WorldWideScience

Sample records for policy-based bioenergy demand

  1. Effect of policy-based bioenergy demand on southern timber markets: A case study of North Carolina

    Science.gov (United States)

    Robert C. Abt; Karen L. Abt; Frederick W. Cubbage; Jesse D. Henderson

    2010-01-01

    Key factors driving renewable energy demand are state and federal policies requiring the use of renewable feedstocks to produce energy (renewable portfolio standards) and liquid fuels (renewable fuel standards). However, over the next decade, the infrastructure for renewable energy supplies is unlikely to develop as fast as both policy- and market-motivated renewable...

  2. Prospects for Bioenergy in Europe. Supply, Demand and Trade

    International Nuclear Information System (INIS)

    Ericsson, Karin

    2006-11-01

    Renewable energy sources (RES), such as biomass, can be used to address two important issues in Europe: climate change and energy security. If biomass is produced sustainably and used efficiently, bioenergy contributes very little to CO 2 emissions. The overall objective of the work presented in this thesis is to provide a scientific basis describing how bioenergy can play a fundamental role in the transition to more sustainable energy systems. For this purpose, an assessment of the potential biomass supply was made. This assessment shows that the long-term biomass supply could amount to up to 16 EJ/y in the EU27, i.e. 21% of the current primary energy supply, taking environmental and land-use restrictions into account. The greater part of this potential biomass supply consists of perennial energy crops. Thus, if biomass is to play a major role in the future energy supply, large-scale perennial energy crop production is required. The analysis of the economics of growing willow, a perennial energy crop, indicates that it can be equally viable for the farmer as that of cereal crops if subsidies and the cost of risk are excluded. In a strategy to reduce the cost of risk, a central issue is to create opportunities for a long-term demand for bioenergy. In Sweden and Finland, two of the leading bioenergy-using countries in Europe, energy and CO 2 taxes have been the key instruments in increasing the use of bioenergy. Creating opportunities for bioenergy in general will not immediately or necessarily stimulate perennial crop production since production costs are at the high end of the biomass cost range. In a strategy to stimulate perennial crop production, large coal-fired power and combined heat and power (CHP) plants can play an important role. Co-firing of biofuels in these plants is a low-risk bioenergy strategy for energy companies. The continuous and, compared to other continents in the world, more intense promotion of bioenergy in Europe is likely to increase

  3. Economic consequences of increased bioenergy demand

    NARCIS (Netherlands)

    Johnston, C.; Kooten, van G.C.

    2014-01-01

    Although wind, hydro and solar are the most discussed sources of renewable energy, countries will need to rely much more on biomass if they are to meet renewable energy targets. In this study, a global forest trade model is used to examine the global effects of expanded demand for wood pellets fired

  4. Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    Science.gov (United States)

    Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean; Barkan, Alice; Blankenship, Robert E.; Bock, Ralph; Croce, Roberta; Hanson, Maureen R.; Hibberd, Julian M.; Long, Stephen P.; Moore, Thomas A.; Moroney, James; Niyogi, Krishna K.; Parry, Martin A. J.; Peralta-Yahya, Pamela P.; Prince, Roger C.; Redding, Kevin E.; Spalding, Martin H.; van Wijk, Klaas J.; Vermaas, Wim F. J.; von Caemmerer, Susanne; Weber, Andreas P. M.; Yeates, Todd O.; Yuan, Joshua S.; Zhu, Xin Guang

    2015-01-01

    The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  5. Bioenergy

    NARCIS (Netherlands)

    Chum, H.; Faaij, A.P.C.; Moreira, J.R.; Junginger, H.M.

    2011-01-01

    Bioenergy has a significant greenhouse gas (GHG) mitigation potential, provided that the resources are developed sustainably and that efficient bioenergy systems are used. Certain current systems and key future options including perennial cropping systems, use of biomass residues and wastes and

  6. Bioenergy

    CERN Document Server

    Wall, Judy; Demain, Arnold L

    2008-01-01

    Given the limited supply of fossil fuels and the devastating effects of ever-increasing greenhouse gases, researchers have been committed to finding alternative fuel sources. Perhaps one of the least explored areas is bioenergy from microbes. In this landmark volume, world-renowned experts explore the possible contributions of microbes to the next generation of fuels. In 31 detailed chapters, Bioenergy provides thorough explanations of the current knowledge and future areas for research on microbial energy conversions. The volume begins with 10 chapters on ethanol production from cellulosic fe

  7. Effect of Bioenergy Demands and Supply Response on Markets, Carbon, and Land Use

    Science.gov (United States)

    Karen L. Abt; Robert C. Abt; Christopher Galik

    2012-01-01

    An increase in the demand for wood for energy, including liquid fuels, bioelectricity, and pellets, has the potential to affect traditional wood users, forestland uses, management intensities, and, ultimately, carbon sequestration. Recent studies have shown that increases in bioenergy harvests could lead to displacement of traditional wood-using industries in the short...

  8. Consequences of increasing bioenergy demand on wood and forests: an application of the global forest products model

    Science.gov (United States)

    Joseph Buongiorno; Ronald Raunikar; Shushuai Zhu

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial...

  9. Integrated assessment of future land use in Brazil under increasing demand for bioenergy

    Science.gov (United States)

    Verstegen, Judith; van der Hilst, Floor; Karssenberg, Derek; Faaij, André

    2014-05-01

    Environmental impacts of a future increase in demand for bioenergy depend on the magnitude, location and pattern of the direct and indirect land use change of energy cropland expansion. Here we aim at 1) projecting the spatiotemporal pattern of sugar cane expansion and the effect on other land uses in Brazil towards 2030, and 2) assessing the uncertainty herein. For the spatio-temporal projection, four model components are used: 1) an initial land use map that shows the initial amount and location of sugar cane and all other relevant land use classes in the system, 2) an economic model to project the quantity of change of all land uses, 3) a spatially explicit land use model that determines the location of change of all land uses, and 4) various analysis to determine the impacts of these changes on water, socio-economics, and biodiversity. All four model components are sources of uncertainty, which is quantified by defining error models for all components and their inputs and propagating these errors through the chain of components. No recent accurate land use map is available for Brazil, so municipal census data and the global land cover map GlobCover are combined to create the initial land use map. The census data are disaggregated stochastically using GlobCover as a probability surface, to obtain a stochastic land use raster map for 2006. Since bioenergy is a global market, the quantity of change in sugar cane in Brazil depends on dynamics in both Brazil itself and other parts of the world. Therefore, a computable general equilibrium (CGE) model, MAGNET, is run to produce a time series of the relative change of all land uses given an increased future demand for bioenergy. A sensitivity analysis finds the upper and lower boundaries hereof, to define this component's error model. An initial selection of drivers of location for each land use class is extracted from literature. Using a Bayesian data assimilation technique and census data from 2007 to 2012 as

  10. Uncertainty assessment of future land use in Brazil under increasing demand for bioenergy

    Science.gov (United States)

    van der Hilst, F.; Verstegen, J. A.; Karssenberg, D.; Faaij, A.

    2013-12-01

    Environmental impacts of a future increase in demand for bioenergy depend on the magnitude, location and pattern of the direct and indirect land use change of energy cropland expansion. Here we aim at 1) projecting the spatio-temporal pattern of sugar cane expansion and the effect on other land uses in Brazil towards 2030, and 2) assessing the uncertainty herein. For the spatio-temporal projection, three model components are used: 1) an initial land use map that shows the initial amount and location of sugar cane and all other relevant land use classes in the system, 2) a model to project the quantity of change of all land uses, and 3) a spatially explicit land use model that determines the location of change of all land uses. All three model components are sources of uncertainty, which is quantified by defining error models for all components and their inputs and propagating these errors through the chain of components. No recent accurate land use map is available for Brazil, so municipal census data and the global land cover map GlobCover are combined to create the initial land use map. The census data are disaggregated stochastically using GlobCover as a probability surface, to obtain a stochastic land use raster map for 2006. Since bioenergy is a global market, the quantity of change in sugar cane in Brazil depends on dynamics in both Brazil itself and other parts of the world. Therefore, a computable general equilibrium (CGE) model, MAGNET, is run to produce a time series of the relative change of all land uses given an increased future demand for bioenergy. A sensitivity analysis finds the upper and lower boundaries hereof, to define this component's error model. An initial selection of drivers of location for each land use class is extracted from literature. Using a Bayesian data assimilation technique and census data from 2007 to 2011 as observational data, the model is identified, meaning that the final selection and optimal relative importance of the

  11. IEA Bioenergy Task 40Sustainable International Bioenergy Trade:Securing Supply and Demand Country Report 2014—United States

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Heath, Brendi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Logistical barrier are tied to feedstock harvesting, collection, storage and distribution. Current crop harvesting machinery is unable to selectively harvest preferred components of cellulosic biomass while maintaining acceptable levels of soil carbon and minimizing erosion. Actively managing biomass variability imposes additional functional requirements on biomass harvesting equipment. A physiological variation in biomass arises from differences in genetics, degree of crop maturity, geographical location, climatic events, and harvest methods. This variability presents significant cost and performance risks for bioenergy systems. Currently, processing standards and specifications for cellulosic feedstocks are not as well-developed as for mature commodities. Biomass that is stored with high moisture content or exposed to moisture during storage is susceptible to spoilage, rotting, spontaneous combustion, and odor problems. Appropriate storage methods and strategies are needed to better define storage requirements to preserve the volume and quality of harvested biomass over time and maintain its conversion yield. Raw herbaceous biomass is costly to collect, handle, and transport because of its low density and fibrous nature. Existing conventional, bale-based handling equipment and facilities cannot cost-effectively deliver and store high volumes of biomass, even with improved handling techniques. Current handling and transportation systems designed for moving woodchips can be inefficient for bioenergy processes due to the costs and challenges of transporting, storing, and drying high-moisture biomass. The infrastructure for feedstock logistics has not been defined for the potential variety of locations, climates, feedstocks, storage methods, processing alternatives, etc., which will occur at a national scale. When setting up biomass fuel supply chains, for large-scale biomass systems, logistics are a pivotal part in the system. Various studies have shown that long

  12. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    Science.gov (United States)

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  13. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    Directory of Open Access Journals (Sweden)

    Markus A Meyer

    Full Text Available Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS. This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification

  14. Comparing bioenergy production sites in the Southeastern US regarding ecosystem service supply and demand.

    Science.gov (United States)

    Meyer, Markus A; Chand, Tanzila; Priess, Joerg A

    2015-01-01

    Biomass for bioenergy is debated for its potential synergies or tradeoffs with other provisioning and regulating ecosystem services (ESS). This biomass may originate from different production systems and may be purposefully grown or obtained from residues. Increased concerns globally about the sustainable production of biomass for bioenergy has resulted in numerous certification schemes focusing on best management practices, mostly operating at the plot/field scale. In this study, we compare the ESS of two watersheds in the southeastern US. We show the ESS tradeoffs and synergies of plantation forestry, i.e., pine poles, and agricultural production, i.e., wheat straw and corn stover, with the counterfactual natural or semi-natural forest in both watersheds. The plantation forestry showed less distinct tradeoffs than did corn and wheat production, i.e., for carbon storage, P and sediment retention, groundwater recharge, and biodiversity. Using indicators of landscape composition and configuration, we showed that landscape planning can affect the overall ESS supply and can partly determine if locally set environmental thresholds are being met. Indicators on landscape composition, configuration and naturalness explained more than 30% of the variation in ESS supply. Landscape elements such as largely connected forest patches or more complex agricultural patches, e.g., mosaics with shrub and grassland patches, may enhance ESS supply in both of the bioenergy production systems. If tradeoffs between biomass production and other ESS are not addressed by landscape planning, it may be reasonable to include rules in certification schemes that require, e.g., the connectivity of natural or semi-natural forest patches in plantation forestry or semi-natural landscape elements in agricultural production systems. Integrating indicators on landscape configuration and composition into certification schemes is particularly relevant considering that certification schemes are governance

  15. Projected Impacts of Bioenergy-Demand-Induced Land Use and Cover Changes on Regional Climate in Central Europe

    Directory of Open Access Journals (Sweden)

    Fang Yin

    2013-01-01

    Full Text Available Energy shortfalls are becoming more and more serious all over the world, and worldwide governments have tried to promote the development of biofuels in order to mitigate the climatic impacts of massive fossil fuel consumption. Since the land is the main input factor of the bioenergy production, the development of biofuels will inevitably lead to change of the land use structure and allocation and thereby affect the climate system. With Central Europe as the study area, this study explored the impacts of land use/land cover change (LUCC on climate under the influence of demand of bioenergy production for land resources. First, the land use structure from 2010 to 2050 is simulated with the Agriculture and Land Use model in MiniCam. The result indicates that the main conversion will be mainly from grassland and forest to cropland and from cropland to grassland. Then the Dynamics of Land System model was used to spatially simulate the LUCC in the future. The impacts of LUCC on the climate were analyzed on the basis of simulation with the Weather Research and Forecasting (WRF model. The climate change will be characterized by the increase of latent heat flux and temperature and the decrease of precipitation.

  16. The potential demand for bioenergy in residential heating applications (bio-heat) in the UK based on a market segment analysis

    International Nuclear Information System (INIS)

    Jablonski, S.; Pantaleo, A.; Bauen, A.; Pearson, P.; Panoutsou, C.; Slade, R.

    2008-01-01

    How large is the potential demand for bio-heat in the UK? Whilst most research has focused on the supply of biomass for energy production, an understanding of the potential demand is crucial to the uptake of heat from bioenergy. We have designed a systematic framework utilising market segmentation techniques to assess the potential demand for biomass heat in the UK. First, the heat market is divided into relevant segments, characterised in terms of their final energy consumption, technological and fuel supply options. Second, the key technical, economic and organisational factors that affect the uptake of bioenergy in each heat segment are identified, classified and then analysed to reveal which could be strong barriers, which could be surmounted easily, and for which bioenergy heat represents an improvement compared to alternatives. The defined framework is applied to the UK residential sector. We identify provisionally the most promising market segments for bioenergy heat, and their current levels of energy demand. We find that, depending on the assumptions, the present potential demand for bio-heat in the UK residential sector ranges between 3% (conservative estimate) and 31% (optimistic estimate) of the total energy consumed in the heat market. (author)

  17. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.

    Science.gov (United States)

    Bauen, A W; Dunnett, A J; Richter, G M; Dailey, A G; Aylott, M; Casella, E; Taylor, G

    2010-11-01

    Biomass from lignocellulosic energy crops can contribute to primary energy supply in the short term in heat and electricity applications and in the longer term in transport fuel applications. This paper estimates the optimal feedstock allocation of herbaceous and woody lignocellulosic energy crops for England and Wales based on empirical productivity models. Yield maps for Miscanthus, willow and poplar, constrained by climatic, soil and land use factors, are used to estimate the potential resource. An energy crop supply-cost curve is estimated based on the resource distribution and associated production costs. The spatial resource model is then used to inform the supply of biomass to geographically distributed demand centres, with co-firing plants used as an illustration. Finally, the potential contribution of energy crops to UK primary energy and renewable energy targets is discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. An Optimization of (Q,r Inventory Policy Based on Health Care Apparel Products with Compound Poisson Demands

    Directory of Open Access Journals (Sweden)

    An Pan

    2014-01-01

    Full Text Available Addressing the problems of a health care center which produces tailor-made clothes for specific people, the paper proposes a single product continuous review model and establishes an optimal policy for the center based on (Q,r control policy to minimize expected average cost on an order cycle. A generic mathematical model to compute cost on real-time inventory level is developed to generate optimal order quantity under stochastic stock variation. The customer demands are described as compound Poisson process. Comparisons on cost between optimization method and experience-based decision on Q are made through numerical studies conducted for the inventory system of the center.

  19. Mobilizing Sustainable Bioenergy Supply Chains

    DEFF Research Database (Denmark)

    Smith, Tat; Lattimore, Brenna; Berndes, Göran

    International Bioenergy Trade: Securing Supply and Demand), 42 (Biorefining – Sustainable Processing of Biomass into a Spectrum of Marketable Bio-based Products and Bioenergy), and 43 (Biomass Feedstocks for Energy Markets). The purpose of the collaboration has been to analyze prospects for large...

  20. Evaluating Future Land-use Change Scenarios: Trade-offs between Bio-energy Demand, Food Production, and Carbon Emission

    Science.gov (United States)

    Kato, E.; Yamagata, Y.

    2012-12-01

    In the construction of consistent future climate scenario, land use scenario has important role through both biogeochemical and biogeophysical effects on climate change. In terms of carbon emissions by the land-use change, relative importance may be high in the lower radiative forcing and lower carbon emission scenarios, which may use large amount of bio-energy with carbon capture and storage (BECCS). In this study, we first evaluated the CO2 emissions by land-use change in the 21st century using each RCPs scenarios. We use an offline terrestrial biogeochemical model VISIT, with book-keeping consideration of the carbon emission from deforested biomass and the regrowing uptake from abandoned cropland and pasture employing the gridded transition land-use data from RCPs. Effect of CO2 fertilization, land-use transition itself, and climate change are evaluated in the analysis. We found that constructing consistent land-use change carbon emission scenario with the gridded land-use change data requires precise considerations of effects of CO2 fertilization and climate change particularly for the regrowing uptake. Also, our result showed more emission of CO2 by the land-use change than the assumption in the integrated assessment model for RCP2.6 scenario. Then, we estimated the land-use area required to sustain the required biofuel production to match the assumption of BECCS use in RCPs with a global process based crop model. In the evaluation, we also estimated the further changes in carbon emissions by the required land-use change due to differences in crop yield assumptions, which also take into account of climate change. The trade-offs between land-use for crop, biocrop, and natural vegetation low-carbon scenario are discussed using the integrated terrestrial modeling approach.

  1. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  2. Technology Roadmaps: Bioenergy for Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Technology Roadmap Bioenergy for Heat and Power highlights the importance of bioenergy in providing heat in the buildings sector and in industry, and shows what contribution it could make to meeting steadlily growing world electricity demand. The critical role of sustainability as well as the importance of international trade in meeting the projected demand for bioenergy, are highlighted in the roadmap, as well as the need for large-scale biomass plants in providing The roadmap identifies key actions by different stakeholders in the bioenergy sector, and sets out milestones for technology development in order to achieve a doubling of global bioenergy supply by 2050. It addresses the need for further R&D efforts, highlights measures to ensure sustainability of biomass production, and underlines the need for international collaboration to enhance the production and use of sustainable, modern bioenergy in different world regions.

  3. Navigating Bioenergy. Contributing to informed decision making on bioenergy issues

    Energy Technology Data Exchange (ETDEWEB)

    Vis, M.; Reumerman, P.; Frederiks, B. [BTG Biomass Technology Group, Enschede (Netherlands)

    2009-11-15

    In order to further contribute to sustainable global bioenergy development, UNIDO will this year be launching the Bioenergy Capacity Building Programme (BIOCAB), offering a comprehensive training package to policy makers and entrepreneurs aimed at enhancing their engagement in shaping a sustainable bioenergy industry in developing countries. The training package, disseminated through a network of key institutions and certified trainers, will consist of four modules covering the following subjects: Technologies and Processes, Policy, Socio-Economic and Environmental Issues, Financial and Project Development Issues, Industrial Applications for Productive Use. While designing the training package and its modules at a meeting hosted by UNIDO at headquarters in August 2008, experts reiterated a demand, previously expressed by UNIDO clients at various international fora, for an easy-to-read, practical and user-friendly introduction to certain contentious bioenergy issues. The expert meeting selected the most hotly-debated bioenergy issues and came up with the following eight topics: (1) Jatropha, the feedstock of the future?; (2) Biomethane, is it an underestimated energy source?; (3) Energy from Municipal Solid Waste, can this potential be realized?; (4) The Biorefinery Concept, how relevant is it for developing countries?; (5) Competition with Food, what are the facts in the food versus fuel discussion?; (6) Sustainability and Certification of Biomass, what are the benefits?; (7) Clean Development Mechanism, how does it work?; (8) Success Stories.

  4. 2015 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-28

    This report is an update to the 2013 report and provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2015. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This version features details on the two major bioenergy markets: biofuels and biopower and an overview of bioproducts that enable bioenergy production. The information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  5. Bioenergy for sustainable development: An African context

    Science.gov (United States)

    Mangoyana, Robert Blessing

    This paper assesses the sustainability concerns of bioenergy systems against the prevailing and potential long term conditions in Sub-Saharan Africa with a special attention on agricultural and forestry waste, and cultivated bioenergy sources. Existing knowledge and processes about bioenergy systems are brought into a “sustainability framework” to support debate and decisions about the implementation of bioenergy systems in the region. Bioenergy systems have been recommended based on the potential to (i) meet domestic energy demand and reduce fuel importation (ii) diversify rural economies and create employment (iii) reduce poverty, and (iv) provide net energy gains and positive environmental impacts. However, biofuels will compete with food crops for land, labour, capital and entrepreneurial skills. Moreover the environmental benefits of some feedstocks are questionable. These challenges are, however, surmountable. It is concluded that biomass energy production could be an effective way to achieve sustainable development for bioenergy pathways that (i) are less land intensive, (ii) have positive net energy gains and environmental benefits, and (iii) provide local socio-economic benefits. Feasibility evaluations which put these issues into perspective are vital for sustainable application of agricultural and forest based bioenergy systems in Sub-Saharan Africa. Such evaluations should consider the long run potential of biofuels accounting for demographic, economic and technological changes and the related implications.

  6. 2013 Bioenergy Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Moriarty, Kristi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Geiger, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-28

    This report provides a status of the markets and technology development involved in growing a domestic bioenergy economy as it existed at the end of 2013. It compiles and integrates information to provide a snapshot of the current state and historical trends influencing the development of bioenergy markets. This information is intended for policy-makers as well as technology developers and investors tracking bioenergy developments. It also highlights some of the key energy and regulatory drivers of bioenergy markets.

  7. Bioenergy systems

    International Nuclear Information System (INIS)

    Mitchell, C.P.

    1997-01-01

    The objective of this paper is to demonstrate that a bioenergy system has to be considered as an integrated process in which each stage or step interacts with other steps in the overall process. There are a number of stages in the supply and conversion of woody biomass for energy. Each step in the chain has implications for the next step and for overall system efficiency. The resource can take many forms and will have varying physical and chemical characteristics which will influence the efficiency and cost of conversion. The point in the supply chain at which size and moisture content is reduced and the manner in which it is done is influential in determining feedstock delivered cost and overall system costs. To illustrate the interactions within the overall system, the influence of the nature, size and moisture content of delivered feedstocks on costs of generating electricity via thermal conversion processes is examined using a model developed to investigate the inter-relationships between the stages in the supply chain. (author)

  8. Bioenergy 93 conference

    International Nuclear Information System (INIS)

    1993-01-01

    In this report the presentations given in the Bioenergy 93 Conference are published. The papers are grouped as follows: Opening addresses, biomass implementation strategies, nordic bioenergy research programs, production, handling and conversion of biofuels, combustion technology of biofuels and bioenergy visions

  9. Bioenergy as a Mitigation Measure

    Science.gov (United States)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    properties are managed. Simulated bioenergy potentials from 1901 to 2098 correspond to a significant percentage of the global energy demand and thus could potentially bring about considerable savings in carbon emissions. These potentials will be reported and compared to the energy demand. Analysis of their sensitivities to different land management scenarios will be presented as well.

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2004-07-28

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  11. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  12. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  13. Forest Carbon Accounting Considerations in US Bioenergy Policy

    Science.gov (United States)

    Reid A. Miner; Robert C. Abt; Jim L. Bowyer; Marilyn A. Buford; Robert W. Malmsheimer; Jay O' Laughlin; Elaine E. Oneil; Roger A. Sedjo; Kenneth E. Skog

    2014-01-01

    Four research-based insights are essential to understanding forest bioenergy and “carbon debts.” (1) As long as wood-producing land remains in forest, long-lived wood products and forest bioenergy reduce fossil fuel use and long-term carbon emission impacts. (2) Increased demand for wood can trigger investments that increase forest area and forest productivity and...

  14. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  15. 8. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2014-01-01

    This conference volume contains lectures and poster contributions with the following main topics: integrated biomass utilisation concepts; Solid bioenergy carrier; Bioenergy in the transport sector; Biogas. Seven papers are separately analyzed for this database. [de

  16. 11. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2017-01-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [de

  17. Bird communities and biomass yields in potential bioenergy grasslands.

    Science.gov (United States)

    Blank, Peter J; Sample, David W; Williams, Carol L; Turner, Monica G

    2014-01-01

    Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  18. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  19. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  20. Land-Use and Environmental Pressures Resulting from Current and Future Bioenergy Crop Expansion: A Review

    Science.gov (United States)

    Miyake, Saori; Renouf, Marguerite; Peterson, Ann; McAlpine, Clive; Smith, Carl

    2012-01-01

    Recent energy and climate policies, particularly in the developed world, have increased demand for bioenergy as an alternative, which has led to both direct and indirect land-use changes and an array of environmental and socio-economic concerns. A comprehensive understanding of the land-use dynamics of bioenergy crop production is essential for…

  1. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    Science.gov (United States)

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  2. LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Daniele Cocco

    2014-09-01

    Full Text Available This paper reports outcomes of life cycle assessments (LCAs of three different oleaginous bioenergy chains (oilseed rape, Ethiopian mustard and cardoon under Southern Europe conditions. Accurate data on field practices previously collected during a three-year study at two sites were used. The vegetable oil produced by oleaginous seeds was used for power generation in medium-speed diesel engines while the crop residues were used in steam power plants. For each bioenergy chain, the environmental impact related to cultivation, transportation of agricultural products and industrial conversion for power generation was evaluated by calculating cumulative energy demand, acidification potential and global warming potential. For all three bioenergy chains, the results of the LCA study show a considerable saving of primary energy (from 70 to 86 GJ·ha−1 and greenhouse gas emissions (from 4.1 to 5.2 t CO2·ha−1 in comparison to power generation from fossil fuels, although the acidification potential of these bioenergy chains may be twice that of conventional power generation. In addition, the study highlights that land use changes due to the cultivation of the abovementioned crops reduce soil organic content and therefore worsen and increase greenhouse gas emissions for all three bioenergy chains. The study also demonstrates that the exploitation of crop residues for energy production greatly contributes to managing environmental impact of the three bioenergy chains.

  3. Wide Spread Exploitations of Bioenergy

    OpenAIRE

    Rahman, Md. Mizanur; Paatero, Jukka V.; Lahdelma, Risto

    2016-01-01

    The recoverable proven reserves of fossil fuel sources are projected to be exhausted by the end of this century. In response to the exhaustion of fossil resources, there is a serious need to find alternative fuel sources. Bioenergy is one of the potential candidates to counteract the fossil-fuel depletion challenge. Despite bioenergy sources appear to be renewable and net-zero GHG emitting, bioenergy undergoes competition with food, feed and other crucial applications. Since earth’s eco syste...

  4. Finnish bioenergy research programme

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    Finland is a leading country in the use of biofuels and has excellent opportunities to increase the use of biofuels by up to 25-30 %. The Finnish Government has set an objective for the promotion of bioenergy. The aim is to increase the use of bioenergy by about 25 % from the present level by 2005, and the increment corresponds to 1.5 million tonnes of oil equivalent (toe) per year. The R and D work has been considered as an important factor to achieve this ambitious goal. Energy research was organised into a series of research programmes in 1988 in accordance with the proposal of Finnish Energy Research Committee. The object of the research programmes is to enhance research activities and to bundle individual projects together into larger research packages. The common target of the Finnish energy research programmes is to proceed from basic and applied research to product development and pilot operation, and after that to the first commercial applications, e.g. demonstrations. As the organisation of energy research to programmes has led to good results, the Finnish Ministry of Trade and Industry decided to go on with this practice by launching new six-year programmes in 1993-1998. One of these programmes is the Bioenergy Research Programme and the co-ordination of this programme is carried out by VTT Energy. Besides VTT Energy the Finnish Forest Research Institute, Work Efficiency Institute, Metsaeteho and University of Joensuu are participating in the programme 7 refs.

  5. Finnish bioenergy research

    Energy Technology Data Exchange (ETDEWEB)

    Malinen, H. [Technical Research Centre of Finland, Jyvaeskylae (Finland)

    1993-12-31

    Finland is one of the leading countries in the use of biofuels. The share of wood derived fuels of the total primary energy requirement was about 14% (ca. 4 million toe) and peat about 5% (1.4 million toe). The possibilities for increasing the use of biofuels in Finland are significant. There is theoretically about 10 million m{sup 3}/a (about 2 million toe/a) of harvestable wood. Areas suitable for fuel peat production (0.5 million ha) could produce ca. 420 million toe of peat. At present rates of use, the peat reserves are adequate for centuries. During the next few years 0.5--1 million hectares of fields withdrawn from farming could be used for biofuel production. The production potential of this field area is estimated to be about 0.2--0.5 million toe. In addition, the use of wastes in energy production could be increased. The aim of the new Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. New economically competitive biofuels, new equipment and methods for production, handling and use of biofuels will also be developed. The main research areas are production of wood fuels, peat production, use of bioenergy and conversion of biomass.

  6. Pectins, Endopolygalacturonases, and Bioenergy

    Science.gov (United States)

    Latarullo, Mariana B. G.; Tavares, Eveline Q. P.; Padilla, Gabriel; Leite, Débora C. C.; Buckeridge, Marcos S.

    2016-01-01

    The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs) discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger). The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes. PMID:27703463

  7. Pectins, Endopolygalacturonases, and Bioenergy

    Directory of Open Access Journals (Sweden)

    Mariana B. G. Latarullo

    2016-09-01

    Full Text Available The precise disassembly of the extracellular matrix of some plant species used as feedstocks for bioenergy production continues to be a major barrier to reach reasonable cost effective bioethanol production. One solution has been the use of pretreatments, which can be effective, but increase even more the cost of processing and also lead to loss of cell wall materials that could otherwise be used in industry. Although pectins are known to account for a relatively low proportion of walls of grasses, their role in recalcitrance to hydrolysis has been shown to be important. In this mini-review, we examine the importance of pectins for cell wall hydrolysis highlighting the work associated with bioenergy. Here we focus on the importance of endopolygalacturonases (EPGs discovered to date. The EPGs cataloged by CAZy were screened, revealing that most sequences, as well as the scarce structural work performed with EPGs, are from fungi (mostly Aspergillus niger. The comparisons among the EPG from different microorganisms, suggests that EPGs from bacteria and grasses display higher similarity than each of them with fungi. This compilation strongly suggests that structural and functional studies of EPGs, mainly from plants and bacteria, should be a priority of research regarding the use of pectinases for bioenergy production purposes.

  8. Growing Sugarcane for Bioenergy – Effects on the Soil

    NARCIS (Netherlands)

    Hartemink, A.E.

    2010-01-01

    An increasing area of sugarcane is being growing for the production of bioenergy. Sugarcane puts a high demands on the soil due to the use of heavy machinery and because large amounts of nutrients are removed with the harvest. Biocides and inorganic fertilizers introduces risks of groundwater

  9. Sustainability of bioenergy chains: the result is in the details

    NARCIS (Netherlands)

    van Dam, J.M.C.

    2009-01-01

    This thesis investigated how the feasibility and sustainability of large-scale bioenergy production, supply and use for local use or trade can be determined ex ante on a regional level, taking into account the complexities and variabilities of the underlying factors like food demand and land use.

  10. Sustainability constraints on UK bioenergy development

    International Nuclear Information System (INIS)

    Thornley, Patricia; Upham, Paul; Tomei, Julia

    2009-01-01

    Use of bioenergy as a renewable resource is increasing in many parts of the world and can generate significant environmental, economic and social benefits if managed with due regard to sustainability constraints. This work reviews the environmental, social and economic constraints on key feedstocks for UK heat, power and transport fuel. Key sustainability constraints include greenhouse gas savings achieved for different fuels, land availability, air quality impacts and facility siting. Applying those constraints, we estimate that existing technologies would facilitate a sustainability constrained level of medium-term bioenergy/biofuel supply to the UK of 4.9% of total energy demand, broken down into 4.3% of heat demands, 4.3% of electricity, and 5.8% of transport fuel. This suggests that attempts to increase the supply above these levels could have counterproductive sustainability impacts in the absence of compensating technology developments or identification of additional resources. The barriers that currently prevent this level of supply being achieved have been analysed and classified. This suggests that the biggest policy impacts would be in stimulating the market for heat demand in rural areas, supporting feedstock prices in a manner that incentivised efficient use/maximum greenhouse gas savings and targeting investment capital that improves yield and reduces land-take. (author)

  11. Energy policy and the role of bioenergy in Poland

    International Nuclear Information System (INIS)

    Nilsson, Lars J.; Pisarek, Marcin; Buriak, Jerzy; Oniszk-Poplawska, Anna; Bucko, Pawel; Ericsson, Karin; Jaworski, Lukasz

    2006-01-01

    Poland, as many other countries, has ambitions to increase the use of renewable energy sources. In this paper, we review the current status of bioenergy in Poland and make a critical assessment of the prospects for increasing the share of bioenergy in energy supply, including policy implications. Bioenergy use was about 4% (165 PJ) of primary energy use (3900 PJ) and 95% of renewable energy use (174 PJ) in 2003, mainly as firewood in the domestic sector. Targets have been set to increase the contribution of renewable energy to 7.5% in 2010, in accordance with the EU accession treaty, and to 14% in 2020. Bioenergy is expected to be the main contributor to reaching those targets. From a resource perspective, the use of bioenergy could at least double in the near term if straw, forestry residues, wood-waste, energy crops, biogas, and used wood were used for energy purposes. The long-term potential, assuming short rotation forestry on potentially available agricultural land is about one-third, or 1400 PJ, of current total primary energy use. However, in the near term, Poland is lacking fundamental driving forces for increasing the use of bioenergy (e.g., for meeting demand increases, improving supply security, or further reducing sulphur or greenhouse gas emissions). There is yet no coherent policy or strategy for supporting bioenergy. Co-firing with coal in large plants is an interesting option for creating demand and facilitating the development of a market for bioenergy. The renewable electricity quota obligation is likely to promote such co-firing but promising applications of bioenergy are also found in small- and medium-scale applications for heat production. Carbon taxes and, or, other financial support schemes targeted also at the heating sector are necessary in the near term in order to reach the 7.5% target. In addition, there is a need to support the development of supply infrastructure, change certain practices in forestry, coordinate RD and D efforts, and

  12. Smart bioenergy technologies and concepts for a more flexible bioenergy provision in future energy systems

    CERN Document Server

    2015-01-01

    Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greater use of renewable energy sources, which has resulted in a significant increase in the amount of biomass used for electricity, heat and transport fuel. The book begins with a review of market and resource base issues, and moves on to analyze the technical options for a more integrated bioenergy use. The analysis spans the ...

  13. Reconciling food security and bioenergy: priorities for action

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Science Division, Climate Change Science Inst.; Msangi, Siwa [International Food Policy Research Inst., Washington DC (United States); Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Bioenergy Sustainability, Environmental Science Division; Woods, Jeremy [Imperial College London, London (United Kingdom). Centre for Environmental Policy; Souza, Glaucia M. [Univ. of Sao Paulo (Brazil); Osseweijer, Patricia [Delft Univ. of Technology (Netherlands). Dept. of Biotechnology; Clancy, Joy S. [Univ. of Twente, Enschede (Netherlands). CSTM; Hilbert, Jorge A. [Rural Engineering Institute (INTA), Buenos Aires (Argentina); Johnson, Francis X. [Stockholm Environment Inst. Africa Centre, Nairobi (Kenya). World Agroforestry Centre (ICRAF); McDonnell, Patrick C. [BEE Energy, Nicasio CA (United States); Mugera, Harriet K. [World Bank, Washington D.C. (United States)

    2016-06-14

    Addressing the challenges of understanding and managing complex interactions among food security, biofuels, and land management requires a focus on specific contextual problems and opportunities. The United Nations 2030 Sustainable Development Goals prioritize food and energy security and bioenergy links these two priorities. Effective food security programs begin by clearly defining the problem and asking, What options will be effective to assist people at high risk? Headlines and cartoons that blame biofuels for food insecurity reflect good intentions but mislead the public and policy makers because they obscure or miss the main drivers of local food insecurity and opportunities for biofuels to contribute to solutions. Applying sustainability guidelines to bioenergy will help achieve near- and long- term goals to eradicate hunger. Priorities for achieving successful synergies between bioenergy and food security include (1) clarifying communications with clear and consistent terms, (2) recognizing that food and bioenergy do not compete for land but food and bioenergy systems can and do work together to improve resource management, (3) investing in innovations to build capacity and infrastructure such as rural agricultural extension and technology, (4) promoting stable prices that incentivize local production, (5) adopting flex crops that can provide food along with other products and services to society, and (6) engaging stakeholders in identifying and assessing specific opportunities for biofuels to improve food security. In conclusion, systematic monitoring and analysis to support adaptive management and continual improvement are essential elements to build synergies and help society equitably meet growing demands for both food and energy.

  14. Modeling Sustainable Bioenergy Feedstock Production in the Alps

    Science.gov (United States)

    Kraxner, Florian; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Pietsch, Stephan; Lakyda, Ivan; Serrano Leon, Hernan; Shchepashchenko, Dmitry; Shvidenko, Anatoly

    2016-04-01

    Sustainability of bioenergy is often indicated by the neutrality of emissions at the conversion site while the feedstock production site is assumed to be carbon neutral. Recent research shows that sustainability of bioenergy systems starts with feedstock management. Even if sustainable forest management is applied, different management types can impact ecosystem services substantially. This study examines different sustainable forest management systems together with an optimal planning of green-field bioenergy plants in the Alps. Two models - the biophysical global forest model (G4M) and a techno-economic engineering model for optimizing renewable energy systems (BeWhere) are implemented. G4M is applied in a forward looking manner in order to provide information on the forest under different management scenarios: (1) managing the forest for maximizing the carbon sequestration; or (2) managing the forest for maximizing the harvestable wood amount for bioenergy production. The results from the forest modelling are then picked up by the engineering model BeWhere, which optimizes the bioenergy production in terms of energy demand (power and heat demand by population) and supply (wood harvesting potentials), feedstock harvesting and transport costs, the location and capacity of the bioenergy plant as well as the energy distribution logistics with respect to heat and electricity (e.g. considering existing grids for electricity or district heating etc.). First results highlight the importance of considering ecosystem services under different scenarios and in a geographically explicit manner. While aiming at producing the same amount of bioenergy under both forest management scenarios, it turns out that in scenario (1) a substantially larger area (distributed across the Alps) will need to be used for producing (and harvesting) the necessary amount of feedstock than under scenario (2). This result clearly shows that scenario (2) has to be seen as an "intensification

  15. Halophytes as Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Rita Sharma

    2016-09-01

    Full Text Available Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops.

  16. Our Commitment to Bioenergy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-18

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) is committed to developing the resources, technologies, and systems needed to support a thriving bioenergy industry that protects natural resources and ad- vances environmental, economic, and social benefits. BETO’s Sustainability Technology Area proactively identifies and addresses issues that affect the scale-up potential, public acceptance, and long-term viability of advanced bioenergy systems; as a result, the area is critical to achieving BETO’s overall goals.

  17. Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology

    International Nuclear Information System (INIS)

    1997-01-01

    (Leading abstract). The conference ''Bioenergy '97: Nordic Bioenergy Conference, market, environment and technology'' took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  18. Bioenergy potentials from forestry to 2050. Preliminary results

    International Nuclear Information System (INIS)

    Smeets, E.; Faaij, A.; Lewandowski, I.

    2004-05-01

    In this study a bottom-up scenario analysis of the global bioenergy production potential is carried out, with specific attention for the impact of underlying factors, existing outlook studies on demand and supply and gaps in the knowledge base that explain the large range in estimates. Key variables are the demand for industrial roundwood and fuelwood, plantation establishment rates and natural forest growth. Key uncertainties are the supply of wood from trees outside and the impact of sustainable forest management (SFM) of yields. Results show that the world is capable of meeting the future demand for industrial roundwood and fuelwood, without further deforestation. The total potential of bioenergy from surplus forest growth and residues is estimated at 27 to 140 EJy -1 in 2050

  19. 2016 Bioenergy Industry Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Kristen L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Milbrandt, Anelia R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lewis, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwab, Amy A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-03-03

    This report provides a snapshot of the bioenergy industry status at the end of 2016. The report compliments other annual market reports from the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy offices and is supported by DOE’s Bioenergy Technologies Office (BETO). The 2016 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment International Energy Agency and industry reports with a focus on DOE stakeholder needs.

  20. Biomass for bioenergy

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott

    sources of biomass for energy purposes in the European Union. Estimation of European biomass resources is associated with significant uncertainty, and it is not sure if the European Union can meet its 2020 energy policy targets with biomass produced in the EU, although some countries hold sway over...... a total production of residues from these six crops of ~3.7 billion tonnes dry matter annually. North and South America; Eastern, South-Eastern and Southern Asia and Eastern Europe each produce more than 200 million tonnes dry matter annually. The theoretical energy potential from the selected crop......, where bio-ethanol production is integrated with combined heat and power production may improve the energy balance with about 30 % point and reach energy efficiencies almost comparable to those seen for conversion of petroleum into gasoline. Minimisation of GHG emissions from bioenergy production...

  1. Use of bioenergy in the Baltic Sea region. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Barz, M.; Ahlhaus, M. (eds.)

    2006-07-01

    The actual situation in our world can shortly be characterized by growing population and increasing energy demand, mainly covered by fossil fuels. This results in environmental as well as climate change problems. Renewable energies offer many opportunities to overcome these problems - they can provide heat and electricity as well as automotive fuels in environmentally friendly systems and thus contribute to lower the fossil fuels dependency. Biomass as the oldest renewable energy of mankind is still playing a dominant role as an energy carrier in some African and Asian regions, where biofuels are still used in traditional ways - mainly for cooking. On the other hand biomass has a huge potential to become a more important energy resource even in industrialized countries. All over the world the opportunities of biomass are accepted and biomass has become a common term in politics resulting in new strategic analyses, political documents, legislative actions and funding programs. A lot of modern and new high-tech solutions for bioenergy systems are already developed and others are under research. Aims of the actual developments are new bioenergy systems on the basis of regional biomass potentials in rural regions. The Baltic Sea Region offers a high potential to produce biofuels for different applications to fit the growing demand of heat, electricity and fuels. In combination with its industry and engineering skills the Baltic Sea Region is predestinated as a nucleus for further development and demonstration of advanced bioenergy solutions. In the result of the conference ''Contribution of Agriculture to Energy Production'', held in Tallinn, Estonia in October 2005 representatives from policy, economy and science identified a high potential and demand for bioenergy solutions and realized the necessity of establishment of an international network (Baltic Bioenergy Net - BaBEt) for information and know-how transfer between the Baltic States to foster

  2. 10. Rostock bioenergy forum. Proceedings

    International Nuclear Information System (INIS)

    Nelles, Michael

    2016-01-01

    Biomass energy not only contributes to the energy transition, but also for climate and resource protection. The main topics of the conference are: Alternative solid bioenergy sources; Optimizing the use of heat; Prospects for biofuels; Emission reduction through use of biofuels; Alternative biomass for biogas; Optimization and adjustment in the biogas sector; Flexibility of biogas plants; New uses of bioenergy. 12 contributions were recorded separately for the INIS database. [de

  3. Securing a bioenergy future without imports

    International Nuclear Information System (INIS)

    Welfle, Andrew; Gilbert, Paul; Thornley, Patricia

    2014-01-01

    The UK has legally binding renewable energy and greenhouse gas targets. Energy from biomass is anticipated to make major contributions to these. However there are concerns about the availability and sustainability of biomass for the bioenergy sector. A Biomass Resource Model has been developed that reflects the key biomass supply-chain dynamics and interactions determining resource availability, taking into account climate, food, land and other constraints. The model has been applied to the UK, developing four biomass resource scenarios to analyse resource availability and energy generation potential within different contexts. The model shows that indigenous biomass resources and energy crops could service up to 44% of UK energy demand by 2050 without impacting food systems. The scenarios show, residues from agriculture, forestry and industry provide the most robust resource, potentially providing up to 6.5% of primary energy demand by 2050. Waste resources are found to potentially provide up to 15.4% and specifically grown biomass and energy crops up to 22% of demand. The UK is therefore projected to have significant indigenous biomass resources to meet its targets. However the dominant biomass resource opportunities identified in the paper are not consistent with current UK bioenergy strategies, risking biomass deficit despite resource abundance. - Highlights: • Biomass Resource Model and Scenarios reflect biomass supply-chain dynamics to 2050. • High potential availability of biomass and energy crops without food systems impacts. • UK Indigenous biomass resource could service up to 44% of UK energy demand by 2050. • Robust residue resource from ongoing activities and large potential waste resource. • Indigenous resource abundance and the UK’s path towards increased resource deficit

  4. Bioenergy Sustainability in China: Potential and Impacts

    Science.gov (United States)

    Zhuang, Jie; Gentry, Randall W.; Yu, Gui-Rui; Sayler, Gary S.; Bickham, John W.

    2010-10-01

    The sustainability implications of bioenergy development strategies are large and complex. Unlike conventional agriculture, bioenergy production provides an opportunity to design systems for improving eco-environmental services. Different places have different goals and solutions for bioenergy development, but they all should adhere to the sustainability requirements of the environment, economy, and society. This article serves as a brief overview of China’s bioenergy development and as an introduction to this special issue on the impacts of bioenergy development in China. The eleven articles in this special issue present a range of perspectives and scenario analyses on bioenergy production and its impacts as well as potential barriers to its development. Five general themes are covered: status and goals, biomass resources, energy plants, environmental impacts, and economic and social impacts. The potential for bioenergy production in China is huge, particularly in the central north and northwest. China plans to develop a bioenergy capacity of 30GW by 2020. However, realization of this goal will require breakthroughs in bioenergy landscape design, energy plant biotechnology, legislation, incentive policy, and conversion facilities. Our analyses suggest that (1) the linkage between bioenergy, environment, and economy are often circular rather than linear in nature; (2) sustainability is a core concept in bioenergy design and the ultimate goal of bioenergy development; and (3) each bioenergy development scheme must be region-specific and designed to solve local environmental and agricultural problems.

  5. Management swing potential for bioenergy crops

    NARCIS (Netherlands)

    Davis, S.C.; Boddey, R.M.; Alves, B.J.R.; Cowie, A.L.; George, B.H.; Ogle, S.M.; Smith, P.; Noordwijk, van M.; Wijk, van M.T.

    2013-01-01

    Bioenergy crops are often classified (and subsequently regulated) according to species that have been evaluated as environmentally beneficial or detrimental, but in practice, management decisions rather than species per se can determine the overall environmental impact of a bioenergy production

  6. Global warming potential impact of bioenergy systems

    Directory of Open Access Journals (Sweden)

    Wenzel H.

    2012-10-01

    Full Text Available Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest GHG emission reduction.

  7. Proceedings of the CANBIO workshop on Canadian bioenergy : export markets vs. domestic business opportunities

    International Nuclear Information System (INIS)

    2006-01-01

    While there is a strong European demand for bioenergy products such as wood pellets, Canadian bioenergy markets remain relatively subdued. Organized by the Canadian Bioenergy Association, this workshop explored various national and international development opportunities for wood residue and bioenergy products. BioOil markets in Europe were considered as a potential market for Canadian bioenergy products. Various European and Canadian incentive programs and research initiatives were outlined. New technologies in bioenergy refinement practices were explored and new development in syngas production techniques were introduced. It was suggested that district heating programs and gasification fuels may provide new domestic markets for bioenergy products. Resource opportunities in the electricity sector were evaluated, and wood residue production trends in Canada were examined. It was noted that the mountain pine beetle (MPB) infestation in British Columbia (BC) has increased wood residue production surpluses in the province, which has resulted in increased sawmill activity. Sixteen presentations were given at this workshop, 4 of which were catalogued separately for inclusion in this database. refs., tabs., figs

  8. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    Science.gov (United States)

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  9. Bioenergy from sisal residues

    Energy Technology Data Exchange (ETDEWEB)

    Jungersen, G. [Dansk Teknologisk Inst. (Denmark); Kivaisi, A.; Rubindamayugi, M. [Univ. of Dar es Salaam (Tanzania, United Republic of)

    1998-05-01

    The main objectives of this report are: To analyse the bioenergy potential of the Tanzanian agro-industries, with special emphasis on the Sisal industry, the largest producer of agro-industrial residues in Tanzania; and to upgrade the human capacity and research potential of the Applied Microbiology Unit at the University of Dar es Salaam, in order to ensure a scientific and technological support for future operation and implementation of biogas facilities and anaerobic water treatment systems. The experimental work on sisal residues contains the following issues: Optimal reactor set-up and performance; Pre-treatment methods for treatment of fibre fraction in order to increase the methane yield; Evaluation of the requirement for nutrient addition; Evaluation of the potential for bioethanol production from sisal bulbs. The processing of sisal leaves into dry fibres (decortication) has traditionally been done by the wet processing method, which consumes considerable quantities of water and produces large quantities of waste water. The Tanzania Sisal Authority (TSA) is now developing a dry decortication method, which consumes less water and produces a waste product with 12-15% TS, which is feasible for treatment in CSTR systems (Continously Stirred Tank Reactors). (EG)

  10. Combining Bioenergy with CCS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a carbon reduction technology that offers permanent net removal of carbon dioxide (CO2) from the atmosphere. This has been termed negative carbon dioxide emissions, and offers a significant advantage over other mitigation alternatives, which only decrease the amount of emissions to the atmosphere. The benefits inherent within this technology are currently receiving increased attention from policy makers. To facilitate the development of appropriate policy incentives, this paper reviews the treatment of negative carbon dioxide emissions under current and planned international carbon accounting frameworks. It finds that, while current frameworks provide limited guidance, proposed and revised guidelines could provide an environmentally sound reporting framework for BECCS. However, the paper also notes that, as they currently stand, new guidelines do not tackle a critical issue that has implications for all biomass energy systems, namely the overall carbon footprint of biomass production and use. It recommends that, to the best extent possible, all carbon impacts of BECCS are fully reflected in carbon reporting and accounting systems under the UNFCCC and Kyoto Protocol.

