil counts determined. Human bronchial epithelial cells (BEAS-2B or mouse alveolar macrophages (MH-S were infected with RV and challenged with NHTi, TLR2 or TLR5 agonists. Chemokine levels were measured by ELISA and expression of IRAK-1, a component of MyD88-dependent TLR signaling, assessed by immunoblotting. While sham-infected mice cleared all NTHi from the lungs, RV-infected mice showed bacteria up to 72 h post-infection. However, animals in RV/NTHi cleared bacteria by day 7. Delayed bacterial clearance in RV/NTHi animals was associated with suppressed chemokine levels and neutrophil recruitment. RV-infected BEAS-2B and MH-S cells showed attenuated chemokine production after challenge with either NTHi or TLR agonists. Attenuated chemokine responses were associated with IRAK-1 protein degradation. Inhibition of RV-induced IRAK-1 degradation restored NTHi-stimulated IL-8 expression. Knockdown of TLR2, but not other MyD88-dependent TLRs, also restored IRAK-1, suggesting that TLR2 is required for RV-induced IRAK-1 degradation.In conclusion, we demonstrate for the first time that RV infection delays bacterial clearance in vivo and suppresses NTHi-stimulated chemokine responses via degradation of IRAK-1. Based on these observations, we speculate that modulation of TLR-dependent innate immune responses by RV may predispose the host to secondary bacterial infection, particularly in patients with underlying chronic respiratory disorders.

  10. The outcome of coxsackievirus B3-(CVB3-) induced myocarditis is influenced by the cellular immune status.

    Science.gov (United States)

    Leipner, C; Grün, K; Borchers, M; Stelzner, A

    2000-05-01

    Mice develop a marked age-related susceptibility to myocardial coxsackievirus B3 (CVB3) infections. The lesions observed in mice resemble closely those seen in the human disease. Experimental murine models of CVB3-induced myocarditis have shown that both, host and viral genetic factors, can influence susceptibility to the infection as well as the persistence and progression of the disease. Recently, we have shown that CD4 T cell-deficient MHC Class II knockout mice develop a strong fibrosis with virus persistence in the heart tissue and without production of neutralizing antibodies. To examine the role of CD4+ T cells and especially the role of the T helper 1 cell response for the outcome and pathogenesis of CVB3-induced myocarditis in more detail, 2 different mouse strains with identical genetic background (H-2b) were infected with CVB3-Mü/J (Nancy strain). Immunocompetent C57BL/6 mice and mice with targeted disruption of interleukin (IL-)4 gene (IL-4-/- mice) developed a severe acute myocarditis on day 7 post infection (p.i.). The CVB3-induced inflammation was cured until the 21st day p.i. in hearts of C57BL/6 mice. IL-4-/- mice with insufficient T helper-2 cell immune response developed a severe myocardial damage between day 7 and 21 p.i. with prolonged virus persistence in the heart tissue. Therefore, we suggest that despite an obvious normal T helper-1 cell cytokine pattern, IL-4-/- mice are more susceptible to long-term heart muscle injuries after infection with CVB3.

  11. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); The 208th Hospital of PLA, Changchun (China); Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Yu, X.F. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China); Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Zhang, W.Y. [Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun (China)

    2015-03-27

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.

  12. The innate immune response to coxsackievirus B3 predicts progression to cardiovascular disease and heart failure in male mice

    Directory of Open Access Journals (Sweden)

    Onyimba Jennifer A

    2011-02-01

    Full Text Available Abstract Background Men are at an increased risk of dying from heart failure caused by inflammatory heart diseases such as atherosclerosis, myocarditis and dilated cardiomyopathy (DCM. We previously showed that macrophages in the spleen are phenotypically distinct in male compared to female mice at 12 h after infection. This innate immune profile mirrors and predicts the cardiac immune response during acute myocarditis. Methods In order to study sex differences in the innate immune response, five male and female BALB/c mice were infected intraperitoneally with coxsackievirus B3 (CVB3 or phosphate buffered saline and their spleens were harvested 12 h later for microarray analysis. Gene expression was determined using an Affymetrix Mouse Gene 1.0 ST Array. Significant gene changes were verified by quantitative real-time polymerase chain reaction or ELISA. Results During the innate immune response to CVB3 infection, infected males had higher splenic expression of genes which are important in regulating the influx of cholesterol into macrophages, such as phospholipase A2 (PLA2 and the macrophage scavenger receptor compared to the infected females. We also observed a higher expression in infected males compared to infected females of squalene synthase, an enzyme used to generate cholesterol within cells, and Cyp2e1, an enzyme important in metabolizing cholesterol and steroids. Infected males also had decreased levels of the translocator protein 18 kDa (TSPO, which binds PLA2 and is the rate-limiting step for steroidogenesis, as well as decreased expression of the androgen receptor (AR, which indicates receptor activation. Gene differences were not due to increased viral replication, which was unaltered between sexes. Conclusions We found that, compared to females, male mice had a greater splenic expression of genes which are important for cholesterol metabolism and activation of the AR at 12 h after infection. Activation of the AR has been linked to

  13. Characterization of genome sequences and clinical features of coxsackievirus A6 strains collected in Hyogo, Japan in 1999-2013.

    Science.gov (United States)

    Ogi, Miki; Yano, Yoshihiko; Chikahira, Masatsugu; Takai, Denshi; Oshibe, Tomohiro; Arashiro, Takeshi; Hanaoka, Nozomu; Fujimoto, Tsuguto; Hayashi, Yoshitake

    2017-08-01

    Coxsackievirus A6 (CV-A6) is an enterovirus, which is known to cause herpangina. However, since 2009 it has frequently been isolated from children with hand, foot, and mouth disease (HFMD). In Japan, CV-A6 has been linked to HFMD outbreaks in 2011 and 2013. In this study, the full-length genome sequencing of CV-A6 strains were analyzed to identify the association with clinical manifestations. Five thousand six hundred and twelve children with suspected enterovirus infection (0-17 years old) between 1999 and 2013 in Hyogo Prefecture, Japan, were enrolled. Enterovirus infection was confirmed with reverse transcriptase-PCR in 753 children (791 samples), 127 of whom (133 samples) were positive for CV-A6 based on the direct sequencing of the VP4 region. The complete genomes of CV-A6 from 22 positive patients with different clinical manifestations were investigated. A phylogenetic analysis divided these 22 strains into two clusters based on the VP1 region; cluster I contained strains collected in 1999-2009 and mostly related to herpangina, and cluster II contained strains collected in 2011-2013 and related to HFMD outbreak. Based on the full-length polyprotein analysis, the amino acid differences between the strains in cluster I and II were 97.7 ± 0.28%. Amino acid differences were detected in 17 positions within the polyprotein. Strains collected in 1999-2009 and those in 2011-2013 were separately clustered by phylogenetic analysis based on 5'UTR and 3Dpol region, as well as VP1 region. In conclusion, HFMD outbreaks by CV-A6 were recently frequent in Japan and the accumulation of genomic change might be associated with the clinical course. © 2017 Wiley Periodicals, Inc.

  14. Toll-like receptor 3 is critical for coxsackievirus B4-induced type 1 diabetes in female NOD mice.

    Science.gov (United States)

    McCall, Kelly D; Thuma, Jean R; Courreges, Maria C; Benencia, Fabian; James, Calvin B L; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L

    2015-02-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3(+/+)) and TLR3 knockout (TLR3(-/-)) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice.