  11. Dynamic analysis of policy drivers for bioenergy commodity markets

    International Nuclear Information System (INIS)

    Jeffers, Robert F.; Jacobson, Jacob J.; Searcy, Erin M.

    2013-01-01

    Biomass is increasingly being considered as a feedstock to provide a clean and renewable source of energy in the form of both liquid fuels and electric power. In the United States, the biofuels and biopower industries are regulated by different policies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets given policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand in their projections, and that GHG-limiting policy would partially shield both industries from export dominance. - Highlights: ► We model a United States bioenergy feedstock commodity market. ► Three buyers compete for biomass: biopower, biofuels, and foreign exports. ► The presented methodology improves on dynamic economic equilibrium theory. ► With current policy incentives and ignoring exports, biofuels dominates the market. ► Overseas biomass demand could dominate unless a CO 2 -limiting policy is enacted.

  12. Bioenergy Knowledge Discovery Framework (KDF) Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    The Bioenergy Knowledge Discovery Framework (KDF) is an online collaboration and geospatial analysis tool that allows researchers, policymakers, and investors to explore and engage the latest bioenergy research. This publication describes how the KDF harnesses Web 2.0 and social networking technologies to build a collective knowledge system that facilitates collaborative production, integration, and analysis of bioenergy-related information.

  13. Bioenergy research advances and applications

    CERN Document Server

    Gupta, Vijai G; Kubicek, Christian P; Saddler, Jack; Xu, Feng

    2014-01-01

    Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post...

  14. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  15. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  16. Moderne bioenergi har store muligheder

    DEFF Research Database (Denmark)

    Larsen, Hans Hvidtfeldt; Kossmann, J.; Sønderberg Petersen, L.

    2003-01-01

    Bioenergi er energi, der stammer fra vedvarende kilder af biologisk oprindelse. Normalt bruges energiafgrøder dyrket specielt til formålet, eller biprodukter fra landbrug, skovbrug eller fiskeri. Eksempler på bioenergikilder er træbrændsel, bagasse(udpressede sukkerrør), organisk affald, biogas og...

  17. IEA bioenergy annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  18. IEA Bioenergy. Annual report 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given

  19. Assessment of renewable bioenergy application

    DEFF Research Database (Denmark)

    Kronborg Jensen, Jesper; Govindan, Kannan

    2014-01-01

    into biogas. In order to validate the proposed options of bioenergy application, we considered a food processing company in Denmark as a case company in a single in-depth case study. In the case studied, the produced biogas is to be utilized in one of two options at a bakery site: To substitute natural gas...

  20. IEA bioenergy annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The report describes the organization and the results of the recently completed and the ongoing tasks. Ongoing tasks 1995 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Waste (Task XIV) and Greenhouse Gas Balances of Bioenergy Systems (Task XV). Lists of publications from the different tasks are given. 151 refs

  1. IEA Bioenergy task 40. Country report for the Netherlands 2007

    International Nuclear Information System (INIS)

    Sikkema, R.; Junginger, M.; Faaij, A.

    2007-12-01

    Short-term objectives of the IEA Bioenergy Task 40 'Sustainable International Bio-energy Trade: Securing Supply and Demand' are amongst other objectives to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands and is an extended update of previous reports (2005 and 2006)

  2. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  3. The future of bioenergy; Die Zukunft der Bioenergie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This volume contains the following five contributions: 1. The impact of the governmental biogas production on agricultural rents in Germany. An econometric study (Hendrik Garvert); 2. Biogas as price drivers on the land and rental market? An Empirical Analysis (Uwe Latacz-Lohmann); 3. Analysis of comparative advantage of bioenergy in electricity and heat production. Greenhouse gas abatement and mitigation costs in Brandenburg (Lukas Scholz); 4. Flexibility potential of biogas and biomethane CHP in the investment portfolio (Matthias Edel); 5. Legal possibilities and limitations of a reform of the system for the promotion of bioenergy (Jose Martinez). [German] Dieser Band enthaelt folgende fuenf Themenbeitraege: 1. Die Auswirkungen der staatlichen Biogasfoerderung auf landwirtschaftliche Pachtpreise in Deutschland. Eine oekonometrische Untersuchung (Hendrik Garvert); 2. Biogas als Preistreiber am Bodenmarkt und Pachtmarkt? Eine empirische Analyse (Uwe Latacz-Lohmann); 3. Analyse komparativer Kostenvorteile von Bioenergielinien in der Strom- und Waermeproduktion Treibhausgasvermeidung und Vermeidungskosten in Brandenburg (Lukas Scholz); 4. Flexibilisierungspotenzial von Biogas- und Biomethan-BHKWs im Anlagenbestand (Matthias Edel); 5. Rechtliche Moeglichkeiten und Grenzen einer Reform des Systems zur Foerderung der Bioenergie (Jose Martinez).

  4. Strategy for increased development of bio-energy; Strategi for oekt utbygging av bioenergi

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    The goal for the bio-energy strategy is to secure goal-oriented and coordinated effort towards increased development of bio-energy by 14 TWh within 2020. The increase in development of bio-energy is important because it reduces greenhouse gases, contribute to industrial and commercial development and strengthen the reliability of energy supply

  5. Bioenergy. The manifold renewable energy. 4. compl. rev. ed.; Bioenergie. Die vielfaeltige erneuerbare Energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    Bioenergy is the most important renewable energy source in Germany. With about 70 percent bioenergy contributes to the largest share of energy supply from renewable energy sources. This brochure provides an overview of the various possibilities, advantages and opportunities in the use of biomass and bioenergy.

  6. Bioenergy Knowledge Discovery Framework Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-07-01

    The Bioenergy Knowledge Discovery Framework (KDF) supports the development of a sustainable bioenergy industry by providing access to a variety of data sets, publications, and collaboration and mapping tools that support bioenergy research, analysis, and decision making. In the KDF, users can search for information, contribute data, and use the tools and map interface to synthesize, analyze, and visualize information in a spatially integrated manner.

  7. Biofuel and Bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies

    International Nuclear Information System (INIS)

    Wakker, A.; Egging, R.; Van Thuijl, E.; Van Tilburg, X.; Deurwaarder, E.P.; De Lange, T.J.; Berndes, G.; Hansson, J.

    2005-11-01

    This report is published within the framework of the European Commission-supported project 'Clear Views on Clean Fuels' or VIEWLS. The overall objectives of this project are to provide structured and clear data on the availability and performance of biofuel and to identify the possibilities and strategies towards large-scale sustainable production, use and trading of biofuels for the transport sector in Europe, including Central and Eastern European Countries (CEEC). This reports constitutes the outcome of the Work Package 5 (WP5) of the VIEWLS project. In WP5 the EU biofuels and bioenergy markets are modelled with the aim to conduct quantitative analyses on the production and costs of biofuels and on the resulting market structure and supply chains. In a bigger context, where possible, WP5 aims also to provide insight into larger socio-economic impacts of bioenergy trade within Europe. The objective of this research is to develop a cost efficient biofuel strategy for Europe in terms of biofuel production, cost and trade, and to assess its larger impact on bioenergy markets and trade up to 2030. Based on the biomass availability and associated costs within EU25, under different conditions, scenarios for biofuels production and cost can be constructed using quantitative modelling tools. Combining this with (cost) data on biofuel conversion technologies and transport of biomass and biofuels, the lowest cost biofuel supply chain given a certain demand predetermined by the biofuels Directive can be designed. In a broader context, this is supplemented by a design of a sustainable bioenergy supply chain in view of the fact that biomass-heat, biomass-electricity and biofuels are competing for the same biomass resources. In other words, the scarcity of bioenergy crops, as manifested through overall bioenergy demand, is an essential variable in bioenergy scenarios

  8. IEA Bioenergy. Annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  9. IEA Bioenergy. Annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report describes the organization and the results of recently completed and ongoing tasks. Ongoing tasks in 1997 were: Biomass Production, Harvesting and Supply (Task XII); Biomass Utilization (Task XIII); Energy Recovery from Municipal Solid Waste (Task XIV); Greenhouse Gas Balances of Bioenergy Systems (Task XV); and Technology Assessment Studies for the Conversion of Cellulosic Materials to Ethanol in Sweden (Task XVI). Lists of publications from the different tasks are given

  10. Developments in international bioenergy trade

    International Nuclear Information System (INIS)

    Junginger, Martin; Faaij, Andre; Wit, Marc de; Bolkesjoe, Torjus; Bradley, Douglas; Dolzan, Paulo; Piacente, Erik; Walter, Arnaldo da Silva; Heinimoe, Jussi; Hektor, Bo; Leistad, Oeyvind; Ling, Erik; Perry, Miles; Rosillo-Calle, Frank; Ryckmans, Yves; Schouwenberg, Peter-Paul; Solberg, Birger; Troemborg, Erik

    2008-01-01

    The aim of this paper is to present a synthesis of the main developments and drivers of international bioenergy trade in IEA Bioenergy Task 40 member countries, based on various country reports written by Task 40 members. Special attention is given to pellet and ethanol trade. In many European countries such as Belgium, Finland, the Netherlands, Sweden and the UK, imported biomass contributes already significantly (between 21% and 43%) to total biomass use. Wood pellets are currently exported by Canada, Finland and (to a small extent) Brazil and Norway, and imported by Sweden, Belgium, the Netherlands, and the UK. In the Netherlands and Belgium, pellet imports nowadays contribute to a major share to total renewable electricity production. Trade in bio-ethanol is another example of a rapidly growing international market. With the EU-wide target of 5.75% biofuels for transportation in 2010 (and 10% in 2020), exports from Brazil and other countries to Europe are likely to rise as well. Major drivers for international bioenergy trade in general are the large resource potentials and relatively low production costs in producing countries such as Canada and Brazil, and high fossil fuel prices and various policy incentives to stimulate biomass use in importing countries. However, the logistic infrastructure both in exporting and importing countries needs to be developed to access larger physical biomass volumes and to reach other (i.e. smaller) end-consumers. It is concluded that international bioenergy trade is growing rapidly, far beyond what was deemed possible only a few years ago, and may in the future in some Task 40 countries surpass domestic biomass use, especially for specific applications (e.g. transport fuels). (author)

  11. Bioenergy Status Document 2011; Statusdocument Bio-energie 2011

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.

    2011-03-15

    The Dutch status document on bio-energy has been updated with data for the year 2011. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets. The status document shows there has been a slight increase in the share of bio-energy in overall energy consumption as well as in the total amount of renewable energy generated (which now stands at a little over 4% of gross final consumption). The question, however, is whether this growth is sufficient to meet the European target of 14% renewables in 2020. The limited growth is due partly to the decrease in the amount of energy generated in the category 'other incineration'. In addition, there was a decline in the physical delivery of transport biofuels because certain types of fuel can be 'double-counted' in the records, although they do not contribute to the 14% target. This document provides an overview of the amount of energy derived from biomass, a description of the current bio-energy policy framework and a discussion of the extent to which the Netherlands is on track for securing European renewable energy targets [Dutch] Het statusdocument bio-energie 2011 geeft de huidige status weer van bioenergie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken aan overheden en marktpartijen in de ontwikkelingen van bio-energie. De kabinetsdoelstellingen voor hernieuwbare energie zijn conform de doelstellingen uit de richtlijn voor hernieuwbare energie (2009/28/EG), die is vastgesteld door de EC. In 2020 moet 14% van het nationale bruto finaal eindgebruik afkomstig zijn van hernieuwbare bronnen, de Nederlandse overheid schat dat dat overeenkomt met 300 PJ. Naar schatting is in 2011 ongeveer 88 PJ aan hernieuwbare energie geproduceerd, ongeveer evenveel

  12. Watershed scale impacts of bioenergy, landscape changes, and ecosystem response

    Science.gov (United States)

    Chaubey, Indrajeet; Cibin, Raj; Chiang, Li-Chi

    2013-04-01

    In recent years, high US gasoline prices and national security concerns have prompted a renewed interest in alternative fuel sources to meet increasing energy demands, particularly by the transportation sector. Food and animal feed crops, such as corn and soybean, sugarcane, residue from these crops, and cellulosic perennial crops grown specifically to produce bioenergy (e.g. switchgrass, Miscanthus, mixed grasses), and fast growing trees (e.g. hybrid poplar) are expected to provide the majority of the biofeedstock for energy production. One of the grand challenges in supplying large quantities of grain-based and lignocellulosic materials for the production of biofuels is ensuring that they are produced in environmentally sustainable and economically viable manner. Feedstock selection will vary geographically based on regional adaptability, productivity, and reliability. Changes in land use and management practices related to biofeedstock production may have potential impacts on water quantity and quality, sediments, and pesticides and nutrient losses, and these impacts may be exacerbated by climate variability and change. We have made many improvements in the currently available biophysical models (e.g. Soil and Water Assessment Tool or SWAT model) to evaluate sustainability of energy crop production. We have utilized the improved model to evaluate impacts of both annual (e.g. corn) and perennial bioenergy crops (e.g. Miscanthus and switchgrass at) on hydrology and water quality under the following plausible bioenergy crop production scenarios: (1) at highly erodible areas; (2) at agriculturally marginal areas; (3) at pasture areas; (4) crop residue (corn stover) removal; and (5) combinations of above scenarios. Overall results indicated improvement in water quality with introduction of perennial energy crops. Stream flow at the watershed outlet was reduced under energy crop production scenarios and ranged between 0.3% and 5% across scenarios. Erosion and sediment

  13. Climate effects of wood used for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Ros, Jan P.M.; Van Minnen, Jelle G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands); Arets, Eric J.M.M. [Alterra, Wageningen University WUR, Wageningen (Netherlands)

    2013-08-15

    of carbon. The same is likely to be true for managed forests in other temperate regions. If wood from additional felling is used, it would be most effective to use it in products that stay in circulation for a long time, only to be used for energy at the end of its service life. An increase in wood demand may lead to an intensification of forest management, which may temporarily increase carbon sequestration rates and biomass yields. This would eventually reduce the payback times. However, it must be noted that it would still take a substantial amount of time for the intensification of forest management to become effective, especially when it includes drastic measures, such as converting natural forests into plantations. Short rotation plantations with fast growing trees on agricultural land may be another option, but in these cases there are similarities with the direct and indirect land-use change effects related to energy crops. Further analysis is required to enable a clear judgment on the impact of these options. Products are not the only place of storing carbon with a beneficial effect on climate change. The combination of bioenergy and carbon capture and storage (CCS) on large industrial sites where biomass is converted into energy carriers, such as transport fuel and electricity, is projected to be beneficial, as well. Even landfill sites may serve as storage of carbon in wood waste, as pieces of wood hardly degrade.

  14. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  15. An outlook for sustainable forest bioenergy production in the Lake States

    Science.gov (United States)

    Dennis R. Becker; Kenneth Skog; Allison Hellman; Kathleen E. Halvorsen; Terry Mace

    2009-01-01

    The Lake States region of Minnesota, Wisconsin and Michigan offers significant potential for bioenergy production. We examine the sustainability of regional forest biomass use in the context of existing thermal heating, electricity, and biofuels production, projected resource needs over the next decade including existing forest product market demand, and impacts on...

  16. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  17. Development of a tool to model European biomass trade : Report for IEA Bioenergy Task 40

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Junginger, H.M.; Resch, G.; Matzenberger, J.; Panzer, C.; Pelkmans, L.

    2011-01-01

    This report investigated the potential of future intra- and inter-European trade of solid biomass for bioenergy purposes taking country to country specific intermodal transport routes into account and matching supply and demand for energy crops, forestry products and residues and agricultural

  18. Land-Use Change and Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-01

    This publication describes the Biomass Program’s efforts to examine the intersection of land-use change and bioenergy production. It describes legislation requiring land-use change assessments, key data and modeling challenges, and the research needs to better assess and understand the impact of bioenergy policy on land-use decisions.

  19. Bioenergy has a key role to play!

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo

    2010-01-01

    Key note speach - Opening seremony of the 6.th International Bioenergy Conference organized by NASU - Kiev, Ukraine; www.biomass.kiev.ua;......Key note speach - Opening seremony of the 6.th International Bioenergy Conference organized by NASU - Kiev, Ukraine; www.biomass.kiev.ua;...

  20. Ethical and legal challenges in bioenergy governance

    DEFF Research Database (Denmark)

    Gamborg, Christian; Anker, Helle Tegner; Sandøe, Peter

    2014-01-01

    The article focuses on the interplay between two factors giving rise to friction in bioenergy governance: profound value disagreements (e.g. the prioritizing of carbon concerns like worries over GHG emissions savings over non-carbon related concerns) and regulatory complexity (in terms of regulat...... about such factors, and about the inherent trade-offs in bioenergy governance....

  1. Bioenergy in energy transformation and climate management

    NARCIS (Netherlands)

    Rose, S.K.; Kriegler, E.; Bibas, R.; Calvin, K.; Popp, A.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Weyant, J.

    2014-01-01

    This study explores the importance of bioenergy to potential future energy transformation and climate change management. Using a large inter-model comparison of 15 models, we comprehensively characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run

  2. Feed or bioenergy production from agri-industrial residues?

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Astrup, Thomas Fruergaard

    consequences on the food/feed market, or on the carbon balance of the soil. The first are commonly called indirect land-use changes (iLUC), as they cause an increase in the international demand of a food/feed product, finally inducing an expansion of cropland into other ecosystems. Failing to account...... for these consequences may lead to misrepresent the actual environmental impacts. This study quantified, by use of consequential life cycle assessment (cLCA), the environmental impacts associated with a number of bioenergy scenarios involving selected agri-industrial residues. Three relevant conversion pathways were...

  3. Large-scale bioenergy production: how to resolve sustainability trade-offs?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Bodirsky, Benjamin Leon; Weindl, Isabelle; Biewald, Anne; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Klein, David; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Stevanovic, Miodrag

    2018-02-01

    Large-scale 2nd generation bioenergy deployment is a key element of 1.5 °C and 2 °C transformation pathways. However, large-scale bioenergy production might have negative sustainability implications and thus may conflict with the Sustainable Development Goal (SDG) agenda. Here, we carry out a multi-criteria sustainability assessment of large-scale bioenergy crop production throughout the 21st century (300 EJ in 2100) using a global land-use model. Our analysis indicates that large-scale bioenergy production without complementary measures results in negative effects on the following sustainability indicators: deforestation, CO2 emissions from land-use change, nitrogen losses, unsustainable water withdrawals and food prices. One of our main findings is that single-sector environmental protection measures next to large-scale bioenergy production are prone to involve trade-offs among these sustainability indicators—at least in the absence of more efficient land or water resource use. For instance, if bioenergy production is accompanied by forest protection, deforestation and associated emissions (SDGs 13 and 15) decline substantially whereas food prices (SDG 2) increase. However, our study also shows that this trade-off strongly depends on the development of future food demand. In contrast to environmental protection measures, we find that agricultural intensification lowers some side-effects of bioenergy production substantially (SDGs 13 and 15) without generating new trade-offs—at least among the sustainability indicators considered here. Moreover, our results indicate that a combination of forest and water protection schemes, improved fertilization efficiency, and agricultural intensification would reduce the side-effects of bioenergy production most comprehensively. However, although our study includes more sustainability indicators than previous studies on bioenergy side-effects, our study represents only a small subset of all indicators relevant for the

  4. Sustainability analysis of bioenergy based land use change under climate change and variability

    Science.gov (United States)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water

  5. IEA Bioenergy Annual Report 1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-31

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  6. IEA Bioenergy Annual Report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The report describes the work in the Executive Committee and includes short reports from the four tasks which have been in operation 1992-94: Task VIII - Efficient and Environmentally-Sound Biomass Production Systems; Task IX - Harvesting and Supply of Woody Biomass for Energy; Task X - Biomass Utilization; Task XI - The Conversion of Municipal Solid Waste Feedstocks to Energy. The three new tasks (XII-XIV) for the period 1995-97 approved during 1994 are presented in the report. At the end of 1994 there were sixteen Contracting Parties to the IEA Bioenergy Agreement - Fifteen countries plus the European Commission. 164 refs

  7. The market for bioenergy in Europe

    International Nuclear Information System (INIS)

    Kopetz, H.

    1997-01-01

    Conference paper. The demand for energy in Europe at present amounts to 16 PWh. Of this, 50% is needed for heating, 27% for transportation, 23% for light, communication and power. The European Commission in 1996 proposed that the share of renewables should be doubled to 12% by 2010. It is calculated that 3/4 of the supply of renewables must be supplied by biomass. A comprehensive energy crop programme is needed to guarantee the supply. According to calculations, 77% of the bioenergy supply will be used to deliver heat. For small heating installations financial support is necessary to overcome the investment costs. It is recommended that biomass based district heating grids should be subsidized by a joint programme of the Commission and the national governments. For industrial users little or no subsidies are required. It is suggested that the members of the EU should submit to the commission regional heat concepts, ''heat from biomass'', of a certain specified content. The necessary investment should come from private investors, from public money and from the EU. Green electricity is a way to promote renewable energy resources. As a realistic target for electricity from biomass within 12 years, 80 TWh is proposed. The production of raw materials for the energy sector on set-aside land is unsuccessful because of the changing set-aside rate. Some remedial actions are proposed

  8. Impacts of Bioenergy Policies on Land-Use Change in Nigeria

    Directory of Open Access Journals (Sweden)

    Stanley U. Okoro

    2018-01-01

    Full Text Available In recent years, bioenergy policies have increased the competition for land as well as the risk of adverse environmental impacts resulting from deforestation and greenhouse gas emissions (GHGs. Primary land-use objectives confronting society today include meeting the growing demand for agricultural products, especially energy crops, preserving essential ecosystem services for human well-being and long-run agrarian production, and contributing to the climate policy target. Here, future agricultural, societal and environmental consequences of bioenergy policies under different global climate and societal development scenarios were assessed using a novel Forest and Agricultural Sector Optimization Model for Nigeria (NGA–FASOM. The results reveal that, in Nigeria, meeting emission reduction requires an implementation of a minimum carbon price of $80/ton within the forest and agricultural sectors. A carbon price alone is not sufficient to preserve the remaining forests and pasture land in Nigeria when bioenergy is subsidized. Furthermore, the result shows that subsidy on bioenergy does not have any significant effect on the total social welfare. The findings in this study provide a guide for policymakers in designing appropriate policies addressing bioenergy industry issues in Nigeria.

  9. Production of bio-energies

    International Nuclear Information System (INIS)

    Gurtler, J.L.; Femenias, A.; Blondy, J.

    2009-01-01

    After having indicated the various possible origins of biomass, this paper considers the issue of bio-energies, i.e., energies produced with biomass related to forest or agriculture production. Some indicators are defined (share of renewable energies, share of biomass in the energy production and consumption, number of production units). Stake holders are identified. Then, major and emerging trends are identified and discussed. The major trends are: development and diversification of renewable energies, development of bio-fuels with the support of incentive policies, prevalence of the wood-energy sector on the whole renewable energies, increase of surfaces dedicated to bio-fuels since the end of the 1990's, a French biogas sector which is late with respect to other countries. The emerging trends are: the important role of oil price in the development of bio-fuels, a necessary public support for the development of biogas, mobilization of research and development of competitiveness poles for bio-industries. Some prospective issues are also discussed in terms of uncertainties (soil availabilities, environmental performance of bio-fuels, available biomass resource, need of a technological advance, and evolution of energy needs on a medium term, tax and public policy). Three hypotheses of bio-energy evolutions are discussed

  10. Monetization of Environmental Externalities (Emissions from Bioenergy

    Directory of Open Access Journals (Sweden)

    Isabelle BROSE

    2008-01-01

    Full Text Available Bioenergy from agriculture is today in the heart of sustainabledevelopment, integrating its key components: environment and climate change,energy economics and energy supply, agriculture, rural and social development.Each bioenergy production route presents externalities that must be assessed inorder to compare one bioenergy route to another (bioenergy route. The lack ofprimary and reliable data on externalities is, nevertheless, an important nontechnologicalbarrier to the implementation of the best (bioenergy routes. In thisarticle, we want to monetize one environmental externality from bioenergy:emissions (GHG: CO2, CH4, N2O, O3; CO, NOx, SO2, metal, and PM. We have tomonetize emissions on the basis of their effects on health, global warming, and soiland water quality. Emissions will be quantified through Life Cycle Analysis (LCAand ECOINVENT database. Impacts on health will be monetized on the basis ofmortality (number of life expectancy years lost multiplied by Value Of Life Year(VOLY and morbidity (number of ill persons multiplied by Cost Of Illness(COI. Impacts on global warming will be monetized by Benefits Transfers fromthe Stern Review and its critics. Finally, impacts on soil and water quality will bemonetized by Averting Behaviour or Defensive Expenses methods. Monetizationresults will be gathered, weighted, and incorporated in states and firms’ decisionmakingtools. They would enhance capacity of policy makers and managers tochose the best (bioenergy routes.

  11. BIOENERGY AND ITS CONTRIBUTION TO REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Flaška Filip

    2011-01-01

    Full Text Available The paper deals with bioenergy as an innovative source of regional development in Europe.It provides overview about main drivers and barriers to bioenergy implementation andemphases the role of potential socio-economic factors. Brief summary of real contributionto regional development in Germany, Austria and Norway is presented. The paper analyzesproblems and benefits of Slovak bioenergy project in town Detva as well. The finalsuggestions focus on creating effective information campaign in combination withappropriate tax measures and setting up conditions for better utilization of municipalorganic waste.

  12. 2010 World bio-energy conference

    International Nuclear Information System (INIS)

    2010-01-01

    After having evoked the bio-energy price awarded to a Brazilian for his works on the use of eucalyptus as energy source, this report proposes a synthesis of the highlights of the conference: discussions about sustainability, bio-energies as an opportunity for developing countries, the success of bio-energies in Sweden, and more particularly some technological advances in the field of biofuels: a bio-LPG by Biofuel-solution AB, catalysis, bio-diesel from different products in a Swedish farm, a second generation ethanol by the Danish company Inbicon, a large scale methanization in Goteborg, a bio-refinery concept in Sweden, bio-gases

  13. Time dependent policy-based access control

    DEFF Research Database (Denmark)

    Vasilikos, Panagiotis; Nielson, Flemming; Nielson, Hanne Riis

    2017-01-01

    Access control policies are essential to determine who is allowed to access data in a system without compromising the data's security. However, applications inside a distributed environment may require those policies to be dependent on the actual content of the data, the flow of information, while...... also on other attributes of the environment such as the time. In this paper, we use systems of Timed Automata to model distributed systems and we present a logic in which one can express time-dependent policies for access control. We show how a fragment of our logic can be reduced to a logic...... that current model checkers for Timed Automata such as UPPAAL can handle and we present a translator that performs this reduction. We then use our translator and UPPAAL to enforce time-dependent policy-based access control on an example application from the aerospace industry....

  14. Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology; Bioenergi `97: nordisk bioenergikonferanse, marked, miljoe og teknikk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    (Leading abstract). The conference ``Bioenergy `97: Nordic Bioenergy Conference, market, environment and technology`` took place in Oslo, Norway, 7-8 Oct 1997. The conference papers are grouped under three headings: (1) The nordic energy market. 12 papers. (2) Production and sale of biofuels. 8 papers. (3) Conversion and utilization of biofuels. With subsections New technologies, 4 papers, and Power/heat production from biofuels, 4 papers

  15. The Controversies over Bioenergy in Denmark

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Andersen, Bente Hessellund

    2012-01-01

    for processing of biomass for biofuels. The alignment with the private car regime is strong, because biofuel enables continuation of fuel-driven vehicles as dominating transportation mode. Danish farmers see manure as important source for biogas while arguing for reduction of climate impact and nuisances from......Based on the approach of 'arena of development' controversies over bioenergy in the shaping of a Danish climate strategy are analyzed as a contribution to a sustainable transition perspective on bioenergy in industrialized societies with substantial agricultural production. Bioenergy plays...... a prominent role in several Danish climate and energy plans, alongside with wind and solar energy, and energy savings. There are major controversies about targets for bioenergy with respect to acceptable types, sources and amounts of biomass. Strong path dependency is identified. Energy companies in Denmark...

  16. 2013 Bioenergy Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2013 U.S. Department of Energy Bioenergy Technologies Office's Peer Review meeting.

  17. Sustainability of bioenergy chains. The result is in the details

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, J.M.C.

    2009-05-13

    This thesis investigated how the feasibility and sustainability of large-scale bioenergy production, supply and use for local use or trade can be determined ex ante on a regional level, taking into account the complexities and variabilities of the underlying factors like food demand and land use. Recently, governments, NGOs, companies and international organizations (e.g. Dutch government, Solidaridad, Shell or FAO) have taken initiatives to guarantee the sustainable production and use of biomass. Uncertainties on the feasibility, implementation and costs of international biomass certification systems and the compliance with international laws and agreements have to be resolved. A developed software tool shows that it is possible to allow users from various regions to use one methodology and tool to calculate the GHG balances and cost-effectiveness of biomass energy systems. Core methodological issues are accommodated in the tool. One of the case studies demonstrates e.g. that the allocation procedure should be carefully defined as is shown by the variation in results, which is 35 to 50 kg CO2 eq./GJ delivered in GHG emissions. The technical potentials and cost-supply curves of bioenergy are assessed for Central and Eastern European Countries (CEEC) on a regional level. The more favourable scenarios to 2030 show a highest potential of 11.7 EJ. In most CEEC, bulk of the biomass potential can be produced at costs below 2 euro/GJ. The cost performance of energy carriers supplied from the CEEC is assessed for a set of bioenergy chains. Ethanol can be produced at 12 to 21 euro/GJ if the biomass conversion is performed at selected destinations in Western Europe or at 15 to 18 euro/GJ if biomass to ethanol conversion takes place where the biomass is produced. A case in Argentina shows the potential and economic feasibility of large-scale bioenergy production from soybeans and switchgrass, cultivated in La Pampa province. For the various scenarios to 2030, biodiesel from

  18. Effects of bioenergy production on European nature conservation options

    Science.gov (United States)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    agriculture and forestry including bioenergy options. Results reveal that bioenergy targets have significant effects on conservation planning and nature conservation. The additional land utilization demands driven by bioenergy targets influence not only the restoration costs of wetland areas. Also wetland conservation targets in one place stimulate land use intensification elsewhere due to market linkages. It also implies that environmental stresses (to wetlands) may be transferred to other countries. In all the results show that an integrated modelling of environmental and land use changes in European scale is able to estimate the impacts of policy decisions in nature conservation and agriculture. As shown by the case study, the implementation of any targets concerning resource utilization need to be followed by adequate land use planning. References Schleupner C. (2007). Estimation of wetland distribution potentials in Europe. FNU-135, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg. Schneider U.A., J Balkovic, S. De Cara, O. Franklin, S. Fritz, P. Havlik, I. Huck, K. Jantke , A.M.I. Kallio, F. Kraxner, A. Moiseyev, M. Obersteiner, C.I. Ramos, C. Schleupner, E. Schmid, D. Schwab & R. Skalsky (2008). The European Forest and Agricultural Sector Optimization Model - EUFASOM. FNU-156, Hamburg University and Centre for Marine and Atmospheric Science, Hamburg.

  19. Food supply and bioenergy production within the global cropland planetary boundary.

    Science.gov (United States)

    Henry, R C; Engström, K; Olin, S; Alexander, P; Arneth, A; Rounsevell, M D A

    2018-01-01

    Supplying food for the anticipated global population of over 9 billion in 2050 under changing climate conditions is one of the major challenges of the 21st century. Agricultural expansion and intensification contributes to global environmental change and risks the long-term sustainability of the planet. It has been proposed that no more than 15% of the global ice-free land surface should be converted to cropland. Bioenergy production for land-based climate mitigation places additional pressure on limited land resources. Here we test normative targets of food supply and bioenergy production within the cropland planetary boundary using a global land-use model. The results suggest supplying the global population with adequate food is possible without cropland expansion exceeding the planetary boundary. Yet this requires an increase in food production, especially in developing countries, as well as a decrease in global crop yield gaps. However, under current assumptions of future food requirements, it was not possible to also produce significant amounts of first generation bioenergy without cropland expansion. These results suggest that meeting food and bioenergy demands within the planetary boundaries would need a shift away from current trends, for example, requiring major change in the demand-side of the food system or advancing biotechnologies.

  20. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  1. Bioenergy possibilities in Northwest Russia

    Energy Technology Data Exchange (ETDEWEB)

    Rakitova, O. (The National Bioenergy Union, Saint Petersburg (Russian Federation)); Mutanen, K. (Joensuu Regional Development Company JOSEK Ltd, Joensuu (Finland))

    2007-07-01

    Russia owns the largest natural gas, the second largest coal and the third largest oil reserves in the world. Russia is the third largest energy user and the largest producer of oil and gas in the world. Export of oil and gas plays a major role in the economic development of the whole Russia. Wood harvesting and processing industry responds only 4,4 % of the industrial production although Russia owns 23 % of the world's forest resources. Biomass represents only 1 % of the total energy consumption including residential use but hydro power represents about 18 % of Russia's electricity generation. Russia needs three times more energy to produce one unit of GDP than e.g. EU. This indicates very poor energy efficiency and poor conditions of the energy and the whole infrastructure as well. Simultaneously the prices of fossil fuels and electricity are heavily subsidized. These basic figures give on idea why utilization of renewable energy and especially biomass play a minor role in Russian energy system. One of the most progressive regions in bioenergy is the Northwest of Russia. The first pellet and briquette plants were installed in this region a few years ago. The region can be regarded as the forerunner in bioenergy in Russia. Federal Region of Northwest Russia consists of City of St.Petersburg, Republics of Karelia and Komi and regions of Leningrad, Arkhangelsk, Kaliningrad, Murmansk, Nenetsk, Novgorod, Pskov and Vologda. The region has 15 million inhabitants and a 2200 km long joint border with the EU, most of that with Finland. N W Russia owns over 14000 million m3 of raw wood that represents 17 % of Russian forests and 60 % of the forests located in the European side. Potential for annual harvesting is over 100 million m3 while harvesting is about 45 million m3. Most of that is exported as a form of raw wood. Wood represents only 2,8 % of the region's energy use including residential usage. Use of peat is marginal representing only 0,1 % of the

  2. Canada report on bioenergy 2009

    International Nuclear Information System (INIS)

    2009-01-01

    Canada possesses significant forest resources. This paper reviewed Canada's bioenergy potential and market. Biomass in Canada is used to produce heat and power, as well as to produce ethanol and biodiesel. Biomass is also used to produce pyrolysis oil and wood pellets. Biomass resources included woody biomass; annual residue production; hog fuel piles; forest harvest waste and urban wood residues; agricultural residues; and municipal solid wastes. Trends in biomass production and consumption were discussed, and current biomass users were identified. A review of biomass prices was presented, and imports and exports for ethanol, biodiesel, pyrolysis oil, and wood pellets were discussed. Barriers and opportunities for trade were also outlined. 6 tabs., 6 figs. 1 appendix.

  3. Bioenergy

    Science.gov (United States)

    2012-03-06

    H2 production in microalgae and cyanobacteria • Genetically engineer pathways to improve the H2 producing capacity of these phototrophs 10...density of enzymatic fuel cells (EFC) - sustained oxygen-tolerant hydrogen production by photosynthetic microbes Artificial Systems Research...Metabolic Engineering for the Production of Biofuels 2 H2O water-splitting enzyme 4 e_ 4 H+ H2-generating hydrogenase enzyme

  4. The position of bioenergy and development possibilities

    International Nuclear Information System (INIS)

    Asplund, D.

    1997-01-01

    This report is a review of bioenergy in energy economy of Finland and generally a review of bioenergy markets in the world. This review concentrates on wood and peat fuels. Municipal wastes, agro biomass and use of biogas in energy production are also considered in this review but in minor aspect. The significant part of this work is an estimation of bioenergy development prospects. The schedule is strategic to the year 2010, partly to the year 2025. The use of bioenergy in Finland has increased 64 % from the year 1980 and was in 1996 almost 7 million toe. The use of peat was 2,1 million toe and the rest consisted mainly of wood and wood based fuels. The share of bioenergy in the primary energy consumption is over 20 %. As far as the resources are concerned the possibilities to increase the use are very good. The main problem is the competitiveness. The competitiveness of forest biomass has improved as a result of technological research and development but it is still potential to maintain more by systematical R and D. A large target setting of increasing the bioenergy use in Finland is included in this review. The target is to increase the bioenergy use 25 % by the year 2005. This equals to 1,5 million toe. The target for the year 2010 is suggested to increase of 3,5 million toe from the 1995 level. Also the possibilities to develop new bioenergy technology for export markets are considered. A large number of concrete actions and long term activities to achieve these targets are presented. (orig.) 24 refs

  5. Bioenergy Project Development and Biomass Supply

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Modern biomass, and the resulting useful forms of bioenergy produced from it, are anticipated by many advocates to provide a significant contribution to the global primary energy supply of many IEA member countries during the coming decades. For non-member countries, particularly those wishing to achieve economic growth as well as meet the goals for sustainable development, the deployment of modern bioenergy projects and the growing international trade in biomass-based energy carriers offer potential opportunities.

  6. The Vermont Bioenergy Initiative: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, Chris [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Sawyer, Scott [Vermont Sustainable Jobs Fund, Montpelier, VT (United States); Kahler, Ellen [Vermont Sustainable Jobs Fund, Montpelier, VT (United States)

    2016-11-30

    The purpose of the Vermont Bioenergy Initiative (VBI) was to foster the development of sustainable, distributed, small-scale biodiesel and grass/mixed fiber industries in Vermont in order to produce bioenergy for local transportation, agricultural, and thermal applications, as a replacement for fossil fuel based energy. The VBI marked the first strategic effort to reduce Vermont’s dependency on petroleum through the development of homegrown alternatives.

  7. Bioenergy in Energy Transformation and Climate Management

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Steven K.; Kriegler, Elmar; Bibas, Ruben; Calvin, Katherine V.; Popp, Alexander; van Vuuren, Detlef; Weyant, John

    2014-04-01

    Unlike fossil fuels, biomass is a renewable resource that can sequester carbon during growth, be converted to energy, and then re-grown. Biomass is also a flexible fuel that can service many end-uses. This paper explores the importance of bioenergy to potential future energy transformation and climate change management. Using a model comparison of fifteen models, we characterize and analyze future dependence on, and the value of, bioenergy in achieving potential long-run climate objectives—reducing radiative forcing to 3.7 and 2.8 W/m2 in 2100 (approximately 550 and 450 ppm carbon dioxide equivalent atmospheric concentrations). Model scenarios project, by 2050, bioenergy growth of 2 to 10% per annum reaching 5 to 35 percent of global primary energy, and by 2100, bioenergy becoming 15 to 50 percent of global primary energy. Non-OECD regions are projected to be the dominant suppliers of biomass, as well as consumers, with up to 35 percent of regional electricity from biopower by 2050, and up to 70 percent of regional liquid fuels from biofuels by 2050. Bioenergy is found to be valuable to many models with significant implications for mitigation costs and world consumption. The availability of bioenergy, in particular biomass with carbon dioxide capture and storage (BECCS), notably affects the cost-effective global emissions trajectory for climate management by accommodating prolonged near-term use of fossil fuels. We also find that models cost-effectively trade-off land carbon and nitrous oxide emissions for the long-run climate change management benefits of bioenergy. Overall, further evaluation of the viability of global large-scale bioenergy is merited.

  8. Multi Criteria Analysis for bioenergy systems assessments

    International Nuclear Information System (INIS)

    Buchholz, Thomas; Rametsteiner, Ewald; Volk, Timothy A.; Luzadis, Valerie A.

    2009-01-01

    Sustainable bioenergy systems are, by definition, embedded in social, economic, and environmental contexts and depend on support of many stakeholders with different perspectives. The resulting complexity constitutes a major barrier to the implementation of bioenergy projects. The goal of this paper is to evaluate the potential of Multi Criteria Analysis (MCA) to facilitate the design and implementation of sustainable bioenergy projects. Four MCA tools (Super Decisions, DecideIT, Decision Lab, NAIADE) are reviewed for their suitability to assess sustainability of bioenergy systems with a special focus on multi-stakeholder inclusion. The MCA tools are applied using data from a multi-stakeholder bioenergy case study in Uganda. Although contributing to only a part of a comprehensive decision process, MCA can assist in overcoming implementation barriers by (i) structuring the problem, (ii) assisting in the identification of the least robust and/or most uncertain components in bioenergy systems and (iii) integrating stakeholders into the decision process. Applying the four MCA tools to a Ugandan case study resulted in a large variability in outcomes. However, social criteria were consistently identified by all tools as being decisive in making a bioelectricity project viable

  9. A holistic sustainability assessment tool for bioenergy using the Global Bioenergy Partnership (GBEP) sustainability indicators

    NARCIS (Netherlands)

    Hayashi, T.; Ierland, van E.C.; Zhu, X.

    2014-01-01

    In 2011 the Global Bioenergy Partnership (GBEP) released a set of indicators for sustainable bioenergy. However, two important issues still remain unresolved. One of them is the definition of “sustainability”, and the other is the lack of a holistic assessment tool for drawing conclusions from the

  10. Policy-Based Management Natural Language Parser

    Science.gov (United States)

    James, Mark

    2009-01-01

    The Policy-Based Management Natural Language Parser (PBEM) is a rules-based approach to enterprise management that can be used to automate certain management tasks. This parser simplifies the management of a given endeavor by establishing policies to deal with situations that are likely to occur. Policies are operating rules that can be referred to as a means of maintaining order, security, consistency, or other ways of successfully furthering a goal or mission. PBEM provides a way of managing configuration of network elements, applications, and processes via a set of high-level rules or business policies rather than managing individual elements, thus switching the control to a higher level. This software allows unique management rules (or commands) to be specified and applied to a cross-section of the Global Information Grid (GIG). This software embodies a parser that is capable of recognizing and understanding conversational English. Because all possible dialect variants cannot be anticipated, a unique capability was developed that parses passed on conversation intent rather than the exact way the words are used. This software can increase productivity by enabling a user to converse with the system in conversational English to define network policies. PBEM can be used in both manned and unmanned science-gathering programs. Because policy statements can be domain-independent, this software can be applied equally to a wide variety of applications.

  11. UPM: unified policy-based network management

    Science.gov (United States)

    Law, Eddie; Saxena, Achint

    2001-07-01

    Besides providing network management to the Internet, it has become essential to offer different Quality of Service (QoS) to users. Policy-based management provides control on network routers to achieve this goal. The Internet Engineering Task Force (IETF) has proposed a two-tier architecture whose implementation is based on the Common Open Policy Service (COPS) protocol and Lightweight Directory Access Protocol (LDAP). However, there are several limitations to this design such as scalability and cross-vendor hardware compatibility. To address these issues, we present a functionally enhanced multi-tier policy management architecture design in this paper. Several extensions are introduced thereby adding flexibility and scalability. In particular, an intermediate entity between the policy server and policy rule database called the Policy Enforcement Agent (PEA) is introduced. By keeping internal data in a common format, using a standard protocol, and by interpreting and translating request and decision messages from multi-vendor hardware, this agent allows a dynamic Unified Information Model throughout the architecture. We have tailor-made this unique information system to save policy rules in the directory server and allow executions of policy rules with dynamic addition of new equipment during run-time.

  12. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  13. Reconciling food security and bioenergy : Priorities for action

    NARCIS (Netherlands)

    Kline, Keith L.; Msangi, Siwa; Dale, Virginia H.; Woods, Jeremy; Souza, Glaucia m.; Osseweijer, P.; Clancy, Joy S.; Hilbert, Jorge A.; Johnson, Francis X.; Mcdonnell, Patrick C.; Mugera, Harriet K.

    Understanding the complex interactions among food security, bioenergy sustainability, and resource management requires a focus on specific contextual problems and opportunities. The United Nations' 2030 Sustainable Development Goals place a high priority on food and energy security; bioenergy

  14. An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy

    Directory of Open Access Journals (Sweden)

    Weidong Huang

    2015-01-01

    Full Text Available There is not enough land for the current bioenergy production process because of its low annual yield per unit land. In the present paper, an integrated biomass production and conversion process for sustainable bioenergy is proposed and analyzed. The wastes from the biomass conversion process, including waste water, gas and solid are treated or utilized by the biomass production process in the integrated process. Analysis of the integrated process including the production of water hyacinth and digestion for methane in a tropical area demonstrates several major advantages of the integrated process. (1 The net annual yield of methane per unit land can reach 29.0 and 55.6 km3/h for the present and future (2040 respectively, which are mainly due to the high yield of water hyacinth, high biomethane yield and low energy input. The land demand for the proposed process accounts for about 1% of the world’s land to meet the current global automobile fuels or electricity consumption; (2 A closed cycle of nutrients provides the fertilizer for biomass production and waste treatment, and thus reduces the energy input; (3 The proposed process can be applied in agriculturally marginal land, which will not compete with food production. Therefore, it may be a good alternative energy technology for the future.

  15. Bioenergy costs and potentials with special attention to implications for the land system

    Science.gov (United States)

    Popp, A.; Lotze-Campen, H.; Dietrich, J.; Klein, D.; Bauer, N.; Krause, M.; Beringer, T.; Gerten, D.

    2011-12-01

    In the coming decades, an increasing competition for global land and water resources can be expected, due to rising demand for agricultural products, goals of nature conservation, and changing production conditions due to climate change. Especially biomass from cellulosic bioenergy crops, such as Miscanthus or poplar, is being proposed to play a substantial role in future energy systems if climate policy aims at stabilizing greenhouse gas (GHG) concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements, land availability for biomass plantations, and implications for the land system. In order to explore the cost-effective contribution of bioenergy to a low carbon transition with special attention to implications for the land system, we present a modeling framework with detailed biophysical and economic representation of the land and energy sector: We have linked the global dynamic vegetation and water balance model LPJmL (Bondeau et al. 2007, Rost et al. 2008), the global land and water use model MAgPIE (Lotze-Campen et al. 2008, Popp et al. 2010), and the global energy-economy-climate model ReMIND (Leimbach et al. 2009). In this modeling framework LPJmL supplies spatially explicit (0.5° resolution) agricultural yields as well as carbon and water stocks and fluxes. Based on this biophysical input MAgPIE delivers cost-optimized land use patterns (0.5° resolution), associated GHG emissions and rates of future yield increases in agricultural production. Moreover, shadow prices are calculated for irrigation water (as an indicator for water scarcity), food commodities, and bioenergy (as an indicator for changes in production costs) under different land use constraints such as forest conservation for climate change mitigation and as a contribution to biodiversity conservation. The energy-economy-climate model ReMIND generates the demand for

  16. The development of bioenergy in Austria and in the EU

    International Nuclear Information System (INIS)

    Schmidt, A.

    1999-01-01

    produced from renewable sources including biomass. Austria has facilities to produce 25 000 t/a biogenous motor fuels but the demand is still under expectations. The land availability for bio-energy crops is different for the three groups of European countries: 1. Belgium, Germany, Netherlands and UK; 2. Italy, France, Denmark, Poland, Portugal, Hungary and Switzerland and 3. Ireland, Austria, Bulgaria, Spain, Finland, Sweden, Greece, Romania. Regarding the White Paper 'Energy for the Future - Renewable Sources of Energy' of EC the contribution of 'renewable sources' to the total consumption has to be as high as 12% in 2010

  17. Bioenergy, its present and future competitiveness

    International Nuclear Information System (INIS)

    Ling, Erik

    1999-01-01

    The thesis deals with aspects of the competitiveness of bioenergy. The central aim is to develop a number of concepts that enables an extended analysis. The thesis is composed of four studies. In study 1 and 2 the emphasis is put on two institutional frameworks within the forest company, i.e. the framework around the forest fuel operations and the framework around the industrial timber operations. Depending on which of the two institutional frameworks that makes up the basis for the understanding of forest fuel operations, the forest fuel operations will be given different roles and different priorities. Different goals and the process of integrating the forest fuel operations into the forest company will therefore be carried out with different means, different feelings and different resources. Study 3 examines the conceptions that the actors of the energy system uphold. The study presents the concept of logic, which is an institutionalised conception of the competitiveness of bioenergy. Logics can be seen as the dominating conceptions within the energy system and are decisive in determining the factors and parameters that state the competitiveness of different forms of energy. Study 4 argues that the strategical work concerning the competitiveness of bioenergy in the long-run to a great extent is about understanding, shaping and utilising the conceptions that affect the bioenergy system. The study problematises strategies that are used to develop bioenergy by introducing the uncertainty of the future into the analysis. The uncertainty of the future is captured in different scenarios

  18. Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework

    International Nuclear Information System (INIS)

    Nikodinoska, Natasha; Buonocore, Elvira; Paletto, Alessandro; Franzese, Pier Paolo

    2017-01-01

    Highlights: • The Sarentino bioenergy value chain (North Italy) was investigated. • A multi-method environmental accounting framework was implemented. • Environmental costs and impacts of a forest bioenergy chain were assessed. • Indicators show a good environmental performance and sustainability. • Linking wood industry and energy production could lower the environmental burden. - Abstract: Using wood biomass for bioenergy production in mountain urban settlements can represent a win–win strategy when it combines a continuous energy provision to households with a sustainable management of local forests, also boosting rural development and stakeholders’ cooperation. In this study, we implemented a multi-method environmental accounting framework aimed at investigating environmental costs and impacts of a bioenergy value chain located in Sarentino Valley (North Italy). This assessment framework encompasses material, energy, and emergy demands as well as main emissions generated at each step of the chain: (1) forestry, (2) logistics, and (3) conversion. The resulting global to local ratios of abiotic material calculated for forestry, logistics, and conversion subsystems show that the global (direct and indirect) consumption of abiotic matter was respectively 3.6, 3.2, and 7.6 times higher than the direct material demand. The Energy Return on Energy Investment (EROI) of wood biomass and wood chips production (37.1 and 22.4) shows a high energy performance of these processes, while the EROI of heat generation (11.35) reflects a higher support of human-driven inputs. The emergy renewable fraction, ranging from 77% to 37% across the value chain, shows a high use of local renewable resources in the bioenergy value chain. The total CO 2 emissions of the bioenergy value chain (4088 t CO 2 yr −1 ) represent only 7.1% of the CO 2 sequestration potential of the Sarentino Valley forest ecosystem, highlighting the capability of the local forests to offset the CO 2

  19. Stream Health Sensitivity to Landscape Changes due to Bioenergy Crops Expansion

    Science.gov (United States)

    Nejadhashemi, A.; Einheuser, M. D.; Woznicki, S. A.

    2012-12-01

    Global demand for bioenergy has increased due to uncertainty in oil markets, environmental concerns, and expected increases in energy consumption worldwide. To develop a sustainable biofuel production strategy, the adverse environmental impacts of bioenergy crops expansion should be understood. To study the impact of bioenergy crops expansion on stream health, the adaptive neural-fuzzy inference system (ANFIS) was used to predict macroinvertebrate and fish stream health measures. The Hilsenhoff Biotic Index (HBI), Family Index of Biological Integrity (Family IBI), and Number of Ephemeroptera, Plecoptera, and Trichoptera taxa (EPT taxa) were used as macroinvertebrate measures, while the Index of Biological Integrity (IBI) was used for fish. A high-resolution biophysical model built using the Soil and Water Assessment Tool was used to obtain water quantity and quality variables for input into the ANFIS stream health predictive models. Twenty unique crop rotations were developed to examine impacts of bioenergy crops expansion on stream health in the Saginaw Bay basin. Traditional intensive row crops generated more pollution than current landuse conditions, while second-generation biofuel crops associated with less intensive agricultural activities resulted in water quality improvement. All three macroinvertebrate measures were negatively impacted during intensive row crop productions but improvement was predicted when producing perennial crops. However, the expansion of native grass, switchgrass, and miscanthus production resulted in reduced IBI relative to first generation row crops. This study demonstrates that ecosystem complexity requires examination of multiple stream health measures to avoid potential adverse impacts of landuse change on stream health.

  20. Bioenergy market competition for biomass: A system dynamics review of current policies

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Robert Jeffers

    2013-07-01

    There is growing interest in the United States and abroad to increase the use of biomass as an energy source due to environmental and energy security benefits. In the United States, the biofuel and biopower industries are regulated by different policies and different agencies and have different drivers, which impact the maximum price the industries are willing to pay for biomass. This article describes a dynamic computer simulation model that analyzes future behavior of bioenergy feedstock markets based on varying policy and technical options. The model simulates the long-term dynamics of these markets by treating advanced biomass feedstocks as a commodity and projecting the total demand of each industry, as well as the market price over time. The model is used for an analysis of the United States bioenergy feedstock market that projects supply, demand, and market price given three independent buyers: domestic biopower, domestic biofuels, and foreign exports. With base-case assumptions, the biofuels industry is able to dominate the market and meet the federal Renewable Fuel Standard (RFS) targets for advanced biofuels. Further analyses suggest that United States bioenergy studies should include estimates of export demand for biomass in their projections, and that GHG-limiting policy would partially shield both industries from export dominance.

  1. REMARKS TO THE CURRENT DISCUSSION ABOUT BIOENERGYBIOENERGY FOR THE PUBLIC AND/ OR FOR THE AGRICULTURAL OR RURAL AREAS ONLY ?

    Directory of Open Access Journals (Sweden)

    P. Ruckenbauer

    2008-09-01

    Full Text Available An energy system that is based on the use of renewable energy resources must be service –oriented and should be able to cover the varying energy demands. Moreover it must be flexible and cost effective by using on optimal mix of predominantly renewable energy sources. Agriculture will play an important role in the future if an optimal mix between food/feed production and energy plant production could be found. The present examples in the world to gain agricultural land for energy plants on the expenses of forests is going into the wrong direction. The cost intensive investments at present performed in Europe for biofuel and bioenergy production will certainly influence prices for crops and biomass supply. In this paper, strategies are questioned and discussed if the goals of the EU-commission to replace substantial parts of the fossile energy demands by bioenergy supply is feasible and can be realistic. As an example for a national agricultural situation, Austria, as am member of the PBBA, has elaborated a study about the timely development how much of the arable land can be utilized in the period between 2005 and 2020 for various bioenergy sources .The results demonstrate that, at the maximum , agriculture can only supply about 22 % of the total arable land for additional bioenergy as biofuel and biogas without interfering the national self food/feed supply and the protection of the sensible environment and emission situation. Finally, recent University research studies are presented about new processes to achieve a better and more efficient use of cereal and maize straw for biogas production already performed in the present 358 local biogas plants in Austria.

  2. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  3. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects......-scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration...

  4. Willow bioenergy plantation research in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P.; Kopp, R.F. [SUNY College of Environmental Science and Forestry, Syracuse, NY (United States); Nowak, C.A. [USDA Forest Service, Warren, PA (United States)

    1993-12-31

    Experiments were established in Central New York in the spring of 1987 to evaluate the potential of Salix for biomass production in bioenergy plantations. Emphasis of the research was on developing and refining establishment, tending and maintenance techniques, with complimentary study of breeding, coppice physiology, pests, nutrient use and bioconversion to energy products. Current yields utilizing salix clones developed in cooperation with the University of Toronto in short-rotation intensive culture bioenergy plantations in the Northeast approximate 8 oven dry tons per acre per year with annual harvesting. Successful clones have been identified and culture techniques refined. The results are now being integrated to establish a 100 acre Salix large-scale bioenergy farm to demonstrate current successful biomass production technology and to provide plantations of sufficient size to test harvesters; adequately assess economics of the systems; and provide large quantities of uniform biomass for pilot-scale conversion facilities.

  5. European greenhouse gas fluxes from land use: the impact of expanding the use of dedicated bioenergy crops.

    Science.gov (United States)

    Hastings, Astley; Böttcher, Hannes; Clifton-Brown, John; Fuchs, Richard; Hillier, Jon; Jones, Ed; Obersteiner, Michael; Pogson, Mark; Richards, Mark; Smith, Pete

    2013-04-01

    bioenergy feedstock. This data has been used to quantify the net change in GHG emissions and the quantity of energy produced. We conclude that home grown bioenergy will be a modest contributor to both GHG emission reduction and energy demand.

  6. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  7. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    International Nuclear Information System (INIS)

    Kathryn Baskin

    2001-01-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts

  8. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2001-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  9. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2001-07-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  10. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn Baskin

    2003-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  11. Technological learning in bioenergy systems

    International Nuclear Information System (INIS)

    Junginger, Martin; Visser, Erika de; Hjort-Gregersen, Kurt; Koornneef, Joris; Raven, Rob; Faaij, Andre; Turkenburg, Wim

    2006-01-01

    The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90-93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91-92%, i.e. an 8-9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions

  12. Stump torrefaction for bioenergy application

    International Nuclear Information System (INIS)

    Tran, Khanh-Quang; Luo, Xun; Seisenbaeva, Gulaim; Jirjis, Raida

    2013-01-01

    Highlights: ► First study on torrefaction of stump for bioenergy application. ► Stump can achieve higher energy densification factors. ► Torrefied stump requires longer grinding time than torrefied wood. - Abstract: A fixed bed reactor has been developed for study of biomass torrefaction, followed by thermogravimetric (TG) analyses. Norway spruce stump was used as feedstock. Two other types of biomass, poplar and fuel chips were also included in the study for comparison. Effects of feedstock types and process parameters such as torrefaction temperature and reaction time on fuel properties of torrefied solid product were investigated. The study has demonstrated that fuel properties, including heating values and grindability of the investigated biomasses were improved by torrefaction. Both torrefaction temperature and reaction time had strong effects on the torrefaction process, but temperature effects are stronger than effects of reaction time. At the same torrefaction temperature, the longer reaction time, the better fuel qualities for the solid product were obtained. However, too long reaction times and/or too higher torrefaction temperatures would decrease the solid product yield. The torrefaction conditions of 300 °C for 35 min resulted in the energy densification factor of 1.219 for the stump, which is higher than that of 1.162 for the poplar wood samples and 1.145 for the fuel chips. It appears that torrefied stump requires much longer time for grinding, while its particle size distribution is only slightly better than the others. In addition, the TG analyses have shown that untreated biomass was more reactive than its torrefaction products. The stump has less hemicelluloses than the two other biomass types. SEM analyses indicated that the wood surface structure was broken and destroyed by torrefaction process

  13. Trends in european bioenergy law: problems, perspectives and risks.

    Directory of Open Access Journals (Sweden)

    Alice Caputo

    2014-10-01

    Full Text Available Research into new forms of energy is a current challenge. This paper aims to inquire into the real advantages of bioenergy and its sustainable development within the European legal framework, while also considering the negative aspects of bioenergy use. The European Union, in fact, is an important supporter of bioenergy and shows that, through good legislative policy, the negative aspects of bioenergy use can be surmounted . In conclusion, bioenergy and sustainable development can still be a plausible solution to feed the planet

  14. Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest.

    Science.gov (United States)

    SooHoo, William M; Wang, Cuizhen; Li, Huixuan

    2017-04-01

    Agricultural land use change, especially corn expansion since 2000s, has been accelerating to meet the growing bioenergy demand of the United States. This study identifies the environmentally sensitive lands (ESLs) in the U.S. Midwest using the distance-weighted Revised Universal Soil Loss Equation (RUSLE) associated with bioenergy land uses extracted from USDA Cropland Data Layers. The impacts of soil erosion to downstream wetlands and waterbodies in the river basin are counted in the RUSLE with an inverse distance weighting approach. In a GIS-ranking model, the ESLs in 2008 and 2011 (two representative years of corn expansion) are ranked based on their soil erosion severity in crop fields. Under scenarios of bioenergy land use change (corn to grass and grass to corn) on two land types (ESLs and non-ESLs) at three magnitudes (5%, 10% and 15% change), this study assesses the potential environmental impacts of bioenergy land use at a basin level. The ESL distributions and projected trends vary geographically responding to different agricultural conversions. Results support the idea of re-planting native prairie grasses in the identified High and Severe rank ESLs for sustainable bioenergy management in this important agricultural region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  16. Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model

    International Nuclear Information System (INIS)

    Kemausuor, Francis; Nygaard, Ivan; Mackenzie, Gordon

    2015-01-01

    As Ghana's economy grows, the choice of future energy paths and policies in the coming years will have a significant influence on its energy security. A Renewable Energy Act approved in 2011 seeks to encourage the influx of renewable energy sources in Ghana's energy mix. The new legal framework combined with increasing demand for energy has created an opportunity for dramatic changes in the way energy is generated in Ghana. However, the impending changes and their implication remain uncertain. This paper examines the extent to which future energy scenarios in Ghana could rely on energy from biomass sources, through the production of biogas, liquid biofuels and electricity. Analysis was based on moderate and high use of bioenergy for transportation, electricity generation and residential fuel using the LEAP (Long-range Energy Alternatives Planning) model. Results obtained indicate that introducing bioenergy to the energy mix could reduce GHG (greenhouse gas) emissions by about 6 million tonnes CO 2 e by 2030, equivalent to a 14% reduction in a business-as-usual scenario. This paper advocates the use of second generation ethanol for transport, to the extent that it is economically exploitable. Resorting to first generation ethanol would require the allocation of over 580,000 ha of agricultural land for ethanol production. - Highlights: • This paper examines modern bioenergy contribution to Ghana's future energy mix. • Three scenarios are developed and analysed. • Opportunities exist for modern bioenergy to replace carbon intensive fuels. • Introducing modern bioenergy to the mix could result in a 14% reduction in GHG.

  17. Bioenergy futures in Sweden – Modeling integration scenarios for biofuel production

    International Nuclear Information System (INIS)

    Börjesson Hagberg, Martin; Pettersson, Karin; Ahlgren, Erik O.

    2016-01-01

    Use of bioenergy can contribute to greenhouse gas emission reductions and increased energy security. However, even though biomass is a renewable resource, the potential is limited, and efficient use of available biomass resources will become increasingly important. This paper aims to explore system interactions related to future bioenergy utilization and cost-efficient bioenergy technology choices under stringent CO 2 constraints. In particular, the study investigates system effects linked to integration of advanced biofuel production with district heating and industry under different developments in the electricity sector and biomass supply system. The study is based on analysis with the MARKAL-Sweden model, which is a bottom-up, cost-optimization model covering the Swedish energy system. A time horizon to 2050 is applied. The results suggest that system integration of biofuel production has noteworthy effects on the overall system level, improves system cost-efficiency and influences parameters such as biomass price, marginal CO 2 emission reduction costs and cost-efficient biofuel choices in the transport sector. In the long run and under stringent CO 2 constraints, system integration of biofuel production has, however, low impact on total bioenergy use, which is largely decided by supply-related constraints, and on total transport biofuel use, which to large extent is driven by demand. - Highlights: • Long-term bioenergy scenarios for Sweden are modeled. • Efficient use of biomass resources will become increasingly important. • Integration of biofuel production with industry or heating improves efficiency. • Integration can reduce biomass prices and marginal CO 2 reduction costs. • Cost-efficient biofuel choices in the transport sector are affected.

  18. IEA Bioenergy Countries' Report: Bioenergy policies and status of implementation

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina [Bioenergy 2020+ GmbH, Graz (Austria); Ludwiczek, Nikolaus [Bioenergy 2020+ GmbH, Graz (Austria); Pointner, Christian [Bioenergy 2020+ GmbH, Graz (Austria); Verma, Vijay Kumar [Bioenergy 2020+ GmbH, Graz (Austria)

    2016-08-05

    This report was prepared from IEA statistical data, information from IRENA, and IEA Bioenergy Tasks’ country reports, combined with data provided by the IEA Bioenergy Executive Committee. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. In the first section of each country report, national renewable energy targets are presented (first table in each country report), and the main pieces of national legislation are discussed. In the second section of each country report the total primary energy supply (TPES) by resources and the contribution of bioenergy are presented. All data is taken from IEA statistics for the year 2014. Where 2014 data was not available, 2013 data was used. It is worth noting that data reported in national statistics can differ from the IEA data presented, as the reporting categories and definitions are different. In the third section of each country report, the research focus related to bioenergy is discussed. Relevant funding programs, major research institutes and projects are described. In the fourth section, recent major bioenergy developments are described. Finally, in the fifth section, links to sources of information are provided.

  19. Opportunities and barriers for international bioenergy trade

    NARCIS (Netherlands)

    Junginger, H.M.|info:eu-repo/dai/nl/202130703; van Dam, J.M.C.; Zarrilli, S.; Mohamed, F.A.; Marchal, D.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Recently, the international trade of various bioenergy commodities has grown rapidly, yet this growth is also hampered by some barriers. The aim of this paper is to obtain an overview of what market actors currently perceive as major opportunities and barriers for the development of international

  20. Water usage in southeastern bioenergy crop production

    Science.gov (United States)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  1. Utilization of summer legumes as bioenergy feedstocks

    Science.gov (United States)

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume—cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield and subsequent energy yield. S...

  2. Wood bioenergy and soil productivity research

    Science.gov (United States)

    D. Andrew Scott; Deborah S. Page-Dumroese

    2016-01-01

    Timber harvesting can cause both short- and long-term changes in forest ecosystem functions, and scientists from USDA Forest Service (USDA FS) have been studying these processes for many years. Biomass and bioenergy markets alter the amount, type, and frequency at which material is harvested, which in turn has similar yet specific impacts on sustainable productivity....

  3. Social Aspects of Bioenergy Sustainability Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Luchner, Sarah [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Johnson, Kristen [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Lindauer, Alicia [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); McKinnon, Taryn [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Broad, Max [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2013-05-30

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office held a workshop on “Social Aspects of Bioenergy” on April 24, 2012, in Washington, D.C., and convened a webinar on this topic on May 8, 2012. The findings and recommendations from the workshop and webinar are compiled in this report.

  4. Water for bioenergy: A global analysis

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert; van der Meer, Theodorus H.; Gasparatos, A.; Stromberg, P.

    2012-01-01

    Agriculture is by far the largest water user. This chapter reviews studies on the water footprints (WFs) of bioenergy (in the form of bioethanol, biodiesel, and heat and electricity produced from biomass) and compares their results with the WFs of fossil energy and other types of renewables (wind

  5. Sustainable forest-based bioenergy in Eurasia

    Directory of Open Access Journals (Sweden)

    F. Kraxner

    2018-02-01

    Full Text Available This study analyzes the Russian forest biomass-based bioenergy sector. It is shown that presently – although given abundant resources – the share of heat and electricity from biomass is very minor. With the help of two IIASA models (G4M and BeWhere, future green-field bioenergy plants are identified in a geographically explicit way. Results indicate that by using 3.78 Mt (or 6.16 M m3, twice as much heat and electricity than is presently available from forest biomass could be generated. This amount corresponds to 3.3 % of the total annual wood removals or 12 % of the annually harvested firewood, or about 11 % of illegal logging. With this amount of wood, it is possible to provide an additional 444 thousand households with heat and 1.8 M households with electricity; and at the same time to replace 2.7 Mt of coal or 1.7 Mt of oil or 1.8 G m3 of natural gas, reducing emissions of greenhouse gases from burning fossil fuels by 716 Mt of CO2-equivalent per year. A multitude of co-benefits can be quantified for the socio-economic sector such as green jobs linked to bioenergy. The sustainable sourcing of woody biomass for bioenergy is possible as shown with the help of an online crowdsourcing tool Geo-Wiki.org for forest certification.

  6. Importance of rural bioenergy for developing countries

    International Nuclear Information System (INIS)

    Demirbas, Ayse Hilal; Demirbas, Imren

    2007-01-01

    Energy resources will play an important role in the world's future. Rural bioenergy is still the predominant form of energy used by people in the less developed countries, and bioenergy from biomass accounts for about 15% of the world's primary energy consumption and about 38% of the primary energy consumption in developing countries. Furthermore, bioenergy often accounts for more than 90% of the total rural energy supplies in some developing countries. Earth life in rural areas of the world has changed dramatically over time. Industrial development in developing countries, coming at a time of low cost plentiful oil supplies, has resulted in greater reliance on the source of rural bioenergy than is true in the developed countries. In developed countries, there is a growing trend towards employing modern technologies and efficient bioenergy conversion using a range of biofuels, which are becoming cost wise competitive with fossil fuels. Currently, much attention has been a major focus on renewable alternatives in the developing countries. Renewable energy can be particularly appropriate for developing countries. In rural areas, particularly in remote locations, transmission and distribution of energy generated from fossil fuels can be difficult and expensive. Producing renewable energy locally can offer a viable alternative. Renewable energy can facilitate economic and social development in communities but only if the projects are intelligently designed and carefully planned with local input and cooperation. Particularly in poor rural areas, the costs of renewable energy projects will absorb a significant part of participants' small incomes. Bio-fuels are important because they replace petroleum fuels. Biomass and biofuels can be used as a substitute for fossil fuels to generate heat, power and/or chemicals. Generally speaking, biofuels are generally considered as offering many benefits, including sustainability, reduction of greenhouse gas emissions, regional

  7. Bioenergy options. Multidisciplinary participatory method for assessing bioenergy options for rural villages in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Kauzeni, A.S.; Masao, H.P.; Sawe, E.N.; Shechambo, F.C. [Dar Es Salaam Univ. (Tanzania). Inst. of Resource Assessment; Ellegaard, A. [Stockholm Environment Inst. (Sweden)

    1998-12-31

    In Tanzania, like in many other developing countries in Southern and Eastern Africa, bioenergy planning has received relatively little attention, compared to planning for `modern` energy sources, although it accounts for about 90% of the country`s energy supply. As a result there is less understanding of the complexity and diversity of bioenergy systems. There is a lack of reliable data and information on bio-resources, their consumption and interaction with social, economic, institutional and environmental factors. This is largely due to lack of adequately developed and easily understood methods of data and information development, analysis and methods of evaluating available bioenergy options. In order to address the above constraints a project was initiated where the general objective was to develop and test a multi-disciplinary research method for identifying bioenergy options that can contribute to satisfying the energy needs of the rural household, agricultural and small scale industrial sectors, promote growth and facilitate sustainable development. The decision on the development and testing of a multidisciplinary research method was based on the fact that in Tanzania several bioenergy programmes have been introduced e.g. tree planting, improved cookstoves, biogas, improved charcoal making kilns etc. for various purposes including combating deforestation; promoting economic growth, substitution of imported petroleum fuels, health improvement, and raising standards of living. However efforts made in introducing these programmes or interventions have met with limited success. This situation prevails because developed bioenergy technologies are not being adopted in adequate numbers by the target groups. There are some indications from the study that some of the real barriers to effective bioenergy interventions or adoption of bioenergy technologies lie at the policy level and not at the project level. After the development and testing of the methodology

  8. Biotechnology and synthetic biology approaches for metabolic engineering of bioenergy crops.

    Science.gov (United States)

    Shih, Patrick M; Liang, Yan; Loqué, Dominique

    2016-07-01

    The Green Revolution has fuelled an exponential growth in human population since the mid-20th century. Due to population growth, food and energy demands will soon surpass supply capabilities. To overcome these impending problems, significant improvements in genetic engineering will be needed to complement breeding efforts in order to accelerate the improvement of agronomical traits. The new field of plant synthetic biology has emerged in recent years and is expected to support rapid, precise, and robust engineering of plants. In this review, we present recent advances made in the field of plant synthetic biology, specifically in genome editing, transgene expression regulation, and bioenergy crop engineering, with a focus on traits related to lignocellulose, oil, and soluble sugars. Ultimately, progress and innovation in these fields may facilitate the development of beneficial traits in crop plants to meet society's bioenergy needs. © 2016 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  9. Role of community acceptance in sustainable bioenergy projects in India

    International Nuclear Information System (INIS)

    Eswarlal, Vimal Kumar; Vasudevan, Geoffrey; Dey, Prasanta Kumar; Vasudevan, Padma

    2014-01-01

    Community acceptance has been identified as one of the key requirements for a sustainable bioenergy project. However less attention has been paid to this aspect from developing nations and small projects perspective. Therefore this research examines the role of community acceptance for sustainable small scale bioenergy projects in India. While addressing the aim, this work identifies influence of community over bioenergy projects, major concerns of communities regarding bioenergy projects and factors influencing perceptions of communities about bioenergy projects. The empirical research was carried out on four bioenergy companies in India as case studies. It has been identified that communities have significant influence over bioenergy projects in India. Local air pollution, inappropriate storage of by-products and credibility of developer are identified as some of the important concerns. Local energy needs, benefits to community from bioenergy companies, level of trust on company and relationship between company and the community are some of the prime factors which influence community's perception on bioenergy projects. This research sheds light on important aspects related to community acceptance of bioenergy projects, and this information would help practitioners in understanding the community perceptions and take appropriate actions to satisfy them

  10. Risoe energy report 2. New and emerging bioenergy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.; Kossmann, J.; Soenderberg Petersen, L. (eds.)

    2003-11-01

    Three growing concerns - sustainability (particularly in the transport sector), security of energy supply and climate change - have combined to increase interest in bioenergy. The trend towards bioenergy has been further encouraged by technological advances in biomass conversion and significant changes in energy markets. We even have a new term, 'modern bioenergy', to cover those areas of bioenergy technology - traditional as well as emerging - that could expand the role of bioenergy. Besides its potential to be carbon-neutral if produced sustainable, modern bioenergy shows the promise of covering a considerable part of the world's energy needs, increasing the security of energy supply through the use of indigenous resources, and improving local employment and land-use. To make these promises, however, requires further R and D. This report provides a critical examination of modern bioenergy, and describes current trends in both established and emerging bioenergy technologies. As well as examining the implications for the global energy scene, the report draws national conclusions for European and Danish energy supply, industry and energy research. The report presents the status of current R and D in biomass resources, supply systems, end products and conversion methods. A number of traditional and modern bioenergy technologies are assessed to show their current status, future trends and international R and D plans. Recent studies of emerging bioenergy technologies from international organisations and leading research organisations are reviewed. (BA)

  11. Legal framework for a sustainable biomass production for bioenergy on Marginal Lands

    Science.gov (United States)

    Baumgarten, Wibke; Pelikan, Vincent

    2017-04-01

    authorities and principal laws in the field of bioenergy is given, supplemented by national biomass potentials and bioenergy use as well as by the German, Greek, Italian and Ukrainian NREAP. The overall target of all EU-28 countries - and Ukraine - is to create a more efficient bioeconomy, to increase the amount of biomass produced for bioenergy purposes, to avoid an increased competition between food/feed production on arable land and energy plant production, and decrease imports of fossil energy sources, i.e. [crude] oil, aiming at an independent, domestically based (bio)energy supply. Whereas in Germany the national policy framework regarding bioenergy is well-defined, there are only few specific national and/or regional policies in Greece, Italy or Ukraine. Moreover, the German legislation offers a higher potential for designing and modifying already existing regulations and laws, e.g. soil protection, EEG, etc. with respect to the use of MagL for bioenergy production, than in other SEEMLA partner countries. Although the biomass potential of each SEEMLA partner country varies a lot and the 2020 targets remain ambitious, the exploitation of sustainable biomass production on MagL may offer a suitable approach to fill the gaps of future biomass demands and accelerate the growth of an independent bioenergy based society.

  12. Present and prospective role of bioenergy in regional energy system

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, T.V.; Joshi, N.V.; Subramanian, D.K. [Indian Inst. of Science, Center for Ecological Sciences, Bangalore (India)

    2000-12-01

    Bioenergy is the energy released from the reaction of organic carbon material with oxygen. The organic material derived from plants and animals is also referred to as biomass. Biomass is a flexible feedstock capable of conversion into solid, liquid and gaseous fuels by chemical and biological processes. These intermediate biofuels (such as methane gas, ethanol, charcoal) can be substituted for fossil based fuels. Wood and charcoal are important as household fuels and for small scale industries such as brick making, cashew processing etc. The scarcity of biofuels has far reaching implications on the environment. Hence, expansion of bioenergy systems could be influential in bettering both the socioeconomic condition and the environment of the region. This paper examines the present role of biomass in the region's (Uttara Kannada District, Karnataka State, India) energy supply and calculates the potential for future biomass provision and scope for conversion to both modern and traditional fuels. Based on the detailed investigation of biomass resource availability and demand, we can categorise the Uttara Kannada District into two zones (a) Biomass surplus zone consisting of Taluks mainly from hilly area (b) Biomass deficit zone, consisting of thickly populated coastal Taluks such as Bhatkal, Kumta, Ankola, Honnavar and Karwar. Fuel wood is mainly used for cooking and horticulture residues from coconut, arecanut trees are used for water heating purposes. Most of the households in this region still use traditional stoves where efficiency is less than 10%. The present inefficient fuel consumption could be brought down by the usage of fuel efficient stoves (a saving of the order of 27%). Availability of animal residues for biogas generation in Sirsi, Siddapur, Yellapur Taluks gives a viable alternative for cooking, lighting fuel and a useful fertiliser. However to support the present livestock population, fodder from agricultural residues is insufficient in these

  13. Bioenergy and biodiversity: Key lessons from the Pan American region

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinelli, Fernanda Silva [UFRRJ/Conservation International Brazil, Seropedica (Brazil); Mayer, Audrey L. [Michigan Technological Univ., Houghton, MI (United States); Medeiros, Rodrigo [Federal Rural Univ. of Rio de Janeiro, Rio de Janeiro (Brazil); Oliveira, Camila Ortolan F. [Univ. of Campinas, Campinas (Brazil); Sparovek, Gerd [Univ. of Sao Paulo, Piracicaba (Brazil); Walter, Arnaldo [Univ. of Campinas, Campinas (Brazil); Venier, Lisa A. [Canadian Forest Service, Sault Ste. Marie (Canada). Great Lakes Forestry Centre

    2015-06-24

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil, regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land management systems. Lastly, we propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  14. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    Science.gov (United States)

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  15. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    Science.gov (United States)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  16. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  17. Bioenergy, Pollution, and Economic Growth

    International Nuclear Information System (INIS)

    Ankarhem, Mattias

    2005-01-01

    This thesis consists of four papers: two of them deal with the effects on the forest sector of an increase in the demand for forest fuels, and two of them concern the relation between economic growth and pollution. Paper [I] is a first, preliminary study of the potential effects on the Swedish forest sector of a continuing rise in the use of forest resources as a fuel in energy generation. Sweden has made a commitment that the energy system should be sustainable, i.e., it should be based on renewable resources. However, an increasing use of the forest resources as an energy input could have effects outside the energy sector. We consider this in a static model by estimating a system of demand and supply equations for the four main actors on the Swedish roundwood market; forestry, sawmills, pulpmills and the energy sector. We then calculate the industries' short run supply and demand elasticities. Paper [II], is a development of the former paper. In this paper, we estimate the dynamic effects on the forest sector of an increased demand for forest fuels. This is done by developing a partial adjustment model of the forest sector that enables short, intermediate, and long run price elasticities to be estimated. It is relevant to study the effects of increased demand for forest fuels as the Swedish government has committed to an energy policy that is likely to further increase the use of renewable resources in the Swedish energy system. Four subsectors are included in the model: forestry, sawmills, pulpmills and the energy industry. The results show that the short run elasticities are fairly consistent with earlier studies and that sluggish adjustment in the capital stock is important in determining the intermediate and long run responses. Simulation shows that an increase in the demand for forest fuels has a positive effect on the equilibrium price of all three types of wood, and a negative effect on the equilibrium quantities of sawtimber and pulpwood. In paper [III] a

  18. Bioenergy from agricultural residues in Ghana

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe

    and biomethane under Ghanaian conditions. Detailed characterisations of thirteen of the most common agricultural residues in Ghana are presented, enabling estimations of theoretical bioenergy potentials and identifying specific residues for future biorefinery applications. When aiming at residue-based ethanol...... to pursue increased implementation of anaerobic digestion in Ghana, as the first bioenergy option, since anaerobic digestion is more flexible than ethanol production with regard to both feedstock and scale of production. If possible, the available manure and municipal liquid waste should be utilised first....... A novel model for estimating BMP from compositional data of lignocellulosic biomasses is derived. The model is based on a statistical method not previously used in this area of research and the best prediction of BMP is: BMP = 347 xC+H+R – 438 xL + 63 DA , where xC+H+R is the combined content of cellulose...

  19. Proceedings of the IEA Bioenergy Task 39 conference : biofuels and bioenergy, a changing climate

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of this conference was to showcase the advancements that have been made in bioenergy development. The presentations addressed several issues, including biorefinery integration; thermochemical technologies; biochemical technologies; feedstock harvest, pretreatment and logistics; biomass production and management; policy, strategies and trade; and greenhouse gas and life cycle assessment. Discussions focused on recent innovations in bioenergy and the feasibility of biofuels in the commercial marketplace with the aim to advance bioenergy development and reduce fossil fuel dependency. A two-day forest management and supply chain field trip was organized in conjunction with the conference. The conference featured 152 presentations, of which 30 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  20. The future of bioenergy in Sweden. Background and summary of outstanding issues

    International Nuclear Information System (INIS)

    Berndes, G.

    2006-01-01

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  1. The future of bioenergy in Sweden. Background and summary of outstanding issues

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, G. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy and Environment; Magnusson, Leif [EnerGia Konsulterande Ingenjoerer AB, Stockholm (Sweden)

    2006-12-30

    This report is intended to give a background to discussions about the future of bioenergy in Sweden, to be used by the Swedish Energy Agency in the planning of future efforts in the biofuel supply chain. An overview of the present supply and use of biomass in Sweden is given, and trends and prospects for increased use of bioenergy in Sweden are assessed. Both sources of increased bioenergy demand and possibilities for increased domestic supply are treated. Biomass contributes about 110 TWh, or one fifth of the Swedish energy supply. Biomass is mainly used for energy within the forest industry, in district heating plants, in the residential sector and for electricity production. More than 50% of the heat comes from biomass today. Based on a number of studies it is concluded that there is a potential for a substantial increase in the Swedish biofuel use, by introduction of new forest management practices and a re-orientation of agriculture. Calculations indicate that there is scope for a substantial increase in bioenergy use in Sweden and that the Swedish bioenergy potential is large enough to accommodate such an increase. However, related to the aspirations in the EC biofuel directive and the hopes that Sweden by taking early steps could become a major supplier of liquid biofuels in EU, it is also shown that Sweden to a significant extent would need to rely on imported bioenergy (biomass feedstock at the magnitude 100 TWh) in order to supply a biofuels industry capable of providing for the domestic market and also exporting substantial volumes of liquid biofuels to Europe. The prospects for a large-scale import of biofuels are discussed based on an analysis of the potential global biomass production and use in forestry and agriculture. A number of issues of great importance for increased biomass use are discussed - competitive land uses, availability of water, international trade rules, and international politics. The report also discusses additional and new uses of

  2. Life Cycle Assessment of Bioenergy from Lignocellulosic Crops Cultivated on Marginal Land in Europe

    Science.gov (United States)

    Rettenmaier, Nils; Schmidt, Tobias; Gärtner, Sven; Reinhardt, Guido

    2017-04-01

    Population growth and changing diets due to economic development lead to an additional demand for land for food and feed production. Slowly but surely turning into a mass market, also the cultivation of non-food biomass crops for fibre (bio-based products) and fuel (biofuels and bioenergy) is increasingly contributing to the pressure on global agricultural land. As a consequence, the already prevailing competition for land might even intensify over the next decades. Against this background, the possibilities of shifting the cultivation of non-food biomass crops to so-called 'marginal lands' are investigated. The EC-funded project 'Sustainable exploitation of biomass for bioenergy from marginal lands in Europe' (SEEMLA) aims at the establishment of suitable innovative land-use strategies for a sustainable production of bioenergy from lignocellulosic crops on marginal lands while improving general ecosystem services. For a complete understanding of the environmental benefits and drawbacks of the envisioned cultivation of bioenergy crops on marginal land, life cycle assessments (LCA) have proven to be a suitable and valuable tool. Thus, embedded into a comprehensive sustainability assessment, a screening LCA is carried out for the entire life cycles of the bioenergy carriers researched in SEEMLA. Investigated systems, on the one hand, include the specific field trials carried out by the SEEMLA partners in Ukraine, Greece and Germany. On the other hand, generic scenarios are investigated in order to derive reliable general statements on the environmental impacts of bioenergy from marginal lands in Europe. Investigated crops include woody and herbaceous species such as black locust, poplar, pine, willow and Miscanthus. Conversion technologies cover the use in a domestic or a district heating plant, power plant, CHP as well as the production of Fischer-Tropsch diesel (FT diesel) and lignocellulosic ethanol. Environmental impacts are compared to conventional reference

  3. Integrating policy-based management and SLA performance monitoring

    Science.gov (United States)

    Liu, Tzong-Jye; Lin, Chin-Yi; Chang, Shu-Hsin; Yen, Meng-Tzu

    2001-10-01

    Policy-based management system provides the configuration capability for the system administrators to focus on the requirements of customers. The service level agreement performance monitoring mechanism helps system administrators to verify the correctness of policies. However, it is difficult for a device to process the policies directly because the policies are the management concept. This paper proposes a mechanism to decompose a policy into rules that can be efficiently processed by a device. Thus, the device may process the rule and collect the performance statistics information efficiently; and the policy-based management system may collect these performance statistics information and report the service-level agreement performance monitoring information to the system administrator. The proposed policy-based management system achieves both the policy configuration and service-level agreement performance monitoring requirements. A policy consists of a condition part and an action part. The condition part is a Boolean expression of a source host IP group, a destination host IP group, etc. The action part is the parameters of services. We say that an address group is compact if it only consists of a range of IP address that can be denoted by a pair of IP address and corresponding IP mask. If the condition part of a policy only consists of the compact address group, we say that the policy is a rule. Since a device can efficiently process a compact address and a system administrator prefers to define a range of IP address, the policy-based management system has to translate policy into rules and supplements the gaps between policy and rules. The proposed policy-based management system builds the relationships between VPN and policies, policy and rules. Since the system administrator wants to monitor the system performance information of VPNs and policies, the proposed policy-based management system downloads the relationships among VPNs, policies and rules to the

  4. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    Science.gov (United States)

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Sieverts Nielsen, Per; Pedro Nunes, Clemente

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  6. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana

    DEFF Research Database (Denmark)

    Vijay Ramamurthi, Pooja; Cristina Fernandes, Maria; Nielsen, Per Sieverts

    2014-01-01

    –72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46–48% of total costs. Scale of straw unit does not have a large impact on logistic......This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana’s energy demands. Major rice growing regions of Ghana have 70–90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made...... for two bioenergy routes. Logistics costs for a 5MWe straw combustion plant were 39.01, 47.52 and 47.89USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25MWe husk gasification plant (with roundtrip distance 10km) was 2.64USD/t in all regions. Capital cost (66...

  7. Evaluation on community tree plantations as sustainable source for rural bioenergy in Indonesia

    Science.gov (United States)

    Siregar, U. J.; Narendra, B. H.; Suryana, J.; Siregar, C. A.; Weston, C.

    2017-05-01

    Indonesia has forest plantation resources in rural areas far from the national electricity grid that have potential as feedstock for biomass based electricity generation. Although some fast growing tree plantations have been established for bioenergy, their sustainability has not been evaluated to date. This research aimed to evaluate the growth of several tree species, cultivated by rural communities in Jawa Island, for their sustainability as a source for bio-electricity. For each tree species the biomass was calculated from diameter and height measurements and an estimate made for potential electricity generation based on density of available biomass and calorific content. Species evaluated included Acacia mangium, A. auriculiformis, A. crasicarpa, Anthocephalus cadamba, Calliandra calothirsus, Eucalyptus camaldulensis, Falcataria moluccana, Gmelina arborea, Leucaena leucochephala and Sesbania grandiflora. Among these species Falcataria moluccana and Anthocephalus cadamba showed the best potential for bioenergy production, with up to 133.7 and 67.1 ton/ha biomass respectively, from which 160412 and 80481 Kwh of electricity respectively could be generated. Plantations of these species could potentially meet the estimated demand for biomass feedstock to produce bioenergy in many rural villages, suggesting that community plantations could sustainably provide much needed electricity.

  8. Water Use and Water-Use Efficiency of Three Perennial Bioenergy Grass Crops in Florida

    Directory of Open Access Journals (Sweden)

    Jerry M. Bennett

    2012-10-01

    Full Text Available Over two-thirds of human water withdrawals are estimated to be used for agricultural production, which is expected to increase as demand for renewable liquid fuels from agricultural crops intensifies. Despite the potential implications of bioenergy crop production on water resources, few data are available on water use of perennial bioenergy grass crops. Therefore, the objective of this study was to compare dry matter yield, water use, and water-use efficiency (WUE of elephantgrass, energycane, and giant reed, grown under field conditions for two growing seasons in North Central Florida. Using scaled sap flow sensor data, water use ranged from about 850 to 1150 mm during the growing season, and was generally greater for giant reed and less for elephantgrass. Despite similar or greater water use by giant reed, dry biomass yields of 35 to 40 Mg ha−1 were significantly greater for energycane and elephantgrass, resulting in greater WUE. Overall, water use by the bioenergy crops was greater than the rainfall received during the study, indicating that irrigation will be needed in the region to achieve optimal yields. Species differ in water use and WUE and species selection can play an important role with regard to potential consequences for water resources.

  9. Managing Bioenergy Production on Arable Field Margins for Multiple Ecosystem Services: Challenges and Opportunities

    Science.gov (United States)

    Ferrarini, Andrea; Serra, Paolo; Amaducci, Stefano; Trevisan, Marco; Puglisi, Edoardo

    2013-04-01

    Growing crops for bioenergy is increasingly viewed as conflicting with food production. However, energy use continues to rise and food production requires fuel inputs, which have increased with intensification. The debate should shift from "food or fuel" to the more challenging target: how the increasing demand for food and energy can be met in the future, particularly when water and land availability will be limited. As for food crops, also for bioenergy crops it is questioned whether it is preferable to manage cultivation to enhance ecosystem services ("land sharing" strategy) or to grow crops with lower ecosystem services but higher yield, thereby requiring less land to meet bioenergy demand ("land sparing" strategy). Energy crop production systems differ greatly in the supply of ecosystem services. The use of perennial biomass (e.g. Switchgrass, Mischantus, Giant reed) for energy production is considered a promising way to reduce net carbon emissions and mitigate climate change. In addition, regulating and supporting ecosystem services could be provided when specific management of bioenergy crops is implemented. The idea of HEDGE-BIOMASS* project is to convert the arable field margins to bioenergy crop production fostering a win-win strategy at landscape level. Main objective of the project is to improve land management to generate environmental benefits and increase farmer income. The various options available in literature for an improved field boundary management are presented. The positive/unknown/negative effects of growing perennial bioenergy crops on field margins will be discussed relatively to the following soil-related ecosystem services: (I) biodiversity conservation and enhancement, (II) soil nutrient cycling, (III) climate regulation (reduction of GHG emissions and soil carbon sequestration/stabilization, (IV) water regulation (filtering and buffering), (V) erosion regulation, (VI) pollination and pest regulation. From the analysis of available

  10. Demand Estimation

    OpenAIRE

    Elliot E. Combs

    2017-01-01

    Price elasticity shows the responsiveness of demand to changes in price. Negative price elasticity of demand (PED) signifies the inverse relationship between price and demand. According to the equation, PED is -1.19 for widgets, which means that an increase in price of $1 would result in a contraction of demand of $1.19. Since the change in price corresponds with a more than proportionate change in demand, PED is said to be elastic. As a result, an increase in price would discourage consumers...

  11. Demand Uncertainty

    DEFF Research Database (Denmark)

    Nguyen, Daniel Xuyen

    . This retooling addresses several shortcomings. First, the imperfect correlation of demands reconciles the sales variation observed in and across destinations. Second, since demands for the firm's output are correlated across destinations, a firm can use previously realized demands to forecast unknown demands...... in untested destinations. The option to forecast demands causes firms to delay exporting in order to gather more information about foreign demand. Third, since uncertainty is resolved after entry, many firms enter a destination and then exit after learning that they cannot profit. This prediction reconciles......This paper presents a model of trade that explains why firms wait to export and why many exporters fail. Firms face uncertain demands that are only realized after the firm enters the destination. The model retools the timing of uncertainty resolution found in productivity heterogeneity models...

  12. The bioenergy potential of conservation areas and roadsides for biogas in an urbanized region

    International Nuclear Information System (INIS)

    Van Meerbeek, Koenraad; Ottoy, Sam; De Meyer, Annelies; Van Schaeybroeck, Tom; Van Orshoven, Jos; Muys, Bart; Hermy, Martin

    2015-01-01

    Highlights: • We assessed the bioenergy potential of conservation areas and roadsides in Flanders. • An area of 31,055 ha produces 203 kton DM of herbaceous biomass annually. • The associated biomass supply chain was optimized with OPTIMASS in four scenarios. • The net energy balance of the studied systems was 7 GJ ha −1 in the 2020 scenarios. • We show that this biomass can play a role to meet the increased biomass demand in 2020. - Abstract: In many urbanized areas the roadside and nature conservation management offers a biomass-for-bioenergy resource potential which is barely valorized, because of the fragmented biomass production sites and the scarcity of accurate data on the spatial availability of the biomass. In this study, a GIS based assessment was performed to determine the regional non-woody biomass-for-bioenergy potential for biogas from conservation areas and roadsides in Flanders, Belgium. These systems, with an area of 31,055 ha, have an annual herbaceous biomass production of 203 kton dry matter. The full associated biomass-to-bioenergy supply chain was optimized in four scenarios to maximize the net energy output and the profit. The scenario analysis was performed with OPTIMASS, a recently developed GIS based strategic decision support system. The analysis showed that the energetic valorization of conservation and roadside biomass through anaerobic digestion had a positive net energy balance, although there is still much room for improvements. Economically, however, it is a less interesting biomass resource. Most likely, the economic picture would change when other ecosystem services delivered by the protected biodiversity would be taken into account. Future technical advances and governmental incentives, like green energy certificates, will be necessary to incorporate the biomass into the energy chain. By tackling the existing barriers and providing a detailed methodology for biomass potential assessments, this study tries to

  13. Hydrological and sedimentation implications of landscape changes in a Himalayan catchment due to bioenergy cropping

    Science.gov (United States)

    Remesan, Renji; Holman, Ian; Janes, Victoria

    2015-04-01

    There is a global effort to focus on the development of bioenergy and energy cropping, due to the generally increasing demand for crude oil, high oil price volatility and climate change mitigation challenges. Second generation energy cropping is expected to increase greatly in India as the Government of India has recently approved a national policy of 20 % biofuel blending by 2017; furthermore, the country's biomass based power generation potential is estimated as around ~24GW and large investments are expected in coming years to increase installed capacity. In this study, we have modelled the environmental influences (e.g.: hydrology and sediment) of scenarios of increased biodiesel cropping (Jatropha curcas) using the Soil and Water Assessment Tool (SWAT) in a northern Indian river basin. SWAT has been applied to the River Beas basin, using daily Tropical Rainfall Measuring Mission (TRMM) precipitation and NCEP Climate Forecast System Reanalysis (CFSR) meteorological data to simulate the river regime and crop yields. We have applied Sequential Uncertainty Fitting Ver. 2 (SUFI-2) to quantify the parameter uncertainty of the stream flow modelling. The model evaluation statistics for daily river flows at the Jwalamukhi and Pong gauges show good agreement with measured flows (Nash Sutcliffe efficiency of 0.70 and PBIAS of 7.54 %). The study has applied two land use change scenarios of (1) increased bioenergy cropping in marginal (grazing) lands in the lower and middle regions of catchment (2) increased bioenergy cropping in low yielding areas of row crops in the lower and middle regions of the catchment. The presentation will describe the improved understanding of the hydrological, erosion and sediment delivery and food production impacts arising from the introduction of a new cropping variety to a marginal area; and illustrate the potential prospects of bioenergy production in Himalayan valleys.

  14. Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China

    Directory of Open Access Journals (Sweden)

    Jiashun Huang

    2017-05-01

    Full Text Available When developing land to meet various human needs, conducting assessments of different alternatives regarding their sustainability is critical. Among different alternatives of land-use, devoting land to bioenergy is relatively novel, in high demand, and important for addressing the energy crisis and mitigating carbon emissions. Furthermore, the competition and disputes among limited land-use for bioenergy and the combination of food production and housing are tense. Thus, which alternative of land-use is more sustainable is an important question, yet it is still under-investigated. The main purposes of this study are to investigate the merits and problems of land-use for bioenergy and to compare the relative sustainability of land-use for bioenergy, food production, and housing based on habitants’ perceptions. Multi-criteria analysis is applied to the case study in the context of China, evaluating multiple criteria in economic, environmental, and social dimensions. Therefore, this study presents a comprehensive assessment of different scenarios of land-use designed to be implemented and some implications for optimum land-use policies.

  15. Analysis of growth dynamics of Mediterranean bioenergy crops

    NARCIS (Netherlands)

    Archontoulis, S.V.

    2011-01-01

    In spite of the rapidly growing bioenergy production worldwide, there is lack of field experience and experimental data on the cultivation of bioenergy crops. This study aims to advance crop management operations and modelling studies by providing essential information on phenology, agronomy and

  16. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  17. Medium and long-term perspectives of international bioenergy trade

    NARCIS (Netherlands)

    Kranzl, Lukas; Daioglou, Vasileios; Faaij, Andre; Junginger, Martin; Keramidas, Kimon; Matzenberger, Julian; Tromborg, Erik

    2014-01-01

    In the coming decades, huge challenges in the global energy system are expected. Scenarios indicate that bioenergy will play a substantial role in this process. However, up to now there is very limited insight regarding the implication this may have on bioenergy trade in the long term. The

  18. Bio-energy and the environment: land of possible misunderstanding

    International Nuclear Information System (INIS)

    Moncada P C, Pietro; Grassi, G.

    1994-01-01

    This paper presents a point of view that bio-energy could assume sustainable environmental features for our future. The principal arguments of this paper are: bio-energy system and carbon emission -including confrontation of CO 2 emissions between electricity closed system and a coal-based electric generation system - soil erosion, fertilizer use, pesticide use, and biodiversity. (author)

  19. Developments in international bio-energy markets and trade

    NARCIS (Netherlands)

    Faaij, A.P.C.

    2008-01-01

    A reliable and sustainable supply of biomass is vital to any market activity aimed at bioenergy production. Given the high expectations for bioenergy on a global scale and of many nations, the pressure on available biomass resources is increasing rapidly. Due to high prices for fossil fuels

  20. IEA Bioenergy Task 40 country report for the Netherlands 2011

    NARCIS (Netherlands)

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for

  1. Potential Bioenergy Options in Developed and Developing Countries

    African Journals Online (AJOL)

    Plant –based energy production (energy crops, forest growth) and residue and waste based fuels can substitute fossil fuels in a sustainable and environmental friendly way. In this study, bioenergy includes bio-resources that can be potentially used for modern energy production. Modern bioenergy options offer significant, ...

  2. Possibilities and limitations for sustainable bioenergy production systems

    NARCIS (Netherlands)

    Smeets, E.M.W.|info:eu-repo/dai/nl/311445217

    2008-01-01

    The focus of this thesis is on the possibilities and limitations of sustainable bioenergy production systems. First, the potential contribution of bioenergy to the energy supply in different world regions in the year 2050 from different biomass sources (dedicated woody energy crops, residues and

  3. Harmonising bioenergy resource potentials - Methodological lessons from review of state of the art bioenergy potential asessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  4. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  5. Prospects for Hybrid Breeding in Bioenergy Grasses

    DEFF Research Database (Denmark)

    Aguirre, Andrea Arias; Studer, Bruno; Frei, Ursula

    2012-01-01

    , we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI...... of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods...