  15. Over-expression of mitochondrial antiviral signaling protein inhibits coxsackievirus B3 infection by enhancing type-I interferons production

    Directory of Open Access Journals (Sweden)

    Zhang Qing-Meng

    2012-12-01

    Full Text Available Abstract Background Recent studies have revealed that Mitochondrial Antiviral Signaling (MAVS protein plays an essential role in the inhibition of viral infection through type I interferon (IFN pathway. It has been shown that 3C (pro cysteine protease of coxsackievirus B3 (CVB3 cleaves MAVS to inhibit type I IFNs induction. Other workers also found that MAVS knock-out mice suffered CVB3 susceptibility and severe histopathological change. Accordingly,our experiments were designed to explore the protection of over-expressing MAVS against CVB3 infection and the possible mechanism. Results In this study, HeLa cells (transfected with MAVS constructs pre- or post- exposure to CVB3 were used to analyze the function of exogenous MAVS on CVB3 infection. The results revealed that though CVB3 infection induced production of type I IFNs, viral replication and cell death were not effectively inhibited. Similarly, exogenous MAVS increased type I IFNs moderately. Morever, we observed robust production of type I IFNs in CVB3 post-infected HeLa cells thereby successfully inhibiting CVB3 infection, as well formation of cytopathic effect (CPE and cell death. Finally, introduction of exogenous MAVS into CVB3 pre-infected cells also restricted viral infection efficiently by greatly up-regulating IFNs. Conclusions In summary, exogenous MAVS effectively prevents and controls CVB3 infection by modulating and promoting the production of type I IFNs. The IFNs level in MAVS over-expressing cells is still tightly regulated by CVB3 infection. Thus, the factors that up-regulate MAVS might be an alternative prescription in CVB3-related syndromes by enhancing IFNs production.

  16. [Molecular epidemiology of hand-foot-mouth disease associated pathogen Coxsackievirus A10 identified in Fujian province, 2011-2014].

    Science.gov (United States)

    Chen, Wei; Weng, Yuwei; He, Wenxiang; Zhu, Ying; Zhang, Yongjun; Huang, Meng; Xie, Jianfeng; Zheng, Kuicheng; Yan, Yansheng

    2016-04-01

    To study the molecular epidemiology of hand-foot-mounth disease (HFMD) associated Coxsackievirus A10 (Cox A10) identified in Fujian province. A total of 1 525 specimens from non-EV71 non-Cox A16 HFMD patients were collected during 2011-2014. Isolated virus strains were identified and sub-typed. Full-length coding regions for the VP1 gene of the predominant serotype Cox A10 isolates were amplified and sequenced. Among the 407 non-EV71 non-Cox A16 HFMD cases confirmed by virus isolation and molecular subtyping, 103 (25.3%) were caused by Cox A10, accounting for 11.0%, 6.0%, 18.4% and 9.2% among the HFMD-associated entero-viruses identified in 2011, 2012, 2013 and 2014, respectively, in Fujian province. Compared to the general features observed in the HFMD epidemics, no differences on the Cox A10-specificity rates were observed among factors as geographical origins, gender or age groups, but all with high rates of severity. Data from the nucleotide sequence analyses on VP1 genes showed low homology levels of 76.0%-77.1% among Cox A10 strains from Fujian province, in contrast to the prototype Cox A10 strain, but with high levels of homology in the amino acid sequences (91.9%-93.6%). RESULTS from the Phylogenetic analysis also indicated that Cox A10 isolates from Fujian province were distinct from the prototype strain or other isolates from other countries but was homologous to domestic strains, but the Fujian isolates clustered into multiple branches. Cox A10 remained one of the predominant serotypes of HFMD in Fujian province. Cox A10 isolates identified in Fujian province were co-circulating and co-evolving with other domestic strains.

  17. Molecular characterization and phylogenetic study of coxsackievirus A24v causing outbreaks of acute hemorrhagic conjunctivitis (AHC in Brazil.

    Directory of Open Access Journals (Sweden)

    Fernando Neto Tavares

    Full Text Available BACKGROUND: Coxsackievirus A24 variant (CA24v is the most prevalent viral pathogen associated with acute hemorrhagic conjunctivitis (AHC outbreaks. Sixteen years after its first outbreak in Brazil, this agent reemerged in 2003 in Brazil, spread to nearly all states and caused outbreaks until 2005. In 2009, a new outbreak occurred in the northeast region of the country. In this study, we performed a viral isolation in cell culture and characterized clinical samples collected from patients presenting symptoms during the outbreak of 2005 in Vitória, Espírito Santo State (ES and the outbreak of 2009 in Recife, Pernambuco State (PE. We also performed a phylogenetic analysis of worldwide strains and all meaningful Brazilian isolates since 2003. METHODS AND FINDINGS: Sterile cotton swabs were used to collect eye discharges, and all 210 clinical samples were used to inoculate cell cultures. Cytopathic effects in HEp-2 cells were seen in 58 of 180 (32% samples from Vitória and 3 of 30 (10% samples from Recife. Phylogenetic analysis based on a fragment of the VP1 and 3C gene revealed that the CA24v causing outbreaks in Brazil during the years 2003, 2004 and 2005 evolved from Asian isolates that had caused the South Korean outbreak of AHC during the summer of 2002. However, the 2009 outbreak of AHC in Pernambuco was originated from the reintroduction of a new CA24v strain that was circulating during 2007 in Asia, where CA24v outbreaks has been continuously reported since 1970. CONCLUSIONS: This study is the first phylogenetic analysis of AHC outbreaks caused by CA24v in Brazil. The results showed that Asian strains of CA24v were responsible for the outbreaks since 1987 and were independently introduced to Brazil in 2003 and 2009. Phylogenetic analysis of complete VP1 gene is a useful tool for studying the epidemiology of enteroviruses associated with outbreaks.

  18. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Xia, E-mail: zhai_xia_cool@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Qin, Ying, E-mail: qinyinggaofeng@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Chen, Yang, E-mail: cy_hmu@126.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Lin, Lexun, E-mail: linlexun@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Tianying, E-mail: wangty0929@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhong, Xiaoyan, E-mail: littlerock712@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wu, Xiaoyu, E-mail: xiaoyu_wu2006@163.com [Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001 (China); Chen, Sijia, E-mail: chensj0802@163.com [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Li, Jing, E-mail: jing070822@163.com [Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Wang, Yan, E-mail: wangyan@hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Fengmin, E-mail: fengminzhang@ems.hrbmu.edu.cn [Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhao, Wenran, E-mail: zhaowenran2002@aliyun.com [Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); and others

    2016-12-10

    Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection. - Highlights: • CVB3 replication induced autophagosome assembly in primary cardiac fibroblasts. • Both IL-6 and TNF-α in cardiac fibroblasts infected by CVB3 were increased. • IL-6 and TNF-α were reduced in cardiac fibroblasts when autophagy was inhibited. • Autophagosome assembly in cardiac fibroblasts of CVB-infected mice was increased.

  19. Role of coxsackievirus and adenovirus receptor (CAR) expression and viral load of adenovirus and enterovirus in patients with dilated cardiomyopathy.

    Science.gov (United States)

    Sharma, Mirnalini; Mishra, Baijayantimala; Saikia, Uma Nahar; Bahl, Ajay; Ratho, Radha Kanta; Talwar, Kewal Kishan

    2016-01-01

    Enteroviruses (EVs) and adenoviruses (AdVs) are two important etiological agents of viral myocarditis and dilated cardiomyopathy (DCM). Both these viruses share a common receptor, the coxsackievirus and adenovirus receptor (CAR), for their infection. However, the role of viral load and CAR expression in disease severity has not yet been completely elucidated. The present study aimed to determine viral load of EV and AdV in DCM patients and correlate them with the level of CAR expression in these patients. Sixty-three DCM cases and 30 controls, each of whom died of heart disease other than DCM and non-cardiac disease respectively, were included. Viral load was determined by TaqMan real-time PCR using primers and probes specific for the AdV hexon gene and the 5'UTR region of EV. The CAR mRNA level was semi-quantitated by RT-PCR, and antigen expression was studied by immunohistochemistry. A significantly high AdV load (p < 0.05) and CAR expression (p < 0.05) were observed in DCM cases versus controls, whereas the EV load showed no significant difference. The data suggests a clinical threshold of 128 AdV copies/500 ng of DNA for DCM, with 66.7 % sensitivity and 65 % specificity. A positive correlation between AdV load and CAR expression (p < 0.001) was also observed in DCM cases. The high adenoviral load and increased CAR expression in DCM and their association with adverse disease outcome indicates role of both virus and receptor in disease pathogenesis. Thus, the need for targeting both the virus and the receptor for treatment of viral myocarditis and early DCM requires further confirmation with larger studies.