  6. Market survey Czech Republic. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Basic characteristics of the market for bioenergy (biomass, biogas and biofuels) in the Czech Republic and consequences for business environment are summarized, based on a SWOT analysis. The Czech biomass market is still developing and is segmented and disintegrated to many regional or sector markets where also prices of biomass differ significantly and could be affected by dominant players. There were several attempts to establish a kind of biomass exchange, but were unsuccessful. The biomass trade is done usually on bilateral basis but without clear long-term agreements on contracts which would secure stable supply and prices

  7. International bioenergy transport costs and energy balance

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N.; Suurs, Roald A.A.; Faaij, Andre P.C.

    2005-01-01

    To supply biomass from production areas to energy importing regions, long-distance international transport is necessary, implying additional logistics, costs, energy consumption and material losses compared to local utilisation. A broad variety of bioenergy chains can be envisioned, comprising different biomass feedstock production systems, pre-treatment and conversion operations, and transport of raw and refined solid biomass and liquid bio-derived fuels. A tool was developed to consistently compare the possible bioenergy supply chains and assess the influence of key parameters, such as distance, timing and scale on performance. Chains of European and Latin American bioenergy carriers delivered to Western Europe were analysed using generic data. European biomass residues and crops can be delivered at 90 and 70 euros/tonne dry (4.7 and 3.7 euros/GJ HHV ) when shipped as pellets. South American crops are produced against much lower costs. Despite the long shipping distance, the costs in the receiving harbour can be as low as 40 euros/tonne dry or 2.1 euros/GJ HHV ; the crop's costs account for 25-40% of the delivered costs. The relatively expensive truck transport from production site to gathering point restricts the size of the production area; therefore, a high biomass yield per hectare is vital to enable large-scale systems. In all, 300 MW HHV Latin American biomass in biomass integrated gasification/combined cycle plants may result in cost of electricity as little as 3.5 euros cent/kWh, competitive with fossil electricity. Methanol produced in Latin America and delivered to Europe may cost 8-10 euros/GJ HHV , when the pellets to methanol conversion is done in Europe the delivered methanol costs are higher. The energy requirement to deliver solid biomass from both crops and residues from the different production countries is 1.2-1.3 MJ primary /MJ delivered (coal ∼ 1.1 MJ/MJ). International bioenergy trade is possible against low costs and modest energy loss

  8. A Brief Global Perspective on Biomass for Bioenergy and Biofuels

    Directory of Open Access Journals (Sweden)

    Richard Vlosky

    2011-10-01

    Full Text Available Biomass has a large energy potential. A comparison between the available potential with the current use shows that, on a worldwide level, about two-fifths of the existing biomass energy potential is used. In most areas of the world the current biomass use is clearly below the available potential. Only for Asia does the current use exceed the available potential, i.e. non-sustainable biomass use. Therefore, increased biomass use, e.g. for upgrading is possible in most countries. A possible alternative is to cover the future demand for renewable energy, by increased utilization of forest residues and residues from the wood processing industry, e.g. for production of densified biofuels (Parrika, 2004.If carried out on a large scale, the increased use of agricultural resources for energy will have the effect of raising the prices of most commodity crops and reducing the need for subsidies – with particular benefit for producers of commodity crops in developing countries. An aggressive program of bioenergy development could lead to reductions in government support to farmers without any loss of income. The long-term success of bio-based facilities and markets is dependent in part on the level of commitment of feedstock from forest landowners and farmers.  Forest, crop, and animal residues present considerable potential as a biomass feedstock.  They are renewable, sustainable, locally available, and often considered carbon-neutral when compared to fossil fuels (Hoogwijk, 2004; Mathews, 2008.

  9. The Impact of Field Size on the Environment and Energy Crop Production Efficiency for a Sustainable Indigenous Bioenergy Supply Chain in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-11-01

    Full Text Available This paper investigates, using the GIS platform, the potential impacts of meeting national bioenergy targets using only indigenous sources of feedstock on the habitats and carbon stores that exist within Ireland’s field boundaries. A survey of the Republic of Irelands field was conducted in order to estimate and map the size and geographic distribution of the Republic of Ireland’s field boundaries. The planting and harvesting costs associated with possible bioenergy crop production systems were determined using the relationship between the seasonal operating efficiency and the average field size. The results indicate that Ireland will need a large proportion of its current agricultural area (at least 16.5% in order to its meet national bioenergy targets by 2020. The demand cannot be met by the current area that both has suitable soil type for growing the bioenergy crops and is large enough for the required operating efficiency. The results of this study indicate that implementing and meeting national bioenergy targets using only indigenous feedstock will likely impact the country’s field boundary resources negatively, as crop producers seek to improve production efficiency through field consolidation and field boundary removal. It was found that such boundary removal results in a loss of up to 6 tC/km2 and 0.7 ha/km of previously permanent habitat where average field size is small. The impact of field consolidation on these resources reduces substantially as larger fields become consolidated.

  10. Climate policy decisions require policy-based lifecycle analysis.

    Science.gov (United States)

    Bento, Antonio M; Klotz, Richard

    2014-05-20

    Lifecycle analysis (LCA) metrics of greenhouse gas emissions are increasingly being used to select technologies supported by climate policy. However, LCAs typically evaluate the emissions associated with a technology or product, not the impacts of policies. Here, we show that policies supporting the same technology can lead to dramatically different emissions impacts per unit of technology added, due to multimarket responses to the policy. Using a policy-based consequential LCA, we find that the lifecycle emissions impacts of four US biofuel policies range from a reduction of 16.1 gCO2e to an increase of 24.0 gCO2e per MJ corn ethanol added by the policy. The differences between these results and representative technology-based LCA measures, which do not account for the policy instrument driving the expansion in the technology, illustrate the need for policy-based LCA measures when informing policy decision making.

  11. Perennial Forages as Second Generation Bioenergy Crops

    Directory of Open Access Journals (Sweden)

    Paul R. Adler

    2008-05-01

    Full Text Available The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L., reed canarygrass (Phalaris arundinacea L., and alfalfa (Medicago sativa L.. An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production.

  12. Cadmium in the bioenergy system - a synthesis

    International Nuclear Information System (INIS)

    Ahlfont, K.

    1997-12-01

    Cadmium is a toxic metal without any known positive biological effects. Both emissions and atmospheric deposition of cadmium have decreased radically in Sweden during recent years. In Sweden, about 150 tonnes of cadmium was supplied to the technosphere in 1990, mostly originating from NiCd batteries. More than 100 tonnes of cadmium accumulated in the technosphere. Mankind takes up cadmium from water, food and particulate atmospheric pollution. Even small amounts may be injurious in the long-term since the half-life in the kidneys is 30 years. Cadmium in biofuel and ashes are generally a cause of discussion. Ashes from biofuel constitute a nutrient resource that should be returned to the soil. A possible risk with spreading ashes is the spreading of heavy metals, and then foremost cadmium, which is among the heavy metals that forest soils are considered to tolerate the least. Several studies on cadmium in the bioenergy system have been made, both within the Research Programme for Recycling of Wood-ash, and within Vattenfall's Bioenergy Project. The present report is intended to provide a picture of the current state of knowledge and to review plans for the future With a 3 page summary in English. 51 refs, 1 fig, 3 tabs

  13. Bioenergy in the new Finnish energy strategy

    International Nuclear Information System (INIS)

    Vilkamo, S.

    1997-01-01

    As discussed in this conference paper, the goal of Finnish energy strategy is to bring the growth of the total energy consumption to a halt in the next 10-15 years and to speed up the restructuring of the energy economy without hampering economic growth. By 2010 the emission of greenhouse gases should be down to the 1990 level. To reach the goals, various means are available: taxation, subsidies, energy efficiency measures, replacing fossil sources with renewable and low-emission energy sources. By 1999 Finland should be connected to the European gas network. The use of bioenergy, wood fuels and wind power is encouraged. Peat is a competitive fuel in areas where it is locally available. To cut down on CO 2 emission it is necessary to increase the use of bioenergy, and by 2025 the use of wood will have increased considerably from the present level. At present, the wood reserves increase by one percent per year. Public funds will be set aside for energy wood research, for product development and marketing. Peat is an important indigenous energy resource, accounting for about 5% of all energy use. The Government is committed to closely follow up the implementation of its energy strategy. 1 ref., 3 figs

  14. Perennial Forages as Second Generation Bioenergy Crops

    Science.gov (United States)

    Sanderson, Matt A.; Adler, Paul R.

    2008-01-01

    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production. PMID:19325783

  15. ACMECS Bioenergy Network: Implementing a transnational science-based policy network on bioenergy

    Science.gov (United States)

    Bruckman, Viktor J.; Haruthaithanasan, Maliwan; Kraxner, Florian; Brenner, Anna

    2017-04-01

    Despite the currently low prices for fossil energy resulting from a number of geopolitical reasons, intergovernmental efforts are being made towards a transition to a sustainable bio-economy. The main reasons for this include climate change mitigation, decreasing dependencies fossil fuel imports and hence external market fluctuations, diversification of energy generation and feedstock production for industrial processes. Since 2012, the ACMECS bioenergy network initiative leads negotiations and organizes workshops to set up a regional bioenergy network in Indochina, with the aim to promote biomass and -energy markets, technology transfer, rural development and income generation. Policy development is guided by the International Union of Forest Research Institutions (IUFRO) Task Force "Sustainable Forest Bioenergy Network". In this paper, we highlight the achievements so far and present results of a multi-stakeholder questionnaire in combination with a quantitative analysis of the National Bioenergy Development Plans (NBDP's). We found that traditional fuelwood is still the most important resource for generating thermal energy in the region, especially in rural settings, and it will remain an important resource even in 25 years. However, less fuelwood will be sourced from natural forests as compared to today. NBDP's have a focus on market development, technology transfer and funding possibilities of a regional bioenergy strategy, while the responses of the questionnaire favored more altruistic goals, i.e. sustainable resource management, environmental protection and climate change mitigation, generation of rural income and community involvement etc. This is surprising, since a sub-population of the (anonymous) questionnaire respondents was actually responsible drafting the NBDP's. We therefore suggest the following measures to ensure regulations that represent the original aims of the network (climate change mitigation, poverty alleviation, sustainable resource use

  16. Possibilities and limitations for sustainable bioenergy production systems

    International Nuclear Information System (INIS)

    Smeets, Edward Martinus Wilhelmus Utrecht University

    2008-05-01

    The main objective of this thesis is to investigate the possibilities and limitations of sustainable bioenergy production. To this end, the following research questions have been formulated: (1). What is the potential of different world regions to produce biomass for energy generation in the year 2050, taking account of biological and climatological limitations, the use of biomass to produce food, materials and traditional bioenergy, as well as the need to maintain existing forests and thus protect biodiversity?; (2) What are the main bottlenecks to formulating and implementing sustainability criteria for bioenergy production?; (3) To what extent does complying with sustainability criteria have impacts on the costs and potential of bioenergy production?; (4) To what extent do fertilizer- and manure-induced nitrous oxide (N2O) emissions due to energy crop production have an impact on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels?; (5) In terms of economic and environmental performance, how does Europe's production, storage and transport of miscanthus and switchgrass in 2004 compare to that in 2030? Throughout this thesis, specific attention is paid to knowledge gaps and their potential impact on results, the aim being to identify priorities for future research and development. Another key element of our research is that we evaluate the possibilities and limitations of strategies that are designed to improve the performance of bioenergy production systems and that may be incorporated in bioenergy certification schemes and bioenergy promoting policies

  17. Large or small? Rethinking China’s forest bioenergy policies

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Su, Yufang; Tennigkeit, Timm; Yang, Yongping; Xu, Jianchu

    2013-01-01

    China’s forest bioenergy policies are evolving against the backdrop of pressing national energy challenges similar to those faced by OECD countries, and chronic rural energy challenges more characteristic of developing countries. Modern forest bioenergy could contribute to solutions to both of these challenges. However, because of limitations in current technologies and institutions, significant policy and resource commitments would be required to make breakthroughs in either commercializing forest bioenergy or modernizing rural energy systems in China. Given the potential attention, funding, and resource trade-offs between these two goals, we provide an argument for why the focus of China’s forest bioenergy policy should initially be on addressing rural energy challenges. The paper concludes with a discussion on strategies for laying the groundwork for a modern, biomass-based energy infrastructure in rural China. -- Highlights: ► China’s bioenergy policy is at a crossroads. ► Trade-offs exist between forest bioenergy policy for urban and rural users in China. ► There are strong arguments for focusing forest bioenergy policy on rural areas. ► China’s rural energy policy should increasingly support modern energy carriers

  18. Microbial nitrogen cycling response to forest-based bioenergy production.

    Science.gov (United States)

    Minick, Kevan J; Strahm, Brian D; Fox, Thomas R; Sucre, Eric B; Leggett, Zakiya H

    2015-12-01

    Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production. Furthermore, intercropping of pine with bioenergy grasses could provide annually harvestable, lignocellulosic biomass feedstocks along with production of traditional wood products. Viability of such a system hinges in part on soil nitrogen (N) availability and effects of N competition between pines and grasses on ecosystem productivity. We investigated effects of intercropping loblolly pine (Pinus taeda) with switchgrass (Panicum virgatum) on microbial N cycling processes in the Lower Coastal Plain of North Carolina, USA. Soil samples were collected from bedded rows of pine and interbed space of two treatments, composed of either volunteer native woody and herbaceous vegetation (pine-native) or pure switchgrass (pine-switchgrass) in interbeds. An in vitro 15N pool-dilution technique was employed to quantify gross N transformations at two soil depths (0-5 and 5-15 cm) on four dates in 2012-2013. At the 0-5 cm depth in beds of the pine-switchgrass treatment, gross N mineralization was two to three times higher in November and February compared to the pine-native treatment, resulting in increased NH4(+) availability. Gross and net nitrification were also significantly higher in February in the same pine beds. In interbeds of the pine-switchgrass treatment, gross N mineralization was lower from April to November, but higher in February, potentially reflecting positive effects of switchgrass root-derived C inputs during dormancy on microbial activity. These findings indicate soil N cycling and availability has increased in pine beds of the pine

  19. How can land-use modelling tools inform bioenergy policies?

    Science.gov (United States)

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  20. BioenergyKDF: Enabling Spatiotemporal Data Synthesis and Research Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Aaron T [ORNL; Movva, Sunil [ORNL; Karthik, Rajasekar [ORNL; Bhaduri, Budhendra L [ORNL; White, Devin A [ORNL; Thomas, Neil [ORNL; Chase, Adrian S Z [ORNL

    2014-01-01

    The Bioenergy Knowledge Discovery Framework (BioenergyKDF) is a scalable, web-based collaborative environment for scientists working on bioenergy related research in which the connections between data, literature, and models can be explored and more clearly understood. The fully-operational and deployed system, built on multiple open source libraries and architectures, stores contributions from the community of practice and makes them easy to find, but that is just its base functionality. The BioenergyKDF provides a national spatiotemporal decision support capability that enables data sharing, analysis, modeling, and visualization as well as fosters the development and management of the U.S. bioenergy infrastructure, which is an essential component of the national energy infrastructure. The BioenergyKDF is built on a flexible, customizable platform that can be extended to support the requirements of any user community especially those that work with spatiotemporal data. While there are several community data-sharing software platforms available, some developed and distributed by national governments, none of them have the full suite of capabilities available in BioenergyKDF. For example, this component-based platform and database independent architecture allows it to be quickly deployed to existing infrastructure and to connect to existing data repositories (spatial or otherwise). As new data, analysis, and features are added; the BioenergyKDF will help lead research and support decisions concerning bioenergy into the future, but will also enable the development and growth of additional communities of practice both inside and outside of the Department of Energy. These communities will be able to leverage the substantial investment the agency has made in the KDF platform to quickly stand up systems that are customized to their data and research needs.

  1. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  2. 11. Rostock bioenergy forum. Proceedings; 11. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2017-08-01

    The seven main focus of the bioenergy forum were: 1. Political regulation and its consequences; 2. Flexible energy supply; 3. Biorefineries for the use of residues from bioenergy production; 4. Process optimization biogas; 5. Alternative substrates for biogas production; 6. Cross-sectoral bioenergy concept; 7. Transport sector (biofuels). Five lectures are separately analyzed for this database. [German] Die sieben Themenschwerpunkte des Bioenergieforums waren: 1. Politische Regulierung und deren Folgen; 2. Flexible Energiebereitstellung; 3. Bioraffinerie zur Nutzung von Reststoffen der Bioenergiegewinnung; 4. Prozessoptimierung Biogas; 5. Alternative Substrate zur Biogasgewinnung; 6. Sektoruebergreifende regionale Bioenergiekonzept; und 7. Transportsektor (Biokraftstoffe). Fuenf Vortraege wurden fuer diese Datenbank separat aufgenommen.

  3. MULTIVARIATE TECHNIQUES APPLIED TO EVALUATION OF LIGNOCELLULOSIC RESIDUES FOR BIOENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812361The evaluation of lignocellulosic wastes for bioenergy production demands to consider several characteristicsand properties that may be correlated. This fact demands the use of various multivariate analysis techniquesthat allow the evaluation of relevant energetic factors. This work aimed to apply cluster analysis and principalcomponents analyses for the selection and evaluation of lignocellulosic wastes for bioenergy production.8 types of residual biomass were used, whose the elemental components (C, H, O, N, S content, lignin, totalextractives and ashes contents, basic density and higher and lower heating values were determined. Bothmultivariate techniques applied for evaluation and selection of lignocellulosic wastes were efficient andsimilarities were observed between the biomass groups formed by them. Through the interpretation of thefirst principal component obtained, it was possible to create a global development index for the evaluationof the viability of energetic uses of biomass. The interpretation of the second principal component alloweda contrast between nitrogen and sulfur contents with oxygen content.

  4. Bioenergy. A sustainable option for Germany?; Bioenergie. Eine nachhaltige Option fuer Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schink, Bernhard [Konstanz Univ. (Germany)

    2012-12-15

    Biogas, biodiesel and bioethanol have experienced a major boom over the past years. However, a critical look at the climate impact, surface area efficiency and ecosystem impact of these energy resources shows them to be in need of reassessment, along with the policies in place for their promotion. This is the conclusion to which the German Academy of Sciences Leopoldina comes in an opinion entitled ''Bioenergy - possibilities and limits''.

  5. Selecting Metrics for Sustainable Bioenergy Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Virginia H [ORNL; Kline, Keith L [ORNL; Mulholland, Patrick J [ORNL; Downing, Mark [ORNL; Graham, Robin Lambert [ORNL; Wright, Lynn L [ORNL

    2009-01-01

    Key decisions about land-use practices and dynamics in biofuel systems affect the long-term sustainability of biofuels. Choices about what crops are grown and how are they planted, fertilized, and harvested determine the effects of biofuels on native plant diversity, competition with food crops, and water and air quality. Those decisions also affect economic viability since the distance that biofuels must be transported has a large effect on the market cost of biofuels. The components of a landscape approach include environmental and socioeconomic conditions and the bioenergy features [type of fuel, plants species, management practices (e.g., fertilizer and pesticide applications), type and location of production facilities] and ecological and biogeochemical feedbacks. Significantly, while water (availability and quality) emerges as one of the most limiting factors to sustainability of bioenergy feedstocks, the linkage between water and bioenergy choices for land use and management on medium and large scales is poorly quantified. Metrics that quantify environmental and socioeconomic changes in land use and landscape dynamics provide a way to measure and communicate the influence of alternative bioenergy choices on water quality and other components of the environment. Cultivation of switchgrass could have both positive and negative environmental effects, depending on where it is planted and what vegetation it replaces. Among the most important environmental effects are changes in the flow regimes of streams (peak storm flows, base flows during the growing season) and changes in stream water quality (sediment, nutrients, and pesticides). Unfortunately, there have been few controlled studies that provide sufficient data to evaluate the hydrological and water quality impacts of conversion to switchgrass. In particular, there is a need for experimental studies that use the small watershed approach to evaluate the effects of growing a perennial plant as a biomass crop

  6. Bioenergy Research Programme. Yearbook 1994. Utilization of bioenergy and biomass conversion

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and project numbered 60. The research area of biomass conversion consisted of 8 projects in 1994, and the research area of bioenergy utilization of 13 projects. The results of these projects carried out in 1994 are presented in this publication. The aim of the biomass conversion research is to produce more bio-oils and electric power as well at wood processing industry as at power plants. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. Possibilities to produce agrofibre in investigated at a laboratory study

  7. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    Energy Technology Data Exchange (ETDEWEB)

    Helby, Peter (ed.); Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  8. Market development problems for sustainable bio-energy systems in Sweden. (The BIOMARK project)

    International Nuclear Information System (INIS)

    Helby, Peter; Boerjesson, Paal; Hansen, Anders Christian; Roos, Anders; Rosenqvist, Haakan; Takeuchi, Linn

    2003-03-01

    The report consists of three case studies relating to Swedish bio-energy markets. The first is concerned with a general analysis of costs and benefits of transition to biomass-based electricity in Sweden. The analysis indicates that many price relations in Sweden do not support the transition to bio-energy. Future prospects for biomass conversion technologies versus natural gas based technologies may not be in favour of bio-energy with the existing fuel prices. Additionally, there is no effective utilisation of the large economic benefits that could be gained by coordinating the bio-energy fuel chain with the management of other material flows such as the nutrient flows in the water cycle. In government policies, the supply of biomass does not seem to receive the same attention as the conversion technologies. Potentially, this could lead to a shortage of biomass feedstock when the conversion technology part of the programmes succeeds. The second study is about market development for energy crops, specifically Salix. The analysis shows that real-life development is far behind prognoses and scenarios, confirming worries about future supplies of biomass. While Salix is associated with significant positive externalities and provides a large potential for co-benefits, the institutional setting is not favourable for the exploitation of these advantages. A particular problem is the high risk farmers face when planting Salix, as future demand is uncertain and prices difficult to predict. A better distribution of risk among the market actors, particularly between farmers and district heating companies, might be the best strategy for renewed growth in this sector. The third study is concerned with the wood pellets market, which experienced a supply crisis in the winter 2001/02, as producers were unable to satisfy demand or did so only at highly elevated prices. The analysis points to weakness in market governance, especially insufficient information flows between actors

  9. Biogas - Bioenergy potential in East Africa

    International Nuclear Information System (INIS)

    1997-01-01

    The workshop is part of the project: 'Energy production from Sisal Waste in East Africa' sponsored by the Danish Energy Agency, an agency under the Danish Ministry of Environment and Energy. This project has been carried out in close cooperation between the Danish Technological Institute and University of Dar es Salaam, Applied Microbiology Unit, who has also taken care of the practical arrangement. The main objectives of the workshop was: To present the ongoing research in East Africa on biogas production from organic residues; To get an overview of political and administrative issues related to promotion and implementation of renewable energy facilities in East Africa; To discuss appropriate set-ups for bioenergy facilities in East Africa. (au)

  10. Integrated Model of Bioenergy and Agriculture System

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    approach that builds on Life Cycle Inventory and carries out Life Cycle Impact Assessment for a con- sequential Life Cycle Assessment on integrated bioenergy and agriculture systems. The model framework is built in Python which connects various freely available soft- ware that handle different aspects......Due to increased burden on the environment caused by human activities, focus on industrial ecology designs are gaining more attention. In that perspective an environ- mentally effective integration of bionergy and agriculture systems has significant potential. This work introduces a modeling...... of the overall model. C- TOOL and Yasso07 are used in the carbon balance of agri- culture, Dynamic Network Analysis is used for the energy simulation and Brightway2 is used to build a Life Cycle Inventory compatible database and processes it for vari- ous impacts assessment methods. The model is success- fully...

  11. Technical/economical analysis of bioenergy systems

    International Nuclear Information System (INIS)

    Solantausta, Y.

    1998-01-01

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: (1) To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels; (2) To compare advanced technologies to commercial alternatives based on technoeconomic basis to establish future development needs, and (3) To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned. (orig.)

  12. Biogas - Bioenergy potential in East Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The workshop is part of the project: `Energy production from Sisal Waste in East Africa` sponsored by the Danish Energy Agency, an agency under the Danish Ministry of Environment and Energy. This project has been carried out in close cooperation between the Danish Technological Institute and University of Dar es Salaam, Applied Microbiology Unit, who has also taken care of the practical arrangement. The main objectives of the workshop was: To present the ongoing research in East Africa on biogas production from organic residues; To get an overview of political and administrative issues related to promotion and implementation of renewable energy facilities in East Africa; To discuss appropriate set-ups for bioenergy facilities in East Africa. (au)

  13. Bioenergy in the national forestry programme

    International Nuclear Information System (INIS)

    Heikurainen, M.

    1998-01-01

    The objective of the national forestry programme is to develop the treatment, utilization and protection of forests in order to increase the employment level in the forestry sector as well as enhance the utilization of the forests for recreation purposes. Increment of the utilization of wood energy is one of the means for meeting the objective of the programme. In addition to the silvicultural reasons, one of the main reasons for increasing of the utilization of energy wood is the possibilities of energywood-related small and medium-sized entrepreneurship to employ people. The emission reduction requirements of the Kyoto summit offer also a reason for the increment of the utilization of wood energy, because the carbon dioxide emissions of biofuels are not included in the emission share of the country. The techno-economically viable unutilized wood energy potential of clearcuts has been estimated to 3.7 million m 3 and that of the integrated harvesting of first thinnings 2.3 million m 3 . On the basis of these figures the latest objective of the programme has been set to increase the energy wood harvesting and utilization to 5.0 million m 3 /a up to the year 2010. The main means listed in the programme are: Development of integrated harvesting methods, by which it is possible to produce energy wood economically (price less than 45 FIM/MWh) as a byproduct of commercial timber; The environmental support paid to the forest chips purchasers; Bioenergy capacity developed in the forest industry; Social support for product development and entrepreneurhip in the field of bioenergy; Reduction of the value added taxes of the end users of split firewood and wood briquettes

  14. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  15. Policies to Enable Bioenergy Deployment: Key Considerations and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Smolinksi, Sharon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Bioenergy is renewable energy generated from biological source materials, and includes electricity, transportation fuels and heating. Source materials are varied types of biomass, including food crops such as corn and sugarcane, non-edible lignocellulosic materials such as agricultural and forestry waste and dedicated crops, and municipal and livestock wastes. Key aspects of policies for bioenergy deployment are presented in this brief as part of the Clean Energy Solutions Center's Clean Energy Policy Brief Series.

  16. IEA Bioenergy Task 40 country report for the Netherlands 2011

    OpenAIRE

    Goh, C.S.; Junginger, H.M.; Jonker, J.G.G.; Faaij, A.P.C.

    2011-01-01

    This country report was written within the frame of IEA Bioenergy Task 40. In summary, the aims of this country report are: (1) To provide a concise overview of biomass policy, domestic resources, biomass users, biomass prices and biomass trade, and (2) To analyse bioenergy trends, and reasons for change in the Netherlands and point out barriers & opportunities for trade in detail, and Current biomass user (energy use) Table ES-1 shows the energy use of biomass in the Netherlands in 2010. The...

  17. Bioenergy in Germany. Facts and figures. Solid fuels, biofuels, biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-11

    The brochure under consideration gives statistical information about the bioenergy in Germany: Renewable energies (bioenergy) and solid fuels. For example, the structure of the primary energy consumption in the year 2010, the energy supply from renewables, gross electricity generation, the total sales of renewables, growth in number of installed pellet boilers, wood fuel equivalent prices by energy value or biofuels in comparison with heating oil are presented.

  18. Policy-Based Negotiation Engine for Cross-Domain Interoperability

    Science.gov (United States)

    Vatan, Farrokh; Chow, Edward T.

    2012-01-01

    A successful policy negotiation scheme for Policy-Based Management (PBM) has been implemented. Policy negotiation is the process of determining the "best" communication policy that all of the parties involved can agree on. Specifically, the problem is how to reconcile the various (and possibly conflicting) communication protocols used by different divisions. The solution must use protocols available to all parties involved, and should attempt to do so in the best way possible. Which protocols are commonly available, and what the definition of "best" is will be dependent on the parties involved and their individual communications priorities.

  19. BioEnergy Feasibility in South Africa

    Science.gov (United States)

    Hugo, Wim

    2015-04-01

    The BioEnergy Atlas for South Africa is the result of a project funded by the South African Department of Science and Technology, and executed by SAEON/ NRF with the assistance of a number of collaborators in academia, research institutions, and government. Now nearing completion, the Atlas provides an important input to policy and decision support in the country, significantly strengthens the availability of information resources on the topic, and provides a platform whereby current and future contributions on the subject can be managed, preserved, and disseminated. Bioenergy assessments have been characterized in the past by poor availability and quality of data, an over-emphasis on potentials and availability studies instead of feasibility assessment, and lack of comprehensive evaluation in competition with alternatives - both in respect of competing bioenergy resources and other renewable and non-renewable options. The BioEnergy Atlas in its current edition addresses some of these deficiencies, and identifies specific areas of interest where future research and effort can be directed. One can qualify the potentials and feasible options for BioEnergy exploitation in South Africa as follows: (1) Availability is not a fixed quantum. Availability of biomass and resulting energy products are sensitive to both the exclusionary measures one applies (food security, environmental, social and economic impacts) and the price at which final products will be competitive. (2) Availability is low. Even without allowing for feasibility and final product costs, the availability of biomass is low: biomass productivity in South Africa is not high by global standards due to rainfall constraints, and most arable land is used productively for food and agribusiness-related activities. This constrains the feasibility of purposely cultivated bioenergy crops. (3) Waste streams are important. There are significant waste streams from domestic solid waste and sewage, some agricultural

  20. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  1. Functional Genomics of Drought Tolerance in Bioenergy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hengfu [ORNL; Chen, Rick [ORNL; Yang, Jun [ORNL; Weston, David [ORNL; Chen, Jay [ORNL; Muchero, Wellington [ORNL; Ye, Ning [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Cheng, Zong-Ming [ORNL; Tuskan, Gerald A [ORNL; Yang, Xiaohan [ORNL

    2014-01-01

    With the predicted trends in climate change, drought will increasingly impose a grand challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility with low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions with minimal water input. Genetics and functional genomics can play a critical role in generating knowledge to inform and aid genetic improvement of drought tolerance in bioenergy crops. The molecular aspect of drought response has been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops are limited. Crops exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants and pinpoint the unique features associated with individual species and genotypes. In this review, we summarize the general knowledge about drought responsive pathways in plants, with a focus on the identification of commonality and specialty in drought responsive mechanisms among different species and/or genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics to leverage the ever-increasing genomics resources and provide new insights beyond what has been known from studies on individual species. Finally, we outline future exploration of drought tolerance using the emerging new technologies.

  2. Bioenergy systems sustainability assessment & management (BIOSSAM) guidance portal for policy, decision and development support of integrated bioenergy supply interventions

    CSIR Research Space (South Africa)

    Stafford, WHL

    2010-08-01

    Full Text Available . There are several new bioenergy interventions (policies, projects, or programmes) that are being considered and these developments must be assessed in terms of their sustainability. Both public and private sector policy makers, decision makers, and technology...

  3. Scenarios of global agricultural biomass harvest reveal conflicts and trade-offs for bioenergy with CCS

    Science.gov (United States)

    Powell, Tom; Lenton, Tim

    2013-04-01

    We assess the quantitative potential for future land management to help rebalance the global carbon cycle by actively removing carbon dioxide (CO2) from the atmosphere with simultaneous bio-energy offsets of CO2 emissions, whilst meeting global food demand, preserving natural ecosystems and minimising CO2 emissions from land use change. Four alternative future scenarios are considered out to 2050 with different combinations of high or low technology food production and high or low meat diets. Natural ecosystems are protected except when additional land is necessary to fulfil the dietary demands of the global population. Dedicated bio-energy crops can only be grown on land that is already under management but is no longer needed for food production. We find that there is only room for dedicated bio-energy crops if there is a marked increase in the efficiency of food production (sustained annual yield growth of 1%, shifts towards more efficient animals like pigs and poultry, and increased recycling of wastes and residues). If there is also a return to lower meat diets, biomass energy with carbon storage (BECS) as CO2 and biochar could remove up to 4.0 Pg C per year in 2050. With the current trend to higher meat diets there is only room for limited expansion of bio-energy crops after 2035 and instead BECS must be based largely on biomass residues, removing up to 1.5 Pg C per year in. A high-meat, low-efficiency future would be a catastrophe for natural ecosystems (and thus for the humans that depend on their services) with around 8.5 Gha under cultivation in 2050. When included in a simple earth system model with a technological mitigation CO2 emission baseline these produce atmospheric CO2 concentrations of ~ 450-525ppm in 2050. In addition we assess the potential for future biodiversity loss under the scenarios due to three interacting factors; energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change

  4. Demanding Satisfaction

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2010-01-01

    It was the kind of crisis most universities dread. In November 2006, a group of minority student leaders at Indiana University-Purdue University Indianapolis (IUPUI) threatened to sue the university if administrators did not heed demands that included providing more funding for multicultural student groups. This article discusses how this threat…

  5. Bioenergy Research Programme, Yearbook 1995. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma, vuosikirja 1995. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Centre TEKES. The aim of the bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The research area of biomass conversion consisted of 8 projects in 1995, and the research area of bioenergy utilization of 14 projects. The results of these projects carried out in 1995 are presented in this publication. The aim of the biomass conversion is to produce more bio-oils and electric power as well as wood processing industry as at power plants than it is possible at present appliances. The conversion research was pointed at refining of the waste liquors of pulping industry and the extracts of them into fuel-oil and liquid engine fuels, on production of wood oil via flash pyrolysis, and on combustion tests. Other conversion studies dealt with production of fuel-grade ethanol. For utilization of agrobiomass in various forms of energy, a system study is introduced where special attention is how to use rapeseed oil unprocessed in heating boilers and diesel engines. The main aim of the research in bioenergy utilization is to create the technological potential for increasing the bioenergy use. The aim is further defined as to get into commercial phase 3-4 new techniques or methods and to start several demonstrations, which will have 0.2-0.3 million toe bioenergy utilization potential

  6. Router Agent Technology for Policy-Based Network Management

    Science.gov (United States)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  7. Potential Environmental Benefits from Increased Use of Bioenergy in China

    Science.gov (United States)

    Fan, Shuyang; Freedman, Bill; Gao, Jixi

    2007-09-01

    Because of its large population and rapidly growing economy, China is confronting a serious energy shortage and daunting environmental problems. An increased use of fuels derived from biomass could relieve some demand for nonrenewable sources of energy while providing environmental benefits in terms of cleaner air and reduced emissions of greenhouse gases. In 2003, China generated about 25.9 × 108 metric tons of industrial waste (liquid + solid), 14.7 × 108 metric tons/year (t/y) of manure (livestock + human), 7.1 × 108 t/y of crop residues and food-processing byproducts, 2 × 108 t/y of fuelwood and wood manufacturing residues, and 1.5 × 108 t/y of municipal waste. Biofuels derived from these materials could potentially displace the use of about 4.12 × 108 t/y of coal and 3.75 × 106 t/y of petroleum. An increased bioenergy use of this magnitude would help to reduce the emissions of key air pollutants: SO2 by 11.6 × 106 t/y, NOX by 1.48 × 106 t/y, CO2 by 1.07 × 109 t/y, and CH4 by 50 × 106 t/y. The reduced SO2 emissions would be equivalent to 54% of the national emissions in 2003, whereas those for CO2 are 30%. It is important to recognize, however, that large increases in the use of biomass fuels also could result in socioeconomic and environmental problems such as less production of food and damage caused to natural habitats.

  8. Global land and water grabbing for food and bioenergy

    Science.gov (United States)

    Rulli, M. C.; D'Odorico, P.

    2014-12-01

    The increasing demand for food, fibers and biofuels, the consequently escalating prices of agricultural products, and the uncertainty of international food markets have recently drawn the attention of governments and corporations toward investments in productive agricultural land, mostly in developing countries. Since 2000 more than 37 million hectares of arable land have been purchased or leased by foreign investors worldwide. The targeted regions are typically located in areas where crop yields are relatively low because of lack of modern technology. It is expected that in the long run large scale investments in agriculture and the consequent development of commercial farming will bring the technology required to close the existing crop yield gaps. Recently, a number of studies and reports have documented the process of foreign land acquisition, while the associated appropriation of land based resources (e.g., water and crops) has remained poorly investigated. The amount of food this land can produce and the number of people it could feed still needs to be quantified. It is also unclear to what extent the acquired land will be used to for biofuel production and the role played by U.S. and E.U. bioenergy policies as drivers of the ongoing land rush. The environmental impacts of these investments in agriculture require adequate investigation. Here we provide a global quantitative assessment of the rates of water and crop appropriation potentially associated with large scale land acquisitions. We evaluate the associated impacts on the food and energy security of both target and investors' countries, and highlight the societal and environmental implications of the land rush phenomenon.

  9. Developing Switchgrass as a Bioenergy Crop

    Energy Technology Data Exchange (ETDEWEB)

    Bouton, J.; Bransby, D.; Conger, B.; McLaughlin, S.; Ocumpaugh, W.; Parrish, D.; Taliaferro, C.; Vogel, K.; Wullschleger, S.

    1998-11-08

    The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the

  10. BioEnergy transport systems. Life cycle assessment of selected bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Goeran

    1999-07-01

    Biomass for energy conversion is usually considered as a local resource. With appropriate logistic systems, access to biomass can be improved over a large geographical area. In this study, life cycle assessment (LCA) has been used as method to investigate the environmental impacts of selected bioenergy transport chains. As a case study, chains starting in Sweden and ending in Holland have been investigated. Biomass originates from tree sections or forest residues, the latter upgraded to bales or pellets. The study is concentrated on production of electricity, hot cooling water is considered as a loss. Electricity is, as the main case, produced from solid biomass in the importing country. Electricity can also be produced in the country of origin and exported via the trans-national grid as transportation media. As an alternative, a comparison is made with a coal cycle. The results show that contribution of emissions from long-range transportation is of minor importance. The use of fuels and electricity for operating machines and transportation carriers requires a net energy input in bioenergy systems which amounts to typically 7-9% of delivered electrical energy from the system. Emissions of key substances such as NO{sub x}, CO, S, hydrocarbons, and particles are low. Emissions of CO{sub 2} from biocombustion are considered to be zero since there is approximately no net contribution of carbon to the biosphere in an energy system based on biomass. A method to quantify non-renewability is presented. For coal, the non-renewability factor is calculated to be 110%. For most of the cases with bioenergy, the non-renewability factor is calculated to be between 6 and 11%. Reclamation of biomass results in certain losses of nutrients such as nitrogen, phosphorus and base cations such as K, Ca and Mg. These are balanced by weathering, vitalisation or ash recirculation procedures. Withdrawal of N from the ecological system is approximately 10 times the load from the technical

  11. Current and future competitiveness of bioenergy - Conceptions about competitiveness

    International Nuclear Information System (INIS)

    Ling, E.; Lundgren, K.; Maartensson, Kjell

    1998-01-01

    It is important to visualize the conceptions that guide the behaviour of the actors within the energy system to be able to, in an efficient manner, increase the share of renewable energy in the energy mix. A major issue is to elucidate explicit and implicit presumptions within judgements on the competitiveness of bioenergy. This study focuses on how conceptions of bioenergy in the form of patterns of thinking, influence whether bioenergy can become competitive. The aim of the study is to develop a framework that will enable an increased understanding of the competitiveness of bioenergy today and in the future. The conceptions that the actors of the energy system uphold are studied and analysed. The conceptions of the actors are seen as key factors for the understanding of the function of the energy system and accordingly also for the understanding of the competitiveness of bioenergy. The over-all method perspective in the study is an actor approach. The actors' conceptions have been identified from interviews with 30 significant actors within the energy system. The material from the interviews has been synthesised into nine ideal types of actors. These nine 'model actors' are seen as representing the whole material and form the basis for the further analysis of the competitiveness of bioenergy as depending on patterns of thinking called logics. Three idealized logics are developed. The three logics developed in the study are production logic, market logic and socio-economic logic. (Upholders of the logics rank energy sources after production cost, profitability, and socio-economic legitimacy, respectively.) The logics co-exist within the different parts of the energy system. A single person can even uphold more than one logic. The three logics have however different weight in different organisations and in different parts of the energy system. Finally, the study proposes an enlarged description of the competitiveness of bioenergy in three dimensions: price

  12. Bioenergy crop models: Descriptions, data requirements and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Kang, Shujiang [ORNL; Zhang, Xuesong [Pacific Northwest National Laboratory (PNNL); Miguez, Fernando [Iowa State University; Izaurralde, Dr. R. Cesar [Pacific Northwest National Laboratory (PNNL); Post, Wilfred M [ORNL; Dietze, Michael [University of Illinois, Urbana-Champaign; Lynd, L. [Dartmouth College; Wullschleger, Stan D [ORNL

    2012-01-01

    Field studies that address the production of lignocellulosic biomass as a source of renewable energy provide critical data for the development of bioenergy crop models. A literature survey revealed that 14 models have been used for simulating bioenergy crops including herbaceous and woody bioenergy crops, and for crassulacean acid metabolism (CAM) crops. These models simulate field-scale production of biomass for switchgrass (ALMANAC, EPIC, and Agro-BGC), miscanthus (MISCANFOR, MISCANMOD, and WIMOVAC), sugarcane (APSIM, AUSCANE, and CANEGRO), and poplar and willow (SECRETS and 3PG). Two models are adaptations of dynamic global vegetation models and simulate biomass yields of miscanthus and sugarcane at regional scales (Agro-IBIS and LPJmL). Although it lacks the complexity of other bioenergy crop models, the environmental productivity index (EPI) is the only model used to estimate biomass production of CAM (Agave and Opuntia) plants. Except for the EPI model, all models include representations of leaf area dynamics, phenology, radiation interception and utilization, biomass production, and partitioning of biomass to roots and shoots. A few models simulate soil water, nutrient, and carbon cycle dynamics, making them especially useful for assessing the environmental consequences (e.g., erosion and nutrient losses) associated with the large-scale deployment of bioenergy crops. The rapid increase in use of models for energy crop simulation is encouraging; however, detailed information on the influence of climate, soils, and crop management practices on biomass production is scarce. Thus considerable work remains regarding the parameterization and validation of process-based models for bioenergy crops; generation and distribution of high-quality field data for model development and validation; and implementation of an integrated framework for efficient, high-resolution simulations of biomass production for use in planning sustainable bioenergy systems.

  13. Agronomic Suitability of Bioenergy Crops in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? âÂÃÃÂ

  14. Configuration model of partial repairable spares under batch ordering policy based on inventory state

    Directory of Open Access Journals (Sweden)

    Ruan Minzhi

    2014-06-01

    Full Text Available Rational planning of spares configuration project is an effective approach to improve equipment availability as well as reduce life cycle cost (LCC. With an analysis of various impacts on support system, the spares demand rate forecast model is constructed. According to systemic analysis method, spares support effectiveness evaluation indicators system is built, and then, initial spares configuration and optimization method is researched. To the issue of discarding and consumption for incomplete repairable items, its expected backorders function is approximated by Laplace demand distribution. Combining the (s−1, s and (R, Q inventory policy, the spares resupply model is established under the batch ordering policy based on inventory state, and the optimization analysis flow for spares configuration is proposed. Through application on shipborne equipment spares configuration, the given scenarios are analyzed under two constraint targets: one is the support effectiveness, and the other is the spares cost. Analysis reveals that the result is consistent with practical regulation; therefore, the model’s correctness, method’s validity as well as optimization project’s rationality are proved to a certain extent.

  15. Critical factors for bioenergy technology implementation. Five case studies of bioenergy markets in the United States, Sweden and Austria

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Anders [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest-Industry-Market Studies

    1998-07-01

    This report analyses the driving forces of, and barriers to, biomass energy technology implementation with the objective of defining the most important factors behind the growth of bioenergy markets and suggesting strategies for policy makers and investors. The approach is to describe the important factors for the development of real bioenergy markets at two levels: (1) Institutional, primarily policy, and (2) market structure. Concepts from economic theory, primarily transaction cost theory and industrial organisation, are used in a qualitative way. The report is based on literature studies and field studies of bioenergy markets in three countries: the United States of America, Austria, and Sweden. It is divided into five sections. After the introduction in section one, literature with relevance for this study is reviewed in section two. In section three the energy policy and energy sectors of each country are described. The descriptions include an overview of the biomass energy sectors. Five cases of developed bioenergy markets in the three countries are presented in section four. The cases are residential heating with wood pellets in New Hampshire, United States, biomass power production in Maine, residential heating with pellets in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. All markets are described in terms of the historical development, technical issues, economics, market structure and local policy influences. In the discussion in section five a number of key factors behind the success or failure of bioenergy are presented. Six factors are most important: (1) Complementaries between the bioenergy operations and another activity (for instance when the bioenergy production uses biomass waste products from another industry); (2) economics of scale within the bioenergy business through larger production series, standards, specialization etc.; (3) a competitive bioenergy market (Many sellers and buyers operate in the

  16. Critical factors for bioenergy technology implementation. Five case studies of bioenergy markets in the United States, Sweden and Austria

    International Nuclear Information System (INIS)

    Roos, Anders

    1998-01-01

    This report analyses the driving forces of, and barriers to, biomass energy technology implementation with the objective of defining the most important factors behind the growth of bioenergy markets and suggesting strategies for policy makers and investors. The approach is to describe the important factors for the development of real bioenergy markets at two levels: (1) Institutional, primarily policy, and (2) market structure. Concepts from economic theory, primarily transaction cost theory and industrial organisation, are used in a qualitative way. The report is based on literature studies and field studies of bioenergy markets in three countries: the United States of America, Austria, and Sweden. It is divided into five sections. After the introduction in section one, literature with relevance for this study is reviewed in section two. In section three the energy policy and energy sectors of each country are described. The descriptions include an overview of the biomass energy sectors. Five cases of developed bioenergy markets in the three countries are presented in section four. The cases are residential heating with wood pellets in New Hampshire, United States, biomass power production in Maine, residential heating with pellets in Sweden, biomass district heating in Sweden, and biomass district heating in Austria. All markets are described in terms of the historical development, technical issues, economics, market structure and local policy influences. In the discussion in section five a number of key factors behind the success or failure of bioenergy are presented. Six factors are most important: (1) Complementaries between the bioenergy operations and another activity (for instance when the bioenergy production uses biomass waste products from another industry); (2) economics of scale within the bioenergy business through larger production series, standards, specialization etc.; (3) a competitive bioenergy market (Many sellers and buyers operate in the

  17. Hydrologic Impacts of Developing Forest-based Bioenergy Feedstock in Wisconsin, USA and Entre Rios, Argentina Watersheds

    Science.gov (United States)

    Heidari, A.; Mayer, A. S.; Watkins, D. W., Jr.

    2017-12-01

    Growing demand for biomass-derived fuels has resulted in an increase in bioenergy projects across the Americas in recent years, a trend that is expected to continue. However, the expansion of bioenergy feedstock production might cause unintended environmental consequences. Accordingly, the goal of this research is to investigate how forest-based bioenergy development across the Americas may affect hydrological systems on a watershed scale. This study focuses on biofuel feedstock production with hybrid poplar cultivation in a snow-dominated watershed in northern Wisconsin, USA, and eucalyptus cultivation in a warm and temperate watershed in Entre Rios, Argentina. The Soil and Water Assessment Tool (SWAT), calibrated and validated for the two watersheds, is used to evaluate the effects of land use change corresponding to a range of biofuel development scenarios. The land use change scenarios include rules for limiting the location of the biofuel feedstock, and rotation time. These variables in turn impact the magnitude and timing of runoff and evapotranspiration. In Wisconsin, long term daily streamflow simulations indicate that planting poplar will increase evapotranspiration and decrease water yield, primarily through reduced baseflow contributions to streamflow. Results are also presented in terms of changes in flow relative to biomass production, to understand the sensitivity of potential biofuel generation to hydrologic impacts, and vice versa. In the end, alternative management practices were evaluated to mitigate the impacts. Keywords: Biofuel; Soil and Water Assessment Tool; Poplar; Baseflow; Evapotranspiration

  18. An introduction to BIOSSAM: the South African BIOenergy systems sustainability assessment and management portal

    CSIR Research Space (South Africa)

    Stafford, W

    2010-11-01

    Full Text Available The global bioenergy industry is advancing rapidly. New technologies and potential feedstocks are being proposed that aim for bioenergy to contribute to a wider range of economic, social, and environmental objectives. However, these advancements all...

  19. Perspective: The social science of sustainable bioenergy production in Southeast Asia

    NARCIS (Netherlands)

    Bush, S.R.

    2008-01-01

    The social sciences have made considerable inroads into exploring the politics of environment, land and resources throughout Southeast Asia, yet the social and political character of bioenergy development remains little understood. Current assumptions that bioenergy provides benefits to rural

  20. Age replacement policy based on imperfect repair with random probability

    International Nuclear Information System (INIS)

    Lim, J.H.; Qu, Jian; Zuo, Ming J.

    2016-01-01

    In most of literatures of age replacement policy, failures before planned replacement age can be either minimally repaired or perfectly repaired based on the types of failures, cost for repairs and so on. In this paper, we propose age replacement policy based on imperfect repair with random probability. The proposed policy incorporates the case that such intermittent failure can be either minimally repaired or perfectly repaired with random probabilities. The mathematical formulas of the expected cost rate per unit time are derived for both the infinite-horizon case and the one-replacement-cycle case. For each case, we show that the optimal replacement age exists and is finite. - Highlights: • We propose a new age replacement policy with random probability of perfect repair. • We develop the expected cost per unit time. • We discuss the optimal age for replacement minimizing the expected cost rate.

  1. INVESTIGATION OF FISCAL AND BUDGETARY POLICIES BASED ON ECONOMIC THEORIES

    Directory of Open Access Journals (Sweden)

    EMILIA CAMPEANU

    2011-04-01

    Full Text Available Empirical analysis of fiscal and budgetary policies cannot be achieved without first knowing how they are viewed in the economic theories. This approach is important to indicate the position and implications of fiscal and budgetary policy tools in the economic theory considering their major differences. Therefore, the paper aims is to investigate the fiscal and budgetary policies based on economic theories such as neoclassical, Keynesian and neo-Keynesian theory in order to indicate their divergent points. Once known these approaches at the economic theory level is easier to establish the appropriate measures taking into consideration the framing of a country economy in a certain pattern. This work was supported from the European Social Fund through Sectoral Operational Programme Human Resources Development 2007-2013, project number POSDRU/89/1.5/S/59184 „Performance and excellence in postdoctoral research in Romanian economics science domain” (contract no. 0501/01.11.2010.

  2. TECHNOLOGICAL SCENARIOS TO THE DEMAND FOR SUGARCANE

    Directory of Open Access Journals (Sweden)

    Ana Paula Franco Paes Leme Barbosa

    2012-06-01

    Full Text Available From the first decade of the 2000s, it is clear that there is an increase in discussions involving sustainability, including the bioenergy issue, to which Brazil has drawn the attention due to advances in the ethanol industry. Advances in engine technology reflected new opportunities for this industry and, according to the Ten-Year Energy Plan for 2019 developed by the Ministry of Mines and Energy, there is an expected increase in demand for ethanol of 90% by 2019 (Brazil, 2010. However, new technologies for the conversion and use of sugarcane and the complex context of this industry add uncertainties to this sector. Aiming to discuss and include the uncertainties on the agenda of this industry, this study proposes to elaborate and discuss prospective scenarios to the demand for sugarcane. Four scenarios with different perspectives of technological advance and market development were elaborated and discussed in the conclusion.

  3. IEA Bioenergy task 40. Country report for the Netherlands. Update 2006

    International Nuclear Information System (INIS)

    Junginger, M.; De Wit, M.; Faaij, A.

    2006-09-01

    Short-term objectives of the IEA Bioenergy Task 40 'Sustainable International Bio-energy Trade: Securing Supply and Demand' are amongst other objectives to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands, and also sets the first step to make an inventory of barriers as perceived by various Dutch stakeholders. The information gathered in this report is to a large extent based on existing statistics and reports from Dutch institutions. The literature data is complemented by additional information obtained from stakeholders, such as utilities, biomass traders, the port of Rotterdam, policy makers and custom institutions. In some cases, the data source was left anonymous because of the confidential nature of the data concerned. This report was first published in 2005. In this updated 2006 version, additional data has been collected for the year 2005, mainly concerning the import of biomass and renewable electricity. Also the policy section has been updated (situation September 2006), and some information on the use of biofuels has been added.

  4. Modelling sustainable bioenergy potentials from agriculture for Germany and Eastern European countries

    International Nuclear Information System (INIS)

    Simon, Sonja; Wiegmann, Kirsten

    2009-01-01

    This paper presents a model for analyzing the sustainable potential of agricultural biomass for energy production. Available land and residue potentials are assessed up to 2030 for Germany, Poland, the Czech Republic and Hungary. Two scenarios are presented: a ''business as usual'' scenario is compared to a sustainability scenario. The latter implements a comprehensive sustainability strategy, taking also into account non-agricultural land use such as building activity and nature conservation. On the one hand our model quantifies the conflict of objectives between enhanced extensification in agriculture and increased area for nature conservation. On the other hand the synergies in restricting built up area and increased mobilisation of agricultural residues are assessed. Additionally the impact of reduced subsidized agricultural exports from the EU is calculated, also as an indicator for the influence of world food markets on bioenergy potentials. Our results show that the sustainable energy potential from agricultural biomass is strongly restricted for Germany and the Czech Republic compared to their energy demand. But in Poland and Hungary native agricultural biomass provides a much higher potential for energy supply, even if sustainability is comprehensively considered. However, this is strongly influenced by the amount of agricultural exports of each country. For bioenergy from agricultural cultivation to remain a sustainable option in the energy sector, its influence on the food markets must be respected more thoroughly and a comprehensive approach to sustainable development in land use is a prerequisite. (author)

  5. Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Glasser, Melodie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-01-01

    Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the context of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.

  6. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?

    Science.gov (United States)

    Debez, Ahmed; Belghith, Ikram; Friesen, Jan; Montzka, Carsten; Elleuche, Skander

    2017-01-01

    Due to steadily growing population and economic transitions in the more populous countries, renewable sources of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy, but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas - which have been considered unproductive for a long time - more valuable. This review emphasises on halophyte definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to their conventional mesophilic counterparts for faster degradation of halophyte biomass.

  7. Bioenergy and the importance of land use policy in a carbon-constrained world

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Katherine V.; Edmonds, James A.; Wise, Marshall A.

    2010-06-01

    Policies aimed at limiting anthropogenic climate change would result in significant transformations of the energy and land-use systems. However, increasing the demand for bioenergy could have a tremendous impact on land use, and can result in land clearing and deforestation. Wise et al. (2009a,b) analyzed an idealized policy to limit the indirect land use change emissions from bioenergy. The policy, while effective, would be difficult, if not impossible, to implement in the real world. In this paper, we consider several different land use policies that deviate from this first-best, using the Joint Global Change Research Institute’s Global Change Assessment Model (GCAM). Specifically, these new frameworks are (1) a policy that focuses on just the above-ground or vegetative terrestrial carbon rather than the total carbon, (2) policies that focus exclusively on incentivizing and protecting forestland, and (3) policies that apply an economic penalty on the use of biomass as a proxy to limit indirect land use change emissions. For each policy, we examine its impact on land use, land-use change emissions, atmospheric CO2 concentrations, agricultural supply, and food prices.

  8. In demand

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, B. [Bridgestone Ltd. (United Kingdom)

    2005-11-01

    The paper explains how good relationships can help alleviate potential tyre shortages. Demand for large dump truck tyres (largely for China) has increased by 50% within 12 months. Bridgestone's manufacturing plants are operating at maximum capacity. The company supplies tyres to all vehicles at Scottish Coal's opencast coal mines. Its Tyre Management System (TMS) supplied free of charge to customers helps maximise tyre life and minimise downtime from data on pressure, tread and general conditions fed into the hand-held TMS computer. 3 photos.

  9. Utilization of summer legumes as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Keri B.; Bauer, Philip J.; Ro, Kyoung S. [United States Department of Agriculture, ARS, Coastal Plains Soil, Water, and Plant Research Center, 2611 W. Lucas St. Florence, SC 29501 (United States)

    2010-12-15

    Sunn hemp (Crotolaria juncea), is a fast growing, high biomass yielding tropical legume that may be a possible southeastern bioenergy crop. When comparing this legume to a commonly grown summer legume - cowpeas (Vigna unguiculata), sunn hemp was superior in biomass yield (kg ha{sup -1}) and subsequent energy yield (GJ ha{sup -1}). In one year of the study after 12 weeks of growth, sunn hemp had 10.7 Mg ha{sup -1} of biomass with an energy content of 19.0 Mg ha{sup -1}. This resulted in an energy yield of 204 GJ ha{sup -1}. The energy content was 6% greater than that of cowpeas. Eventhough sunn hemp had a greater amount of ash, plant mineral concentrations were lower in some cases of minerals (K, Ca, Mg, S) known to reduce thermochemical conversion process efficiency. Pyrolytic degradation of both legumes revealed that sunn hemp began to degrade at higher temperatures as well as release greater amounts of volatile matter at a faster rate. (author)

  10. Improving Bioenergy Crops through Dynamic Metabolic Modeling

    Directory of Open Access Journals (Sweden)

    Mojdeh Faraji

    2017-10-01

    Full Text Available Enormous advances in genetics and metabolic engineering have made it possible, in principle, to create new plants and crops with improved yield through targeted molecular alterations. However, while the potential is beyond doubt, the actual implementation of envisioned new strains is often difficult, due to the diverse and complex nature of plants. Indeed, the intrinsic complexity of plants makes intuitive predictions difficult and often unreliable. The hope for overcoming this challenge is that methods of data mining and computational systems biology may become powerful enough that they could serve as beneficial tools for guiding future experimentation. In the first part of this article, we review the complexities of plants, as well as some of the mathematical and computational methods that have been used in the recent past to deepen our understanding of crops and their potential yield improvements. In the second part, we present a specific case study that indicates how robust models may be employed for crop improvements. This case study focuses on the biosynthesis of lignin in switchgrass (Panicum virgatum. Switchgrass is considered one of the most promising candidates for the second generation of bioenergy production, which does not use edible plant parts. Lignin is important in this context, because it impedes the use of cellulose in such inedible plant materials. The dynamic model offers a platform for investigating the pathway behavior in transgenic lines. In particular, it allows predictions of lignin content and composition in numerous genetic perturbation scenarios.

  11. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  12. Governance of the emerging bio-energy markets

    International Nuclear Information System (INIS)

    Verdonk, M.; Dieperink, C.; Faaij, A.P.C.

    2007-01-01

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  13. Governance of the emerging bio-energy markets

    Energy Technology Data Exchange (ETDEWEB)

    Verdonk, M. [Department of Water and Energy, Grontmij Nederland BV, P.O. Box 203, 3730 AE, De Bilt (Netherlands); Dieperink, C. [Department of Innovation and Environmental Studies, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands); Faaij, A.P.C. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht (Netherlands)

    2007-07-15

    Despite its promising prospects, a growing global bio-energy market may have sustainability risks as well. Governing this market with respect to installing safeguards to ensure sustainable biomass production might reduce these risks. Therefore, proposals for governance systems for bio-energy are discussed in this article. The proposals are based on comparative case study research on the governance of comparable commodities. By assessing the governance system of global coffee trade, fair trade coffee, the global and the EU sugar market and Forest Stewardship Council (FSC) wood, strong and weak points of governance systems for commodities are discerned. FSC is selected as the best performing case study and serves as the proposal's basis. FSC's weaknesses are minimized by, among others, using the lessons learned from the other case studies. This results in a system consisting of two pillars, a bio-energy labelling organization (BLO) and a United Nations Agreement on Bio-energy (UNAB). Although consulted experts in the research process are critical about this system they do suggest several conditions a governance system for bio-energy should meet in order to be effective, such as a facilitative government, professional monitoring and using progressive certification combined with price premiums. These conditions have been taken into account in the final proposal. (author)

  14. The current situation in the bioenergy sector in South Ostrobothnia

    International Nuclear Information System (INIS)

    Lauhanen, R.; Humalamaeki, H.

    2006-01-01

    In March 2006, a research project was launched about bioenergy production and use that serves the South Ostrobothnia Target 2 area. The project is funded by the European Regional Development Fund, the South Ostrobothnia Employment and Economic Centre and Sein j oki University of Applied Sciences. A meeting of experts was held in Aehtaeri during April 2006 to establish the views on the problems, bottlenecks and research needs of the bioenergy sector. The bioenergy trade was seen as regional opportunity and strength. Its domestic content, effect on employment and the regional economy plus the plentiful raw material sources of forests, fields and bogs were identified. Like-wise, the competing position between bioenergy and other forms of energy became evident. Forest owners emphasised the weakness of low energy wood prices and the risks of forest soil nutrient losses. The forest industry was concerned about a foreseen shortage of machine operators. Forest owners, municipalities, researchers and Forest Centre raised the short-sightedness of state subsidy policy. The Forest Centre also brought up the issue of operators who only seek fast profits in a fast growing trade. The issue of emissions trade benefits ending up outside the forest sector was also considered a problem. The core research needs identified were collating fragmented research in-formation for the use of operators in the Target area, mapping the bioenergy potential of the region, logistical calculations and energy wood measurement

  15. Recent advances in membrane technologies for biorefining and bioenergy production.

    Science.gov (United States)

    He, Yi; Bagley, David M; Leung, Kam Tin; Liss, Steven N; Liao, Bao-Qiang

    2012-01-01

    The bioeconomy, and in particular, biorefining and bioenergy production, have received considerable attention in recent years as a shift to renewable bioresources to produce similar energy and chemicals derived from fossil energy sources, represents a more sustainable path. Membrane technologies have been shown to play a key role in process intensification and products recovery and purification in biorefining and bioenergy production processes. Among the various separation technologies used, membrane technologies provide excellent fractionation and separation capabilities, low chemical consumption, and reduced energy requirements. This article presents a state-of-the-art review on membrane technologies related to various processes of biorefining and bioenergy production, including: (i) separation and purification of individual molecules from biomass, (ii) removal of fermentation inhibitors, (iii) enzyme recovery from hydrolysis processes, (iv) membrane bioreactors for bioenergy and chemical production, such as bioethanol, biogas and acetic acid, (v) bioethanol dehydration, (vi) bio-oil and biodiesel production, and (vii) algae harvesting. The advantages and limitations of membrane technologies for these applications are discussed and new membrane-based integrated processes are proposed. Finally, challenges and opportunities of membrane technologies for biorefining and bioenergy production in the coming years are addressed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Small-scale bioenergy alternatives for industry, farm, and institutions: A user's perspective

    International Nuclear Information System (INIS)

    Folk, R.

    1991-01-01

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases

  17. Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity

    NARCIS (Netherlands)

    Gell, K.; Groenigen, van J.W.; Cayuela, M.L.

    2011-01-01

    The current shift towards bioenergy production increases streams of bioenergy rest-products (RPs), which are likely to end-up as soil amendments. However, their impact on soil remains unclear. In this study we evaluated crop phytotoxicity of 15 RPs from common bioenergy chains (biogas, biodiesel,

  18. Small-Scale Bioenergy Alternatives for Industry, Farm, and Institutions : A User`s Perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Folk, Richard [ed.] [Idaho Univ., Moscow, ID (United States). Dept. of Forest Products

    1991-12-31

    This report presents research on biomass as an energy source. Topics include: bioenergy development and application; bioenergy combustion technology; and bioenergy from agricultural, forest, and urban resources. There are a total of 57 individual reports included. Individual reports are processed separately for the databases.

  19. Overcoming barriers to increased bio-energy use. Suggestions for a high impact policy

    International Nuclear Information System (INIS)

    Chanakya, H.N.; Ravindranath, N.H.

    1997-01-01

    A few options that are likely to result in a high impact policy towards ensuring increased use of bio-energy in the developing world are discussed. Such options are: Moving towards greater energy security /guarantee, bio-energy technology transfer platforms, documentation in bio-energy businesses, removing risk perceptions in financing, increasing private entrepreneur stakes, etc. (K.A.)

  20. 10. Rostock bioenergy forum. Proceedings; 10. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2016-08-01

    Biomass energy not only contributes to the energy transition, but also for climate and resource protection. The main topics of the conference are: Alternative solid bioenergy sources; Optimizing the use of heat; Prospects for biofuels; Emission reduction through use of biofuels; Alternative biomass for biogas; Optimization and adjustment in the biogas sector; Flexibility of biogas plants; New uses of bioenergy. 12 contributions were recorded separately for the INIS database. [German] Energie aus Biomasse traegt nicht nur zur Energiewende bei, sondern auch zum Klima- und Ressourcenschutz. Die Schwerpunktthemen der Konferenz sind: Alternative feste Bioenergietraeger; Optimierung der Waermenutzung; Perspektiven fuer Biokraftstoffe; Emissionsminderung durch Biokraftstoffnutzung; Alternative Biomassen fuer Biogas; Optimierung und Anpassung im Biogasbereich; Flexibilisierung von Biogasanlagen; Neue Nutzungsmoeglichkeiten der Bioenergie. Fuer die Datenbank INIS wurden 12 Beitraege separat aufgenommen.

  1. The Role of Bioenergy in Greenhouse Gas Mitigation

    International Nuclear Information System (INIS)

    Spitzer, J.

    1998-01-01

    Biomass can play a dual role in greenhouse gas mitigation related to the objectives of the UNFCCC, i.e. as an energy source to substitute fossil fuels and as a carbon store. However, compared to the maintenance and enhancement of carbon sinks and reservoirs, it appears that the use of bioenergy has so far received less attenuation as a means of mitigating climate change. Modern bioenergy options offer significant, cost-effective and perpetual opportunities toward meeting emission reduction targets while providing additional ancillary benefits. Moreover, via the sustainable use of the accumulated carbon, bioenergy has the potential for resolving some of the critical issues surrounding long-term maintenance of biotic carbon stocks. < finally, wood products can act as substitutes for more energy-intensive products, can constitute carbon sinks, and can be used as biofuels at the end of their lifetime. (author)

  2. Optimization of bioenergy yield from cultivated land in Denmark

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Grohnheit, Poul Erik; Østergård, Hanne

    2010-01-01

    A cost minimization model for supply of starch, oil, sugar, grassy and woody biomass for bioenergy in Denmark was developed using linear programming. The model includes biomass supply from annual crops on arable land, short rotation forestry (willow) and plantation forestry. Crop area distributions...... and feed production, or e) on site carbon sequestration. In addition, two oil price levels were considered. The crop area distributions differed between scenarios and were affected by changing fossil oil prices up to index 300 (using 55$ per barrel in 2005 as index = 100). The bioenergy supply (district...... a low nitrogen load to the environment. In conclusion, even after drastic landuse changes the bioenergy supply as final energy will not exceed 184 PJ annually (including 26 PJ processed biowaste sources) by far lower than the annual domestic total energy consumption ranging between 800 and 850 PJ yr−1....

  3. Bio-energy in Europe: changing technology choices

    International Nuclear Information System (INIS)

    Faaij, Andre P.C.

    2006-01-01

    Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and substitute fossil fuels. This is certainly evident in Europe, where a kaleidoscope of activities and programs was and is executed for developing and stimulating bio-energy. Over the past 10-15 years in the European Union, heat and electricity production from biomass increased with some 2% and 9% per year, respectively, between 1990 and 2000 and biofuel production increased about eight-fold in the same period. Biomass contributed some two-thirds of the total renewable energy production in the European Union (EU) (2000 PJ) or 4% of the total energy supply in 1999. Given the targets for heat, power and biofuels, this contribution may rise to some 10% (6000 PJ) in 2010. Over time, the scale at which bio-energy is being used has increased considerably. This is true for electricity and combined heat and power plants, and how biomass markets are developing from purely regional to international markets, with increasing cross-border trade-flows. So far, national policy programs proved to be of vital importance for the success of the development of bio-energy, which led to very specific technological choices in various countries. For the future, a supra-national approach is desired: comprehensive research development, demonstration and deployment trajectories for key options as biomass integrated gasification/combined cycle and advanced biofuel concepts, develop an international biomass market allowing for international trade and an integral policy approach for bio-energy incorporating energy, agricultural, forestry, waste and industrial policies. The Common Agricultural Policy of the (extended) EU should fully incorporate bio-energy and perennial crops in particular

  4. Unravelling the argument for bioenergy production in developing countries. A world-economy perspective

    International Nuclear Information System (INIS)

    Kuchler, Magdalena

    2010-01-01

    This paper offers a critical look at how energy security-, food and agriculture-, and climate change-oriented international organizations frame biomass energy production in developing countries, in particular, ethanol production in Brazil. Using the world-economy system as a theoretical lens, the paper raises a concern as to whether the way these global institutions frame bioenergy's role in developing regions manifests energy and ecological inequalities between the core and the periphery, as well as creates internal contradictions that perpetuate unequal exchange embedded in the system. Simultaneously, these organizations frame Brazil as a semi-peripheral state that, while successful in finding a niche concurring with the core's demand for cheap energy and cost-effective decarbonization strategies, is not necessarily a suitable role model for the periphery's socio-economic development. (author)

  5. Unravelling the argument for bioenergy production in developing countries. A world-economy perspective

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Magdalena [Department of Thematic Studies - Water and Environmental Studies, Linkoeping University, 58183, Linkoeping (Sweden); Centre for Climate Science and Policy Research, Linkoeping University, 60174, Norrkoeping (Sweden)

    2010-04-01

    This paper offers a critical look at how energy security-, food and agriculture-, and climate change-oriented international organizations frame biomass energy production in developing countries, in particular, ethanol production in Brazil. Using the world-economy system as a theoretical lens, the paper raises a concern as to whether the way these global institutions frame bioenergy's role in developing regions manifests energy and ecological inequalities between the core and the periphery, as well as creates internal contradictions that perpetuate unequal exchange embedded in the system. Simultaneously, these organizations frame Brazil as a semi-peripheral state that, while successful in finding a niche concurring with the core's demand for cheap energy and cost-effective decarbonization strategies, is not necessarily a suitable role model for the periphery's socio-economic development. (author)

  6. LANL capabilities towards bioenergy and biofuels programs

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A [Los Alamos National Laboratory; Park, Min S [Los Alamos National Laboratory; Unkefer, Clifford J [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and

  7. Technical and economic performance of integrated bioenergy systems

    Energy Technology Data Exchange (ETDEWEB)

    Toft, A.J.; Bridgwater, A.V. [Aston Univ. (United Kingdom). Energy Research Group; Mitchell, C.P.; Watters, M.P. [Aberdeen Univ. (United Kingdom). Wood Supply Research Group; Stevens, D.J. [Cascade Research, Inc. (United States)

    1996-12-31

    A comprehensive study of biomass production, conversion and utilisation systems has been carried out to examine complete bioenergy systems from biomass in the forest to electricity delivered to the grid. Spreadsheet models have been derived for all of the key steps in an integrated process and these have been compiled into an overall BioEnergy Assessment Model (BEAM). The model has also been used to investigate both the performance of different technologies and the effect of different configurations of the same basic system by manipulating the interfaces between feed production, feed conversion and electricity generation. Some of the results of these analyses are presented here. (orig.)

  8. Using corngrass1 to engineer poplar as a bioenergy crop

    Energy Technology Data Exchange (ETDEWEB)

    Meilan, Richard; Rubinelli, Peter Marius; Chuck, George

    2016-05-10

    Embodiments of the present invention relate generally to new bioenergy crops and methods of creating new bioenergy crops. For example, genes encoding microRNAs (miRNAs) are used to create transgenic crops. In some embodiments, over-expression of miRNA is used to produce transgenic perennials, such as trees, with altered lignin content or composition. In some embodiments, the transgenic perennials are Populus spp. In some embodiments, the miRNA is a member of the miR156 family. In some embodiments, the gene is Zea mays Cg1.

  9. Comparison of Bioenergy Policies in Denmark and Germany

    DEFF Research Database (Denmark)

    Schwarz, Gerald; Noe, Egon; Saggau, Volker

    2012-01-01

    Purpose – This chapter compares bioenergy policy developments in Germany and Denmark to better understand the responses of EU country policy regimes to global shocks; to examine potentially emerging new trends of productivist policy models; and to explore potential land use conflicts in the context...... of a multifunctional EU agricultural policy. Design/methodology/approach – The chapter reviews the bioenergy policy development pathways taken by Germany and Denmark, highlighting key consequences for agricultural land use and rural development. Findings from both case studies are then compared in summary tables...

  10. The bio-energies development: the role of biofuels and the CO{sub 2} price

    Energy Technology Data Exchange (ETDEWEB)

    Jouvet, Pierre-Andre [Universite Paris Ouest Nanterre La Defense, Climate Economics Chair (France); Lantz, Frederic [IFP Energies nouvelles, 1-4, avenue de Bois-Preau, 92852 Rueil-Malmaison Cedex (France); Le Cadre, Elodie [IFPEN, INRA, Universite Paris Ouest Nanterre La Defense (France)

    2012-07-01

    Reduction in energy dependency and emissions of CO{sub 2} via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO{sub 2} price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO{sub 2} price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO{sub 2} price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO{sub 2} emission price lower than 20 euros/tCO{sub 2}, which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO{sub 2} price. (authors)

  11. The bio-energies development: the role of biofuels and the CO2 price

    International Nuclear Information System (INIS)

    Jouvet, Pierre-Andre; Lantz, Frederic; Le Cadre, Elodie

    2012-01-01

    Reduction in energy dependency and emissions of CO 2 via renewable energies targeted in the European Union energy mix and taxation system, might trigger the production of bio-energy production and competition for biomass utilization. Torrefied biomass could be used to produce second generation biofuels to replace some of the fuels used in transportation and is also suitable as feedstock to produce electricity in large quantities. This paper examines how the CO 2 price affects demand of torrefied biomass in the power sector and its consequences on the profitability of second generation biofuel units (Biomass to Liquid units). Indeed, the profitability of the BtL units which are supplied only by torrefied biomass is related to the competitive demand of the power sector driven by the CO 2 price and feed-in tariffs. We propose a linear dynamic model of supply and demand. On the supply side, a profit-maximizing torrefied biomass sector is modelled. The model aims to represent the transformation of biomass into torrefied biomass which could be sold to the refinery sector and the power sector. A two-sided (demanders and supplier) bidding process led us to arrive at the equilibrium price for torrefied biomass. The French case is used as an example. Our results suggest that the higher the CO 2 price, the more stable and important the power sector demand. It also makes the torrefied biomass production less vulnerable to uncertainty on demand coming from the refining sector. The torrefied biomass co-firing with coal can offer a near-term market for the torrefied biomass for a CO 2 emission price lower than 20 euros/tCO 2 , which can stimulate development of biomass supply systems. Beyond 2020, the demand for torrefied biomass from the power sector could be substituted by the refining sector if the oil price goes up whatever the CO 2 price. (authors)

  12. Bioenergy, the Carbon Cycle, and Carbon Policy

    Science.gov (United States)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  13. Market survey Hungary. Bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-01-15

    Basic characteristics of the market for bioenergy (biomass, biogas and biofuels) in Hungary and consequences for business environment are summarized, based on a SWOT analysis. RES is the priority issue to which a lot of attention is paid both at governmental and private level; private investors should view RES as a new niche for their business activities. Standard approach based on a thoroughly done preparation of the project in terms of profitability and risk assessment is necessary in order to avoid potential financial losses due to changed market conditions or differences between assumptions and business reality. Some recommendations for entry on the Hungarian bio energy market are presented: (1) Generally, look for success stories in the Netherlands first and then look for places where such proved and time-tested technologies could be used in Hungary with respect to local specifics. In such way, you can find market niches where investment can be made or new products can be launched; (2) For retail selling it is appropriate to establish business contacts with existing dealers and associations and offer own products through their distribution network. This scheme has the advantage of low initial costs as well as risks involved; (3) In the case of large investments into equipment complexes using RES it seems more appropriate to refer directly either to municipal authorities on whose cadastre the investment should take place or to specialized consultancy agencies that can support the plan with additional information on legal requirements, national programmes supporting RES or available technology. Of course, direct collaboration with well-established local partner can be beneficial for both sides too; (4) If you want to receive up-to-date information on particular aspects of the biomass market in Hungary, you can refer to some governmental organisations associations referred in the key contact addresses.

  14. Perspectives on bioenergy and biotechnology in Brazil.

    Science.gov (United States)

    Pessoa, Adalberto; Roberto, Inês Conceição; Menossi, Marcelo; dos Santos, Raphael Revert; Filho, Sylvio Ortega; Penna, Thereza Christina Vessoni

    2005-01-01

    Brazil is one of the world's largest producers of alcohol from biomass at low cost and is responsible for more than 1 million direct jobs. In 1973, the Brazilian Program of Alcohol (Proalcool) stimulated the creation of a bioethanol industry that has led to large economic, social, and scientific improvements. In the year 1984, 94.5% of Brazil's cars used bioethanol as fuel. In 2003/2004, 350.3 million of sugarcane produced 24.2 million t of sugar and 14.4 billion L of ethanol for an average 4.3 million cars using ethanol. Since its inception, cumulative investment in Proalcool totals US$11 billion, and Brazil has saved US$27 billion in oil imports. The ethanol production industry from sugarcane gene-rates 152 times more jobs than would have been the case if the same amount of fuel was produced from petroleum, and the use of ethanol as a fuel is advantageous for environmental reasons. In 2003, one of the biggest Brazilian ethanol industries started consuming 50% of the residual sugarcane bagasse to produce electrical energy (60 MW), a new alternative use of bioenergy for the Brazilian market. Other technologies for commercial uses of bagasse are in development, such as in the production of natural fibers, sweeteners (glucose and xylitol), single-cell proteins, lactic acid, microbial enzymes, and many other products based on fermentations (submerged and semisolid). Furthermore, studies aimed at the increase in the biosynthesis of sucrose and, consequently, ethanol productivity are being conducted to understand the genetics of sugarcane. Although, at present, there remain technical obstacles to the economic use of some ethanol industry residues, several research projects have been carried out and useful data generated. Efficient utilization of ethanol industry residues has created new opportunities for new value-added products, especially in Brazil, where they are produced in high quantities.

  15. Market survey Hungary. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Basic characteristics of the market for bioenergy (biomass, biogas and biofuels) in Hungary and consequences for business environment are summarized, based on a SWOT analysis. RES is the priority issue to which a lot of attention is paid both at governmental and private level; private investors should view RES as a new niche for their business activities. Standard approach based on a thoroughly done preparation of the project in terms of profitability and risk assessment is necessary in order to avoid potential financial losses due to changed market conditions or differences between assumptions and business reality. Some recommendations for entry on the Hungarian bio energy market are presented: (1) Generally, look for success stories in the Netherlands first and then look for places where such proved and time-tested technologies could be used in Hungary with respect to local specifics. In such way, you can find market niches where investment can be made or new products can be launched; (2) For retail selling it is appropriate to establish business contacts with existing dealers and associations and offer own products through their distribution network. This scheme has the advantage of low initial costs as well as risks involved; (3) In the case of large investments into equipment complexes using RES it seems more appropriate to refer directly either to municipal authorities on whose cadastre the investment should take place or to specialized consultancy agencies that can support the plan with additional information on legal requirements, national programmes supporting RES or available technology. Of course, direct collaboration with well-established local partner can be beneficial for both sides too; (4) If you want to receive up-to-date information on particular aspects of the biomass market in Hungary, you can refer to some governmental organisations associations referred in the key contact addresses

  16. Projecting demand and supply of forest biomass for heating in Norway

    International Nuclear Information System (INIS)

    Tromborg, Erik; Havskjold, Monica; Lislebo, Ole; Rorstad, Per Kristian

    2011-01-01

    This paper assesses the increase in demand and supply for forest biomass for heating in Norway in 2020. By then there is a political aim to double the national production of bioenergy from the level in 2008. The competitiveness of woody biomass in central and district heating is analyzed in a model selecting the least-cost heating technology and scale in municipalities given a set of constraints and under different fuels price scenarios. The supply of forest biomass from roundwood is estimated based on data of forest inventories combined with elasticities regarding price and standing volumes. The supply of biomass from harvesting residues is estimated in an engineering approach based on data from the national forest inventories and roundwood harvest. The results show how the production of bioenergy is affected by changes in energy prices and support schemes for bioenergy. One conclusion from the analyses is that the government target of 14 TWh more bioenergy by 2020 is not likely to be met by current technologies and policy incentives. The contribution of the analysis is the detailed presentation of the heat market potentials and technology choices combined with supply functions for both roundwood and harvesting residues. - Highlights: → This paper accesses the demand and supply for forest biomass for heating in Norway in 2020. → Market share for wood in central and new district heating is analyzed in a cost-minimizing model. → The supply of forest biomass includes wood chips from import, roundwood and harvesting residues. → The production of bioenergy is affected by changes in energy prices and support schemes. → The government target for bioenergy is not met by current technologies and policy incentives.

  17. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  18. Mercury from bioenergy. Environmental problem or phobia?; Kwik uit bio-energie. Milieuprobleem of fobie?

    Energy Technology Data Exchange (ETDEWEB)

    Kok, W.C. [KEMA, Arnhem (Netherlands)

    2003-06-01

    An overview is given of the consequences of mercury emission from bioenergy projects, based on several environmental effect reports (so-called Mer or 'Milieueffectrapportages' in Dutch). It is concluded that in the Netherlands there is no atmospheric mercury problem. [Dutch] De gevolgen van de kwikemissies bij bioenergieprojecten worden beschreven op basis van diverse uitgevoerde Milieu-effectrapportages. Daarbij wordt ingegaan op de bezwaren ten aanzien van deze emissies die onder andere door milieugroepen worden ingebracht en de verpande emissie-eisen die vergunningverleners menen te moeten opleggen. De auteur beargumenteert dat er geen atmosferisch kwikprobleem is in Nederland en ten gevolge van de bio-energieprojecten ook niet is te verwachten. Alleen een Europese aanpak van grootschalige luchtverontreiniging is effectief. De Nederlandse kwikemissie is verhoudingsgewijs al zeer laag. Op basis hiervan zijn er volgens de auteur geen goede redenen om in Nederland strengere kwikeisen op te leggen dan elders in Europa.

  19. Robust and sustainable bioenergy: Biomass in the future Danish energy system; Robust og baeredygtig bioenergi: Biomasse i fremtidens danske energisystem

    Energy Technology Data Exchange (ETDEWEB)

    Skoett, T.

    2012-09-15

    The publication is a collection of articles about new, exciting technologies for the production of bioenergy, which received support from Danish research programmes. The green technologies must be sustainable so that future generations' opportunities for bioenergy use is not restricted, and the solutions must be robust in relation to security of supply, costs and energy economy. In this context, research plays a crucial role. Research is especially carried out within the use of residues as bio-waste, straw, wood and manure for energy purposes, but there are also projects on energy crops, as well as research into how algae from the sea can increase the production of biomass. (LN)

  20. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  1. The time aspect of bioenergy. Climate impacts of bioenergy due to differences in carbon uptake rates

    Energy Technology Data Exchange (ETDEWEB)

    Zetterberg, Lars [IVL Swedish Environmental Research Institute, Stockholm (Sweden); Chen, Deliang [Dept. of Earth Sciences, Univ. of Gothenburg, Gothenburg (Sweden)

    2011-07-01

    This paper investigates the climate impacts from bioenergy due to how they influence carbon stocks over time and more specifically how fast combustion related carbon emissions are compensated by uptake of atmospheric carbon. A set of fuel types representing different uptake rates are investigated, namely willow, branches and tops, stumps and coal. Net emissions are defined as emissions from utilizing the fuel minus emissions from a reference case of no utilisation. In the case of forest residues, the compensating 'uptake' is avoided emissions from the reference case of leaving the residues to decompose on the ground. Climate impacts are estimated using the measures radiative forcing and global average surface temperature, which have been calculated by an energy balance climate model. We conclude that there is a climate impact from using bioenergy due to how fast the emission pulse is compensated by uptake of atmospheric carbon (or avoided emissions). Biofuels with slower uptake rates have a stronger climate impact than fuels with a faster uptake rate, assuming all other parameters equal. The time perspective over which the analysis is done is crucial for the climate impact of biofuels. If only biogenic fluxes are considered, our results show that over a 100 year perspective branches and tops are better for climate mitigation than stumps which in turn are better than coal. Over a 20 year time perspective this conclusion holds, but the differences between these fuels are relatively smaller. Establishing willow on earlier crop land may reduce atmospheric carbon, provided new land is available. However, these results are inconclusive since we haven't considered the effects, if needed, of producing the traditional agricultural crops elsewhere. The analysis is not a life cycle assessment of different fuels and does therefore not consider the use of fossil fuels for logging, transportation and refining, other greenhouse gases than carbon or energy

  2. Designing selection criteria for reed canarygrass as a bioenergy feedstock

    Science.gov (United States)

    Reed canarygrass (Phalaris arundinacea L.) is a perennial C3 grass with a circumglobal distribution in the northern hemisphere and adaptation to a wide range of environmental conditions. This species is currently under development as a bioenergy feedstock in both North America and Europe. Thus, the ...

  3. Evolutionary algorithms approach for integrated bioenergy supply chains optimization

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Elmoshi, Elsayed; Seki, Hiroya; Naka, Yuji

    2009-01-01

    In this paper, we propose an optimization model and solution approach for designing and evaluating integrated system of bioenergy production supply chains, SC, at the local level. Designing SC that simultaneously utilize a set of bio-resources together is a complicated task, considered here. The complication arises from the different nature and sources of bio-resources used in bioenergy production i.e., wet, dry or agriculture, industrial etc. Moreover, the different concerns that decision makers should take into account, to overcome the tradeoff anxieties of the socialists and investors, i.e., social, environmental and economical factors, was considered through the options of multi-criteria optimization. A first part of this research was introduced in earlier research work explaining the general Bioenergy Decision System gBEDS [Ayoub N, Martins R, Wang K, Seki H, Naka Y. Two levels decision system for efficient planning and implementation of bioenergy production. Energy Convers Manage 2007;48:709-23]. In this paper, brief introduction and emphasize on gBEDS are given; the optimization model is presented and followed by a case study on designing a supply chain of nine bio-resources at Iida city in the middle part of Japan.

  4. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  5. Bioenergy production and food security in Africa | Ogbonna | African ...

    African Journals Online (AJOL)

    This will in turn, facilitate industrialization in other sectors of economy through provision of affordable, renewable and clean energy. In order to minimize possible negative effects of bioenergy production on food security, land allocation for energy crop production can be regulated. Energy security cannot be separated from ...

  6. determination of bio-energy potential of palm kernel shell

    African Journals Online (AJOL)

    88888888

    2012-11-03

    Nov 3, 2012 ... Keywords: palm kernel shell, bioenergy, thermogravimetric analysis, pyrolysis, gasification ... tain higher energy density fuels. Fast Pyrolysis is the thermal decomposition of biomass for bio-char, bio- oil and combustible gas production in the absence of ... Calorific Value of Coal and Coke) was used for the.

  7. The Impact of Water Scarcity on Food, Bioenergy and Deforestation

    Science.gov (United States)

    Winchester, N.; Ledvina, K.; Strzepek, K. M.; Reilly, J. M.

    2016-12-01

    We evaluate the impact of explicitly representing irrigated land and water scarcity in an economy-wide model on food prices, bioenergy production and deforestation both with and without a global carbon policy. The analysis develops supply functions of irrigable land from a water resource model resolved at 282 river basins and applies them within a global economy-wide model of energy and food production, land-use change and greenhouse gas emissions. The irrigable land supply curves are built on basin-level estimates of water availability, and the costs of improving irrigation efficiency and increasing water storage, and include other water requirements within each basin. The analysis reveals two key findings. First, explicitly representing irrigated land at has a small impact on food, bioenergy and deforestation outcomes. This is because this modification allows more flexibility in the expansion of crop land (i.e. irrigated and rainfed land can expand in different proportions) relative to when a single type of crop land is represented, which counters the effect of rising marginal costs for the expansion of irrigated land. Second, due to endogenous irrigation and storage responses, changes in water availability have small impacts on food prices, bioenergy production, land-use change and the overall economy, even with large scale ( 150 exajoules) bioenergy production.

  8. Design and Development of Synthetic Microbial Platform Cells for Bioenergy

    Directory of Open Access Journals (Sweden)

    Sang Jun eLee

    2013-04-01

    Full Text Available The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes, non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.

  9. Estimating bioenergy potentials of common African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    peelings, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches (EFB). This was done to establish detailed compositional mass balances, enabling estimations of accurate bioenergy...

  10. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  11. Review of Sorghum Production Practices: Applications for Bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2010-06-01

    Sorghum has great potential as an annual energy crop. While primarily grown for its grain, sorghum can also be grown for animal feed and sugar. Sorghum is morphologically diverse, with grain sorghum being of relatively short stature and grown for grain, while forage and sweet sorghums are tall and grown primarily for their biomass. Under water-limited conditions sorghum is reliably more productive than corn. While a relatively minor crop in the United States (about 2% of planted cropland), sorghum is important in Africa and parts of Asia. While sorghum is a relatively efficient user of water, it biomass potential is limited by available moisture. The following exhaustive literature review of sorghum production practices was developed by researchers at Oak Ridge National Laboratory to document the current state of knowledge regarding sorghum production and, based on this, suggest areas of research needed to develop sorghum as a commercial bioenergy feedstock. This work began as part of the China Biofuels Project sponsored by the DOE Energy Efficiency and Renewable Energy Program to communicate technical information regarding bioenergy feedstocks to government and industry partners in China, but will be utilized in a variety of programs in which evaluation of sorghum for bioenergy is needed. This report can also be used as a basis for data (yield, water use, etc.) for US and international bioenergy feedstock supply modeling efforts.

  12. Field windbreaks for bioenergy production and carbon sequestration

    Science.gov (United States)

    Tree windbreaks are a multi-benefit land use with the ability to mitigate climate change by modifying the local microclimate for improved crop growth and sequestering carbon in soil and biomass. Agroforestry practices are also being considered for bioenergy production by direct combustion or produci...

  13. Carbon debt and carbon sequestration parity in forest bioenergy production

    Science.gov (United States)

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  14. Market survey Austria. Bio-energy

    International Nuclear Information System (INIS)

    2008-01-01

    Austria has a well developed bioenergy infrastructure as regards solid biomass and a strong growth in the biogas and biofuel sector. The results of a SWOT analysis show the major issues for the development in each of these sectors now and in the short to medium-term future. Based on the SWOT analyses the following conclusions are formulated: (1)The development of the wood biomass sector in Austria is successful. This can be seen from the point of view of the end user, biomass for heating in single houses as well in district heating systems is very widely spread. This created opportunities for Austrian firms producing biomass technology, now having a large market and expending abroad. This development creates, however, major challenges for players from other countries like the Netherlands. It may be difficult to enter this market, unless one offers a cheaper product with the same quality or finding a niche market with a new unique product; (2) The growth of the wood biomass application for heat and electricity has led to the occurrence of another problem, a competition for wood as resource between the energy sector and other applications as pulp and paper industry. Wood imports are nowadays increasing but in the longer term Austria cannot rely on that because of the growing biomass use in neighbouring countries. Austria will therefore have to look for ways how to optimise biomass use for the energy sector and increasing the use of other fuels like straw and other forms of agricultural waste: (3) The production of biogas presents a number of new applications, production of renewable electricity, production of biogas for the transport sector as well as the possibility to inject cleaned biogas into the natural gas grid. In the short term, production of renewable electricity is the most promising for investors as feed-in tariffs are available for these projects. The other applications are still in a pilot phase but may become interesting in the coming years; (4) The

  15. Bioenergy industries development in China. Dilemma and solution

    International Nuclear Information System (INIS)

    Peidong, Zhang; Yanli, Yang; Xutong, Yang; Yonghong, Zheng; Lisheng, Wang; Yongsheng, Tian; Yongkai, Zhang

    2009-01-01

    Having 2.8 x 10 8 -3.0 x 10 8 t/a of wood energy, 4.0 x 10 6 t/a of oil seeds, 7.7 x 10 8 t/a of crops straw, 3.97 x 10 9 t/a of poultry and livestock manure, 1.48 x 10 8 t/a of municipal waste, and 4.37 x 10 10 t/a of organic wastewater, China is in possession of good resource condition for the development of bioenergy industries. Until the end of 2007, China has popularized 2.65 x 10 7 rural household biogas, established 8318 large and middle-scale biogas projects, and produced 1.08 x 10 10 m 3 /a of biogas; the production of bioethanol, biodiesel, biomass briquettes fuel and biomass power generation reached to 1.5 x 10 6 t/a, 3.0 x 10 5 t/a, 6.0 x 10 4 t/a and 6.42 x 10 9 kWh, respectively. In recent years, bioenergy industries developed increasingly fast in China. However, the industrial base was weak with some dilemma existing in raw material supply, technological capability, industry standards, policy and regulation, and follow-up services, etc. From the viewpoint of long-term effective development system for bioenergy industries in China, a series of policy suggestions have been offered, such as strengthening strategy research, improving bioenergy industries development policies and plan, enhancing scientific research input, persisting in technology innovation, establishing product quality standard, improving industrial standard system, opening market and accelerating commercialization, etc. It is expected that the advices mentioned above could be helpful for the improvement of bioenergy industries development. (author)

  16. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win-win strategies toward better environmental protection.

    Science.gov (United States)

    Lam, Man Kee; Lee, Keat Teong

    2011-01-01

    Palm oil industry is one of the leading agricultural industries in Malaysia with average crude palm oil production of more than 13 million tonne per year. However, production of such huge amount of crude palm oil has consequently resulted to even larger amount of palm oil mill effluent (POME). POME is a highly polluting wastewater with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in which can caused severe pollution to the environment, typically pollution to water resources. On the other hand, POME was identified as a potential source to generate renewable bioenergies such as biomethane and biohydrogen through anaerobic digestion. In other words, a combination of wastewater treatment and renewable bioenergies production would be an added advantage to the palm oil industry. In line with the world's focus on sustainability concept, such strategy should be implemented immediately to ensure palm oil is produced in an environmental friendly and sustainable manner. This review aims to discuss various technologies to convert POME to biomethane and biohydrogen in a commercial scale. Furthermore, discussion on using POME to culture microalgae for biodiesel and bioethanol production was included in the present paper as a new remedy to utilize POME with a greater beneficial return. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Harmonising bioenergy resource potentials-Methodological lessons from review of state of the art bioenergy potential assessments

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Published estimates of the potential of bioenergy vary widely, mainly due to the heterogeneity of methodologies, assumptions and datasets employed. These discrepancies are confusing for policy and it is thus important to have scientific clarity on the basis of the assessment outcomes. Such clear

  18. Sustainable International Bioenergy Trade. Evaluating the impact of sustainability criteria and policy on past and future bioenergy supply and trade

    NARCIS (Netherlands)

    Lamers, Patrick

    2014-01-01

    Within a single decade, bioenergy has shifted from a largely local energy source with marginal trade volumes to a globally traded item. The primary objective of this thesis is to evaluate the links between national renewable energy support and trade policies and market forces on past global

  19. Bioenergy knowledge, perceptions, and attitudes among young citizens - from cross-national surveys to conceptual model

    Energy Technology Data Exchange (ETDEWEB)

    Halder, P.

    2011-07-01

    Bioenergy is expected to play a significant role in the global energy mix of the next decades, transforming the current fossil fuel-based economy into a low-carbon energy economy. There is a significant research gap in our understanding of the societal aspects of bioenergy and it becomes even limited in the context of evaluating young citizens' awareness of bioenergy from an international perspective. This dissertation has investigated young students' knowledge, perceptions, and attitudes related to bioenergy with the help of cross-national data and used statistical models to explain their intentions to use bioenergy. A self-constructed survey instrument was used in the study to collect data from 15-year-old 1903 school students in Finland, Taiwan, Turkey, and Slovakia. The study found that the majority of the students appeared to have basic level of bioenergy knowledge, whereas only a minority among them demonstrated a higher level of such knowledge. The study did not reveal any statistically significant gender and living area differences related to the students' knowledge of bioenergy. The students appeared to be very critical in their perceptions of forest-based bioenergy production; however, they demonstrated their positive attitudes to bioenergy including their intentions to use it in the future. It became apparent that the students with a higher level of bioenergy-knowledge were more critical in terms of their both perceptions of and attitudes to bioenergy than those with a shallow knowledge of it. The study has found that school, home, and media discussions of bioenergy, as perceived by the Finnish students, have significant effects on their knowledge, perceptions and attitudes related to bioenergy. One of the most significant findings to emerge from this study is the key dimensions of the students' perceptions of and attitudes to bioenergy. The study found three key dimensions from the cross-national data depicting different facets of

  20. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    Science.gov (United States)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  1. Threshold Level of Harvested Litter Input for Carbon Sequestration by Bioenergy Crops

    Science.gov (United States)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.

    2013-12-01

    Due to the increase in the demands for bioenergy, considerable areas in the Midwestern United States could be converted into croplands for second generation bioenergy, such as the cultivation of miscanthus and switchgrass. Study on the effect of the expansion of these crops on soil carbon and nitrogen dynamics is integral to understanding their long-term environmental impacts. In this study, we focus on a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation on the below-ground dynamics of carbon and nitrogen. Fate of soil carbon and nitrogen is sensitive to harvest litter treatments and residue quality. Therefore, we attempt to address how different amounts of harvested biomass inputs into the soil impact the evolution of organic carbon and inorganic nitrogen in the subsurface. We use Precision Agricultural Landscape Modeling System, version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained from 10 years of atmospheric data recorded at both the study site and Willard Airport. Comparisons of model results against observations of drainage, ammonium and nitrate loads in tile drainage, nitrogen mineralization, nitrification, and litterfall in 2011 reveal the ability of the model to accurately capture the ecohydrology, as well as the carbon and nitrogen dynamics at the study site. The results obtained here highlight that there is a critical return of biomass to the soil when harvested for miscanthus (15% of aboveground biomass), and switchgrass (25%) after which the accumulation of carbon in the soil is significantly enhanced and nitrogen leaching is reduced, unlike corn-corn-soybean rotation. The main factor

  2. Impact of bioenergy on regionalized nitrogen balances

    Science.gov (United States)

    Häußermann, Uwe; Klement, Laura; Bach, Martin

    2017-04-01

    use a dataset which is kept and regularly updated by the Germany Federal Network Agency („Bundesnetzagentur") (Bundesnetzagentur 2016). These dataset does not include information about substrate input and therefore need to be intersect with regionalized substrate input data (DBFZ 2012), and to obtain nitrogen input quantities with the nitrogen content of these substrates (KTBL 2016). Without including bioenergy production, the linear trend of the net-N-surplus in 2003 to 2014 for Germany is -1.66x + 71.25 kg N (ha LF a)-1? , therefore, an overall decrease of the net-N-surplus of 18.3 kg N ha LF-1 within 11 years was calculated. No such decrease was calculated, when biogas production was included into the net-N-balance.