  20. Development of a multiplex polymerase chain reaction assay for simultaneous identification of human enterovirus 71 and coxsackievirus A16

    Science.gov (United States)

    Thao, Nguyen Thi Thanh; Ngoc, Nguyen Thi Kim; Tú, Phan Văn; Thúy, Trần Thi; Cardosa, Mary Jane; McMinn, Peter Charles; Phuektes, Patchara

    2010-01-01

    Human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are two major aetiological agents of hand, foot and mouth disease (HFMD) in children. Recently there have been several large outbreaks of HFMD in Vietnam and the Asia-Pacific region. In this study, a multiplex RT-PCR assay was developed in order to detect simultaneously HEV71, CVA16 and other human enteroviruses. Enterovirus detection was performed with a mixture of three pairs of oligonucleotide primers: one pair of published primers for amplifying all known enterovirus genomes and two new primer pairs specific for detection of the VP1 genes of HEV71 and CVA16. Enterovirus isolates, CVA16 and HEV71 strains identified previously from patients with HFMD were examined to evaluate the sensitivity and specificity of the multiplex RT-PCR assay. The assay was then applied to the direct detection of these viruses in clinical specimens obtained from HFMD cases identified at Children's Hospital Number 2, Ho Chi Minh City, Vietnam. The multiplex RT-PCR assay showed 100% specificity in screening for enteroviruses and in identifying HEV71 and CVA16. Similar results were obtained when using the multiplex RT-PCR assay to screen for enteroviruses and to identify HEV71 and CVA16 in clinical specimens obtained from HFMD cases identified at the hospital. This multiplex RT-PCR assay is a rapid, sensitive and specific assay for the diagnosis of HEV71 or CVA16 infection in cases of HFMD and is also potentially useful for molecular epidemiological investigations. PMID:20863857

  1. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model

    International Nuclear Information System (INIS)

    Huang, L.; Liu, X.; Li, J.L.; Chang, J.L.; Liu, G.C.; Yu, X.F.; Zhang, W.Y.

    2015-01-01

    An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain

  2. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    Science.gov (United States)

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Molecular epidemiology of enterovirus 71, coxsackievirus A16 and A6 associated with hand, foot and mouth disease in Spain.

    Science.gov (United States)

    Cabrerizo, M; Tarragó, D; Muñoz-Almagro, C; Del Amo, E; Domínguez-Gil, M; Eiros, J M; López-Miragaya, I; Pérez, C; Reina, J; Otero, A; González, I; Echevarría, J E; Trallero, G

    2014-03-01

    Hand, foot and mouth disease (HFMD) is a childhood illness frequently caused by genotypes belonging to the enterovirus A species, including coxsackievirus (CV)-A16 and enterovirus (EV)-71. Between 2010 and 2012, several outbreaks and sporadic cases of HFMD occurred in different regions of Spain. The objective of the present study was to describe the enterovirus epidemiology associated with HFMD in the country. A total of 80 patients with HFMD or atypical rash were included. Detection and typing of the enteroviruses were performed directly in clinical samples using molecular methods. Enteroviruses were detected in 53 of the patients (66%). CV-A6 was the most frequent genotype, followed by CV-A16 and EV-71, but other minority types were also identified. Interestingly, during almost all of 2010, CV-A16 was the only causative agent of HFMD but by the end of the year and during 2011, CV-A6 became predominant, while CV-A16 was not detected. In 2012, however, both CV-A6 and CV-A16 circulated. EV-71 was associated with HFMD symptoms only in three cases during 2012. All Spanish CV-A6 sequences segregated into one major genetic cluster together with other European and Asian strains isolated between 2008 and 2011, most forming a particular clade. Spanish EV-71 strains belonged to subgenogroup C2, as did most of the European sequences circulated. In conclusion, the recent increase of HFMD cases in Spain and other European countries has been due to a larger incidence of circulating species A enteroviruses, mainly CV-A6 and CV-A16, and the emergence of new genetic variants of these viruses. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  4. Detection of human enterovirus 71 and coxsackievirus A16 in children with hand, foot and mouth disease in China.

    Science.gov (United States)

    Chen, Ling; Mou, Xiaozhou; Zhang, Qiong; Li, Yifei; Lin, Jian; Liu, Fanlong; Yuan, Li; Tang, Yiming; Xiang, Charlie

    2012-04-01

    The aims of the present study were to investigate the genetic characteristics of enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) strains in China and to evaluate the relationship between the genotypes of CVA16 and EV71 and their geographical distribution. A total of 399 stool specimens were collected from children with symptoms of hand, foot and mouth disease (HFMD) in Zhejiang Province. The presence of enteroviruses was determined using reverse transcription-semi-nested PCR targeted to the VP1 gene of all human enteroviruses and DNA sequencing. EV71 and CVA16, the major etiological agents of HFMD, were detected in 38.4% (38/99) and 35.4% (35/99) of HEV-A species-positive cases, respectively. Based on the phylogenetic analysis of the VP1 gene, EV71 strains identified in this study belong to subgenotype C4, and CVA16 strains herein were classified into clusters B2a and B2b within the genotype B2. Taking into consideration other published data, we conclude that the genetic characteristics of enteroviruses in China reflect the pattern of the endemic circulation of the subgenotype C4 to EV71 and clusters B2a and B2b within genotype B2 to CVA16, which have been continuously circulating in China since 1997. This observation indicates that the genetic characteristics of enteroviruses in China seem to depend on their special geographical and climatical features allowing them to be sustained with little external effect.

  5. Development and evaluation of a real-time method for testing human enteroviruses and coxsackievirus A16.

    Science.gov (United States)

    Chen, Qian; Hu, Zheng; Zhang, Qihua; Yu, Minghui

    2016-05-01

    Hand, foot, and mouth disease (HFMD) is a common infectious disease caused by a group of the human enteroviruses (HEV), including coxsackievirus A16 (CA16) and enterovirus 71 (EV71). In recent years, another HEV-A serotype, CA6 or CA10, has emerged to be one of the major etiologic agents that can induce HFMD worldwide. The objective of this study is to develop specific, sensitive, and rapid methods to help diagnose HEV and CA16 specifically by using simultaneous amplification testing (SAT) based on isothermal amplification of RNA and real-time detection of fluorescence technique, which were named as SAT-HEV and SAT-CA16, respectively (SAT-HEV/SAT-CA16). The specificity and sensitivity of SAT were tested here. SAT-HEV/SAT-CA16 could measure viral titers that were at least 10-fold lower than those measured by real-time PCR. Non-false cross-reactive amplification indicated that SAT-HEV/SAT-CA16 were highly specific with the addition of internal control (IC) RNA (5000 copies/reaction). A total of 198 clinical specimens were assayed by SAT comparing with real-time PCR. The statistically robust assessment of SAT-HEV and HEV-specific real-time PCR plus sequencing reached 99.0% (196/198), with a kappa value of 0.97, and 99.5% (197/198) and a kappa value of 0.99 for CA16, respectively. Additionally, IC prevented false-negative readings and assured the SAT-HEV/SAT-CA16 method's accuracy. Overall, SAT-HEV/SAT-CA16 method may serve as a platform for the simple and rapid detection of HEV/CA16 in time of HFMD outbreak. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Combinations of Quality and Frequency of Immunization Activities to Stop and Prevent Poliovirus Transmission in the High-Risk Area of Northwest Nigeria.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Wassilak, Steven G F; Cochi, Stephen L; Thompson, Kimberly M

    2015-01-01

    Frequent supplemental immunization activities (SIAs) with the oral poliovirus vaccine (OPV) represent the primary strategy to interrupt poliovirus transmission in the last endemic areas. Using a differential-equation based poliovirus transmission model tailored to high-risk areas in Nigeria, we perform one-way and multi-way sensitivity analyses to demonstrate the impact of different assumptions about routine immunization (RI) and the frequency and quality of SIAs on population immunity to transmission and persistence or emergence of circulating vaccine-derived polioviruses (cVDPVs) after OPV cessation. More trivalent OPV use remains critical to avoid serotype 2 cVDPVs. RI schedules with or without inactivated polio vaccine (IPV) could significantly improve population immunity if coverage increases well above current levels in under-vaccinated subpopulations. Similarly, the impact of SIAs on overall population immunity and cVDPV risks depends on their ability to reach under-vaccinated groups (i.e., SIA quality). Lower SIA coverage in the under-vaccinated subpopulation results in a higher frequency of SIAs needed to maintain high enough population immunity to avoid cVDPVs after OPV cessation. National immunization program managers in northwest Nigeria should recognize the benefits of increasing RI and SIA quality. Sufficiently improving RI coverage and improving SIA quality will reduce the frequency of SIAs required to stop and prevent future poliovirus transmission. Better information about the incremental costs to identify and reach under-vaccinated children would help determine the optimal balance between spending to increase SIA and RI quality and spending to increase SIA frequency.