  3. Assessing of energy policies based on Turkish agriculture:

    International Nuclear Information System (INIS)

    Sayin, Cengiz; Nisa Mencet, M.; Ozkan, Burhan

    2005-01-01

    In this study, the current energy status of Turkey and the effects of national energy policies on Turkish agricultural support policies are discussed for both current and future requirements. Turkey is an energy-importing country producing 30 mtoe (million tons of oil equivalent) energy but consuming 80 mtoe. The energy import ratio of Turkey is 65-70% and the majority of this import is based on petroleum and natural gas. Furthermore, while world energy demand increases by 1.8% annually, Turkey's energy demand increases by about 8%. Although energy consumption in agriculture is much lower than the other sectors in Turkey, energy use as both input and output of agricultural sector is a very important issue due to its large agricultural potential and rural area. Total agricultural land area is 27.8 million hectares and about 66.5% of this area is devoted for cereal production. On the other hand, Turkey has over 4 million agricultural farm holdings of which 70-75% is engaged in cereal production. Machinery expenses, mainly diesel, constitute 30-50% of total variable expenses in cereal production costs. It is observed that energy policies pursued in agriculture have been directly affected by diesel prices in Turkey. Therefore, support policy tools for using diesel and electricity in agriculture are being pursued by the Turkish government

  4. Predicted avian responses to bioenergy development scenarios in an intensive agricultural landscape

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; McCoy, Tim D.; Guan, Qingfeng

    2015-01-01

    Conversion of native prairie to agriculture has increased food and bioenergy production but decreased wildlife habitat. However, enrollment of highly erodible cropland in conservation programs has compensated for some grassland loss. In the future, climate change and production of second-generation perennial biofuel crops could further transform agricultural landscapes and increase or decrease grassland area. Switchgrass (Panicum virgatum) is an alternative biofuel feedstock that may be economically and environmentally superior to maize (Zea mays) grain for ethanol production on marginally productive lands. Switchgrass could benefit farmers economically and increase grassland area, but there is uncertainty as to how conversions between rowcrops, switchgrass monocultures and conservation grasslands might occur and affect wildlife. To explore potential impacts on grassland birds, we developed four agricultural land-use change scenarios for an intensively cultivated landscape, each driven by potential future climatic changes and ensuing irrigation limitations, ethanol demand, commodity prices, and continuation of a conservation program. For each scenario, we calculated changes in area for landcover classes and predicted changes in grassland bird abundances. Overall, birds responded positively to the replacement of rowcrops with switchgrass and negatively to the conversion of conservation grasslands to switchgrass or rowcrops. Landscape context and interactions between climate, crop water use, and irrigation availability could influence future land-use, and subsequently, avian habitat quality and quantity. Switchgrass is likely to provide higher quality avian habitat than rowcrops but lower quality habitat than conservation grasslands, and therefore, may most benefit birds in heavily cultivated, irrigation dependent landscapes under warmer and drier conditions, where economic profitability may also encourage conversions to drought tolerant bioenergy feedstocks.

  5. The Importance of Seedlings Quality in Timber and Bio-energy Production on marginal lands

    Science.gov (United States)

    Fragkiskakis, Nikitas; Kiourtsis, Fotios; Keramitzis, Dimitrios; Papatheodorou, Ioannis; Georgiadou, Margarita; Repmann, Frank; Gerwin, Werner

    2017-04-01

    One of the main issues that the forest sector is facing is to achieve a balance between the demand for biomass &wood production and the need to preserve the sustainability and biodiversity of forest ecosystems. The purposes of the new approaches are to ensure more efficient management of ecosystems and implement intensive forestry that will increase biomass production & timber yields. To achieve this, we need to determine the macroeconomic potential of the various options available, including the use of biotechnology and genetics. The success of the forests plantations capacity may be solved through forest certification, based on: a) Stabilization of the forests and soils structure. b) Hierarchy of biomass production in the forest's management process. c) Οrganization and implementation of effective plantation on marginal lands. d) Maintenance or increase of forest productivity by introducing new items as and when they are required. It is important to evaluate of the influence of factors such as the quality of soils of plantation areas, the utilization of the genetic resources and the management of forest operations with the environmental economic criteria such as net present value of benefits (NPV) and the corresponding flow annuities (EACF).The existing evaluations studies showed that the quality of the plantation areas has the most influence and through validated quality seed production can generate an increase in the NPV up to 73%. The importance of seedlings quality in timber and bio-energy production on marginal lands based on the literature it is estimated according to the heredity of the characteristics of the wood structure (except shrinkage). This clearly indicate that seedlings with the appropriate morphological characteristics can significantly improve the growth performance and help to support the development of biomass plantations oriented in tailor-made timber and bio-energy production.

  6. Climate policy implications for agricultural water demand

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Vaibhav [Joint Global Change Research Inst., College Park, MD (United States); Hejazi, Mohamad I. [Joint Global Change Research Inst., College Park, MD (United States); Edmonds, James A. [Joint Global Change Research Inst., College Park, MD (United States); Clarke, Leon E. [Joint Global Change Research Inst., College Park, MD (United States); Kyle, G. Page [Joint Global Change Research Inst., College Park, MD (United States); Davies, Evan [Univ. of Alberta, Edmonton, AB (Canada); Wise, Marshall A. [Joint Global Change Research Inst., College Park, MD (United States); Calvin, Katherine V. [Joint Global Change Research Inst., College Park, MD (United States)

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  7. Leading global energy and environmental transformation: Unified ASEAN biomass-based bio-energy system incorporating the clean development mechanism

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2011-01-01

    In recent years, the ten member countries in the Association of Southeast Asia Nations (ASEAN) have experienced high economic growth and, in tandem, a substantial increment in energy usage and demand. Consequently, they are now under intense pressure to secure reliable energy supplies to keep up with their growth rate. Fossil fuels remain the primary source of energy for the ASEAN countries, due to economic and physical considerations. This situation has led to unrestrained emissions of greenhouse gases to the environment and thus effectively contributes to global climate change. The abundant supply of biomass from their tropical environmental conditions offers great potential for ASEAN countries to achieve self-reliance in energy supplies. This fact can simultaneously transform into the main driving force behind combating global climate change, which is associated with the usage of fossil fuels. This research article explores the potential and advantages for ASEAN investment in biomass-based bio-energy supply, processing and distribution network with an emphasis on regional collaborations. It also investigates the implementation and operational challenges in terms of political, economic and technical factors for the cross-border energy scheme. Reliance of ASEAN countries on the clean development mechanism (CDM) to address most of the impediments in developing the project is also under scrutiny. Unified co-operation among ASEAN countries in integrating biomass-based bio-energy systems and utilising the clean development mechanism (CDM) as the common effort could serve as the prime example for regional partnerships in achieving sustainable development for the energy and environmental sector in the future. -- Highlights: →A study that explores feasibility for ASEAN investment in biomass-based bio-energy. →Focus is given on regional supply, processing and distribution network. →Cross-border implementation and operational challenges are discussed thoroughly.

  8. Sweet sorghum as a model system for bioenergy crops.

    Science.gov (United States)

    Calviño, Martín; Messing, Joachim

    2012-06-01

    Bioenergy is the reduction of carbon via photosynthesis. Currently, this energy is harvested as liquid fuel through fermentation. A major concern, however, is input cost, in particular use of excess water and nitrogen, derived from an energy-negative process, the Haber-Bosch method. Furthermore, the shortage of arable land creates competition between uses for food and fuel, resulting in increased living expenses. This review seeks to summarize recent knowledge in genetics, genomics, and gene expression of a rising model species for bioenergy applications, sorghum. Its diploid genome has been sequenced, it has favorable low-input cost traits, and genetic crosses between different cultivars can be used to study allelic variations of genes involved in stem sugar metabolism and incremental biomass. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Recent developments in microbial fuel cell technologies for sustainable bioenergy.

    Science.gov (United States)

    Watanabe, Kazuya

    2008-12-01

    Microbial fuel cells (MFCs) are devices that exploit microbial catabolic activities to generate electricity from a variety of materials, including complex organic waste and renewable biomass. These sources provide MFCs with a great advantage over chemical fuel cells that can utilize only purified reactive fuels (e.g., hydrogen). A developing primary application of MFCs is its use in the production of sustainable bioenergy, e.g., organic waste treatment coupled with electricity generation, although further technical developments are necessary for its practical use. In this article, recent advances in MFC technologies that can become fundamentals for future practical MFC developments are summarized. Results of recent studies suggest that MFCs will be of practical use in the near future and will become a preferred option among sustainable bioenergy processes.

  10. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Indirect energy input of agricultural machinery in bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Mikkola, Hannu J.; Ahokas, Jukka [Department of Agrotechnology, University of Helsinki, P.O. Box 28 (Koetilantie) 3, FI-00014 Helsinki (Finland)

    2010-01-15

    Sustainability of bioenergy products should be evaluated by means of an energy analysis that takes into account all relevant direct and indirect energy inputs. Direct energy input is viewed as the major energy consuming factor, and is quite easy to measure. Indirect energy input, however, has received relatively scant attention, so it is likely to be insufficiently analysed and possibly underestimated. This paper reviews the data available and suggests the type of research that would be needed to get a better understanding of the indirect energy input. The analysis addresses questions about the use of energy to produce and maintain agricultural machinery, the allocation of energy to different bioenergy products, and the real use and lifetime of machinery. (author)

  12. Bioenergy Technologies Office Multi-Year Program Plan. March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Amy [Bioenergy Technologies Office, Washington, DC (United States)

    2016-03-01

    The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and market transformation and crosscutting activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  13. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    Science.gov (United States)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or

  14. Support and opportunity for lifelong learning in the field of bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Jaemsen, M.; Wihersaari, M.; Paeaellysaho, J. (Jyvaeskylae Univ. (Finland), Dept.of Biological and Environmental Sciences), e-mail: miia.jamsen@jyu.fi

    2010-07-01

    The expanding bioenergy sector requires well-educated professionals with specialised expertise. The objective of the Bioenergy Cluster of Central Finland Project (BEV-specialist) is to map the pathways, and identify the obstacles, of lifelong learning in the field of bioenergy. Learning is not only a question of desire or curiosity; it is also affected by one's standing in life as well as by different legislation, support mechanisms and limitations. These factors have an enormous impact on lifelong learning. Pathways of learning and their influential elements have been identified. Now is the time to pass the knowledge forward and start building bioenergy know-how within this framework. (orig.)

  15. Young citizens' knowledge and perceptions of bioenergy and future policy implications

    International Nuclear Information System (INIS)

    Halder, Pradipta; Pietarinen, Janne; Havu-Nuutinen, Sari; Pelkonen, Paavo

    2010-01-01

    In the past few years extensive discussions on bioenergy has been both positive and negative. In Europe, the image of bioenergy appears to be low with lack of broad public support. Previous studies show that younger people are unsure about many issues surrounding renewable energy. The aim of this study was to investigate the knowledge and perceptions of bioenergy among pupils in North Karelia, Finland. Data drawn from 495 ninth grade students indicate that the majority of them lack in-depth knowledge about different renewable energy sources, including bioenergy. Only a small percentage has a 'high' level of knowledge about bioenergy and the majority indicates critical perceptions of it. Statistically significant gender differences are not apparent. Girls appear to be more knowledgeable than boys. Results also show a clear 'urban' and 'rural' difference in perceptions of bioenergy. Perceptions of urban respondents being more positive than that of their rural counterparts. Developing collaboration between future bioenergy policies and bioenergy education for younger citizens is necessary for their engagement in critical debates on bioenergy.

  16. Sustainability standards for bioenergy-A means to reduce climate change risks?

    International Nuclear Information System (INIS)

    Schubert, Renate; Blasch, Julia

    2010-01-01

    The paper discusses the importance of standards for sustainable bioenergy production. Sustainability of bioenergy production is crucial if bioenergy is supposed to contribute effectively to climate change mitigation. First, a brief overview of current bioenergy policies and of initiatives and legislation for bioenergy sustainability are given. Then, the authors show that under free market conditions undersupply of sustainable bioenergy will prevail. Two types of market failures are identified: information asymmetry and externalities in bioenergy production. Due to these market failures bioenergy is less sustainable than it could be. It is shown that mandatory certification and subsequent labeling can help to overcome the information asymmetry and lead to a more efficient market outcome since consumers can choose products according to their preferences. The authors conclude, however, that the existence of production externalities asks for stronger market intervention, for example in the form of binding minimum standards or taxes. The paper discusses the efficiency and feasibility of such policy measures and shows that mandatory certification combined with binding minimum standards can be an adequate policy choice to regulate the bioenergy market.

  17. Focus on Bioenergy in the electricity and heat market. Project results 2015-2016; Focus on Bioenergie im Strom- und Waermemarkt. Projektergebnisse 2015-2016

    Energy Technology Data Exchange (ETDEWEB)

    Thraen, Daniela; Pfeiffer, Diana (eds.)

    2017-08-01

    The report covers the following contributions: DeHoGas - sustainable local wood gasification plant with coupled micro gas turbine; SEVERA - sensor technique for efficient fermentation og biogenic residuals and wastes; FuelBand - extension of the fuel band of modern biomass combustion; REPOWERING - measures for efficiency improvement for the existing plants; PROKOSYS - processes, components and systems for flexible operation of biogas plants using biogenic residuals and wastes; Carola - electrostatic finest particle separator for flexible adaptation to biomass vessels; HydoCon - hydrolysis container - flexible plant components for substrate usage improvement in biogas plants; EFFIGEST - efficiency improvement in poultry manure fermentation using modified straw fractions and process integrated production of marketable fertilizer; FLUHKE - dry low-temperature entrained flow gasification with bio-coals from hydrothermal carbonization for local electricity and heat production with motor-cogeneration; REMISBIO - measures for emissions reduction of bio gas plants - catalyst test; Mini-bio-cogeneration - readiness of prototype for decentralized gasification of residual pellets for serial production; IbeKEt - innovative communal demand-adaptive energy carrier concept; Regiobalance - flexible bioenergy as regional compensation option in the German electricity market; FLEXHKW - flexible operation of cogeneration plants.

  18. Tradeoffs in ecosystem services of prairies managed for bioenergy production

    Science.gov (United States)

    Jarchow, Meghann Elizabeth

    The use of perennial plant materials as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. Currently, the production of energy from agricultural products is primarily in the form of ethanol from corn grain, which used more than 45% of the domestic U.S. corn crop in 2011. Concomitantly, using corn grain to produce ethanol has promoted landscape simplification and homogenization through conversion of Conservation Reserve Program grasslands to annual row crops, and has been implicated in increasing environmental damage, such as increased nitrate leaching into water bodies and increased rates of soil erosion. In contrast, perennial prairie vegetation has the potential to be used as a bioenergy feedstock that produces a substantial amount of biomass as well as numerous ecosystem services. Reincorporating prairies to diversify the landscape of the Midwestern U.S. at strategic locations could provide more habitat for animals, including beneficial insects, and decrease nitrogen, phosphorus, and sediment movement into water bodies. In this dissertation, I present data from two field experiments that examine (1) how managing prairies for bioenergy production affects prairie ecology and agronomic performance and (2) how these prairie systems differ from corn systems managed for bioenergy production. Results of this work show that there are tradeoffs among prairie systems and between corn and prairie systems with respect to the amount of harvested biomass, root production, nutrient export, feedstock characteristics, growing season utilization, and species and functional group diversity. These results emphasize the need for a multifaceted approach to fully evaluate bioenergy feedstock production systems.

  19. Social acceptability of bioenergy in the U.S

    Science.gov (United States)

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  20. Sustainable Palm Oil Production For Bioenergy Supply Chain

    OpenAIRE

    Ng, Wai Kiat

    2009-01-01

    A bioenergy supply chain is formed by many parts which from the raw material, biomass feedstock until the distribution and utilisation. The upstream activity is always managed in a sustainable way in order to be capable enough to support the downstream activity. In this dissertation, the sustainable production of palm oil is focused and researched through problem identification and solving by using the operation management perspective and practices. At first, the global biomass industry is st...

  1. Developing a sustainability framework for the assessment of bioenergy systems

    International Nuclear Information System (INIS)

    Elghali, Lucia; Clift, Roland; Sinclair, Philip; Panoutsou, Calliope; Bauen, Ausilio

    2007-01-01

    The potential for biomass to contribute to energy supply in a low-carbon economy is well recognised. However, for the sector to contribute fully to sustainable development in the UK, specific exploitation routes must meet the three sets of criteria usually recognised as representing the tests for sustainability: economic viability in the market and fiscal framework within which the supply chain operates; environmental performance, including, but not limited to, low carbon dioxide emissions over the complete fuel cycle; and social acceptability, with the benefits of using biomass recognised as outweighing any negative social impacts. This paper describes an approach to developing a methodology to establish a sustainability framework for the assessment of bioenergy systems to provide practical advice for policy makers, planners and the bioenergy industry, and thus to support policy development and bioenergy deployment at different scales. The approach uses multi-criteria decision analysis (MCDA) and decision-conferencing, to explore how such a process is able to integrate and reconcile the interests and concerns of diverse stakeholder groups

  2. Bioenergy in the United States: progress and possibilities

    International Nuclear Information System (INIS)

    Cook, J.; Beyea, J.

    2000-01-01

    Concerns about global climate change and air quality have increased interest in biomass and other energy sources that are potentially CO 2 -neutral and less polluting. Large-scale bioenergy development could indeed bring significant ecological benefits - or equally significant damage - depending on the specific paths taken. In particular, the land requirements for biomass production are potentially immense. Various entities in the United States have performed research; prepared cost-supply assessments, environmental impact assessments, life cycle analyses and externality impact assessments; and engaged in demonstration and development regarding biomass crops and other potential biomass energy feedstocks. These efforts have focused on various biomass wastes, forest management issues, and biomass crops, including both perennial herbaceous crops and fast-growing woody crops. Simultaneously, several regional and national groups of bioenergy stakeholders have issued consensus recommendations and guidelines for sustainable bioenergy development. It is a consistent conclusion from these efforts that displacing annual agricultural crops with native perennial biomass crops could - in addition to reducing fossil fuel use and ameliorating associated ecological problems - also help restore natural ecosystem functions in worked landscapes, and thereby preserve natural biodiversity. Conversely, if forests are managed and harvested more intensively - and/or if biomass crops displace more natural land cover such as forests and wetlands - it is likely that ecosystem functions would be impaired and biodiversity lost. (author)

  3. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept; Die Rolle der Bioenergie in der Energiewende. Das ''Smart Bioenergy''-Konzept

    Energy Technology Data Exchange (ETDEWEB)

    Thraen, Daniela [Helmholtz-Zentrum fuer Umweltforschung - UFZ, Leipzig (Germany). Dept. Bioenergie (BEN); DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael [DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig (Germany). Bereich Bioenergiesysteme

    2016-08-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  4. Socio-economic drivers in implementing bioenergy projects

    Energy Technology Data Exchange (ETDEWEB)

    Domac, J. [Energy Institute ' Hrvoje Pozar' , Zagreb (Croatia); Richards, K. [TV Energy Ltd., Newbury (United Kingdom); Risovic, S. [Zagreb Univ., Faculty of Forestry, Zagreb (Croatia)

    2005-02-01

    Within the international community there is considerable interest in the socio-economic implications of moving society towards the more widespread use of renewable energy resources. Such change is seen to be very necessary but is often poorly communicated to people and communities who need to accept such changes. There are pockets of activity across the world looking at various approaches to understand this fundamental matter. Typically, socio-economic implications are measured in terms of economic indices, such as employment and monetary gains, but in effect the analysis relates to a number of aspects which include social, cultural, institutional, and environmental issues. The extremely complex nature of bioenergy, many different technologies involved and a number of different, associated aspects (socio-economics, greenhouse gas mitigation potential, environment, etc) make this whole topic a complex subject. This paper is primarily a descriptive research and review of literature on employment and other socio-economic aspects of bioenergy systems as drivers for implementing bioenergy projects. Due to the limited information, this paper does not provide absolute quantification on the multiplier effects of local and or national incomes of any particular country or region. The paper intends to trigger a more in-depth discussion of data gaps, potentials, opportunities and challenges. An encouraging trend is that in many countries policy makers are beginning to perceive the potential economic benefits of commercial biomass e.g. employment/earnings, regional economic gain, contribution to security of energy supply and all others. (Author)

  5. IEA Bioenergy Task 42 - Countries report. IEA Bioenergy Task 42 on biorefineries: Co-production of fuels, chemicals, power and materials from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cherubini, F.; Jungmeier, G.; Mandl, M. (Joanneum Research, Graz (Austria)) (and others)

    2010-07-01

    This report has been developed by the members of IEA Bioenergy Task 42 on Biorefinery: Co-production of Fuels, Chemicals, Power and Materials from Biomass (www.biorefinery.nl/ieabioenergy-task42). IEA Bioenergy is a collaborative network under the auspices of the International Energy Agency (IEA) to improve international cooperation and information exchange between national bioenergy RD and D programs. IEA Bioenergy Task 42 on Biorefinery covers a new and very broad biomass-related field, with a very large application potential, and deals with a variety of market sectors with many interested stakeholders, a large number of biomass conversion technologies, and integrated concepts of both biochemical and thermochemical processes. This report contains an overview of the biomass, bioenergy and biorefinery situation, and activities, in the Task 42 member countries: Austria, Canada, Denmark, France, Germany, Ireland, and the Netherlands. The overview includes: national bioenergy production, non-energetic biomass use, bioenergy related policy goals, national oil refineries, biofuels capacity for transport purposes, existing biorefinery industries, pilot and demo plants, and other activities of research and development (such as main national projects and stakeholders). Data are provided by National Task Leaders (NTLs), whose contact details are listed at the end of the report. (author)

  6. Constructing regional advantage: platform policies based on related variety and differentiated knowledge bases.

    NARCIS (Netherlands)

    Asheim, B.T.; Boschma, R.A.; Cooke, P.

    2011-01-01

    Constructing regional advantage: platform policies based on related variety and differentiated knowledge bases, Regional Studies. This paper presents a regional innovation policy model based on the idea of constructing regional advantage. This policy model brings together concepts like related

  7. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    of the energy demand, optimization of production/distribution and substitution of fossil fuels with biomasses. However, a large increase in biomass consumption will finally induce conversion of arable and currently cultivated land into fields dedicated to energy crops production determining significant......Reducing dependence on fossil fuels and mitigation of GHG emissions is a main focus in the energy strategy of many Countries. In the case of Demark, for instance, the long-term target of the energy policy is to reach 100% renewable energy system. This can be achieved by drastic reduction...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  8. Curation and Computational Design of Bioenergy-Related Metabolic Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Peter D. [SRI International, Menlo Park, CA (United States)

    2014-09-12

    Pathway Tools is a systems-biology software package written by SRI International (SRI) that produces Pathway/Genome Databases (PGDBs) for organisms with a sequenced genome. Pathway Tools also provides a wide range of capabilities for analyzing predicted metabolic networks and user-generated omics data. More than 5,000 academic, industrial, and government groups have licensed Pathway Tools. This user community includes researchers at all three DOE bioenergy centers, as well as academic and industrial metabolic engineering (ME) groups. An integral part of the Pathway Tools software is MetaCyc, a large, multiorganism database of metabolic pathways and enzymes that SRI and its academic collaborators manually curate. This project included two main goals: I. Enhance the MetaCyc content of bioenergy-related enzymes and pathways. II. Develop computational tools for engineering metabolic pathways that satisfy specified design goals, in particular for bioenergy-related pathways. In part I, SRI proposed to significantly expand the coverage of bioenergy-related metabolic information in MetaCyc, followed by the generation of organism-specific PGDBs for all energy-relevant organisms sequenced at the DOE Joint Genome Institute (JGI). Part I objectives included: 1: Expand the content of MetaCyc to include bioenergy-related enzymes and pathways. 2: Enhance the Pathway Tools software to enable display of complex polymer degradation processes. 3: Create new PGDBs for the energy-related organisms sequenced by JGI, update existing PGDBs with new MetaCyc content, and make these data available to JBEI via the BioCyc website. In part II, SRI proposed to develop an efficient computational tool for the engineering of metabolic pathways. Part II objectives included: 4: Develop computational tools for generating metabolic pathways that satisfy specified design goals, enabling users to specify parameters such as starting and ending compounds, and preferred or disallowed intermediate compounds

  9. A systematic review of bioenergy life cycle assessments

    International Nuclear Information System (INIS)

    Muench, Stefan; Guenther, Edeltraud

    2013-01-01

    Highlights: • We conducted a systematic literature review of bioenergy LCAs. • We provide a detailed overview of GWP, AP, and EP for biomass electricity and heat. • We discuss methodological choices that can lead to variations in results. • Relevant choices are functional unit, allocation method, system boundary, and carbon modelling. - Abstract: On a global scale, bioenergy is highly relevant to renewable energy options. Unlike fossil fuels, bioenergy can be carbon neutral and plays an important role in the reduction of greenhouse gas emissions. Biomass electricity and heat contribute 90% of total final biomass energy consumption, and many reviews of biofuel Life Cycle Assessments (LCAs) have been published. However, only a small number of these reviews are concerned with electricity and heat generation from biomass, and these reviews focus on only a few impact categories. No review of biomass electricity and heat LCAs included a detailed quantitative assessment. The failure to consider heat generation, the insufficient consideration of impact categories, and the missing quantitative overview in bioenergy LCA reviews constitute research gaps. The primary goal of the present review was to give an overview of the environmental impact of biomass electricity and heat. A systematic review was chosen as the research method to achieve a comprehensive and minimally biased overview of biomass electricity and heat LCAs. We conducted a quantitative analysis of the environmental impact of biomass electricity and heat. There is a significant variability in results of biomass electricity and heat LCAs. Assumptions regarding the bioenergy system and methodological choices are likely reasons for extreme values. The secondary goal of this review is to discuss influencing methodological choices. No general consensus has been reached regarding the optimal functional unit, the ideal allocation of environmental impact between co-products, the definition of the system boundary

  10. The role of bioenergy in the energy transition. The ''Smart Bioenergy'' concept

    International Nuclear Information System (INIS)

    Thraen, Daniela; DBFZ Deutsches Biomasseforschungszentrum gGmbH, Leipzig; Seitz, Stefanie B.; Wirkner, Ronny; Nelles, Michael

    2016-01-01

    The energy system's transformation away from fossil and therefore finite resources and ecological harmful use towards renewable energy sources and sustainable forms of usage proceeds. But even after 35 years, the German energy transition has yet not reached its ambitious goals. Moreover, in the recent years the progress has stagnated in certain areas. This is due to the fact that one of the central challenges of the energy system's changeover to an sole use renewable energy (RE) have not yet mastered: the reliable and stable delivery of RE for all energy dependent sectors starting form electricity via heat to mobility in the face of fluctuating energy sources like sun and wind. Bioenergy with its flexible use of innovative technologies and smart integration in the overall system is therefore vital to grant stability of energy supply. Furthermore, bioenergy can recourse on sustainable resources and may become therefore the backbone of the future bioeconomy. For this purpose an integrative approach is necessary that aligns the aforementioned building blocks in a cohesive whole: the Smart Bioenergy concept - that will be presented here with its elements but also open questions and challenges.

  11. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  12. Bio-energy and youth: Analyzing the role of school, home, and media from the future policy perspectives

    International Nuclear Information System (INIS)

    Halder, Pradipta; Havu-Nuutinen, Sari; Pietarinen, Janne; Pelkonen, Paavo

    2011-01-01

    The study investigated the relationships between students' perceived information on bio-energy from school, home and media and their perceptions, attitudes, and knowledge regarding bio-energy. The study also analyzed the scope of future policies to raise awareness among young students about bio-energy. Data drawn from 495 Finnish students studying in ninth grade revealed that the students were more positive in their attitudes towards bio-energy compared to their perceptions of it. They were very positive about learning about bio-energy, while not so eager towards its utilization. It appeared that school, home, and media all had statistically significant effects on students' perceptions, attitudes, and level of knowledge related to bio-energy. Three principal components emerged from students' perceptions and attitudes towards bio-energy viz. 'motivation' revealing students' eagerness to know more about bio-energy; 'considering sustainability' revealing their criticality of forest bio-energy; and 'utilization' revealing their state of interests to use bio-energy. Bio-energy policies to be effective must consider the role of school, home, and media as important means to engage young students in bio-energy related discussions. It is also desirable to establish interactions between energy and educational policies to integrate the modern renewable energy concepts in the school curriculum.

  13. Macroeconomic impacts of bioenergy production on surplus agricultural land: a case study of Argentina

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Smeets, E.M.W.|info:eu-repo/dai/nl/311445217; Tabeau, A.; Hilbert, J.; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input–output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural

  14. Macroeconomic impacts of bioenergy production on surplus agricultural land—A case study of Argentina

    NARCIS (Netherlands)

    Wicke, Birka; Smeets, E.; Tabeau, Andrzej; Hilbert, Jorge; Faaij, André

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input–output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural

  15. Bioenergy resources in forest. Economic potential survey; Bioenergiressurser i skog. Kartlegging av oekonomisk potensial

    Energy Technology Data Exchange (ETDEWEB)

    Bergseng, Even; Eid, Tron; Roerstad, Per Kristian; Troemborg, Erik

    2012-07-01

    Forests constitute the largest resource potential for bioenergy in Norway. Based on simulations of forest development in Norway forward costs in the industry and other specified conditions, this study gives analysis and cost curves for increased recovery of bioenergy from Norwegian forests. (Author)

  16. The water footprint of second-generation bioenergy: A comparison of biomass feedstocks and conversion techniques

    NARCIS (Netherlands)

    Mathioudakis, Vassias; Gerbens-Leenes, P.W.; van der Meer, Theo; Hoekstra, Arjen Y.

    2017-01-01

    Bioenergy is the most widely used type of renewable energy. A drawback of crops applied for bioenergy is that they compete with food and use the same natural resources like water. From a natural resources perspective, it would be more efficient to apply the large potential of available crop

  17. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  18. [Reflection on developing bio-energy industry of large oil company].

    Science.gov (United States)

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  19. Fostering the Bioeconomic Revolution in Biobased Products and Bioenergy: An Environmental Approach

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2001-01-01

    This document is a product of the Biomass Research and Development Board and presents a high-level summary of the emerging national strategy for biobased products and bioenergy. It provides the first integrated approach to policies and procedures that will promote R&D and demonstration leading to accelerated production of biobased products and bioenergy.

  20. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon

    2013-01-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these m...... bioenergy deployment, thus contributing to a key challenge in sustainability sciences....

  1. Small-scale bioenergy projects in rural China: Lessons to be learnt

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.; Zhang, L.

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy

  2. Nutrient flows in small-scale bio-energy use in developing countries

    NARCIS (Netherlands)

    Bonten, L.T.C.; Wösten, J.H.M.

    2012-01-01

    This study explored the opportunities for the retention and return of nutrients in local bio-energy production using energy crops (oil palm, jatropha and cassava), fuel wood, manure, rice husks and a common pest plant (water hyacinth). For all bio-energy systems some return of nutrients is possible,

  3. A participatory systems approach to modeling social, economic, and ecological components of bioenergy

    International Nuclear Information System (INIS)

    Buchholz, Thomas S.; Volk, Timothy A.; Luzadis, Valerie A.

    2007-01-01

    Availability of and access to useful energy is a crucial factor for maintaining and improving human well-being. Looming scarcities and increasing awareness of environmental, economic, and social impacts of conventional sources of non-renewable energy have focused attention on renewable energy sources, including biomass. The complex interactions of social, economic, and ecological factors among the bioenergy system components of feedstock supply, conversion technology, and energy allocation have been a major obstacle to the broader development of bioenergy systems. For widespread implementation of bioenergy to occur there is a need for an integrated approach to model the social, economic, and ecological interactions associated with bioenergy. Such models can serve as a planning and evaluation tool to help decide when, where, and how bioenergy systems can contribute to development. One approach to integrated modeling is by assessing the sustainability of a bioenergy system. The evolving nature of sustainability can be described by an adaptive systems approach using general systems principles. Discussing these principles reveals that participation of stakeholders in all components of a bioenergy system is a crucial factor for sustainability. Multi-criteria analysis (MCA) is an effective tool to implement this approach. This approach would enable decision-makers to evaluate bioenergy systems for sustainability in a participatory, transparent, timely, and informed manner

  4. Determination of Indonesian palm-oil-based bioenergy sustainability indicators using fuzzy inference system

    Science.gov (United States)

    Arkeman, Y.; Rizkyanti, R. A.; Hambali, E.

    2017-05-01

    Development of Indonesian palm-oil-based bioenergy faces an international challenge regarding to sustainability issue, indicated by the establishment of standards on sustainable bioenergy. Currently, Indonesia has sustainability standards limited to palm-oil cultivation, while other standards are lacking appropriateness for Indonesian palm-oil-based bioenergy sustainability regarding to real condition in Indonesia. Thus, Indonesia requires sustainability indicators for Indonesian palm-oil-based bioenergy to gain recognition and easiness in marketing it. Determination of sustainability indicators was accomplished through three stages, which were preliminary analysis, indicator assessment (using fuzzy inference system), and system validation. Global Bioenergy partnership (GBEP) was used as the standard for the assessment because of its general for use, internationally accepted, and it contained balanced proportion between environment, economic, and social aspects. Result showed that the number of sustainability indicators using FIS method are 21 indicators. The system developed has an accuracy of 85%.

  5. From Sustainability-as-usual to Sustainability Excellence in Local Bioenergy Business

    Directory of Open Access Journals (Sweden)

    Heli Kasurinen

    2017-06-01

    Full Text Available Bioenergy business operators can significantly contribute to the sustainability of bioenergy systems. While research has addressed the maturity of corporate responsibility for sustainability, the maturity levels of bioenergy business have not been determined. The objectives of this research were to characterise the maturity levels of bioenergy corporate responsibility for sustainability and outline an approach by which companies can operate at the most mature sustainability excellence level. Literature, three workshops attended by bioenergy experts and a case study on biobutanol production in Brazil were used to develop the maturity model and approach. The results characterise the profitability, acceptability, and sustainability orientation maturity levels through sustainability questions and methods, and list the components of a systemic, holistic approach. Although the shift of business mindset from sustainability-as-usual to sustainability excellence is challenging, a systemic approach is necessary to broadly identify sustainability questions and a multitude of methods by which they can be answered.

  6. Sustainability and meanings of farm-based bioenergy production in rural Finland

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S.

    2013-06-01

    Rural bioenergy production has accrued interest in recent years. EU pressure for climate change abatement and energy political concerns regarding the availability of fossil fuels, have increased bioenergy production objectives in Finland. In addition, rural regions in Finland have encountered structural changes following EU inclusion, including an emergent interest in auxiliary production lines of which bioenergy production is an example. Local bioenergy production has the potential to increase rural sustainability and provide a model for sustainable rural development and energy production. Focusing on the recent emergence of small-scale farm-related bioenergy production: heat provision from wood fuels and biogas and biodiesel production, this study aims to discover if and how farm-based bioenergy production contributes to sustainable rural development. The study derives from the field of rural studies and evaluates sustainable rural development via the concepts of multifunctionality, embeddedness, ecological modernization and sustainable livelihoods, with a particular focus on social sustainability. The empirical portion of the study is comprised of thematic qualitative interviews of bioenergy producing farmers, and on newspaper and periodical article material. The results demonstrate how rural small-scale bioenergy production can have important positive developmental effects that ameliorate and sustain livelihoods in remote areas. This occurs via the multifunctional benefits of bioenergy production to the producers and local communities. The positive effects include social, economical and environmental aspects and rural bioenergy production can present traits of sustainable rural development, predominantly manifested in the social aspects of increased capabilities and reinforced social networks. There are, however, important differences between the examined production models. As an example of achieving sustainable rural development and livelihoods, heat

  7. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, S.B.

    1995-12-31

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy`s Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO{sub 2} emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels.

  8. Evaluating environmental consequences of producing herbaceous crops for bioenergy

    International Nuclear Information System (INIS)

    McLaughlin, S.B.

    1995-01-01

    The environmental costs and benefits of producing bioenergy crops can be measured both in kterms of the relative effects on soil, water, and wildlife habitat quality of replacing alternate cropping systems with the designated bioenergy system, and in terms of the quality and amount of energy that is produced per unit of energy expended. While many forms of herbaceous and woody energy crops will likely contribute to future biofuels systems, The Dept. of Energy's Biofuels Feedstock Development Program (BFDP), has chosen to focus its primary herbaceous crops research emphasis on a perennial grass species, switchgrass (Panicum virgatum), as a bioenergy candidate. This choice was based on its high yields, high nutrient use efficiency, and wide geographic distribution, and also on its poistive environmental attributes. The latter include its positive effects on soil quality and stabiity, its cover value for wildlife, and the lower inputs of enerty, water, and agrochemicals required per unit of energy produced. A comparison of the energy budgets for corn, which is the primary current source of bioethanol, and switchgrass reveals that the efficiency of energy production for a perennial grass system can exceed that for an energy intensive annual row crop by as much as 15 times. In additions reductions in CO 2 emission, tied to the energetic efficiency of producing transportation fuels, are very efficient with grasses. Calculated carbon sequestration rates may exceed those of annual crops by as much as 20--30 times, due in part to carbon storage in the soil. These differences have major implications for both the rate and efficiency with which fossil energy sources can be replaced with cleaner burning biofuels

  9. Bioenergy Technologies Office FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Bioenergy Technologies Office (BETO) is accelerating the commercialization of first-of-a-kind technologies that use our nation’s abundant renewable biomass resources for the production of advanced biofuels and biobased products. Non-food sources of biomass, such as algae, agricultural residues and forestry trimmings, and energy crops like switchgrass, are being used in BETO-supported, cutting-edge technologies to produce drop-in biofuels, including renewable gasoline, diesel, and jet fuels. BETO is also investigating how to improve the economics of biofuel production by converting biomass into higher-value chemicals and products that historically have always been derived from petroleum.

  10. The role of sustainability requirements in international bioenergy markets

    DEFF Research Database (Denmark)

    Pelkmans, Luc; Goovaerts, Liesbet; Goh, Chun Sheng

    2014-01-01

    impact on worldwide markets and trade. On the basis of these studies, recommendations were made on how sustainability requirements could actually support further bioenergy deployment. Markets would gain from more harmonization and cross-compliance. A common language is needed as ‘sustainability...... into account how markets work, in relation to different biomass applications (avoiding discrimination among end-uses and users). It should also take into account the way investment decisions are taken, administrative requirements for smallholders, and the position of developing countries....

  11. Proceedings of the first meeting of IEA, Bioenergy, Task 17

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, L.; Ledin, S. [eds.

    1999-07-01

    The present proceedings are the result of the first meeting of Task 17 within the frame of IEA, Bioenergy. During the meeting the objectives of Task 17 were discussed and determined to be: * to stimulate the full-scale implementation of energy crops in participating countries; * to strengthen the contacts and co-operation between participating countries, scientists, biomass producers, machine developers, entrepreneurs, and end users; * to select the most urgent research and development areas, and to suggest projects of co-operation; * to deliver Proceedings from the meetings, and * to inform Ex-Co-members. Separate abstracts have been prepared for all the 7 papers presented.

  12. Golbal Economic and Environmental Impacts of Increased Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Wallace Tyner

    2012-05-30

    The project had three main objectives: to build and incorporate an explicit biomass energy sector within the GTAP analytical framework and data base; to provide an analysis of the impact of renewable fuel standards and other policies in the U.S. and E.U, as well as alternative biofuel policies in other parts of the world, on changes in production, prices, consumption, trade and poverty; and to evaluate environmental impacts of alternative policies for bioenergy development. Progress and outputs related to each objective are reported.

  13. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    Science.gov (United States)

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  14. Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment

    Directory of Open Access Journals (Sweden)

    Ana L. Gonçalves

    2016-03-01

    Full Text Available The rapid development of modern society has resulted in an increased demand for energy, mainly from fossil fuels. The use of this source of energy has led to the accumulation of carbon dioxide (CO2 in the atmosphere. In this context, microalgae culturing may be an effective solution to reduce the CO2 concentration in the atmosphere, since these microorganisms can capture CO2 and, simultaneously, produce bioenergy. This work consists of a techno-economic assessment of a microalgal production facility integrated in a petrochemical complex, in which established infrastructure allows efficient material and energy transport. Seven different scenarios were considered regarding photosynthetic, lipids extraction and anaerobic digestion efficiencies. This analysis has demonstrated six economically viable scenarios able to: (i reduce CO2 emissions from a thermoelectric power plant; (ii treat domestic wastewaters (which were used as culture medium; and (iii produce lipids and electrical and thermal energy. For a 100-ha facility, considering a photosynthetic efficiency of 3%, a lipids extraction efficiency of 75% and an anaerobic digestion efficiency of 45% (scenario 3, an economically viable process was obtained (net present value of 22.6 million euros, being effective in both CO2 removal (accounting for 1.1 × 104 t per year and energy production (annual energy produced was 1.6 × 107 kWh and annual lipids productivity was 1.9 × 103 m3.

  15. Focus on Bioenergy in the electricity and heat market. Project results 2015-2016

    International Nuclear Information System (INIS)

    Thraen, Daniela; Pfeiffer, Diana

    2017-01-01

    The report covers the following contributions: DeHoGas - sustainable local wood gasification plant with coupled micro gas turbine; SEVERA - sensor technique for efficient fermentation og biogenic residuals and wastes; FuelBand - extension of the fuel band of modern biomass combustion; REPOWERING - measures for efficiency improvement for the existing plants; PROKOSYS - processes, components and systems for flexible operation of biogas plants using biogenic residuals and wastes; Carola - electrostatic finest particle separator for flexible adaptation to biomass vessels; HydoCon - hydrolysis container - flexible plant components for substrate usage improvement in biogas plants; EFFIGEST - efficiency improvement in poultry manure fermentation using modified straw fractions and process integrated production of marketable fertilizer; FLUHKE - dry low-temperature entrained flow gasification with bio-coals from hydrothermal carbonization for local electricity and heat production with motor-cogeneration; REMISBIO - measures for emissions reduction of bio gas plants - catalyst test; Mini-bio-cogeneration - readiness of prototype for decentralized gasification of residual pellets for serial production; IbeKEt - innovative communal demand-adaptive energy carrier concept; Regiobalance - flexible bioenergy as regional compensation option in the German electricity market; FLEXHKW - flexible operation of cogeneration plants.

  16. Energy potential and greenhouse gas emissions from bioenergy cropping systems on marginally productive cropland.

    Directory of Open Access Journals (Sweden)

    Marty R Schmer

    Full Text Available Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L. and switchgrass (Panicum virgatum L. field trial under differing harvest strategies and nitrogen (N fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG reductions of -29 to -396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates. Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha-1 of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels.

  17. Bioenergy research programme. Yearbook 1996. Utilization of bioenergy and biomass conversion; Bioenergian tutkimusohjelma. Vuosikirja 1996. Bioenergian kaeyttoe ja biomassan jalostus

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning bioenergy use was 10 and biomass conversion 6. Results of the projects carried out in 1996 are presented in this publication. The aim of the bioenergy use is to develop and demonstrate at least 3-4 new equipment or methods for handling and use of biofuels. The equipment and/or methods should provide economically competitive and environmentally sound energy production. The second aim is to demonstrate 2-3 large-scale biofuel end-use technologies. Each of these should have a potential of 0.2- 0.3 million toe/a till the year 2000. The aims have been achieved in the field of fuel handling technologies and small-scale combustion concepts, but large-scale demonstration projects before the year 2000 seems to be a very challenging aim. The aim of the biomass conversion is to produce basic information on biomass conversion, to evaluate the quality of products, their usability, environmental effects of use as well as the total economy of the production. The objective of biomass conversion is to develop 2-3 new methods, which could be demonstrated, for the production and utilisation of liquefied, gasified and other converted biofuels. The production target is 0.2-0.3 million toe/a by the year 2000 at a competitive price level. The studies focused on the development of flash pyrolysis technology for biomass, and on the study of storage stability of imported wood oils and of their suitability for use in oil-fired boilers and diesel power plants

  18. Large scale international bioenergy trading. How bioenergy trading can be reliazed under safe and sustainable frame conditions?

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Kirchovas, Simas

    2011-01-01

    has for many years been forming the basis for the change together with wind and solar energy. These resources still contains great potentials for energy supply chains in increasing areas of Europe and the World. Biomass sustainability issues could be solved by developing the international...... sustainability criteria. The sustainability criteria agreed internationally could be realized as a tool to secure the positive impacts of bioenergy and to foster the international trade. This study investigates the developments by national and international bodies of biomass standardization and certification...

  19. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik

    2012-01-01

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops...... and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow...

  20. Bioenergy in developing countries experiences and prospects: bioenergy and agriculture promises and challenges

    OpenAIRE

    Kammen, Daniel M.

    2006-01-01

    "Biomass energy programs offer a wide range of potential benefits for developing countries. Already traditional biomass products like firewood, charcoal, manure, and crop residues provide the main source of household energy use for some 2–3 billion people in the developing world, and this demand is likely to grow in the years ahead. But new technologies for commercial energy production from biomass are emerging that could lead to dramatic new opportunities for agriculture and the rural sector...

  1. The IEA/bioenergy implementing agreement and other activities

    Energy Technology Data Exchange (ETDEWEB)

    Costello, R. [U.S. Department of Energy, Washington D.C. (United States). Biofuels Systems Div.

    1996-12-31

    Implementing Agreements (IAs) are used widely in international collaborative work within the International Energy Agency (IEA). These agreements are meant to be very flexible depending on the nature of the work and the interests of the participating countries. Many IAs are directed at the development of specific technologies, while a number of IAs are primarily used to facilitate information collection and dissemination. There are also a number of agreements that do not deal directly with technology development, but deal with environmental, economic and safety aspects of the technologies under development. The IEA Bioenergy Agreement is a prime example of how Implementing Agreements can be utilised to establish and expand cooperative research for the effective leveraging of technical knowledge and financial resources in finding solutions to the future needs of a growing energy dependent world. As will be illustrated, these activities are important to the commercialisation and deployment of bioenergy technologies, which increasingly are being visualized as one of the few options that can maintain and promote economic and environmental stability

  2. Scenarios of bioenergy development impacts on regional groundwater withdrawals

    Science.gov (United States)

    Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.

  3. IEA Bioenergy task 40. Country report for the Netherlands

    International Nuclear Information System (INIS)

    Junginger, M.; Faaij, A.

    2005-07-01

    Two of the short-term objectives of the IEA Bioenergy Task 40 are to present an overview of development of biomass markets in various parts of the world and to identify existing barriers hampering development of a (global) commodity market (e.g. policy framework, ecology, economics). As in most countries biomass is a relatively new (though quickly growing) commodity, relatively little information is available on e.g. the traded volumes and prices of various biomass streams, policies and regulations on biomass use and trade, and existing and perceived barriers. This country report aims to provide an overview of these issues for the Netherlands, and also sets the first step to make an inventory of barriers as perceived by various Dutch stakeholders. The report organizes as follows. Section 2 and 3 presents a brief overview of the policy setting on renewable energy and bio-energy in the Netherlands and the policy instruments deployed to stimulate renewable energy market penetration. In section 4, the achievements, the current status and the short-term expectations for the use of biomass energy in the Netherlands are described. Next, in section 5, the biomass market and biomass trade in the Netherlands are discussed, including the major biomass streams involved, conversion technologies, import and export volumes, biomass prices, barriers for further import and biomass certification efforts. Section 6 concludes with a general discussion and conclusions.

  4. Sustainable bioenergy and bioproducts value added engineering applications

    CERN Document Server

    Leeuwen, J; Brown, Robert

    2012-01-01

    Sustainable Bioenergy and Bioproducts considers the recent technological innovations and emerging concepts in biobased energy production and coproducts utilization. Each chapter in  this book has been carefully selected and contributed by experts in the field to provide a good understanding of the various challenges and opportunities associated with sustainable production of biofuel. Sustainable Bioenergy and Bioproducts covers a broad and detailed range of topics including: ·         production capacity of hydrocarbons in the plant kingdom, algae, and microbes; ·         biomass pretreatment for biofuel production; ·         microbial fuel cells; ·         sustainable use of biofuel co-products; ·         bioeconomy and transportation infrastructure impacts and ·         assessment of environmental risks and the life cycle of biofuels. Researchers, practitioners, undergraduate and graduate students engaged in the study of biorenewables, and members of th...

  5. Pacific Northwest and Alaska Regional Bioenergy Program : Five Year Report, 1985-1990.

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest and Alaska Bioenergy Program (U.S.)

    1991-02-01

    This five-year report describes activities of the Pacific Northwest and Alaska Regional Bioenergy Program between 1985 and 1990. Begun in 1979, this Regional Bioenergy Program became the model for the nation's four other regional bioenergy programs in 1983. Within the time span of this report, the Pacific Northwest and Alaska Regional Bioenergy Program has undertaken a number of applied research and technology projects, and supported and guided the work of its five participating state energy programs. During this period, the Regional Bioenergy Program has brought together public- and private-sector organizations to promote the use of local biomass and municipal-waste energy resources and technologies. This report claims information on the mission, goals and accomplishments of the Regional Bioenergy Program. It describes the biomass projects conducted by the individual states of the region, and summarizes the results of the programs technical studies. Publications from both the state and regional projects are listed. The report goes on to consider future efforts of the Regional Bioenergy Program under its challenging assignment. Research activities include: forest residue estimates; Landsat biomass mapping; woody biomass plantations; industrial wood-fuel market; residential space heating with wood; materials recovery of residues; co-firing wood chips with coal; biomass fuel characterization; wood-boosted geothermal power plants; wood gasification; municipal solid wastes to energy; woodstove study; slash burning; forest depletion; and technology transfer. 9 figs., 6 tabs.