  7. Natural type 3/type 2 intertypic vaccine-related poliovirus recombinants with the first crossover sites within the VP1 capsid coding region.

    Science.gov (United States)

    Zhang, Yong; Zhu, Shuangli; Yan, Dongmei; Liu, Guiyan; Bai, Ruyin; Wang, Dongyan; Chen, Li; Zhu, Hui; An, Hongqiu; Kew, Olen; Xu, Wenbo

    2010-12-21

    Ten uncommon natural type 3/type 2 intertypic poliovirus recombinants were isolated from stool specimens from nine acute flaccid paralysis case patients and one healthy vaccinee in China from 2001 to 2008. Complete genomic sequences revealed their vaccine-related genomic features and showed that their first crossover sites were randomly distributed in the 3' end of the VP1 coding region. The length of donor Sabin 2 sequences ranged from 55 to 136 nucleotides, which is the longest donor sequence reported in the literature for this type of poliovirus recombination. The recombination resulted in the introduction of Sabin 2 neutralizing antigenic site 3a (NAg3a) into a Sabin 3 genomic background in the VP1 coding region, which may have been altered by some of the type 3-specific antigenic properties, but had not acquired any type 2-specific characterizations. NAg3a of the Sabin 3 strain seems atypical; other wild-type poliovirus isolates that have circulated in recent years have sequences of NAg3a more like the Sabin 2 strain. 10 natural type 3/type 2 intertypic VP1 capsid-recombinant polioviruses, in which the first crossover sites were found to be in the VP1 coding region, were isolated and characterized. In spite of the complete replacement of NAg3a by type 2-specific amino acids, the serotypes of the recombinants were not altered, and they were totally neutralized by polyclonal type 3 antisera but not at all by type 2 antisera. It is possible that recent type 3 wild poliovirus isolates may be a recombinant having NAg3a sequences derived from another strain during between 1967 and 1980, and the type 3/type 2 recombination events in the 3' end of the VP1 coding region may result in a higher fitness.

  8. Combinations of Quality and Frequency of Immunization Activities to Stop and Prevent Poliovirus Transmission in the High-Risk Area of Northwest Nigeria.

    Directory of Open Access Journals (Sweden)

    Radboud J Duintjer Tebbens

    Full Text Available Frequent supplemental immunization activities (SIAs with the oral poliovirus vaccine (OPV represent the primary strategy to interrupt poliovirus transmission in the last endemic areas.Using a differential-equation based poliovirus transmission model tailored to high-risk areas in Nigeria, we perform one-way and multi-way sensitivity analyses to demonstrate the impact of different assumptions about routine immunization (RI and the frequency and quality of SIAs on population immunity to transmission and persistence or emergence of circulating vaccine-derived polioviruses (cVDPVs after OPV cessation.More trivalent OPV use remains critical to avoid serotype 2 cVDPVs. RI schedules with or without inactivated polio vaccine (IPV could significantly improve population immunity if coverage increases well above current levels in under-vaccinated subpopulations. Similarly, the impact of SIAs on overall population immunity and cVDPV risks depends on their ability to reach under-vaccinated groups (i.e., SIA quality. Lower SIA coverage in the under-vaccinated subpopulation results in a higher frequency of SIAs needed to maintain high enough population immunity to avoid cVDPVs after OPV cessation.National immunization program managers in northwest Nigeria should recognize the benefits of increasing RI and SIA quality. Sufficiently improving RI coverage and improving SIA quality will reduce the frequency of SIAs required to stop and prevent future poliovirus transmission. Better information about the incremental costs to identify and reach under-vaccinated children would help determine the optimal balance between spending to increase SIA and RI quality and spending to increase SIA frequency.

  9. Characterization of a rare natural intertypic type 2/type 3 penta-recombinant vaccine-derived poliovirus isolated from a child with acute flaccid paralysis.

    Science.gov (United States)

    Zhang, Yong; Wang, Haiyan; Zhu, Shuangli; Li, Yan; Song, Lizhi; Liu, Yao; Liu, Guifang; Nishimura, Yorihiro; Chen, Li; Yan, Dongmei; Wang, Dongyan; An, Hongqiu; Shimizu, Hiroyuki; Xu, Aiqiang; Xu, Wenbo

    2010-02-01

    A type 2 vaccine-derived poliovirus (VDPV) (strain CHN1025), with a 1.1 % (10/903) difference from Sabin strain in the VP1 coding region, was isolated from a child with poliomyelitis caused by a poliovirus variant infection. The patient was from Shandong Province of China and developed acute flaccid paralysis in 1997. The child was infected with a rare and complicated penta-recombinant poliovirus with the uncommon genomic recombinant organization S2/S3/S1/S3/S1/S3. At least five successive rounds of recombination occurred in the VP1 capsid coding region and in the 2C, 3C (twice) and 3D(pol) non-capsid coding regions, respectively, during virus evolution. Strain CHN1025 had most of the characteristics of the type 2 vaccine strain; it had Sabin-specific epitopes, suggesting that the virus was antigenically indistinguishable from the Sabin 2 reference strain. Typical mutations in the 5'-untranslated region and VP1 associated with reversion to neurovirulence for Sabin 2 poliovirus were found, and the virus showed moderate neurovirulence in transgenic mice. A few nucleotide substitutions were located in the donor sequences, and two donor sequences contained no nucleotide substitutions, suggesting that these sequences were relatively new. The appearance of these mutations within approximately 192 days of at least five successive rounds of recombination events derived from a single ancestral infection illustrates the rapid emergence of new recombinants among VDPVs. This is the first report on the isolation of a type 2/type 3 poliovirus capsid recombinant with one of the five crossover sites located in the VP1 coding region.

  10. Microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse-transcription polymerase chain reaction for the rapid detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens.

    Science.gov (United States)

    Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li

    2015-07-01

    Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exposure to the viral by-product dsRNA or Coxsackievirus B5 triggers pancreatic beta cell apoptosis via a Bim / Mcl-1 imbalance.

    Directory of Open Access Journals (Sweden)

    Maikel L Colli

    2011-09-01

    Full Text Available The rise in type 1 diabetes (T1D incidence in recent decades is probably related to modifications in environmental factors. Viruses are among the putative environmental triggers of T1D. The mechanisms regulating beta cell responses to viruses, however, remain to be defined. We have presently clarified the signaling pathways leading to beta cell apoptosis following exposure to the viral mimetic double-stranded RNA (dsRNA and a diabetogenic enterovirus (Coxsackievirus B5. Internal dsRNA induces cell death via the intrinsic mitochondrial pathway. In this process, activation of the dsRNA-dependent protein kinase (PKR promotes eIF2α phosphorylation and protein synthesis inhibition, leading to downregulation of the antiapoptotic Bcl-2 protein myeloid cell leukemia sequence 1 (Mcl-1. Mcl-1 decrease results in the release of the BH3-only protein Bim, which activates the mitochondrial pathway of apoptosis. Indeed, Bim knockdown prevented both dsRNA- and Coxsackievirus B5-induced beta cell death, and counteracted the proapoptotic effects of Mcl-1 silencing. These observations indicate that the balance between Mcl-1 and Bim is a key factor regulating beta cell survival during diabetogenic viral infections.

  12. Single treatment with ethanol hand rub is ineffective against human rhinovirus--hand washing with soap and water removes the virus efficiently.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Korpela, Terttu; Simonen-Tikka, Marja-Leena; Amiryousefi, Ali; Ziegler, Thedi; Roivainen, Merja; Hovi, Tapani

    2012-03-01

    Ethanol-containing hand rubs are used frequently as a substitute for hand washing with water and soap. However, not all viruses are inactivated by a short term rubbing with alcohol. The capacity of a single round of instructed and controlled hand cleaning with water and soap or ethanol-containing hand rub, respectively, was tested for removal of human rhinovirus administered onto the skin of healthy volunteers on the back of the hands. Hand washing with soap and water appeared to be much more efficient for removing rhinoviruses from skin than rubbing hands with an ethanol-containing disinfectant. After washing with soap and water the virus was detected in 3/9 (33.3%) test persons from the left hand and 1/9 (11.1%) cases from the right hand, whereas the virus was detected invariably by real-time RT-PCR from both hands after cleaning with alcohol hand rub (P-value soap can clean efficiently hands contaminated with the virus responsible for an extensive share of common cold episodes. Copyright © 2012 Wiley Periodicals, Inc.

  13. A severe case of co-infection with Enterovirus 71 and vaccine-derived Poliovirus type II.

    Science.gov (United States)

    Ma, Shaohui; Du, Zengqing; Feng, Min; Che, Yanchun; Li, Qihan

    2015-11-01

    Enterovirus 71 (EV71) is often identified as the primary pathogen that directly leads to severe cases of HFMD, whereas the association between other enteroviruses and EV71 infection remains largely unclear. Here we report a rare case of a 5-year-old boy co-infected with EV71 and vaccine-derived Poliovirus (VDPV) type II, which were identified based on PCR and sequence analysis results and clinical symptoms and were characterized on CT. We determined that the EV71 strain belongs to the C4 subtype, and the VDPV II strain was closely genetically related to the reference Sabin type II strain. This report may improved our understanding of the clinical significance of the associations between clinical signs and the infectious properties of the involved pathogens. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  15. [Analysis on identification and genetic character of type I vaccine-derived poliovirus in Shanxi province in 2007].

    Science.gov (United States)

    Yan, Dong-Mei; Zhu, Shuang-Li; Zhang, Yong

    2009-04-01

    To describe the source of vaccine-derived poliovirus (VDPV) and the effect on local polio-free status, the VP1 coding region was sequenced and analyzed for type I VDPV in Shanxi province in 2007. The virus isolation was performed to double stool specimens from one case acute flaccid paralysis (AFP) patient. VP1 coding region of the isolated stain was sequenced and analyzed. The phylogenetic tree was constructed based on VP1 region sequence between Shanxi strains and other type I VDPVs. 2 type I + II +III strains were isolated from double stool specimens from the AFP patient in Shanxi Province in 2007. VP1 sequencing of the two stains revealed > 1.0% divergence from the VP1 region of P I /Sabin vaccine strain. According to WHO criteria, the two stains were identified as type I vaccine-derived poliovirus (VDPV). Phylogenetic analysis based on VP1 coding sequence showed that the evolution distance of Shanxi type I VDPV was far away from other VDPVs detected in China. Moreover, no evidence supported the AFP patient as immunodeficiency patient. So Shanxi type I VDPVs were classified into ambiguous VDPV(aVDPV). Considering the genetic character for Shanxi type I VDPV and the local OPV coverage, we highly suspected that an immunodeficiency patient in local area who long-term excreted VDPVs existed and resulted in the patient infection of VDPV in Shanxi in 2007. In the post era of polio eradication, the detection and management for the possible existing patient of long-term excretion VDPV should be strengthened.

  16. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  17. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-01-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs. PMID:21994791

  18. [Detection of enterovirus 71 and coxsackievirus A16 from children with hand, foot and mouth disease in Shanghai, 2002].

    Science.gov (United States)

    Yang, Zhi-hong; Zhu, Qi-rong; Li, Xiu-zhu; Wang, Xiao-hong; Wang, Jian-she; Hu, Jia-yu; Tang, Wei; Cui, Ai-li

    2005-09-01

    It was noticed that coxsackievirus A16 (CA16) and enterovirus 71 (EV71) were two major etiological agents of hand, foot and mouth disease (HFMD) in children. Recently there were several large outbreaks of HFMD in the Asia-Pacific region, and there was a propensity to cause severe complications or death in children under 5 years of age. The severe forms were associated with EV71 infection. Although epidemics of HFMD have been reported in the mainland of China, few reports about EV71 as the pathogen of HFMD epidemics are available. The present study was conducted to investigate the causal agent of an HFMD epidemic in children in Shanghai from April to June of 2002. Totally 102 specimens (including vesicle fluid, stool and throat swabs) were collected from 72 patients with HFMD. The specimens were inoculated into Vero and/or RD cells. At first all the isolates were respectively neutralized by the RIVM pools of enterovirus antiserum, the type-specific antisera to EV71 or to CA16. Secondly all untyped isolates were tested by RT-PCR assay with two specific primer pairs for VP1 genes of EV71 and CA16 respectively. The EV71 and CA16 were identified depending on the size of PCR products. Sequence analyses of VP1 genes of 9 virus strains were performed by the laboratory of China CDC. Viruses were isolated from 91 specimens from 67 patients. Serotyping by neutralization failed for all the isolates. But the RT-PCR results indicated that the viruses isolated from 78 specimens from 58 patients were identified as positive for CA16 and the isolates from 13 specimens from 9 patients were identified as positive for EV71, the ratio between CA16 and EV71 was 6.4:1. The results of sequence analyses were consistent with those of PCR assay. Two EV71 strains isolated in this study belonged to a new lineage (C4) within genogroup C. One patient with EV71-associated HFMD had a complication of encephalitis with convulsion, shock, coma and dyspnea. CA16 and EV71 were the primary causes of HFMD

  19. Circulation of Coxsackievirus A10 and A6 in hand-foot-mouth disease in China, 2009-2011.

    Directory of Open Access Journals (Sweden)

    Qing-Bin Lu

    Full Text Available Coxsackieviruses A10 (CV-A10 and A6 (CV-A6 have been associated with increasingly occurred sporadic hand-foot-mouth disease (HFMD cases and outbreak events globally. However, our understanding of epidemiological and genetic characteristics of these new agents remains far from complete. This study was to explore the circulation of CV-A10 and CV-A6 in HFMD and their genetic characteristics in China. A hospital based surveillance was performed in three heavily inflicted regions with HFMD from March 2009 to August 2011. Feces samples were collected from children with clinical diagnosis of HFMD. The detection and genotyping of enteroviruses was performed by real-time PCR and sequencing of 5'UTR/VP1 regions. Phylogenetic analysis and selection pressure were performed based on the VP1 sequences. Logistic regression model was used to identify the effect of predominant enterovirus serotypes in causing severe HFMD. The results showed 92.0% of 1748 feces samples were detected positive for enterovirus, with the most frequently presented serotypes as EV-71 (944, 54.0% and CV-A16 (451, 25.8%. CV-A10 and CV-A6 were detected as a sole pathogen in 82 (4.7% and 44 (2.5% cases, respectively. Infection with CV-A10 and EV-71 were independently associated with high risk of severe HFMD (OR = 2.66, 95% CI: 1.40-5.06; OR = 4.81, 95% CI: 3.07-7.53, when adjusted for age and sex. Phylogenetic analysis revealed that distinct geographic and temporal origins correlated with the gene clusters based on VP1 sequences. An overall ω value of the VP1 was 0.046 for CV-A10 and 0.047 for CV-A6, and no positively selected site was detected in VP1 of both CV-A10 and CV-A6, indicating that purifying selection shaped the evolution of CV-A10 and CV-A6. Our study demonstrates variety of enterovirus genotypes as viral pathogens in causing HFMD in China. CV-A10 and CV-A6 were co-circulating together with EV-71 and CV-A16 in recent years. CV-A10 infection might also be independently

  20. Antibody titers against vaccine and contemporary wild poliovirus type 1 in children immunized with IPV+OPV and young adults immunized with OPV.