  6. Ethical and legal challenges in bioenergy governance: Coping with value disagreement and regulatory complexity

    International Nuclear Information System (INIS)

    Gamborg, Christian; Anker, Helle Tegner; Sandøe, Peter

    2014-01-01

    The article focuses on the interplay between two factors giving rise to friction in bioenergy governance: profound value disagreements (e.g. the prioritizing of carbon concerns like worries over GHG emissions savings over non-carbon related concerns) and regulatory complexity (in terms of regulatory measures and options). We present ethical and legal analyses of the current stalemate on bioenergy governance in the EU using two illustrative cases: liquid biofuels for transport and solid biomass-based bioenergy. The two cases disclose some similarities between these two factors, but the remaining differences may partly explain, or justify, contrasting forms of governance. While there seems to be no easy way in which the EU and national governments can deal with the multiple sustainability issues raised by bioenergy, it is argued that failure to deal explicitly with the underlying value disagreements, or to make apparent the regulatory complexity, clouds the issue of how to move forward with governance of bioenergy. We suggest that governance should be shaped with greater focus on the role of value disagreements and regulatory complexity. There is a need for more openness and transparency about such factors, and about the inherent trade-offs in bioenergy governance. - Highlights: • Ethical and legal challenges in governance of liquid biofuels and wood pellets. • EU sustainability criteria legal and ethical analysis—EU bioenergy policy options. • Analysis of interplay between carbon and non-carbon concerns and regulatory options. • Governance must cope with value disagreement and regulatory complexity

  7. Networking to build a world-class bioenergy industry in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Weedon, M. [BC Bioenergy Network, Vancouver, BC (Canada)

    2009-07-01

    This presentation described the role of the BC Bioenergy Network and its goal of maximizing the value of biomass resources in British Columbia (BC) and developing a world-class bioenergy industry in the province. Established in March 2008 with $25 million in funding from the BC government, the BC Bioenergy Network is an industry-led association that promotes the development of near-term bioenergy technologies and demonstration of new bioenergy technologies that are environmentally appropriate for the province of BC. The following technology areas require funding support: solid wood residues, pulp and paper residues, harvesting and pelleting, agriculture residues, municipal wastewater, municipal landfill waste, municipal solid waste, and community heating-electricity greenhouse systems. This presentation demonstrated that BC is well positioned to become a major player in the global bioenergy sector, as it has one of the largest forested areas in the world, and is a leader in biomass to value-added wood products. The opportunities, challenges, and requirements to build a world class bioenergy industry in British Columbia were discussed along with successful Canadian, US, and European collaborations with industry, research, and government. tabs., figs.

  8. Genomics:GTL Bioenergy Research Centers White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Alton, Anita Jean [ORNL; Andrews, Shirley H [ORNL; Bownas, Jennifer Lynn [ORNL; Casey, Denise [ORNL; Martin, Sheryl A [ORNL; Mills, Marissa [ORNL; Nylander, Kim [ORNL; Wyrick, Judy M [ORNL; Drell, Dr. Daniel [Office of Science, Department of Energy; Weatherwax, Sharlene [U.S. Department of Energy; Carruthers, Julie [U.S. Department of Energy

    2006-08-01

    In his Advanced Energy Initiative announced in January 2006, President George W. Bush committed the nation to new efforts to develop alternative sources of energy to replace imported oil and fossil fuels. Developing cost-effective and energy-efficient methods of producing renewable alternative fuels such as cellulosic ethanol from biomass and solar-derived biofuels will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy production methods will not suffice. The Genomics:GTL Bioenergy Research Centers will be dedicated to fundamental research on microbe and plant systems with the goal of developing knowledge that will advance biotechnology-based strategies for biofuels production. The aim is to spur substantial progress toward cost-effective production of biologically based renewable energy sources. This document describes the rationale for the establishment of the centers and their objectives in light of the U.S. Department of Energy's mission and goals. Developing energy-efficient and cost-effective methods of producing alternative fuels such as cellulosic ethanol from biomass will require transformational breakthroughs in science and technology. Incremental improvements in current bioenergy-production methods will not suffice. The focus on microbes (for cellular mechanisms) and plants (for source biomass) fundamentally exploits capabilities well known to exist in the microbial world. Thus 'proof of concept' is not required, but considerable basic research into these capabilities remains an urgent priority. Several developments have converged in recent years to suggest that systems biology research into microbes and plants promises solutions that will overcome critical roadblocks on the path to cost-effective, large-scale production of cellulosic ethanol and other renewable energy from biomass. The ability to rapidly sequence the DNA of any organism is a critical part of these new

  9. Bio-energy potential of Malawi and the Tanzanian cane sugar sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    Several research programmes and projects have addressed the possibilities for using agro-industrial residues for production of valuable products. Anyhow, no complete analysis of the potential for bio-energy generation from these resources, including ways to implement and utilise the potential has been made, nor has an analysis of the importance of the bio-energy potential, in relation to the energy generation capacity of the countries of tropical Africa. The current project should be seen as a supplement and extension of these studies. It has its main focus on the bio-energy potential of Malawi, and the Tanzanian sugar industry. Development of and measures to maintain know-how on implementation and operation of biogas and biomass incineration facilities in East Africa, is of great importance for the exploitation of these resources. The current project should also be seen in this context. The main conclusions of this survey are: The potential for biogas production from municipal organic waste in Malawi is scarce. Household waste is not appropriate for bio-energy generation and only the city of Blantyre has an exploitable bio-energy potential from markets and small food processing industries; The bio-energy potential of the Malawian agro-industries is large, with the main sources concentrated on few large units; Smaller bio-energy units for heat production may be feasible at coffee and tobacco curing facilities; The cane sugar industry and related ethanol production facilities have the largest single potential; One wood processing factory has a good potential for exploitation of its bioenergy potential using wood chip incineration CHP units. The sugar cane sector of Tanzania is the second largest producer of biomass waste, feasible for bioenergy production in biogas and biomass incineration units, only exceeded by the Sisal sector. The potential is concentrated on five large units which each have a considerable exploitable potential. (EHS)

  10. Can the Results of Biodiversity-Ecosystem Productivity Studies Be Translated to Bioenergy Production?

    Directory of Open Access Journals (Sweden)

    Timothy L Dickson

    Full Text Available Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of

  11. On-Demand Telemetry

    Data.gov (United States)

    National Aeronautics and Space Administration — AFRC has previously investigated the use of Network Based Telemetry. We will be building on that research to enable On-Demand Telemetry. On-Demand Telemetry is a way...

  12. Bio-Energy during Finals: Stress Reduction for a University Community.

    Science.gov (United States)

    Running, Alice; Hildreth, Laura

    2016-01-01

    To re-examine the effectiveness of a bio-energy intervention on self-reported stress for a convenience sample of university students during dead week, a quasi-experimental, single-group pretest-posttest design was used. Thirty-three students participated, serving as their own controls. After participants had consented, a 15-min Healing Touch intervention followed enrollment. Self-reported stress was significantly reduced after the bio-energy (Healing Touch) intervention. Bio-energy therapy has shown to be beneficial in reducing stress for students during dead week, the week before final examinations. Further research is needed.

  13. Environmental policy integration in bioenergy: policy learning across sectors and levels?

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Charlotta

    2011-07-01

    A central principle within UN and EU policy is environmental policy integration (EPI), aiming at integrating environmental aspirations, targets and requirements into sector policy in order to promote sustainable development. The focus of this study is EPI in bioenergy policy. Bioenergy is a renewable energy source of increasing importance in the EU and Swedish energy mix. At the same time, it is debated how environmentally friendly bioenergy really is. Furthermore, bioenergy can be considered both a multi sector and a multi-level case, since bioenergy is produced in many different sectors and bioenergy policy is formulated and implemented on different levels. Therefore, EPI in bioenergy policy is here analysed over time in two sectors (energy and agriculture) and on three levels (EU, national, subnational). A cognitive, policy learning perspective on EPI is adopted, tracing EPI through looking for reframing of policy towards incorporating environmental objectives in policy rhetoric and practice. Furthermore, institutional and political explanations for the development are discussed. Paper I analyses EPI in Swedish bioenergy policy within energy and agriculture. Paper II analyses institutional conditions for multi-sector EPI in Swedish bioenergy policy. Paper III analyses EPI in EU bioenergy policy within energy and agriculture. Paper IV analyses sub-national EPI in the case of the Biofuel Region in north Sweden. The material examined consists of policy documents complemented by semi-structured interviews. Together, the four papers provide a more complex and holistic picture of the EPI process than in previous research, which mainly has focused on studying EPI in single sectors and on single levels. The study shows that priorities are different on different levels; that EPI has varied over time; but that EPI today is detectable within bioenergy policy in both studied sectors and on all levels. Policy learning in bioenergy is found to be mainly a topdown process

  14. Bioenergy production and sustainable development: science base for policy-making remains limited

    DEFF Research Database (Denmark)

    Robledo-Abad, Carmenza; Althaus, H.J.; Berndes, G.

    2017-01-01

    The possibility of using bioenergy as a climate change mitigation measure has sparked a discussion of whether and how bioenergy production contributes to sustainable development. We undertook a systematic review of the scientific literature to illuminate this relationship and found a limited...... substitution of GHG emission from fossil fuel). More focused and transparent research is needed to validate these patterns and develop a strong science underpinning for establishing policies and governance agreements that prevent/mitigate negative and promote positive impacts from bioenergy production....

  15. Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador.

    Science.gov (United States)

    Vega-Quezada, Cristhian; Blanco, María; Romero, Hugo

    2017-10-25

    This study quantifies the synergies between agriculture and bioenergy considering biodiesel production as part of a set of systemic initiatives. We present a case study in Ecuador taking into account the recent government measures aimed at developing the bioenergy sector. Four scenarios have been evaluated through a newly designed systemic scheme of circular-economy initiatives. These scenarios encompass three production pathways covering three energy crops: palm oil (PO), microalgae in open ponds (M1) and microalgae in laminar photobioreactors (M2). We have applied Benefit-Cost Analysis (BCA) methodology considering the Net Present Value (NPV) and the Benefit-Cost Ratio (BCR) as the main evaluation criteria. In terms of private investment, biodiesel production from PO is more attractive than from M2. However, regarding efficiency and effectiveness of public funds, M2 is superior to PO because the public BCR and NPV are higher, and the pressure on agricultural land is lower. Moreover, M2 as part of a systemic approach presents a better carbon balance. These findings show that, under a systemic approach based on circular economy, strategies like the one analyzed in this study are economically feasible and may have a promising future. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Spatial Variability of Near-surface Soil Moisture for Bioenergy Crops at the Great Lakes Bioenergy Research Center

    Science.gov (United States)

    van Dam, R. L.; Diker, K.; Bhardwaj, A. K.; Hamilton, S. K.

    2009-12-01

    We used time-lapse electrical resistivity imaging (ERI) to monitor spatial and temporal soil moisture variability below ten different potential bioenergy cropping systems at the Great Lakes Bioenergy Research Center’s sustainability research site in Michigan, U.S.A. These crops range from high-diversity, low-input grasses and poplars to low-diversity, high-input corn-soybean-canola rotations. We equipped the 28x40m vegetation plots with permanent 2D resistivity arrays, each consisting of 40 graphite electrodes at 30cm spacing. Other permanent equipment in each plot includes multi-depth temperature and time domain reflectometry (TDR) based moisture sensors, and two tension soil water samplers. The material at the site consists of coarse sandy glacial tills in which a soil with an approximately 50cm thick A-Bt horizon has developed. ERI data were collected using a dipole-dipole configuration every four weeks since early May 2009. After removal of bad points, the data were inverted and translated into 2D images of water content using lab-derived petrophysical relationships, including corrections for soil temperature and salinity. The results show significant seasonal variation within and between vegetation plots. We compare our results to high-temporal resolution point-based measurements of soil moisture from TDR probes and present statistical analysis of the variability of soil moisture within and between plots.

  17. 7. Rostock bioenergy forum. Proceedings; 7. Rostocker Bioenergieforum. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Nelles, Michael (ed.)

    2013-10-01

    Within the 7th Rostock bioenergy forum at 20th and 21st June, 2013, in Rostock (Federal Republic of Germany) the following lectures were held: (1) Bio energy as a key component of sustainable (regional) energy concepts (S. Daebeler); (2) Bio energy in the Baltic Sea Region, Nordic Countries and EU (J.B. Holm Nielsen); (3) Legal frameworks of the waste management and energy industry (F. Brahms); (4) Energy from biogenic wastes and residual materials - potentials, perspectives and examples (M. Nelles); (5) Regional concepts for the energetic utilization of biogenic residual materials exemplified by the county Holzminden (T. Turk); (6) Utilization concepts for the energetic utilization of suitable grassland growth in the natural preserve Droemling (T. Zeng); (7) Swamp future - Energy for Western Pomerania Grid formation and potentials for the thermal utilization of biomass from paludi culture (A. Nordt); (8) Identification and analysis of demands by nature protection at the supply of electricity and heat from energy crop (R. Wirkner); (9) Short rotation plantation: Value-added chain and opportunities for users of energy crop (T. Peschel); (10) Municipal mobilisation of materials for the landscape conservation (A. Bruening); (11) Conditioning ad energetic utilization of wooden materials for landscape conservation (C. Letalik); (12) Supply of Paludi biomass for energetic utilization (S. Dettmann); (13) Processing of excess fermentation remainders to compact fuel pellets (C. Kirsten); (14) Torrefied biomass for use in power station sector (J. Witt); (15) Power generation from solid biomass in central and decentralized power stations (M. Edel); (16) Biomass gasification project WKK2013 Unterpremstaetten (E. Greiler); (17) Certification of biofuels based on waste materials and residual materials - Adaptation of the 36. BImSchV (W.-D. Kindt); (18) New adjustment of the biofuel sector in the EU (K. Naumann); (19) Reduction of the THG emissions in agricultural productions for

  18. An Object-Oriented Information Model for Policy-based Management of Distributed Applications

    NARCIS (Netherlands)

    Diaz, G.; Gay, V.C.J.; Horlait, E.; Hamza, M.H.

    2002-01-01

    This paper presents an object-oriented information model to support a policy-based management for distributed multimedia applications. The information base contains application-level information about the users, the applications, and their profile. Our Information model is described in details and

  19. 78 FR 54623 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2013-09-05

    ... Nuclear Non-Proliferation Act of 1978 (42 U.S.C. 2139a). Under the provisions of section 6 of the EAA... proliferation controls. BIS is also interested in industry information relating to the following: 1. Information on the effect of foreign policy-based export controls on sales of U.S. products to third countries (i...

  20. Policy based traffic light control – Balancing weights of user groups

    NARCIS (Netherlands)

    Vreeswijk, Jacob Dirk; Wismans, Luc Johannes Josephus; Tutert, Bas

    2013-01-01

    On the basis of policy-based target groups, we developed a prioritization strategy for traffic streams and applied it with the adaptive urban traffic control (UTC) ImFlow. Our main aim was to gain understanding of the possibilities of a policy driven prioritization in an urban context. We conclude

  1. 76 FR 54426 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2011-09-01

    ... (Embargoes and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); Encryption... Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security, Commerce. ACTION: Request...

  2. 75 FR 54540 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2010-09-08

    ... and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); encryption.... 100719301-0303-02] Effects of Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security...

  3. 77 FR 55183 - Effects of Foreign Policy-Based Export Controls

    Science.gov (United States)

    2012-09-07

    ... and Other Special Controls). These controls apply to a range of countries, items, activities and..., production, or overhaul of commercial aircraft engines, components, and systems (Sec. 742.14); Encryption... Foreign Policy-Based Export Controls AGENCY: Bureau of Industry and Security, Commerce. ACTION: Request...

  4. Electricity demand forecasting techniques

    International Nuclear Information System (INIS)

    Gnanalingam, K.

    1994-01-01

    Electricity demand forecasting plays an important role in power generation. The two areas of data that have to be forecasted in a power system are peak demand which determines the capacity (MW) of the plant required and annual energy demand (GWH). Methods used in electricity demand forecasting include time trend analysis and econometric methods. In forecasting, identification of manpower demand, identification of key planning factors, decision on planning horizon, differentiation between prediction and projection (i.e. development of different scenarios) and choosing from different forecasting techniques are important

  5. The climate impacts of bioenergy systems depend on market and regulatory policy contexts.

    Science.gov (United States)

    Lemoine, Derek M; Plevin, Richard J; Cohn, Avery S; Jones, Andrew D; Brandt, Adam R; Vergara, Sintana E; Kammen, Daniel M

    2010-10-01

    Biomass can help reduce greenhouse gas (GHG) emissions by displacing petroleum in the transportation sector, by displacing fossil-based electricity, and by sequestering atmospheric carbon. Which use mitigates the most emissions depends on market and regulatory contexts outside the scope of attributional life cycle assessments. We show that bioelectricity's advantage over liquid biofuels depends on the GHG intensity of the electricity displaced. Bioelectricity that displaces coal-fired electricity could reduce GHG emissions, but bioelectricity that displaces wind electricity could increase GHG emissions. The electricity displaced depends upon existing infrastructure and policies affecting the electric grid. These findings demonstrate how model assumptions about whether the vehicle fleet and bioenergy use are fixed or free parameters constrain the policy questions an analysis can inform. Our bioenergy life cycle assessment can inform questions about a bioenergy mandate's optimal allocation between liquid fuels and electricity generation, but questions about the optimal level of bioenergy use require analyses with different assumptions about fixed and free parameters.

  6. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  7. Environmental Sustainability Assessment of Integrated Food and Bioenergy Production with Case Studies from Ghana

    DEFF Research Database (Denmark)

    Kamp, Andreas

    residue‐based biogas production and nutrient cycling in a remote village was shown to be a viable alternative to wood fuel and synthetic fertiliser use, in spite of increased labour inputs. In future scenarios where materials are scarce and labour plentiful, the investigated biogas‐based and agroforestry......The use of agricultural residues for the production of bioenergy offers tantalising prospects of reduced pollution and greater food sovereignty. Integrated food and bioenergy systems seek to optimise the joint production of food and energy. Integrated food and bioenergy systems may be evaluated...... and compared with other food and energy systems using Environmental Sustainability Assessment (ESA). This thesis investigates a range of integrated food and residuebased bioenergy production systems and provide methodological developments that are relevant for the assessment of such systems. The methodological...

  8. Small-scale bioenergy projects in rural China: Lessons to be learnt

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu Yonglong; Zhang Lei

    2008-01-01

    Large amounts of small-scale bioenergy projects were carried out in China's rural areas in light of its national renewable energy policies. These projects applied pyrolysis gasification as the main technology, which turns biomass waste at low costs into biogas. This paper selects seven bioenergy projects in Shandong Province as a case and assesses these projects in terms of economy, technological performance and effectiveness. Results show that these projects have not achieved a satisfying performance after 10 years experience. Many projects have been discontinued. This failure is attributed to a complex of shortcomings in institutional structure, technical level, financial support and social factors. For a more successful future development of bioenergy in rural areas, China should reform its institutional structure, establish a renewable energy market and enhance the technological level of bioenergy projects

  9. Planning for Increased Bioenergy use - Strategies for Minimising Environmental Impacts and Analysing the Consequences

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2006-08-01

    There are several goals aimed at increasing the use of renewable energy in the Swedish energy system. Bioenergy is one important renewable energy source and there is a potential to increase its use in the future. This thesis aimed to develop and analyse strategies and tools that could be used when planning for conversion to bioenergy-based heating systems and the building of new residential areas with bioenergy-based heating. The goal was to enable the increase of bioenergy and simultaneously minimise the negative health effects caused by emissions associated with the combustion of bioenergy. The thesis consists of two papers. Paper I concerned existing residential areas and conversion from electric heating and individual heating systems, such as firewood and oil boilers, to more modern and low-emitting pellet techniques and small-scale district heating. Paper II concerned new residential areas and how to integrate bioenergy-based heating systems that cause impacts on local air quality into the physical planning process through using Geographical Information Systems (GIS) and a meteorological dispersion model, ALARM. The results from Paper I indicated that it was possible to convert areas currently using electric heating to pellet techniques and small-scale district heating without degrading local air quality. Furthermore, it was possible to decrease high emissions caused by firewood boilers by replacing them with pellet boilers. The results from Paper II highlighted that GIS and ALARM were advantageous for analysing local air quality characteristics when planning for new residential areas and before a residential area is built: thus, avoiding negative impacts caused by bioenergy-based combustion. In conclusion, the work procedures developed in this thesis can be used to counteract negative impacts on local air quality with increasing use of bioenergy in the heating system. Analysis of potentially negative aspects before conversion to bioenergy-based heating

  10. Electricity demand in Kazakhstan

    International Nuclear Information System (INIS)

    Atakhanova, Zauresh; Howie, Peter

    2007-01-01

    Properties of electricity demand in transition economies have not been sufficiently well researched mostly due to data limitations. However, information on the properties of electricity demand is necessary for policy makers to evaluate effects of price changes on different consumers and obtain demand forecasts for capacity planning. This study estimates Kazakhstan's aggregate demand for electricity as well as electricity demand in the industrial, service, and residential sectors using regional data. Firstly, our results show that price elasticity of demand in all sectors is low. This fact suggests that there is considerable room for price increases necessary to finance generation and distribution system upgrading. Secondly, we find that income elasticity of demand in the aggregate and all sectoral models is less than unity. Of the three sectors, electricity demand in the residential sector has the lowest income elasticity. This result indicates that policy initiatives to secure affordability of electricity consumption to lower income residential consumers may be required. Finally, our forecast shows that electricity demand may grow at either 3% or 5% per year depending on rates of economic growth and government policy regarding price increases and promotion of efficiency. We find that planned supply increases would be sufficient to cover growing demand only if real electricity prices start to increase toward long-run cost-recovery levels and policy measures are implemented to maintain the current high growth of electricity efficiency

  11. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ., Bozeman, MT (United States); Alcorn-Windy Boy, Jessica [Montana State Univ., Bozeman, MT (United States); Abedin, Md. Joynal [Montana State Univ., Bozeman, MT (United States); Maglinao, Randy [Montana State Univ., Bozeman, MT (United States)

    2014-09-30

    MSU-Northern established the Bio-Energy Center (the Center) into a Regional Research Center of Excellence to address the obstacles concerning biofuels, feedstock, quality, conversion process, economic viability and public awareness. The Center built its laboratories and expertise in order to research and support product development and commercialization for the bio-energy industry in our region. The Center wanted to support the regional agricultural based economy by researching biofuels based on feedstock’s that can be grown in our region in an environmentally responsible manner. We were also interested in any technology that will improve the emissions and fuel economy performance of heavy duty diesel engines. The Center had a three step approach to accomplish these goals: 1. Enhance the Center’s research and testing capabilities 2. Develop advanced biofuels from locally grown agricultural crops. 3. Educate and outreach for public understanding and acceptance of new technology. The Center was very successful in completing the tasks as outlined in the project plan. Key successes include discovering and patenting a new chemical conversion process for converting camelina oil to jet fuel, as well as promise in developing a heterogeneous Grubs catalyst to support the new chemical conversion process. The Center also successfully fragmented and deoxygenated naturally occurring lignin with a Ni-NHC catalyst, showing promise for further exploration of using lignin for fuels and fuel additives. This would create another value-added product for lignin that can be sourced from beetle kill trees or waste products from cellulose ethanol fuel facilities.

  12. Multi-spatial analysis of forest residue utilization for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ryan A. [University of British Columbia, Vancouver BC Canada; Keefe, Robert F. [University of Idaho, Moscow ID USA; Smith, Alistair M. S. [University of Idaho, Moscow ID USA; Metlen, Scott [University of Idaho, Moscow ID USA; Saul, Darin A. [University of Idaho, Moscow ID USA; Newman, Soren M. [University of Idaho, Moscow ID USA; Laninga, Tamara J. [Western Washington University, Bellingham WA USA; Inman, Daniel [National Renewable Energy Lab, Golden CO USA

    2016-06-17

    The alternative energy sector is expanding quickly in the USA since passage of the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007. Increased interest in wood-based bioenergy has led to the need for robust modeling methods to analyze woody biomass operations at landscape scales. However, analyzing woody biomass operations in regions like the US Inland Northwest is difficult due to highly variable terrain and wood characteristics. We developed the Forest Residue Economic Assessment Model (FREAM) to better integrate with Geographical Information Systems and overcome analytical modeling limitations. FREAM analyzes wood-based bioenergy logistics systems and provides a modeling platform that can be readily modified to analyze additional study locations. We evaluated three scenarios to test the FREAM's utility: a local-scale scenario in which a catalytic pyrolysis process produces gasoline from 181 437 Mg yr-1 of forest residues, a regional-scale scenario that assumes a biochemical process to create aviation fuel from 725 748 Mg yr-1 of forest residues, and an international scenario that assumes a pellet mill producing pellets for international markets from 272 155 Mg yr-1 of forest residues. The local scenario produced gasoline for a modeled cost of $22.33 GJ-1*, the regional scenario produced aviation fuel for a modeled cost of $35.83 GJ-1 and the international scenario produced pellets for a modeled cost of $10.51 GJ-1. Results show that incorporating input from knowledgeable stakeholders in the designing of a model yields positive results.

  13. Bioenergy Research Programme. Yearbook 1994. Production of wood fuels

    International Nuclear Information System (INIS)

    Alakangas, E.

    1995-01-01

    BIOENERGIA Research Programme is one of energy technology programmes of the Finnish Ministry of Trade and Industry (in 1995 TEKES, Technology Development Center). The aim of Bioenergy Research Programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels and new equipment and methods for production, handling and using of biofuels. The funding for 1994 was nearly 50 million FIM and projects numbered 60. The main goal of the production of wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m 3 ). There were 27 projects in 1994 for research on wood fuel production. This part of the yearbook 1994 presents the main results of these projects. The wood reserves do not limit the obtainability of the target. Research and development work has, however, directed to development of equipment and research on wood fuels production chains. Many devices, designed for both separate and integrated production of wood fuels became ready or were becoming ready for prototyping, to be used for production tests. Results of the biomass harvesting and properties research were obtained for utilization in 1994. According to the results it is possible to obtain the desired targets both in integrated and separated production of wood fuels. (author)

  14. Functional genomics of bio-energy plants and related patent activities.

    Science.gov (United States)

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  15. Pest-Suppression Potential of Midwestern Landscapes under Contrasting Bioenergy Scenarios

    OpenAIRE

    Meehan, Timothy D.; Werling, Ben P.; Landis, Douglas A.; Gratton, Claudio

    2012-01-01

    Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural pest-suppression (biocontrol services) provided by predatory arthropods. In this study we use predation rates of three sentinel crop pests to develop a biocontrol index (BCI) summarizing pest-suppression potential in corn and perennial grass-based bioe...

  16. IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)

    OpenAIRE

    Gabrielle, Benoit; Gagnaire, Nathalie; Massad, Raia Silvia; Prieur, Vincent

    2012-01-01

    Rapport de projet; Controversy is brewing about the potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy, which mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. The life-cycle GHG budget of bioenergy pathways are indeed strongly conditioned by these emissions, which are related to fertilizer nitrogen input rates but largely controlled by soil and cl...

  17. Innovation and Demand

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2007-01-01

    the demand-side of markets in the simplest possible way. This strategy has allowed a gradual increase in the sophistication of supply-side aspects of economic evolution, but the one-sided focus on supply is facing diminishing returns. Therefore, demand-side aspects of economic evolution have in recent years...... received increased attention. The present paper argues that the new emphasis on demand-side factors is quite crucial for a deepened understanding of economic evolution. The major reasons are the following: First, demand represents the core force of selection that gives direction to the evolutionary process....... Second, firms' innovative activities relate, directly or indirectly, to the structure of expected and actual demand. Third, the demand side represents the most obvious way of turning to the much-needed analysis of macro-evolutionary change of the economic system....

  18. A global food demand model for the assessment of complex human-earth systems

    Energy Technology Data Exchange (ETDEWEB)

    EDMONDS, JAMES A. [Pacific Northwest National Laboratory’s, Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA; LINK, ROBERT [Pacific Northwest National Laboratory’s, Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA; WALDHOFF, STEPHANIE T. [Pacific Northwest National Laboratory’s, Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA; CUI, RYNA [Pacific Northwest National Laboratory’s, Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA

    2017-11-01

    Demand for agricultural products is an important problem in climate change economics. Food consumption will shape and shaped by climate change and emissions mitigation policies through interactions with bioenergy and afforestation, two critical issues in meeting international climate goals such as two-degrees. We develop a model of food demand for staple and nonstaple commodities that evolves with changing incomes and prices. The model addresses a long-standing issue in estimating food demands, the evolution of demand relationships across large changes in income and prices. We discuss the model, some of its properties and limitations. We estimate parameter values using pooled cross-sectional-time-series observations and the Metropolis Monte Carlo method and cross-validate the model by estimating parameters using a subset of the observations and test its ability to project into the unused observations. Finally, we apply bias correction techniques borrowed from the climate-modeling community and report results.

  19. Evaluation of Bioenergy Crop Growth and the Impacts Of Bioenergy Crops on Streamflow, Tile Drain Flow and Nutrient Losses Using SWAT

    Science.gov (United States)

    Guo, T.; Raj, C.; Chaubey, I.; Gitau, M. W.; Arnold, J. G.; Srinivasan, R.; Kiniry, J. R.; Engel, B.

    2016-12-01

    Bioenery crops are expected to produce large quantities of biofuel at a national scale to meet US biofuel goals. It is important to study bioenergy crop growth and the impacts on water quantity and quality to identify environment-friendly and productive biofeedstocks. In this study, SWAT2012 with a new tile drainage routine (DRAINMOD routine) and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, total nitrogen, nitrate load in flow, nitrate in tile flow, soluble nitrogen, organic nitrogen, total phosphorus, mineral phosphorus and organic phosphorus under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. The results showed that simulated annual crop yields matched with observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (66,439 Mg/yr) with Miscanthus production on highly erodible areas and marginal land (19,039 Mg/yr) provided the highest biofeedstock production. Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of Miscanthus, switchgrass, and hybrid poplar on highly erodible areas, marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment load and nutrient losses under corn stover removal could be offset with production of other bioenergy crops. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to hydrology and water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S.

  20. PERFECT DEMAND ILLUSION

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Sulimov

    2015-01-01

    Full Text Available The article is devoted to technique «Perfect demand illusion», which allows to strengthen the competitive advantageof retailers. Also in the paper spells out the golden rules of visual merchandising.The definition of the method «Demand illusion», formulated the conditions of its functioning, and is determined by the mainhypothesis of the existence of this method.Furthermore, given the definition of the «Perfect demand illusion», and describes its additional conditions. Also spells out the advantages of the «Perfect demandillusion», before the «Demand illusion».

  1. Divers of Passenger Demand

    OpenAIRE

    Wittmer, Andreas

    2011-01-01

    -Overview drivers of passenger demand -Driver 1: Economic growth in developing countries -Driver 2: International business travel in developed countries -Driver 3: International leisure travel in developed countries

  2. Techno-economic analysis of bioenergy systems; Bioenergiasysteemien teknistaloudellinen analyysi. IEA Bioenergy Agreement Techno-economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Solantausta, Y.

    1995-12-31

    The objectives of the IEA Bioenergy Technoeconomic Analysis Activity are: To promote development of thermochemical biomass conversion methods by carrying out selected site specific feasibility studies in participating countries. Both agricultural and woody biomasses will be converted either into electricity or boiler fuels. To compare advanced technologies to commercial alternatives based on techno-economic basis to establish future development needs. To facilitate information exchange between participants on relevant basic process issues. Five countries (Finland, Canada, USA, Norway, Austria) are participating to the Activity. Initially two feasibility studies are planned for each country. Each study has three common elements: site specific, technical, and economic data. The site specific cases are described below in short. Products in the cases are electricity, heat and fuel oil. Total of two cases per country are planned

  3. Locally Produced Bioenergy Can Replace 5-13% of Danish Energy Consumption in 2020 without Introduction of iLUC

    DEFF Research Database (Denmark)

    Larsen, Søren; Bentsen, Niclas Scott; Dalgaard, Tommy

    Here we show how increased bioenergy production can be targeted through changes in management of rainfed, temperate agriculture and forestry. Bioenergy production can be substantially increased with reduced environmental impacts and minor effects on food and feed production. Even though global net...... primary production (NPP) may constitute a planetary boundary for bioenergy production, we show that at regional scale NPP can be increased and the human appropriation hereof (HANPP) may be sustainably increased. If this biomass is used for bioenergy in the form of highly relevant energy carriers...

  4. Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories

    International Nuclear Information System (INIS)

    McKechnie, Jon; Colombo, Steve; MacLean, Heather L.

    2014-01-01

    Highlights: • Forest carbon accounting influences the national GHG inventory impacts of bioenergy. • Current accounting rules may overlook forest carbon trade-offs of bioenergy. • Wood pellet trade risks creating an emissions burden for exporting countries. - Abstract: While bioenergy plays a key role in strategies for increasing renewable energy deployment, studies assessing greenhouse gas (GHG) emissions from forest bioenergy systems have identified a potential trade-off of the system with forest carbon stocks. Of particular importance to national GHG inventories is how trade-offs between forest carbon stocks and bioenergy production are accounted for within the Agriculture, Forestry and Other Land Use (AFOLU) sector under current and future international climate change mitigation agreements. Through a case study of electricity produced using wood pellets from harvested forest stands in Ontario, Canada, this study assesses the implications of forest carbon accounting approaches on net emissions attributable to pellets produced for domestic use or export. Particular emphasis is placed on the forest management reference level (FMRL) method, as it will be employed by most Annex I nations in the next Kyoto Protocol Commitment Period. While bioenergy production is found to reduce forest carbon sequestration, under the FMRL approach this trade-off may not be accounted for and thus not incur an accountable AFOLU-related emission, provided that total forest harvest remains at or below that defined under the FMRL baseline. In contrast, accounting for forest carbon trade-offs associated with harvest for bioenergy results in an increase in net GHG emissions (AFOLU and life cycle emissions) lasting 37 or 90 years (if displacing coal or natural gas combined cycle generation, respectively). AFOLU emissions calculated using the Gross-Net approach are dominated by legacy effects of past management and natural disturbance, indicating near-term net forest carbon increase but

  5. Wood supply and demand

    Science.gov (United States)

    Peter J. Ince; David B. McKeever

    2011-01-01

    At times in history, there have been concerns that demand for wood (timber) would be greater than the ability to supply it, but that concern has recently dissipated. The wood supply and demand situation has changed because of market transitions, economic downturns, and continued forest growth. This article provides a concise overview of this change as it relates to the...

  6. Integrating Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability

    Science.gov (United States)

    Beal, Colin M.; Archibald, Ian; Huntley, Mark E.; Greene, Charles H.; Johnson, Zackary I.

    2018-03-01

    Bioenergy carbon capture and storage (BECCS) has been proposed to reduce atmospheric CO2 concentrations, but concerns remain about competition for arable land and freshwater. The synergistic integration of algae production, which does not require arable land or freshwater, with BECCS (called "ABECCS") can reduce CO2 emissions without competing with agriculture. This study presents a technoeconomic and life-cycle assessment for colocating a 121-ha algae facility with a 2,680-ha eucalyptus forest for BECCS. The eucalyptus biomass fuels combined heat and power (CHP) generation with subsequent amine-based carbon capture and storage (CCS). A portion of the captured CO2 is used for growing algae and the remainder is sequestered. Biomass combustion supplies CO2, heat, and electricity, thus increasing the range of sites suitable for algae cultivation. Economic, energetic, and environmental impacts are considered. The system yields as much protein as soybeans while generating 61.5 TJ of electricity and sequestering 29,600 t of CO2 per year. More energy is generated than consumed and the freshwater footprint is roughly equal to that for soybeans. Financial break-even is achieved for product value combinations that include 1) algal biomass sold for 1,400/t (fishmeal replacement) with a 68/t carbon credit and 2) algal biomass sold for 600/t (soymeal replacement) with a 278/t carbon credit. Sensitivity analysis shows significant reductions to the cost of carbon sequestration are possible. The ABECCS system represents a unique technology for negative emissions without reducing protein production or increasing water demand, and should therefore be included in the suite of technologies being considered to address global sustainability.

  7. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS)

    Science.gov (United States)

    Muratori, Matteo; Calvin, Katherine; Wise, Marshall; Kyle, Page; Edmonds, Jae

    2016-09-01

    Bioenergy with carbon capture and storage (BECCS) is considered a potential source of net negative carbon emissions and, if deployed at sufficient scale, could help reduce carbon dioxide emissions and concentrations. However, the viability and economic consequences of large-scale BECCS deployment are not fully understood. We use the Global Change Assessment Model (GCAM) integrated assessment model to explore the potential global and regional economic impacts of BECCS. As a negative-emissions technology, BECCS would entail a net subsidy in a policy environment in which carbon emissions are taxed. We show that by mid-century, in a world committed to limiting climate change to 2 °C, carbon tax revenues have peaked and are rapidly approaching the point where climate mitigation is a net burden on general tax revenues. Assuming that the required policy instruments are available to support BECCS deployment, we consider its effects on global trade patterns of fossil fuels, biomass, and agricultural products. We find that in a world committed to limiting climate change to 2 °C, the absence of CCS harms fossil-fuel exporting regions, while the presence of CCS, and BECCS in particular, allows greater continued use and export of fossil fuels. We also explore the relationship between carbon prices, food-crop prices and use of BECCS. We show that the carbon price and biomass and food crop prices are directly related. We also show that BECCS reduces the upward pressure on food crop prices by lowering carbon prices and lowering the total biomass demand in climate change mitigation scenarios. All of this notwithstanding, many challenges, both technical and institutional, remain to be addressed before BECCS can be deployed at scale.

  8. Carbon Debt of CRP Lands Converted to Annual and Perennial Bioenergy Crops

    Science.gov (United States)

    Abraha, M.; Gelfand, I.; Hamilton, S. K.; Chen, J.; Robertson, G. P.

    2017-12-01

    The net greenhouse gas fluxes of an ecosystem are directly influenced by land use conversions. In the USA, 5 Mha of grassland in the Conservation Reserve Program (CRP) have been converted to agricultural production in response to higher demand for corn grain biofuel. The global warming impact (GWI) of these biofuel crops can remain positive for many years following the conversions until the "carbon debt" incurred upon conversion is repaid. Model estimates suggest that 340-351 ×106 Mt of carbon dioxide equivalents (CO2eq) would be released to the atmosphere after the conversions. These estimates, while highly uncertain, appear to have payback times of decades or even centuries. In a field experiment conducted from 2009-16, we converted CRP grassland and conventionally-tilled agricultural (AGR) land to grain (corn) and cellulosic (switchgrass and restored prairie) biofuel feedstocks. We conducted life cycle analysis (LCA) on all converted lands by accounting for greenhouse gas fluxes related to farming operations, agronomic inputs, and soil-atmosphere greenhouse gas exchanges. We found that cumulative carbon debt for the conversion on former CRP grasslands over the 8 years is -295, 652 and 7661 gCO2eq m-2 for switchgrass, restored prairie and corn, respectively, where a positive debt indicates net emissions to the atmosphere. These indicate that the switchgrass field repaid its carbon debt in the 8th year following conversion; and the restored prairie field will likely repay its carbon debt in the next year. The corn field, however, is projected to pay its carbon debt in another 250 years. The same biofuel crops established on former AGR lands became net CO2eq sinks within two years following the conversion. Our findings indicate that the GWI estimates and the time needed to repay CO2eq debt due to conversion of grasslands to bioenergy crops is underestimated by current models.

  9. A sustainable bioenergy system - a pilot study in the Oerebro district

    International Nuclear Information System (INIS)

    Magnusson, Leif

    1997-06-01

    This project describes how biofuel can be used in a region to achieve a more sustainable energy system. The intention is to compile data from different sources to study how available biofuel resources can be used to balance the demand in a region and to correspond with established environmental goals. In the introductory pilot study, located in the Oerebro region, biofuel resources and the energy balance for the urban district heating system are reported. Examples are also given of emissions from a Salix chain and an oil chain when 1 GWh of heat is delivered to a district heating customer. The result shows that when burning in separate co-generation boilers, the Salix chain has 75 % lower particle emissions, 80 % lower NO x emissions and 95 % lower sulphur emissions. The pilot study is linked to a degree project that has mapped energy balances for different biofuels. The energy balances describe how much fossil fuel is required to produce and deliver different biofuel assortments, i.e., a measure of the sustainability of the actual fuel supply. Conclusions from the introductory part of the study suggest that the main study should be concentrated to a description between modern energy systems and a future system of a more sustainable nature in 2020. The aim of this study should be to identify: which bioenergy resources will be available in the region and how they should be used to replace the fossil fuel presently used for production of heat and electricity and: how the environmental load is altered when changing to an energy system based on bio fuel

  10. Causality in demand

    DEFF Research Database (Denmark)

    Nielsen, Max; Jensen, Frank; Setälä, Jari

    2011-01-01

    to fish demand. On the German market for farmed trout and substitutes, it is found that supply sources, i.e. aquaculture and fishery, are not the only determinant of causality. Storing, tightness of management and aggregation level of integrated markets might also be important. The methodological......This article focuses on causality in demand. A methodology where causality is imposed and tested within an empirical co-integrated demand model, not prespecified, is suggested. The methodology allows different causality of different products within the same demand system. The methodology is applied...... implication is that more explicit focus on causality in demand analyses provides improved information. The results suggest that frozen trout forms part of a large European whitefish market, where prices of fresh trout are formed on a relatively separate market. Redfish is a substitute on both markets...

  11. MSU-Northern Bio-Energy Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Kegel, Greg [Montana State Univ. Northern, Havre, MT (United States); Windy Boy, Jessica [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Maglinao, Randy Latayan [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence; Abedin, Md. Joynal [Montana State Univ. Northern, Havre, MT (United States). Bio-Energy Center of Excellence

    2017-03-02

    The goal of this project was to establish the Bio-Energy Center (the Center) of Montana State University Northern (MSUN) as a Regional Research Center of Excellence in research, product development, and commercialization of non-food biomass for the bio-energy industry. A three-step approach, namely, (1) enhance the Center’s research and testing capabilities, (2) develop advanced biofuels from locally grown agricultural crops, and (3) educate the community through outreach programs for public understanding and acceptance of new technologies was identified to achieve this goal. The research activities aimed to address the obstacles concerning the production of biofuels and other bio-based fuel additives considering feedstock quality, conversion process, economic viability, and public awareness. First and foremost in enhancing the capabilities of the Center is the improvement of its laboratories and other physical facilities for investigating new biomass conversion technologies and the development of its manpower complement with expertise in chemistry, engineering, biology, and energy. MSUN renovated its Auto Diagnostics building and updated its mechanical and electrical systems necessary to house the state-of-the-art 525kW (704 hp) A/C Dynamometer. The newly renovated building was designated as the Advanced Fuels Building. Two laboratories, namely Biomass Conversion lab and Wet Chemistry lab were also added to the Center’s facilities. The Biomass Conversion lab was for research on the production of advanced biofuels including bio-jet fuel and bio-based fuel additives while the Wet Chemistry lab was used to conduct catalyst research. Necessary equipment and machines, such as gas chromatograph-mass spectrometry, were purchased and installed to help in research and testing. With the enhanced capabilities of the Center, research and testing activities were very much facilitated and more precise. New biofuels derived from Camelina sativa (camelina), a locally

  12. Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2014-11-01

    Full Text Available Bioenergy is a new source of energy that accounts for a substantial portion of the renewable energy production in many countries. The production of bioenergy is expected to increase due to its unique advantages, such as no harmful emissions and abundance. Supply-related problems are the main obstacles precluding the increase of use of biomass (which is bulky and has low energy density to produce bioenergy. To overcome this challenge, large-scale optimization models are needed to be solved to enable decision makers to plan, design, and manage bioenergy supply chains. Therefore, the use of effective optimization approaches is of great importance. The traditional mathematical methods (such as linear, integer, and mixed-integer programming frequently fail to find optimal solutions for non-convex and/or large-scale models whereas metaheuristics are efficient approaches for finding near-optimal solutions that use less computational resources. This paper presents a comprehensive review by studying and analyzing the application of metaheuristics to solve bioenergy supply chain models as well as the exclusive challenges of the mathematical problems applied in the bioenergy supply chain field. The reviewed metaheuristics include: (1 population approaches, such as ant colony optimization (ACO, the genetic algorithm (GA, particle swarm optimization (PSO, and bee colony algorithm (BCA; and (2 trajectory approaches, such as the tabu search (TS and simulated annealing (SA. Based on the outcomes of this literature review, the integrated design and planning of bioenergy supply chains problem has been solved primarily by implementing the GA. The production process optimization was addressed primarily by using both the GA and PSO. The supply chain network design problem was treated by utilizing the GA and ACO. The truck and task scheduling problem was solved using the SA and the TS, where the trajectory-based methods proved to outperform the population

  13. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  14. Asian oil demand

    International Nuclear Information System (INIS)

    Fesharaki, F.

    2005-01-01

    This conference presentation examined global oil market development and the role of Asian demand. It discussed plateau change versus cyclical movement in the global oil market; supply and demand issues of OPEC and non-OPEC oil; if high oil prices reduce demand; and the Asian oil picture in the global context. Asian oil demand has accounted for about 50 per cent of the global incremental oil market growth. The presentation provided data charts in graphical format on global and Asia-Pacific incremental oil demand from 1990-2005; Asia oil demand growth for selected nations; real GDP growth in selected Asian countries; and, Asia-Pacific oil production and net import requirements. It also included charts in petroleum product demand for Asia-Pacific, China, India, Japan, and South Korea. Other data charts included key indicators for China's petroleum sector; China crude production and net oil import requirements; China's imports and the share of the Middle East; China's oil exports and imports; China's crude imports by source for 2004; China's imports of main oil products for 2004; India's refining capacity; India's product balance for net-imports and net-exports; and India's trade pattern of oil products. tabs., figs

  15. Uranium supply and demand

    International Nuclear Information System (INIS)

    1984-05-01

    This report covers the period 1983 to 1995. It draws together the industry's latest views on future trends in supply and demand, and sets them in their historical context. It devotes less discussion than its predecessors to the technical influences underpinning the Institute's supply and demand forecasts, and more to the factors which influence the market behaviour of the industry's various participants. As the last decade has clearly shown, these latter influences can easily be overlooked when undue attention is given to physical imbalances between supply and demand. (author)

  16. On energy demand

    International Nuclear Information System (INIS)

    Haefele, W.

    1977-01-01

    Since the energy crisis, a number of energy plans have been proposed, and almost all of these envisage some kind of energy demand adaptations or conservation measures, hoping thus to escape the anticipated problems of energy supply. However, there seems to be no clear explanation of the basis on which our foreseeable future energy problems could be eased. And in fact, a first attempt at a more exact definition of energy demand and its interaction with other objectives, such as economic ones, shows that it is a highly complex concept which we still hardly understand. The article explains in some detail why it is so difficult to understand energy demand

  17. Innovation and Demand

    DEFF Research Database (Denmark)

    Andersen, Esben Sloth

    2007-01-01

    Economic evolution is an immensely complex phenomenon, so there is an obvious need of simplifying the way we handle this phenomenon. Since Nelson and Winter's pioneering formalisation of the Schumpeterian vision of innovation-driven evolution, the major simplification has been obtained by modelling...... the demand-side of markets in the simplest possible way. This strategy has allowed a gradual increase in the sophistication of supply-side aspects of economic evolution, but the one-sided focus on supply is facing diminishing returns. Therefore, demand-side aspects of economic evolution have in recent years....... Second, firms' innovative activities relate, directly or indirectly, to the structure of expected and actual demand. Third, the demand side represents the most obvious way of turning to the much-needed analysis of macro-evolutionary change of the economic system....

  18. Two levels decision system for efficient planning and implementation of bioenergy production

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Martins, Ricardo; Wang, Kefeng; Seki, Hiroya; Naka, Yuji

    2007-01-01

    When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO 2 emissions), over

  19. A prospective study of bioenergy use in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Jorge; Manzini, Fabio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico (CIE-UNAM), Aptdo. Postal 34, Temixco, 62580 Morelos (Mexico); Masera, Omar [Centro de Investigaciones en Ecosistemas, Universidad Nacional Autonoma de Mexico (CIECO-UNAM), Antigua Carretera a Patzcuaro No. 8701, Morelia 58190, Michoacan (Mexico)

    2007-12-15

    Bioenergy is one of the renewable energy sources that can readily replace fossil fuels, while helping to reduce greenhouse gas emissions and promoting sustainable rural development. This paper analyses the feasibility of future scenarios based on moderate and high use of biofuels in the transportation and electricity generation sectors with the aim of determining their possible impact on the Mexican energy system. Similarly, it evaluates the efficient use of biofuels in the residential sector, particularly in the rural sub-sector. In this context, three scenarios are built within a time frame that goes from 2005 to 2030. In the base scenario, fossil fuels are assumed as the dominant source of energy, whereas in the two alternative scenarios moderate and high biofuel penetration diffusion curves are constructed and discussed on the basis of their technical and economical feasibility. Simulation results indicate that the use of ethanol, biodiesel and electricity obtained from primary biomass may account for 16.17% of the total energy consumed in the high scenario for all selected sectors. CO{sub 2} emissions reduction - including the emissions saved from the reduction in the non-sustainable use of fuelwood in the rural residential sector - is equivalent to 87.44 million tons of CO{sub 2} and would account for 17.84% of the CO{sub 2} emitted by electricity supply and transportation sectors when the base case and the high scenario are compared by 2030. (author)

  20. A prospective study of bioenergy use in Mexico

    International Nuclear Information System (INIS)

    Islas, Jorge; Manzini, Fabio; Masera, Omar

    2007-01-01

    Bioenergy is one of the renewable energy sources that can readily replace fossil fuels, while helping to reduce greenhouse gas emissions and promoting sustainable rural development. This paper analyses the feasibility of future scenarios based on moderate and high use of biofuels in the transportation and electricity generation sectors with the aim of determining their possible impact on the Mexican energy system. Similarly, it evaluates the efficient use of biofuels in the residential sector, particularly in the rural sub-sector. In this context, three scenarios are built within a time frame that goes from 2005 to 2030. In the base scenario, fossil fuels are assumed as the dominant source of energy, whereas in the two alternative scenarios moderate and high biofuel penetration diffusion curves are constructed and discussed on the basis of their technical and economical feasibility. Simulation results indicate that the use of ethanol, biodiesel and electricity obtained from primary biomass may account for 16.17% of the total energy consumed in the high scenario for all selected sectors. CO 2 emissions reduction-including the emissions saved from the reduction in the non-sustainable use of fuelwood in the rural residential sector-is equivalent to 87.44 million tons of CO 2 and would account for 17.84% of the CO 2 emitted by electricity supply and transportation sectors when the base case and the high scenario are compared by 2030

  1. Bioenergy from willow. 1995 Annual report, November 1987--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    White, E.H.; Abrahamson, L.P.