    Science.gov (United States)

    Lukashev, Alexander N; Yarmolskaya, Maria S; Shumilina, Elena Yu; Sychev, Daniil A; Kozlovskaya, Liubov I

    2016-02-02

    In 2010, a type 1 poliovirus outbreak in Congo with 445 lethal cases was caused by a virus that was neutralized by sera of German adults vaccinated with inactivated polio vaccine with a reduced efficiency. This seroprevalence study was done in two cohorts immunized with other vaccination schedules. Russian children aged 3-6 years immunized with a combination of inactivated and live polio vaccines were reasonably well protected against any wild type poliovirus 1, including the Congolese isolate. Adults aged 20-29 years immunized only with live vaccine were apparently protected against the vaccine strain (92% seropositive), but only 50% had detectable antibodies against the Congo-2010 isolate. Both waning immunity and serological divergence of the Congolese virus could contribute to this result. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration.

    Science.gov (United States)

    Love, David C; Lovelace, Greg L; Sobsey, Mark D

    2010-10-15

    Filter-feeding bivalve mollusks (shellfish) can bioaccumulate pathogenic microorganisms in up to 1000-fold higher levels than overlying waters, and therefore disease risks are associated with consuming raw or partially cooked shellfish. Many of these shellfish-borne diseases are due to enteric bacteria and viruses associated with fecal contamination. To control shellfish-borne diseases, guidelines for shellfish harvest waters and shellfish meat have been devised, which include cleansing of contaminated shellfish by depuration in controlled systems, heat pasteurization, or relay to clean waters. This study examines the depuration of oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) in a flow-through depuration system under variable temperature (12 °C, 18 °C, and 25 °C), salinity (8 ppt, 18 ppt, and 28 ppt), turbidity (parameters of water temperature improved E. coli, MS2, poliovirus and HAV depuration, and optimized salinity improved E. coli, E. faecalis, and MS2 depuration rates. In hard shell clams, salinity improved E. coli and E. faecalis depuration rates. Adjusting turbidity, pH or algae did not improve microorganism depuration in either oysters or hard shell clams, with the exception of turbidity on E. faecalis in hard shell clams. Microorganism depuration rates in oysters from greatest to least were: MS2>E. coli>E. faecalis>poliovirus>HAV, and in clams depuration rates from greatest to least were: E. coli>E. faecalis>HAV>MS2>poliovirus. Because E. coli and E. faecalis were removed at faster rates than HAV and poliovirus, these fecal bacteria appear to be poor process indicators of the virological quality of depurated oysters and hard shell clams. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Evolution and circulation of type-2 vaccine-derived polioviruses in Nad Ali district of Southern Afghanistan during June 2009-February 2011.

    Science.gov (United States)

    Sharif, Salmaan; Abbasi, Bilal Haider; Khurshid, Adnan; Alam, Muhammad Masroor; Shaukat, Shahzad; Angez, Mehar; Rana, Muhammad Suleman; Zaidi, Syed Sohail Zahoor

    2014-01-01

    Oral polio vaccine has been used successfully as a powerful tool to control the spread of wild polioviruses throughout the world; however, during replication in under immunized children, some vaccine viruses revert and acquire the neurovirulent phenotypic properties. In this study, we describe the evolution and circulation of Vaccine-Derived Polioviruses (VDPVs) in Helmand province of Afghanistan. We investigated 2646 AFP cases of Afghan children from June 2009-February 2011 and isolated 103 (04%) vaccine viruses, 45(1.7%) wild type polioviruses and six (0.22%) type 2 circulating vaccine-derived polioviruses (cVDPVs). These cVDPVs showed 97.7%-98.2% nucleotide and 98%-98.7% amino acid homology in VP1 region on comparison with Sabin type 2 reference strain. All these cVDPVs had two signature mutations of neurovirulent phenotypes and 12 additional mutations in P1 capsid region that might also have contributed to increase neurovirulence and replication. Phylogenetic analysis revealed that all these viruses were closely related and originated from previously reported Sabin like 2 virus from Pakistan which did not conform to the standard definition of VDPVs at that time. It was also observed that initial OPV dose was administered approximately 9 months prior to the collection of first stool specimen of index case. Our findings support that suboptimal surveillance and low routine immunization coverage have contributed to the emergence and spread of these viruses in Afghanistan. We therefore recommend high quality immunization campaigns not only in affected district Nad Ali but also in the bordering areas between Pakistan and Afghanistan to prevent the spread of cVDPVs.

  3. An outbreak of type π vaccine-derived poliovirus in Sichuan province, China: emergence and circulation in an under-immunized population.

    Science.gov (United States)

    Wang, Hai-Bo; Fang, Gang; Yu, Wen-Zhou; Du, Fei; Fan, Chun-Xiang; Liu, Qing-Lian; Hao, Li-Xin; Liu, Yu; Zheng, Jing-Shan; Qin, Zhi-Ying; Xia, Wei; Zhang, Shi-Yue; Yin, Zun-Dong; Jing, Qiong; Zhang, Yan-Xia; Huang, Rong-Na; Yang, Ru-Pei; Tong, Wen-Bin; Qi, Qi; Guan, Xu-Jing; Jing, Yu-Lin; Ma, Qian-Li; Wang, Jin; Ma, Xiao-Zhen; Chen, Na; Zheng, Hong-Ru; Li, Yin-Qiao; Ma, Chao; Su, Qi-Ru; Reilly, Kathleen H; Luo, Hui-Ming; Wu, Xian-Ping; Wen, Ning; Yang, Wei-Zhong

    2014-01-01

    During August 2011-February 2012, an outbreak of type Π circulating vaccine-derived poliovirus (cVDPVs) occurred in Sichuan Province, China. A field investigation of the outbreak was conducted to characterize outbreak isolates and to guide emergency response. Sequence analysis of poliovirus capsid protein VP1 was performed to determine the viral propagation, and a coverage survey was carried out for risk assessment. One clinical compatible polio case and three VDPV cases were determined in Ngawa County, Ngawa Tibetan and Qiang Autonomous Prefecture, Sichuan Province. Case patients were unimmunized children, 0.8-1 years old. Genetic sequencing showed that the isolates diverged from the VP1 region of the type Π Sabin strain by 5-12 nucleotides (nt) and shared the same 5 nt VP1 substitutions, which indicate single lineage of cVDPVs. Of the 7 acute flaccid paralysis cases (all>6 months) reported in Ngawa Prefecture in 2011, 4 (57.1%) cases (including 2 polio cases) did not receive oral attenuated poliovirus vaccine. Supplementary immunization activities (SIAs) were conducted in February-May, 2012, and the strain has not been isolated since. High coverage of routine immunization should be maintained among children until WPV transmission is globally eradicated. Risk assessments should be conducted regularly to pinpoint high risk areas or subpopulations, with SIAs developed if necessary.

  4. Vitamin D receptor protects glioblastoma A172 cells against Coxsackievirus A16 infection induced cell death in the pathogenesis of hand, foot, and mouth disease.

    Science.gov (United States)

    Qu, Meiling; Di, Shunxiang; Zhang, Shuyun; Xia, Zhiqun; Quan, Guohong

    2017-11-18

    Hand, foot, and mouth disease (HFMD) was one of the most common children illnesses. Coxsackievirus A16 was one of the major pathogens that cause HFMD. However, the role of vitamin D underlying this common illness has not been elucidated. Our study examined that vitamin D levels was significantly lower in 33 HFMD patients, compared to 36 healthy children. Unexpectedly, both mRNA and protein expression of VDR were significantly decreased in CA16 infected glioblastoma A172 cells. And overexpression of VDR or vitamin D treatment in CA16 infected glioblastoma A172 cells could reverse the CA16 infection induced cell death, apoptosis or mitochondrial membrane rupture. Therefore, our study, for the first time, demonstrated that vitamin D and VDR could associate with the pathogenesis of HFMD. Thus might provide useful information for HFMD prevention and treatments. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Characterization of VP1 gene of coxsackievirus A16 prevalent among hand foot mouth disease suffered children in Taizhou, P. R. China, between 2010 and 2013.