    1997-07-01

    Experiments were established at Tully, New York, by the State University of New York College of Environmental Science and Forestry, in cooperation with the University of Toronto and the Ontario Ministry of Natural Resources, to assess the potential of willows for wood biomass production. Specific objectives included determining the effects of clone type, fertilization, spacing, cutting cycle, and irrigation on biomass production. Production was high, with willow clone SV1 yielding nearly 32 oven dry tons per acre (odt ac{sup -1}) with three-year harvest cycle, irrigation, and fertilization. Clone type, fertilization, spacing, cutting cycle, and irrigation all significantly affected biomass production. Willow clone-site trials planted at Massena, and Tully, NY in 1993 grew well during 1994 and 1995, but some clones in the Massena trial were severely damaged by deer browse. Several new cooperators joined the project, broadening the funding base, and enabling establishment of additional willow plantings. Willow clone-site trials were planted at Himrod, King Ferry, Somerset, and Tully, NY, during 1995. A willow cutting orchard was planted during 1995 at the NYS Department of Environmental Conservation Saratoga Tree Nursery in Saratoga, NY. Plans are to begin site preparation for a 100+ acre willow bioenergy demonstration farm in central New York, and additional clone-site trials, in 1996.

  2. Macroeconomic impacts of bioenergy production on surplus agricultural land. A case study of Argentina

    International Nuclear Information System (INIS)

    Wicke, Birka; Smeets, Edward; Faaij, Andre; Tabeau, Andrzej; Hilbert, Jorge

    2009-01-01

    This paper assesses the macroeconomic impacts in terms of GDP, trade balance and employment of large-scale bioenergy production on surplus agricultural land. An input-output model is developed with which the direct, indirect and induced macroeconomic impacts of bioenergy production and agricultural intensification, which is needed to make agricultural land become available for bioenergy production, are assessed following a scenario approach. The methodology is applied to a case study of Argentina. The results of this study reveal that large-scale pellet production in 2015 would directly increase GDP by 4%, imports by 10% and employment by 6% over the reference situation in 2001. When accounting for indirect and induced impacts, GDP increases by 18%, imports by 20% and employment by 26% compared to 2001. Agricultural intensification reduces but does not negate these positive impacts of bioenergy production. Accounting for agricultural intensification, the increase in GDP as a result of bioenergy production on surplus agricultural land would amount to 16%, 20% in imports and 16% in employment compared to 2001. (author)

  3. The Economic Determinants of Bioenergy Trade Intensity in the EU-28: A Co-Integration Approach

    Directory of Open Access Journals (Sweden)

    Mohd Alsaleh

    2018-02-01

    Full Text Available This paper examines the dynamic effect of the economic determinants on bilateral trade intensity of the European Union (EU region’s bioenergy industry outputs. The authors adopt the panel co-integration model approach to estimate annual trade intensity data of the EU-28 countries’ bioenergy industry outputs from 1990 to 2013. This study investigated the long-term influence of the rate of real exchange, gross domestic product (GDP, and export price on the trade intensity of bioenergy industry applying fully modified oriented least square (FMOLS, dummy oriented least square (DOLS, and pooled mean group (PMG models. In the current study, the findings boost the empirical validity of the panel co-integration model through FMOLS, indicating that depreciation has improved the trade intensity. This study has further investigated, through the causality test, a distinct set of countries. FMOLS estimation does find proof of the long run improvement of trade intensity. Thus, the result shows that the gross domestic product (GDP and the real exchange rate have a positive and noteworthy influence on the EU-28 region trade intensity of the bioenergy industry. Moreover, the export price affects negatively and significantly the trade intensity of the bioenergy industry in the EU-28 countries.

  4. Recent developments of biofuels/bioenergy sustainability certification: A global overview

    International Nuclear Information System (INIS)

    Scarlat, Nicolae; Dallemand, Jean-Francois

    2011-01-01

    The objective of this paper is to provide a review on the latest developments on the main initiatives and approaches for the sustainability certification for biofuels and/or bioenergy. A large number of national and international initiatives lately experienced rapid development in the view of the biofuels and bioenergy targets announced in the European Union, United States and other countries worldwide. The main certification initiatives are analysed in detail, including certification schemes for crops used as feedstock for biofuels, the various initiatives in the European Union, United States and globally, to cover biofuels and/or biofuels production and use. Finally, the possible way forward for biofuel certification is discussed. Certification has the potential to influence positively direct environmental and social impact of bioenergy production. Key recommendations to ensure sustainability of biofuels/bioenergy through certification include the need of an international approach and further harmonisation, combined with additional measures for global monitoring and control. The effects of biofuels/bioenergy production on indirect land use change (ILUC) is still very uncertain; addressing the unwanted ILUC requires sustainable land use planning and adequate monitoring tools such as remote sensing, regardless of the end-use of the product. - Research highlights: → There is little harmonisation between certification initiatives. → Certification alone is probably not able to avoid certain indirect effects. → Sustainability standards should be applied globally to all agricultural commodities. → A critical issue to certification is implementation and verification. → Monitoring and control of land use changes through remote sensing are needed.

  5. Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms

    International Nuclear Information System (INIS)

    Qu Mei; Tahvanainen, Liisa; Ahponen, Pirkkoliisa; Pelkonen, Paavo

    2009-01-01

    The aim of this study is to discuss how information about the development and use of bio-energy is forwarded and disseminated to general public via the Internet in China. Furthermore, this study also explores in what manner the information of renewable energy policies is presented. A research method used in this study is an application of content analysis. Altogether 19 energy-related web platforms were found by searching keywords, such as 'energy net' or 'renewable energy net' or 'bio-energy net' on (www.Google.cn). A thorough analysis was conducted by focusing on one of them: (www.china5e.com). The news articles on (www.china5e.com) were examined according to whether the use of bio-energy was articulated positively or negatively in the contents of articles. It was also considered whether the articles were imported from abroad. The results of this study indicated that in China there is a tendency on the Internet to disseminate primarily the positive information about bio-energy with a great emphasis on its benefits. In addition, the study shows that when analyzing the content of the news articles, biogas and liquid bio-fuels will be the main bio-energy development trends in China in the near future.

  6. The Influence of Local Governance: Effects on the Sustainability of Bioenergy Innovation

    Directory of Open Access Journals (Sweden)

    Bianca Cavicchi

    2017-03-01

    Full Text Available This paper deals with processes and outcomes of sustainable bioenergy development in Emilia Romagna. It draws on an on-going research project concerning inclusive innovation in forest-based bioenergy and biogas in Norway, Sweden, Finland and Italy. The goal is to explore how local governance impacts on inclusive innovation processes and triple bottom sustainability of bioenergy development in Emilia Romagna and, ultimately, to contribute to the debate on the bioeconomy. It thus compares the case of biogas and forest-based bioenergy production. The study adopts an analytical framework called Grounded Innovation (GRIP and the local governance approach. The study uses qualitative methods and particularly semi-structured interviews and governance analysis. The key results show different outcomes on both inclusive innovation and triple bottom-line dimensions. Biogas has not fostered inclusiveness and triple bottom line sustainability benefits, contrary to forest-based bioenergy. The findings indicate that the minor role of local actors, particularly municipalities, in favour of industrial and national interests may jeopardise the sustainability of biobased industries. Besides, policies limited to financial incentives may lead to a land-acquisition rush, unforeseen local environmental effects and exacerbate conflicts.

  7. Spatiotemporal Changes in Crop Residues with Potential for Bioenergy Use in China from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    Xinliang Xu

    2013-11-01

    Full Text Available China has abundant crop residues (CRE that could be used for bioenergy. The spatiotemporal characteristics of bioenergy production are crucial for high-efficiency use and appropriate management of bioenergy enterprises. In this study, statistical and remote-sensing data on crop yield in China were used to estimate CRE and to analyze its spatiotemporal changes between 1990 and 2010. In 2010, China’s CRE was estimated to be approximately 133.24 Mt, and it was abundant in North and Northeast China, the middle and lower reaches of the Yangtze River, and South China; CRE was scarce on the Loess and Qinghai–Tibet Plateaus. The quantity of CRE increased clearly over the 20-year analysis period, mainly from an increase in residues produced on dry land. Changes in cultivated land use clearly influenced the changes in CRE. The expansion of cultivated land, which mainly occurred in Northeast and Northwest China, increased CRE by 5.18 Mt. The loss of cultivated land, which occurred primarily in North China and the middle and lower reaches of the Yangtze River, reduced CRE by 3.55 Mt. Additionally, the interconversion of paddy fields and dry land, which occurred mostly in Northeast China, increased CRE by 0.78 Mt. The findings of this article provide important information for policy makers in formulating plans and policies for crop-residue-based bioenergy development in China, and also for commercial ventures in deciding on locations and production schedules for generation of bioenergy.

  8. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    Science.gov (United States)

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  9. The influence of proximity on the potential demand for vegetable oil as a diesel substitute: A rural survey in West Africa

    International Nuclear Information System (INIS)

    Litvine, Dorian; Dabat, Marie-Helene; Gazull, Laurent

    2013-01-01

    Bio-energy demand is known to be influenced by geographical origin and social equity. This paper aims to highlight the influence of the proximity between biomass production and energy consumption on the demand for alternative bio-fuels. In the context of Burkina Faso, we explore potential demand for vegetable oil (Jatropha Curcas) as a diesel substitute among engine owners. Survey data are based on a between-groups design: one group of respondents experiencing a local supply chain, while the other a global one. Results show that proximity has a significant effect on potential demand itself and on the formation and strength of beliefs regarding vegetable oil. In a local supply chain context, the demand is superior and seems to be guided more by a certain economic and technical rationality. Conversely, the prospect of a vegetable oil produced outside the village restrains demand and this latter is more determined by contextual factors and social interaction. Our analysis confirms that demand does not only depend on technical and economic factors such as price but also on the integration of the biomass production and processing in the socioeconomic life of local rural populations. Understanding demand construction and assessing underlying beliefs are key success factors for bio-energy projects. (authors)

  10. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands

    Science.gov (United States)

    Agave species are known as high-yielding crassulacean acid metabolism (CAM) plants, some of which have been grown commercially in the past and are recognized as potential bioenergy species for dry regions of the world. This study is the first field trial of Agave species for bioenergy in the United ...

  11. Tweak, adapt, or transform: Policy scenarios in response to emerging bioenergy markets in the U.S

    Science.gov (United States)

    Ryan. C. Atwell; Lisa. A. Schulte; Lynne M. Westphal

    2011-01-01

    Emerging bioenergy markets portend both boon and bane for regions of intensive agricultural production worldwide. To understand and guide the effects of bioenergy markets on agricultural landscapes, communities, and economies, we engaged leaders in the Corn Belt state of Iowa in a participatory workshop and follow-up interviews to develop future policy scenarios....

  12. IEA Bioenergy Tasks 30/31 : country report for the Netherlands : Biomass production for energy from sustainable forestry

    NARCIS (Netherlands)

    Jong, de J.J.; Spijker, J.H.; Elbersen, H.W.

    2007-01-01

    This country report provides information on the biomass production from sustainable forestry in the Netherlands. In chapter 2, Policy on bioenergy in the Netherlands, some information is summarized on bioenergy production in the Netherlands, developments in the policy of the Dutch government on

  13. An assessment of the influence of bioenergy and marketed land amenity values on land uses in the midwestern US

    Science.gov (United States)

    Suk-Won Choi; Brent Sohngen; Ralph. Alig

    2011-01-01

    There is substantial concern that bioenergy policies could swamp other considerations, such as environmental values, and lead to large-scale conversions of land from forest to crops. This study examines how bioenergy and marketed environmental rents for forestland potentially influence land use in the Midwestern US. We hypothesize that current land uses reflect market...

  14. Ecological Modernisation and Discourses on Rural Non-Wood Bioenergy Production in Finland from 1980 to 2005

    Science.gov (United States)

    Huttunen, Suvi

    2009-01-01

    Rural bioenergy production is currently a much debated question worldwide. It is closely connected to questions of environmental protection and rural development in both developing and industrial world. In Finland, rural bioenergy production has traditionally meant the production of wood fuels for heating purposes. The utilisation of forest…

  15. The role of bioenergy and biochemicals in CO2 mitigation through the energy system - a scenario analysis for the Netherlands

    NARCIS (Netherlands)

    Tsiropoulos, Ioannis; Hoefnagels, Ric; van den Broek, Machteld; Patel, Martin K.; Faaij, Andre P.C.

    2017-01-01

    Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost-efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels

  16. Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute

    Energy Technology Data Exchange (ETDEWEB)

    Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

    2008-01-18

    Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low

  17. 15. Annual Meeting on biogas and bioenergy in agriculture. Proceedings; 15. Jahrestagung Biogas und Bioenergie in der Landwirtschaft. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The volume contains besides the general statements on environmental protection and energy savings in the future and biogas as great potential for the rural development the following contributions in four parts: 1. political enveloping conditions: biogas usage within the frame of the the new EEG; state of biogas usage in Baden-Wuerttemberg; practical experiences end perspectives for the biogas development; renewable raw materials from the view of environmenmental protection; 2. gas utilization: the bioenergy village Mauenheim - model for the rural area; compression ignition gas engines with biogenic ignition oils; realization and economic performance of gas engines with biogas; microgasturbines - engineering and chances, gas processing and feeding into the gas network; 3. substrate: influence of the energy plant agriculture on the regional structures; biogas plants: substrate control by TS sensing; fermentation of fusaria contaminated corn; substrate contracts in the view of revenue and contract legacy; energy plants agriculture in Baden-Wuerttemberg; 4. process biology: comparison of dry and wet fermentation; fundamentals, process stability analytical possibilities; start-up of a biogas plant; biogas process with external hydrolysis; problems in the fermenter - inhibitors and auxiliaries.

  18. A review of biogeophysical impacts of bioenergy-induced LULCC and associated climate metrics

    Science.gov (United States)

    Bright, R. M.; O'Halloran, T. L.

    2015-12-01

    In addition to aerosols, carbon, and other trace gases, land use and land cover changes (LULCC) affect fluxes of heat, moisture, and momentum exchanged between the land surface and atmosphere which in turn affects climate. Although long recognized scientifically as being important, these so-called biogeophysical climate forcings are rarely included in climate policies for bioenergy and other land management projects due to challenges involved in their quantification, and, in some cases, due to their large uncertainties. Here, I review observation- and modeling-based studies linking biogeophysical impacts to bioenergy policies, identifying the dominant physical mechanism(s) and the temporal and spatial scale and extent of the impact(s). Quantitative methods and/or metrics for characterizing and attributing biogeophysical climate impacts to bioenergy systems are also reviewed and evaluated in terms of their complexity, scientific uncertainty, and policy relevancy.

  19. Enquiring into the roots of bioenergy - epistemic uncertainties in life cycle assessments

    DEFF Research Database (Denmark)

    Saez de Bikuna Salinas, Koldo

    uncertainties) than CHP from natural gas. The implementation of such bioenergy systems on abandoned lands would be thus justified as long as they substitute fossil-fuel based CHP. In Paper II, the key assumptions related to time horizons in LCA of bioenergy systems were analysed and crucial definitions for them...... to dominate environmental impacts from a life-cycle perspective and from the uncertainty that accompanies them. On the other hand, continued land use may be a concern for soil’s long-term sustainability (understood as fertility), which has recently received attention in environmental life-cycle assessments...... (LCA) under the respective life-cycle initiative of the UNEP-SETAC. The Thesis thus focused on these two aspects of sustainability of bioenergy. The overall aim was to disentangle the epistemic uncertainties related to land use impact assessments in order to provide science based decision...

  20. Pathways and pitfalls of implementing the use of woodfuels in Germany's bioenergy sector

    DEFF Research Database (Denmark)

    Plieninger, Tobias; Thiel, Andreas; Bens, Oliver

    2009-01-01

    The paper presents an empirical study on the use of woody biomass for energy supply in Germany and the federal state of Brandenburg. It aims to explain the role forestry enterprises have for bioenergy provision in this area. The 'Institutions of Sustainability' framework is used as an analytical.......e. strong support by national and regional policies, rising prices for fossil energy sources, and co-operation of committed individuals and groups, a new bioenergy industry has been successfully established. However, the forestry sector has so far been just a marginal fuel supplier for this industry....... The study identifies pitfalls impeding a broad implementation of wood-energy supply in forestry: not cost-covering prices offered by the bioenergy sector, lacking market transparency and security of supply, lacking mobilization of forest wood, and a preference among forest managers to sell products...

  1. Climate Effect of Bioenergy and Agriculture Integration Based on Lowtar Gasification of Wood Chips

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard

    2015-01-01

    that goal. The climate change mitigating effect of different bioenergy scenarios is however not obvious. In recent years, finding the rightway to quantify the effectof biogenic carbon emissions associated with bioenergy has gathered attention.This paper analyses the global warming potential of an integrated...... potential is included in the analysis, by accounting for both the atmospheric load of biogenic carbon emissions and the carbon captured by forest re-growth. The energy conversion is based on thermal gasification. The gasifier allows changing the carbon conversion fraction, from the conventional maximum...... bioenergy and agricultural system through a polygenerating energy system, producing electricity, district heatand fertile biocharfor agricultural soil application. The case analysisis based on utilization of forest residues from a sustainably harvested forest. Quantification of the biogenic global warming...

  2. Global outlook for wood and forests with the bioenergy demand implied by scenarios of the intergovernmental panel on climate change

    Science.gov (United States)

    Ronald Raunikar; Joseph Buongiorno; James A. Turner; Shushuai Zhu

    2010-01-01

    The Global Forest Products Model (GFPM) was modified to link the forest sector to two scenarios of the Intergovernmental Panel on Climate Change (IPCC), and to represent the utilization of fuelwood and industrial roundwood to produce biofuels. The scenarios examined were a subset of the “story lines” prepared by the IPCC. Each scenario has projections of population and...

  3. Modeling the Impacts of EU Bioenergy Demand on the Forest Sector of the Southeast U.S.

    Science.gov (United States)

    Rafal Chudy; Robert C. Abt; Frederick W. Cubbage; Ragnar Jonsson; Jeffrey P. Prestemon

    2013-01-01

    The wood-pellet trade between the U.S. (United States) and the EU (European Union) has increased substantially recently. This research analyzes the effects of EU biomass imports from the Southeast U.S. on Southeast U.S. timber prices, inventories and production and on EU imports of feedstock. The SRTS (sub-regional timber supply model) was used to simulate market...

  4. Short and long-term carbon balance of bioenergy electricity production fueled by forest treatments.

    Science.gov (United States)

    Kelsey, Katharine C; Barnes, Kallie L; Ryan, Michael G; Neff, Jason C

    2014-01-01

    Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in the treated stand. Forest treatment carbon balance is further affected by the fate of this biomass removed from the forest, and the occurrence and intensity of a future wildfire in this stand. In this study we investigate the carbon balance of a forest treatment with varying fates of harvested biomass, including use for bioenergy electricity production, and under varying scenarios of future disturbance and regeneration. Bioenergy is a carbon intensive energy source; in our study we find that carbon emissions from bioenergy electricity production are nearly twice that of coal for the same amount of electricity. However, some emissions from bioenergy electricity production are offset by avoided fossil fuel electricity emissions. The carbon benefit achieved by using harvested biomass for bioenergy electricity production may be increased through avoided pyrogenic emissions if the forest treatment can effectively reduce severity. Forest treatments with the use of harvested biomass for electricity generation can reduce carbon emissions to the atmosphere by offsetting fossil fuel electricity generation emissions, and potentially by avoided pyrogenic emissions due to reduced intensity and severity of a future wildfire in the treated stand. However, changes in future wildfire and regeneration regimes may affect forest carbon balance and these climate-induced changes may influence forest carbon balance as much, or more, than bioenergy production.

  5. Bioenergy in Ukraine-Possibilities of rural development and opportunities for local communities

    International Nuclear Information System (INIS)

    Raslavicius, Laurencas; Grzybek, Anna; Dubrovin, Valeriy

    2011-01-01

    This review paper deals with colligated aspects of the BioPlus Project (ERA-ARD) implemented by Institute of Technology and Life Sciences (Poland) and Lithuanian University of Agriculture Institute of Agro-Engineering (Lithuania) in cooperation with National University of Life and Environmental Sciences of Ukraine Institute of Ecobiotechnologies and Bioenergy (Ukraine). The drawn inferences intended to be an auxiliary material for policy makers and can briefly indicate on direction of the regional development of rural Ukraine, focusing on: (i) country's specific and sub-regional assessments of renewable energy potentials and spheres of its application; (ii) identification of major barriers for the expansion of renewable energy technologies and policy guidance to overcome those barriers; (iii) recommendations for future actions and strategies concerning renewable energy in Ukraine. The article concludes that low contribution of bioenergy towards rural development is to a large extent driven by energy policy that inhibits the delivery and use of modern energy sources in rural Ukraine. Consequently, an incentive for achieving bioenergy's future that has greater relevance to development of the Ukraine's regions requires a mix of policy tools and institutional actions, briefly summarized in this paper. - Highlights: → We examine current status and the potentials of bioenergy in Ukraine. → We examine major barriers for the expansion of bioenergy technologies in Ukraine. → Ukraine has the highest potential for renewable energy production in Europe. → Bioenergy sector of UA requires better mix of policy tools and institutional actions. → Cost-competitiveness and financing of technologies and projects are major challenges.

  6. Pest-suppression potential of midwestern landscapes under contrasting bioenergy scenarios.

    Science.gov (United States)

    Meehan, Timothy D; Werling, Ben P; Landis, Douglas A; Gratton, Claudio

    2012-01-01

    Biomass crops grown on marginal soils are expected to fuel an emerging bioenergy industry in the United States. Bioenergy crop choice and position in the landscape could have important impacts on a range of ecosystem services, including natural pest-suppression (biocontrol services) provided by predatory arthropods. In this study we use predation rates of three sentinel crop pests to develop a biocontrol index (BCI) summarizing pest-suppression potential in corn and perennial grass-based bioenergy crops in southern Wisconsin, lower Michigan, and northern Illinois. We show that BCI is higher in perennial grasslands than in corn, and increases with the amount of perennial grassland in the surrounding landscape. We develop an empirical model for predicting BCI from information on energy crop and landscape characteristics, and use the model in a qualitative assessment of changes in biocontrol services for annual croplands on prime agricultural soils under two contrasting bioenergy scenarios. Our analysis suggests that the expansion of annual energy crops onto 1.2 million ha of existing perennial grasslands on marginal soils could reduce BCI between -10 and -64% for nearly half of the annual cropland in the region. In contrast, replacement of the 1.1 million ha of existing annual crops on marginal land with perennial energy crops could increase BCI by 13 to 205% on over half of the annual cropland in the region. Through comparisons with other independent studies, we find that our biocontrol index is negatively related to insecticide use across the Midwest, suggesting that strategically positioned, perennial bioenergy crops could reduce insect damage and insecticide use on neighboring food and forage crops. We suggest that properly validated environmental indices can be used in decision support systems to facilitate integrated assessments of the environmental and economic impacts of different bioenergy policies.

  7. Not carbon neutral: Assessing the net emissions impact of residues burned for bioenergy

    Science.gov (United States)

    Booth, Mary S.

    2018-03-01

    Climate mitigation requires emissions to peak then decline within two decades, but many mitigation models include 100 EJ or more of bioenergy, ignoring emissions from biomass oxidation. Treatment of bioenergy as ‘low carbon’ or carbon neutral often assumes fuels are agricultural or forestry residues that will decompose and emit CO2 if not burned for energy. However, for ‘low carbon’ assumptions about residues to be reasonable, two conditions must be met: biomass must genuinely be material left over from some other process; and cumulative net emissions, the additional CO2 emitted by burning biomass compared to its alternative fate, must be low or negligible in a timeframe meaningful for climate mitigation. This study assesses biomass use and net emissions from the US bioenergy and wood pellet manufacturing sectors. It defines the ratio of cumulative net emissions to combustion, manufacturing and transport emissions as the net emissions impact (NEI), and evaluates the NEI at year 10 and beyond for a variety of scenarios. The analysis indicates the US industrial bioenergy sector mostly burns black liquor and has an NEI of 20% at year 10, while the NEI for plants burning forest residues ranges from 41%-95%. Wood pellets have a NEI of 55%-79% at year 10, with net CO2 emissions of 14-20 tonnes for every tonne of pellets; by year 40, the NEI is 26%-54%. Net emissions may be ten times higher at year 40 if whole trees are harvested for feedstock. Projected global pellet use would generate around 1% of world bioenergy with cumulative net emissions of 2 Gt of CO2 by 2050. Using the NEI to weight biogenic CO2 for inclusion in carbon trading programs and to qualify bioenergy for renewable energy subsidies would reduce emissions more effectively than the current assumption of carbon neutrality.

  8. UK Nuclear Workforce Demand

    International Nuclear Information System (INIS)

    Roberts, John

    2017-01-01

    UK Nuclear Sites: DECOMMISSIONING - 26 Magnox Reactors, 2 Fast Reactors; OPERATIONAL - 14 AGRs, 1 PWR; 9.6 GWe Total Capacity. Nuclear Workforce Demand • Total workforce demand is expected to grow from ~88,000 in 2017 to ~101,000 in 2021 • Average “inflow” is ~7,000 FTEs per annum • 22% of the workforce is female (28% in civil, 12% in defence) • 81% generic skills, 18% nuclear skills, 1% subject matter experts • 3300 trainees total in SLCs and Defence Enterprise (16% graduate trainees) • At peak demand on Civils Construction, over 4,000 workers will be required on each nuclear new build site • Manufacturing workforce is expected to rise from around 4,000 in 2014 to 8,500 at the peak of onsite activity in 2025

  9. Productivity and nutrient cycling in bioenergy cropping systems

    Science.gov (United States)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  10. Education on Demand

    DEFF Research Database (Denmark)

    Boysen, Lis; Hende, Merete

    2015-01-01

    Dette notat beskriver nogle af resultaterne fra programmet "Education on Demand' i projektet Det erhvervsrettede Uddannelseslaboratorium. Programmet har haft fokus på udfordringer og forandringsbehov i uddannelsesinstitutioner og -systemet. Herunder har det beskæftiget sig særligt med de to temat......Dette notat beskriver nogle af resultaterne fra programmet "Education on Demand' i projektet Det erhvervsrettede Uddannelseslaboratorium. Programmet har haft fokus på udfordringer og forandringsbehov i uddannelsesinstitutioner og -systemet. Herunder har det beskæftiget sig særligt med de...

  11. Demand Modelling in Telecommunications

    Directory of Open Access Journals (Sweden)

    M. Chvalina

    2009-01-01

    Full Text Available This article analyses the existing possibilities for using Standard Statistical Methods and Artificial Intelligence Methods for a short-term forecast and simulation of demand in the field of telecommunications. The most widespread methods are based on Time Series Analysis. Nowadays, approaches based on Artificial Intelligence Methods, including Neural Networks, are booming. Separate approaches will be used in the study of Demand Modelling in Telecommunications, and the results of these models will be compared with actual guaranteed values. Then we will examine the quality of Neural Network models. 

  12. DemandStat

    International Nuclear Information System (INIS)

    2003-01-01

    DemandStat is an accurate and up-to-date international statistics database dedicated to energy demand, with an unrivaled level of details for powerful market analysis. It provides detailed consumption statistics (30 sectors) on all energies, detailed 2003 data and historical annual data since 1970, frequent data revision and update (2 updates options), 150 data sources gathered and expertized, all data on a single database Consistent and homogeneous statistics, in line with all major data providers (IEA, Eurostat, ADB, OLADE, etc), no ruptures in time-series with easy request building and data analysis and reactive support from data experts. (A.L.B.)

  13. Whole system analysis of second generation bioenergy production and Ecosystem Services in Europe

    Science.gov (United States)

    Henner, Dagmar; Smith, Pete; Davies, Christian; McNamara, Niall

    2017-04-01

    Bioenergy crops are an important source of renewable energy and are a possible mechanism to mitigate global climate warming, by replacing fossil fuel energy that has higher greenhouse gas emissions. There is, however, uncertainty about the impacts of the growth of bioenergy crops on ecosystem services. This uncertainty is further enhanced by current climate change. It is important to establish how second generation bioenergy crops (Miscanthus, SRC willow and poplar) can contribute by closing the gap between reducing fossil fuel use and increasing the use of other renewable sources in a sustainable way. The project builds on models of energy crop production, biodiversity, soil impacts, greenhouse gas emissions and other ecosystem services, and on work undertaken in the UK on the ETI-funded ELUM project (www.elum.ac.uk). We will present estimated yields for the above named crops in Europe using the ECOSSE, DayCent, SalixFor and MiscanFor models. These yields will be brought into context with a whole system analysis, detailing trade-offs and synergies for land use change, food security, GHG emissions and soil and water security. Methods like water footprint tools, tourism value maps and ecosystem valuation tools and models (e.g. InVest, TEEB database, GREET LCA Model, World Business Council for Sustainable Development corporate ecosystem valuation, Millennium Ecosystem Assessment and the Ecosystem Services Framework) will be used to estimate and visualise the impacts of increased use of second generation bioenergy crops on the above named ecosystem services. The results will be linked to potential yields to generate "inclusion or exclusion areas" in Europe in order to establish suitable areas for bioenergy crop production and the extent of use possible. Policy is an important factor for using second generation bioenergy crops in a sustainable way. We will present how whole system analysis can be used to create scenarios for countries or on a continental scale. As an

  14. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    Science.gov (United States)

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  15. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  16. Pacific Northwest ampersand Alaska Regional Bioenergy Program. 1992--1993 yearbook with 1994 activities

    International Nuclear Information System (INIS)

    1994-04-01

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment

  17. BECCS in South Korea-Analyzing the negative emissions potential of bioenergy as a mitigation tool

    OpenAIRE

    Kraxner, Florian; Aoki, Kentaro; Leduc, Sylvain; Kindermann, Georg; Fuss, Sabine; Yang, Jue; Yamagata, Yoshiki; Tak, Kwang-Il; Obersteiner, Michael

    2014-01-01

    The objective of this study is to analyze the in situ BECCS capacity for green-field bioenergy plants in South Korea. The technical assessment is used to support a policy discussion on the suitability of BECCS as a mitigation tool. We examined the technical potential of bioenergy production from domestic forest biomass. In a first step, the biophysical global forestry model (G4M) was applied to estimate biomass availability. In a second step, the results from G4M were used as input data to t...

  18. Bioenergy originating from biomass combustion in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Crujeira, T.; Gulyurtlu, I.; Lopes, H.; Abelha, P.; Cabrita, I. [INETI/DEECA, Lisboa (Portugal)

    2008-07-01

    Bioenergy could significantly contribute to reducing and controlling greenhouse emissions (GHG) and to replace fossil fuels in large power plants. Although the use of biomass, originating from forests, could be beneficial, particularly in preventing fires, there are obstacles to achieve a sustainable supply chain of biomass in most European countries. In addition, there are also technical barriers as requirements of biomass combustion may differ from those of coal, which could mean significant retrofitting of existing installations. The combustion behaviour of different biomass materials were studied on a pilot fluidised bed combustor, equipped with two cyclones for particulate matter removal. The gaseous pollutants leaving the stack were sampled under isokinetic conditions for particulate matter, chlorine compounds, heavy metals and dioxins and furans (PCDD/F). The results obtained indicated that the combustion of these materials did not present any operational problem, although for temperatures above 800{sup o}C, bed agglomeration could be observed for all biomass materials studied. Most of the combustion of biomass, contrary to what is observed for coal, takes place in the riser where the temperature was as much as 150{sup o}C above that of the bed. Stable combustion conditions were achieved as well as high combustion efficiency. When compared with the emissions of bituminous coal, the most used fossil fuel, the emissions of CO and SO2 were found to be lower and NOx emissions were similar to those of coal. HCl and PCDD/F could be considerable with biomasses containing high chlorine levels, as in the case of straw. It was observed that the nature of ash could give rise serious operating problems.

  19. Research on use of bioenergy; Bioenergian kaeyttoe. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Helynen, S. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aims of Bioenergy Research Programme have been achieved in the field of fuel handling technologies and small scale combustion concepts but 3 - 4 large scale demonstration projects (0,2 - 0,3 million toe/year per utilization concept) before the year 2000 seems to be a very challenging aim. Ignition and explosion properties of wood and agro biomasses and biomass-coal mixtures are determined in atmospheric and pressurized conditions by VTT Energy with Spanish, French, Dutch and German partners in JOULE-project. Explosion suppression systems have also been tested successfully in pressurized conditions up to 10 bar with British partners. Feasibility of reed canary grass for chemical pulp and fuel is evaluated in a large FAIR project. VTT Energy is responsible for pelletising of fuel fraction, combustion of pellets, gasification and combustion of pulverized fuel fraction. Development of a system for receiving, crushing and screening recycled fuel material was concentrated on a heavy-duty two-rotor crusher and a crushing screen by BMH Wood Technology. Primary and secondary crushing are needed for optimum particle size distribution. The system will be demonstrated in Sweden. Dry gas-cleaning methods for gasification-diesel power plants and for other atmospheric-pressure applications of biomass gasification are developed by VTT Energy. Catalytic gas-cleaning methods are tested for engine applications in PDU-scale. Removal of trace metals, chlorine and other harmful contaminants of CFB gasification is studied with regard to co-combustion of the product gas in PC boilers

  20. Diversification and use of bioenergy to maintain future grasslands.

    Science.gov (United States)

    Donnison, Iain S; Fraser, Mariecia D

    2016-05-01

    Grassland agriculture is experiencing a number of threats including declining profitability and loss of area to other land uses including expansion of the built environment as well as from cropland and forestry. The use of grassland as a natural resource either in terms of existing vegetation and land cover or planting of new species for bioenergy and other nonfood applications presents an opportunity, and potential solution, to maintain the broader ecosystem services that perennial grasslands provide as well as to improve the options for grassland farmers and their communities. This paper brings together different grass or grassland-based studies and considers them as part of a continuum of strategies that, when also combined with improvements in grassland production systems, will improve the overall efficiency of grasslands as an important natural resource and enable a greater area to be managed, replanted or conserved. These diversification options relate to those most likely to be available to farmers and land owners in the marginally economic or uneconomic grasslands of middle to northern Europe and specifically in the UK. Grasslands represent the predominant global land use and so these strategies are likely to be relevant to other areas although the grass species used may vary. The options covered include the use of biomass derived from the management of grasses in the urban and semi urban environment, semi-natural grassland systems as part of ecosystem management, pasture in addition to livestock production, and the planting and cropping of dedicated energy grasses. The adoption of such approaches would not only increase income from economically marginal grasslands, but would also mitigate greenhouse gas emissions from livestock production and help fund conservation of these valuable grassland ecosystems and landscapes, which is increasingly becoming a challenge.

  1. Carbon balances during land conversion in early bioenergy systems

    Science.gov (United States)

    Zenone, T.; Chen, J.; Gelfand, I.; Robertson, G. P.; Hamilton, S. K.

    2012-12-01

    In this study, we established a field experiment and deployed seven eddy-covariance towers to quantify the roles of land use change and the subsequent carbon (C) balances of three different bioenergy systems (corn, switchgrass, and mixed prairie species) that were developed from two historical land use types: monocultural grasslands dominated by smooth brome (Bromus inermis Leyss) and lands in the Conservation Reserve Program (CRP). Three CRP fields and three cropland fields were converted to soybean in 2009 (conversion year) before establishing the cellulosic biofuel cropping systems in 2010 (establishment year). A CRP perennial grassland site was kept undisturbed as a reference. Conversion of CRP to soybean induced net C emissions during the conversion year (134 -262 g C m-2 yr-1), while in the same year the net C balance at the CRP grassland reference was -35 g C m-2 yr-1 (i.e., net C sequestration). The establishment of switchgrass and mixed prairie induced a cumulative C balance of -113 g C m-2 (switchgrass from CRP), 250 g C m-2 (switchgrass from cropland), 706 g C m-2 (mixed prairie from CRP), and 59 g C m-2 (mixed prairie from cropland) over the three-year study period. The cumulative three-year C balance of corn converted from CRP and from cropland was -151 g C m-2 and -183 g C m-2, respectively. Eddy flux measurements during cellulosic biofuel crop establishment reveal annual changes in C balance that cannot be detected using conventional mass balance approaches. When end-use of harvested biomass was considered, the C balances for all studied systems, except the reference site, exhibited large C emissions ranging from 150 to 990 g C m-2 over the three-year conversion phase.

  2. Urban Wood-Based Bio-Energy Systems in Seattle

    Energy Technology Data Exchange (ETDEWEB)

    Stan Gent, Seattle Steam Company

    2010-10-25

    Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated with the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.

  3. Oil supply and demand

    International Nuclear Information System (INIS)

    Rech, O.

    2006-01-01

    The year 2004 saw a change in the oil market paradigm that was confirmed in 2005. Despite a calmer geopolitical context, prices continued to rise vigorously. Driven by world demand, they remain high as a result of the saturation of production and refining capacity. The market is still seeking its new equilibrium. (author)

  4. Oil supply and demand

    International Nuclear Information System (INIS)

    Rech, O.

    2004-01-01

    World oil demand, driven by economic development in China, posted the highest growth rate in 20 years. In a context of geopolitical uncertainty, prices are soaring, encouraged by low inventory and the low availability of residual production capacity. Will 2004 bring a change in the oil market paradigm? (author)

  5. Oil supply and demand

    International Nuclear Information System (INIS)

    Babusiaux, D.

    2004-01-01

    Following the military intervention in Iraq, it is taking longer than expected for Iraqi exports to make a comeback on the market. Demand is sustained by economic growth in China and in the United States. OPEC is modulating production to prevent inventory build-up. Prices have stayed high despite increased production by non-OPEC countries, especially Russia. (author)

  6. DEMAND AND PRICES

    Directory of Open Access Journals (Sweden)

    VĂDUVA MARIA

    2014-08-01

    Full Text Available Studying the consumer’s behavior by the ordinal approach of utility with the help of indifference curves allows us to deduce the two “movement laws of demand” in this chapter: the demand for a “normal” good is decreasing function of its price and an increasing function of income. We will use the elasticity concept to measure the intensity of the relation that is established between the demand, on the one hand, and prices or income, on the other hand: elasticity – price, direct and crossed, and elasticity – income. We can classify the goods in many categories, depending on the values that this elasticity takes. The demand elasticity can be determined depending on price and income. It reflects the proportion in which the demand for different products changes with the modification of the consumers’ income, the other factors remaining constant. The elasticity compared to the income is a demonstration of legality from the consumer’s sphere, which determines a certain hierarchy of the needs of each population category in a certain level of income. The movement of prices orients both the options and decisions of producers, namely the most useful productions and the most efficient investments, as well as the consumers’ options and decisions on the most advantageous buying of goods and services that they need. The prices appear as a “signal system” coordinating and making coherence the economic agents’ decisions – producers, consumers and population.

  7. Demands for School Leaders

    Science.gov (United States)

    Bradley-Levine, Jill

    2016-01-01

    This article examines the ways that graduate courses in teacher leadership influenced the ways that teachers described the nature of leadership and their role as educational leaders. Using Foster's (1989) four demands for school leaders as a theoretical framework, participants' perceptions are examined to determine how teachers synthesized their…

  8. Oil supply and demand

    Energy Technology Data Exchange (ETDEWEB)

    Rech, O

    2004-07-01

    World oil demand, driven by economic development in China, posted the highest growth rate in 20 years. In a context of geopolitical uncertainty, prices are soaring, encouraged by low inventory and the low availability of residual production capacity. Will 2004 bring a change in the oil market paradigm? (author)

  9. Textbook Factor Demand Curves.

    Science.gov (United States)

    Davis, Joe C.

    1994-01-01

    Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)

  10. Sterically demanding iminopyridine ligands

    NARCIS (Netherlands)

    Irrgang, Torsten; Keller, Sandra; Maisel, Heidi; Kretschmer, Winfried; Kempe, Rhett

    Two sterically demanding iminopyridine ligands, (2,6-diisopropylphenyl)[6-(2,4,6-triisopropylphenyl)pyridin-2-ylmeth- ylene]amine and (2,6-diisopropylphenyl)]6-(2,6-dimethylphenyl)pyridin-2-ylmethylene]amine, were prepared by a two-step process: first, condensation of 6-bromopyridine-2-carbaldehyde

  11. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  12. Electricity generation comparison of food waste-based bioenergy with wind and solar powers: A mini review

    Directory of Open Access Journals (Sweden)

    Ngoc Bao Dung Thi

    2016-09-01

    Full Text Available The food waste treatment-based anaerobic digestion has been proven to play a primary role in electricity industry with high potentially economic benefits, which could reduce electricity prices in comparison with other renewable energy resources such as wind and solar power. The levelized costs of electricity were reported to be 65, 190, 130 and 204 US$ MWh−1 for food waste treatment in anaerobic landfill, anaerobic digestion biogas, solar power, and wind power, respectively. As examples, the approaches of food waste treatment via anaerobic digestion to provide a partial energy supply for many countries in future were estimated as 42.9 TWh yr−1 in China (sharing 0.87% of total electricity generation, 7.04 TWh yr−1 in Japan (0.64% of total electricity generation and 13.3 TWh yr−1 in the US (0.31% of total electricity generation. Electricity generation by treating food waste is promised to play an important role in renewable energy management. Comparing with wind and solar powers, converting food waste to bioenergy provides the lowest investment costs (500 US$ kW−1 and low operation cost (0.1 US$ kWh−1. With some limits in geography and season of other renewable powers, using food waste for electricity generation is supposedly to be a suitable solution for balancing energy demand in many countries.

  13. Bioenergy, protein and fibres from grass - biogas process monitoring; Bioenergie, Protein und Fasern aus Gras - Monitoring des Biogasprozesses

    Energy Technology Data Exchange (ETDEWEB)

    Baier, U.; Delavy, P.

    2003-07-01

    Starting in Summer 2001 the first full scale Swiss Bio-refinery for grass processing took up operation in Schaffhausen. Grass processing covers the production of technical fibres and protein concentrate as well as anaerobic digestion of residual slops for the production of biogas and 'green' electricity. The refinery is operated by the company Bioenergie Schaffhausen as a P+D (pilot + demonstration) project of the Swiss Federal Office of Energy. Under full load it will deliver 2,000 MWh of 'green' electricity (10% own needs) and 3,000 MWh heat (50% own needs). Prior to start up the Swiss technology holder 2B Biorefineries AG mandated the University of Applied Sciences HSW with lab scale testing of the mesophilic biogas potential and anaerobic degradability of residual grass processing slops. Nutrient limitations and possible inhibition risks were evaluated. During the initial 8 months of full scale operation of the refinery in Schaffhausen an intensive monitoring of the anaerobic digester's performance was carried out. Carbon and nitrogen mass balances have been set up and the development of the granular EGSB sludge was characterised. From operational data a set of performance values was elaborated. The first year of operation was characterised by only partial exploitation of the refinery's grass processing capacity. Furthermore the protein separation and production unit has not yet been incorporated. Consequently, the EGSB biogas reactor showed a significant hydraulic underload when compared to dimensioning basics. Raw residuals were characterised by a higher particulate protein fraction. Operational conditions for the EGSB reactor were worked out to allow stable operation at elevated load conditions and with protein separation in operation. (author)

  14. Modelling the ecological consequences of whole tree harvest for bioenergy production

    Science.gov (United States)

    Skår, Silje; Lange, Holger; Sogn, Trine

    2013-04-01

    There is an increasing demand for energy from biomass as a substitute to fossil fuels worldwide, and the Norwegian government plans to double the production of bioenergy to 9% of the national energy production or to 28 TWh per year by 2020. A large part of this increase may come from forests, which have a great potential with respect to biomass supply as forest growth increasingly has exceeded harvest in the last decades. One feasible option is the utilization of forest residues (needles, twigs and branches) in addition to stems, known as Whole Tree Harvest (WTH). As opposed to WTH, the residues are traditionally left in the forest with Conventional Timber Harvesting (CH). However, the residues contain a large share of the treés nutrients, indicating that WTH may possibly alter the supply of nutrients and organic matter to the soil and the forest ecosystem. This may potentially lead to reduced tree growth. Other implications can be nutrient imbalance, loss of carbon from the soil and changes in species composition and diversity. This study aims to identify key factors and appropriate strategies for ecologically sustainable WTH in Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) forest stands in Norway. We focus on identifying key factors driving soil organic matter, nutrients, biomass, biodiversity etc. Simulations of the effect on the carbon and nitrogen budget with the two harvesting methods will also be conducted. Data from field trials and long-term manipulation experiments are used to obtain a first overview of key variables. The relationships between the variables are hitherto unknown, but it is by no means obvious that they could be assumed as linear; thus, an ordinary multiple linear regression approach is expected to be insufficient. Here we apply two advanced and highly flexible modelling frameworks which hardly have been used in the context of tree growth, nutrient balances and biomass removal so far: Generalized Additive Models (GAMs) and

  15. Environmental impact of converting Conservation Reserve Program land to perennial bioenergy crops in Illinois.

    Science.gov (United States)

    Blanc-Betes, E.; Hudiburg, T. W.; Khanna, M.; DeLucia, E. H.

    2017-12-01

    Reducing dependence on fossil fuels by the 20% by 2022 mandated by the Energy Independence and Security Act would require 35 billion Ga of ethanol and the loss of 9 to 12 Mha of food producing land to biofuel production, challenging our ability to develop a sustainable bioenergy source while meeting the food demands of a growing population. There are currently 8.5 Mha of land enrolled in the Conservation Reserve Program (CRP), a US government funded program to incentivize the retirement of environmentally sensitive cropland out of conventional crop production. About 63% of CRP land area could potentially be converted to energy crops, contributing to biofuel targets without displacing food. With high yields and low fertilization and irrigation requirements, perennial cellulosic crops (e.g. switchgrass and Miscanthus) not only would reduce land requirements by up to 15% compared to prairies or corn-based biofuel, but also serve other conservation goals such as C sequestration in soils, and water and air quality improvement. Here, we use the DayCent biogeochemical model to assess the potential of CRP land conversion to switchgrass or Miscanthus to provide a sustainable source of biofuel, reduce GHG emissions and increase soil organic carbon (SOC) storage in the area of Illinois, which at present contributes to 10% of the biofuel production in the US. Model simulations indicate that the replacement of traditional corn-soy rotation with CRP reduces GHG emissions by 3.3 Mg CO2-eq ha-1 y-1 and increases SOC storage at a rate of 0.5 Mg C ha-1 y-1. Conversion of CRP land to cellulosic perennials would further reduce GHG emissions by 1.1 Mg CO2-eq ha-1 y-1 for switchgrass and 6.2 Mg CO2-eq ha-1 y-1 for Miscanthus, and increase C sequestration in soils (1.7 Tg C for switchgrass and 7.7 Tg C for Miscanthus in 30 years). Cellulosic energy crops would increase average annual yields by approximately 5.6 Mg ha-1 for switchgrass and 13.6 Mg ha-1 for Miscanthus, potentially

  16. Energy demands in the 21st century: the role of biofuels in a developing country

    International Nuclear Information System (INIS)

    Quaye, E.C.

    1996-01-01

    In most developing countries more than 25% of total energy use comes from biofuels. In Ghana, the figure is between 70-80%. Bioenergy is mainly used for cooking and heating, and is also important in rural or cottage industries. As a developing country, Ghana's economic growth remains coupled to the availability and supply of energy. About 29% of this energy is obtained through hydropower and imported petroleum. The two hydropower installations generate about 1102 MW annually mainly for domestic and industrial uses. At the current 3.0% average annual population growth rate, a population of about 35 million is expected by 2025. Coupled with the country's efforts to promote industrialization, future energy demand is expected to increase several fold. This paper provides an overview of Ghana's current energy situation and discusses the role of bioenergy in the future energy demand of the country. The paper concludes with a recommendation for a major shift in energy policy to accommodate the conversion of biofuels into versatile energy carriers in a decentralised system to meet the energy requirements of the people and to provide a basis for rural development and employment. (Author)

  17. Study of Evaluation OSH Management System Policy Based On Safety Culture Dimensions in Construction Project

    Science.gov (United States)

    Latief, Yusuf; Armyn Machfudiyanto, Rossy; Arifuddin, Rosmariani; Mahendra Fira Setiawan, R.; Yogiswara, Yoko

    2017-07-01

    Safety Culture in the construction industry is very influential on the socio economic conditions that resulted in the country’s competitiveness. Based on the data, the accident rate of construction projects in Indonesia is very high. In the era of the Asian Economic Community (AEC) Indonesian contractor is required to improve competitiveness, one of which is the implementation of the project without zero accident. Research using primary and secondary data validated the results of the literature experts and questionnaire respondents were analyzed using methods SmartPLS, obtained pattern of relationships between dimensions of safety culture to improve the performance of Safety. The results showed that the behaviors and Cost of Safety into dimensions that significantly affect the performance of safety. an increase in visible policy-based on Regulation of Public Work and Housing No 5/PRT/M/2014 to improve to lower the accident rate.

  18. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    International Nuclear Information System (INIS)

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; Hove, Sybille van den

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  19. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Science.gov (United States)

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  20. 75 FR 41173 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Science.gov (United States)

    2010-07-15

    ... overwhelming permitting burdens that would be created under the statutory emissions thresholds, does not itself... influenced subsequent reporting systems, such as the World Resources Institute/ World Business Council for... bioenergy.\\7\\ \\6\\ World Resources Institute/World Business Council on Sustainable Development. 2004. A...