    Science.gov (United States)

    Ma, Zhilong; Zha, Jie

    2016-02-01

    A total of 453 strains of Coxsackievirus A16 (CV-A16) were screened out of 1,509 hand-foot-mouth disease (HFMD) samples collected in Taizhou during the period from 2010 to 2013. And between first quarter of 2011 and first quarter of 2013, an outbreak of CV-A16 was found among the HFMD sufferers in Taizhou. Phylogenic analysis of VP1 sequences indicated a major CV-A16 sub-group in Taizhou, whose change pattern of effective population sizes was found to be similar to the pattern of the actual percentage changes of CV-A16 during the outbreak over the same period. More importantly, the sub-group all displayed a Leu (L) to Met (M) mutation at site-23 of capsid VP1 which might be correlated with the outbreak of CV-A16 in Taizhou. © 2015 Wiley Periodicals, Inc.

  6. Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice.

    Science.gov (United States)

    Caine, Elizabeth A; Fuchs, Jeremy; Das, Subash C; Partidos, Charalambos D; Osorio, Jorge E

    2015-11-17

    Hand, foot, and mouth disease (HFMD) has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6), can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN) α/β (A129) and α/β and γ (AG129) receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6) and 12 week-old AG129 (CVA16) mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates.

  7. The role of enterovirus 71 and coxsackievirus A strains in a large outbreak of hand, foot, and mouth disease in 2012 in Changsha, China.

    Science.gov (United States)

    Chen, Jing-Fang; Zhang, Ru-Sheng; Ou, Xin-Hua; Chen, Fa-Ming; Sun, Bian-Cheng

    2014-11-01

    During 2012, Changsha experienced a large outbreak of hand, foot, and mouth disease (HFMD), resulting in 25,438 cases, including 42 severe cases and eight deaths. Seven hundred and forty-six clinical specimens were collected from hospital-based surveillance for HFMD in 2012. The detection and genotyping of enterovirus were performed by real-time RT-PCR and sequencing of the VP1 regions; phylogenetic analysis was performed based on the VP1 sequences. A total of 545 (73.1%) enterovirus-positive samples were identified, with the most frequently presenting serotype being enterovirus 71 (EV-71; n=364, 66.8%), followed by coxsackievirus A16 (CV-A16; n=84, 15.4%), CV-A6 (n=22, 4.0%), and CV-A10 (n=19, 3.5%). Most of the affected patients were children aged ≤5 years (n=524, 96.1%). EV-71 was the major pathogen in the severe and fatal cases (n=22, 78.6%). Phylogenetic analysis of VP1 gene sequences showed the EV-71 isolates to belong to subgenotype C4a, and the CV-A16 isolates to belong to subgenotype B1. The Changsha CV-A6 and CV-A10 circulating strains were homologous to strains circulating in other areas of mainland China. Our results demonstrate that EV-71 was the primary causative agent responsible for the HFMD outbreak in Changsha in 2012, and the co-circulation of other coxsackievirus A strains posed a potential risk to public health.

  8. Efficacy of a Trivalent Hand, Foot, and Mouth Disease Vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in Mice

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Caine

    2015-11-01

    Full Text Available Hand, foot, and mouth disease (HFMD has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71 and Coxsackievirus A16 (CVA16 are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6, can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals. We have previously reported on the development of a mouse model for EV71 and demonstrated the protective efficacy of an inactivated EV71 vaccine candidate. Here, mouse-adapted strains of CVA16 and CVA6 were produced by sequential passage of the viruses through mice deficient in interferon (IFN α/β (A129 and α/β and γ (AG129 receptors. Adapted viruses were capable of infecting 3 week-old A129 (CVA6 and 12 week-old AG129 (CVA16 mice. Accordingly, these models were used in active and passive immunization studies to test the efficacy of a trivalent vaccine candidate containing inactivated EV71, CVA16, and CVA6. Full protection from lethal challenge against EV71 and CVA16 was observed in trivalent vaccinated groups. In contrast, monovalent vaccinated groups with non-homologous challenges failed to cross protect. Protection from CVA6 challenge was accomplished through a passive transfer study involving serum raised against the trivalent vaccine. These animal models will be useful for future studies on HFMD related pathogenesis and the efficacy of vaccine candidates.

  9. PAPEL DEL LABORATORIO NACIONAL DE POLIOVIRUS EN EL PROGRAMA DE ERRADICACIÖN Y VIGILANCIA DE LA POLIOMIELITIS

    Directory of Open Access Journals (Sweden)

    Gloria Trallero

    2013-01-01

    Full Text Available El Laboratorio Nacional de Poliovirus (LNP coordina la Red Española de Vigilancia de Parálisis Flácida Aguda desde 1998 y caracteriza los poliovirus (PV y otros enterovirus detectados, utilizando métodos de cultivo celular y moleculares. Durante 1998-2012 se estudiaron por la Red un total de 110.725 (70.046+40.679 muestras clínicas, resultando positivas para enterovirus 8.804 (8%, entre las que 241 se caracterizaron como PV. La caracterización intratípica demostró que todos los PV eran vacunales excep- to las muestras correspondientes a un caso importado de poliomielitis postvacunal y sus contactos, que fueron caracterizados como PV2 derivado de vacuna. En el LNP se ha realizado el serotipado y la caracterización intratípica de todos los PV aislados en España de cualquier síndrome. Con ello se ha demostrado que el PV salvaje no ha circulado en nuestro país durante los 15 años que recoge este trabajo y eso condujo a la firma del Acta de la “Erradicación de la Poliomielitis en España” por parte de la OMS en 2001 y a la “Certificación de la Erradicación Europea como libre de circulación de PV salvaje”el 21 de junio de 2002 . En la actualidad sólo 3 países presentan transmisión endémica de PV salvaje (Pakistán, Afganistán y Nigeria y hasta que no se haya conseguido la erradicación a nivel mundial, España debe mantener la infraestructura creada en el Plan de Erradicación de la Poliomielitis y continuar con la vigilancia e inmunización. También el Programa de Contención de los PV salvajes en los laboratorios debe seguir en activo para evitar reintroducciones accidentales.

  10. A statistical model of the international spread of wild poliovirus in Africa used to predict and prevent outbreaks.

    Directory of Open Access Journals (Sweden)

    Kathleen M O'Reilly

    2011-10-01

    Full Text Available Outbreaks of poliomyelitis in African countries that were previously free of wild-type poliovirus cost the Global Polio Eradication Initiative US$850 million during 2003-2009, and have limited the ability of the program to focus on endemic countries. A quantitative understanding of the factors that predict the distribution and timing of outbreaks will enable their prevention and facilitate the completion of global eradication.Children with poliomyelitis in Africa from 1 January 2003 to 31 December 2010 were identified through routine surveillance of cases of acute flaccid paralysis, and separate outbreaks associated with importation of wild-type poliovirus were defined using the genetic relatedness of these viruses in the VP1/2A region. Potential explanatory variables were examined for their association with the number, size, and duration of poliomyelitis outbreaks in 6-mo periods using multivariable regression analysis. The predictive ability of 6-mo-ahead forecasts of poliomyelitis outbreaks in each country based on the regression model was assessed. A total of 142 genetically distinct outbreaks of poliomyelitis were recorded in 25 African countries, resulting in 1-228 cases (median of two cases. The estimated number of people arriving from infected countries and <5-y childhood mortality were independently associated with the number of outbreaks. Immunisation coverage based on the reported vaccination history of children with non-polio acute flaccid paralysis was associated with the duration and size of each outbreak, as well as the number of outbreaks. Six-month-ahead forecasts of the number of outbreaks in a country or region changed over time and had a predictive ability of 82%.Outbreaks of poliomyelitis resulted primarily from continued transmission in Nigeria and the poor immunisation status of populations in neighbouring countries. From 1 January 2010 to 30 June 2011, reduced transmission in Nigeria and increased incidence in reinfected

  11. Immunogenicity and safety evaluation of bivalent types 1 and 3 oral poliovirus vaccine by comparing different poliomyelitis vaccination schedules in China: A randomized controlled non-inferiority clinical trial.

    Science.gov (United States)

    Qiu, Jingjun; Yang, Yunkai; Huang, Lirong; Wang, Ling; Jiang, Zhiwei; Gong, Jian; Wang, Wei; Wang, Hongyan; Guo, Shaohong; Li, Chanjuan; Wei, Shuyuan; Mo, Zhaojun; Xia, Jielai

    2017-06-03

    The type 2 component of the oral poliovirus vaccine is targeted for global withdrawal through a switch from the trivalent oral poliovirus vaccine (tOPV) to a bivalent oral poliovirus vaccine (bOPV). The switch is intended to prevent paralytic polio caused by circulating vaccine-derived poliovirus type 2. We aimed to assess the immunogenicity and safety profile of 6 vaccination schedules with different sequential doses of inactivated poliovirus vaccine (IPV), tOPV, or bOPV. A randomized controlled trial was conducted in China in 2015. Healthy newborn babies randomly received one of the following 6 vaccination schedules: cIPV-bOPV-bOPV(I-B-B), cIPV-tOPV-tOPV(I-T-T), cIPV-cIPV-bOPV(I-I-B), cIPV-cIPV-tOPV(I-I-T), cIPV-cIPV-cIPV(I-I-I), or tOPV-tOPV-tOPV(T-T-T). Doses were administered sequentially at 4-6 week intervals after collecting baseline blood samples. Patients were proactively followed up for observation of adverse events after the first dose and 30 days after all doses. The primary study objective was to investigate the immunogenicity and safety profile of different vaccine schedules, evaluated by seroconversion, seroprotection and antibody titer against poliovirus types 1, 2, and 3 in the per-protocol population. Of 600 newborn babies enrolled, 504 (84.0%) were included in the per-protocol population. For type 1 poliovirus, the differences in the seroconversion were 1.17% (95% CI = -2.74%, 5.08%) between I-B-B and I-T-T and 0.00% (95% CI: -6.99%, 6.99%) between I-I-B and I-I-T; for type 3 poliovirus, differences in the seroconversion were 3.49% (95% CI: -1.50%, 8.48%) between I-B-B and I-T-T and -2.32% (95% CI: -5.51%, 0.86%) between I-I-B and I-I-T. The non-inferiority conclusion was achieved in both poliovirus type 1 and 3 with the margin of -10%. Of 24 serious adverse events reported, no one was vaccine-related. The vaccination schedules with bOPV followed by one or 2 doses of IPV were recommended to substitute for vaccinations involving tOPV without

  12. Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA.

    Science.gov (United States)

    Pettersson, R F; Ambros, V; Baltimore, D

    1978-08-01

    A protein similar to that previously demonstrated on poliovirus RNA and replicative intermediate RNA (VPg) was found on all sizes of nascent viral RNA molecules and on the polyuridylic acid isolated from negative-strand RNA. 32P-labeled nascent chains were released from their template RNA and fractionated by exclusion chromatography on agarose. Fingerprint analysis using two-dimensional polyacrylamide gels of RNase T1 oligonucleotides derived from nascent chains of different lengths showed that a size fractionation of nascent chains was achieved. VPg was recovered from nascent chains varying in length from 7,500 nucleotides (full-sized RNA) to about 500 nucleotides. No other type of 5' terminus could be demonstrated on nascent RNA, and the yield of VPg was consistent with one molecule of the protein on each nascent chain. These results are consistent with the concept that the protein is added to the 5' end of the growing RNA chains at a very early stage, possibly as a primer of RNA synthesis. Analysis of the polyuridylic acid tract isolated from the replicative intermediate and double-stranded RNAs indicated that a protein of the same size as that found on the nascent chains and virion RNA is also linked to the negative-strand RNAs. It is likely that a similar mechanism is responsible for initiation of synthesis of both plus- and minus-strand RNAs.

  13. Genetics, recombination and clinical features of human rhinovirus species C (HRV-C infections; interactions of HRV-C with other respiratory viruses.

    Directory of Open Access Journals (Sweden)

    Anne Wisdom

    Full Text Available To estimate the frequency, molecular epidemiological and clinical associations of infection with the newly described species C variants of human rhinoviruses (HRV, 3243 diagnostic respiratory samples referred for diagnostic testing in Edinburgh were screened using a VP4-encoding region-based selective polymerase chain reaction (PCR for HRV-C along with parallel PCR testing for 13 other respiratory viruses. HRV-C was the third most frequently detected behind respiratory syncytial virus (RSV and adenovirus, with 141 infection episodes detected among 1885 subjects over 13 months (7.5%. Infections predominantly targeted the very young (median age 6-12 months; 80% of infections in those <2 years, occurred throughout the year but with peak incidence in early winter months. HRV-C was detected significantly more frequently among subjects with lower (LRT and upper respiratory tract (URT disease than controls without respiratory symptoms; HRV-C mono-infections were the second most frequently detected virus (behind RSV in both disease presentations (6.9% and 7.8% of all cases respectively. HRV variants were classified by VP4/VP2 sequencing into 39 genotypically defined types, increasing the current total worldwide to 60. Through sequence comparisons of the 5'untranslated region (5'UTR, the majority grouped with species A (n = 96; 68%, described as HRV-Ca, the remainder forming a phylogenetically distinct 5'UTR group (HRV-Cc. Multiple and bidirectional recombination events between HRV-Ca and HRV-Cc variants and with HRV species A represents the most parsimonious explanation for their interspersed phylogeny relationships in the VP4/VP2-encoding region. No difference in age distribution, seasonality or disease associations was identified between HRV-Ca and HRV-Cc variants. HRV-C-infected subjects showed markedly reduced detection frequencies of RSV and other respiratory viruses, providing evidence for a major interfering effect of HRV-C on susceptibility to

  14. Assessing the individual risk of fecal poliovirus shedding among vaccinated and non-vaccinated subjects following national health weeks in Mexico.

    Science.gov (United States)

    Ferreyra-Reyes, Leticia; Cruz-Hervert, Luis Pablo; Troy, Stephanie B; Huang, ChunHong; Sarnquist, Clea; Delgado-Sánchez, Guadalupe; Canizales-Quintero, Sergio; Holubar, Marisa; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Rodríguez-Álvarez, Mauricio; Mongua-Rodriguez, Norma; Maldonado, Yvonne; García-García, Lourdes

    2017-01-01

    Mexico introduced inactivated polio vaccine (IPV) into its routine immunization (RI) schedule in 2007 but continued to give trivalent oral polio vaccine (tOPV) twice a year during national health weeks (NHW) through 2015. To evaluate individual variables associated with poliovirus (PV) shedding among children with IPV-induced immunity after vaccination with tOPV and their household contacts. We recruited 72 children (both genders, ≤30 months, vaccinated with at least two doses of IPV) and 144 household contacts (both genders, 2 per household, children and adults) between 08/2010 and 09/2010 in Orizaba, Veracruz. Three NHW took place (one before and two after enrollment). We collected fecal samples monthly for 12 months, and tested 2500 samples for polioviruses types 1, 2 and 3 with three serotype-specific singleplex real-time RT-PCR (rRT-PCR) assays. In order to increase the specificity for OPV virus, all positive and 112 negative samples were also processed with a two-step, OPV serotype-specific multiplex rRT-PCR. We estimated adjusted hazard ratios (HR) and 95% CI using Cox proportional hazards regression for recurrent events models accounting for individual clustering to assess the association of individual variables with the shedding of any poliovirus for all participants and stratifying according to whether the participant had received tOPV in the month of sample collection. 216 participants were included. Of the 2500 collected samples, using the singleplex rRT-PCR assay, PV was detected in 5.7% (n = 142); PV1 in 1.2% (n = 29), PV2 in 4.1% (n = 103), and PV3 in 1.9% (n = 48). Of the 256 samples processed by multiplex rRT-PCR, PV was detected in 106 (PV1 in 16.41% (n = 42), PV2 in 21.09% (n = 54), and PV3 in 23.05% (n = 59). Both using singleplex and multiplex assays, shedding of OPV among non-vaccinated children and subjects older than 5 years of age living in the same household was associated with shedding of PV2 by a household contact. All models were

  15. The effect of mass immunisation campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001-11: a retrospective analysis.

    Science.gov (United States)

    O'Reilly, Kathleen M; Durry, Elias; ul Islam, Obaid; Quddus, Arshad; Abid, Ni'ma; Mir, Tahir P; Tangermann, Rudi H; Aylward, R Bruce; Grassly, Nicholas C

    2012-08-04

    Pakistan and Afghanistan are two of the three remaining countries yet to interrupt wild-type poliovirus transmission. The increasing